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Abstract

In this paper, the issue of the efficient use of Givens rotations in SVD-based QR Jacobi-type subspace tracking
algorithms is addressed. By relaxing the constraint of upper triangularity on the singular value matrix, we show how even
fewer Givens rotations can achieve a better diagonalization and provide more accurate singular values. Then, we
investigate the efficient use of Givens rotations as a vector rotation tool. The cancellation of cross-terms is presented as an
efficient signal/noise separation technique which guarantees a better updating of the subspaces basis. Regarding the
choice between inner and outer rotations, we properly use the permutation properties of Givens rotations to maintain the
decreasing ordering of the singular values throughout the updating process and analyze the consequences on the tracking
performance of QR Jacobi-type algorithms. Finally, based on the developed theory, we propose two efficient subspace
tracking algorithms which outperform existing QR Jacobi-type algorithms. Comparative simulation experiments
validate the concepts. ( 1999 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In diesem Beitrag wird die effiziente Verwendung von Givens rotations in SVD-basierten subspace tracking Algorith-
men vom QR Jacobi-Typ diskutiert. Wir zeigen, dass durch die Aufgabe der Einschränkung auf obere Dreiecksstruktur
der Singulärwertmatrix mit weniger Givens rotations eine bessere Diagonalisierung and genauere Singulärwerte erzielt
werden können. Weiters wird die effiziente Verwendung von Givens rotations als ein vector rotation Werkzeug
diskutiert. Die gegenseitige Aufhebung von Kreuztermen wird als effizientes Signal/Geraüsch Trennungsverfahren
präsentiert, welches ein besseres updating der Unterraumbasis garantiert. Wir demonstrieren den Einfluss der Rotations-
art (innere oder aüssere) auf die Reihenfolge der Singulärwerte während des gesamten Aktualisierungsprozesses. Weiters
werden die Konsequenzen der Rotationsart auf die tracking performance diskutiert. Schliesslich werden zwei effiziente
subspace tracking Algorithmen vorgeschlagen, die auf den gewonnenen Ergebnissen basieren und besser sind als
existierende Algorithmen vom QR Jacobi-Typ. Vergleichende Simulationsergebnisse bestätigen die vorgestellen Kon-
zepte. ( 1999 Elsevier Science B.V. All rights reserved.

Résumé

Dans cet article, nous abordons le problème de l’utilisation optimale des rotations de Givens dans les algorithmes de
type QR Jacobi pour le suivi de sous-espaces. En enlevant la contrainte de triangularité supérieure, nous montrons
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comment un nombre réduit de rotations de Givens rotations peuvent produire une meilleure diagonalisation de la
matrice des valeurs singulières et donner des valeurs singulières plus précises. Puis, nous analysons l’utilisation efficace
des rotations de Givens en tant qu’outils de rotation de vecteurs. L’annulation des termes croisés est présentée comme
une technique efficace de séparation des sous-espaces signal et bruit qui garanti une meilleure mise à jour des bases des
sous-espaces. A© propos du choix entre rotations internes et externes, nous exploitons adéquatement les propriétés
permutatives de ces rotations pour maintenir l’ordre décroissant des valeurs singulières lors de la mise à jour, et
analysons les conséquences sur les performances de suivi des algorithmes de type QR Jacobi. Finalement, en se basant sur
la théorie développée, nous proposons deux algorithmes efficaces de suivi de sous-espaces dont les performances excèdent
celles des algorithmes de type QR Jacobi existant. Des simulation expérimentales valident les concepts pro-
posés. ( 1999 Elsevier Science B.V. All rights reserved.

Keywords: Subspace tracking; Invariant subspace updating; Singular-value decomposition; Givens rotation; Cross-
terms; Direction of arrival

Notation
a angle of arrival
A data matrix
*»

S
time variation of signal subspace

*
l

convergence step induced by the lth rota-
tion

c efficiency of Givens rotations (EGR)
Gi@jh Givens rotation in i—j plane with angle h
k time index
j forgetting factor
M number of pairs of rotations at refinement

step
N number of sensors
off[ ] off-norm of its argument
r number of sources
p
i

ith singular value
p6
N

average noise singular value
R singular value matrix
º left singular vectors
» right singular vectors
u electrical angle
x measurement vector
y update vector, i.e. projection of x on »

y8
i

update vector after the ith QR rotation

1. Introduction

In the application of subspace methods to array
signal processing, projection techniques like
MUSIC [25], root-MUSIC [1], ESPRIT [24] or
minimum-norm [15] are often used to estimate
the signal parameters. These methods require a
subspace information which can be provided by

various decompositions, including the eigenvalue
decomposition (EVD) of the sample correlation
matrix, the QR factorization [2] or the singular-
value decomposition (SVD) of the data matrix. In
the case of non-stationary signals, these decomposi-
tions need to be updated each time new informa-
tion is provided by the most recent measurements.
The quality of the updating process affects the
accuracy of the parameter estimates, and its low
complexity may allow a real-time implementation.
These considerations have led to an intensive re-
search on the development of the so-called sub-
space tracking algorithms. Beginning with Owsley
[18], many adaptive subspace tracking algorithms
have been developed and can be grouped in fami-
lies, depending on the specific technique they use:
stochastic gradient [35], recursive least squares
[34], perturbation approach [3], to quote a few.
The introduction in [5] is a good source of refer-
ences concerning the development of subspace
tracking algorithms.

Generally, an SVD-based subspace tracking con-
sists in computing the SVD of a data matrix of
growing dimension, defined recursively as

A(k)"C
JjA(k!1)

xH(k) D, (1)

where k is the discrete time index, 0(j(1 is the
forgetting factor, and x(k)3CN is the measurement
vector at time index k. The SVD of A(k) can be
expressed as

A(k)"º(k)R(k)»(k)H, (2)
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where »(k) is an N]N unitary matrix, º(k) is
a k]N matrix with orthonormal columns and R(k)
is an N]N diagonal matrix. Usually, the left singu-
lar vectors º(k) need not be tracked to provide the
subspace information. So, one is interested in track-
ing only the singular values Mp

1
*p

2
*2*p

N
N

along the diagonal of R(k) and the right singular
vectors, i.e. the columns of »(k). Computing this SVD
from scratch at each iteration is computationally
expensive and time-consuming. The main issue
consists then in using the information contained in
the measurement x(k) to update the previous de-
composition obtained at time k!1.

In this work, we focus our attention on a specific
family of SVD-based subspace tracking algorithms
which we define as QR Jacobi-type algorithms
[12,17,23]. QR Jacobi-type algorithms intensively
make use of Givens rotations in the subspace updat-
ing process, the main matrix operations consisting in
products with Givens rotations; thus, they track the
subspaces with a low complexity and a rather simple
formulation. Also, Givens rotations have the ad-
vantage to maintain the orthonormality of matrices,
assuming an infinite precision. The direct conse-
quence is that QR Jacobi-type algorithms are good
candidates for implementation in a rather regular
structure, e.g. using CORDIC processors [27,32].

While the exact SVD-based tracking of »(k) and
R(k) requires O(N3) operations at each iteration,
Moonen et al. have proposed a QR Jacobi-type
algorithm with a complexity of O(N2) operations per
update [17]. In this paper, we shall refer to Moon-
en’s algorithm as MA. Kavcic and Yang [12] intro-
duced a noise sphericalized version of MA, the noise
average SVD (NASVD) which updates a spheri-
calized URV decomposition [30]; it reduces the
complexity to O(Nr) by tracking only an r-dimen-
sional signal subspace. Based on the same structure,
Rabideau [23] proposed an algorithm of similar
complexity, the refinement-only fast subspace track-
ing (RO-FST), which considerably improves the
tracking performance. Let us note that Stewart’s
algorithm for the updating of the rank revealing
URV [30] is also a QR Jacobi-type algorithm which
has the advantage to track the number of sources r.

The effectiveness of the above algorithms in sub-
space tracking and/or parameter estimation has
already been validated through simulations. Yet

many questions remain unanswered regarding
these algorithms. Since they use exclusively Givens
rotations throughout the updating process, one
must analyze the efficiency of these rotations on the
singular values and singular vectors tracking per-
formance, and also on the accuracy of the signal
parameter estimates they provide.

