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Abstract

In this paper, we address the problem of adaptive eigenvalue decomposition (EVD). We propose a new approach, based
on the optimization of the log-likelihood criterion. The parameters of the log-likelihood to be estimated are the eigenvectors
and the eigenvalues of the data covariance matrix. They are actualized by means of a stochastic algorithm that requires
little computational cost. Furthermore, the particular structure of the algorithm, that we named MALASE, ensures the
orthonormality of the estimated basis of eigenvectors at each step of the algorithm. MALASE algorithm shows strong links
with many Givens rotation based update algorithms that we discuss. We consider convergence issues for MALASE algorithm
and give the expression of the asymptotic covariance matrix of the estimated parameters. The practical interest of the proposed

method is shown on examples.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let X = (X,)necz denote a size-N, complex val-
ued process (X, €CV), with covariance matrix
Ry, = E{X,X"}. Subspace methods are based on
the eigenvalue decomposition (EVD) of Ry,,, or at
least on the estimation of the subspace spanned by
the eigenvectors associated to the largest (resp. the
smallest) eigenvalues, and named the signal (resp.
the noise) subspace. These methods are classically
used within several multivariate signal processing
problems.

* Corresponding author.
E-mail addresses: thierry.chonavel@enst-bretagne.fr
(T. Chonavel), champagne@ece.mcgill.ca (B. Champagne).

Applications such as sources localization (MU-
SIC algorithm, [5,25]), vector quantization [15],
or more recently blind channel equalization im-
pulse response identification [19], often require es-
timation of such decompositions of the covariance
matrices.

When X is a wide sense stationary process, the co-
variance matrix Ry, is constant (Ry, = Ry ), and it
can be estimated easily by means of any classical tech-
nique, such as the empiric estimator (i.e. in the form
(/L)Y 1, XX, where Lis the data length). Then,
the corresponding eigenvalue decomposition can be
obtained from standard algorithms such as the orthog-
onal iteration method (e.g. [16]).

But, in many applications, such as moving source
localization and tracking, or time varying channel
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identification for mobile radio transmissions, the
covariance matrix Ry, is time varying and the above
methods no longer apply directly. In this case, sev-
eral approaches have been proposed to track the
instantaneous EVD of Ry, (see [10] for an excel-
lent survey of adaptive subspace estimation prior
to 1990; some more recent algorithms are reviewed
in [12]).

For instance, a first kind of techniques consists
in adapting some classical EVD computation algo-
rithm for adaptive purposes via an extension from
the stationary case to the non-stationary case. Gen-
erally, the covariance matrix estimate is computed
by

jéX,n = (1 - :u)R\X,nfl + :uxnx,l;ly (1)

where 0 < u<1, and x, represents the data vec-
tor at time n, i.e. the realization of the process X
at time n. Then, the EVD of IQX,,, is performed; in
fact, at each instant n, only one (or a few) itera-
tion of a classical EVD algorithm is performed to
update the previously estimated EVD. This iteration
may also involve an orthonormalization procedure
that requires a QR or GS decomposition. Equivalent
approaches have also been proposed to perform adap-
tive singular value decompositions (SVD) of the data
matrix. Algorithms of these kinds can be found for
example in [14,18,20,26], with computational com-
plexity ranging from O(N?) or O(NK?) to O(NK),
where K is the dimension of the subspace to be
estimated.

In some approaches the estimate of Ry, is directly
replaced in Eq. (1) by the parameters of its EVD.
Then, the subspaces are updated by techniques that in-
volve Householder reflection matrices, or Givens ro-
tation matrices (see e.g. [11] and [9], respectively).
With such parametrizations of the eigenvectors up-
date, the orthonormality of the estimated basis is held
at each iteration. Let us remark that in [11] the signal
and noise subspaces eigenvalues are averaged. Thus,
only the estimation of a basis of both subspaces can
be obtained. On the contrary, in [9] the complete EVD
can be estimated. Both methods require O(NK) oper-
ations.

Another kind of algorithms is designed to estimate
the EVD (or a basis of the subspace of interest) by
performing adaptive optimization of some possibly
constrained criterion. This is done by means of some

stochastic gradient algorithm (e.g. [21-23]), or as in
[1,28,29] by means of an RLS approach. The compu-
tational cost of these methods ranges from O(NK) to
O(NK?), or O(N*K).

Some of the above methods simply intend to pro-
vide a basis of the signal or of the noise subspace,
while some others supply an estimate of the complete
EVD. Many applications make use of the projector
onto the noise or signal subspace, and as pointed out in
[9] perfect orthonormality is a desirable property for
many subspace-based estimation techniques. In partic-
ular, for sources localization, deviations from the or-
thonormality lead to limited resolution capability and
limited estimation performance of the root MUSIC
algorithm [3]. Here, our main interest for consider-
ing the orthonormality issue stems from the fact that
stochastic algorithms may sometimes become unstable
if some constraints upon the parameters are not satis-
fied. In particular, we will see that we must ensure an
orthonormality constraint upon the eigenbasis to de-
rive a stable adaptive EVD based on the log-likelihood
criterion.

Besides, it is often interesting to get the complete
EVD, involving in particular the estimation of the
eigenvalues, to solve problems where the noise or
signal subspace dimension has to be estimated. In-
deed, the knowledge of the eigenvalues allows the use
of statistical criteria to estimate their dimension (e.g.
[2,24]).

