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a b s t r a c t 

The errors-in-variables (EIV) system model has been widely studied under the assumption that both in- 

put and output signals are contaminated with noise. For the in-network distributed linear system iden- 

tification problem under the EIV model, the total least-squares (TLS) approach which has the ability to 

minimize perturbations in both input and output signals offers an efficient solution. In this paper, we 

propose an improved diffusion total least-squares algorithm, where the estimated (i.e. filtered) value at 

each node is passed through a first order recursive filter with adjustable parameter in order to enhance 

the identification performance. The resulting outputs from all the nodes are subsequently used to adapt 

the unknown linear system weight vector in real-time through a cooperative diffusion scheme based on 

the adapt-then-combine (ATC) policy. We also present robust adaptive strategies to tune various internal 

system parameters, such as the steps sizes, normalization factors, etc., under practical conditions of oper- 

ation. The convergence behavior of the adaptive weight vector and related system parameters is analyzed 

by employing Lyapunov stability theory. Simulation results for various distributed system identification 

scenarios demonstrate the effectiveness of the proposed algorithm. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Over the past decade, several adaptive estimation algorithms

ave been proposed to tackle the in-network distributed linear

ystem identification problem, whereby individual nodes take

dvantage of local measurements and information exchange with

heir neighbors to cooperatively estimate an unknown regression

eight vector [1,2] . Compared with the conventional centralized

stimation approach, distributed estimation does not need a fusion

enter; consequently, it consumes less energy and communication

esources and is therefore particularly well-suited for wireless

ensor network applications. Moreover, this method is flexible

nd robust to link failures, which is especially important for large

ensor networks. Due to these advantages, distributed estimation

as been successfully applied to various in-network estimation

roblems, e.g., active learning, frequency estimation, and decision-

aking [3–6] . Three different strategies are commonly used for

he implementation of distributed estimation algorithms, namely:

he incremental [7–9] , consensus [10–12] , and diffusion strategies

13–16] . Among these, the diffusion strategy demonstrates the

ost reliable performance regardless of the network topology
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nd as such, it has been used to derive many general purpose

istributed adaptive estimation algorithms [17–22] . In addition,

any other diffusion algorithms have been developed for specific

pplications, such as tracking and localizaton of mobile terminals

n cellular networks [23–26] . 

In the context of system identification, the least squares (LS)

lgorithm has been introduced mainly for the case where only the

inear system output is affected by noise [27] . However, when both

he input (excitation) and output (desired) signals are corrupted by

dditive noise, the LS algorithm can only achieve a suboptimal so-

ution [28] . Yet, this situation is encountered in many areas of sci-

nce and engineering, such as control engineering, signal process-

ng, and econometrics [29–32] . Studies in these areas have shown

hat the errors-in-variables (EIV) model can describe this type of

ystem more accurately [29–32] . 

The bias-compensation (BC) method is an effective means for

IV modeling [33] . In particular, by exploiting statistical proper-

ies of the input noise, several unbiased estimation algorithms have

een derived for the linear adaptive filters [33–38] . In [34] , the

onsistent normalized least mean square (CNLMS) algorithm was

roposed for noisy inputs. Nevertheless, the input noise is not

ully compensated by the CNLMS algorithm owing to its use of a

ounded estimate of the input noise variance. The BC method has

lso been extensively investigated for the in-network distributed

ystem identification of EIV models [39–41] , including the BC-
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Fig. 1. EIV system identification model for node k . 
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1 For simplicity, we shall refer to this model as the ‘diffusion EIV model’ in the 

sequel. 
2 Unless otherwise indicated, scalar quantities take values in the set of real num- 

ber, R . 
diffusion recursive least squares (BC-DRLS) [39] and BC-diffusion

least mean square (BC-DLMS) algorithms [41] . 

Following a different direction, the error whitening criterion

(EWC) method was proposed for system identification with white

noise contaminated inputs [42–44] . The EWC method enforces zero

autocorrelation of the error signal beyond a certain lag. Hence, it

can provide unbiased parameter estimates in the presence of ad-

ditive white noise with arbitrary power in both system input and

output. However, the performance of EWC is not satisfactory when

the noise is temporally correlated or when the unknown system

introduces nonlinear distortions. Several avenues have been pur-

sued to overcome these drawbacks [45–48] . In [47] , the modi-

fied EWC algorithm was proposed, which can consistently estimate

the parameters of a linear system in the presence of colored in-

put noises, without the need to compute the input noise covari-

ance matrix. The algorithm in [48] offers an analytical solution

for the extension of the EWC to the second-order Volterra sys-

tem, where the latter is expressed as an augmented linear system

model. 

The total least squares (TLS) approach is a well-known alterna-

tive to solve the system identification problem for the EIV system

model [29–32,49,50] . The research on TLS dates back to the1980 ′ s,

and so far a large number of TLS-based algorithms have been

proposed [28,51–53] . TLS algorithms aim to minimize the sum of

squared “total” errors needed to best fit the input and output sig-

nals. Because they take into account observational errors in both

types of variables, they achieve a better performance than the LS

algorithms in EIV modeling [28] . In previous studies focusing on

the case of single-node processing devices, the TLS approach has

been applied to the solution of various problems, such as the lo-

calization of wideband signals [54] and system identification [49] .

