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a b s t r a c t

The traditional spectrum sensing methods based on second order statistics are in general
not applicable to detecting a primary user with unknown parameters in non-Gaussian
noises. This paper presents a novel spectrum sensing scheme based on fractional lower
order moment (FLOM) for the detection of a primary user in non-Gaussian noise that are
modeled by the α-stable distribution. The new detector does not require any a priori
knowledge about the primary user (PU) signal and channels. The statistics of the proposed
FLOM detector are defined in a multi-user cooperative framework and its detection and
false alarm probabilities as well as deflection coefficient are analyzed for both non-fading
and Rayleigh fading communication channels between the primary and secondary users.
The detection performance of the proposed method versus the generalized signal-to-noise
ratio, the characteristic exponent α and the number of cooperative users is also studied
along with comparison to the Cauchy detector through computer simulations. Analytical
and simulation results show that the proposed FLOM detector has a much better
performance than the Cauchy detector in the α-stable distributed noise environment. It
is also shown that multi-user cooperative sensing leads to a significantly higher
probability of detection than the single user version.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Cognitive radio (CR) has been proposed as a key tech-
nology to improve the spectrum efficiency in next genera-
tion wireless networks through dynamic management and
opportunistic use of radio resources. CR allows unlicensed
(secondary) users (SU) to opportunistically access a fre-
quency band allocated to a licensed (primary) user (PU),
providing that the PU is not temporally using the spectrum
or it can be adequately protected from the interference
),
created by the SUs. Thus, the radio spectrum can be reused
in an opportunistic manner or shared at all time, leading to
an increase in the network capacity. One of the most
important challenges in CR systems is to detect as quickly
and reliably as possible the absence (H0 ¼ null hypothesis)
or presence (H1 ¼ alternative hypothesis) of the PU in
complex radio environments such as those characterized
by fading effects and non-Gaussian noises.

Several spectrum sensing techniques such as [1–3]
have been proposed for single-user and cooperative detec-
tion under the white Gaussian noise (WGN) assumption. In
practice, however, the problem is more challenging as we
need to detect various types of PU signals impaired by
non-Gaussian noise and interference, as pointed out in [4].
Non-Gaussian noise impairments may include man-made
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impulsive noise, co-channel interference from other SUs,
emission from microwave ovens, out of band spectral
leakage, etc. [5,6]. It is shown in [7] that the performance
of a spectrum detector optimized against Gaussian noise
may degrade drastically when non-Gaussian noise or
interference is present because of the heavy tail character-
istics of its probability density function (PDF). In view of
these problems, it is desirable to seek useful solutions to
spectrum detection in practical non-Gaussian noises and
to evaluate the detection performance.

Currently, several models are available in the literature to
fit non-Gaussian noise or interference distributions, such as
the α-stable distribution, the generalized Gaussian distribu-
tion (GGD) and the Gaussian mixture distribution (GMD).
The α-stable distribution has proved to be very successful in
modeling practical noises [8], including both Gaussian noise
and non-Gaussian noises with different degrees of non-
Gaussianity through the selection of its characteristic expo-
nent, α. In [9], an α-stable distribution is proposed to fit
noise and interference in wireless communication systems.
In [10], the α-stable distribution is used to model the co-
channel interference in wireless networks. Recently, a math-
ematical framework has been introduced, which uses
α-stable distributions to model the interference in cognitive
radio networks, wireless packet networks and networks with
ultra wideband systems [11].

Unlike GGD and GMD, the α-stable distribution does
not possess a compact analytical form of PDF, so most of
the techniques for the detection of signals in non-Gaussian
noise, which require the PDF of the noise, cannot be
employed in the case of α-stable distributed noise. For
this reason, the optimal detector in α-stable noises based
on a likelihood ratio has a very complex structure, which
requires numerical integration and/or DFT operations [12].
To overcome these difficulties, several suboptimal detec-
tors have been proposed in the literature. For example, the
conventional linear (Gaussian) detector, which is optimal
when α¼2 only, is the least complex one, but it performs
poorly when α is smaller. The Cauchy detector, which is
optimum in the case of α¼1, was used as a suboptimal
detector in α-stable noises with arbitrary values of α [13].
In [14], the α-stable distribution is approximated by a
finite GMD; this modeling improves the performance but
is still complicated. Other simple suboptimal detectors
apply a nonlinearity to the received signal before using
the linear detector, such as the soft limiter and matched
myriad filter [15]. In [16], a novel soft limiter detector with
adaptive threshold is proposed, which can significantly
improve the performance of the conventional soft limiter.
These detectors have better performance than the linear
one or the conventional Gaussian detector, however, their
performance is not optimal.

Spectrum sensing for CR networks in the presence of
non-Gaussian noise has been addressed by several research-
ers recently [17–19]. However, the implementation of these
detectors remains challenging as they require a priori knowl-
edge of various side information, such as the variance of the
noise [20] and the PU signal cyclic frequency [21], which may
not be readily available in practice. In [20], the authors
proposed a spectrum sensing method based on a Cauchy
detector for CR with simulation results showing a better
performance than the linear (Gaussian) detector; however,
the performance of this Cauchy-based detector degrades
rapidly when α is decreased and the test statistic requires
a priori knowledge of the noise dispersion parameter, γ.

The Lp-norm based detector in [17] does not require any
a priori knowledge about the noise distribution nor the PU
signal. It can track changes in noise distributions with
finite moments, but it is not applicable to α-stable dis-
tributed noise which has no finite moments when order
pZα [17]. Although the α-stable distribution does not
have finite moments pZα, its moments of order poα are
finite. Hence, the fractional lower order statistics (FLOS)
become a valid signal processing approach to deal with α-
stable distributed noise in this case. Although FLOS has
been applied to weak signal detection in non-Gaussian
noises in [13], its application to spectrum sensing has not
yet received much attention.

Multi-user cooperation is a commonly used technique
in spectrum sensing due to its capability of overcoming the
harmful effects of fading and shadowing by taking advan-
tage of the spatial diversity. Many recent works have there-
fore employed multi-user cooperation for improving the
performance of spectrum sensing in the presence of Gaus-
sian noise [22,23]. Still, very little work has been found
concerning multi-user cooperation for spectrum sensing in
the presence of non-Gaussian noise.