Regarding the singular values, QR Jacobi-type
algorithms usually track an approximate SVD de-
composition (e.g. URV) in which the singular value
matrix R(k) is given a specific structure; then, Givens
rotations are applied throughout the updating algo-
rithm in order not to destroy that specific structure.
It might be argued that such a structural constraint
introduces limitations in the way Givens rotations
could be used to achieve a better updating of the
singular values. For example, the above QR Jacobi-
type algorithms impose R(k) in Eq. (2) to be upper-
triangular. The efficiency of Givens rotations assum-
ing this specific structure (and eventually others) has
not been investigated yet. Therefore, one notes that
the above algorithms use Givens rotations in a way
which is not proved to be optimal.

Regarding the singular vectors, QR Jacobi-type
algorithms use Givens rotations to rotate the ap-
proximate singular vectors in the direction of the
exact ones. This re-orientation of the singular vec-
tors is performed to update a subspace basis which
inputs MUSIC-like estimators and provide the de-
sired signal parameter estimates. The accuracy of
the parameter estimates is linked to the ability of
the Givens rotations to rotate the proper singular
vectors in the proper direction. Here, the issue
consists then in the choice of the appropriate vec-
tors to be rotated in order to provide the best
update of the subspace basis. Note that in most
existing QR Jacobi-type algorithms, this issue is
not specifically addressed.

Finally, a general issue is the ordering of the
singular values throughout the updating process. It
is generally accepted that the ordering of the singu-
lar values can be controlled by the choice of the
type of rotations: inner or outer. It is also known
that the choice of the type of rotations has a major
effect on the tracking performance of QR Jacobi-
type algorithms; the analytical demonstration of
the link between the type of rotations and both the
ordering of the singular values and the tracking
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error of QR Jacobi-type algorithms needs to be
clearly stated.

The purpose of this paper is to investigate the
efficient use of Givens rotations in order to propose
new efficient SVD-based subspace tracking algo-
rithms. To diagonalize R(k) efficiently, we remove
the constraint of upper triangularity of R(k) and
propose an updating structure in which the Givens
rotations are dynamically applied in various sub-
regions of R(k), allowing a robust response to highly
non-stationary cases. We analyze the direct effect of
Givens rotation on the subspace basis tracking error
and introduce the concept of cross-terms cancella-
tion as an efficient signal/noise subspace separation
technique. We provide a solution to the question of
the ordering of the singular values by choosing ap-
propriately the type of each Givens rotation (inner
or outer). Our conclusions regarding the structure of
the decomposition, the type of Givens rotations and
their efficient use enable us to validate the relative
performance of various existing QR Jacobi-type al-
gorithms and propose two new computationally effi-
cient QR Jacobi-type subspace tracking algorithms.
They are formulated for both cases of partial and
complete tracking, i.e signal#noise subspace track-
ing and signal subspace-only tracking, with respect-
ive complexity O(N2) and O(Nr), where r is the
number of signal sources. The new algorithms out-
perform existing QR Jacobi-type algorithms, even
with fewer Givens rotations.

The paper is organized as follows. In Section 2,
the efficient use of Givens rotations to diagonalize
R(k) and track the subspaces basis vectors is ad-
dressed; also, the choice between inner or outer
rotations and its effect on the tracking error and the
ordering of the singular values is analyzed. Section
3 presents the proposed algorithms, and Section
4 shows experimental results of computer experi-
ments to validate the new concepts and algorithms
in various tracking scenarios. Finally, conclusive
remarks are given in Section 5. Throughout the
paper, DD ) DD is the 2-norm of its argument.

2. Optimizing the use of Givens rotation

Refering to Eq. (2), the convergence of an SVD-
based subspace tracker to the exact SVD of A(k) is

closely related to two matters: the ability of the
algorithm to diagonalize R(k), and then, to rotate
the approximate singular vectors in the direction of
the exact ones. Indeed, a good diagonalization of
R(k) ensures the correctness of the singular values,
while an appropriate rotation of the estimated
singular vectors moves them close to the direction
of the exact ones. The Givens rotation is a tool
that can achieve both tasks simultaneously if
it is judiciously used. In this section, we first
present some preliminaries after which we discuss
the issue of the efficient use of Givens rotations for
the tracking of the singular values; then, we do
the same for the singular vectors and, finally, we
investigate the type of rotations to be used, i.e.
inner or outer, and its consequence on the tracking
performance.

2.1. Preliminaries

Let us first introduce the appropriate notation
for the Givens rotation, which is the main tool QR
Jacobi-type algorithms use. We recall that a Givens
rotation differs from an identity matrix only at four
entries as in

Gi@jh "C
I
i~1

c 2 sH

F I
j~i~1

F

!s 2 c

I
N~j
D, (3)

where I
n

is the n]n identity matrix and
DcD2#DsD2"1. In the real case, we have c"cos h
and s"sin h, where h is the angle of the rotation.
Note that a complex Givens rotation G

#
can be

expressed as the product of a real Givens rotation
G

3
with a phasor P, as in G

#
"G

3
P; accordingly in

this paper, we may use the real notation without
any loss of generality.

Referring to Eqs. (1) and (2), one would like to
approximate the decomposition of the data matrix
A(k). To update the singular-value matrix R and the
right singular vectors » from time k!1 to k, QR
Jacobi-type subspace tracking algorithms essential-
ly proceed in two steps, namely the QR step and the
refinement step. The QR step applies N Givens
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rotations to zero each entry of the measurement
vector’s projection on the observation space, i.e.
y(k)"»(k!1)Hx(k); the updated matrix R(k) is
obtained by dropping the last (zeroed) row:

C
R(k)

0H D"[GN@N`1
(N

]H2[G2@N`1
(2

]H[G1@N`1
(1

]H

]C
JjR(k!1)

y(k)H D. (4)

Regarding the update vector y(k), note furthermore
that one may either pre-multiply each right singu-
lar vectors by an appropriate phase term to make
y(k) real [26] and maintain a real singular value
matrix R(k), or work directly with complex Givens
rotations. In the latter case, phase terms have to be
interleaved with Givens rotations to maintain the
singular values real along the diagonal of R(k). In
the sequel, one may assume that the components of
y(k) and R(k) are real without any loss of generality.
After the QR step, the refinement step intends to
concentrate the energy of R(k) along its diagonal.
This ‘diagonalization’ step, sometimes called SVD
step or refinement, exists in different flavours in the
literature. The refinement usually consists in
a series of M pairs of Givens rotations on both sides
of R(k) [12,17], as in

R(k)Q[Gil@jl
(l

]HR(k)Gil@jlhl (5)

for l"1 :M, and the corresponding accumulation
of the right rotations on the singular vectors

»(k)Q»(k)
M
<
l/1

Gil@jlhl . (6)

In Eq. (5), the rotation angles h
l
and /

l
are com-

puted so as to zero the (i
l
, j
l
) and ( j

l
, i
l
) entries of

R(k), which we denote as p
iljl

and p
jlil

; we call p
iljl

the
pivot of the rotations Gil@jl

(l
and Gil@jlhl . For each (i

l
, j
l
)

pair of entries to be zeroed at the refinement step,
the angles /

l
and h

l
are the solutions of the SVD

(diagonalization) of a 2-by-2 matrix, as in

C
cos /

l
sin/

l
!sin/

l
cos/

l
D

T

C
p
ilil

p
iljl

p
jlil

p
jljl
DC

cos h
l

sinh
l

!sinh
l

cos h
l
D

"C
p@
ilil

0

0 p@
jljl
D. (7)

Details for the computation of h
l
and /

l
can be

found in [16]. Note that the rotations can be either
inner or outer. Later in this paper, we shall address
the issue of the choice of the type of rotations.

In MA, we have M"N!1 so that the overall
complexity of the updating algorithm is O(N2).
Kavcic’s NASVD [12] is the sphericalized version
of MA. It lowers the updating complexity by track-
ing the following decomposition:

A(k!1)"º(k!1)C
RI (k!1) 0

0 p6
N
(k!1)I

N~r~1
D

]»(k!1)H. (8)

RI (k!1) is an upper-triangular square matrix of
dimension r#1; its diagonal contains the r signal
singular values and one average noise singular
value p6

N
(k!1) which is kept at the (r#1, r#1)

position. The above decomposition is updated in
four steps: a Householder transformation which
rotates the noise subspace basis so that the projec-
tion of the incoming data x(k) on it has a single
non-zero component [11], a QR step and a refine-
ment step not different from Eqs. (4)—(6), but requir-
ing fewer Givens rotations, i.e. M"r. Finally, the
average noise singular value is re-estimated. The
complexity of NASVD is O(Nr).

