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a b s t r a c t

In this work, we propose a novel method for the design of oversampled perfect
reconstruction (PR) discrete Fourier transform (DFT) modulated filter banks (FB) for
application to multi-carrier modulation (MCM). The PR property is enforced by employing
a parametric class of paraunitary matrices to form the transmit/receive polyphase filters of
the transceiver system. Specifically, the polyphase filters are formed by cascading special
types of paraunitary matrices characterized by a limited set of design parameters. To
reduce the number of these parameters, three different factorization methods are
employed and compared. Through the optimization of these design parameters, the
stop-band energy of the subband filters can be minimized which leads to improved
spectral containment. The performance of the proposed system is investigated in a multi-
carrier transceiver application, where it is compared with OFDM and other recently
proposed FB structures. Numerical results show that the proposed scheme leads to a clear
advantage not only in additive white Gaussian noise (AWGN) and frequency selective
channels, but also in the presence of channel impairments such as narrow band
interference or carrier frequency offset. In particular, it is found that a significant
reduction in the bit error rate can be achieved by employing the proposed scheme.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Multi-carrier modulation (MCM) is an efficient trans-
mission technique for high data rate wired and wireless
communications, where the channel bandwidth is divided
into several subchannels with their own carriers. There are
many different possible realizations for MCM systems, but
with no doubt, orthogonal frequency division multiplexing
(OFDM) [1] has been the most prevalent solution in many
current standards. From a filter bank perspective, OFDM is
based on inverse discrete Fourier transform (IDFT) and
All rights reserved.
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discrete Fourier transform (DFT) blocks. As a result, its
prototype filters are rectangular windows with poor fre-
quency localization: their magnitude response consists of
a mainlobe overlapping with immediate adjacent sub-
channels and high sidelobes that extend over a wide
frequency band. Consequently, channel impairments such
as narrow band interference (NBI) and carrier frequency
offset (CFO) can deteriorate its performance [2–4].

To avoid such drawbacks, filter bank multi-carrier
(FBMC) systems have been proposed which benefit from
improved frequency selectivity through the use of longer
prototype filters [5,6]. FBMC systems consist of a synthesis
(transmit) and analysis (receive) filter banks (FB), inter-
connected by a transmission channel. Denoting M as the
number of subbands and K as the upsampling/downsam-
pling factor, the FB is said to be critically sampled if K¼M
and oversampled if K4M, while perfect reconstruction
(PR) refers to a condition where the output of the tandem
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combination of the transmit and receive FBs is a delayed
version of the input [5]. Compared to critically sampled
FBs, oversampled FBs benefit from additional design free-
dom that can be used to obtain the PR property and
additional spectral containment, hence better noise immu-
nity [6–10]. These improvements come at the cost of
increased redundancy and loss of spectral efficiency.

To reduce design and implementation complexity, DFT
modulated FBs are commonly used as a computationally
efficient solution in the practical application of FBMC
systems [7–16]. In this approach, the M transmit and M
receive subband filters are all derived from a single
prototype filter, typically a finite impulse response (FIR)
filter of length D, so that the total number of design
parameters is significantly reduced.

One common realization of FBMC systems is OFDM/OQAM
systems that use offset-quadrature amplitude modulation
(OQAM), instead of common quadrature amplitude modula-
tion (QAM) signaling, in order to maintain orthogonality
between adjacent subbands [11–14]. This requires employing
OQAM pre- and post-processing blocks in the transmitter and
receiver, so that only pure real or imaginary signals are fed to
the subband filters, which also adds to the system complexity
and makes the channel estimation difficult. The implementa-
tion of such systems in MIMO scenarios also poses a practical
difficulty, in that the Alamouti scheme cannot be directly
applied to it.

Alternatively, considering that non-ideal channels will
introduce distortion and prevent the PR of the transmitted
signal, some researchers have investigated the design of
nearly-perfect reconstruction (NPR) FBs for MCM applica-
tions [17,18], where small amounts of inter-symbol inter-
ference (ISI) and ICI are present even in the ideal channel
case. In practice, the level of these interferences can be
controlled through optimization of the analysis/synthesis
filters and kept small compared to the distortion inflicted
by the channel on the demodulated signals. In [18], a
windowing method for the design of NPR systems is
proposed that can reduce the number of design para-
meters considerably. This method employs a class of
prototype filters closely related to the so-called Nyquist
filters [19]. Compared to the simple one-tap per subband
equalizers for PR systems, NPR design entails the use of
more complex equalizers at the receiver to combat ISI,
which adds to the system's complexity [20].

Motivated by the above considerations, the focus in this
work is on the application of oversampled PR (OPR) DFT
modulated (DFTM) FBs to MCM systems. In this regard, to
reduce realization complexity and simplify design, it is of
great importance to provide an efficient structure based on a
minimum number of elementary building blocks, i.e. delay
and rotation matrices. The first attempts to find an efficient
factorization for paraunitary matrices in this field are focused
on critically sampled PR FBs and reported in [5,21–23],
although they cannot be applied to OPR FBMC systems.
Alternatively, in [8], it has been demonstrated that the
parameterization of the polyphase matrix for the OPR case
can be achieved with different degrees of freedom, i.e. with
different numbers of independent rotation parameters, but
this approach does not provide a formal construction algo-
rithm and the solution sets are redundant. As a result, in [24],
it is shown that by employing a sequence of transformations
on these solutions the non-redundant solutions can be
extracted. Similarly, using the dyadic-based factorization
[25], another design method for OPR DFTM FBs in the context
of MCM is presented in [9]. But the size of the associated
parameter vector is relatively large, suggesting that this
method can be further improved. Recently, in [16], we
provided a detailed factorization for the polyphase matrix of
OPR DFTM FBs using elementary building blocks, including
Givens rotations and delay matrices. However, with this
method, increasing the number of subbands makes the design
process tedious due to the still large number of parameters.

In this paper, we propose an efficient factorizationmethod
to design OPR DFTM FBMC transceivers. The PR property is
enforced by employing a parametric class of elementary
paraunitary transformations to form the polyphase filtering
matrices of the transmit and receive sub-systems. Different
parameterization methods for paraunitary matrices are
applied to enforce OPR requirements and then compared in
terms of number of parameters. By employing the Hermitian
unitary and post-filtering methods of paraunitary matrices
[22,23], we are able to reduce the number of representation
parameters compared to the approach in [9,16] and as a
result, the design process is faster and less complex. In turn,
the prototype filter coefficients of the analysis/synthesis
banks can be naturally expressed in terms of the entries
of these paraunitary polyphase matrices, allowing for a
complete yet efficient parameterization of the desired OPR
DFTM FB. The FBMC design is formulated as a minimization
problem over the new parameter space, where the objective
function is the stop-band attenuation of the subband filters.
The resulting prototype filters benefit from excellent spectral
containment, i.e. high stop-band attenuation and sharp
transition band. The bit error rate (BER) performance of the
proposed FBs in MCM transceiver applications is evaluated
via extensive computer experiments in frequency selective
and AWGN channels. The result shows increased immunity of
the new system against NBI and colored noise, as compared
to OFDM. Furthermore, because it employs sharp filters with
much lower sidelobes, the proposed transceiver structure
outperforms ODFM. The counterpart for these appealing
properties is an increase in the computational complexity
and processing delay of the system.

