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a b s t r a c t

In this paper, we address the problem of spectrum sensing in the presence of non-
Gaussian noise for cognitive radio networks. A novel Rao test based detector, which does
not require any a priori knowledge about the primary user (PU) signal and channels, is
proposed for the detection of a primary user in non-Gaussian noises that are molded by
the generalized Gaussian distribution (GGD). The statistic of the proposed Rao detector is
derived and its detection performance is analyzed in the low signal-to-noise ratio regime
and compared to that of the traditional energy detection. Furthermore, the Rao-based
detection is extended to a multi-user cooperative framework by using the “k-out-of-M”

decision fusion rule and considering erroneous reporting channels between the secondary
users and the fusion center due to Rayleigh fading. The global cooperative detection and
false alarm probabilities are derived based on the cooperative sensing scheme. Analytical
and computer simulation results show that for a given probability of false alarm, the Rao
detector can significantly enhance the spectrum sensing performance over the conven-
tional energy detection and the polarity-coincidence-array (PCA) method in non-Gaussian
noises. Furthermore, the proposed cooperative detection scheme has a significantly higher
global probability of detection than the non-cooperative scheme.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

In traditional fixed spectrum allocation method, most
of the licensed radio spectral bands are under-utilized in
time and space domains, leading to a low utilization
efficiency of the frequency spectrum. Cognitive radio (CR)
has emerged as a key technology that can improve the
spectrum utilization efficiency in next generation wire-
less networks through dynamic management and opportu-
nistic use of radio resources. In this approach, unlicensed
All rights reserved.
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(secondary) users (SUs) are allowed to opportunistically
access a frequency band allocated to licensed (primary) user
(PU), providing that the PUs are not temporally using their
spectrum or they can be adequately protected from the
interference created by the SUs. Hence, the radio spectrum
can be reused in an opportunistic manner or shared at all
time, resulting in increased capacity scaling in the network.
One of the most important challenges in CR systems is to
detect as reliably as possible the absence (H0 ¼ null hypoth-
esis) or presence (H1 ¼ alternative hypothesis) of PU in
complex environments characterized by fading effects as
well as non-Gaussian noise.

Several spectrum sensing methods and algorithms have
been proposed for single-user and cooperative detection
under the white Gaussian noise (WGN) assumption, see e.g.
[1–3]. In practice, however, the problem is more challenging
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as we need to detect the various PU signals impaired by
non-Gaussian noise and interference, as pointed out in [4].
Non-Gaussian noise impairments may include man-made
impulsive noise, co-channel interference from other SUs,
emission from microwave ovens, out of band spectral
leakage, etc. [5,6]. Furthermore, the performance of a
spectrum detector optimized against Gaussian noise may
degrade drastically when non-Gaussian noise or interfer-
ence is present because of the heavy tail characteristics of
its probability density function (PDF) [7,8]. In view of these
problems, it is desirable to seek useful solutions to spectrum
detection in practical non-Gaussian noises and to evaluate
the detection performance.

Several standard models are currently available from
the literature to fit non-Gaussian noise or interference
distributions, such as the generalized Gaussian distribu-
tion (GGD) and the Gaussian mixture distribution (GMD).
The GGD is a parametric family of distributions which can
model both “heavier” and “lighter” than normal tails
through the selection of its shape parameter. In particular,
it has been widely used to model man-made noise, impul-
sive phenomena [5], and certain types of ultra-wide band
(UWB) interference [9].

Spectrum sensing for CR networks in the presence of
non-Gaussian noise has been addressed by several
researchers recently [11–13]. However, the implementa-
tion of these detectors remains challenging as they require
a priori knowledge of various side information, such as the
variances of the channel gain between the PU and the SU
and the PU signal [11], the cyclic frequency of the PU signal
[12] or the variance of the receiver noise at the SU [13],
which may not be readily available in practice. To over-
come this limitation, [14] gives an easily implementable
and nonparametric detector, namely polarity-coincidence-
array (PCA), but the performance of PCA is worse than that
of the energy detection when shape factor β is between 1.4
and 2. The use of the generalized likelihood ratio test (GLRT)
which incorporates unknown parameter estimation to the
traditional likelihood ratio test, has been proposed for local
spectrum sensing in non-Gaussian noise [15]. The GLRT is
an optimal detector, but it needs to perform the maximum
likelihood estimation (MLE) of the unknown parameters
under each hypothesis. As such, it suffers from a large
computational burden.

The Rao test is an approximate form of the GLRT which
only needs to estimate the unknown system model para-
meters under H0. Therefore, it has a simpler structure and
lower computational complexity than the GLRT [16,17].
Although Rao test has been applied to weak signal detec-
tion in non-Gaussian noises in [16,17], its application to
spectrum sensing has been limited to Gaussian noise [18].
Recently, several researchers have proposed Rao detector
for signal detection in non-Gaussian noise for practical
systems, but the analysis is based on the noise PDF molded
by GMD considering only one or a few unknown para-
meters. Based on the theories of GLRT and Rao test, we use
the GGD model to describe the background noise and
investigate the Rao test based spectrum sensing problem
in non-Gaussian noise for CR systems with unknown
complex-valued PU sinal, complex-valued channel gain
and noise variance. We also analyze the effect of the GGD
shape parameter on Fisher information matrix (FIM) and
the Rao based detection performance under the GGD noise
with different shape parameters.

Multi-user cooperation is a commonly used technique
in spectrum sensing due to its capability of overcoming the
harmful fading and shadowing effects by employing the
spatial diversity. Many recent works have exploited coop-
eration for improving the performance of spectrum sen-
sing in the presence of Gaussian noise [19,20]. In these
literatures, the reporting channels between SUs and FC
have been assumed error-free, which is not practical. In
[21,22], the detection performance has been analyzed by
considering reporting errors, but the local probabilities of
detection and false alarm and the cross-over probability
have been assumed identical for all SUs for the reason of
analytical simplicity. Furthermore, multi-user cooperation
for spectrum sensing in the presence of non-Gaussian
noise has not yet received much attention.

In our preliminary work [23], we have considered
cooperative spectrum sensing for a CR sub-network com-
prised one fusion center (FC) and multiple SUs, which
together seek to detect the presence/absence of a PU over
a given frequency band. Each SU employs a Rao detector,
which does not require any a priori knowledge about the
PU signal and channel gains except the PDF of noise (with
or without unknown variance), to independently sense the
PU signal in the presence of a non-Gaussian noise char-
acterized by the GGD. By simulations we have shown that
the Rao detector outperforms the energy detector under
the GGD noise with shape factor βA ð0;2�.

