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a b s t r a c t

The problem of estimating the crossing points of a continuous-time random process,

represented by a sequence of uniformly spaced noisy samples, with a periodic analog

carrier signal is of crucial importance in the implementation of pulse-width modulation

(PWM) and other event-triggered sampling systems. In this paper, we formally

approach this problem from a statistical signal processing perspective under a Bayesian

framework. We derive the maximum a posteriori (MAP) estimator of the crossing point

from a finite sequence of noisy observations, along with a close approximation based on

minimum mean squared error (MMSE) considerations. We also study the Bayesian

Cramér–Rao bound (CRB) on attainable mean square estimation error. Finally, simula-

tions of a PWM scenario demonstrate that both the MAP and MMSE estimators

approach the CRB and outperform several benchmark estimators. The MMSE is a

particularly attractive solution as it offers a computationally efficient approximation to

the MAP estimator.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

In many signal processing applications, noisy samples
of a continuous-time signal are used to estimate the times
at which this signal crosses a known continuous-time
function. The known function is typically zero, a fixed
(non-zero) level, or a periodic carrier waveform, such as a
sinusoidal or sawtooth signal. Zero-crossings are of inter-
est in pitch detection [1,2], spectral analysis [3–5], and
signal demodulation [6–8]. Level-crossings have been
extensively studied [9], and are of practical interest in
non-uniform sampling applications [10,11]. Carrier-cross-
ings have also received substantial theoretical treatment
[12,13] and are of practical interest in event-triggered
sampling, including pulse-position modulation [14] and
pulse-width modulation (PWM) [15,16].
ll rights reserved.
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In PWM, as applied to e.g. digitally controlled switch-
ing amplifiers, the crossing points of a bandlimited signal
with a periodic carrier must be accurately determined to
produce a high-fidelity output [17]. The analysis of PWM
signals derived from random inputs has been considered
from different perspectives, including: frequency spec-
trum [18,19], aliasing effects [20,21] and harmonic dis-
tortion [22]. Within the PWM framework, discrete-time
crossing-point estimation is typically cast as a 2-step inter-
polation problem, where: (1) crossing points are coarsely
located and (2) nearby samples are interpolated to generate
more accurate estimates. The most commonly adopted
choice for the interpolator in the 2nd step is the unique
polynomial of order M�1 passing through M sample points
of the random signal. Linear interpolation is simple to
implement but result in higher level of sampling errors
and distortion [23]. The use of higher-order interpolation is
usually favored as it offers a more flexible trade-off between
complexity and performance. This includes quadratic [24],
cubic [15,25] as well as higher-order polynomial and band-
limited interpolation [26–28].
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In the context of switching amplifiers, audio quality
depends directly on the accuracy of the crossing-point
estimation [16]. Under a maximum distortion constraint,
any loss in accuracy must be compensated by an increase
in the over-sampling ratio, which in turn entails additional
implementation costs. While the above interpolation
approaches are often motivated by computational consid-
erations, it is unclear under which conditions they perform
optimally. In addition, none of these methods take explicit
advantage of the statistical knowledge usually available
about the underlying signal and noise in applications.
Therefore, while they may perform adequately in an
over-sampled regime when the random signal is low-pass
in nature, they do not generalize to arbitrary signal
models, and may not be as effective as alternatives derived
from well-established optimality criteria.

In this paper, we approach the discrete-time crossing-
point estimation problem from a statistical signal processing
perspective under a Bayesian framework [29]. We consider a
general formulation applicable to a large class of systems
(including traditional PWM), in which the observed signal
samples are modeled as the sum of a Gaussian random
process and an independent noise component. Making use of
an Edgeworth’s type of expansion [30], we derive conditions
under which the distribution of the noisy signal samples can
be adequately modeled by a Gaussian distribution. This
includes two practical scenarios: low-power uniform quanti-
zation noise, and spectrally shaped quantization noise. Mak-
ing use of the Gaussian approximation along with basic
properties of the carrier waveform, we derive the maximum
a posteriori (MAP) crossing-point estimator as well as a
minimum mean squared error (MMSE) estimator. The latter
is shown to be a computationally efficient approximation to
the former under high SNR condition. We also investigate
fundamental performance limits on the crossing-point esti-
mator by deriving the Bayesian Cramér–Rao bound (CRB) on
the lowest achievable mean square error (MSE). Finally,
through simulation experiments of a general PWM scenario,
we show that the MAP and MMSE estimators outperform
several crossing-point estimators selected from the literature.

The remainder of this work is organized as follows. In
Section 2, the crossing-point estimation problem and the
associated signal model are defined. In Section 3, we
derive both the MAP and MMSE estimators of the crossing
point, while in Section 4, we investigate performance
issues including the Bayesian CRB and computational
cost. In Section 5, we present the results of Monte Carlo
simulations focusing on a generalized PWM scenario. We
conclude with Section 6. A proof is included in Appendix.
E1
x [k]

E2
x1 ,x2,... τ̂1,τ2,...ˆ

Fig. 1. Two-step approach to crossing-point estimation.
2. Problem formulation

Let s(t) be a continuous-time, real-valued, wide-sense
stationary (WSS) Gaussian random process with zero
mean, autocorrelation function rsðt�uÞ ¼ EfsðtÞsðuÞg, and
variance s2

s ¼ rsð0Þ. Let y(t) be a known, deterministic
reference signal in the form of a periodic carrier. We wish
to determine the crossing points of s(t) and y(t), or
equivalently, the zero-crossings of zðtÞ9sðtÞ�yðtÞ. In the
discrete-time problem, only a sequence of uniformly
spaced noisy samples from s(t) is available, as given by

x½k�9sðkTsÞþn½k�, k 2 Z, ð1Þ

where Ts is the sampling period and n[k] is the quantiza-
tion noise.

In high-precision applications with a large number of
bits, it is a common practice to model individual quantiza-
tion noise samples as uniformly distributed random vari-
ables [31]. In lower precision systems where a linear noise
shaping stage is employed prior to crossing-point detec-
tion, the filtered quantization noise is commonly approxi-
mated by a Gaussian distribution. This is a consequence of
the central limit theorem as applied to the output of the
noise shaping filter and is well documented in the tech-
nical literature. In particular, the fact that non-Gaussian
inputs tend to become nearly Gaussian as a result of linear
filtering is discussed in general terms in [32,33], while the
specific case of noise shaping in delta–sigma analog-to-
digital converter structures is considered in [34–36].