In this paper, we propose a new approach to adap-
tively estimate the EVD, that provides a number of
desirable features, as explained below. Unlike the
above mentioned techniques, it is based on adaptive
optimization of the log-likelihood functional. This
is quite a natural criterion for statistical estimation
purposes, even if the minimum variance property of
the log-likelihood functional is actually an asymp-
totic property. With this criterion, we could derive
an algorithm that provides exact orthonormality of
the estimated eigenvectors, with computational com-
plexity in O(N?) for the calculation of the complete
EVD.

This algorithm is closely related to algorithms
such as PROTEUS-1 and PROTEUS-2 [9]. In par-
ticular, using the same preprocessing technique as
in [9], it is possible to reduce the computational
burden: when only K < N eigenvalues of Ry, are
distinct (as in many subspace tracking problems),
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the update of the eigendecomposition can be per-
formed at the expense of O(NK) operations. Fur-
thermore, we have shown that the only stable
stationary points of the new algorithm represent the
EVD of the data covariance matrix. Also, we calcu-
lated the asymptotic covariance matrix for the param-
eters of the EVD. For the sake of conciseness, the
calculations related to convergence and asymptotic
covariance are omitted here, and will be published
separately.

The paper is organized as follows: Section 2
deals with the derivation of the algorithm, that we
named MAximum Likelihood Adaptive Subspace
Estimation (MALASE). Reduction of the compu-
tational burden and links with algorithms based on
updates that involve Givens rotations are consid-
ered in Section 3, as well as the convergence and
asymptotic performance. Section 4 is devoted to ex-
amples that show the satisfactory behavior of the
algorithm. Some concluding remarks are given in
Section 5.

To end this section, let us introduce some no-
tations. First, the superscript T, *, and " will re-
spectively denote the transpose, conjugate, and
transpose—conjugate of a vector or a matrix. The
trace, determinant, and expectation operators will be
denoted by Tr(.), |.|, and E{.} respectively. Vectors
will be denoted by bold lower case letters, as in v, with
the corresponding ith entry denoted as v;. In addition,
v = diag(4) will denote the vector v that contains the
diagonal terms of the matrix A4, while 4 = diag(v)
will denote the diagonal matrix with diagonal terms
[4];; = vi ([4];; denotes the ijth entry of 4). Ix will
denote the size K identity matrix. In general, the (esti-
mated) EVD of Ry, will be denoted U A, U, where
U, is the unitary matrix that contains the eigenvec-
tors, denoted (Ui n)i=1.y (Uys =[Uips--.,Un.n]), and
A, = diag(Z1.n, ..., AN ) 1s the diagonal matrix that
contains the eigenvalues (4;,);=1 y at time n. When
necessary, we will assume without loss of general-
ity that the eigenvalues are classified in decreasing
order.

2. Derivation of MALASE algorithm

In this section, we derive the proposed algo-
rithm. It is based on iterative optimization of the

log-likelihood functional, where the parameters to be
estimated are those of the EVD of Ry,. In partic-
ular, we show how it is possible to account for an
orthonormality constraint upon U, at each step of the
algorithm.

2.1. The maximum-likelihood criterion

Let f denote the probability density function of the
random, complex circular, and zero mean Gaussian
vector, denoted X,,, with X, € C". Under the hypoth-
esis Ry, = R, we have

f(XmR) = exp(—xIR!x,). (2)

VR
It is clear that up to an additive constant, the opposite
of the log-likelihood is given by

¥(x,; R) = log |R| + xR 'x,,. 3)

Letting UAUY represent the EVD of R, with
A=diag(4y,...,Ay), Y(X,, R) can be rewritten in the
form

D(x,; U, A) = Z log 2 + xua~utx,,. (4)
k=1,N

It might seem natural to iteratively search a minimum

of @ by means of a gradient algorithm.

It is shown in Appendix A that a direct update of
(U, A) by means of a stochastic gradient approach
would not lead to a converging algorithm. In what
follows, we are going to show that it is possible to
overcome this problem by accounting for a unitary
constraint upon U.

2.2. The proposed updating scheme

In [13] matrix based algorithms are studied from
the viewpoint of continuous-time systems theory
and differential geometry. With a view to optimize
d(x,; U, A) let us recall the following result:

Proposition 1. Let U(t) be a differentiable matrix
function defined on the manifold of unitary ma-
trices. Then, the gradient vector of the function
Tr[(UH,UMH,], where H, and H, are arbitrary
hermitian matrices, is given by

grad,, Tr[(UH, UM H,]
= [H(UH,U") — (UH, U™"H,]U, (5)
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where grad,, f(U) represents the matrix with (i, j)th
entry in the form 0 f(U)/0Uj;.

Proof (see [13, p. 62-63]).
Since @(x,; U, A) can be written as

B(x,; U, A) =Y log Zi + Te[(UAT UM)(x,x1)],
k=1,N

it comes from (5) that
grad, D(x,; U, 4) = [x,x(UA~'UM)
—(Uua™! UH)xnan]U

— A7y, (6)

where y, = U"x,,. Furthermore, recalling that the ex-
ponential of a square matrix 4 is defined by exp(4) =
Z/C;io Ak/k!, it is clear that grad, @(x,; U, A) is tan-
gent to the curve defined by

=U(yy,A

U(t) = Uexplt(y,yi A~ — A7y, yih]

for t=0. The reader will note that this curve lies in the
manifold of unitary matrices. Indeed, a square matrix,
say A, is a skew-symmetric matrix (i.e. A7 = —A4)
if and only if exp(4) is a unitary matrix (see e.g.
[9,27]), and matrix y,yiA " — A ! y,yH is clearly
skew-symmetric.