In this paper, our major contributions include: (i) We
derive the detection performance in terms of the prob-
abilities of detection and false alarm for the energy
detector and the Rao detector in the low SNR regime. We
also analyze the detection performance when the degree
of non-Gaussianity and the number of samples vary under
different SNRs. (ii) We analyze and compare the perfor-
mances of the two detectors in terms of the asymptotic
relative efficiency (ARE) for GGD noise with various
degrees of non-Gaussianity. (iii) We propose a cooperative
scheme based on the local decisions of the SUs and the
“k-out-of -M” decision rule. We analyze the global detec-
tion and false alarm probabilities for a more practical
scenario for spectrum sensing under non-Gaussian noise
where the SUs in general have different local probabilities
of detection and false alarm as well as cross-over prob-
ability of erroneous reporting channels. (iv) Through theo-
retical analysis and numerical simulations, we show that
the Rao detector can significantly enhance the local detec-
tion performance over the conventional energy detection in
non-Gaussian noise and the proposed cooperative spectrum
sensing scheme has a significantly higher global probability
of detection than the non-cooperative one.

The rest of the paper is organized as follows. The CR
system and GGD noise models under consideration are
presented in Section 2. The local Rao-based detector used
by the SUs is derived and analyzed in Section 3, while the
theoretical performance analysis of Rao detector and energy
detector for non-Gaussian noise is derived in Section 4. The
cooperative spectrum sensing scheme implemented at the
FC over error-free/erronous reporting channels is discussed
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in Section 5. Our numerical and simulation results of the
proposed schemes with comparison to the traditional
energy detection are provided in Section 6. Finally, conclu-
sions are drawn in Section 7.

Notations: C denotes the set of complex numbers.

2. Problem formulation

In this section, we state the spectrum sensing problem
in two steps, i.e., presentation of the CR system model
followed by description of the non-Gaussian noise model.

2.1. System model

We consider a CR sub-network comprised M SUs and
one FC. Each SU senses the presence of the PU signal over a
limited time interval, through a wireless channel that is
assumed to be frequency non-selective and time invariant.
The local decisions from the SUs are forwarded to an FC
where a final or global decision is made. Within this
general cooperative framework, spectrum sensing can be
formulated as a binary hypothesis testing problem, with
the null and alternative hypotheses, respectively, defined
as H0: PU absent and H1: PU present.

Under these two hypotheses, the baseband signal sam-
ples zmðnÞAC received by the m-th SU, where mAf1;2;
…;Mg, at discrete-time nAf1;2;…;Ng, can be expressed as

H0 : zmðnÞ ¼wmðnÞ
H1 : zmðnÞ ¼ umðnÞþwmðnÞ

(
ð1Þ

where wmðnÞAC is a complex-valued additive background
noise present under both hypotheses and umðnÞAC is the
complex-valued PU signal component present only under
H1. Considering a time-invariant, flat fading channel model,
we can express the latter as umðnÞ ¼ hmsðnÞ where sðnÞAC is
the signal sample emitted by the PU at time n and hmAC is
the channel gain between the PU's transmitter and them-th
SU's receiver. Under both hypotheses, we model the noise
sequence wm(n) as an independent and identically distrib-
uted (IID) random process, with zero-mean, variance s2m
and circularly symmetric distribution, whose special form is
further discussed below; the noise sequences observed by
different SUs are mutually independent. The PU signal s(n)
is modeled as an IID process with zero-mean but otherwise
arbitrary distribution; it is assumed to be independent of
the noise processes fwmðnÞg. The channel gains hm are
assumed to be IID over the spatial index m, with zero-
mean but arbitrary distribution, and they are independent
of the PU signal and SU noises.

In general, the SUs have no a priori knowledge about
the emitted PU signal s(n) nor the channel gains hm,
although they can extract relevant information about the
noise wm(n) through measurement under H0 and local
processing.

2.2. Noise model

In this paper, we assume that the probability density
function (PDF) of the measurement noise is known up to a
variance parameter s2m, which will be estimated by the SUs
as part of the proposed approach. Specifically, we consider
the GGD model in the context of CR, which allows to
control the degree of non-Gaussianity in the noise dis-
tribution efficiently through a shape parameter.

The noise samples in practice seem to be higher in
magnitude than that from the Gaussian distribution [24],
in other words the PDF of impulsive non-Gaussian noise
decays at a lower rate than the Gaussian. Therefore, having
a tail heavier than the Gaussian distribution is a key
feature of the required non-Gaussian model. The main
idea behind the GGD is to retain an exponential type of
decay, as in the Gaussian PDF, but to allow for varying
degree of decay rate by controlling the exponent applied to
its argument. This feature makes it possible to better fit
various types of noise encountered in practice, such as
man-made impulsive noise, co-channel interference from
other CRs, and emission from microwave ovens [10].

We suppose that the non-Gaussian noise wm(n) in (1)
belongs to the GGD family and is a zero-mean complex
generalized Gaussian random variable with unknown var-
iance s2wm

, where the real and the imaginary parts of wm(n)
are independent GGD random variables each with zero mean
and the same variance s2wm

=2. The PDF of the GGD with
variance s2wm

40 and shape factor β40 is obtained from [24]

p wm nð Þ; β; s2wm

� �
¼ β2

½2Bðβ; s2wm
=2ÞΓð1=βÞ�2

�exp � jwR
mðnÞjβþjwI

mðnÞjβ

B β;
s2wm

2

 !" #β

0
BBBBB@

1
CCCCCA ð2Þ

where wR
mðnÞ ¼ RefwmðnÞg and wI

mðnÞ ¼ ImfwmðnÞg denote
the real and imaginary parts of wm(n),

B β; s2wm

� �
¼ swm

Γð1=βÞ
2Γð3=βÞ

� �1=2

ð3Þ

is a scaling factor and ΓðαÞ ¼ R1
0 xα�1e� x dx: It is easily seen

that the GGD reduces to the Gaussian distribution for β¼ 2
and to the Laplacian distribution for β¼ 1.
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The PDFs of the GGDs in logarithmic scale, for s2wm
¼ 1

and different values of the shape factor β, are plotted in
Fig. 1. By varying β, different tail behaviors can be
obtained: for β42, the tail decays faster than for the
normal, while for 0oβo2, the tail decays more slowly
and is therefore “heavier” than for the normal. So when
0oβo2, the GGD can be used to fit the non-Gaussian
noises in practical CR systems, and moreover a smaller
value of β indicates a higher degree of non-Gaussianity.