The paper is organized as follows. The MCM system
model under study and the associated design problem are
exposed in Section 2. A convenient decomposition of the
polyphase filtering matrices of the transmit and receive
sub-systems into main paraunitary factors is developed in
Section 3. In Section 4, the final parameterization of the
polyphase matrices is achieved through a further decom-
position of one of these factors into elementary parauni-
tary building blocks. The design of the resulting OPR DFTM
FBs through optimization of their parameters is presented
in Section 5, along with design examples of prototype
filters. Experimental results of the proposed OPR DFTM
FBMC transceivers are investigated through numerical
simulations under different channel and interference con-
ditions in Section 6. Finally, Section 7 concludes the work.

Notations: Bold-faced letters indicate vectors and
matrices, e.g. A. The (i,j)th entry of a matrix is represented
by ½A�i;j. The superscripts T and H stand for the transpose
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and Hermitian transpose of a vector or matrix, respec-
tively, while the superscript n denotes complex conjuga-
tion. IK and 0K�M , respectively, denote the K�K identity
matrix and K�M zero matrix. The paraconjugate opera-
tion on a matrix function E(z) is defined by ~EðzÞ ¼ Eð1=znÞH .
A M�K matrix function E(z) is said to be paraunitary if
~EðzÞEðzÞ ¼ cIK , where c40 is a constant. ⌊x⌋ and ⌈x⌉ denote
the integer floor and ceiling of x. Finally, a is congruent to b
modulo m, or a≡bðmodmÞ, whenever a−b is divisible bym.
2. Background and problem formulation

The FBMC transceiver system under consideration is
depicted in Fig. 1, where integer parameters M and K
represent the number of subbands and the upsampling
factor, respectively; as explained before, we consider over-
sampled FBs, where K4M. Let xi½n� denote the complex-
valued data sequence transmitted on the ith subband,
i∈f0;…;M−1g, where n∈Z is the discrete-time index at
the low sampling rate Fs. Sequence xi½n� is expanded by a
factor of K and then passed through its corresponding
subband filter with system function FiðzÞ ¼∑m≥0f i½m�z−m,
where f i½m� denotes the filter impulse response and z∈C.
The filtered signals are then added together to form the
transmitter output y½m�, where m∈Z is the discrete-time
index at the high sampling rate KFs:

y½m� ¼ ∑
M−1

i ¼ 0
∑
∞

n ¼ −∞
f i½m−nK�xi½n�: ð1Þ

In an actual implementation, y[m] would be D/A con-
verted and modulated for transmission over a desired
frequency band, followed by demodulation and A/D con-
version on the receiver side; here, we focus on a baseband
representation of these operations which is equivalent
from a signal processing viewpoint. The physical transmis-
sion channel (including transmitter back-end and receiver
front-end) is modeled as a linear time-invariant discrete-
time filter with finite impulse response (FIR) c[m] and
corresponding system function CðzÞ ¼∑Q−1

m ¼ 0c½m�z−m,
where positive integer Q denotes the filter length. During
its transmission, signal y[m] is corrupted by various
additive perturbation sources (radio interference, cross-
talk, thermal noise, etc.). Accordingly, the channel output
is expressed as

ŷ½m� ¼ ∑
Q−1

l ¼ 0
c½l�y½m−l� þ η½m� þ β½m� ð2Þ

where η½m� is modeled as a (zero-mean) additive white
Gaussian noise (AWGN) process and β½m� denotes other
possible interferences.
Fig. 1. Oversampled
In the receiver, the ith subband signal x̂i½n� is recovered
by passing the channel output ŷ½m� through a correspond-
ing subband filter with system function HiðzÞ ¼
∑m≥0hi½m�zm, where hi½m� denotes the (time-reversed)
impulse response (For convenience in analysis, Hi(z) is
assumed to be non-causal; in practice, causality can be
restored simply by introducing an appropriate delay in the
receiver.), and decimating the result by a factor of K:

x̂i½n� ¼ ∑
∞

m ¼ −∞
hi½m−nK�ŷ½m�: ð3Þ

In DFTM FBs, the transmit and receive subband filters
are derived from common prototype filters, typically of the
FIR type with system functions F0ðzÞ ¼∑D−1

n ¼ 0f 0½n�z−n and
H0ðzÞ ¼∑D−1

n ¼ 0h0½n�zn, respectively, where D is the common
filter length. In this work, D is restricted to be a multiple of
M and K, i.e. D¼ dMM¼ dKK , where dM and dK are positive
integers. Denoting by P the least common multiple of M
and K, we can also write D¼ dPP and P ¼ pMM¼ pKK , with
dP, pM and pK integers. Defining w¼ e−j2π=M , the system
functions of the transmit and receive filters for the ith
subband are, respectively, obtained as

FiðzÞ ¼ F0ðzwiÞ ¼ ∑
D−1

n ¼ 0
f 0½n�w−inz−n; ð4Þ

HiðzÞ ¼H0ðzwiÞ ¼ ∑
D−1

n ¼ 0
h0½n�winzn: ð5Þ

Let us consider the K-fold polyphase representation of
the ith transmit filter Fi(z):

FiðzÞ ¼ ∑
K−1

r ¼ 0
z−rPi;rðzK Þ; ð6Þ

Pi;rðzÞ ¼ ∑
dK−1

n ¼ 0
f 0½Knþ r�w−iðKnþrÞz−n: ð7Þ

We define the K�M transmit polyphase matrix P(z), with
entries ½PðzÞ�r;i ¼ Pi;rðzÞ for r∈f0;…;K−1g and i∈f0;…;M−1g
. Similarly, the ith receive filter Hi(z) admits the polyphase
representation

HiðzÞ ¼ ∑
K−1

r ¼ 0
zrRi;rðzK Þ; ð8Þ

Ri;rðzÞ ¼ ∑
dK−1

n ¼ 0
h0½Knþ r�wiðKnþrÞzn: ð9Þ

We also define the M�K receive polyphase matrix R(z),
with entries ½RðzÞ�i;r ¼ Ri;rðzÞ. Using the above polyphase
matrix representations in combination with Noble iden-
tities [5], the FB transceiver structure in Fig. 1 can be
represented as shown in Fig. 2.
FB transceiver.



Fig. 2. Oversampled DFTM FB transceiver in polyphase representation.
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To ensure that transmission is free from ISI and ICI, the
prototype filter characteristics are often chosen to satisfy a
PR constraint [7–9], where in the case of an ideal channel (i.e.
C(z)¼1, η½m� ¼ 0 and β½m� ¼ 0), the PR conditions is stated as
x̂i½n� ¼ cxi½n� for all i∈f0;…;M−1g and n∈Z, where c is a
constant. Alternatively, this can be expressed in terms of the
transmit and receive polyphase matrices as [8]

RðzÞPðzÞ ¼ cIM : ð10Þ
In this work, we consider that the transmit and receive

prototype filters are paraconjugate of each other, i.e.
H0ðzÞ ¼ ~F 0ðzÞ or equivalently, h0½n� ¼ f n0½n�. Selecting the
receive prototype filter in this way implies that the
polyphase matrices of the transmit and receive FBs are
also paraconjugate, i.e., RðzÞ ¼ ~PðzÞ [5]. Consequently, if P
(z) can be made paraunitary, then the PR property of the
transceiver system will be achieved since RðzÞPðzÞ ¼
~PðzÞPðzÞ ¼ cIM . In this case, and assuming an ideal channel,
the output of each subband on the receiver side will be a
scaled replica of the corresponding subband input on the
transmitter side, or x̂i½n� ¼ cxi½n�.