Adjacent noise samples may also exhibit a certain degree
of correlation: for example, in PWM for audio amplifier
applications, the signal samples are created by upsampling
of a digital audio signal with original sampling rate of
44.1 kHz [16]. In this work, we model the noise sequence
n[k] as a WSS discrete-time random process with zero mean,
autocorrelation function rn[k� l] and variance s2

n ¼ rn½0�. To
accommodate various situations of interest, we make no

specific assumption about the statistical distribution of the
noise samples n[k]; however, we assume that the system
operates at moderate to high SNR, i.e. s2

s 4s2
n , a condition

satisfied in most applications. Finally, we assume that the
signal and noise components are independent.

Given the periodic carrier y(t) and the sequence of noisy
samples x[k] (for kZ0), we seek to estimate the sequence of
points 0ot0ot1o � � � satisfying sðtiÞ ¼ yðtiÞ. Because the
observation time and thus the number of crossing points are
unlimited, the complexity of the estimation problem is
unbounded. To bring the problem into a simpler form, we
follow a standard approach [23,28], and impose a two-step
structure on the solution as shown in Fig. 1: first, we
coarsely locate crossing points using estimator E1; next,
we apply a refined estimator E2 in the neighborhood of each
crossing point to generate a more accurate estimate.

Estimator E1 can be realized by monitoring for sign
changes of

d½k� ¼ x½k��yðkTsÞ ¼ zðkTsÞþn½k� ð2Þ

within each period of the carrier waveform y(t). When the
noise term is small and the samples are closely spaced, the
times at which d[k] changes sign, as given by ki satisfying
d½ki�1�d½ki�o0, coarsely bound each zero-crossing ti to a
single sample interval T i as follows:

ti 2 T i9ððki�1ÞTs,kiTsÞ: ð3Þ
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Because analog signal z(t) remains close to zero in the
immediate vicinity of a zero-crossing and the quantization
noise n[k] may change the sign of its sample values z(kTs) in
(2), this approach may result in erroneous decisions, includ-
ing: missed zero-crossings and false estimation of the coarse
interval T i. In practice, however, these conditions can be
eluded by a proper system design. For instance, missed
detection within a carrier period is completely avoided by
selecting a carrier pulse shape that spans the whole
dynamic range of signal amplitudes, while the number of
erroneous T i can be kept below an acceptable level by
increasing the SNR or the rate of change of y(t).

We also note that traditional PWM systems using
single-edge and double-edge modulation, where the car-
rier period, respectively, spans one and two sampling
intervals, automatically guarantee a single crossing point
per sample, so that the coarse estimator E1 is not neces-
sary, i.e. it is implicitly built into y(t) [17]. Motivated by
these considerations, we assume in our theoretical devel-
opments that E1 operates satisfactorily and focus on the
refined estimator E2. This approach is further motivated
by the fact that E2 has the ability to correct small errors in
the output of E1.

We now restrict our attention to samples immediately
surrounding T i. We form the M-dimensional vectors xi

using M1 consecutive samples of x[k] preceding ti and
M2 ¼M�M1 samples immediately following ti:

xi ¼ ½x½ki�M1�, . . . ,x½ki�1�,x½ki�, . . . ,x½kiþM2�1��T , ð4Þ

where the superscript T denotes transposition. Estimator
E2 must solve the following simplified problem: Given the
carrier signal y(t), the sample vector xi, and the coarse
interval T i, estimate the ith crossing point ti of s(t) and
y(t). As illustrated in Fig. 2 for a sawtooth carrier, this
problem is tantamount to interpolating through the M

noisy samples contained in vector xi in (4). In this respect,
M�1 represents the interpolation order while for a given
M, M1 controls the offset applied to the interpolation
window, allowing for a low-delay estimate even with
large M. The trade-offs in the choice of M and M1 are
explored in Section 5. Note that using M42 makes it
possible to correct local errors in the coarse interval
estimate obtained by E1.

Finally, we consider the following general model for
the periodic carrier signal, which is applicable to various
types of PWM:

yðtÞ ¼ YdcþAc

X
i

eipðt�iTcÞ, ð5Þ
s (t)

Ac

−Ac

xi

τi

Ti Ti+1Ti−1

x [k]
i y (t)

Fig. 2. Forming the sample vector xi: M¼6, M1¼5 and M2¼1. The

sample vector is shown in the dashed box.
where Ydc is a dc offset, Ac 40 is a positive gain, i 2 Z is
the pulse index, e 2 f�1,1g controls the pulse polarity, Tc is
the pulse duration and p(t) is the basic pulse shape. The
latter is expressed as

pðtÞ ¼
fðtÞ, 0rtrTc ,

0 otherwise

�
ð6Þ

for some real-valued function fðtÞ. We denote the ith
basic pulse interval as

Ci9ðTi,Tiþ1Þ, ð7Þ

where Ti ¼ iTc. The standard single-edge PWM carrier is a
special case of (5)–(6), obtained by setting Ydc ¼ 0, e¼ 1,
fðtÞ ¼ ð2t�TcÞ=Tc (i.e. a ramp) and Tc ¼ Ts; the standard
double-edge PWM carrier is obtained from the above by
using e¼�1 instead (see e.g. [15]). Other types of carrier
waveforms (e.g. sinusoidal) can be obtained by a suitable
choice of the model parameters and the function fðtÞ. In
this work, we set Ydc ¼ 0 without loss in generality and
make the following practical assumptions:
A1.
 The function fðtÞ is continuous and increasing from
�1 to þ1 on the interval 0otoTc , i.e.: fð0þ Þ ¼�1,
fðT�c Þ ¼ þ1 and f0ðtÞ40. This ensures that y(t) is
one-to-one in every pulse interval Ci.
A2.
 The peak amplitude Ac is sufficiently large so that the
probability of dynamic overflow, i.e. jsðtÞj4Ac , is
negligible. This ensures that there is at least one
crossing point within each pulse interval Ci.
A3.
 The rate of change of the carrier signal y(t) within
a basic pulse period, as measured by e.g. the ratio
2Ac/Tc, is sufficiently large to ensure that only a single
crossing point occurs in every interval Ci.
A4.
 The sampling frequency is commensurate with the
pulse repetition rate [15], i.e. Tc ¼ ZTs for some integer
ZZ1.
These assumptions, which reflect normal operating con-
ditions for switched circuit modulations (i.e. no overload),
greatly simplify the derivation and analysis of optimum
crossing-point estimators in the following sections.
3. Algorithm development