In this paper, we model the background noise in CR
systems by means of the α-stable distribution (SαS) and
propose a cooperative spectrum sensing method based on
the fractional lower order moment (FLOM), referred to as
the FLOM detector. In this approach, the PU signal, the
noise parameters and the channel gain are all assumed
unknown. We analyze the performance of the FLOM
detector in both non-fading and Rayleigh fading sensing
channels. We also investigate the detection performance
with different characteristic exponents of the SαS distri-
bution as well as the effect of the characteristic exponent
on the deflection coefficient.

Our main contributions in this paper include: (i) We
derive the detection performance of the FLOM detector in
the regime of low generalized signal-ro-noise ratio (GSNR)
for non-fading sensing channels in terms of the probabil-
ities of detection and false alarm. We also analyze the
detection performance with respect to the degree of non-
Gaussianity and the number of samples under different
generalized signal-to-noise ratios (GSNRs). (ii) We investigate
the performance of the proposed detector in terms of the
deflection coefficient for the SαS distributed noise with
various degrees of non-Gaussianity. (iii) We analyze the
global detection and false alarm probabilities of the proposed
FLOM-based cooperative sensing for Rayleigh fading chan-
nels. (iv)Through theoretical analysis and numerical simula-
tions, we show that the FLOM detector can significantly
enhance the detection performance over the Cauchy detec-
tion in the SαS noise and that the proposed cooperative
spectrum sensing scheme has a significantly higher global
probability of detection than the non-cooperative one.

The remainder of the paper is organized as follows. The
CR system and the α-stable distributed noise model under
consideration are presented in Section 2. The FLOM-based
detection statistics are derived and analyzed in Section 3,
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Fig. 1. PDF tails of SαS noise for γ¼1 and different values of α.
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while the theoretical performance of the FLOM detector
for the SαS noise in non-fading sensing channels is derived
in Section 4. The cooperative spectrum sensing scheme
over Rayleigh fading channels is discussed in Section 5.
Numerical and simulation results of the proposed scheme
with comparison to the Cauchy detection are provided in
Section 6. Finally, conclusions are drawn in Section 7.

2. System model

Similar to our previous work [24], here we consider a
CR sub-network comprised one PU and M SUs with one
fusion center (FC). Each SU monitors the presence of the
PU signal over a certain time-interval, through a wireless
channel that is assumed to be frequency non-selective and
time invariant. The M N-dimensional observation vectors
from the SUs are forwarded to the FC where a final or
global decision is made. With this cooperative strategy, the
spectrum sensing in each SU can be formulated as a binary
hypothesis testing problem, described by H0: PU absent
and H1: PU present. Under these two hypotheses, the
baseband signal zm(n), assumed to be real-valued in this
paper and observed by the m-th SU, mAf1;2;…;Mg, at
discrete-time nAf1;2;…;Ng, is formulated as

H0: zmðnÞ ¼wmðnÞ
H1: zmðnÞ ¼ hmsðnÞþwmðnÞ

(
ð1Þ

where wm(n) is an additive background noise component
present under both hypotheses, s(n) is the signal sample
emitted by the PU at time n only under H1, and hm is the
channel gain between the PU's transmitter and the m-th
SU's receiver, which is assumed to be constant during
spectrum sensing. In this paper, we consider two types of
channels: (1) non-fading channel where hm¼1; and
(2) Rayleigh fading channel where hm obeys the Rayleigh
distribution.

Under both hypotheses, we model the noise sequence
wm(n) as an independent and identically distributed (IID)
symmetric α-stable (SαS) distribution with characteristic
exponent α and dispersion γ. We assume that the noise
sequences observed by different SUs are mutually inde-
pendent. The PU signal s(n) is modeled as an IID process
with zero-mean and variance σ2

s ¼ E½jsðnÞj2�, but with an
arbitrary distribution. The PU signal s(n) is independent of
the noise processes fwmðnÞg. The channel gains hm either
assumed to be deterministic or random variables IID over
the spatial index m with variances σ2

h ¼ E½jhmj2�; in the
latter case, they are independent of the PU signal and the
SU noises.

In general, the SUs have no a priori knowledge about
the emitted PU signal s(n) nor the channel gains hm,
although they can extract relevant information about the
noise wm(n) through measurements under H0. Therefore, a
practical detector should not rely on a statistic that requires
the knowledge about s(n) or hm.

In this paper, we model the non-Gaussian noise in the
context of CR by means of the SαS distribution, with the
characteristic exponent α controlling the degree of non-
Gaussianity in the distribution. Due to the lack of a
compact analytical form for its PDF, the SαS distribution
is described by its characteristic function:

φðtÞ ¼ expfjμt�γjtjαg ð2Þ

where �1oμo1 is the location parameter, i.e. the
symmetry axis for the SαS distribution, γ40 is the noise
dispersion, which measures the distribution's spread around
its center, and 0oαr2 is the characteristic exponent. The
values α¼2 and α¼1 correspond to the Gaussian distribu-
tion and the Cauchy distribution, respectively, both having
closed-form PDF expressions. For other values of α, the SαS
noise does not have a closed-form PDF, but its moments of
order poα are finite. Furthermore, since there is no finite
second moment for the SαS distribution when αo2, the
noise variance is also infinite in this case. As such, we define
the generalized signal-to-noise ratio (GSNR) for the m-th
SU as

GSNRm ¼ 10 log10
σ2
sσ

2
h

γm
ð3Þ

where γm denotes the noise dispersion of the m-th SU.
The PDFs of the SαS for γ¼1 and different values of the

characteristic exponent α are plotted in Fig. 1. It is seen
that α relates directly to the heaviness of the tails of the
SαS PDF; a small value of α gives considerable probability
mass in the tails which means a large degree of non-
Gaussianity. For this reason, the SαS with 0oαo2 is well
suited for the “heavier” than normal tail behavior found in
practical CR systems.