In addition to guaranteeing the PR property of the
system, there are numerous advantages for choosing
paraunitary FBs as above [5]: no matrix inversion is
required in the design; the transmit and receive filters
are FIR with the same length, and can be obtained by time-
reversal and conjugation of each other (paraconjugate
operator); the passband region of the prototype filter's
magnitude response is constant and the objective function
does not have to explicitly include passband error. Within
this framework, the main problems addressed in this
paper can be stated as follows:
(1)
 To find an efficient parameterization of the prototype
filter coefficients f 0½n�, in terms of a parameter vector θ
with reduced dimensionality, such that the transmit
and receive polyphase matrices are paraunitary and
the resulting FBs benefits from the PR property
(10); and
(2)
 Through the choice of a suitable objective function and
its optimization over the parameter space, to design
improved OPR DFTM FBs for applications to broadband
multi-carrier transmissions under practical impairments.
3. A factorization of polyphase matrix P(z)

In this section, the polyphase matrix of the OPR DFTM
FB, P(z), is decomposed into paraunitary factors to estab-
lish the PR property. First, we factorize the DFT matrix out
of P(z) and highlight that the remaining matrix term,
denoted U(z), should be paraunitary as well. Next, we
investigate the structure of U(z), especially the relationship
between its entries and to the desired prototype filter
coefficients.

Finally, we explain how to generate a matrix U(z) with the
desired structure in terms of paraunitary building blocks.
3.1. Preliminary factorization of P(z)

We consider the factorization of the polyphase matrices
P(z) (and consequently R(z)) using an approach similar to
that in [9,26]. We begin by defining the M�M DFT matrix
W, with entries ½W�i;j ¼wij, for all i; j∈f0;…;M−1g. We also
define the block matrices L0 and L1ðzÞ, of respective sizes
D�M and K�D, as follows:

L0 ¼ ½IM ; IM ;…; IM�T ; ð11Þ

L1ðzÞ ¼ ½IK ; z−1IK ;…; z−ðdK−1ÞIK �: ð12Þ

Considering first the transmit FB, we represent the D
coefficients of the prototype filter F0ðzÞ by means of
diagonal matrix

Γf ¼ diagðf 0½0�;…; f 0½D−1�Þ: ð13Þ

Then, using the fact that wMþc ¼wc, we can write P(z) in a
factored form as follows (see Appendix A):

PðzÞ ¼ L1ðzÞΓf L0W
n ¼UðzÞWn; ð14Þ

where we define

UðzÞ ¼ L1ðzÞΓf L0: ð15Þ

Proceeding as above, the following factorization can be
developed for the receive FB:

RðzÞ ¼WLT0Γh
~L1ðzÞ; ð16Þ

where Γh ¼ diagðh0½0�;…;h0½D−1�Þ ¼ Γn

f . Therefore, we can
write

RðzÞ ¼W ~UðzÞ ¼ ~PðzÞ: ð17Þ

Finally, since WWn ¼MIM , we note from (14) that the
paraunitaryness of P(z) will follow automatically from that
of U(z). That is:

RðzÞPðzÞ ¼W ~UðzÞUðzÞWn ¼MIM ð18Þ

if ~UðzÞUðzÞ ¼ IM .



1 The assignments of these coefficients to zero explains the different
ranges of variation for q in (37)–(39).
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3.2. Structure of U(z)

In order to fulfil the PR property, the paraunitaryness of
U(z) should be guaranteed in the design process. Thus, the
structure of U(z) will be further examined in this section.
We begin by partitioning the D�M matrix Γf L0 into the
following format:

Γf L0 ¼ ½FT0jFT1j…jFTdK−1�T ; ð19Þ

where matrices Fn, n∈f0;…; dK−1g, are of size K�M with
entries

½Fn�i;r ¼
f 0½nK þ i�; if nK þ i≡r ðmodMÞ
0; otherwise

(
ð20Þ

Matrix U(z) (15) can then be expressed as

UðzÞ ¼ L1ðzÞ½FT0jFT1j⋯jFTdK−1�T ¼ ∑
dK−1

n ¼ 0
Fnz−n: ð21Þ

Introducing the change of variables n¼ qpK þ α, where
q∈f0;…; dP−1g and α∈f0;…; pK−1g, we can rewrite U(z) as

UðzÞ ¼ ∑
dP−1

q ¼ 0
∑

pK−1

α ¼ 0
FqpKþα z−qpK−α: ð22Þ

Noting that pKK ¼ P and P≡0 ðmod MÞ, we obtain from
(20) that

½FqpKþα�i;r ¼
f 0½qP þ αK þ i�; αK þ i≡r ðmod MÞ
0; otherwise

(
ð23Þ

We note that given a pair of indices (i,r), ½FqpKþα�i;r is
identically zero except possibly for one specific value of
α∈f0;…;pK−1g which, if it exists, is denoted as αi;r and
satisfies

αi;rK þ i≡r ðmod MÞ: ð24Þ

If this is the case, then it follows from (23) and (24) that

½UðzÞ�i;r ¼ z−αi;r ∑
dP−1

q ¼ 0
f 0½qP þ αi;rK þ i�z−qpK ; ð25Þ

otherwise ½UðzÞ�i;r ¼ 0. Finally, by introducing the polynomials

Gi;rðzÞ ¼ ∑
dP−1

q ¼ 0
f 0½qP þ αi;rK þ i�z−q; ð26Þ

we can simplify Eq. (25) as

½UðzÞ�i;r ¼ z−αi;r Gi;rðzpK Þ: ð27Þ

13.3. Expressing U(z) in terms of paraunitary building blocks

Several efficient parameterizations of paraunitary
matrices have been developed and studied in the litera-
ture. Here, we would like to employ some of these
parameterizations to construct matrix U(z). Unfortunately,
the elements of an arbitrarily generated paraunitary
matrix, say B(z), will not in general match the structure
of U(z) in (15). That is, B(z) must be further restricted such
that its components are compatible with U(z). The exact
way of realizing this depends on whether or not M and K
are coprime. The details are provided below.
3.3.1. M and K coprime
When M and K are coprime, i.e. when the least

common multiple of M and K is their product P¼MK
[27], we have pK ¼M and pM ¼ K and, consequently, a
unique αi;r in (24) exists for all the entries of U(z). We
define two paraunitary matrices D0ðzÞ and D1ðzÞ as
D0ðzÞ ¼ diagðzα0;0 ; zα1;0 ;…; zαpM−1;0 Þ; ð28Þ

D1ðzÞ ¼ diagðzα0;0 ; zα0;1 ;…; zα0;pK−1 Þ: ð29Þ
The entries of the product D0ðzÞUðzÞD1ðzÞ can be written as

½D0ðzÞUðzÞD1ðzÞ�i;r ¼ zαi;0þα0;r ½UðzÞ�i;r : ð30Þ
Using the index pairs (i,0), (0,r), and (i,r) in (24), we can

show that ðαi;0 þ α0;r−αi;rÞK≡0 ðmod MÞ. Equivalently, intro-
ducing

α̂ i;r ¼ αi;0 þ α0;r−αi;r ; ð31Þ
we have

α̂ i;rK≡0 ðmod MÞ: ð32Þ
Then, by using (27), we can rewrite (30) as

½D0ðzÞUðzÞD1ðzÞ�i;r ¼ zα̂ i;r Gi;rðzpK Þ: ð33Þ
Since 0≤αi;ropK , α̂ i;r can take only two values, i.e. 0 or

pK. Accordingly, the entries of D0ðzÞUðzÞD1ðzÞ are polyno-
mials in zpK . Let B(z) be an arbitrary paraunitary matrix B
(z) of order L−1 with entries

½BðzÞ�i;r ¼ ∑
L−1

q ¼ 0
bi;r ½q�z−q: ð34Þ

Then, it follows from (29) and (30) that

UðzÞ ¼ ~D0ðzÞBðzpK Þ ~D1ðzÞ; ð35Þ
U(z) will be paraunitary as well and the PR condition will
be satisfied.