We now focus on E2 and develop optimal estimators
for ti by exploiting statistical knowledge about the input
vector xi. Since we only need to consider a single crossing
point at a time, we may drop the subscript i on ti, T i and
xi without ambiguity.
3.1. Probability distribution of sample vectors

Consider the M-dimensional observation vector x� xi

in (4), whose entries are obtained from consecutive
samples of x[k] in (1). We can write

x¼ sþn, ð8Þ
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where we define the M-dimensional signal and noise
vectors, s and n, respectively, as follows (M¼M1þM2Þ:

s9

sð½k�M1�TsÞ

^

sð½kþM2�1�TsÞ

2
64

3
75, n9

n½k�M1�

^

n½kþM2�1�

2
64

3
75: ð9Þ

Under the modeling assumptions in Section 2.1, x has zero
mean, i.e. Efxg ¼ 0, and its covariance matrix Sx9EfxxTg, of
size M�M, is given by

Sx ¼SsþSn, ð10Þ

where Ss9EfssTg and Sn9EfnnT g are the covariance
matrices of the signal and noise components, respectively.
These can be expressed as

Ss9Toep½s2
s ,rsðTsÞ, . . . ,rsð½M�1�TsÞ�, ð11Þ

Sn9Toep½s2
n ,rn½1�, . . . ,rn½M�1��, ð12Þ

where Toep½a0,a1, . . . ,aM�1� denotes a symmetric Toeplitz
matrix with the vector ½a0,a1, . . . ,aM�1� as its first row. We
assume that Ss and Sn are positive definite and therefore
invertible.

Since s(t) is modeled as a Gaussian process, the signal
vector s in (9) has a multi-variate Gaussian distribution.
To determine the probability distribution of the observa-
tion vector x in (8), we need to examine the statistical
properties of the noise component. We consider two cases
of interest.

In systems operating at low SNR (i.e. small number of
bits), a noise shaping stage can be employed prior to the
crossing-point estimation to move quantization noise
outside the band of interest [31]. In this case, as explained
in Section 2, the filtered noise is usually modeled as a
Gaussian process and the observation vector x, which is
then the sum of two independent Gaussian components,
admits a multi-variate Gaussian distribution.

In systems operating at high SNR without noise shap-
ing, the noise samples cannot be assumed Gaussian; in
this case, the standard model is the uniform distribution.
We note however that the probability density function
(pdf) of x, say fxðnÞ, is given by the (multi-dimensional)
convolution of the signal pdf, fsðnÞ, with the noise pdf,
fnðnÞ [37]. At high SNR, the noise pdf is concentrated
around the origin and the convolution only has a local
smoothing effect on the signal pdf. Hence, we expect that
the multi-variate Gaussian shape of fsðnÞ is nearly pre-
served in the resulting pdf fxðnÞ.

These observations are theoretically supported by the
following proposition which covers both cases of interest.

Proposition 1. The pdf of the observation vector x in (8)
admits an asymptotic expansion:

fxðnÞ ¼
1

ð2pÞM=2
jSxj

1=2
e�ð1=2ÞnTS�1

x nþO s3
n

s3
x

kð3Þk1���kM

� �
, ð13Þ

where s2
x9s2

s þs2
n, jSxj denotes the determinant of Sx, and

kðnÞk1���kM
are the cumulants of order n of the normalized noise

vector s�1
n n.

A proof of this general property is given in Appendix A.
Relation (13) provides an asymptotic expansion for the
pdf of x as the sum of a dominant multi-variate Gaussian
pdf and small correction terms in ðsnn=snxÞk
ðnÞ
k1���kM

, with the
first such correction beginning at n¼ 3. The presence of
cumulants of order 3 and beyond accounts for a possible
deviation of the noise vector’s pdf from the Gaussian
distribution. When the noise is Gaussian, these cumulants
are zero and only the dominant multi-variate Gaussian
term remains in (13). When the noise is not Gaussian
but the SNR is high, the correction terms in (13) will be
small in general. For example, for an SNR of 10 dB, which
is on the very low side for the current application,
we have s3

n=s3
x � 0:03. If in addition the 3rd order cumu-

lants are zero, which is the case with uniformly distrib-
uted quantization noise, the first correction term is in
s4

n=s4
x o0:01.

In this work, it is therefore well justified to assume
that the observation vector x can be modeled by a multi-
variate Gaussian distribution, i.e.:

fxðnÞ ¼
1

ð2pÞM=2
jSxj

1=2
e�ð1=2ÞnTS�1

x n: ð14Þ

3.2. Maximum a posteriori (MAP) estimation

We model the unknown crossing point t as a random
variable with a priori pdf ftðtÞ. We denote the conditional
pdf of t given a particular realization of the observation
vector, i.e. x¼ n, as ftjxðtjnÞ. By definition, the MAP esti-
mate of t given x¼ n maximizes this latter function, i.e.

t̂map ¼ argmax
t2Y

ftjxðtjnÞ, ð15Þ

where Y denotes the search interval, whose choice is
discussed below. To solve for t̂map, we begin with the
canonical MAP equation [38]:

d

dt
logfxjtðnjtÞþ

d

dt
logftðtÞ

� �����
t ¼ t̂map

¼ 0, ð16Þ

where fxjtðnjtÞ is the conditional pdf of x given a crossing
point at t¼ t.

3.2.1. A priori pdf of a crossing point

The choice of the search interval Y and the a priori pdf
ftðtÞ depends on properties of the coarse estimator E1 and
related system parameters. Two cases of interest are
considered below.

Case 1: The situation in which the search interval
corresponds to the basic pulse duration, i.e. Y¼ Ci in (7),
is of primary importance. It occurs for instance in standard
single-edge and double-edge PWM, where by design
Ts ¼ Tc and a single crossing point per sample is guaran-
teed. In the absence of additional information, the crossing
time may occur anywhere within Y with a pdf ftðtÞ that
can be derived as follows.