Spectrum sensing for CR applications in non-Gaussian
noise such as the one modeled by the SαS distribution
(αa2) must take into account much sharper peaks and
much heavier tails than the Gaussian PDF. Otherwise, the
probability of false alarm will be high, which will in turn
greatly reduce the spectrum resource sharing opportu-
nities. For this reason, a good detector for non-Gaussian
noise typically utilizes nonlinearities or clippers to reduce
the noise spikes. In the next section, we propose a FLOM
based detector, to reduce the degree of non-Gaussianity by
a non-integer exponent.
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3. FLOM based spectrum sensing

Let us consider first an optimal detector for the spec-
trum sensing problem. Based on the hypothesis of the
signal and noise in (1), the optimal detection statistic can
be expressed as

yOP ¼ log
pðzjH1Þ
pðzjH0Þ

¼ log ∏
M

m ¼ 1
∏
N

n ¼ 1

pwm
ðzmðnÞ�hmsðnÞÞ
pwm

ðzmðnÞÞ

� �
; ð4Þ

where z represents a vector of properly ordered observa-
tions zm(n) and pðzjHiÞ is the corresponding PDF condi-
tioned on hypothesis Hi for i¼0,1. The main difficulty in
using (4) is that it requires an analytical expression for the
PDF of the background noise. Moreover, it needs the
knowledge of the PU signal s(n) and channel gain hm,
which is usually not available in practical CR systems. This
means that the likelihood ratio in (4) has uncertain
parameters. To overcome this limitation, a generalized
likelihood ratio test (GLRT) is proposed in [28,20], which
replaces unknown parameters in the traditional likelihood
ratio test with estimates. The detection statistic of the
GLRT is given by

yGLRT ¼ log ∏
M

m ¼ 1
∏
N

n ¼ 1

pwm
ðzmðnÞ�hmsðnÞÞ
pwm

ðzmðnÞÞ

( )
ð5Þ

where hm and sðnÞ are the maximum likelihood estimates
of hm and s(n), respectively. The GLRT detector is consid-
ered optimal, but it needs to perform the maximum
likelihood estimation (MLE) of the received signal under
H1 and of the noise variance under H0 and as such, it
suffers from a large computational burden. In addition, the
noise PDF is required in the computation of GLRT. The non-
Gaussian noise modeled by the SαS distribution in this
paper does not possess an analytical expression for the
PDF except for α¼1, 2. When α¼1, the SαS distribution
reduces to Cauchy and the corresponding detector can be
written as [20]

yCauchy ¼
XM
m ¼ 1

XN
n ¼ 1

log 1þjzmðnÞj2
γ2

� �
ð6Þ

While the Cauchy detector is not strictly applicable to the
SαS noise with αa1, it is often used as a sub-optimal
detector. Even in the case of α¼1, one needs to known the
dispersion parameter γ of the SαS noise, whose precise
value may be difficult to obtain. Therefore, the Cauchy
detector does not represent an attractive solution for
practical application with arbitrary α. In this paper, we
use it as a reference detector for the purpose of compar-
ison. A suboptimal Lp-norm detector for primary signal
detection in the presence of non-Gaussian noise was
proposed in [17], in which a tunable parameter has to be
optimized for the underlying type of noise, and does not
require the knowledge of noise distribution. But this
detector is not suitable for the SαS noise with no finite
moments and moreover, its decision statistic requires
knowledge of the powers of the fading channel gains
and of the primary signal.
Although the second-order moment of an SαS random
variable with 0oαo2 does not exist, its FLOMs of any
order less than α do exist. Here, we propose a suboptimal
detector called FLOM detector for spectrum sensing in the
SαS noise. Inspired by the energy detection type of
detector for SαS noise, the FLOM detector statistic is
defined as

yFLOM ¼ 1
MN

XM
m ¼ 1

XN
n ¼ 1

jzm nð Þjpm ð7Þ

where pm is the order of the fractional moment, which is the
only parameter to be determined, and is tunable between 0
and αm=2. When pm is given, one can compare yFLOM to a
pre-scribed threshold η: if yFLOM4η, the detector decides
that the PU is present, otherwise the PU is considered absent.
In the FLOM detector, we limit the order p within the range
ð0;αm=2Þ in order to ensure that the variance of the FLOM
statistic also exists. The new detector does not use the power
of the fading channel gains nor that of the PU signal as
compared to the Lp-norm detector and therefore, it is more
practical.

We note that the noise of each SU in general may have
a different characteristic exponent αm and dispersion γm.
The choice of pm for the m-th SU should therefore depend
on the value of αm in order to give the decision statistic
some flexibility. For notational convenience, the statis-
tic order parameter is denoted as vector p¼ ½p1; p2;…; pM �
which corresponds to the vector α¼ ½α1;α2;…;αM �. Clearly,
the FLOM detector does not need the knowledge of the
noise PDF, nor that of the PU signal and the channel gain. It
uses only the observations zm(n) and orders pmAð0;
αm=2Þ;m¼ 1;2;…;M. In order to determine appropriate
values of pm that satisfy pmoαm=2, αm for the m-th SU
noise could be estimated by some estimators underH0 such
as [12]. However, this process could be avoided in practice
by always choosing sufficiently small values of pm. This is
because smaller values of pm in general result in a better
detection performance as will be seen in Section 6. In the
rest of this paper we focus on the performance analysis of
the FLOM detector by deriving and verifying through
computer simulations the probabilities of detection and
false alarm with respect to the GSNR, the SαS noise
parameters and the detector order.

4. Performance of the FLOM detector in non-fading
channels

In this section, analytical expressions for the false alarm
probability Pfa and the detection probability Pd of the proposed
FLOM detector are derived for non-fading channels under the
assumption of low GSNR. For this, we assume that the channel
gain of each SU is hm ¼ 1; m¼ 1;2;…;M.

4.1. Probabilities of false alarm and detection

The FLOM statistic yFLOM can be regarded as the sum of
N independent random variables no matter whether the
PU is present or not. According to the Central Limit
Theorem, when N is large enough, yFLOM has an asymptotic
Gaussian distribution. In the following, we first derive the
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mean and the variance of yFLOM under the two hypotheses
H0 and H1.