Hence, each entry of U(z) can be represented in terms
of the corresponding entry of B(z) as

½UðzÞ�i;r ¼ z−ðαi;0þα0;r Þ½BðzpK Þ�i;r ð36Þ
Clearly, this will be consistent with (28) if the following
identity is satisfied:

½BðzpK Þ�i;r ¼ zα̂ i;r Gi;rðzpK Þ ¼ zα̂ i;r ∑
dP−1

q ¼ 0
f 0½qP þ αi;rK þ i�z−qpK ð37Þ

which is the desired equation linking the prototype filter
coefficients to the entries of an arbitrary paraunitary
matrix. Depending on the value of α̂ i;r , the coefficients of
the prototype filter for i∈f0;…;K−1g, r∈f0;…;M−1g, and
q∈f0;…; dP−2g, can be retrieved as

α̂ i;r ¼ 0⟹
f 0½qP þ αi;rK þ i� ¼ bi;r ½q�
f 0½D−P þ αi;rK þ i� ¼ 0

(
ð38Þ

α̂ i;r ¼ pK⟹
f 0½ðqþ 1ÞP þ αi;rK þ i� ¼ bi;r ½q�
f 0½αi;rK þ i� ¼ 0

(
ð39Þ

where some of the prototype filter coefficients are pre-
assigned to zero based on (37).1 Moreover, the proper
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value of L, corresponding to the matrix B(z), can be
determined to be L¼ dP−1 such that there is enough
entries to derive all the remaining prototype filter coeffi-
cients and preserve the PR property of the system.

3.3.2. M and K non-coprime
In this case, we can not find the proper αi;r that satisfy

(24) for some pairs (i,r). Thus, the resulting U(z) consists of
zero and non-zero entries. Let τ denote the greatest
common divisor of K and M, i.e. τ¼ KM=P. For
l∈f0;…; τ−1g, we define the pM � pK submatrices UlðzÞ in
terms of entries of U(z) as

½UlðzÞ�a;b ¼ ½UðzÞ�lþaτ;lþbτ ; ð40Þ
where a∈f0;…; pM−1g, b∈f0;…; pK−1g and the entries of U
(z) are provided by (25). According to [28], the parauni-
taryness of UlðzÞ for l∈f0;…; τ−1g guarantees the parauni-
taryness of U(z). It is straightforward to show that for
i¼ lþ aτ and r¼ lþ bτ, the congruence relation (24) can
be simplified to

αlþaτ;lþbτpM þ a≡b ðmod pK Þ: ð41Þ
Because pK and pM are coprime, the pM � pK submatrices
UlðzÞ can now be expressed in a similar fashion as in the
previous subsection, i.e. (36). Specifically, let BlðzÞ for
l∈f0;…; τ−1g be arbitrary paraunitary matrices of size
pM � pK . Each one of these matrices can be mapped to its
corresponding FB polyphase submatrix UlðzÞ through the
following transformation:

UlðzÞ ¼ ~D0ðzÞBlðzpK Þ ~D1ðzÞ: ð42Þ
Note that when M and K are non-coprime, τ different
matrices BlðzÞ should be generated.

4. Choice of a parameterization for paraunitary matrix B
(z)

In this section, different approaches to parameterize a
paraunitary matrix are investigated and compared to find
the most efficient way to build matrix B(z) in the coprime
case (34) or matrices BlðzÞ for l∈f0;…; τ−1g in the non-
coprime case (42).2 To this end, a constructive procedure
for factoring a paraunitary polynomial matrix B(z) with
order L−1 as a product of elementary paraunitary matrices
is required.

A basic approach for the factorization of paraunitary
matrix with constrained filter length is proposed in [21].
By employing this order-based method, any paraunitary
matrix of order L−1 can be factorized into a product of L−1
order-one building blocks. This method is implemented in
[16] to parameterize the polyphase matrix for design of
real prototype filters of OPR DFTM FB. The completeness3

of this order-based method is proved in [22], where it is
developed into a more efficient structure based on the
cosine–sine (CS) decomposition of Hermitian unitary
matrices. As a result, compared to the order-based method
2 To simplify the presentation, we use the same notation, B(z), for
both cases.

3 A paraunitary factorization is said to be complete if any paraunitary
matrix can be factorized in that form.
in [21], the authors of [22] are able to reduce the number
of free parameters by half in their method, denoted as
cosine–sine decomposition (CSD)-based method here.
However, as noted in [23], even though being complete
and minimal,4 the CSD-based method involves redundant
parameterized subsets. Thus, by consecutive removal of
extra degrees of freedom in adjacent stages, another
factorization method, denoted as post-filtering based
method, is developed in [23], which can further reduce
the number of parameters. Here, we develop these three
parametrization methods, namely order-based, CSD-based
and post-filtering based, and then compare them in terms
of number of parameters required to represent a arbitrary
paraunitary matrix.

4.1. Order-based method

We first generate a square pM � pM paraunitary matrix
ΔðzÞ, then apply the transformation

BðzÞ ¼ΔðzÞϒ; ð43Þ
where ϒT ¼ ½IpK ;0pK�ðpM−pK Þ�. With regard to ΔðzÞ, the
decomposition for an pM � pM paraunitary matrix in terms
of order-one paraunitary matrices as in [5,21] is used. For a
paraunitary matrix of order L−1, this decomposition can be
written in terms of delay matrices and unitary matrices as
follows:

ΔðzÞ ¼ RL−1ΛðzÞRL−2ΛðzÞ…R0; ð44Þ
where ΛðzÞ is a delay matrix

ΛðzÞ ¼ diagðIpM−rc ; z
−1Irc Þ; ð45Þ

with rc ¼ ⌊pM=2⌋ and Rj is a unitary product of pMðpM−1Þ=2
Givens rotation matrices [29]:

Rj ¼ ∏
pM−1

p ¼ 0
∏

pM−1

q ¼ pþ1
Gp;qðθjp;qÞ ð46Þ

For each real Givens rotation matrix Gp;qð:Þ, one parameter
θjp;q is required [30]. Due to the fact that there are
pMðpM−1Þ=2 different off-diagonal positions above the
diagonal, the number of parameters μð1Þr required to con-
struct a pM � pM real paraunitary matrix as in (44) is

μð1Þr ¼ LpMðpM−1Þ=2: ð47Þ
Recall that the factorization of B(z) is performed to

obtain the parameterized prototype filter coefficients. By
using the real Givens rotation matrices, all the coefficients
of the resulting prototype filter will be real. Since DFTM
FBs are being utilized, there is no advantage in employing
real prototype filters in terms of implementation cost,
while prototype filters with complex coefficients may
benefit from better spectral containments. Therefore, by
using complex Givens rotation matrices, we can remove
this constraint and assess the characteristics of the result-
ing complex prototype filters compared to the real ones.
Note that for each complex Givens rotation matrix two
arbitrary rotation angles are needed, say θ1 and θ2, where a
4 A structure (or implementation or realization) is said to be minimal
if the number of delay elements is the smallest possible.
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2�2 complex Givens rotation matrix is given by

cos θ1 ejθ2 sin θ1

−e−jθ2 sin θ1 cos θ1

" #
ð48Þ

Note that the real Givens rotation matrix is obtained by
setting θ2 ¼ 0 in (48). Similar to the real case, μð1Þc denotes
the number of parameters to construct a pM � pM complex
paraunitary matrix as