2.2. A matter of diagonalization

In this section, we would like to develop updat-
ing algorithms which diagonalize the singular value
matrix R(k) efficiently, i.e. with M not exceeding
N!1 pairs of Givens rotations at the refinement
step as in MA. In this case, the overall complexity
of the algorithm is expected not to be higher than
O(N2). Below, we show that the solution to the
efficient diagonalization of R(k) consists in choos-
ing appropriately the (i

l
, j

l
) pivots in Eq. (5).

2.2.1. An appropriate structure for R(k)
In QR Jacobi-type algorithms, the main goal of

the refinement step is the reduction of the off-norm
of R(k) which is defined by

off[R(k)]"S +
1xiEjxN

Dp
ij
D2. (9)
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Let us reconsider the refinement step as described
in Eq. (5) and omit temporarily the rotation index l.
After the pair of rotations [Gi@j

(
]H and Gi@jh are ap-

plied to the left and the right of R(k), respectively, its
off-norm is reduced as [9,10]

off[R(k)]2Qoff[R(k)]2!(Dp
ij
D2#Dp

ji
D2). (10)

Thus, the larger p
ij

and p
ji
, the better the diagonaliz-

ation. This observation led us to investigate the effect
of selecting the off-diagonal entry of R(k) with the
largest magnitude before each pair of rotations is
applied, so that in Eq. (5) the rotations always zero
the largest pivots. We call this technique a ‘Maximum
Search’ (MS) procedure. In agreement with Eq. (10)
and as observed experimentally in Section 4, such
a technique achieves a better off-norm reduction, and
thus a better tracking of the singular values.

Note that unlike other QR Jacobi-type algo-
rithms, the MS procedure does not maintain the
upper-triangular structure. Indeed, since off-diag-
onal maxima can be located anywhere in R(k), the
MS procedure applies Givens rotations anywhere
and not necessarily on the second diagonal of R(k)
as in conventional QR Jacobi-type algorithms. This
causes non-zero upper elements to be reintroduced
in the lower part of R(k), breaking the upper-tri-
angular structure. To reduce efficiently the off-
norm by allowing Givens rotations to be applied
anywhere in R(k), we need to consider a different
type of approximate decomposition, still expressed
as in (2), but where R(k) is now almost diagonal but
not specifically upper-triangular. We refer to this
decomposition as an UXV, where X stands for the
singular-value matrix R(k) which has no particular
structure but being almost diagonal. As the URV
[30], the UXV is simply an approximate SVD but
in which the constraint of upper triangularity of
R has been relaxed to provide more flexibility to
Givens rotations.

As far as the SVD is concerned, the most impor-
tant attribute for R(k) is not to be upper-triangular
as required by conventional QR Jacobi-type algo-
rithms, but to have the smallest possible off-norm.
On one hand, applying rotations as conventional
QR Jacobi-type algorithms do, i.e. preserving the
upper triangular structure, is not proved to be the
optimal way to reduce the off-norm of R(k) under
the constraint of a fixed number of Givens rota-

tions. On the other hand, the breaking of the up-
per-triangular structure does not interfere with the
main goal of the refinement step: the reduction of
the off-norm of R(k). Note also that unlike the full
matrix, an upper-triangular R(k) does not allow one
to restore the decreasing ordering of the singular
values at any time, even by using permutations.

As a consequence of the UXV decomposition,
the MS technique does not guarantee the standard
QR in Eq. (4) to zero totally the incoming vector
y(k) in a fixed number of Givens rotations. More
particularly, the ith QR rotation Gi@N`1

(i
in Eq. (4)

zeros the ith entry of y(k) and modifies only the ith
and the (N#1)th rows, as in

[ith row]Qcos/
i
[ith row]

!sin/
i
[(N#1)th row], (11)

[(N#1)th row]Qcos/
i
[(N#1)th row]

#sin/
i
[ith row]. (12)

As a consequence of Eq. (12) being repeated
N times for i"1,2,N in Eq. (4), it can be verified
that after the QR step, the entries of the last row are
of the same order of magnitude as the off-diagonal
entries of R(k). This implies that after the QR rota-
tions have been applied, the diagonalization error
due to the entries of the (N#1)th row is much
smaller than the total error due to all the off-
diagonal entries of R(k), assuming N is reasonably
large. Also, one should notice that in practical
applications, the data matrix itself A(k) is noise-
corrupted; therefore, depending on the SNR and
the forgetting factor j, the effect of setting to 0 e-size
terms (where e is the order of magnitude of the
off-diagonal entries of R(k)) might be masked by the
statistical fluctuations resulting from the noise.

Based on the above considerations, as an updat-
ing procedure for the UXV decomposition, we pro-
pose to drop the entries of the last row once the
N QR Givens rotations have been applied. Even
though this UXV-based QR step does not zero
completely y(k)H and does not lead to an informa-
tion-preserving updating procedure, we still refer to
such an operation as a QR step to maintain a com-
patibility of terminology with existing algorithms.

In summary, assuming an UXV decomposition,
an MS refinement appears as an efficient off-norm
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reduction procedure. Our viewpoint is that what
is lost at the QR step is meaningless, if compared
to the improvement of performance due to the
‘maximum-search’ diagonalization procedure.
The removal of the upper-triangular constraint
of R(k) leads effectively to improved subspace
tracking algorithms, as observed experimentally in
Section 4.

2.2.2. Locating efficiently the largest pivots
At the refinement step, the location of the largest

off-diagonal entry of R(k) cannot be determined
a priori from theoretical consideration alone. In-
deed, after the QR step, the largest off-diagonal
entry of R(k) can be located anywhere, and its
position changes within R(k) after each pair of rota-
tion is applied. The only way to obtain the max-
imum location is by an exhaustive search. Locating
the largest entry in an N]N array involves
N2 comparison tests. Since the MS procedure re-
quires the maximum search to be performed prior
to each of the M pairs of rotations at the refinement
step, this leads to an unacceptable O(N3) complex-
ity updating algorithm. (Recall that M is O(N).) In
fact, even if all the entries of R(k) are maintained in
a separate sorted table, each refinement rotation in
Eq. (5) modifies 8N!4 entries (2 rows and 2 col-
umns) which have to be re-inserted in the table; this
still leads to an O(N2 logN)-complexity bottleneck.
Therefore, one needs to find a way to perform the
maximum search, but at a lower complexity.

To efficiently reduce the off-norm of R(k), the key
idea is to predict the sub-region of R(k) where the
off-norm is expected to increase more significantly
after the QR step; if the search region contains
O(N) entries, e.g. a row, so an MS-like procedure
can be performed locally with a reduced complex-
ity. The main issue then is the accurate detection of
the sub-region of R(k) where the QR step causes the
largest norm increase. In this paper, we propose an
approach which consists in estimating the off-norm
increase in each row of R(k) after the QR step and
distribute dynamically the refinement rotations be-
tween all the rows.

If p
1
*p

2
*2*p

N
are the singular values of

an M]N matrix B listed in decreasing order, one
defines the effective rank of B as r if p

r
'e'p

r`1
,

where 1)r)min(M,N) and e is a specified bound

[14]. Let r denote the effective rank of A(k). We
define the following submatrices:

º(k)"[º
S
(k)Dº

N
(k)],

(13)

V(k)"[»
S
(k)D»

N
(k)],

where º
S
(k)"[u

1
,2,u

r
]3CkCr and »

S
(k)"

[�
1
,2,�

r
]3CNCr. Let us also rewrite the almost

diagonal singular-value matrix as

R(k)"C
R
S
(k) R

SN
(k)

R
NS

(k) R
N
(k) D, (14)

where R
S
(k)3RrCr, and the other blocks are defined

accordingly.
The main diagonal of R(k) contains the approx-

imate singular values which for now are supposed
to be always maintained in decreasing order:
p
1
'p

2
'2'p

N
; later in the paper, we shall

address the issue of the ordering of the singular
values. In Eqs. (13) and (14), the singular values and
singular vectors have thus been separated into two
sets corresponding to the r largest and N!r
smallest singular values; the signal and noise
subspaces are the column-span of »

S
(k) and

»
N
(k), respectively. Let y(k)"»(k!1)Hx(k)"

[y
S
(k)Dy

N
(k)]; y

S
(k) and y

N
(k) represent the compo-

nents of the projection of the measurement
vector x(k) on the signal and noise subspaces,
respectively.