Consider a rising segment Ci of the carrier y(t) over the
interval Ci, as illustrated in Fig. 2 for a sawtooth waveform.
We first note that under assumptions A1–A4 in Section 2,
the condition trt 2 Ci on the crossing point is equivalent
to the condition sðtÞryðtÞ between the input and carrier
signals. That is, for a rising carrier and assuming a single
crossing point within Ci, this crossing point occurs at time
trt if and only if the value of the comparison waveform
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at time t, y(t), exceeds that of the input, s(t). Therefore, we
can write

FtðtÞ9Prftrtg ¼ PrfsðtÞryðtÞg, t 2 Y, ð17Þ

where FtðtÞ denotes the cumulative distribution function
of t. Since by assumption s(t) is zero mean Gaussian with
variance s2

s , we have

FtðtÞ ¼

Z yðtÞ

�1

1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

s

p e�ð1=2s2
s Þu

2
du, t 2 Y:

Differentiating with respect to t, we finally obtain the
desired pdf:

ftðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
s

p e�ð1=2s2
s ÞyðtÞ

2

j _yðtÞj, t 2Y, ð18Þ

where the dot notation is used to express differentiation with
respect to t, i.e. _yðtÞ � ðd=dtÞyðtÞ. Since the search is limited to
the open interval Y¼ Ci where the pulse waveform p(t� iTc)
is smooth, we do not need to take into consideration the
possible singularities of _yðtÞ at the end points of the pulse
period. The case of a falling segment can be treated in a
similar way; it is accounted for by the presence of the
absolute value in (18).

Case 2: Another situation of interest is when Tc ¼ ZTs

with ZZ2 and the coarse estimator E1 is sufficiently
reliable. In this case, the search interval can generally be
restricted to a proper subset Y � Ci. This may range from
a single sampling interval when the output of E1 is error-
free, i.e. Y¼ T i (4), to a few sampling intervals otherwise,
in which case Y*T i. Note that by extending the search
region beyond the coarse interval T i, the refined estima-
tor E2 is in effect allowed to correct possible errors in the
output of E1. While the approach used in Case 1 to
develop ftðtÞ can be extended to this case as well, it may
be more appropriate here to design ftðtÞ based on a priori

knowledge of the distribution of the coarse estimation
errors. If this information is not available, a uniform
distribution can be used instead.

3.2.2. Conditional pdf of the observations

We next derive an expression for fxjtðnjtÞ, the condi-
tional pdf of observation vector x given a crossing point at
t¼ t. To this end, we first introduce an augmented
(Mþ1)�1 random vector, defined as

x ¼
x

sðtÞ

" #
¼

s

sðtÞ

" #
þ

n

0

� �
: ð19Þ

Invoking Proposition 1, we assume as before that x is a
Gaussian random vector with zero mean and covariance
matrix denoted as S. The latter may be expressed in
partitioned form as follows:

, ð20Þ

where we define

qðtÞ9

rsðt�½k�M1�TsÞ

^

rsðt�½kþM2�1�TsÞ

2
64

3
75:
We now make the following key observation: condi-
tioning on a crossing point at time t¼ t is equivalent to
conditioning on the event s(t)¼y(t), i.e. assuming a known
value of y(t) for the last entry of the augmented vector x
in (19). Using well-known properties of the multivariate
Gaussian distribution [39], it follows that fxjtðn,tÞ is also
multi-variate Gaussian with covariance matrix SðtÞ and
mean lðtÞ, respectively, given by

SðtÞ ¼Sx�
1

s2
s

qðtÞqðtÞT , ð21Þ

lðtÞ ¼
1

s2
s

yðtÞqðtÞ: ð22Þ

Therefore, we finally obtain

fxjtðnjtÞ ¼
1

ð2pÞM=2
jSðtÞj1=2

e�ð1=2Þðn�lðtÞÞTSðtÞ�1
ðn�lðtÞÞ: ð23Þ

3.2.3. The MAP estimator

The MAP estimate of t satisfies (16). Based on our
discussion in Section 3.2.1, different cases are possible for
the term ðd=dtÞlogftðtÞ. Under Case 1 and assuming a
rising segment (i.e. _yðtÞ40 for all t 2 Ci), we find

d

dt
logftðtÞ ¼

€yðtÞ
_yðtÞ
�
_yðtÞyðtÞ

s2
s

: ð24Þ

We note that as a consequence of assumption A2, the
evaluation of the derivatives of y(t) in (24) is limited to
interior points of the basic pulse interval Ci9ðTi,Tiþ1Þ.
Consequently, these derivatives are well defined and we
do not have to worry about possible singularities at end-
points Ti and Tiþ1 (see Fig. 1). Under Case 2, the choice of
ftðtÞ will reflect the distribution of the coarse estimation
errors. If this information is not available and a uniform
distribution is used instead, we have

d

dt
logftðtÞ ¼ 0 ð25Þ

for all interior points t 2 Y. When applied to (16), the
resulting estimator is then equivalent to a maximum
likelihood (ML) estimator.

Using (23), the term ðd=dtÞlogfxjtðnjtÞ in (16) can be
expressed as

d

dt
logfxjtðnjtÞ ¼�

1

2

d

dt
ðlogjSðtÞjþðn�lðtÞÞTSðtÞ�1

ðn�lðtÞÞÞ:

ð26Þ

Applying the Sherman–Morrison–Woodbury formula [40]
to (21), we may express SðtÞ�1 in terms of S�1

x :