μð1Þc ¼ LpMðpM−1Þ: ð49Þ
4.2. CSD-based method

In [22], based on the singular value decomposition
(SVD) of coefficient matrices of ΔðzÞ, it was proved that
(44) is complete and any paraunitary matrix ΔðzÞ can be
represented via (44). However, due to the highly nonlinear
relation between the rotation angles in (44)–(46) and the
resulting coefficients of matrix B(z), it is reasonable to
characterize it with fewer parameters and reduce the
optimization complexity. In [22], it has been shown that
there are some redundancies in the representation (44)–
(46) of ΔðzÞ and that the number of required parameters
can indeed be reduced. Specifically, (44) can be factored as

ΔðzÞ ¼ RL−1ðzÞRL−2ðzÞ…R0; ð50Þ
where R lðzÞ, which stands for the product RlΛðzÞ, takes the
form

R lðzÞ ¼
1
2
ðIþ AlÞ þ

1
2
ðI−AlÞz−1: ð51Þ

In this representation, Al is a Hermitian unitary matrix
with the special structure

Al ¼ diagðVl;WlÞQ lΓlQ l diagðVH
l ;W

H
l Þ; ð52Þ

where, Vl and Wl are ⌊pM=2⌋� ⌊pM=2⌋ and ⌈pM=2⌉�
⌈pM=2⌉ unitary matrices, respectively, Γl is a diagonal
matrix with diagonal entries 71 (i.e., exactly rc of these

entries are equal to −1 with pM
rc

� �
combinations), and Q l is

a real orthogonal matrix of the form

Q l ¼

Ĉ l Ŝ l

Ŝ l −Ĉ l

" #
; for even pM

Ĉ l 0 Ŝ l

0 71 0
Ŝ l 0 −Ĉ l

2
64

3
75; for odd pM

8>>>>>>>><
>>>>>>>>:

ð53Þ

In (53), Ĉ l and Ŝl are ⌊pM=2⌋� ⌊pM=2⌋ real diagonal matrices

with entries ½Ĉ l�n;n ¼ cos ðαl;nÞ and ½Ŝ l�n;n ¼ sin ðαl;nÞ.
We note that with CSD-based method as explained

above and using real Givens rotations to obtain Vl and Wl,
the coefficients or the entries of B(z) and the resulting
prototype filter's coefficients will be real. Alternatively, by
using complex Givens rotation matrices for Vl and Wl,
complex prototype filters can be derived. The numbers of
required parameters to generate ΔðzÞ by this approach
(50)–(53) are μð2Þr and μð2Þc for the real and complex cases,
respectively.

μð2Þr ¼ ðL−1Þð⌊pM=2⌋ð⌊pM=2⌋−1Þ=2
þ ⌈pM=2⌉ð⌈pM=2⌉−1Þ=2þ ⌊pM=2⌋Þ þ pMðpM−1Þ=2 ð54Þ

μð2Þc ¼ ðL−1Þð⌊pM=2⌋ð⌊pM=2⌋−1Þ þ ⌈pM=2⌉ð⌈pM=2⌉−1Þ
þ ⌊pM=2⌋Þ þ pMðpM−1Þ ð55Þ

Note that these values are almost half of the number of
parameters used in the order-based method (44).

4.3. Post-filtering based method

In [23], the authors developed an algorithm called post-
filtering based method and further reduced the number of
required parameters. By consecutive removal of extra
degrees of freedom in adjacent stages, which is accom-
plished through a new CS decomposition and implement-
ing a post-filtering based structure, they succeeded in
eliminating redundant parameters. This structure is
derived by forward simplification of (44) as follows:

ΔðzÞ ¼ R̂L−1ΛðzÞR̂L−2ΛðzÞ…R0; ð56Þ
where

R̂ l ¼ diagðVl;0;Vl;1ÞΣl; ð57Þ
in which, Vl;0 and Vl;1 are special ðpM−rcÞ � ðpM−rcÞ and
rc � rc unitary matrices, respectively. In particular, by
absorbing extra parameters into R̂ l−1, Vl;0 requires
ðpM−2rcÞðpM−2rc−1Þ=2 fewer parameters than a unitary
matrix of a same size in the real case [23]. Likewise, in the
complex case, there is a reduction of ðpM−2rcÞðpM−2rc−1Þ
in the number of design parameters. Moreover, when
2rcopM , Σl is a pM � pM matrix that can be expressed as

Σl ¼
I 0 0
0 Cl −S l

0 S
H
l Cl

2
664

3
775; ð58Þ

where, Cl and Sl are rc � rc diagonal matrices with entries
½Cl�n;n ¼ cos ðαl;nÞ and ½Sl�n;n ¼ ejβl;n sin ðαl;nÞ, where αl;n is a
rotation angle and βl;n is a phase. Similarly, when 2rc4pM ,
another CS decomposition is derived for Σl in [23]. But as rc
corresponds to the number of delay elements z−1 in ΛðzÞ, it
is preferable to choose rc≤pM=2, while it does not violate
the completeness of (56). In this case 2rcopM , the num-
bers of parameters μð3Þr and μð3Þc required to construct a
pM � pM real and complex paraunitary matrix are, respec-
tively,

μð3Þr ¼ ðL−1Þ½ðpM−rcÞðpM−rc−1Þ=2−ðpM−2rcÞðpM−2rc−1Þ=2
þrcðrc−1Þ=2þ rc� þ pMðpM−1Þ=2; ð59Þ

μð3Þc ¼ ðL−1Þ½ðpM−rcÞðpM−rc−1Þ−ðpM−2rcÞðpM−2rc−1Þ
þrcðrc−1Þ þ 2rc� þ pMðpM−1Þ: ð60Þ

By considering the extra parameters required to form Γl

in (50), it can be shown that the number of design
parameters in the post-filtering method to generate a
paraunitary matrix of size pM is less than or equal to the
one in the CSD-based method. Furthermore, the number of
parameters μ in the post-filtering based approach (56) is a



Table 1
Size of parameter vector θ for M¼64, K¼72 and D¼1728.

Method μr for real
prototype

μc for complex
prototype

Dyadic based 72�8¼576 N/A
Order-based (44) 72�8¼576 144�8¼1152
CSD-based (50) 56�8¼448 108�8¼864
Post-filtering based
(56)

44�8¼352 88�8¼704
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quadratic function of rc which reaches its maximum at
⌊pM=2⌋.

Table 1 lists representative sizes of the parameter
vectors of different design methods, including the dyadic
based method [9,25], the order-based method (44), the
CSD-based method (50), and the post-filtering based
method (56). These sizes are for real and complex proto-
type filters of length D¼1728 in FBMC system with M¼64
subbands and K¼72 as upsampling/downsampling factor.
These values are derived for rc¼1 using (47), (49), (54),
(55), (59) and (60) and considering the fact that τ¼ 8
different matrix B(z) (or ΔðzÞ) should be constructed.
Unfortunately, due to its limitation, the dyadic based
method [9,25] cannot be used to design complex proto-
type filters. Moreover, we note that one of the advantages
of the other three methods over the dyadic based method
is that the range of the parameters is limited to the interval
½0;2π�. Finally, compared to the CSD-based method, the
post-filtering based method does not use the extra sign
parameters. While as in (52), pM sign parameters are
needed for each Γl in the CSD-based method. Based on
the results of Section 3 and by employing the method with
the least number of parameters, it will be possible to
parameterize B(z) and perform the optimization on its
associated parameters.