Moving on the curve U(t) from point ¢ = 0 in
the direction of decreasing values of @(x,; U, A)
amounts to let ¢ decrease. Thus, a discretized version
of the optimization of @(x,;U,A) as a continu-
ous function of U is given by the following update
scheme:

- ynyyl;l/l;_ll))a (7)

where p is the algorithm stepsize. Similarly A can be
updated by means of a gradient technique, yielding
the following update algorithm for (U, A,):

Un - l]nfl eXp(:u(A;_l]ynyiz-I

Yo = Uyl X, (8a)

U,=U, eXP(M(/l,,ill}’nyn YuY, An 1)) (8b)

Ay = Ay + 1(A,2 diag(diag(y,yy)) — 4,)).

(8¢)

We will call this algorithm as MALASE, for MAx-
imum Likelihood Adaptive Subspace Estimation. The

stepsizes u and p’ in (8) are possibly different. The
reason for choosing different stepsizes lies in the fact
that the convergence rate may be different for U, and
A, when p = g, as accounted for in the simulations
of Section 4.

For those readers who may not be familiar with
derivation on matrix manifolds, an alternative di-
rect derivation of MALASE is supplied in the
Appendix B.

2.3. Some properties of MALASE algorithm

Let us briefly point out some nice features of
MALASE algorithm.

2.3.1. Orthonormality

As mentioned above the update factor exp(u
x(A4, llynyn yayia! 1)) is a unitary matrix. This
ensures that the orthonormality property is preserved
by MALASE algorithm, provided that the algorithm
is initialized with a unitary matrix Uy. However, it is
not necessary to have Uy unitary to ensure the con-
vergence since MALASE algorithm steers the matrix
U towards the manifold of unitary matrices (see the
simulation part).

2.3.2. Computational complexity

MALASE algorithm may seem to involve high
computational cost, due to the matrix exponen-
tial that appears in relation (8b). However, since
exp(,u(/ln__llynyn Yu¥, An 1) is the exponential
of the sum of two rank one matrices, it is pos-
sible to show that the calculation of this matrix
requires only O(N?) operations. To check this,
let us denote z, = A;_llyn, and [z,y,] = O.R,
the QR decomposition of the size-N x 2 ma-
trix [z,y,], with O, of size N x 2. Then, letting
en = \/|I¥nl*l|2a]|? — (yHz,)? it can be shown (see
Appendix C) that

exp(u( A, yayy = Yu¥n A, 10)

cos uc, — 1 —sin uc, -
=1+ 0, 0, 9

sin ucy, cos uc, — 1

It is easy to check that the calculation of U, exp(u
x(A4, lly,,yn YuY, An 1)) only requires O(N?)
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operations. We will explain in Section 3 how
this computational burden can be decreased when
Ry, has less than N distinct eigenvalues. Fi-
nally, MALASE algorithm can be implemented as
follows:

MALASE algorithm

Initialize U, unitary,
Ao with distinct values (k = 1,N),
and u,u’ >0,

For each time step do
input x,,
Y= U;len
(k=1,N)

—1
Zhon = Ap—1 Von

cn =V yal Pllza]? — (v}12,)?

7, z7,(2y,) — y.||z.|?
0, = [ (10)
(A Cnl|2]|
Up=U,_1 +{U,—10,}

cos uc, — 1 —sin uc, "
X , O,
sin pc, cos uc, — 1
)vk,n = ik,n—l + ,u/(/l];ffl ‘yk,n|2 - l];,lfl
(k=1,N).

The /4o can be chosen for instance regularly spaced
in the interval [a, b], where a and b are rough estimates
of the smallest eigenvalue and of the largest eigen-
value. Uy can be chosen equal to the identity matrix.
Also, it is possible to perform an initial EVD, SVD,
QR or GS decomposition from the first data samples
in order to get a better initialization.

3. Reduction of the computational burden and
convergence properties

3.1. Reduction of the computational burden

Now, let us assume that we are only interested in
searching for the subspace associated to the p largest,

or the p smallest, eigenvalues of Ry,. We are go-
ing to show that in this case MALASE algorithm can
be implemented in a way that requires updating only
p + 1 = K vectors at each iteration, and that this
can be done at the expense of O(NK) operations.
This O(NK) implementation will be referred to as
MALASE(K).

We assume that the N — p eigenvalues associ-
ated with the eigenvectors that we do not need are
all equal. This situation arises in many applications.
When this condition is not matched, it is possible
to average these N — p eigenvalues, as proposed
in [11].

Let us assume for instance that we search for
vectors Uy p,...,Up, and that the N — p small-
est eigenvalues are all equal: A,y = - - = Ay. As
in [9], we achieve computational complexity re-
duction by means of a convenient preprocessing of
the vector X, that replaces the calculation of y, =
UHX,.