Then, spectrum sensing for CR applications in non-
Gaussian noise must take into account these large magni-
tude noise samples with heavier-than-normal tail distri-
butions, in order to improve the detection performance, e.
g. increasing the probability of detection under a given
probability of false alarm. To this end, a good detector for
non-Gaussian noise typically utilizes nonlinearities or
clippers to reduce the noise spikes, as will be seen below
for the proposed Rao detector.

3. Rao detector for local spectrum sensing

In this section, we propose a nonlinear detector based
on the Rao test which will allow the SUs to make a
preliminary, local decision on the channel occupancy by
the PU. The derivation is carried on for a selected SU, say
the one with index m.

Referring to the system model in (1), we begin by
introducing some necessary definitions and notations for
convenience in analysis. We define uR

mðnÞ ¼ RefumðnÞg,
uI
mðnÞ ¼ ImfumðnÞg, zRmðnÞ ¼ RefzmðnÞg and zImðnÞ ¼ Imfzm

ðnÞg. The complete vector of signal samples observed by
the SU is denoted as zm ¼ ½zmð1Þ;…; zmðNÞ�T . Adopting the
notations from [25], we define the parameter vector

θr ¼ ½uR
mð1Þ;…;uR

mðNÞ;uI
mð1Þ;…;uI

mðNÞ�T ð4Þ
which contains the real and imaginary parts of the PU signal
samples. We also let θs ¼ s2wm

denote the nuisance para-
meter for the detection problem at hand. Finally, we define
θ¼ ½θTr θs�T , which is a ð2Nþ1Þ-dimensional real vector.

The Rao test is asymptotically equivalent to the GLRT,
yet it does not require the MLE of the unknown para-
meters under H1 and is computationally simpler than
GLRT [25]. In order to formulate the Rao test, we first
recast the detection model (1) in the following equivalent
form:

H0 : θr ¼ 0; θs40
H1 : θra0; θs40

(
ð5Þ

Within this framework, the Rao test statistic TRðzmÞ at the
m-th SU for composite binary parameter test can be
expressed as

TðzmÞ ¼∇ ln pðzm; θÞT ½I�1ðθÞ�rr∇ ln pðzm; θÞjθ ¼ θ̂0
ð6Þ

where pðzm; θÞ is the PDF of the received complex-valued
observation vector zm under H1, ∇ denotes the gradient
operator with respect to the entries of vector θr , defined as

∇¼ ∂
∂uR

mð1Þ
;…;

∂
∂uR

mðNÞ
;

∂
∂uI

mð1Þ
;…;

∂
∂uI

mðNÞ

� �T
; ð7Þ

θ̂0 ¼ ½θ̂Tr0 θ̂s0�T is the MLE of θ under H0, and ½I�1ðθÞ�rr is an
2N � 2N matrix obtained as the upper-left block partition
of the inverse Fisher information matrix (FIM) I�1ðθÞ. Here
the FIM IðθÞ associated to the PDF pðzm; θÞ has the following
partitioned form [26]:

IðθÞ ¼
IrrðθÞ IrsðθÞ
IsrðθÞ IssðθÞ

" #
; ð8Þ

where the upper left block IrrðθÞ has a dimension 2N � 2N.
According to the system model defined in Section 2, the

PDF of the received signal vector zm, with IID samples, can
be expressed as

p zm; θð Þ ¼ ∏
N

n ¼ 1

β2

2B β;
s2wm

2

 !
Γ 1=β
� 	" #2

�exp � jzRmðnÞ�uR
mðnÞjβþjzImðnÞ�uI

I ðnÞjβ

B β;
s2wm

2

 !" #β

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

ð9Þ
Taking the natural logarithm of (9), we obtain

ln p zm; θð Þ ¼ 2N ln
β

2B β;
s2wm

2

 !
Γ 1=β
� 	" #

� ∑N
n ¼ 1ðjzRmðnÞ�uR

mðnÞjβþjzImðnÞ�uI
mðnÞjβÞ

B β;
s2wm

2

 !" #β

ð10Þ
From (5), it follows that the MLE of θr under H0 is simply
θ̂r0 ¼ 0. The MLE of θs ¼ s2wm

under H0 is found by comput-
ing the derivative of (10) with respect to s2wm

, under θr ¼ 0,
and setting the result to zero, yielding

θ̂s0 ¼ ŝ2
wm

¼
β

2Γð3=βÞ
Γð1=βÞ

� �β=2

2N
∑
N

n ¼ 1
jzRm nð ÞjβþjzIm nð Þjβ� 	

2
6664

3
7775
2=β

ð11Þ
The gradient of (10) with respect to θr , as defined in (7),

can be expressed as

∇ ln pðzm; θÞ ¼ ½νRðzm; θÞ; νIðzm; θÞ�T ð12Þ
where νRðzm; θÞ ¼ ½νR1 ;…; νRN � and νIðzm; θÞ ¼ ½νI1 ;…; νIN �. In
turn, the entries of these vectors are defined as

νRn ¼ βjzRmðnÞ�uR
mðnÞjβ�1sgnðuR

mðnÞ�zRmðnÞÞ

B β;
s2wm

2

 !" #β ð13Þ

νIn ¼ βjzImðnÞ�uI
mðnÞjβ�1sgnðuI

mðnÞ�zImðnÞÞ

B β;
s2wm

2

 !" #β ð14Þ

where sgnðxÞ is 1 if x40 and �1 if xr0.
We now proceed to calculate the submatrix ½I�1ðθÞ�rr of

I�1ðθÞ under H0, which appears in (6). Using (8) along
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with the definition of the FIM in [26], we can find (see
Appendix A)

Irr θ̂0
� �

¼ 2βðβ�1ÞΓð1�1=βÞΓð3=βÞ
ŝ2
wm

Γ2ð1=βÞ
I2N ð15Þ

where I2N is the 2N � 2N identity matrix,

Irs θ̂0
� �

¼ ½Isrðθ̂0Þ�T ¼ � β2Γ1=2ð3=βÞ
2ŝ3

wm
Γ3=2ð1=βÞ

12N;1 ð16Þ

where 12N;1 is the 2N � 1 matrix of ones, and

Iss θ̂0
� �

¼ Nβ

2ŝ4
wm

: ð17Þ

Next, applying a well-known matrix inversion formula for
block partitioned matrices [27], the 2N � 2N upper-left
block of the inverse FIM can be expressed as