5. Prototype filter design

In this Section, the design steps towards the final
optimized prototype filter for a given triplet (K,M,D) are
discussed. Depending on whether M and K are coprime,
the design process starts with generating parameterized
paraunitary matrices Bðz; θÞ or Blðz; θÞ for l∈f0;…; τ−1g via
the methods explained in Section 4. In particular, the post-
filtering based method (56) has been used due to the fact
that the required number of parameters to design such
matrices by this method is less or equal to the other
methods. The entries of these matrices are then mapped to
the prototype filter coefficients f 0½n; θ� using (37) or (42).
Finally, based on the vector of parameters θ, these coeffi-
cients are optimized according to the design objectives.

5.1. Optimization of prototype filter

The prototype filter coefficients f 0½n; θ� are optimized
with respect to the vector of parameters θ. One of the
benefits of using a PR FB transceiver is that in the filter
design process, the PR property relaxes any flatness con-
dition on the passband region of the filter. Since the
transmit and receive prototype filters are paraconjugate
of each other, the pass band region of jF0ðω; θÞj2 is
constant, where F0ðω; θÞ ¼∑D−1

n ¼ 0f 0½n; θ�e−jωn is the
discrete-time Fourier transform (DTFT) of f 0½n; θ� [5].
Therefore, a good spectral containment can be achieved
via minimization of the stop-band energy of the filter,
denoted as the cost function

JðθÞ ¼ 1
2π

Z 2π−ωs

ωs

F0ðω; θÞj2dω;
�� ð61Þ

where ωs is the stop-band angular frequency, given by

ωs ¼ π

M
ð62Þ

In order to calculate the cost function JðθÞ (61) in an
efficient way, we employ a FFT-based algorithm as
explained in [9]. Since this optimization problem is a
large-scale non-linear one, we used the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm [31], which
is a quasi-Newton method, for minimizing the cost
function.

Alternatively, we can consider the minimax criterion,
which aims to minimize the maximum stop-band ripple
instead of the stop-band energy. In minimax design the
cost function is defined as

JðθÞ ¼ max
ω∈½ωs ;2π−ωs �

jF0ðω; θÞj: ð63Þ

The magnitude response of the resulting filter is shaped
such that the attenuation is almost equiripple on the
overall stop-band region. In general, we find that with
the minimax criterion, the attenuation is higher near the
edge of the stop-band region and the first few sidelobes
are lower than with the stop-band energy minimization
criterion, whereas it results in increased total stop-band
energy.

5.2. Comparison of prototype filters

It is known that for a given number of subbands M,
better spectral features are obtained if the upsampling
factor K and the length of the prototype filter D are
increased [9]. However, higher K will sacrifice the band-
width efficiency of the system and higher D will increase
latency of the system and its computational complexity.
These trade-offs must be balanced carefully in order to
maintain low latency, low computational complexity, and
high bandwidth efficiency while benefiting from good
spectral features. In this section, we design a real and
complex prototype filter for the transceiver system with
M¼64 subbands, oversampling factor K¼72, and filter
length D¼1728. It has been observed that due to the
completeness of the methods (44), (50), and (56), the
resulting prototype filters are almost identical in terms of
spectral containment. However as noted in Section 4, the
number of parameters in the post-filtering based method
(56) is less than the other methods, and consequently, we
prefer this method due to its efficient parameterization.

To develop a comprehensive outlook on various FB
design and MCM transceiver systems, the real and com-
plex prototype filters designed by means of the objective
function in (61) are compared with the prototype filters of
some other design methods including NPR-windowing
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using the generalized windowing-based method [18],
NPR-OQAM5 derived by the frequency sampling technique
[13] and OFDM. Table 2 lists the filter length D, the stop-
band attenuation JðθÞ in (61) (when ωs ¼ π=M) and the first
sidelobe attenuation of these filters. Moreover, Fig. 3
shows part of the frequency responses (i.e. first few side-
lobes) of these filters. Three key observations must be
pointed out: the transition from passband to stop-band, i.
e. the rolloff, of the proposed scheme is much steeper than
all other FB approaches and OFDM; the stop-band energy
of the proposed scheme is the second smallest among its
counterparts after the NPR-Windowing method; the
attenuations of the first two sidelobes of the proposed
scheme are, respectively, about 33 and 40 dB, whereas the
attenuations of the first two sidelobes of the OFDM system
are 13 and 17 dB, respectively. These observations confirm
that the proposed OPR FB offer considerably better spec-
tral containment than OFDM.

As mentioned in Section 2, to restore causality in the PR
MCM receiver, there is an intrinsic delay in the system that
is equal to the prototype filter length D, or equivalently, D/
K¼24 symbol durations at the input rate. The issues faced
by our proposed system in the case of burst transmissions,
e.g. with regard to the use of a preamble in each burst for
channel estimation, are similar to those faced by other FB-
based MCM systems [14]. In particular, when accurate
estimation is needed, the data should not interfere with
the preamble signal and the length of the burst must
therefore be extended to allow for initial and final transi-
tions of the preamble due to the filter impulse response.
Also, in the case of a time-varying channel, a basic
requirement is that the filter length should be smaller
than the channel coherence time.
5.3. Prototype filter for M¼128 and K¼132

The design of FBMC systems mainly concentrates on
the prototype filter design since all the subband filters are
generated from this filter. Moreover, practical applications
commonly necessitate transceiver structures with high
number of subchannels, that is, a value of M in the order
of hundreds or thousands is required, e.g. in Digital Video
Broadcasting Terrestrial 2 (DVB-T2) application, the num-
ber of subcarriers can go up toM¼215 [32]. Such a demand
imposes a significant computational burden on the con-
ventional design processes as the number of parameters to
be optimized may increase drastically or even become
overwhelming. As shown for instance in [9,15,16], the
number of subbands does not exceed 80, 128, and 64,
respectively.

Moreover, when the ratio K/M approaches 1, the num-
ber of parameters increases which complicates the opti-
mization process as well. Meanwhile, this case is
important in practice since it replaces a more spectral
efficient system. The methods presented in the literature
only obtained limited success in improving the spectral
efficiency, or equivalently, reducing the oversampling ratio
5 Most of the literature regarding the OFDM/OQAM system is focused
on NPR systems, whereas the PR version is also developed [12].
K/M. These efforts start with an oversampling ratio of 2 in
[33] and continue with values of 3/2 [34] and 5/4 [8,15]. It
is only recently that authors in [9,16,24] succeeded in
presenting a 9/8, 9/8 and 17/16 oversampling ratio FBMC
design, respectively. Benefiting from effective factorization
and efficient parameterization, we are able to design real
prototype filters with oversampling ratio of 33/32. Based
on stop-band energy minimization and minimax criterion,
the magnitude responses of these prototype filters for
M¼128 and K¼132 (oversampling ratio 33/32) are
depicted in Fig. 4. The lengths of these filters are
D¼12672 (D/P¼3) and the size of their parameter vector
in the case of a real prototype filter is 560�4 (when using
the post-filtering based method with rc¼1). Table 3 also
lists the stop-band attenuation JðθÞ in (61) and the first
sidelobe attenuation of these filters. As it is shown in the
figure and the table, by employing the minimax criterion
we can increase the first sidelobe's attenuation by 4 dB,
but this results in increased total stop-band energy. Due to
the similar spectral characteristics of the resulting filters,
we just focus on the stop-band energy minimization
method in the sequel.