SðtÞ�1
¼S�1

x þ
S�1

x qðtÞqðtÞTS�1
x

s2
s�qðtÞTS�1

x qðtÞ
: ð27Þ

This formula is valid provided that Sx is nonsingular,
which is always true in the presence of noise (i.e. s2

n40).
Next, we define the following quantities, whose depen-
dence on t is omitted to simplify the notations:

a0 ¼ qðtÞTS�1
x qðtÞ=s2

s , c0 ¼ nTS�1
x qðtÞ,

b0 ¼ qðtÞTS�1
x
_qðtÞ=s2

s , d0 ¼ nTS�1
x
_qðtÞ,

e0 ¼ _qðtÞTS�1
x
_qðtÞ=s2

s : ð28Þ



G. Smecher, B. Champagne / Signal Processing 91 (2011) 1951–19621956
Substituting (27) in (26) and using (28), we obtain

d

dt
logfxjtðnjtÞ ¼�

b0ða0y�c0Þðy�c0Þ

s2
s ð1�a0Þ

2
þ

d0y

s2
s

þ
b0s2

s þðd0� _yÞða0y�c0Þ�b0yðy�c0Þ

s2
s ð1�a0Þ

ð29Þ

This completes the derivation. The MAP estimate satisfies
(16), where the first term on the LHS is given by (29) and the
second term can be taken as (24) or (25). To generate
estimates using this expression, a zero-finding method such
as Brent’s algorithm [41] or Newton’s method may be
applied. There is no guarantee that an unique zero of (16)
exists in the search interval Y, and that it corresponds to the
absolute maximum of fxjtðnjtÞ within Y. We do not inves-
tigate uniqueness of the solution in this work; our experi-
mental results suggest that it is not a critical issue.
3.3. Minimum mean squared error formulation

Estimators using (29) can be numerically sensitive and
expensive. Here, we introduce a simpler crossing-point
estimator based on minimum mean squared error (MMSE)
interpolation. This estimator is shown to be an approxima-
tion to the MAP estimator under appropriate conditions.

Let ŝoðt,nÞ denote the MMSE estimator of s(t) at
arbitrary time t, given a realization x¼ n of the observa-
tion vector. According to the Wiener–Hopf equation [42],
this estimator can be expressed in the form

ŝoðt,nÞ ¼ qðtÞTS�1
x n¼ c0, ð30Þ

where c0 � c0ðt,nÞ in defined in (28). The corresponding
MMSE is given by

e¼ s2
s�qðtÞTS�1

x qðtÞ ¼ s2
s ð1�a0Þ, ð31Þ

where it can be verified that 0rers2
s . We may consider

e to provide a measure of confidence in ŝoðt,nÞ. In
particular, when x consists of closely spaced samples near
t and the measurement noise is small, e will be small
compared to s2

s , or equivalently, 0r1�a051 over the
region of interest.

In such a case, the first term on the right-hand side of (29)
will dominate the others, resulting in the approximation:

d

dt
logfxjtðnjtÞC

b0ðy�c0Þ
2

s2
s ð1�a0Þ

2
: ð32Þ

The MMSE (or approximated MAP) estimate corresponds to
the zeros of (32). The two candidates are roots of b0 and
y�c0. However, as b0 is a function of t and S�1

x only, it does
not involve the sample vector in any way. Choosing the roots
of the remaining term results in an estimator which performs
well and is intuitively satisfying.

Define the M-dimensional weight vector w0 ¼S�1
x n.

The MMSE-based estimate of the crossing point must
satisfy the following relation:

ŝoðt,nÞ ¼wT
oqðtÞ ¼ yðtÞ: ð33Þ

We denote this estimate as t̂mmse, i.e.:

ðwT
oqðtÞ�yðtÞÞjt ¼ t̂mmse

¼ 0: ð34Þ
This result has an intuitive form, since it relates the MMSE
estimate of s(t) to the carrier signal and solves for the
points at which they are equal. Since both the carrier
signal and qðtÞ are in general nonlinear functions, a root-
finding method must be adopted. Similar to the MAP
estimator, we assume the existence and uniqueness of
solutions to (34) over the search interval Y.

3.4. Summary of algorithms

The computational structure of the MAP and MMSE
estimators is summarized in Algorithm 1. The only dif-
ference between the two estimators is in the choice of the
score function g(t) used in the root-solving step, i.e. LHS of
(16) for the MAP versus LHS of (34) for the MMSE. We
note that the computational difficulties in the MAP
estimator do not occur with the MMSE, and a simple
zero-finding algorithm performs well. Indeed, we use the
MMSE estimate as an initial guess to the MAP estimate in
our experiments.

Algorithm 1. Crossing-point estimation via MAP or
MMSE
select: gðtÞ ( (16) for MAP; gðtÞ ( (34) for MMSE

loop

if t 2 T i then
n¼ ½x½ki�M1�, . . . ,x½kiþM2�1��T
wo ¼S�1
x n (using Cholesky factorization of S�1

x )
t̂0 ¼ initial estimate of crossing point
repeat
t̂k ¼ refine t̂k�1 using Newton’s or Brent’s algorithm applied

to gðtÞ.
d¼ jgðt̂kÞj
until dotol
end if
end loop

4. Performance considerations

4.1. Bound on crossing-point estimator MSE

The Bayesian Cramér–Rao bound (CRB) provides a
lower bound on the attainable MSE of any estimator
t̂ðxÞ of t as follows [38,43]:

Ef½t̂ðxÞ�t�2gZ 1

EfI ðtÞgþIo
: ð35Þ

The denominator on the RHS of (35), referred to as the
Bayesian information, is the sum of two terms which,
respectively, depend on the conditional pdf of the obser-
vation vector, fxjtðnjtÞ, and the a priori pdf of the crossing
point, ftðtÞ. In this respect, the Bayesian CRB is a funda-
mental property of these two pdfs, irrespective of any
specific estimator t̂ðxÞ. The computation of the terms
EfI ðtÞg and I0 is further discussed below.

The function I ð�Þ appearing in (35) is the so-called
Fisher information of the conditional pdf fxjtðnjtÞ, defined
as the following multi-dimensional conditional expecta-
tion [44]:

I ðtÞ ¼
Z
. . .