The preprocessing is based on an isometric trans-
form applied to x,,. X, is transformed into a size p+ 1
vector, denoted &,, with first p components repre-
senting the projection of x, on the space spanned
by Uin...,Up,. Then, all but the first compo-
nent of the projection of x, on the space spanned
by Upiin,...,Un, are set to zero by means of a
bloc-Householder transform, denoted H, (see e.g.
[16] for more details). The non-zero component de-
fines ¢,41,,. These operations amount to calculate
H,y, = [¢T0™]", but we are going to see that this is
done in a way that requires only O(NK) operations.
The following summary of the preprocessing shows
this clearly.

Preprocessing
For each time step do

input X,

Us =[Uin-1,...,Upn-1]

a=Ullx, (11)
b=x, — Usa

& =1[a"||l]"
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Let us remark that unlike in [9] no preprocessing in
the forma — Da, where D=diag(aj/|ail,...,a,/|a,|)
is required.

Now, let us denote vn:diag(iziil, e, i;lrl’nfl ).
Let us remark that H,z, = [vi07]" since 1,:1,-1 =
-+ = Anu—1. It is clear that the terms ¢, and Q, in
MALASE algorithm can be rewritten as

e = /11l Pl1val 2 — (&8, 2.

or
O :H;{ ) (12)
0
(m:[w mﬁa)équ
! [[vall Cnl[Vall

Then, the update of U, can be rewritten as

Uy=U,1 + U, HY

cosuc, — 1  —sin uc,
[ Jon

sin e, cos e, — 1 H,,
0 0
(13)
ie.
UnH,' = Up—1 H,' + Uy Hy!
cospc, — 1  —sin ucy,
QSIK) ( . ) Q;K)H 0
X sin uc, cos uc, — 1
0 0
(14)

Let us denote UX) the N x ( p+1) matrix that contains
the first p+ 1 vectors of U,H,. It is clear that the first
p columns of U, are left unchanged by the transform

U — UHY. The last column of US") is U;’i)lm =

||b||~'h, where b is defined as in the preprocessing.
Thus, USY) = [Ups .., Uy, [|6] 751

From these considerations, it appears that MALASE
algorithm can be rewritten in a new way that we will
name MALASE(K).

MALASE(K) implementation of MALASE
algorithm

Initialize Uy unitary, initialize
Aro with distinct values (k= 1,K),
and u,u’ >0,

For each time step do

input X,

Us=[U) ... US|

a=Ulx,

b=x, — Usa

& =1[a" |IB|]"

Uy = 1Bl

Vin = Ay Gk (k=1,K)

cn = V/IIEIPIVal? — (v ? (15)
) _ [ Vn vn(vnﬂén)_énnvnnzil
! [[val Cnllvall

K K K K
U0 =) + (U0

cos e, — 1 —sin ucy,
y Qi
sin uc, cos uc, — 1
An = Jn—r 1 gy |Eenl® = 20)
k=1,K—-1)

-2 |‘:K,n|2

/IK,n = ;LK,nfl + M/()“K,nfl N — P

— Jn)-

Since Q,(f() is a size K x 2 matrix, it is clear
that MALASE(K) requires only O(NK) operations.
Some important issues for practical implementation
of MALASE(K) are presented in Sections 4.2.1 and
4.2.2.

3.2. EVD update and Givens rotations

Several eigenvalue update techniques, such as
MALASE or PROTEUS-1 algorithm [9], rely on an
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update of U, in the form

Uy = Up—1exp(0,), (16)
where 0, is a skew symmetric matrix, or in the form
Uy =U_ il <i<j<n Gi,j(0ij,n), (17)

where G, ;(0;j,,) is a Given’s rotation that operates
on columns i and j (see e.g. [13] and enclosed ref-
erences). In general both updates (16) and (17) are
equivalent up to a second order term in O(u?), letting
0j.n = [0,];;. In particular, MALASE yields (for the
real case)

Oijn = 1t < L 1) CinCjon- (18)

)vz',n—l /lj,n—l

In [9], PROTEUS-1 and PROTEUS-2 algorithms in-
volve rotations in the form

u

0, =—H &
ij,n )vj,n—l — /li,n—] gt,né],n
and
_ o ..
Oij.n = BT Einljn  fori<j,
Yi,n—1
Hji,n = _Hij,lla (19)

yielding computational costs in O(NK?) and O(NK)
operations per step respectively.

It is interesting to note that if Vi < j, 4; > 4;, then
for MALASE 0;;, can be approximated by 0, =
—(1/2jn—1)Einéjn. Then |0; | is larger for MALASE
than for PROTEUS-2. This is in accordance with the
faster convergence and higher asymptotic variance of-
ten observed for MALASE compared to PROTEUS-2
when p is fixed.

Note also that PROTEUS algorithms are derived
from the following update of Ry ,:

Ry = (1 = )Ry -1 + 1X,X;, (20)

From this, and above mentioned similarities between
MALASE and PROTEUS algorithms, we get an in-
terpretation of the update factor 4 of MALASE al-
gorithm: p can be seen as the update factor of the
stochastic gradient estimate of Ry,,.