½I�1ðθ̂0Þ�rr ¼ ½Irrðθ̂0Þ�Irsðθ̂0ÞI�1
ss ðθ̂0ÞIsrðθ̂0Þ��1 ð18Þ

Using (16) and (17), we have

Irs θ̂0
� �

I�1
ss θ̂0
� �

Isr θ̂0
� �

¼ β3Γð3=βÞ
2Nŝ2

wm
Γ3ð1=βÞ

12N;2N ð19Þ

Note that for a given β, β3Γð3=βÞ=2ŝ2
wm

Γ3ð1=βÞ is a finite
value and so when N-1, (19) tends to be a zero matrix.
Thus when N is very large, (18) can be approximated by

½I�1ðθ̂0Þ�rr � I�1
rr ðθ̂0Þ ð20Þ

Finally, by substituting (11), (12) and (20) into (6), we
obtain the Rao detection statistic, i.e.,

TRðzmÞ ¼ ϕðβÞ ∑
N

n ¼ 1
½jzRmðnÞj2ðβ�1Þ þjzImðnÞj2ðβ�1Þ� ð21Þ

where ϕðβÞ is a scaling factor defined as

ϕ βð Þ ¼
βΓ

3
β

� �β�1

β�1ð Þ ŝ2
wm

2

 !β�1

Γ
1
β

� �β�2

Γ 1�1
β

� � ð22Þ

From (21), the statistic of Rao detector is only the function
of β, so for the GGD noise with a given β, our proposed
detector does not require any a priori knowledge of the PU
signal, the channel gain and the variance of noise.

In summary, the Rao detector gives a binary decision ym
for the m-th SU as

ym ¼
1; TRðzmÞZγm
0; TRðzmÞoγm

(
ð23Þ

where γm is a threshold, usually pre-determined according
to the desired probability of false alarm requirement for
the m-th SU.

4. Performance analysis

In this section, analytical expressions for the probabil-
ities of false alarm Pfa and detection Pd of the energy
detector and that of the proposed Rao test detector are
derived. The asymptotic relative efficiency (ARE) of the
Rao detector with respect to the energy detector is also
analyzed.
4.1. Energy detection

The energy detector has the following test statistic:

TEm ¼ ∑
N

n ¼ 1
jzmðnÞj2 ð24Þ

We assume that the number of samples N in any given
sensing interval is large enough to invoke the central limit
theorem (CLT). So for a sufficiently large value of N, the
PDF of TEm will approach a Gaussian distribution even if
the noise wm(n) is GGD. Hence, we have

H0 : TEm �N ðEfTEm jH0g; varfTEm jH0gÞ
H1 : TEm �N ðEfTEm jH1g; varfTEm jH1gÞ

(
ð25Þ

Based on the received observation complex signal in (1)
under two hypotheses, we derive the expressions for the
means and the variances. Before that, we give the even
moments of GGD noise w as

μqw ¼ Γð1=βÞ
Γð3=βÞ

� �q=2 Γððqþ1Þ=βÞ
Γð1=βÞ sqw ð26Þ

for q¼ 2;4;… . Since the PDF in (2) is symmetric around
zero, the odd moments of w are zero. The means under H0

and H1 can be calculated as

EfTEm jH0g ¼ ∑
N

n ¼ 1
EjwmðnÞj2 ¼Ns2m ð27Þ

EfTEm jH1g ¼ ∑
N

n ¼ 1
EjzmðnÞj2 ¼NðE½jumj2�þs2mÞ ð28Þ

where E½jumj2� ¼ E½jumðnÞj2�, n¼ 1;2;…;N. The variance of
TEm under H0 can be calculated as

varfTEm jH0g ¼ E ∑
N

n ¼ 1
jwmðnÞj2�EfTEm jH0g

� �2

¼N
Γð1=βÞΓð5=βÞ

Γ2ð3=βÞ �1
� �

s4m ð29Þ

To obtain a closed-form expression for varfTEm jH1g, we
assume that jumðnÞj5 jwmðnÞj (the low SNR case). By using
a Taylor series expansion to approximate jumðnÞþwmðnÞj4
around wm(n) [11], we can get (see Appendix B for detail)

varfTEm jH1g ¼ E ∑
N

n ¼ 1
jzmðnÞj2�EfTEm jH1g

� �2

¼N
Γð1=βÞΓð5=βÞ

Γ2ð3=βÞ �1
� �

s4mþ2E jumj2

 �

s2m�E2 jumj2

 �� �

ð30Þ
The above expression applies to the low SNR regime. It
should be mentioned that when the SNR is moderate or
high the performance of our proposed Rao detector is
much better than that of the energy detector, as will be
shown by simulations.

With (27)–(30), Pfa;m and Pd;m can be written as

Pfa;m ¼ PrfTEm 4γEm jH0g ¼Q
γEm �EfTEm jH0gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varfTEm jH0g
p

 !
ð31Þ

Pd;m ¼ PrfTEm 4γEm jH1g ¼Q
γEm �EfTEm jH1gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varfTEm jH1g
p

 !
ð32Þ
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where γEm is the threshold for energy detection at the m-th
CR, and Q ðxÞ ¼ ð1=

ffiffiffiffiffiffi
2π

p
Þ R1x e� t2=2 dt. When Pfa;m is given,

the threshold γEm of the energy detector is given by

γEm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varfTEm jH0g

p
Q �1 Pfa;m

� 	þEfTEm H0gj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

Γð1=kÞΓð5=kÞ
Γ2ð3=kÞ �1

� �s
Q �1 Pfa;m

� 	þN

( )
s2m ð33Þ

By substituting (28), (30) and (33) into (32), the probability
of detection of the energy detector is finally obtained as

Pd;m ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1=βÞΓð5=βÞ

Γ2ð3=βÞ �1
� �s

Q �1 Pfa;m
� 	� ffiffiffiffi

N
p

ζmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1=βÞΓð5=βÞ

Γ2ð3=βÞ �1
� �

þ2ζm�ζ2m

s
0
BBBBB@

1
CCCCCA

ð34Þ
where ζm ¼ E½jumj2�=s2m.