Under hypothesis H0, the mean of yFLOM can be calcu-
lated as

μ0 ¼ E½ yFLOM H0j � ¼ 1
MN

XM
m ¼ 1

XN
n ¼ 1

E jwm nð Þjpm� � ð8Þ

The FLOM of an SαS randomvariable X can be computed from
its dispersion and characteristic exponent as follows [12]:

E½jXjp� ¼ Cðp;αÞγp=α; poα ð9Þ
where

C p;αð Þ ¼
2pþ1Γ

pþ1
2

� �
Γ �p=α
� 	

α
ffiffiffiffi
π

p
Γð�p=2Þ ; ð10Þ

with ΓðaÞ ¼ R1
0 xa�1e� x dx. According to (9) and (10), (8) can

be rewritten as

μ0 ¼
1
M

XM
m ¼ 1

C pm;αm
� 	

γpm=αm
m ð11Þ

where

C pm;αm
� 	¼ 2pm þ1Γ

pmþ1
2

� �
Γ �pm=αm
� 	

αm
ffiffiffiffi
π

p
Γð�pm=2Þ

: ð12Þ

The variance of yFLOM under H0 can be written as

σ2
0 ¼ Efy2FLOMjH0g�E2fyFLOMjH0g ð13Þ

Substituting (7) into (13), noting that zmðnÞ ¼wmðnÞ and
using (9), we obtain

σ2
0 ¼ E

1
MN

XM
m ¼ 1

XN
n ¼ 1

jwm nð Þjpm� � !2
2
4

3
5� 1

MN

XM
m ¼ 1

XN
n ¼ 1

E jwm nð Þjpm� �( )2

¼ 1
ðMNÞ2

NE
XM
m ¼ 1

jwmðnÞj2pm
" #

þ
XM
m;i ¼ 1

ma i or na j

XN
n;j ¼ 1

E wm nð Þjpm wi jð Þjpi
�� ����

8<
:

�N
XM
m ¼ 1

E2 jwm nð Þjpm� �� XM
m;i ¼ 1

ma i or na j

XN
n;j ¼ 1

E wm nð Þjpm wi jð Þjpi
�� ��� ��

¼ 1

M2N

XM
m ¼ 1

E½jwmðnÞj2pm ��
XM
m ¼ 1

E2½jwmðnÞjpm �
( )

ð14Þ

As pmoαm=2, using (9) into (14) leads to

σ2
0 ¼

1

M2N

XM
m ¼ 1

C 2pm;αm
� 	

γ2pm=αm
m �ðCðpm;αmÞγpm=αm

m Þ2
h i

ð15Þ
Similarly, it can be shown that the mean and variance

of yFLOM under H1 are given by (see Appendix A for detail)

μ1 ¼ E½yFLOMjH1� ¼ μ0þ
XM
m ¼ 1

β0;m ð16Þ

where

β0;m ¼ σ2
s pmðpm�1ÞCðpm�2;αmÞ

2M
γðpm �2Þ=αm
m ð17Þ

σ2
1 ¼ Efy2FLOM H1g�E2fyFLOM H1gj

���
¼ σ2
0þ

σ2
s

M2N

XM
m ¼ 1

β1;m ð18Þ

where

β1;m ¼ pmð2pm�1ÞCð2pm�2;αmÞγ2ðpm �1Þ=αm
m

�pmðpm�1ÞCðpm;αmÞγpm=αm
m Cðpm�2;αmÞγðpm �2Þ=αm

m ð19Þ
Recall that yFLOM is a Gaussian random variable when N

is large. With the above derived mean μi and variance σi
2

(i¼0, 1), we can easily obtain the probability of false alarm,

Pfa ¼ fyFLOM4η
���H0g ¼Q

η�μ0ffiffiffiffiffiffi
σ2
0

q
0
B@

1
CA ð20Þ

and the probability of detection

Pd ¼ fyFLOM4η
���H1g ¼Q

η�μ1ffiffiffiffiffiffi
σ2
1

q
0
B@

1
CA ð21Þ

where η is the sensing threshold and Q ðxÞ ¼ ð1=
ffiffiffiffiffiffi
2π

p
ÞR1

x eð� t2=2Þ dt. By choosing a proper value of η, we can
achieve a desired trade-off between the two probabilities.
According to Neyman–Pearson rule, in order to maximize
the opportunity of SU transmission through the spectrum
hole, the probability of false alarm should be limited by a
maximum value Pfa, while the probability of detection
should be maximized to protect the PU transmission. For a
given value of PfaA ð0; Pfa�, the sensing threshold η can be
expressed as

η¼
ffiffiffiffiffiffi
σ2
0

q
Q �1ðPfaÞþμ0 ð22Þ

By substituting (22) into (21), the probability of detec-
tion is rewritten as

Pd ¼ Q
η�μ1ffiffiffiffiffiffi

σ2
1

q
0
B@

1
CA¼ Q

ffiffiffiffiffiffi
σ2
0

q
Q �1ðPfaÞþμ0�μ1ffiffiffiffiffiffi

σ2
1

q
0
B@

1
CA ð23Þ

By substituting (16) and (18) into (23), we can finally
obtain a closed-form expression for the probability of the
FLOM detector over non-fading channel, as given by

Pd ¼ Q

ffiffiffiffiffiffi
σ2
0

q
Q �1ðPfaÞ�

PM
m ¼ 1 β0;mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
0þ

σ2
s

M2N

PM
m ¼ 1 β1;m

s
0
BBBB@

1
CCCCA ð24Þ

where σ2
0, β0;m, and β1;m are functions of the order vector

p. When Pfa is given, we can obtain optimal Pd by searching
pm. However, it is very difficult to find the maximum of Pd
in theory due to the high complexity of the function. In
Section 6, we will conduct a numerical computation of the
detection probability based on (24) as well as Monte Carlo
simulations to validate our theoretical analysis.

4.2. Noise uncertainty analysis

From (22), (11) and (15), we can see that η depends on
the knowledge of the parameters γm and αm of the noise,
which are usually not available and difficult to estimate
precisely in practical CR systems. Like the basic energy
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detection, the well-known noise uncertainty analysis is
needed for the FLOM detector.