Z
@lnfxjtðnjtÞ

@t

� �2

fxjtðnjtÞ dx1 � � � dxM : ð36Þ
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For the problem under consideration here, i.e. with the
special form of fxjtðnjtÞ in (23), the Fisher information
takes the following form [45]:

I ðtÞ ¼ _lTS�1 _lþ1
2tr½S�1 _SS�1 _S�, ð37Þ

where the dependence of l and S on t is omitted for
convenience. This expression may readily be simplified
using the notation introduced in (28):

I ðtÞ ¼ b2
0ð1þa0Þ

ð1�a0Þ
2
þ

b2
0y2þ2b0y _yþa0 _y

2

s2
s ð1�a0Þ

þ
a0e0

1�a0
þ

e0y2

s2
s

, ð38Þ

where again, we recall that a0, b0, e0 and y are functions of t.
To remove the effect of specific realizations of the

crossing point t, the Bayesian CRB in (35) further averages
the Fisher information over permissible values of this
random variable. In the situation of interest here, a priori

knowledge is available about the unknown crossing-point
location t in two forms: first, we have a coarse location
furnished by estimator E1 (see Fig. 1) and represented by
the search interval Y; second, we have an a priori cross-
ing-point pdf ftðtÞ, as in e.g. (18). Accordingly, we may use

EfI ðtÞg ¼
Z
Y
I ðtÞftðtÞ dt: ð39Þ

Finally, the quantity Io in (35) is the Fisher information of
the a priori pdf of the crossing point, ftðtÞ, and is given by

Io ¼

Z
Y

d

dt
lnftðtÞ

� �2

ftðtÞ dt: ð40Þ

As explained in Section 3.2.1, the search interval Y and
the a priori pdf ftðtÞ depend on the specific carrier signal y(t)
and associated system parameters. For a given choice of
Y and ftðtÞ, the Bayesian CRB can be evaluated via numer-
ical integration of (39) and (40), where in the former,
expression (38) of the Fisher information is used. This
bound will be used as a benchmark for comparison of
estimator MSE in our simulation study.

A simplified expression for the Bayesian CRB can be
obtained under the condition of high SNR in the oversampled
regime. Indeed, proceeding as in Section 3.3 and assuming
that the MMSE (31) is small over the search interval Y, we
can approximate the Fisher information (38) as

I ðtÞC 2b2
0

ð1�a0Þ
2
¼

2s2
s ½qðtÞ

TS�1
x
_qðtÞ�2

s2
s�qðtÞTS�1

x qðtÞ
: ð41Þ

The desired simplified expression for the CRB (35) follows
upon substitution of the above approximation in (39).

4.2. Computational complexity

The complexity of a crossing-point estimation method
is an important consideration. For switching audio ampli-
fiers in particular, crossing points must be calculated at a
rate of several hundred kHz or more. Here, we briefly
discuss the computational complexity of the above opti-
mum estimators where for simplicity, a cost of 1 corre-
sponds to any basic mathematical operation (addition,
multiplication, comparison, etc.) available on the imple-
menting technology. We let n denote the cost of evaluating
a scalar nonlinear function. For example, the costs for yðtÞ
and qðtÞ are n and Mn, respectively.
The proposed estimators share a similar structure. First,
each crossing point t is coarsely located using estimator
E1. This process contributes a cost of ðnþ1Þ per sample,
i.e.: evaluation of the carrier function and comparison to
the observed sample at the rate 1/Ts. Alternatively,
depending on the available hardware, a table look-up
approach can be used to store the values of y(nTs); in this
case, only comparisons are needed. Next, samples in the
neighborhood of T i are passed to E2 to generate a refined
estimate. For each scheme, this is achieved using an
iterative root-finding process such as Brent’s method
[41]; here, we let k denote the average number of required
iterations. Referring to Algorithm 1, the Cholesky factor-
ization of S�1

x ¼ LLT can be precomputed. Therefore, we
may compute the vector wo ¼S�1n by forward–backward
substitution at a total cost of 2M2.

Beginning with the MMSE estimator, the cost of
evaluating the LHS in (34) is ðMþ1Þnþ2M. Therefore,
the required number of floating-point operations per unit
sampling period for this estimator may be expressed as

CMMSE ¼ nþ1þ
1

Z
ð2M2þk½ðMþ1Þnþ2M�Þ, ð42Þ

where Z¼ Tc=Ts. For the MAP estimator, we proceed in the
same way but we also need to take into account the
calculation of the various time dependent quantities in
(28). The total required number of floating-point opera-
tions per unit sampling period for this estimator is

CMAP ¼ nþ1þ
1

Z ð2M2þk½2M2þ2ðMþ1Þnþ8Mþ16�Þ:

ð43Þ

For comparison purposes, we also consider a traditional
crossing-point estimator based on Lagrange polynomial
interpolation of order M (see Section 5 for details). The
computational cost of this estimator can be expressed as

CPOL ¼ nþ1þ
k

Z
½ðMþ1Þnþ2M�: ð44Þ
5. Simulation experiments

In this section, we present simulation experiments in
which the performance of the proposed methods is eval-
uated and characterized as a function of various system
parameters.

5.1. Methodology

We consider a PWM application and explore the influ-
ence of the system and signal parameters in Table 1. With
the exception of fm, which corresponds to the (strict)
bandlimit of s(t), these parameters have been introduced
in previous sections. The values in this table are nominal
values which we alter individually. We have chosen a high
SNR 9s2

s =s2
n of approximately 83 dB, which is representa-

tive of high-quality digital audio sources with 16 bit word
length. We let y(t) be a sawtooth periodic waveform with
amplitude Ac¼1 and pulse repetition frequency fc ¼ 2fm,
which corresponds to the signal’s Nyquist rate. In practice,



Table 1
Nominal values of system parameters in experimental study.

Parameter Value Description

fs ¼ 1=Ts 192 kHz Sampling rate

fm 24 kHz Bandlimit of s(t)

fc ¼ 1=Tc 48 kHz Pulse repetition rate

M¼ 2M1 4 Number of samples

Ac 1 Carrier amplitude

s2
n

2�30/12 Noise variance

s2
s

(1/8)2 Signal variance
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PWM implementations may use a carrier frequency of
several times this value.

We model s(t) as a wide-sense stationary Gaussian
random process with zero mean and flat, bandlimited
power spectral density (psd), i.e.:

PsðoÞ ¼
ps2

s =Om, jojoOm,

0 otherwise:

(
ð45Þ

The autocorrelation function of s(t) may be expressed
as [37]

rsðtÞ ¼ s2
s sincðOmt=pÞ, ð46Þ

where Om ¼ 2pfm. This expression for rs(t) is used to
evaluate the vector qðtÞ within the MAP and MMSE
estimators.