4.2. Rao test detection

As N-1, the asymptotic PDF of the Rao test statistic
will be the same as for GLRT statistic [25]. Hence, we have

TRðzmÞ �
X2

2N under H0

X ′2
2NðλÞ under H1

(
ð35Þ

where X2
r denotes a chi-squared PDF with 2N degrees of

freedom, and X ′2
r ðλÞ denotes a non-central chi-squared PDF

with 2N degrees of freedom and non-centrality parameter
λ as given by

λ¼ θTr1½Irrðθ̂0Þ� Irsðθ̂0ÞI�1
ss ðθ̂0ÞIsrðθ̂0Þ�θr1 ð36Þ

where θr1 is the value of θr under H1. By substituting (15)
and (19) into (36), we have

λ� 2βðβ�1ÞΓð1�1=βÞΓð3=βÞ
s2wΓ

2ð1=βÞ ∑
N

n ¼ 1
jum nð Þj2 ð37Þ

and its mean λ is given by

λ ¼ E λ½ � ¼N
2βðβ�1ÞΓð1�1=βÞΓð3=βÞ

Γ2ð1=βÞ ζm ð38Þ

Using (35) and the non-centrality parameter λ, one can
obtain the PDF of TRðzmÞ as

p tmð Þ ¼

1

2NΓðNÞ
tN�1
m exp �tm

2

� �
under H0

1
2

tm
λ

� �ðN�1Þ=2
exp �1

2
tmþλ
� 	� �

IN�1

ffiffiffiffiffiffiffiffi
tmλ

p� �
under H1

:

8>>><
>>>:

ð39Þ
where IaðxÞ ¼∑1

k ¼ 0ðx=2Þ2kþa=k!Γðaþkþ1Þ, x40 is the
modified Bessel function of the first kind and order a.

With the above PDF expressions, the performance of
the Rao test is given by

Pfa;m ¼ PrfTR zmð Þ4γRm
jH0g ¼

Z 1

γRm

p tm H0j Þ dtm ¼ ΓðN; γRm
=2Þ

ΓðNÞ

�

ð40Þ

Pd;m ¼ PrfTRðzmÞ4γRm
jH1g ¼

Z 1

γRm

pðtmjH1Þ dtm ¼QNð
ffiffiffi
λ

p
;
ffiffiffiffiffiffiffi
γRm

p Þ

ð41Þ
where Γðu; vÞ ¼ R1
v xu�1e� x dx;u; v40 is the upper incom-

plete gamma function, and QNð
ffiffiffi
u

p
;
ffiffiffi
u

p Þ¼ R1
v ð1=2Þ

ðx=uÞðN�1Þ=2expð�ðxþuÞ=2ÞIN�1ð
ffiffiffiffiffiffi
xu

p Þ dx, u; v40 is the N-
th order generalized Marcum's-Q function.

4.3. Asymptotic relative efficiency

The performance of the Rao detector with non-
Gaussian noise for CR is now compared with the energy
detector in terms of asymptotic relative efficiency (ARE). It
is defined as the ratio of the numbers of data samples
required to attain the given Pfa and Pd for two different test
statistics when the sample size approaches infinity [25]. So
the ARE of the test statistic TRm with respect to the test
statistic TEm is defined as

ARETRm ;TEm ¼ lim
N-1

NTEm

NTRm

ð42Þ

where N-1 means that the data record length at hand is
large enough to measure faithfully the energy or Rao test
detection performance.

On the other hand, the detection performance can be
characterized by the deflection coefficient d2 for a detection
statistic T, which gives an overall consideration of Pfa and
Pd. The d2 is given by [25]

d2 ¼ ðEfT jH1g�EfTjH0gÞ2
varfTjH0g

ð43Þ

In the case of energy detection, by substituting (27)–(29)
into (43), the deflection coefficient of the energy detector is
obtained as

d2Em ¼ ðEfTEm jH1g�EfTEm jH0gÞ2
varfTEm jH0g

¼ NTEmζ
2
m

Γð1=βÞΓð5=βÞ
Γ2ð3=βÞ �1

ð44Þ

In the case of Rao detection, using (39), the conditional
mean and variance of TRðzmÞ under H0 and under H1 are
given by

EðTRðzmÞjH0Þ ¼ 2N; varfTRzmjH0g ¼ 4N ð45Þ

EðTRðzmÞjH1Þ ¼ 2Nþλ; varfTRzmjH0g ¼ 4Nþ4λ ð46Þ
and the deflection coefficient of Rao detection is thus obtained
as

d2Rm
¼ ðEfTRm jH1g�EfTRm jH0gÞ2

varfTRm jH0g

¼ NTRmζ
2
m½βðβ�1ÞΓð1�1=βÞΓð3=βÞ�2

Γ4ð1=βÞ ð47Þ

Accordingly, when the two detectors have the same detec-
tion performance, i.e., d2Em ¼ d2Rm

, the ARETRm ;TEm is given by

ARE¼ ½βðβ�1ÞΓð1�1=βÞΓð3=βÞ�2
Γ4ð1=βÞ

Γð1=βÞΓð5=βÞ
Γ2ð3=βÞ �1

� �
ð48Þ

From (48), we know that the ARE for the two detectors
depends only on the GGD shape factor β. As will be shown by
simulations, the ARE increases with decreasing β. Moreover,
our proposed Rao detector not only has a much better
performance than the energy detector for all βAð0;2�, but
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also has an increasingly higher performance than the energy
detector when the degree of non-Gaussianity increases.

5. Cooperative spectrum sensing with decision fusion

Each cognitive user needs to conduct the MLE of sw
2
and

the Rao detection locally, yielding local decision results
y¼ ½y1; y2;…; yM� to be used by the FC. We assume that the
decision device of the fusion center is implemented with
the k-out-of-M rule, which means that the FC decides the
presence of PU if there are k or more SUs that individually
decide the presence of PU. The global decision of the FC is
then given as

TFCðyÞ ¼ ∑
M

m ¼ 1
ym ⋛

H1

H0

γFC ð49Þ

where γFC ¼ 1;2;…;M is the decision threshold at the FC,
and may be set to two extreme values: 1 (OR rule) and M
(AND rule). In this paper, we generally assume γFC to be
one of 1;2;…;M.