Here, we just discuss the sensitivity of the spectrum
sensing performance on the uncertainty of γm; a similar
development can be carried out for the parameter αm. The
noise dispersion γm, which measures the α-stable distri-
bution noise's spread around its center, can be any positive
number and behaves like the variance (for instance, in the
Gaussian case when α¼2, it is equal to half the variance).
We define

em ¼ γ0m
γm

ð25Þ

where γ0m is the practically estimated value of the noise
dispersion γm by the m-th SU. The degree of noise
uncertainty bm can be defined as bm ¼ 10 log10em, which
is modeled by a uniform distribution within ½�B;B� [25].
When γ0m ¼ γ with certainty, em¼1, and bm ¼ 0 dB. When
the noise dispersion γ is uncertain, i.e., γ0m ¼ emγm, (11) (15)
and (22) can be rewritten as

μ0un
¼ 1
M

XM
m ¼ 1

C pm;αm
� 	ðemγmÞpm=αm ð26Þ

σ2
0un ¼

1

M2N

XM
m ¼ 1

C 2pm;αm
� 	ðemγmÞ2pm=αm �ðCðpm;αmÞðemγmÞpm=αm Þ2

h i
ð27Þ

and

ηun ¼
ffiffiffiffiffiffiffiffiffiffi
σ0

2
un

q
Q �1ðPfaÞþμ0un ð28Þ

Comparing (28) to (22), we can see that ηun is not a
fixed value because of the uncertain em, so when the FLOM
detector uses the fixed η as the sensing threshold, this
would affect the detection performance. In that case, we
can use multi-user cooperation or the double sensing
threshold method as in the basic energy detection [26]
to decrease the effect of noise uncertainty. In Section 6, we
will conduct Monte Carlo simulations to analyze the effect
of noise uncertainty on spectrum sensing performance.

4.3. Deflection coefficient

The deflection coefficient d2 is another way to evaluate
the detection performance, which gives an overall con-
sideration of Pfa and Pd. The FLOM detector includes the
orders pm as free parameters, and its deflection coefficient
can be denoted as [27]

d2 pð Þ ¼ ðμ1�μ0Þ2
σ2
0

ð29Þ

By substituting (11), (15) and (16) into (29), we obtain

d2 pð Þ ¼ Nσ4
s ð
PM

m ¼ 1 pmðpm�1ÞCðpm�2;αmÞγðpm �2Þ=αm
m Þ2

4
PM

m ¼ 1½Cð2pm;αmÞγ2pm=αm
m �ðCðpm;αmÞγpm=αm

m Þ2�
ð30Þ

In the above expression, we haveM unknowns pm’s. To make
the problem tractable, we assume that p1 ¼ p2 ¼⋯¼ pM ¼ p
even though the noise of each SU has a different value for α.
Hence, (30) can be simplified as

d pð Þ ¼
ffiffiffiffi
N

p
σ2
s
PM

m ¼ 1 pðp�1ÞCðp�2;αmÞγðp�2Þ=αm

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

m ¼ 1½Cð2p;αmÞγ2p=αm �ðCðp;αmÞγp=αm Þ2�
q ð31Þ

Given αm, d(p) depends only on p, and an optimal value of p
that maximizes d(p) may be found. We will discuss this issue
through computer simulations in Section 6. We now give a
simplified expression of (23) in terms of d(p) by using the
assumption of low GSNR. Note that under a low GSNR we
have σ2

1 � σ2
0, and thus the detection probability (23) can be

simplified using (29) with p1 ¼ p2 ¼⋯¼ pM ¼ p as

Pd ¼Q ðQ �1ðPfaÞ�dðpÞÞ ð32Þ
According to properties of Q function, the probability of
detection will change monotonically with d(p), and thus Pd
reaches the maximum when d(p) is maximized.

5. Performance of the FLOM detector in Rayleigh fading
channels

In this section, we consider the performance of the
FLOM detector when the communication channels bet-
ween PU and SUs undergo Rayleigh fading.

Under H0, the mean and the variance of yFLOM do not
depend on the channel gain, so they have the same
expressions as in the non-fading case. Under H1, with
yFLOM ¼ ð1=MNÞPM

m ¼ 1
PN

n ¼ 1 jzmðnÞjpm as defined in (7), the
channel gain hm involved in zm will undergo Rayleigh
fading. In this case, the mean and the variance depend
on the channel gain hm and their computation is similar to
the non-fading case under H1, which leads to the follow-
ing expressions (see Appendix A for details):

μ1 ¼ E½yFLOMjH1� ¼ μ0þ
XM
m ¼ 1

β0;mjhmj2 ð33Þ

σ2
1 ¼ E½ðyFLOM�E½yFLOM�Þ2 H1j � ¼ σ2

0þ
σ2
s

M2N

XM
m ¼ 1

β1;mjhmj2

ð34Þ
where

β0;m ¼ σ2
s pmðpm�1ÞCðpm�2;αmÞ

2M
γðpm �2Þ=αm
m ð35Þ

β1;m ¼ pmð2pm�1ÞCð2pm�2;αmÞγ2ðpm �1Þ=αm
m

�pmðpm�1ÞCðpm;αmÞγpm=αm
m Cðpm�2;αmÞγðpm �2Þ=αm

m :

ð36Þ
To make the problem tractable, we consider again the

low GSNR case where σ2
s � 0 and σ2

1 � σ2
0. Using this

approximation along with (23) and (33), we can express
Pd under Rayleigh fading as

Pd ¼ Eh Q
η�μ1ffiffiffiffiffiffi

σ2
1

q
0
B@

1
CA

2
64

3
75

� Eh Q Q �1 Pfa
� 	þμ0�μ1

σ0

� � �

¼ EΔ½Q ðQ �1ðPfaÞ�ΔÞ�
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Fig. 2. Probability of false alarm versus sensing threshold of the FLOM
detector with N¼1000.
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¼
Z 1