3.3. Convergence and asymptotic covariance matrix

As usual, the study of the convergence is considered
for a stationary random process X . It has been possible
to prove that stationary stable points of the algorithm
correspond to the desired solution and to calculate the
asymptotic variance of the parameters. However, the
convergence analysis is rather involved and beyond
the scope of this paper. For this reason we hope to
present it separately, and only the main results are
collected in this section.

3.3.1. Convergence of MALASE algorithm

Let (U.,A.) represent a stationary point of
MALASE algorithm. Then rewriting equations (8) in
the form

Un+1 = Un + ,UHI(XnaAa U)a

(21)
An+1 - An + ,uHZ(Xna A7 U)7

it can be shown that the stationary points correspond
to unitary matrices U such that UNRy U is a block
diagonal matrix (the sizes of the different blocks may
be different), where the terms along the diagonal of
a given block are all equal. Thus it appears that the
eigenvalue decompositions are not the only stationary
points of the algorithm. However, the following result
ensures the desired convergence property:

Proposition 2. The stationary stable points of
MALASE algorithm correspond to the EVD of Ry.

3.3.2. Asymptotic covariance matrix

Using standard techniques involving linearization
of the update of U, for small px and results of the
ordinary differential equation theory [4], we have been
able to derive the asymptotic covariance matrix for
the parameters.

Let (Ui n,..., Uny) and (A1, .., 2n.,) denote the
estimated eigenvectors and the estimated eigenvalues,
and let us denote V,, = [Ul-l:n’ el U;,,,,/ll,n, . ..,AN,,[]T
the size-(N? + N) vector that contains these parame-
ters. For small values of u the asymptotic covariance
matrix of V,, is equal to uP, where P is the only so-
lution of a Lyapunov equation; this solution is in the
form

1
WP = 3 .y (22)
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This is a very interesting result since the asymptotic
variance depends only on u, and not on the parameters
of the EVD of Ry, unlike other algorithms. Further-
more, any of the N> + N parameters are asymptoti-
cally uncorrelated, and have the same variance, equal
to /2. For eigenvalues, this can be compared for in-
stance to the usual update in the form

j-k,n = )‘k,n—l + .u(‘fk,n|2 - /lk,n—l)a (23)

that yields theoretical asymptotic variance for ; equal
to (14/2)4.

3.3.3. Convergence rate

Paralleling the discussion in [7] where it is shown
that PROTEUS-2 has similar convergence rates for all
the parameters, it can be shown that this property may
not be satisfied for MALASE, as already mentioned
in Section 2.2. Using (23) for the update of the eigen-
values in MALASE would permit to change this. But
then, the asymptotic variance of MALASE would no
longer be similar for all the parameters.

4. Experimental results
4.1. Asymptotic variance

The above considerations upon the asymptotic co-
variance of the algorithm are derived for small values
of u. But in practice, reasonable values of u, i.e. values
of u that ensure convergence at a speed about equiv-
alent to that of other existing techniques, cannot be
considered as small for MALASE algorithm. In par-
ticular, with X defined as in Section 4.2, we calculated
the average variance of the estimated eigenvectors co-
efficients from 10* iterations of the algorithm. We ob-
tained 6 x 107> for u=10"*, 0.0042 for £=0.005, and
0.072 for u = 0.05. Thus, only for u = 10—* the vari-
ance of the parameters is about p/2. This shows that
for large values of 1, one should better consider values
of the asymptotic covariance calculated from Monte
Carlo simulations. However, the theoretical asymp-
totic variance is a useful index since to a certain extent
the simulation results confirm the theoretical results.
In accordance with theoretical variance calculations,
we have checked that the asymptotic variance of dis-
tinct parameters do not differ too much for MALASE,
especially for low SNR (i.e. when the eigenvalues are

little scattered). On the contrary, for algorithms that
use update (23), the variance of the estimated eigen-
values increases for increasing eigenvalues.

4.2. Convergence of MALASE algorithm

Now, let us consider the following example pro-
posed in [9]. We assume that

Xo= Y Scad(wx) + W, (24)
k=1,p

where d(w) = [1,e®,...,e V=T (8§ ez is a

complex scalar, white circular Gaussian source sig-
nal, and (W,),cz a white Gaussian noise vector with
covariance matrix 2,Iy. The noise and the sources
are uncorrelated. All sources have the same power,
and the signal to noise ratio (SNR) is defined as
E{|Sk.n|2}/a%/l/'

We study the convergence of MALASE algorithm,
implemented in the form MALASE(K), with K =
p+ 1. To this end, we consider the performance index
defined by

err, = HPS - US,nUiln“y (25)

where Ps is the true projector on the source sub-
space (i.e. on the subspace spanned by the set
{d(w1),....,d(w,)}), UsaUg, the estimated projec-
tor, and ||4|| = [Tr(44™)]"2. In other words, Us,, is
an N X p matrix, and its columns are the eigenvec-
tors associated with the p largest eigenvalues of Ry,
estimated at time n.

We take N = 16 and p = 4. The values of the
(i )k=1,p are first set to 0.0, 0.25, 1, and 1.25. We
study the results obtained for MALASE, and we com-
pare them to the O(NK') algorithms PROTEUS-2 and
LORAF-3 [26]. Also we plot the evolution of err,
for Karasalo’s method [17]. This method shows high
computational cost (in O(NK?)), but its convergence
and tracking behaviors are excellent, and thus is inter-
esting as a reference.