5.1. Cooperative detection with error-free channel

If the reporting channels between theM SUs and the FC
are error-free, the cooperative probability of detection and
that of false alarm are, respectively, given by

Pd;γFC ¼ ∑
M

i ¼ γFC

Pr ∑
M

m ¼ 1
ym ¼ ijH1

 �

¼ ∑
M

i ¼ γFC

∑
CðM;iÞ

j ¼ 1
∏
M

m ¼ 1
P
ym;i;j

d;m ð1�Pd;mÞ1�ym;i;j ; ð50Þ

and

Pfa;γFC ¼ ∑
M

i ¼ γFC

Pr ∑
M

m ¼ 1
ym ¼ ijH0

 �

¼ ∑
M

i ¼ γFC

∑
CðM;iÞ

j ¼ 1
∏
M

m ¼ 1
P
ym;i;j

fa;mð1�Pfa;mÞ1�ym;i;j ð51Þ

where CðM; iÞ ¼M!=i!ðM� iÞ! denotes the number of com-
binations for any i out of M SUs that decide the presence of
PU. Note that for a fixed value of i, the j-th combination can
be denoted as ym;i;j ¼ ½y1;i;j; y2;i;j;…; yM;i;j�, where j¼ 1;
2;…;CðM; iÞ. If every SU achieves identical false alarm
probability Pfa and detection probability Pd, (50) and (51)
can be simplified as

Pd;γFC ¼ ∑
M

i ¼ γFC

CðM; iÞPi
dð1�PdÞM� i ð52Þ

and

Pfa;γFC ¼ ∑
M

i ¼ γFC

CðM; iÞPi
fað1�PfaÞM� i ð53Þ

respectively.

5.2. Cooperative detection with erroneous channel

If the channels between the SUs and the FC are
imperfect, errors occur on the decision bits y which are
transmitted by the SUs to the FC. Assuming a bit-by-bit
transmission from SUs, each reporting channel can be
modeled as a binary symmetric channel (BSC) with
cross-over probability pe;m. Denoting y′m as the reporting
signal received at the FC fromm-th SU, given the decision ym,
then we have Pðy′m ¼ 1jym ¼ 0Þ ¼ Pðy′m ¼ 0jym ¼ 1Þ ¼ Pe;m.

Considering the m-th SU, when the PU is present, the
probability of the FC receiving bit y′m ¼ 1 from the m-th SU
includes: the probability Pd;mð1�Pe;mÞ when ym¼1 and the
probability ð1�Pd;mÞPe;m when ym¼0. On the other hand,
when the PU is absent, the probability of the FC receiving
bit y′m ¼ 1 from the m-th SU includes: the probability
Pfa;mð1�Pe;mÞ when ym¼1 and the probability ð1�Pfa;mÞ
Pe;m when ym¼0. With the same decision rule in (49), the
cooperative probability of detection and that of false alarm
with reporting errors are, respectively, given by

Pd;γFC ¼ ∑
M

i ¼ γFC

Pr ∑
M

m ¼ 1
y′m ¼ ijH1

 �

¼ ∑
M

i ¼ γFC

∑
CðM;iÞ

j ¼ 1
∏
M′

m ¼ 1
ðP′

d;mÞyi;j;m ð1�P′
d;mÞ1�yi;j;m ð54Þ

and

Pfa;γFC ¼ ∑
M

i ¼ γFC

Pr ∑
M

m ¼ 1
y′m ¼ ijH0

 �

¼ ∑
M

i ¼ γFC

∑
CðM;iÞ

j ¼ 1
∏
M

m ¼ 1
ðP′

fa;mÞyi;j;m ð1�P′
fa;mÞ1�yi;j;m ð55Þ

where P′
fa;m ¼ Pfa;mð1�Pe;mÞþð1�Pfa;mÞPe;m and P′

d;m ¼ Pd;m

ð1�Pe;mÞþð1�Pd;mÞPe;m denote the false alarm and detec-
tion probabilities of the m-th SU with BSC. The BSC's
crossover probability Pe;m can be taken as a constant value
(e.g., 0.1, 0.01, 0.05), but for Rayleigh fading channel, it is
given by [22]

Pe;m ¼ 1
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζm
1þζm

� �s !
ð56Þ

where ζm is the SNR of the reporting channel between the
m-th SU and the FC.
6. Numerical and simulation results

In this section, simulation results are provided to
illustrate the performances of the proposed detector and
cooperative scheme in different situations.
6.1. Generation of the GGD noise

Let FX be the cumulative distribution function (CDF) of a
random variable X and F �1

X be its inverse. It is well known
that if F �1

X can be directly evaluated, a large number of
realizations of X can be obtained as xi ¼ F �1

X ðgiÞ, where
gi ði¼ 1;2;…;nÞ are random numbers uniformly distribu-
ted over ½0;1�. If F �1

X has a closed-form expression, this
method can be applied efficiently, such as in the case of
Laplacian distribution. However, generating the samples of
a GGD is, in general, a quite complicated task. In our
simulation, we use the three-step method [28] for the
cases of GGD with 0oβo2.
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6.2. Energy detection

Assume that the primary user signal s(n) is a zero-mean
complex Gaussian random variable, and the noise is a
zero-mean GGD noise. The receiver operation character-
istics (ROC) are computed based on 5000 Monte Carlo runs
and the sample size is set to N¼1000. Fig. 2 shows the
energy detection performances for GGD. When β decreases,
the degree of non-Gaussianity of the GGD noise increases.
Clearly, the performance under GGD noise is worse than that
under WGN, and the detection performance gets worse with
increasing the degree of non-Gaussianity of the noise.
6.3. Rao test detection

Assume that the primary user is a PSK signal,
sðnÞ ¼ cos ϕðnÞþ jn sin ϕðnÞ, ϕðnÞA ½0;2πÞ. Simulations are
carried out with N¼1000 and M¼1. The performance of
the proposed detector against the GGD noise with β¼ 1:1
is shown in Fig. 3 with comparison to that of the energy
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Fig. 3. ROC comparison of Rao detection and energy detection for
GGD noise.
detection for GGD noises with the same degree of non-
Gaussianity. It is seen that when SNR ¼ �15 dB and
Pfa ¼ 0:1, the probability of detection of our detector is
70%, but that of the energy detector is 20% only, which fails
to meet the requirement of spectrum sensing. Again, Fig. 4
shows that our proposed detector has a better detection
performance than the energy detector and the PCA detec-
tor [14] under almost all levels of SNR for β¼ 1:5, and
N¼1000 with Pfa ¼ 0:1.

In Fig. 5, the ROC curves for the Rao detector and the
energy detector for different β are shown for SNR ¼
�20 dB, N¼1000. It further shows that for small values
of β, Rao detector's performance is much better, even in
very small SNR regions, than the energy detector.