0
Q ðQ �1ðPfaÞ�ΔÞpΔðΔÞ dΔ ð37Þ

where

Δ¼
XM
m ¼ 1

σ2
s pmðpm�1ÞCðpm�2;αmÞγðpm �2Þ=αm

m

2Mσ0
jhmj2 ð38Þ

pΔðΔÞ is the PDF of Δ, and Pfa is given by (20).
For the calculation of (37), the exact PDF pΔðΔÞ is

needed. We consider the channel gain hm for m¼ 1;…;M
as IID Rayleigh random variables with the PDF f hm ðhÞ ¼
ðh=σ2Þe�h2=2σ2

. It can be shown that the distribution of Δ is
given by [29]

pΔ Δ
� 	¼ ΔM�1

ðM�1Þ!ΔM
c

eð�Δ=ΔcÞ ð39Þ

where

Δc ¼
XM
m ¼ 1

σ2
s pmðpm�1ÞCðpm�2;αmÞγðpm �2Þ=αm

m

2Mσ0
E jhmj2
� �

ð40Þ
with E½jhmj2� ¼ σ2

h. By substituting (39) into (37), the
probability of detection of the FLOM detector for Rayleigh
fading channel is given by

Pd ¼
1ffiffiffiffiffiffi
2π

p
Z 1

0

Z 1

Q � 1ðpfaÞ�Δ
e� x2=2 dx

ΔM�1

ðM�1Þ!ΔM
c

eð�Δ=ΔcÞdΔ

ð41Þ
Finding a closed-form expression for Pd is difficult in
general. Thus, we consider the following special cases
and approximations to evaluate the integral in (41).

(1) M¼1: We have Δ¼ σ2
s pðp�1ÞCðp�2;αÞγðp�2Þ=αjhj2=

2σ0, Δc ¼ σ2
s pðp�1ÞCðp�2;αÞγðp�2Þ=ασ2

h=2σ0, and pΔðΔÞ ¼
ð1=ΔcÞeð�Δ=ΔcÞ. The corresponding probability of detection is
given by

Pd ¼
1ffiffiffiffiffiffi
2π

p
Δc

Z 1

0

Z 1

Q � 1ðpfaÞ�Δ
e� x2=2 dx eð�Δ=ΔcÞ dΔ ð42Þ

Now the double integration in (42) can be evaluated easily by
numerical means.

(2) M41: Here we study a special case where all the
SUs share the same parameters pm ¼ p and αm ¼ α in order
to simply the calculation. From (38) and (40), we have

Δ¼
XM
m ¼ 1

σ2
s pðp�1ÞCðp�2;αÞγðp�2Þ=α

2Mσ0
jhmj2 ð43Þ

and

Δc ¼
σ2
hσ

2
s pðp�1ÞCðp�2;αÞγðp�2Þ=α

2σ0
ð44Þ

where σ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCð2p;αÞγ2p=α�ðCðp;αÞγp=αÞ2Þ=MN

q
. With (43)

and (44) above, (41) can be easily evaluated numerically to
obtain Pd.

6. Numerical and simulation results

In this section, we present numerical and simulation
results to evaluate the performance of the FLOM detector
as opposed to the Cauchy detector.
6.1. Performance of the FLOM detector in non-fading
channels

Here, we investigate the performance of the FLOM
detector in terms of the probabilities of false alarm and
detection as well as of the deflection coefficient when the
communication channels between the PU and SUs at the
CR are fading-free, h1 ¼ h2 ¼⋯¼ hM ¼ 1. We assume that
the PU signal is Gaussian with zero-mean, variance σs

2
, and

the noises are IID SαS with dispersion γ¼1. The simulation
results are obtained based on 10,000 Monte Carlo runs
where the sample size is set to N¼1000, unless otherwise
specified.

Fig. 2 shows plots of the probability of false alarm
versus the sensing threshold for different values of α, p
and M, where M¼1 means a detection case involving one
SU only and M¼2 represents a cooperative detection with
two SUs. In the case of cooperative sensing, we have set
α1 ¼ 2; p1 ¼ 0:8 for SU1 and α2 ¼ 0:8; p2 ¼ 0:3 for SU2. The
curves for the probability of false alarm are obtained both
by simulation using (7) in a binary detection test, indicated
as “simulation”, and by evaluation of analytical expression
(20) indicated as “analysis”. Clearly, the theoretical results
agree well with the simulations for both the single SU and
the two-SU cooperative detection.

Fig. 3 shows the receiver operating characteristic (ROC)
curves of the FLOM detector for different values of noise
dispersion γ with B¼0 dB, 1 dB and 2 dB, where we have
set p¼0.4, α¼1,M¼1, GSNR¼0 dB. From Fig. 3, we can see
that the detection performance decreases with increasing
the degree of noise uncertainty. For example, for Pfa ¼ 0:1,
probability of detection is 88% when B¼0 dB, 70% when
B¼1 dB, and 45% when B¼2 dB.

Fig. 4 shows the probability of detection versus GSNR for
different values of noise dispersion γ with B¼0 dB,1 dB and
2 dB, where we have set p¼0.4, α¼1, M¼1, Pfa ¼ 0:1. From
Fig. 4, we can see that the detection performance decreases
with increasing the degree of noise uncertainty but increases
with increasing GSNR. For example, the probability of detec-
tion is 100% when GSNR¼5 dB, 88% when GSNR¼0 dB, and
0.17% when GSNR¼�10 dB with B¼0 dB.
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uncertainty with N¼1000, p¼0.4, α¼1, M¼1, GSNR¼0 dB.
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Fig. 5 shows the probability of detection of the pro-
posed FLOM detector as a function of GSNR for different
values of α, with comparison to that of the Cauchy detector
obtained by simulation using (7) and (6), respectively,
where Pfa ¼ 0:1, p¼0.3, and a single SU is assumed. It
can be seen that the probability of detection increases with
increasing the GSNR or the value of α. Moreover, our
proposed detector has a better detection performance than
the Cauchy detector under almost all levels of GSNR for
α¼1 and 0.5. For example, when GSNR¼�5 dB, Pfa ¼ 0:1
and α¼1, the probability of detection of our detector is
72%, but that of the Cauchy detector is 45% only, which
fails to meet the requirement of spectrum sensing. Note
that when α¼2, the detection probability of the FLOM
detector is lower than that of the Cauchy detector. For this
special case, where the noise Gaussian distribution, but we
could increase p towards p¼2 to increase Pd, while for the
Cauchy detector, Pd is fixed.