During the simulations, in addition to the samples of
s(t) needed to form the vectors x, we require precise
knowledge of each of the true crossing points of s(t) and
y(t) in order to evaluate the error for each estimator. To
determine these crossing points with high precision, it is
necessary to generate s(t) in such a way that it may be
evaluated at arbitrary time instants with a low computa-
tional cost. To this end, we use the following synthesis
model:

sðtÞ ¼
XN

n ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2

s =N
q

sinðontþfnÞ, t0rtrtM�1, ð47Þ

where on and fn (n¼1,y,N) are independent, uniformly
distributed random variables over the intervals ½0,OmÞ

and ½0,2pÞ, respectively. We use N¼10 terms in the
summation to properly approximate the desired PSD
(46). We have found this approach to give similar results
to a Karhunen–Lo�eve expansion using prolate spheroidal
wave functions [46,38], but much lower complexity;
additional details can be found in [47].

5.1.1. Monte Carlo simulations

For each independent experimental trial, the frequency
and phase parameters of s(t) (47) are generated randomly.
Knowledge of these parameters allows precise evaluation
of s(t) at any point within the observation interval, taken
to be ½�M1Ts,TcþM2Ts�1�. Signal s(t) is then sampled, and
uniformly distributed noise is added to form the sequence
x[k] in (1).

Coarse estimation of the crossing point is performed
by monitoring the sign of d[k] (2) over the pulse period of
interest, i.e. C0 ¼ ½0,Tc�. Samples of x[k] surrounding the
coarse estimate are combined into vector n, as per Algo-
rithm 1. A refined estimate is then computed by feeding n

into one of several methods as described below. Estimates
that fall outside the search interval Y¼ C0 are handled as
follows: if t̂4Tc , set t̂ ¼ Tc; if t̂o0, set t̂ ¼ 0. To ensure
statistical reliability, each data point on the graphs in
Section 5.2 represents an ensemble average over Z2000
independent trials.

For each trial, we compute the proposed MAP, using
the a priori pdf ftðtÞ (18), and MMSE estimators. For
comparison purposes, we also compute two estimators
based on polynomial interpolation, namely: Lagrange and
cubic spline. While polynomial interpolation may be
sensitive to noise (especially colored noise), it is widely
applied to the crossing-point problem because of its low
complexity, as discussed earlier. We adopt a vector for-
mulation for Lagrange interpolation [48–50]. Define the
vector function lðtÞ ¼ ½l0ðtÞ, . . . ,lM�1ðtÞ�

T componentwise as
follows:

lmðtÞ ¼
YkiþM2�1

n ¼ ki�M1
nam

t�nTs�Td

ðm�nÞTs
, m¼ 0, . . . ,M�1: ð48Þ

Given the vector of noisy samples n, a polynomial approx-
imation of degree M�1 of s(t) is then obtained via the
inner product nT lðtÞ. The resulting crossing-point esti-
mate, denoted t̂POL, is defined as

ðnT lðtÞ�yðtÞÞjt ¼ t̂POLS
¼ 0: ð49Þ

In the case M¼2, the POL estimator forms a straight line
between x[ki �1] and x[ki] and determines the time at
which it crosses y(t). We consider this special case be-
cause it is in general treated separately from higher-order
polynomial methods in the literature, and since its solu-
tion may be expressed in closed form without recourse to
root-finding when y(t) is a sawtooth carrier. We explicitly
refer to the resulting estimate as t̂ILIN. We also consider a
standard cubic spline interpolator for comparison; the
defining equations can be found in [51]. The resulting
crossing-point estimate is denoted as t̂SPL.

As a performance benchmark, we evaluate the Baye-
sian CRB (35) on the minimum achievable MSE, using the
a priori pdf ftðtÞ (18) in (39)–(40). As a worst case
performance, we also consider the variance of a uniformly
distributed random variable within the coarse interval (3).
The corresponding value of Ts

2
/12 is referred to as the

uniform upper bound (UUB).

5.2. Experimental results

The structure of the proposed MAP estimator is
dependent on the Gaussian approximation (14). In the
limit of high SNR, Proposition 1 implies that (14) is
asymptotically exact, regardless of the particular pdf of
the noise samples added to the Gaussian signal samples
when forming x[k] in (1). To validate this claim, Fig. 3
shows histograms of x[k] for different SNR values. These
plots were obtained by adding uniformly distributed
noise to a bandlimited audio signal generated using the
model (47), with parameter values as in Table 1. Despite
the non-Gaussian nature of the quantization noise, the
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noisy samples tend to a Gaussian distribution as the SNR
increases, providing strong experimental support for
Proposition 1.

Focusing now on the various crossing-point estimators,
Fig. 4 shows their standard deviation (in units of the
sampling period) as the interpolation window length M

is varied. Except for ILIN, which uses a fixed value of M¼2,
all the other estimators use the same values of M, M1, and
M2. As expected, their performance generally improves
with M, up to a point where incorporating new data does
not add new information due to loss of temporal correla-
tion in the signal (about M¼8 here). The proposed MAP
and MMSE estimators yield an almost identical perfor-
mance, which approaches the fundamental limit predicted
by the Bayesian CRB. A similar behavior is noted with the
POL estimator but the performance is not as good, while
the performance of both the SPL and ILIN saturates at a
much higher level, consistent with the fact that they are
based on linear and cubic interpolation, respectively. Fig. 5
shows the bias of these estimators under similar condi-
tions. Comparing with Fig. 4, we note that the bias is
always considerably smaller than the corresponding stan-
dard deviation. For practical purposes, these estimators
may therefore be considered unbiased. In the sequel, we
focus on MSE and do not present bias plots.

Fig. 6 shows the estimator performance as a function of
the sampling frequency. The horizontal axis is normalized to
the Nyquist rate, so that a value of 1 corresponds to critical
sampling (i.e. fs ¼ 2fm). As above, the best performance is
obtained with the proposed MAP and MMSE estimators. The
POL and SPL estimators are superimposed on this plot since
M¼4 samples are used. In the context of digitally controlled
switching amplifiers, audio quality depends on the accuracy
of crossing-point estimation. For example, in [16], the use of
a 4-point polynomial crossing-point estimator is required to
maintain a bound on distortion of �102 dB. However, this
presumes a highly over-sampled input (i.e. 20 kHz band-
width, sampled at 352.8 kHz). The MMSE estimator we
propose outperforms POL by a wide enough margin. Conse-
quently, a lower over-sampling rate may be adopted instead
which will significantly reduce the overall system costs.