One easily notes that the size of the entries of
y
S

and y
N

provides a draft estimation of the local-
ization of the off-norm increase in R. Indeed, at the
QR step the norm Ey

S
(k)E is transferred exclusively

to R
S
, while Ey

N
(k)E is transferred to R

SN
and R

N
.

This information might be usefull, it is still not
complete yet. Searching for the largest entry in
R
SN

remains a complex operation, particularly
when NAr. To reduce the search region to the size
of a row, let us investigate more thoroughly the off-
norm increase of R(k) at the QR step.

We assume that the off-diagonal entries of R(k)
are originally e-sized before the QR step where e is
small. Let us denote by y8

i
the update vector y(k)

altered by the i first consecutive rotations of the QR
step, with y8

0
"y(k). In Eq. (4), the ith QR rotation

[Gi@N`1
(i

]H alters only the ith and the (N#1)th row,
i.e. y8 H

i~1
, as in Eqs. (11) and (12) which we now
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rewrite as

[ith row]Q[ith row]cos/
i
!y8 H

i~1
sin /

i
, (15)

y8 H
i
Qy8 H

i~1
cos/

i
#[ith row]sin /

i
. (16)

On the one hand, the angle /
i
is computed so as to

zero the ith entry of the last row y8 H
i~1

; one sees from
Eq. (16) that [Gi@N`1

(i
]H also alters the entire

(N#1)th row by adding to it a vector whose en-
tries are the off diagonal e-sized entries from the ith
row, multiplied by sin /

i
. On the other hand, one

sees from Eq. (15) that [Gi@N`1
(i

]H alters the ith row
by multiplying it by cos/

i
and adding y8 H

i~1
sin /

i
to

it. Therefore, in R(k), the off-norm growth (ng) gen-
erated by the ith QR rotation is located in the ith
row only, and can be approximated by the norm of
the term which is transferred from the (N#1)th
row to the off-diagonal entries of the ith row, i.e.

ng(i)"Ey8
i~1

(12i!1, 0, i#12N)sin /
i
E. (17)

The computation of the off-norm increase ng(i) of
each row of R(k) prior to the refinement step can be
used advantageously. Indeed, the refinement step
has to be performed with only M pairs of Givens
rotations; instead of searching for the maximum of
an N-by-N array prior to each pair of rotations,
one can dynamically distribute the M refinement
pairs of rotations between the N!1 rows of R(k)
according to the predicted off-norm growth ng(i) in
each of them, i.e. more pivots are annihilated in the
rows whose off-norm increase more significantly.
Once the number of Givens rotations allocated to
a specific row is known, e.g. l(i), an O(N)-complex-
ity maximum search can be performed l(i) times on
the ith row only prior to each of the l(i) refinement
pairs of Givens rotations. Thus, if M is of the order
of N as in MA, the maximum search has a low
complexity of O(N2).

In this paper, we propose a solution to the effi-
cient reduction of the off-norm of R(k) which com-
bines the above row and block-division approach
of R(k).

The idea is to distribute the available M pairs of
Givens rotations to each row section in each block.
The whole procedure is presented in Table 1; it
consists in interleaving the computation of the off-
norm increase in each row section with the QR

step. The dynamic distribution of the rotations is
performed in two steps:
1. Estimate the off-norm growth in each row section

for each block: this is performed at the QR step
by computing ng

SN
(i), ng

N
(i) and ng

N
(i) as in

Table 1, prior to each of the N!1 first QR
rotation; here, the ng’s correspond to the norm
of the term which is transferred from the
(N#1)th row to each row section in each block.

2. In each block, distribute the Givens rotations to
each row section: we compute the total off-norm
increase

NG"

J+r
i/1

ng2
S
(i)#+r

i/1
ng2

SN
(i)#+N

i/r`1
ng2

N
(i) (18)

then, we allocate to each row section a number
of pairs of Givens rotations corresponding to its
contribution to NG.

In R
S
, we compute the number of pairs of rotations

to be applied in each row section, l
S
(i) for i"1 : r.

Similarly, in R
SN

, we compute l
SN

(i) for i"1:r and
finally, the number of rotations in the row sections
of R

N
, l

N
(i) for i"r#1:N, so that we have

M"+r
i/1

l
S
(i)#+r

i/1
l
SN

(i)#+N
i/r`1

l
N
(i). Once

each row section has been allocated a specific num-
ber of Givens rotations, the maximum search can
be performed prior to each rotation, but in the
corresponding row section only. This procedure
leads to a low complexity maximum-search refine-
ment and, as will be shown in simulation experi-
ments, to an efficient diagonalization of R(k) even
with fewer Givens rotations.

2.3. A matter of vector rotation

The above discussion has been drawn from
a ‘singular-value’ point of view. On a diagonaliz-
ation point of view, it is advantageous to choose the
largest off-norm entries as pivots, as this ensures an
efficient reduction of the off-norm of R(k). But, as
shown below, it does not guarantee that the singu-
lar vectors are updated properly. In this section, we
now turn our attention on the effect of Givens
rotations on the estimated singular vectors only.

The QR Givens rotations consist in row rota-
tions on R(k) and have no effect at all on the right
singular vectors in »(k). After the QR step, the
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Table 1
QR step and off-norm increase computation

Step Operation

QR step and for i"1:N
off-norm growth estimation OFF-NORM GROWTH ESTIMATION
for each row section compute the angle /

i
to zero y(i) as in

[G1@2
(i

]HC
p
ii

y(i)D"C
p@
ii
0 D

if i)r
ng

S
(i)"DDy(12i!1,0,i#12r)sin/

i
DD

ng
SN

(i)"DDy(r#1:N)sin/
i
DD

else
ng

N
(i)"DDy(r#12i!1,0,i#12N)sin/

i
DD

end
QR ROTATION

C
R

yHDQ[Gi@N`1
(i

]HC
&
yHD

end

Compute the number of NG"J+r
i/1

ng2
S
(i)#+r

i/1
ng2

SN
(i)#+N

i/r`1
ng2

N
(i)

pairs of rotations in each for i"1:N!1
row section of each block if i)r

l
S
(i)"round(MngS(i)/NG)

l
SN

(i)"round(MngSN(i)/NG)
else

l
N
(i)"round(MngN(i)/NG)

end
end

Maintain the number of if +r
i/1

l
SN

(i)"0
rotations in R

SN
greater or equal to 1 find the row section of R

SN
with the largest norm-increase

i.e. find h such that l
SN

(h)"max([l
SN

(1)2l
SN

(r)])
set l

SN
(h)"1

end

intermediate decomposition has the form of Eq. (2)
and needs to be further refined. At this point, we
have

A(k)"º
S
(k)R

S
(k)»

S
(k)H

#º
N
(k)R

N
(k)»

N
(k)H#A

SN
(k), (19)

where

A
SN

(k)"º
S
(k)R

SN
(k)»

N
(k)H

#º
N
(k)R

NS
(k)»

S
(k)H. (20)

A
SN

(k) expresses the cross-interaction between sub-
spaces of different nature (e.g. between the signal
right singular vectors and the noise left singular
vectors). Let us express the exact decomposition at

time k as

A(k)"º‘°’
S

(k)R‘°’
S

(k)»‘°’
S

(k)H

#º‘°’
N

(k)R‘°’
N

(k)»‘°’
N

(k)H , (21)

where ‘°’ stands for ‘exact decomposition’. R‘°’
S

and
R‘°’
N

are r]r and (N!r)](N!r) diagonal sub-
matrices, containing the exact signal and noise sin-
gular values.

By comparing Eqs. (19) and (21), we see that the
approximate expression is more likely to be close to
the one of an SVD when A

SN
(k)"0, which is

achieved when the off-diagonal blocks in Eq. (14)
are null, i.e. ER

SN
E"ER

NS
E"0. We note that even

when A
SN

(k)"0, the approximate subspaces
are not yet identical to the exact ones since the
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submatrices R
S
and R

N
may not be diagonal; never-

theless, the block diagonalization of R(k) helps to
improve the separation between the signal and
noise subspaces.

To substantiate this affirmation, we will now
analyze the direct effect of the above-mentioned
block diagonalization on the tracking error. More
specifically, we shall investigate the effect of Givens
rotations on the signal subspace projector
»

S
(k)»

S
(k)H. Recall that this projector is used by

MUSIC-like algorithms to estimate various signal
parameters. Let the tracking error be defined as the
distance between the approximate and exact signal
subspace projector, i.e.

TE(k)"E»°
S
(k)»°

S
(k)H!»