In the next experiment, we focus on the cooperative
sensing case with M¼2, and set the noise models of the
two SUs as α1 ¼ 2, α2 ¼ 0:8, respectively, and the detector
orders as 0op1 ¼ p2 ¼ poαmin=2, where αmin is the smal-
lest of the α values for the two SUs.

Fig. 6 shows the ROC curves of the FLOM detector for
different values of p and two values of GSNR (�10 dB and
�5 dB), as obtained by using simulation and (24). It is seen
that the FLOM detector performs better for smaller values of
p. For example, the probability of detection is nearly to 70%
with p¼0.1, but just 43% with p¼0.3, when GSNR¼�10 dB
and N¼5000.

Note that based on (7), and assuming that all the
observed samples are non-zero, the decision statistic yFLOM
approaches the fixed value of 1 when p is zero. Here, the
minimum value of p is set to 0.05. Fig. 7 plots the deflection
coefficient of the FLOM detector calculated using (31) when
the fractional lower order p varies within ½0:05;0:4Þ for two
different values of GSNR (0 dB and �5 dB). It is seen that
the deflection coefficient d(p) decreases as p increases, and
it approaches the maximum when p¼0.05.

Fig. 8 shows the relationship between the probability of
detection and the deflection coefficient for two different
values of GSNR (0 dB and �5 dB) based on (32) when
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Pfa ¼ 0:1. It can be seen that Pd increases as d(p) increases
in general. It is noted from Fig. 8 that the detection prob-
ability depends largely on the GSNR when Pfa is fixed.

Fig. 9 shows the relationship between the probability of
detection and p=αA ½0:1;0:5Þ for different SαS noises with
given α1 ¼ α2 ¼ α, when Pfa ¼ 0:1;N¼ 1000;M¼ 2, GSNR
¼�8 dB. It is seen that Pd increases as p=α decreases for
almost all given SαS except for Gaussian noise with α¼2,
which is consistent with the result in Fig. 7. In brief, as the
order pAð0;αmin=2Þ decreases, both d(p) and Pd increase
and thus the performance of the FLOM detector is greatly
improved. From Fig. 9, we can see that the FLOM detector
also exhibits good performance under Gaussian noise,
where Pd increases as p=α increases.

Fig. 10 shows the performances of the FLOM and
Cauchy detectors as the heaviness of the SαS noises tail
varies (i.e., characteristic exponent αA ½0:6;2�) for two
different values of GSNR (�5 dB and �8 dB). Here, the
detection probability is calculated using (32) for the FLOM
detector with p¼0.1 and p¼ 0:29o0:6=2 and using (6) for
the Cauchy detector when Pfa ¼ 0:1 and α1 ¼ α2 ¼ α. From
Fig. 10, it can be seen that as the heaviness of the tail of the
SαS noise decreases (α increases), both the FLOM detector
with p¼0.29 and the Cauchy detector give a better
performance. It can be seen that the detection probability
of p¼0.1 is higher than that of p¼0.29 when αA ½0:6;1:7Þ,
but lower when αA ½1:7;2�. However, the detection prob-
ability of the proposed detector is much better than that of
the Cauchy detector under almost all values of αA ½0:6;2�.

6.2. Performance of the FLOM detector in Rayleigh fading
channels

In this subsection, the performance of the FLOM detec-
tor is investigated against Rayleigh fading communication
channels.

We consider the channel gains hm to be constant during
spectrum sensing time with E½jhmj2� ¼ 1. In addition, we
assume that the noises are IID SαS with dispersion γm ¼ 1.
The simulation results are obtained based on 10,000 Monte
Carlo runs and the sample size is set to N¼10,000, unless
otherwise specified.
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In Fig. 11, the ROC curves of FLOM and Cauchy detectors
for different values of α are shown when M¼ 1;N¼
10;000; p¼ 0:2 and GSNR¼�10 dB. The simulation results
show that at small α values, the FLOM detector using (42)
gives a better performance than the Cauchy detector using
(6). Also, as α decreases, the probability of detection of the
FLOM detector decreases much more slowly than that of
the Cauchy detector. In particular, when Pfa ¼ 0:1 and α
changes from 2 to 0.5, Pd of the Cauchy detector decreases
from 90% to 70%, while Pd of the FLOM detector decreases
from 90% to 85% only, meaning that the FLOM detector
provides a more robust spectrum sensing in CR systems
under the SαS noise.

Next, we investigate the performance of the FLOM
detector for different numbers of samples and SUs. In
Fig. 12, the detection probability of the FLOM detector is
shown as a function of the number of samples for p¼0.2,
α¼1 and Pfa ¼ 0:1. It can be seen that, the detection
probability increases as N and M increase. Especially, when
GSNR¼�15 dB and N¼20,000, Pd is 33% for M¼1, 67%
for M¼2 and 97% for M¼4, indicating that multi-user
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cooperative sensing can improve the detection perfor-
mance significantly.
7. Conclusion

We have studied cooperative spectrum sensing in non-
Gaussian noise environments that can be modeled by
symmetric α-stable distribution. We have focused on a
scenario where the PU signal and the Rayleigh fading
channel gains are unknown to the CR users and the noise
does not have a compact analytical form of PDF. A new
cooperative scheme for spectrum sensing in symmetric α-
stable noise has been derived in the form of the proposed
FLOM detector. Numerical and simulation results have
shown that the proposed FLOM detector achieves a much
better performance than the traditional Cauchy detector
does, and the proposed cooperative scheme improves
further the detection probability which makes the FLOM
detector more useful when the GSNR is very small.
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Appendix A. Mean and variance of yFLOM under H1

Here we derive the mean and variance of yFLOM under
H1 for fading channels, since the non-fading channels can
be regarded as a special case of the fading channels with
hm ¼ 1, for m¼ 1;2;…;M. Under H1, the mean of yFLOM for
fading channels can be expressed as