In Fig. 6, the probabilities of detection of the Rao
detector, the energy detector and the PCA detector are
shown as a function of the shape parameter β of the GGD
noise for SNR ¼ �20 dB, �15 dB. The numerical results
are obtained from the expressions (41) and (34), and
equation (12) in [14]. It can be seen from Fig. 6 that as
the degree of non-Gaussianity increases (β decreases), the
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Fig. 4. Probability of detection vs. SNR with Rao detector, energy detector
and PCA detector for GGD (β¼ 1:5, N¼1000, Pfa ¼ 0:1).
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performance of the energy detector decreases while the
performances of the Rao detector are greatly improved.
We also see that the performance of the PCA detector is
lower than that of our proposed detector when βA ½1:2;2�
and our proposed detector has better performance than
the energy detector for all βA ð0;2�, while the performance
of the PCA detector is lower than that of the energy
detection when β close to 2. Fig. 7 shows that the ARE of
the Rao detector with respect to the energy detector
increases significantly as β decreases.

In Fig. 8, the performances of the Rao detector, the
energy detector and the PCA detector versus the number
of samples are shown for β¼ 1:3, and Pfa ¼ 0:1. It can be
seen that, for the same probability of detection, the
number of samples required by the Rao detector is lower
than that of the PCA detector and much lower than that of
the energy detector, which is in accordance with the ARE
illustrated in Fig. 7.

6.4. Cooperative detection

In cooperative detection, we assume that the number of
observations is N¼1000, and the number of SUs is M¼4.
We consider four different degrees of non-Gaussianity
for the four SUs, namely, β1 ¼ 0:7, β2 ¼ 0:7, β3 ¼ 0:8 and
β4 ¼ 1:5. The corresponding SNRs are assumed as �25
dB, �20 dB, �15 dB, and �10 dB.

Fig. 9 shows the ROC curves for the non-cooperative
and cooperative detectors based on the Rao detection over
error-free reporting channels. As shown in Fig. 9, when
Pfa ¼ 0:1, the OR rule (γFC ¼ 1) results in the best perfor-
mance, improving the worst probability of local detection
from 30% (β¼ 0:7, SNR1 ¼ �25 dB) to 100%, while the AND
rule (γFC ¼ 4) has the worst performance in all cooperative
rules.

Fig. 10 indicates that the cooperative detection perfor-
mance based on the Rao detector is much better than
that using the energy detector. Further, in the energy
based cooperative detection, the Majority rule (γFC ¼ 2)
has the best probability of detection when Pfao0:4, but
for 0:4oPfao1, the OR rule (γFC ¼ 1) results in the best
performance.

Fig. 11 gives the ROC curves for the non-cooperative
and cooperative detectors based on the Rao detection
over erroneous reporting channels, where the cross-over
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probability Pe for the four SUs is assumed as Pe;1 ¼
0:01; Pe;2 ¼ 0:02; Pe;3 ¼ 0:03, and Pe;4 ¼ 0:04. From Figs. 9
and 11, we can see that the detection performance decreases
over erroneous reporting channels, especially, the probability
of detection of the 4-th SU (β4 ¼ 1:5, SNR4 ¼ �10 dB)
decreases from 100% to 95% when Pe;4 ¼ 0:04, and Pfa ¼
0:2. Fig. 11 also shows that the performances of the OR rule
and the Majority rules decay at a higher threshold γR, but
they are better than that of the AND rule for small values of
γR. Note that because of the erroneous reporting, we do not
have ðPfa; PdÞ ¼ ð1;1Þ at γR ¼ 0 and ðPfa; PdÞ ¼ ð0;0Þ at γR ¼1
on the ROC plot.

Fig. 12 shows the ROC curves for the cooperative
detection based on the Rao detector over the Rayleigh
fading reporting channels. We assume that the SNRs of the
four reporting channels to be identical with ζ̂ ¼ 5 dB or
3 dB. Fig. 12 shows that the performances of the three
fusion rules vary with ζ̂ . Further, for the same SNR of the
Rayleigh fading reporting channels, the performance of the
OR rule decays faster than that of the Majority rules at a
higher threshold. Therefore, the Majority rule instead of
the OR rule should be used to obtain the lower Pfa with the
cooperative sensing over the Rayleigh fading reporting
channels.

7. Conclusion

We have studied cooperative spectrum sensing in non-
Gaussian noise environment that is modeled by GGD. We
have focused on a scenario where the PU signal, the
channel gain and the noise variance are unknown to the
CR users. A Rao test based detector has been proposed and
its detection performance has been analyzed against the
traditional energy detector and the PCA detector. A coop-
erative scheme for spectrum sensing over error-free and
erroneous reporting channels in non-Gaussian noises has
been proposed based on the Rao test detector and the “k-
out-of-M” decision rule. Numerical and simulation results
show that the proposed Rao detector gives a much better
performance than the traditional energy detector does
when β varies between 0 and 2, while its performance is
better than that of the PCA for βAð1:2;2�. It has also been
shown that the cooperative scheme exhibits a very good
detection performance even in very low SNR regions and
with erroneous reporting.

Appendix A. Calculation of FIM Iðθ)

Here, we compute the four submatrices of the FIM IðθÞ
in (8) under H0. First, we calculate the upper-left block
IrrðθÞ under H0:

Irr θ̂0
� �

¼ �E ∇½∇ ln pðzm; θ̂0Þ�T
h i

¼ βðβ�1Þ
½Bðβ; ŝ2

wm
=2Þ�β

E Frr½ �

ð57Þ
where Frr is a 2N � 2N diagonal matrix, i.e.,

Frr ¼ diag½jzRmð1Þjβ�2;…; jzRmðNÞjβ�2; jzImð1Þjβ�2;…; jzImðNÞjβ�2�
ð58Þ
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Under H0, we have zmðnÞ ¼wmðnÞ, and also the real and
imagery parts of wm(n) are IID. So we have E½jzRmðnÞjβ�2� ¼
E½jzImðnÞjβ�2�, n¼ 1;2;…;N. Let x be a random variable that
has the same distribution as the real or imagery part of the
GGD noise w. Then, (57) can be rewritten as

Irr θ̂0
� �

¼ βðβ�1ÞE½jxjβ�2�
½Bðβ; ŝ2

wm
=2Þ�β

I2N : ð59Þ

We now calculate E½jxjβ�2�, namely,

E jxjβ�2
 �¼ Z 1

�1

β exp � jxjβ
½Bðβ;s2wm

=2Þ�β

 !