S
(k)»

S
(k)HE. (22)

Similarly, define the time variation of the updating
process [17], *»

S
(k), as the distance between the

approximate signal subspaces at two consecutive
time iterations, k!1 and k, i.e.

*»
S
(k)"E»

S
(k)»

S
(k)H!»

S
(k!1)»

S
(k!1)HE.

(23)

In QR Jacobi-type subspace tracking algorithms,
the refinement step transforms the right singular
vectors according to Eq. (6) where (i

l
, j
l
) represents

the pivot location and h
l
the angle of the lth right

Givens rotation in Eq. (5). Each right rotation in
Eq. (6) affects only the i

l
th and the j

l
th right singular

vectors as in

�
il
Q�

il
cos h

l
!�

jl
sin h

l
,

(24)

�
jl
Q�

il
sin h

l
#�

jl
cos h

l
.

Temporarily denote by º(l!1)R(l!1)»(l!1)H
the approximate decomposition of A(k) before the
lth rotation is applied. In the same way, define
»

S
(l!1), »

N
(l!1), R

S
(l!1), R

N
(l!1), R

SN
(l!1)

and R
NS

(l!1) as in Eqs. (14) and (13) with time
index k replaced by rotation index l!1. Then, we
may define *

l
, a measure of the partial alteration of

the signal subspace projector resulting from the lth
rotation, as the distance between the approximated
signal subspaces before and after that rotation in
Eq. (6), i.e.

*
l
"E»

S
(l)»

S
(l)H!»

S
(l!1)»

S
(l!1)HE. (25)

Whereas *»
S
(k)"0 means either perfect conver-

gence or a useless algorithm at the kth time iter-
ation, *

l
"0 is the result of an unnecessary Givens

rotation. Since each rotation in Eq. (5) helps to
improve the diagonalization of R(k) and refine the
decomposition, we intuitively consider the time
variation *»

S
(k) as a convergence step, while *

l
can

be viewed as a measure of the contribution of the
lth rotation to *»

S
(k). Our viewpoint here is that,

like an MS algorithm which performs a better diag-
onalization at each rotation by zeroing the off-
diagonal entry with the largest magnitude,
*
l
should be as large as possible.
After the lth pair of rotations is applied, the

modification of the signal subspace is expressed as

»
S
(l)"»

S
(l!1)G6-#»

N
(l!1)G--, (26)

where G6- and G-- denote, respectively, the r]r
upper-left and (N!r)]r lower-left part of Gil@jlhl .
There are three possible choices for the location
of the lth pivot in R(l!1), namely: R

S
(l!1),

R
N
(l!1) and R

SN
(l!1) (R

SN
(l!1) and R

NS
(l!1)

being equivalent). For each of these locations, let us
analyze the effect of the lth Givens rotation:
1. r#1)i

l
(j

l
)N: the pivot is located in

R
N
(l!1). We have G6-"I

r
and G--"0; the

rotation affects only two noise singular vectors
as in Eq. (24). Since the signal subspace »

S
(l!1)

is unchanged, we have *
l
"0.

2. 1)i
l
(j

l
)r: the pivot is located in R

S
(l!1)

and the rotation affects two vectors of the signal
subspace. Here, G--"0 and G6- is unitary so
that, using Eqs. (25) and (26), one still obtains
*
l
"0, even though two signal vectors are ro-

tated.
3. 1)i

l
)r and r#1)j

l
)N: the pivot is

located in R
SN

(l!1). In this case, one vector is
rotated in each subspace. The signal subspace
transformation is still expressed as in Eq. (26),
but here, G--O0 and G6- is not unitary. As
a result, *

l
'0 and a positive contribution is

made to the time variation *»
S
(k).

In summary, during the refinement step, each rota-
tion Gil@jlhl modifies the signal subspace projector
»

S
(k)»

S
(k)H and thus contributes to the time vari-

ation *»
S
(k) if and only if the pivot is chosen in

R
SN

, or similarly, if the pair of rotations rotate
two singular vectors belonging respectively to the
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orthogonal subspaces spanned by »
S

and »
N
.

Then, it follows that locating the pivots in
R
SN

guarantees that each Givens rotation produces
a noticeable effect on typical detectors such as
MUSIC, and therefore on the estimated para-
meters; otherwise, the parameters estimates remain
the same. Several papers from Stewart [28] and
Fiero et al. [7,8] justify the need to reduce ER

SN
E so

as to minimize an upper bound on the tracking
error, assuming either an URV decomposition [30]
or an ULV decomposition [31]. Indeed, each rota-
tion in R

SN
reduces ER

SN
E by annihilating the

cross-terms p
iljl

and p
jlil

.
We propose to measure the ‘Efficiency of Givens

rotations’ (EGR) of a Jacobi-type algorithm as the
proportion of cross-terms rotations involved in its
refinement step, as in

c(N,r)"AvgC
number of cross-terms 2]2 SVDs

number of 2]2 SVDs D,
(27)

where Avg[ ] stands for time average. In our algo-
rithm design philosophy, we consider that the EGR
should be high enough to guarantee a satisfactory
updating of the signal subspace projector, and ac-
cordingly, a better subspace tracking performance,
without increasing the total number of rotations.

2.4. ‘Inner’ or ‘Outer’

The conclusions of the previous section were
obtained under the assumption that the cross-terms
are confined in the upper right r](N!r) corner of
R(k). To easily identify the cross-terms region of
R(k), one must be able to monitor and maintain the
decreasing ordering of the singular values through-
out the updating process. Note that once the
ordering of the singular values is correct, no permu-
tations are needed to restore the appropriate order-
ing of the singular values and vectors. The ordering
of the singular values mainly depends on two fac-
tors: the initialization of the process, and the deci-
sion to choose inner or outer rotations. In this
section, we discuss the proper choice of the type of
rotations in Jacobi-type algorithms so as to main-
tain the ordering of the singular values and provide
a higher EGR.

Let us reconsider the refinement of QR Jacobi-
type algorithms shown in Eq. (5) in which we tem-
porarily abandon the rotation index l. A series of
pairs of rotations [Gi@jh ]H and Gi@j

(
are used to diag-

onalize R(k). Each of these pairs performs the SVD
of a 2-by-2 matrix and refine the singular values
p
ii

and p
jj

into p@
ii

and p@
jj
, as in Eq. (7). Regarding

the angles h and /, there exist two solutions which
zero the off-diagonal terms p

ij
and p

ji
, namely inner

or outer rotation angles [16]. To force the updated
singular values p@

ii
and p@

jj
to be in decreasing order-

ing, i.e. p@
ii
'p@

jj
, it can be proved that the type of

the rotations in must be chosen as follows [19]:

p2
ii

inner
j

outer

p2
jj
#p2

ij
!p2

ji
. (28)

Eq. (28) illustrates the mixing properties of outer
and inner rotations. This simple test guides one in
the choice between inner and outer rotations to
obtain two updated singular values p@

ii
and p@

jj
in

decreasing ordering. When the off-diagonal entries
are much smaller than the diagonal entries, we
generally have p2

ii
'p2

jj
#p2

ij
!p2

ji
; in this case,

outer rotations generally permute the singular
values unlike inner rotations. Note that those mix-
ing properties of outer rotations had already been
noticed by Stewart [29]; in [19], we provide the
analytical proof of the sorting effect of inner and
outer rotations.

The main conclusion is that the ordering of the
singular values can be imposed by the choice of the
type of rotations according to the magnitude of the
involved off-diagonal and diagonal entries. Before
each pair of rotations in Eq. (5), one can easily
choose the type of the rotations to maintain the
ordering of the corresponding pair of singular
values. This 2-by-2 ordering might not lead to
a perfect ordering of all the singular values; but, it
generally ensures that the signal singular values
and vectors are maintained at the top r positions.
In this case, the cross-terms entries, i.e. R

SN
(k), are

succesfully confined in the r](N!r) upper-right
region of R(k), and eventually a full cross-terms
annihilation refinement can be performed.

To elaborate on the above conclusion, let
us analyze here how various QR Jacobi-type
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Fig. 1. Efficiency of Givens rotation in Moonen’s algorithm (MA) as a function of N and r.

algorithms select the type of rotations, and the
corresponding effect on their convergence proper-
ties. In the algorithm from Moonen et al. (MA)
[17], all N!1 rotations are outer and in Eq. (5),
j
l
"i

l
#1 for i

l
"1,2,N!1; the pivots are

chosen along the second diagonal of R(k), from (1,2)
down to (N!1,N). In agreement with Eq. (28), if
the off-diagonal entries are sufficiently small, this
type of sweep provides a built-in permutation
scheme which is due to the permutation properties
of outer rotations, as demonstrated in [19]. The
result is that in Eq. (5), the first singular value (not
necessarily the largest) moves from one position to
the next one after each pair of rotations is applied,
so that at the end of the sweep, it reaches the last
position. The EGR of MA averaged over N sam-
ples is

c
.!