μ1 ¼ E½yFLOM H1j � ¼ 1
MN

XM
m ¼ 1

XN
n ¼ 1

E jhms nð Þþwm nð Þjpm� � ð45Þ

Recalling the assumption in (1) that the PU signal s(n), the
channel gains hm and the SαS noise wmðnÞ are mutually
independent and IID processes, we have E½PN

n ¼ 1 jzmðnÞjpm� ¼
NE½jzmðnÞjpm�, based on which (45) can be rewritten as

μ1 ¼ E yFLOM H1j ��
¼ 1
M

XM
m ¼ 1

E jhms nð Þþwm nð Þjpm� �
: ð46Þ

We now use the generalized binomial theorem [30] to
approximate jhmsðnÞþwmðnÞjpm , leading to

μ1 ¼
1
M

XM
m ¼ 1

E

jwm nð Þjpm þpm hms nð Þ jwm nð Þjpm �1

����
þpmðpm�1Þ

2!
jhms nð Þj2jwm nð Þjpm �2þ⋯

�
ð47Þ

Under the assumption of low GSNR, we have jhmsðnÞj
5 jwmðnÞj. By ignoring the higher-order terms, noting that
hm remains constant during the sensing period, s(n) has zero
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mean, and using (9), we can obtain

μ1 �
1
M

XM
m ¼ 1

E jwm nð Þjpm þpmðpm�1Þ
2!

jhms nð Þj2jwm nð Þjpm �2
 �

¼ μ0þ
1
2M

XM
m ¼ 1

pm pm�1
� 	

E jhms nð Þj2jwm nð Þjpm �2� �

¼ μ0þ
σ2
s

2M

XM
m ¼ 1

jhmj2pm pm�1
� 	

C pm�2;αm
� 	

γðpm �2Þ=αm

¼ μ0þ
XM
m ¼ 1

β0;mjhmj2 ð48Þ

where

β0;m ¼ σ2
s pmðpm�1ÞCðpm�2;αmÞ

2M
γðpm �2Þ=αm
m :

The variance of yFLOM under H1 can be calculated as

σ2
1 ¼ E½ðy2FLOM�E2yFLOMÞjH1� ð49Þ

Using (1) and (7) in (49), we have

σ2
1 ¼ E

1
MN

XM
m ¼ 1

XN
n ¼ 1

jhms nð Þþwm nð Þjpm
" #28<

:
9=
;

� 1
MN

XM
m ¼ 1

XN
n ¼ 1

E jhms nð Þþwm nð Þjpm� �( )2

ð50Þ

By using the independence assumption for the PU signal
s(n), the channel gains hm and the SαS noise wmðnÞ, we
have E½PN

n ¼ 1 jzmðnÞjpm � ¼NE½jzmðnÞjpm �. Applying this prop-
erty to (50) yields

σ2
1 ¼

1
ðMNÞ2

N
XM
m ¼ 1

E½jhmsðnÞþwmðnÞj2pm �
(

þE

2
4 XM

m;i ¼ 1
ma iorna j

XN
n;j ¼ 1

jhms nð Þþwm nð Þjpm jhis nð Þþwi jð Þjpi
3
5

�N
XM
m ¼ 1

E2 jhms nð Þþwm nð Þjpm� �

�
XM
m;i ¼ 1

ma iorna j

XN
n;j ¼ 1

E½jhms nð Þþwm nð Þjpm jhis nð Þþwi jð Þjpi �g

¼ 1

M2N

XM
m ¼ 1

E½jhmsðnÞþwmðnÞj2pm ��
XM
m ¼ 1

E2½jhmsðnÞþwmðnÞjpm �
( )

ð51Þ
Now we use the generalized binomial theorem to approx-
imate jhmsðnÞþwmðnÞj2pm and jhmsðnÞþwmðnÞjpm , leading to

σ2
1 ¼

1

M2N

XM
m ¼ 1

E

"
jwmðnÞj2pm þ2pmjhmsðnÞjjwmðnÞj2pm �1

(

þ2pmð2pm�1Þ
2!

jhms nð Þj2jwm nð Þj2pm �2þ⋯

#

�E2
"
wm nð Þjpm þpm hms nð Þ jwm nð Þjpm �1

������
þpmðpm�1Þ

2!
jhms nð Þj2jwm nð Þjpm �2þ⋯

#)
ð52Þ

Under the assumption of low GSNR, we have jhmsðnÞ
j5 jwmðnÞj. By ignoring the higher-order terms and noting
that hm remains constant during the sensing period and
s(n) has zero mean, we can obtain

σ2
1 �

1

M2N

XM
m ¼ 1

E jwm nð Þj2pm þ2pmð2pm�1Þ
2!

jhms nð Þj2jwm nð Þj2pm �2
 �(

�E2 jwm nð Þjpm þpmðpm�1Þ
2!

jhms nð Þj2jwm nð Þjpm �2
 ��

¼ 1

M2N

XM
m ¼ 1

fE jwm nð Þj2pm� ��E2 jwm nð Þjpm� �
þσ2

s jhmj2pmð2pm�1ÞE½jwmðnÞj2pm �2�
�σ2

s jhmj2pmðpm�1ÞE½jwmðnÞjpm jwmðnÞjpm �2�g ð53Þ
Using (9) and (14) into (53), we have

σ2
1 � σ2

0þ
σ2
s

M2N

XM
m ¼ 1

jhmj2fpm 2pm�1
� 	

C 2pm�2;αm
� 	

γ2ðpm �1Þ=αm
m

�pm pm�1
� 	

C pm;αm
� 	

γðpmÞ=αm
m C pm�2;αm

� 	
γðpm �2Þ=αm
m g

¼ σ2
0þ

σ2
s

M2N

XM
m ¼ 1

β1;mjhmj2 ð54Þ

where

β1;m ¼ pmð2pm�1ÞCð2pm�2;αmÞγ2ðpm �1Þ=αm
m

�pmðpm�1ÞCðpm;αmÞγpm=αm
m Cðpm�2;αmÞγðpm �2Þ=αm

m :

ð55Þ

Obviously, the mean and variance given by (48) and
(54), respectively, also apply to non-fading channel as long
as hm is replaced by 1.
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