Fig. 7 shows the estimator performance as the SNR is
varied. Again, the best results are obtained with the
proposed MAP and MMSE estimators. In all cases, esti-
mator performance improves as the SNR increases until it
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saturates at a fixed level above the CRB. For both the POL,
MMSE and MAP, the saturation level can be reduced by
increasing M from 4 to 6. However, for a given M, the MAP
and MMSE estimator always reach a significantly lower
MSE level, i.e. by 6 dB or more. The results in Fig. 7 also
indicate that the Bayesian CRB (35) provides a tight bound
on system performance over a wide range of SNR values.
The ability of the MAP estimator to give accuracy close to
the Bayesian CRB does not come as a surprise: indeed, the
MAP uses a search procedure to optimize the same score
function, the conditional pdf of the crossing point given
the observed data, on which the derivation of the CRB is
based [38].

Fig. 8 shows the estimator performance as a function
of the offset parameter M1. To better emphasize the effect
of M1, the number of samples M¼M1þM2 has been
increased to 8 in this figure. The performance of the
various estimators is seen to be optimal when the cross-
ing point falls in the center of the observation vector,
i.e. M1¼M2¼4. The MMSE estimator is the most robust to
deviations from this optimum operating point.
6. Conclusion

We considered estimating the crossing points of a
known function with a continuous-time random process,
given uniformly spaced, noisy samples of this process. We
derived the MAP estimator, along with an intuitively
satisfying estimator based on MMSE considerations. The
MMSE estimator was shown to be a lower-complexity
approximation to the MAP estimator. We also derived the
fundamental Bayesian CRB on the lowest attainable MSE
for any estimator for the problem. Simulations of a PWM
scenario demonstrated that MAP and MMSE outper-
formed commonly used polynomial estimators. The MAP
and MMSE estimators were nearly unbiased and their
MSE approached the Bayesian CRB, which provides a tight
bound under practical conditions of operation. The MMSE
is therefore a particularly attractive solution as it offers a
nearly optimal, yet computationally efficient approxima-
tion to the MAP estimator.

The computational cost of implementing the proposed
MAP and MMSE estimators is greatly dependent on the
types of resource that silicon can provide. There are only a
few broad classes of implementation device (e.g. FPGAs
and DSPs) available to designers, and it would be worth-
while to investigate the balance between accuracy and
computational efficiency for each device.



G. Smecher, B. Champagne / Signal Processing 91 (2011) 1951–1962 1961
Appendix A. Proof of Proposition 1

It is convenient to define the normalized random
vector s09s�1

s s, n09s�1
n n and x09s�1

x x where
s2

x9s2
s þs2

n. From (8), it follows that

x0 ¼
ss

sx
s0 þ

sn

sx
n0: ðA:1Þ

Below, we derive an asymptotic expansion for the pdf of
x0 in terms of the ratio sn=sx. We first recall the definition
of the cumulant-generating function (cgf) of an M-dimen-
sional random vector x [52]:

KxðxÞ ¼ lnEfejxT xg, ðA:2Þ

where x¼ ðo1, . . . ,oMÞ
T is an M-dimensional vector of

angular frequencies. Let Kx0 ðxÞ, Ks0 ðxÞ and Kn0 ðxÞ denote
the cgf of x0, s0 and n0, respectively. Under the current
modeling assumptions for the signal and noise, we have

Kx0 ðxÞ ¼ Ks0
ss

sx
x

� �
þKn0

sn

sx
x

� �
, ðA:3Þ

Ks0 ðxÞ ¼ �
1

2s2
s

xTSsx, ðA:4Þ

Kn0 ðxÞ ¼�
1

2s2
n

xTSnxþRðxÞ, ðA:5Þ

where the residual term RðxÞ admits a Taylor series
expansion

RðxÞ ¼
X1
n ¼ 3

X
k1 ���kMP

ki ¼ n

kðnÞk1���kM

k1! � � � kM !
ðjo1Þ

k1 � � � ðjoMÞ
kM

0
BBB@

1
CCCA: ðA:6Þ

In (A.6), the inner summation is over all integers kiZ0
with

PM
i ¼ 1 ki ¼ n and the coefficients kðnÞk1���kM

are the
cumulants of order n of n0. Substituting (A.4)–(A.6) into
(A.3), we obtain

Kx0 ðxÞ ¼�
1

2s2
x

xTSxxþR
sn

sx
x

� �
: ðA:7Þ

Taking the exponential of (A.7) gives the characteristic
function of x0:

cx0 ðxÞ ¼ e�ð1=2s2
x Þx

TSxx eRððsn=sxÞxÞ

¼ e�ð1=2s2
x Þx

TSxx 1þR
sn

sx
x

� �
þ

1

2!
R

sn

sx
x

� �� �2

þ � � �

 !

¼ e�ð1=2s2
x Þx

TSxx 1þ
s3

n

s3
x

X
k1 ���kMP

ki ¼ 3

kð3Þk1���kM

k1! � � � kM !
ðjo1Þ

k1 � � � ðjoMÞ
kMþ � � �

0
BBB@

1
CCCA:

ðA:8Þ

The above series is apparented to the so-called Edgeworth’s
expansion used in the derivation of an asymptotic expres-
sion for the pdf of a sum of a large number of independent
random variables [30]. The desired expansion for the pdf of
x0 is obtained by inverse Fourier transformation of (A.8), i.e.:

fx0 ðnÞ ¼fðn;s�2
x SxÞ�

s3
n

s3
x

X
k1 ���kMP

ki ¼ 3

kð3Þk1 ���kM

k1! � � � kM!

@3fðn;s�2
x SxÞ

@xk1

1 � � � @x
kM

M

þ � � � ,

ðA:9Þ
where, for an arbitrary positive definite M�M covariance
matrix S, we define the multi-variate Gaussian distribution

fðn;SÞ ¼
1

ð2pÞM=2
jSj1=2

e�ð1=2ÞnTS�1n: ðA:10Þ

The pdf of the original observation vector x is finally
obtained as

fxðnÞ ¼
1

sn
x

fx0
1

sx
n

� �
: ðA:11Þ

This completes the proof.
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