2Bðβ; s=2ÞΓð1=βÞ jxjβ�2 dx

¼ β

Bðβ; s=2ÞΓð1=βÞ
Z 1

0
exp � xβ

½Bðβ; s2wm
=2Þ�β

 !
xβ�2 dx

ð60Þ

By letting C ¼ 1=½Bðβ; s2wm
=2Þ�β and t ¼ Cxβ , we have x¼

ðt=CÞ1=β and dx¼ ð1=CÞ1=βð1=βÞtð1=β�1Þ dt, and further

E jxjβ�2
 �¼ ð1=CÞð1�1=βÞ

Bðβ; s=2ÞΓð1=βÞ
Z 1

0
exp �tð Þtð�1=βÞ dt

¼ ½Bðβ; s2wm
=2Þ�ðβ�1Þ

Bðβ; s2wm
=2ÞΓð1=βÞΓ 1�1=β

� 	 ð61Þ

In obtaining the second equation of (61), we have used the
identity ΓðaÞ ¼ R1

0 expð�tÞtða�1Þ dt. Finally, by substituting
(61) into (59), we obtain

Irr θ̂0
� �

¼ βðβ�1ÞΓð1�1=βÞ
B2ðβ; ŝ2

wm
=2ÞΓð1=βÞ

I2N

¼ 2=ŝ2
wm

βðβ�1ÞΓð1�1=βÞΓð3=βÞ
Γ2ð1=βÞ I2N ð62Þ

Next, we calculate the upper-right block IrsðθÞ under
H0:

Irs θ̂0
� �

¼ �E
∂½∇ ln pðzm; θ̂0Þ�

∂θs

" #
¼ � β2E½Frs�

2½Bðβ; s2wm
=2Þ�βs2wm

ð63Þ
where Frs is a 2N-dimensional real vector,

Frs ¼ ½jzRmð1Þjβ�1;…; jzRmðNÞjβ�1; jzImð1Þjβ�1;…; jzImðNÞjβ�1�T

In a manner similar to obtaining (61), we can get

E jxjβ�1
 �¼ ½Bðβ; s2wm
=2Þ�β�1

Γð1=βÞ
Z 1

0
exp �tð Þt0 dt

¼ ½Bðβ; s2wm
=2Þ�β�1

Γð1=βÞ ð64Þ

By substituting (64) into (63), we obtain

Irs θ̂0
� �

¼ � β2Γ1=2ð3=βÞ
2ŝ3

wm
Γ3=2ð1=βÞ

12N;1 ð65Þ

With some simple calculation, we can show that the
down-left block IsrðθÞ under H0 is given by

Isr θ̂0
� �

¼ � β2Γ1=2ð3=βÞ
2ŝ3

wm
Γ3=2ð1=βÞ

11;2N ¼ ½Irsðθ̂0Þ�T ð66Þ
Finally, we calculate the down-right block IssðθÞ under
H0:

Iss θ̂0
� �

¼ �E
∂2½ln pðzm; θ̂0Þ�

∂2θs

" #

¼ ð2βþβ2ÞE½jxjβ�
2½Bðβ;s2wm

=2Þ�β �1

" #
N=s4wm

ð67Þ

Here, E½jxjβ� can be calculated as

E jxjβ
 �¼ Z 1

�1

βexp � jxjβ
½Bðβ; s2wm

=2Þ�β

 !

2Bðβ; s=2ÞΓð1=βÞ jxjβ dx

¼ ½Bðβ; s2wm
=2Þ�ðβÞ

Γð1=βÞ
Z 1

0
exp �tð Þt1=β dt

¼ ½Bðβ; s2wm
=2Þ�βΓð1þ1=βÞ
Γð1=βÞ

¼ ½Bðβ; s2wm
=2Þ�β

β
ð68Þ

where we have used the identity Γð1þxÞ ¼ xΓðxÞ to get the
last equation in (68). Using (68) into (67) gives

Iss θ̂0
� �

¼ Nβ

2ŝ4
wm

: ð69Þ

Appendix B. Calculation of varfTEm jH1g in (30)

For the energy detection, we have

varfTEm jH1g ¼ E ∑
N

n ¼ 1
jzmðnÞj2�EfTEm jH1g

� �2

¼ E ∑
N

n ¼ 1
jzmðnÞj2

� �2" #
�E2fTEm jH1g

¼ ∑
N

n ¼ 1
E½jzmðnÞj4�þ2∑

ia j
E½jzmðiÞj2jzmðjÞj2��E2fTEm jH1g

¼ ∑
N

n ¼ 1
E½jzmðnÞj4��NðE½jumj2�þs2mÞ2 ð70Þ

Under the low SNR assumption, we have jumðnÞj5 jwmðnÞj.
By using a Taylor series expansion of the complex function
½jzmðnÞj4� around wm(n), we can compute

E jzm nð Þj4
 �¼ E um nð Þþwm nð Þj4
�� �


¼ E jwm nð Þj4þuR
m nð Þ ∂jwmðnÞj4

∂wR
mðnÞ

þuI
m nð Þ ∂jwmðnÞj4

∂wI
mðnÞ

�

þ 1
2!

ðuR
mðnÞÞ2

∂2jwmðnÞj4
∂2wR

mðnÞ
þ 1

2!
ðuI

mðnÞÞ2
∂2jwmðnÞj4
∂2wI

mðnÞ

þuR
m nð ÞuI

m nð Þ ∂2jwmðnÞj4
∂wR

mðnÞ∂wI
mðnÞ

þ⋯
�

ð71Þ

By ignoring higher-order terms and noting that um(n) has
zero mean, we can obtain

E jzm nð Þj4
 �� E jwm nð Þj4
 �þ 1
4
E jum nð Þj2
 �

E
∂2jwmðnÞj4
∂2wR

mðnÞ
þ ∂2jwmðnÞj4

∂2wI
mðnÞ

� �
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¼ E jwm nð Þj4
 �þ 1
4
E jum nð Þj2
 �

16E wR
mðnÞ2þwI

mðnÞ2
h i

¼ E½jwmðnÞj4�þ4E½jumðnÞj2�E½jwmðnÞj2� ð72Þ
Therefore,

varfTEm jH1g ¼N
Γð1=βÞΓð5=βÞs4m

Γ2ð3=βÞ þ4E jumj2

 �

s2m�ðE½jumj2�þs2mÞ2
� �

¼N
Γð1=βÞΓð5=βÞ

Γ2ð3=βÞ �1
� �

s4mþ2E jumj2

 �

s2m�E2 jumj2

 �� �

ð73Þ
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