(N,r)"
2r(N!r)

N(N!1)
. (29)

In fact, during the first r time iterations, we have
c
.!
"(N!r)/(N!1); then c

.!
falls to r/(N!1)

during the following N!r time iterations. Recall
that the EGR indicates the proportion of pair of
rotations which updates the signal subspace pro-
jector. Accordingly, in each window of N samples
long, the tracking performance of MA can be ex-
pected to be higher during the r first time iterations,
and lower during the (N!r) following samples,
assuming N is reasonably large; this pattern is then
repeated every N samples, when the decreasing
ordering of the singular values is recovered once
again (see simulations in Section 4). Fig. 1 shows
how c

.!
varies as a function of N for different

values of r. One sees that in general, 50% of the
rotations do not alter the subspaces projection.

In NASVD, as in any other algorithm which
sphericalizes the noise subspace, it is crucial to lock
the average noise singular value p6

N
at the last

position, otherwise a signal singular value might be
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wrongly averaged with the noise singular values.
Therefore, Kavcic proposes a refinement step in
which all rotations are outer except the last one.
Let us first note that by choosing the last rotation
to be an inner one, NASVD becomes highly depen-
dent on the initialization: indeed, the singular
values must be selected so that the initial average
noise singular value is small enough, since it has few
chances to be permuted to an upper position. Also,
since p6

N
is locked at the (r#1)th position, the only

rotation which anihilates a cross-term in each
sweep, i.e. corresponding to R

SN
, is the last rth one,

so that the EGR of NASVD over r samples is only

c
/!47$

"1/r. (30)

In the case of sources tracking, e.g. direction of
arrival (DOA) tracking, NASVD cannot be ex-
pected to perform well when two sources get close.
Indeed, it is known that when two sources get much
closer, one signal singular value falls to the noise
level. Even if this singular value becomes the
smallest of the set, the exclusive use of outer rota-
tions in the (r!1) first rotations hardly brings it to
the (r#1)th position. For all these reasons, the
tracking performance of NASVD cannot be ex-
pected to be high, as will be shown in simulations.

The last QR Jacobi-type algorithm we investi-
gate is a modified version of NASVD, Refinement
Only Fast Subspace Tracking (ROFST) from
Rabideau [23]. Essentially, ROFST differs from
NASVD by its refinement structure which zeros the
last column and the last row of RI (k!1) alternately
with two separate series of row and column rota-
tions. The two separate series of Givens rotations
implement inner rotations which are more likely to
maintain the ordering of the singular values if the
off-diagonal entries are sufficiently small. By choos-
ing all the pivots in the last column, ROFST has the
highest possible EGR, c

&45
"1. This explains the

good performance of ROFST as compared to
NASVD and other subspace tracking algorithms,
as observed in [22].

3. Proposed algorithms

The discussion in Section 2 leads to the following
principles regarding the use of Givens rotations in

QR Jacobi-type algorithms:
f an UXV decomposition enables more flexibility

in the choice of pivots locations;
f the computation of the off-norm increase of R(k)

at the QR step enables one to distribute dynam-
ically the Givens rotations and perform a better
diagonalization;

f by choosing appropriately the type of rotations,
one can maintain the larger singular values at the
top r diagonal positions;

f at each time iteration, at least one rotation in Eq.
(5) must be applied to annihilate cross-terms in
R(k) to ensure the updating of the subspace pro-
jection matrix.

In this section, we take into account these prin-
ciples in the design of two new efficient subspace
tracking algorithms for both cases of partial and
complete tracking, i.e. signal#noise subspace
tracking and signal subspace-only tracking.

3.1. Signal and noise subspace tracking: cross-terms
singular-value decomposition 2 (CSVD2)

Based on the theoretical considerations of the
previous Section, we propose an improved second
version of the CSVD algorithm [20], namely
CSVD2. It retains the cross-terms annihilation con-
cept of CSVD, but eventually, allocates a portion of
the refinement Givens rotations to R

N
(k) and R

S
(k)

to provide a better and robust tracking of the
singular values and the singular vectors. The
CSVD2 algorithm is presented in Table 2 and its
steps are explained below.

Initialization: »(0)"I
N

and R(0)"0
N
, or with an

initial approximate SVD.
QR step and off-norm increase computation (see

Table 1): the QR step is achieved by N row rotations
as in Eq. (4). For each of these rotations, e.g. the ith
rotation [Gi@N`1

(i
]H, we first compute the angle /

i
;

then we compute the off-norm increase in the row
sections of the only row of R(k) that is altered by
[Gi@N`1

(i
]H, i.e. the ith row. Finally, the rotation is

applied so as to zero the ith entry of the last row. At
the end of the QR step, the entries of the last row are
assumed small enough to be dropped.

Distribution of the refinement Givens rotations (see
Table 1): the M pairs of refinement rotations are
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Table 2
CSVD2 algorithm

Step Operation

Initialization Initialize with »"I
N

and R"0
N
,

or with an approximate decomposition

M $%&
" number of pairs of Givens rotations at refinement step

Main loop for k"1,2,R

y"»Hx, RQJjR

QR step and Use the equations in Table 1 to:
off-norm control v perform the QR operation

v estimate the off-norm increase of all row sections
v compute the number of pivots to be selected

in each row section of R(k) at the next (refinement) step

Refinement of R
S

for m"1:r
for n"1:l

S
(m)

search the location (i,j) of the off-diagonal maximum of R(m,1:r)
choose the type of rotation as in Eq. (28)
RQ[Gi@j

(ij
]HRGi@jhij

»Q»Gi@jhij
end

end

Refinement of R
SN

for m"1:r
for n"1:l

SN
(m)

search the location (i,j) of the maximum of R(m,r#1:N)
choose the type of rotation as in Eq. (28)
RQ[Gi@j

(ij
]HRGi@jhij

»Q»Gi@jhij
end

end

Refinement of R
N

for m"r#1:N
for n"1:l

N
(m)

search the location (i, j) of the off-diagonal maximum of R(m,r#1:N)
choose the type of rotation as in Eq. (28)
RQ[Gi@j

(ij
]HRGi@jhij

»Q»Gi@jhij
end

end
end

distributed to the row sections of R
S
, R

SN
and

R
N

according to their specific contribution to the
total norm-increase NG in R(k), so that at the
refinement step, more pivots are selected where
a greater diagonalization effort is required. Note
that depending on the off-norm distribution, it
might happen that no pivot is selected in a specific

row. But, in order to ensure the updating of the
signal subspace projector, the number of rotations
in the cross-terms region R

SN
is always maintained

greater or equal to 1.
Refinement: Three refinement loops are per-

formed to reduce the off-norm of R
S

and R
N
, and

the norm of R
SN

, respectively. In each block,
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Table 3
NA-CSVD algorithm

Step Operation

Initialization Initialize with »
S
"I

NCr
RI "0

r`1
or with an approximate sphericalized SVD

Loop for k"1,2,R
p6
N
"RI (r#1,r#1)

Householder x
S
"»H

S
x

transformation z"x!»
S
x
S

�
N
"z/DDzDD

QR step yHQ[xH
S
,DDzDD], RI QJjRI

for i"1:r#2
compute the angle /

i
to zero y(i) as in

[G1@2
(i

]HC
p
ii

y(i)D"C
p@
ii
0 D

C
RI
yHDQ[Gi@r`1

(i
]HC

RI
yHD

end

Refinement step for l"r downto 1
choose the type of rotation as in Eq. (28)
RI Q[Gl@r`1

(l
]TRI Gl@r`1hl

[»
S
,�
N
]Q[»

S
,�
N
]Gl@r`1hl

end

Sphericalization
RI (r#1,r#1)QS

(N!r!1)jp6 2
N
#RI (r#1,r#1)2

N!r
end

a maximum search is performed in each row section
only. This search is performed the number of times
as prescribed at the previous step. The type of each
rotation (inner or outer) is chosen as in Eq. (28) to
maintain the altered singular values in decreasing
ordering and maintain the signal singular values at
the top positions. CSVD2 is designed to react effi-
ciently to various tracking scenarios, as will be
shown in the experiments of Section 4. If M+N as
in MA, the complexity of CSVD2 is O(N2).