6. Numerical results

In this section, the performance of an OPR DFTM FBMC
transceiver using the proposed filter bank design approach
is investigated through numerical simulations. In particu-
lar, the BER of this system when used over a frequency
selective channel in the presence of AWGN is compared
with other well known MCM schemes. The effects of
channel impairments such as CFO and NBI on the BER
performance are also examined.

6.1. Methodology

Referring to (2), we consider two different scenarios for
the Q-tap channel C(z) with channel coefficients c½l�: (1) an
ideal (distortion-less) channel for experimenting AWGN,
where Q¼1 and c½0� ¼ 1 and (2) a frequency selective
channel consisting of Q¼5 independent Rayleigh-fading
taps with an exponentially decaying power delay profile,
where E½jc½l�j2� ¼ Ce−l=4 for l∈f0;…;4g, and C is a constant
such that ∑Q−1

l ¼ 0E½jc½l�j2� ¼ 1. The received signal includes an
additive white Gaussian noise η½m� with zero mean and
variance E½jη½m�j2� ¼N0. Moreover, to model a scenario with
NBI, a white noise sequence is passed through a narrow
band-pass filter with a bandwidth of 2=M to generate the
narrow band random interference sequence β½m�. We let
I ¼ E½jβ½m�j2� denote the interference power. The resulting
NBI β½m� is then added to the channel output and white
Gaussian noise η½m� as in (2). This simple interference
model is realistic for narrow band FM (eg. cordless tele-
phones) and low rate digital modulations [2,35,36].

To evaluate the comparative performance of the pro-
posed scheme, BERs versus bit-energy-to-noise ratio
(Eb=N0) of the following MCM systems are compared:
proposed OPR DFTM FBMC with real prototype filter,
proposed OPR DFTM FBMC with complex prototype filter,
the NPR-windowing method [18], the NPR-OQAM method
[13] designed by criterion C1 in that reference and a cyclic



Table 2
Spectral containment of different prototype filters for M¼64 subbands.

Method D J (dB) First sidelobe (dB)

Proposed real 1728 −35.31 −33
Proposed complex 1728 −35.29 −33
NPR-windowing [18] 1024 −36.56 −72
NPR-OQAM [13] 255 −26.80 −45
OFDM 64 −24.27 −13
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Fig. 3. Comparison of the first few sidelobes of magnitude responses for
prototype filter of different design approaches with M¼64 subbands.

Fig. 4. Magnitude responses of prototype filters for M¼128 and K¼132.

Table 3
Spectral containment of prototype filters for M¼128, K¼132 and
D¼12672.

Method J (dB) First sidelobe (dB)

Stop-band energy −41.59 −34
Minimax criterion −40.55 −38
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prefix OFDM system. Note that although the NPR schemes
are not designed for optimum performance over AWGN
channels, it is insightful to compare their behavior in the
non-frequency-selective environment as well as in the
frequency selective one. For all of these systems, QPSK
modulation is used as an input for each subband where the
filter bank is normalized to have a DC gain of 1. Further-
more, to derive the BER in each scenario, a number of 104

Monte Carlo trials are performed, where the channel is
fixed in each run but independent from one run to
another. In order to fairly compare these schemes, the
redundancy caused by oversampling should be equal to
the redundancy caused by the cyclic prefix in OFDM. That
is, with M¼64 and K¼72, the length of cyclic prefix is set
to Lcp ¼ K−M¼ 8 in OFDM.

Due to the large number of subbands and the excellent
spectral characteristics of the prototype filters of the
systems under consideration, if the channel is mildly
frequency selective, each subband channel can be mod-
elled as a simple (flat) complex gain which can be equal-
ized by a single tap, similar to [37]. As a result, we
implement a one-tap equalizer per subband assuming
perfect channel state information (CSI), which can be
obtained by specialized channel estimation techniques
(whose development falls outside the scope of this paper).

The equalizer coefficient for the ith subband is derived
as follows:

Ei ¼ CðziÞ−1; ð64Þ
where zi ¼ e−j2πi=M for i∈f0;…;M−1g. Unless otherwise
indicated, we assume perfect frequency synchronization
between the transmit and receive FBs.

6.2. Results and discussion

The computational complexity of FB structures can be
evaluated by counting the number of real multiplications
needed to compute an output sequence of length-M. This
information is reported in Table 4 for the various MCM
systems under consideration, assuming a polyphase
implementation [14,17], complex-valued data xi½n�, and M
a power of 2. As a result, the DFT can be replaced by an FFT,
which can be realized more efficiently. As expected, OFDM
shows a complexity advantage over the FB approaches as it
just employs the IFFT/FFT blocks. The proposed design, in
addition to the IFFT/FFT blocks and consistent with other
FB methods, employs a polyphase block at the transmitter
and receiver where the complexity depends on the proto-
type filter length. Also, in the case of NPR-OQAM, the IFFT/
FFT blocks operate at twice the rate of other systems, and
the trivial multiplications by 71 and 7 j in the pre-
processing blocks are not considered in evaluating the
complexity.

The BERs versus Eb=N0 for the various MCM systems in
the ideal AWGN channel environment are plotted in Fig. 5.
It can be seen that BER of the FB-based approaches closely
match the suggested theoretical value of BER for QPSK and
they all exhibit superior performance than OFDM by a
margin of 0.5 dB. This difference in BER performance can
be precisely explained by the use of a CP with 9/8
redundancy ratio. As we have been able to verify, the
BER of OFDM without CP is in full agreement with other
methods. In this example, the simulated BER for the real
and complex versions of the proposed scheme are almost
indistinguishable.



Table 4
Computational complexity in terms of number of real multiplications for
systems with M subbands and filter length D.

Method Number of real multiplications

Proposed 2ððMðlog2M−3Þ þ 4Þ þ 2DÞ
NPR-windowing 2ððMðlog2M−3Þ þ 4Þ þ 2DÞ
NPR-OQAM 4ð2M þ ðMðlog2M−3Þ þ 4Þ þ 2DÞ
FDM 2ðMðlog2M−3Þ þ 4Þ
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Fig. 5. BER versus Eb=N0 for different MCM systems with M¼64 sub-
bands over AWGN channel.
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Fig. 6. BER versus Eb=N0 for different MCM systems with M¼64 sub-
bands over 5-tap Rayleigh fading channel.
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Fig. 7. BER versus Eb=I (NBI) for different MCM systems with M¼64
subbands over AWGN channel with SNR¼7 dB.
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With the NPR-windowing method [18], proper demo-
dulation of the received signal over the frequency selective
channel requires the use of computationally expensive
post combiners to combat the phase rotation caused by
non-linear phase channel. As a result, its BER with only
one-tap per subband equalizer is much higher than that of
the other MCM systems with the same equalization
method. Therefore, in all the frequency selective scenarios,
the results of the NPR-windowing method are not pre-
sented. Fig. 6 shows the BER versus Eb=N0 of the MCM
systems over the frequency selective channel. The pro-
posed schemes exhibit the best performance, followed by
NPR-OQAM method at low SNR and OFDM at high SNR. As
mentioned before, the performance of the proposed
methods and NPR-OQAM can be further improved by
utilizing a more complex equalization method. Note that
the spectral containment and BER in AWGN and frequency
selective channel of the proposed scheme with real and
complex prototype filters are almost identical. Therefore,
for this particular set-up, there is no clear advantage in
using complex prototype filter, although it doubles the
number of required parameters in the design process. In
the sequel, we just focus our investigation on the case of
real prototype filters.