In order to compare the convergence speeds of the
algorithms, their stepsizes are adapted so as to ensure
the same value of the asymptotic floor for the perfor-
mance index. Table 1 gives the values for the stepsize
for the different algorithms that have been chosen to
ensure a floor at 0.2 for SNR = —5 dB and 0.05 for
SNR = 10 dB, respectively.
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Table 1
Stepsizes for simulations where o = [0,0.25, 1, 1.25]

SNR

—5dB 10 dB
Karasalo u=10.0075 1w=10.02
MALASE w=0.0035 u=0.00018

w =035 w =100

Omin = 0.02 Omin = 0.01

p=1 p=10
PROTEUS-2 w=0.01 u=0.0165
LORAF-3 oa=1-0.002 o=1-0.00455

The convergence is studied at low SNR (-5 dB)
and at high SNR (10 dB). The eigenbasis is initialized
with identity matrix and the eigenvalues are initialized
from a rough estimate of the largest eigenvalue: we
choose them equal to (10/(p+1))x[p+1, p,...,1]
for SNR=-5 dB, and (200/(p+1))x[p+1, p,..., 1]
for SNR = 10 dB.

4.2.1. Some practical considerations

An important practical aspect with the update of the
eigenvalues in MALASE algorithm is that it involves
the inverse of the eigenvalues. In order to prevent pos-
sible numerical problems when the smallest estimated
eigenvalue comes close to zero, eigenvalue updates in
MALASE(K) are modified as in

/!

u
2 n = n—1t 5
T Gnr + B
(Ekn—1* = n—1)s (26)
where f§ > 0.

An interesting possibility, for accelerating the con-
vergence of the eigenspaces, without affecting the
asymptotic performance of the algorithm, consists in
setting a lower threshold, denoted 6, (> 0), for the
rotation angle 0, = uc, that appears in the eigenvector
update of MALASE(K). With this simple procedure,
we avoid very small values of 0, that can be obtained
during the convergence phase of the eigenvalues and
that would slow down the convergence of U,. In ad-
dition, we are going to see in the next subsection that

0, can be controlled efficiently to boost the initial con-
vergence.

For very large values of the stepsize p, the long
term stability of the algorithm may not be satisfied.
Then, a higher threshold 0,,x can be set to prevent
the divergence of the algorithm. For instance, taking
u=u =002 at SNR = 10 dB, the stability is en-
sured for Opax = 0.1, without significantly modifying
the initial convergence. But in fact, the range that we
are going to consider for u is much smaller than this
and it will not be necessary to set any higher threshold
for 0,.

4.2.2. Initial convergence of err,

First, we consider a simulation at low SNR
(—5 dB). The curves are obtained from 10 averaged
experiments, as well as all the following curves that
will show the evolution of err,. We see in Fig. 1
that the performance of MALASE is close to that of
PROTEUS-2. However, it is possible to boost initial
convergence very easily. Indeed, adding to 6, a de-
creasing term such as d,, =exp(—n/100) enables much
faster initial convergence of the algorithm without
modifying its long term behavior. In Fig. 2, the high
efficiency of this simple procedure clearly appears.
Fig. 3 shows the evolution of err, at SNR = 10 dB
when using 6, + d,, instead of 6,. We obtain good
performance for MALASE algorithm, despite the fact
that the likelihood criterion is very ill-conditioned at
such a high SNR.

4.2.3. Behavior of the eigenvalues

Figs. 4-6 show the evolution of the estimated eigen-
values for MALASE, PROTEUS-2 and LORAF-3
algorithms respectively, for SNR = 10 dB. The true
eigenvalues are equal to 246, 222, 117, 59 and 1. Fast
convergence speed is achieved with PROTEUS-2 al-
gorithm, at the expense of a higher variance for the
largest eigenvalues. For MALASE algorithm, faster
convergence is achieved for the smallest eigenval-
ues, while the largest eigenvalues have not com-
pletely converged yet after 5000 iterations. At low
SNR, similar convergence rate of all eigenvalues
is achieved with MALASE, since they are not so
spread.

We note that in accordance with the asymp-
totic convergence study the variance of all the
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SNR =-5dB -asymptotic threshold = 0.2

(1) - KARASALO
(2) - MALASE

(3)- PROTEUS_Il -
(4) - LORAF3

0.8

0.6 H
h{:
@
0.4+
0.2}
0 500 1000 1500 2000 2500 3000
iteration
Fig. 1. Convergence of source subspace eigenvectors for SNR = —5 dB (see Table 1 for parameter values).
SNR =-5dB -asymptotic threshold = 0.2
1 T T T T
(1) - KARASALO
(2) - MALASE
(3) - PROTEUS_Il -
(4) - LORAF3
LC
@
0 500 1000 1500 2000 2500 3000
iteration
Fig. 2. Convergence of source subspace eigenvectors for SNR = —5 dB with accelerated initial convergence: 6, — 0, + d, (Table 1).

eigenvalues is about the same with MALASE, except trary, for PROTEUS-2, the variance is much higher
for the smallest one, which is smaller, due to the for large eigenvalues. This is easy to understand since
presence of the correcting term f in (26). On the con- for PROTEUS-2 the eigenvalues are updated from
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1 SNR =10dB - asymptotic threshold = 0.05

0.9} (1) - KARASALO 1
(2) - MALASE
(3) - PROTEUS_II 1

(4) - LORAF3

0.8}

0.7

0.6

err,

0.5}

0.4}

0.3

0.2

0.1}

O L L L L L L L
0 200 400 600 800 1000 1200 1400 1600

iteration

Fig. 3. Convergence of source subspace eigenvectors for SNR = 10 dB with accelerated initial convergence: 6, — 0, + d, (Table 1).