3.2. Signal subspace tracking: noise-averaged
CSVD (NA-CSVD)

NA-CSVD is the noise sphericalized version of
CSVD; it tracks the signal subspace only, and an

additional average noise singular p6
N
, so that the

singular-value matrix is reduced to an (r#1)]
(r#1) matrix RI (k). R

N
(k) is thus reduced to a single

component p6
N

and its diagonalization is of no con-
cern. Also, R

SN
is reduced to an r]1 column.

We present a noise sphericalized version of CSVD,
the noise average-cross-terms singular-value decom-
position (NA-CSVD). The NA-CSVD algorithm is
presented in Table 3 and its steps are explained below.

Initialization: NA-CSVD can be initialized with
an approximate sphericalized SVD, or with
»

S
(0)"I

NCr
and RI (0)"0

r`1
, where I

NCr
stands

for the r first columns of I
N
.

Householder transformation: a Householder
transformation rotates the noise singular vectors,
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Fig. 2. Initial convergence of complete tracking algorithms: Exact SVD, CSVD2, MA and Maximum search (MS): (a) tracking error,
(b) off-norm of R(k). N"20, r"2, h

1
"10°, h

2
"20°, SNR"10 dB, j"0.99, 10 experiments average.

so that the projection of the measurement vector
x(k) onto the noise subspace is parallel to the first
noise vector, �

N
(see [4,11] for details).

QR step: the QR step is achieved as in Eq. (4) but
with only r#1 Givens rotations.

Refinement: the r pivots are chosen from the rth
entry up to the first entry of the (r#1)th column of
RI (k) to provide a highest EGR of 1. For each pair of
rotations, the type of rotations is chosen as in Eq.
(28) to maintain the decreasing ordering of the
altered singular values.

Sphericalization: finally, the average noise singu-
lar value is re-estimated.

Here, the full cross-terms cancellation concept
leads to a type of RO-FST structure. However, our
approach is based on a different type of decomposi-

tion, namely UXV, and both algorithms have dif-
ferent refinement structures. The complexity of
NA-CSVD is O(Nr).

3.3. Further remarks on the proposed algorithms

Regarding the numerical properties of the algo-
rithms, let us note that CSVD2 and NA-CSVD retain
the classical QR#refinement structure from [17]
and [12], but simply apply the rotations in a different
way. Therefore, an error propagation analysis similar
to the one presented in [17] can be formulated; the
algorithms can be proven to be numerically stable,
provided the forgetting factor j verifies j(1, and if
a reorthogonalization procedure is included.

Our innovative way of monitoring the off-norm
increase throughout R(k) allows us to dynamically
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Fig. 3. Comparison of MA (M"N!1"19), and CSVD2 using only 50% (M"9) of the refinement rotations used in MA: (a) tracking
error, (b) off-norm of R(k). N"20, r"2, a

1
"10°, a

2
"20°, SNR"10 dB, j"0.99, 10 experiments average.

distribute the Givens rotations between each row in
R
S
, R

N
and R

SN
so that the off-norm is reduced

where it is predicted to grow more significantly.
The main result is that CSVD2 can achieve a track-
ing performance similar to Moonen’s algorithm
(MA) [17] for instance, but with much fewer Givens
rotations at the refinement step, as shown in the
simulation experiments.

Unlike the rank revealing URV updating algo-
rithm [30], CSVD2 does not require the initial con-
ditions regarding the size of the entries of each block
to be explicitely stated. The block partitioning of
R(k), or similarly the sorting of » into [»

S
»

N
] is

obtained after a few iterations and maintained by
choosing the appropriate type of each rotation.
Therefore, CSVD2 maintains the signal singular
values at the top position and confines R

SN
in the

upper-right corner of R(k), as in Stewart’s URV.
Regarding the issue of sudden rank changes, one

may use the MDL criteria [33] jointly with CSVD2

to estimate the rank variations. NA-CSVD has
been succesfully coupled with a recent rank track-
ing technique for spherical subspace trackers
(RSST) proposed by Kavcic and Yang [13]. NA-
CSVD/RSST tracks efficiently the subspaces and
the variations of the rank changes in various
tracking scenarios, including moving and crossing
sources [21].

4. Experimental results

In this section, computer simulations are con-
ducted to test the new algorithms and the underly-
ing theory regarding the efficient use of Givens
rotations in QR Jacobi-type subspace tracking al-
gorithms. In all the experiments, we deal with the
problem of estimating the direction of arrival
(DOAs) of r incident plane waves on a receiving
linear array of N sensors. The intersensor spacing
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Fig. 4. Initial convergence of partial tracking algorithms: NA-CSVD, RO-FST (one refinement), Exact SVD and NASVD.
N"10, r"5, SNR"10dB, a

1
"10°, a

2
"20°, a

3
"30°, a

4
"40°, a

5
"50°, j"0.99, 10 experiments average.

d is set to half the wavelength. At each snapshot, the
measurement vector x(k) is obtained and its ith
component represents the combined action of all
the sources at the ith sensor, as in

x
i
(k)"

r
+
l/1

s
l
(k)e+(i~1)ul(k)#n

i
(k), i"1,2,N,

(31)

where u
l
(k) is the electrical angle (intersensor

phase-shift at time index k); s
l
(k) is the complex

amplitude of the lth source; n
i
(k) is an additive

background noise component. n
i
(k) and s

l
(k) are

modelled as independent zero-mean complex circu-
lar Gaussian variables. The variance of n

i
(k) is set to

1, and the complex amplitudes s
l
(k) correspond to

each of the sources signal-to-noise ratio (SNR).
Our goal is to show how the performance of

existing QR Jacobi-type subspace tracking algo-

rithms can be reached by using efficiently fewer
pairs of Givens rotations at the refinement step. We
ran two series of experiments, one for each type of
QR-Jacobi-type algorithms: complete tracking algo-
rithms which track both the signal and noise sub-
spaces, and partial tracking algorithms which track
the signal subspace only by sphericalizing the noise
subspace. All algorithms are initialized with an
initial exact decomposition obtained from a few
initial measurement samples. We would like how-
ever to mention that CSVD2 and NA-CSVD pro-
vides similar experimental results if initialized with
»(0)"I and R(0)"0.

Experiment 1. Initial convergence of complete track-
ing algorithms. N"20 sensors are used to track
r"2 stationary sources at a

1
"10° and a

2
"20°

with SNR"10 dB. The forgetting factor j is set
to 0.99. The experiment involves the following
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Fig. 5. Tracking error of complete tracking algorithms: sudden subspace rotation. Exact SVD, CSVD2, MS and MA. N"20, r"5,
SNR"10 dB, j"0.96, average of 10 experiments: (a) CSVD2 uses only 20% of N!1 Givens rotations (M"9), (b) CSVD2 uses 100%
of the N!1 Givens rotations (M"19).

algorithms: Exact SVD which computes the exact
SVD of Eq. (1) at each time iteration, Moonen’s
algorithm (MA) where the refinement consists in
M"N!1"19 pairs of rotations, Maximum
Search (MS) which searches the maximum of R(k)
prior to each of the M"N!1"19 refinement
rotations (as detailed in Section 2.2.1) and CSVD2
(M"N!1"19). All algorithms are initialized
with the exact SVD obtained from only one initial
sample x(0), i.e. A(0)"x(0)H"º(0)

1C1
R(0)

1CN
»(0)H

NCN
with R(0)"[DDx(0)DD,020]; (to start with

a square singular value matrix, we use R(0)Q
diag(R(0)) instead. Fig. 2(a) and (b) show the initial
convergence for the tracking error and the off-norm
of R(k) as defined in Eqs. (9) and (22), respectively;
these results are the average of a 10-trial experi-
ment.

Regarding MA, one notices an abrupt decrease
of the tracking error of MA is observed each 20
samples only, i.e. at k"2 and k"22. This is due to
the permutation properties of outer rotations; every

N time iterations, the signal singular vectors (and
values) are properly positioned and for the r follow-
ing time iterations, 18 of the 19 pairs of rotations in
the refinement step annihilate a cross-term. The
same effect is more visible in the off-norm of the
singular value matrix from MA. Since MA requires
N measurement samples to zero all upper-diagonal
entries, the off-norm of R(k) is really lowered each
N samples only, i.e. at specific time indexes
k"2, k"22, k"42,2 and so on. The increase
of the off-norm between these time indexes is due to
the fact that the QR step constantly contributes to
the increase of upper-diagonal entries which have
to wait N time iterations before being zeroed.