It is well known that the performance of OFDM can be
easily impaired by NBI. Due to the better spectral containment
of the proposed OPR DFTM FBMC system, as compared to the
OFDM, we expect a better performance in the presence of NBI.
Fig. 7 shows the BER versus bit-energy-to-NBI ratio (Eb=I) of
the mentioned MCM systems, where the Gaussian noise is set
to have a SNR of 7 dB. As expected, OFDM exhibits the worst
performance due to the low attenuation in the sidelobes,
whereas the proposed method provides the best performance
and the NPR-OQAM remains very close to it. At low SIR, the
performance of the NPR-windowing is worse than the other
two FB-based approaches since it employs cosine modulation
and real-coefficient prototype filters. The saturation of BER at
very high SIR results from the fixed SNR level. Similarly, Fig. 8
shows the BER versus Eb=I in the frequency selective channel,
where all the MCM systems exhibit a similar behavior as in
the AWGN case and the proposed system offers the best
performance over the complete SIR range.

It has been shown that sensitivity to frequency syn-
chronization is one of the disadvantages of OFDM [4].
Small frequency offset in the OFDM receiver results in an
attenuation of signal amplitude, loss of orthogonality
between subcarriers and consequently intercarrier inter-
ference (ICI) from the neighbour subcarriers. The poor
spectral containments of the rectangular window of OFDM
is the main reason for its performance degradation in the
presence of CFO. Similarly, many other MCM schemes may
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Fig. 8. BER versus Eb=I (NBI) for different MCM systems with M¼64
subbands over 5-tap Rayleigh fading channel with SNR¼7 dB.

0 2 4 6 8 10 12
10

-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

B
E

R

Eb/N0

Fig. 9. BER versus Eb=N0 for different MCM systems with M¼64 sub-
bands over AWGN channel with carrier frequency offset Δf ¼ 2%.
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Fig. 10. BER versus Eb=N0 for different MCM systems with M¼64
subbands over AWGN channel with carrier frequency offset Δf ¼ 5%.
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Fig. 11. BER versus Eb=N0 for different MCM systems with M¼64
subbands over 5-tap Rayleigh fading channel with carrier frequency
offset Δf ¼ 2%.

S. Rahimi, B. Champagne / Signal Processing 93 (2013) 2942–2955 2953
be vulnerable against CFO, since the subbands are tightly
spaced in the transmission band [10,38,39]. By designing
sharp filters with much lower sidelobes, we can lessen the
effect of CFO. To investigate this effect, we consider a
scenario in which the receive FB is not exactly synchro-
nized in frequency with the transmit FB. That is, we
introduce a constant frequency offset on all the received
tones [38]. This offset, denoted as Δf , is measured as
percent frequency deviation, relative to the width of a
subband, i.e. intercarrier spacing.

Figs. 9 and 10 show the BERs of all previously compared
schemes versus SNR over the ideal AWGN channel with
Δf ¼ 2% and Δf ¼ 5%, respectively. Results show that the
proposed OPR DFTM FB outperforms OFDM by a margin of
more than 0.5 dB. We note that for the particular choice of
parameters in Fig. 10, NPR-OQAM is more sensitive to CFO
than the other methods under comparison. However, NPR-
OQAM can be implemented with different prototype filters
whose choice may have an impact on the performance of
the FB system in the presence of CFO [39]. Likewise,
Figs. 11 and 12 show the BERs versus SNR over the
frequency selective channel, where the proposed scheme
again offers the best performance.

7. Conclusion

In this paper, a design method for OPR DFTM FBs
transceivers was presented. To ensure the PR property of
the system, the polyphase matrices of the transmit and the
receive FBs were chosen as paraunitary matrices. These
matrices were then parameterized, based on factorization
methods making use of Givens rotations. Moreover, differ-
ent methods to reduce the number of parameters were
employed and consequently facilitated the optimization
process. By minimizing the stop-band energy of the pro-
totype filters with respect to the parameters, prototype
filters were designed with good spectral containment such
as steeper transition from pass-band to stop-band, lower
stop-band energy, and lower sidelobe levels, when com-
pared with OFDM and some recently proposed FBMC
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Fig. 12. BER versus Eb=N0 for different MCM systems with M¼64
subbands over 5-tap Rayleigh fading channel with carrier frequency
offset Δf ¼ 5%.
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systems. Numerical experiments show that the proposed
scheme offers the lowest BER over AWGN and frequency
selective channels. Furthermore, in the presence of NBI or
CFO, the proposed FB is more robust against such channel
impairments compared to the other MCM systems. These
attractive features come at the price of an increase in the
computational complexity and processing delay of the
system.

Appendix A. Factorization of P(z)

In this Appendix, we show in details how to factorize P
(z) as given by (14). Recall that, W is the DFT matrix
defined as ½W�i;j ¼wij, i; j∈f0;…;M−1g and the block
matrices L0 and L1ðzÞ, of respective size D�M and K�D,
are defined as follows:

L0 ¼ ½IM ; IM ;…; IM�T ; ðA:1Þ

L1ðzÞ ¼ ½IK ; z−1IK ;…; z−ðdK−1ÞIK �: ðA:2Þ
Also, diagonal matrix Γf is given by

Γf ¼ diagðf 0½0�;…; f 0½D−1�Þ: ðA:3Þ
Let us consider K�M matrix P̂ðzÞ as
P̂ðzÞ ¼ L1ðzÞΓf L0W

n ðA:4Þ
Therefore the (r,i)th entry of P̂ðzÞ can be written as

½P̂ðzÞ�r;i ¼ L1;rðzÞΓfW
n

i ; ðA:5Þ
where 1�D matrix L1;rðzÞ is the rth row of L1ðzÞ and D�1
matrix Wi is the product of L0 and ith column of Wn.

L1;rðzÞ ¼ ½…;0;1;0;…;0; z−1;0;…;0; z−ðdK−1Þ;0;…� ðA:6Þ
Note that non-zero elements of L1;rðzÞ are situated at ðnK þ
rÞ th columns, where n∈f0;…; dK−1g. Consequently, we can
further simplify the product of L1;rðzÞΓf and write

L1;rðzÞΓf ¼ ½…;0; f 0½r�;0;…;0; f 0½K þ r�z−1;0;
…;0; f 0½ðdK−1ÞK þ r�z−ðdK−1Þ;0;…� ðA:7Þ
Moreover, considering the fact that wMþc ¼wc, D�1
matrix Wi can be simplified as

Wi ¼

IM
IM
⋮
IM

2
66664

3
77775

w−0i

w−1i

w−2i

⋮
w−ðM−1Þi

2
6666664

3
7777775
¼

w−0i

⋮
w−ðM−1Þi

w−0i

⋮
w−ðM−1Þi

⋮
w−0i

⋮
w−ðM−1Þi

2
66666666666666666664

3
77777777777777777775

¼

w−0i

⋮
w−ðM−1Þi

w−Mi

⋮
w−ð2M−1Þi

⋮
w−ðD−MÞi

⋮
w−ðD−1Þi

2
66666666666666666664

3
77777777777777777775

ðA:8Þ

Finally, by substituting (A.(7) and A.8) in (A.5) we canwrite

½P̂ðzÞ�r;i ¼ ∑
dK−1

n ¼ 0
f 0½nK þ r�w−iðnKþrÞz−n; ðA:9Þ

which is in full accordance with (7). Thus, it can be stated
that P̂ðzÞ ¼ PðzÞ and Eq. (14) is verified.

PðzÞ ¼ L1ðzÞΓf L0W
n: ðA:10Þ
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