250 SNR = 10dB - convergence of the eigenvalues for MALASE

200 1

150 + g

100 - g

50 g

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
iteration

Fig. 4. Convergence of the eigenvalues for SNR = 10 dB: MALASE with accelerated initial convergence: 6, — 0, + d, (Table 1).

(23), and for small p the asymptotic variance for With LORAF-3 the convergence results for the
Ak 18 ai = (u/2)72 for (23), while it is u/2 for the eigenvalues are not so good (Fig. 6): with this algo-
MALASE update. rithm, the eigenvalues are obtained as the diagonal
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SNR = 10dB - convergence of the eigenvalues for PROTEUS I
350 T T T T T T T T T

300

::: H ll‘\fm**‘f‘h‘“w “«W“’
Sl |

100 Ff i

50 1

N

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
iteration

Fig. 5. Convergence of the eigenvalues for SNR = 10 dB: PROTEUS-2.

SNR = 10dB - convergence of the eigenvalues for LORAF3
300 T T T T T T T T T

250

200

~< 150

100

50

0 L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iteration

Fi

—_

g. 6. Convergence of the eigenvalues for SNR = 10 dB: LORAF-3.

elements of the R matrix of a QR decomposition, as 4.2.4. Abrupt rotation of the eigenspace
suggested in [26], but clearly only the largest eigen- A popular way to check the robustness of a sub-
value is correctly estimated. space tracking algorithm consists in applying a



T. Chonavel et al. | Signal Processing 83 (2003) 307-324 319

SNR =-5dB, w = (21/N) x [1 2 3 4] - abrupt rotation of eigenspaces at iteration 500

1 T T T T
\ (1) - KARASALO
(2) - MALASE
(3) - PROTEUS_I
08} (4) - LORAF3
0.6 +
&
04
(1)
0.2 |
0 1000 2000 3000 4000 5000 6000
iteration
Fig. 7. Effect of an abrupt subspace rotation for SNR = —5 dB (Table 2).
SNR = 10dB, w = (21UN) x [1 2 3 4] - abrupt rotation of eigenspaces at iteration 500
1 T T T T T
W I (1) - KARASALO
09} (2) - MALASE 1
(3) - PROTEUS_I
0.8 + (4) - LORAF3 )
0.7 + i
0.6 + i
£ 05} .
()
04+ g
0.3+ g
0.2} M{\B® \@ 1
0.1+¢ i
0 500 1000 1500 2000 2500 3000 3500 4000 4500
iteration
Fig. 8. Effect of an abrupt subspace rotation for SNR = 10 dB (Table 2).
sudden change of the true subspace after conver- kind of situation by changing the values (wy )r—1, , by
gence, so that the new signal eigenspace is exactly or- (—wk k=1, p, Where wy =2kn/N (k=1, p). The results

thornormal to the previous one [10]. We consider this are given in Figs. 7 and 8 for SNR = —5 and 10 dB,
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Table 2
Stepsizes for simulations where w = (27/16) x [1,2,3,4]

SNR

—-5dB 10 dB
Karasalo 1 =0.0075 w=10.01
MALASE u=0.0015 1 =0.000065

u =0.15 u =300

Omin = 0.01 Omin = 0.003

p=1 p =40
PROTEUS-2 u=10.01 u=0.01
LORAF-3 a=1-0.015 o=1-0.002

respectively, where the eigenspace rotation is applied
at iteration 500. The corresponding stepsizes are those
in Table 2: they have been chosen again to enable sim-
ilar asymptotic value for err,. In both cases MALASE
and PROTEUS-2 achieve much faster subspace re-
covery than LORAF-3.

4.2.5. Abrupt deviation from orthonormality

In order to check the influence of a lack of or-
thonormality of the estimated eigenvectors, a random
perturbation is added to the matrix of the estimated
eigenvectors after convergence. The ratio between the
perturbation matrix norm and the initial matrix norm
is 0.3. It appears (see Figs. 9 and 10) that the error
is corrected efficiently by all the algorithms. In par-
ticular, this result shows that a lack of orthonormal-
ity is correctly suppressed by MALASE, despite the
fact that it has been derived under an orthonormality
assumption upon the eigenvectors. This suggests that
MALASE algorithm initial convergence should be lit-
tle sensitive to the lack of orthonormality of Up. In
fact, MALASE is robust to this phenomenon, espe-
cially when replacing 6, by 6, +d,,: choosing random
Gaussian variables with variances equal to one for the
entries of Uy yields the results in Figs. 11 and 12.
In this situation, PROTEUS-2 has not yet converged
after 2000 iterations and it has not been included in
the figures. Comparing with Figs. 2 and 3 shows that
LORAF-3 significantly suffers from such an initializa-
tion, while MALASE is not affected.