The MS algorithm maintains the off-norm of
R(k) at the lowest level, but within a complexity of
O(N3). CSVD2 achieves almost the same diagonal-
ization performance as MS by targetting the anni-
hilation of large off-diagonal entries, but with
a smaller searching complexity cost. This confirms
that our estimation of the off-norm distribution in
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Fig. 6. Number of Givens rotations applied by CSVD2 (100%) in R
S
(k) (Signal), R

N
(k) (Noise) and R

SN
(Cross-terms) averaged over 40

trials. The simulation parameters are as in Fig. 5.

R(k) is precise. Note that, even with a loss of in-
formation at the QR step, CSVD2 reaches the sub-
space tracking performance of an exact SVD. In
Fig. 3(a) and (b), we compare MA (M"19) with
CSVD2 using only M"9 pairs of rotations at the
refinement step (approximatively 50% of the refine-
ment 19 pairs of rotations in MA). It shows that
even with fewer Givens rotations, CSVD2 tracks
the subspaces and diagonalizes R(k) more efficiently
than MA.

Experiment 2. Initial convergence of partial tracking
algorithms. Along with the exact SVD, we simulate
various partial tracking algorithms: NASVD (the
noise sphericalized version of MA), RO-FST (one
refinement only) and proposed NA-CSVD. We lim-
ited this experiment to those three algorithms since
[22] offers numerous comparison tests between
RO-FST and other well-known algorithms, includ-
ing ROSA [4], Karasalo’s algorithm [11] and

TQR-SVD [6]. The simulation parameters are:
N"10, r"5, SNR"10 dB, a

1
"10°, a

2
"20°,

a
3
"30°, a

4
"40°, a

5
"50°, j"0.99. Fig. 4 shows the

tracking error during initial convergence, average
of 10 experiments. There is almost no difference
between NA-CSVD, RO-FST and the exact SVD.
This confirms that the uppper-triangular structure
is not required, since the main difference between
RO-FST and NA-CSVD is the structure of R(k)
and consequently the refinement step. As expected,
NASVD suffers from the initialization starting-
point which has been obtained with only six sam-
ples. Also, since its tracking error is modified by
only one pair of rotations at the refinement step, its
convergence is slow, compared to the other cross-
terms based algorithms, i.e. NA-CSVD and RO-
FST.

Experiment 3. Complete tracking algorithms and sud-
den subspace rotation. N"20, r"5, SNR"10dB,
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Fig. 7. Tracking error of partial tracking algorithms: sudden subspace rotation. N"20, r"5, SNR"10 dB, j"0.96, 10 experiments
average.

j"0.96. The algorithms are initialized with an exact
SVD obtained from the following DOAs: a

1
"

10°, a
2
"20°, a

3
"30°, a

4
"40° and a

5
"50°. At

k"30, we remove these sources and introduce new
ones with opposite DOAs a

1
"!10°, a

2
"

!20°, a
3
"!30°, a

4
"!40° and a

5
"!50°.

This causes the signal subspace associated with the
incoming data to rotate by 90°. We then observe
the length of time each algorithm takes to stabilize
itself, i.e. to rotate the approximate subspaces in the
orthogonal direction. The tracking error of the
algorithms are in Fig. 5(a), where the refinement
step of CSVD2 consists in only M"4 pairs of
rotations (approximatively 20% of the usual 19
pairs of rotations) in its refinement step. CSVD2
appears as a robust algorithm, even when it uses
fewer pairs of rotations at the refinement step. Fig
5(b) shows the tracking error of CSVD2 compared
to MA, with the same number of pairs of Givens
rotations at the refinement step, i.e. M"19.

Fig. 6 shows the number of pairs of rotations ap-
plied by CSVD2 (M+19) to the Signal block R

S
(k),

the Noise block R
N
(k) and the Cross-terms block

(R
SN

), averaged over 40 trials. At k"30, the pro-
portion of rotations applied to R

N
increases to

respond to the off-norm increase in R
N
(k).

This experiment shows that CSVD2 effectively
applies the rotations where a diagonalization
procedure is required, without any prior informa-
tion of the DOA changes. The direct consequence is
the robustness of CSVD2 which stabilizes itself
faster.

Experiment 4. Partial tracking algorithms and sud-
den subspace rotation. The simulation parameters
are the same as in Experiment 3. Fig. 7 shows the
tracking error. We note once again the superiority
of cross-terms based algorithms (NA-CSVD and
RO-FST) over NASVD. Note that under the same
experiment conditions, spherical subspace trackers
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Fig. 8. Angles estimates by complete tracking algorithms: crossing sources. Exact SVD, Maximum Search (MS), CSVD2 (20%) and
MA. N"20, r"2, a

1
"(10#0.04k)°, a

2
"(30!0.04k)°, SNR"10 dB, j"0.92, 10 experiments average.

face drastic DOA changes with less robustness if
compared to complete tracking algorithms; they
require a longer period to stabilize themselves.

Experiment 5. Complete tracking algorithms and
non-stationary data. N"40 sensors are used to
track r"2 sources, a

1
"(10#0.04k)° and

a
2
"(30!0.04k)° which cross at k"250 with

SNR"10 dB and j"0.92. All the algorithms are
initialized with the exact SVD computed with 20
previous samples. For each algorithm, roots-MU-
SIC [1] is used to estimate the DOAs at time index
k. Fig. 8 shows the tracked angles averaged over 10
trials. One can clearly see how the choice of the
rotations type coupled with the choice of the pivots
location can greatly influence the parameters track-
ing performance. MA is influenced by the permuta-
tions induced by outer rotations. Indeed, in each
block of 40 consecutive samples, the tracking is
effective during the first two samples, and almost
stall during the 38 following ones; the result is

a stairs-like angle estimate. What may be con-
sidered as an advantage in Experiment 1 (initial
convergence) is a drawback when the experiment
involves non-stationary data. On the other hand,
CSVD2 tracks continuously the sources DOAs,
even with fewer Givens rotations at the refinement
step, i.e. only 20% (M"8) of the 39 pairs of Givens
rotations used in MA.

Experiment 6. Partial tracking algorithms and non-
stationary data. Here, we have N"8, r"2,
j"0.95, SNR"5 dB, a

1
"(20#0.01k)° and

a
2
"(30!0.01k)° cross at k"500. Fig. 9 shows

the estimated DOAs from one realization only. As
expected, the cross-terms based algorithms, i.e. NA-
CSVD and RO-FST, perform better and provide
more accurate DOA estimates. Fig. 10 shows the
tracking error averaged over 20 experiments; it
indicates that the algorithms face a stronger per-
turbation when the sources get closer. Here,
the superior performance of cross-terms based
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Fig. 9. Angles estimates by sphericalized noise subspace algorithms: crossing sources. N"8, r"2 crossing sources, j"0.95,
SNR"10 dB, a

1
"(20#0.01k)° and a

2
"(30!0.01k)° cross at k"500, 1 experiment.

Fig. 10. Tracking error of partial tracking algorithms, averaged over 20 experiments: crossing sources. Exact SVD, NASVD, RO-FST
and NA-CSVD; N"8, r"2 crossing sources a

1
"(20#0.01k)° and a

2
"(30!0.01k)° cross at k"500, j"0.93, SNR"10dB.
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algorithms confirm the need to locate pivots almost
exclusively in R

SN
. More particularly, NA-CSVD

outperforms RO-FST and NASVD.

5. Conclusion

In this paper, we investigated the optimal use of
Givens rotation as both a diagonalization tool and
a vector rotation tool. On one hand we showed
how a better diagonalization of the singular-value
matrix is obtained when the Givens rotations are
applied so as to annihilate the largest entries of the
singular-value matrix. To reduce the complexity of
this approach, we proposed an efficient method
which controls the off-norm in R(k) by distributing
dynamically the Givens rotations. On the other
hand, we demonstrated the need to zero cross-
terms entries in the case of subspace tracking. We
showed how the choice for inner or outer rotations
can be made to maintain the ordering of the singu-
lar values. Finally, based on this study, we pro-
posed two efficient and robust subspace tracking
algorithms, CSVD2 and NA-CSVD. As shown in
simulation experiments, the proposed algorithms
outperform existing QR Jacobi-type algorithms,
even with fewer Givens rotations.
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