SNR =-5dB - influence of a random perturbation at iteration 500

0.6 T T T

0.4

err,

0.2 W

(1) - KARASALO
(2) - MALASE

(3) - PROTEUS_II
(4) - LORAF3

0 200 400 600 800 1000 1200 1400 1600 1800 2000

iteration

Fig. 9. Effect of a sudden loss of orthonormality of the eigenbasis for SNR = —5 dB (Table 1).
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SNR = 10dB - influence of a random perturbation at iteration 500

0.8 T T T T T
(1) - KARASALO
(2) - MALASE
(3) - PROTEUS I
0.6 (4) - LORAF3 E
= 04}
(]
0.2 r
AN g SRS e
0 1 1 1 1 1
0 200 400 600 800 1000 1200

iteration

Fig. 10. Effect of a sudden loss of orthonormality of the eigenbasis for SNR = 10 dB (Table 1).

SNR =-5dB - U, random non orthonormal

0.9} (1) - KARASALO ]

(2) - MALASE

0.8 (3) - LORAF3

0.7
0.6

0.5

err,

0.4

0.3

0.2

0.1+t E

0 200 400 600 800 1000 1200 1400 1600 1800 2000
iteration

Fig. 11. Effect of a loss of orthonormality of Uy for SNR = —5 dB (Table 1).

5. Conclusion covariance matrix, based on the statistically meaning-
ful maximum likelihood criterion. We have shown
We presented a new technique to perform adap- that accounting for the orthonormality constraint upon

tive eigenvalue decomposition of a time varying the eigenvectors yields a simple iterative algorithm
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SNR = 10dB - U, random non orthonormal

1 T T T T

0.9 }
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(1) - KARASALO
(2) - MALASE
(3) - LORAF3
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iteration

Fig. 12. Effect of a loss of orthonormality of Uy for SNR = 10 dB (Table 1).

with nice features: desirable convergence properties
are ensured, as well as orthonormality of the estimated
eigenvectors, at the expense of small computational
cost. We checked on examples the very good practi-
cal behavior of the MALASE algorithm, which can
be understood in particular because it was derived
without any first order approximation.
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Appendix A. Gradient based update of the ML cri-
terion

For the likelihood criterion @&(x,;U, A1) =
Zk:LN log A + X,}} UA—'U"x,, straightforward cal-
culations show that the actualization of the EVD by
means of a gradient algorithm is given by

H
Y= Un—lxn’

Un = Un—l - #Xny;{/ln__ll,

Ay=Ap—1 — M(A;,ll
— A, diag(diag(y,y,))), (A.1)

where p is the stepsize of the algorithm. Unfortunately,
this algorithm is not satisfactory. Indeed, let X be a
wide sense stationary process, and (U, A) denote a
stationary point of algorithm (A.1). Then, the update
term of U, must satisfy

E{X,X,'UA™"} = RyUA™" =0, (A2)

leading to UA~! = 0. This proves that (U,, 4,) does
not converge to the parameters of the EVD of Ry.

Appendix B. Direct derivation of the algorithm

MALASE algorithm originates in the fact that the
orthonormality of U, is accounted for both in the com-
putation of the gradient of the log-likelihood criterion
and in the update of U,. To see it more clearly, let
us consider the differentiation of @(x,,; U, A) with re-
spect to U, with the unitary matrix constraint YU =
Iy that yields dU" = —U" dUU"M. Up to a second
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order term, we have

dy®(x,; U, A)
=P(x,; U+ dU, A) — D(x,; U, A)
=xlldua='v" + ua~"duM)x,
= —ylu~'vtdu - vtduahyy,, (B.1)

withy,=U Hy,. Then, it comes that under the unitary
constraint over U, the matrix 0®/0U with general term
[0D(x,; U, A)/0U]; ; = 0®/0[U]; ; is given by

0P

—— = U Yy, v —y,yHA). B.2
U (A7YuYy =YY A7) (B.2)

Then the stochastic gradient update of U yields
Up=Upi(I + p(A7"y,y) = yayi A1)

= Upo1 exp(u(A7" Yy, — Yayn A7)
+ 0(1?). (B.3)

Forgetting the O(u?) term we get the proposed updat-
ing scheme that preserves orthonormality.

Let us remark that updating U, in a way that in-
volves the exponential of a skew-symmetric matrix
is a property shared with some other stochastic algo-
rithms intended to update a unitary matrix (see e.g.
[6,8]). This is quite natural since the tangent plane
to the unitary matrices manifold at point U is gener-
ated by matrices {U4; 4 = —A4"} and, as mentioned
in Section 2.2, UA is the tangent vector at point U for
the matrix function U(¢) = U exp(t4) defined on the
unitary matrices manifold [13].

Appendix 1C Calculation of .
exp(p(A”__ 1 YnY,l;l - YnY,l;lAn__ 1))

Clearly,
[Z y ]: Zy Zn(ZrI;IYn)_YnHZnHZ
12 1zl
Z, Y
T
X " = Qan (Cl)
—c,
0
[z

with ¢, = \/(z8z,)(yHy,) — (¥}, ), and
exp(u( A, vy — yayi A4, )

=exp(L(Z,y), — YazZ,))

1
=exp(ulz, yil [z, Yn]H)
ﬂk 0 1 g
k! -1 0
k=1,00
cos uc, — 1 —sin pc, -
:I + Qi’l . Qn M
sin pcy, cos uc, — 1
(C2)
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