Recently, extension of the TLS formulation to the problem of in-

network distributed system identification has been considered by

several researchers [55–61] . In [55] and [56] , two consensus-based

TLS algorithms were proposed, which utilize eigendecomposition

of the augmented data covariance matrix and the inverse power

iterations (IPI), respectively; unfortunately, these algorithms suffer

from relatively high computational complexity, which limits their

applications. To surmount this shortcoming, the diffusion gradient-

descent total least squares (D-GDTLS) algorithm was proposed [57] .

Unlike the BC method, the D-GDTLS algorithm does not require a

priori information about the input noise statistics. In addition, its

performance is superior to that of the BC-DLMS algorithm for in-

network system identification under the EIV model [57] . 

It is worth noticing that the above-mentioned algorithms do

not exploit the filter output as a useful feedback mechanism to fur-

ther improve estimation. In fact, the feedback strategy can improve

either the convergence rate or the misadjustment of adaptive algo-

rithms, and as such, it has attracted much attention with fruitful

applications in the areas of kernel adaptive filters [62–65] , and ac-

tive noise control [66] . Nonetheless, in these works and other sim-

ilar references on the topic, the solutions rely on the use of single-

node processing devices while little attention is paid to in-network

distributed processing solutions. 

Motivated by these considerations, in this paper, we propose a

new diffusion-based TLS algorithm with multi-node feedback for

in-network distributed system identification under the EIV model.

This approach makes it possible to take advantage of prior out-

put information from the EIV system, thereby enabling the newly

proposed algorithm to achieve a smaller misadjustment in steady-

state. Moreover, robust adaptive strategies for various internal sys-

tem parameters (step-sizes, normalization factors, etc.) are pro-

vided to facilitate its practical use. We analyze the stability and

convergence of the weight vector and system parameters for the

proposed algorithm according to Lyapunov stability theory (LST).

Simulation results for distributed estimation of EIV system mod-
ls show that the proposed algorithm has superior performance as

ompared with existing algorithms. 

The paper is organized as follows. In Section 2 , we formu-

ate the in-network distributed linear system identification prob-

em under the EIV model. In Section 3 , we present the proposed

iffusion-based TLS algorithm with feedback in detail, including

obust adaptive strategies for on-line tuning of internal parameters.

n Section 4 , the computational complexity of the proposed algo-

ithm is compared with that of the DLMS and D-GDTLS algorithms.

n Section 5 , the convergence analysis of the proposed algorithm is

erformed based on LST. Results of numerical simulations are pre-

ented in Section 6 to illustrate the effectiveness and advantages of

he proposed algorithm. Finally, Section 7 presents the conclusions

nd future lines of research. 

Notation : In this paper, E( · ) denotes the mathematical expecta-

ion, ( · ) T denotes the transposition, ‖ · ‖ p stands for the l p norm of

ts argument, and diag{ · } represents a diagonal matrix with scalar

r matrix entries indicated by the argument. 

. Problem formulation 

Consider a sensor network composed of N processing nodes dis-

ributed over a geographic area, where the nodes cooperate to per-

orm in-network distributed system identification. Under the EIV

odel [60] , as shown in Fig. 1 , the observed input and output sig-

als to the unknown system at node k ∈ { 1 , . . . , N} , are both con-

aminated by noise. Specifically, it is assumed that at time instant

 ∈ N , node k has access to the noisy observations { ̆d k,i , ŭ k,i } , as

ollows 1 , 2 : 

d̆ k,i = d k,i + v k,i 

ŭ k,i = u k,i + n k,i 

(1)

here d k,i = u 

T 
k,i 

w 

o is the scalar output of the unknown system, w 

o 

s an M × 1 unknown parameter vector to be estimated, u k, i is the

 × 1 input signal vector to the unknown system (regression data)

odeled as a zero-mean random vector, v k, i is a zero-mean addi-

ive Gaussian noise, d̆ k,i is the observed noisy output signal (de-

ired signal), n k, i is a zero-mean Gaussian noise vector, and ŭ k,i is

he observed noisy input signal vector. Moreover, u k, i , n k, i and v k, i 

re assumed to be statistically independent from each other. For

 k,i = 0 , (1) reduces to the standard data LS system model [27] . 

Different from the LS-based algorithms, the cost function of the

LS algorithm in a diffusion network is formulated as a linear com-

ination of local weighted mean-squared total errors [57] 

 

loc 
k (w) = 

∑ 

l∈ N k 
a l,k E 

[
e 2 l,i 

]
(2)

here N k is the index set of nodes in the neighborhood of node k ,

nd a l, k ≥ 0 are non-negative real constants satisfying the following
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Fig. 2. Schematic diagram of the proposed DTLS algorithm with feedback at node k . At time i , the algorithm starts with the observation and exchange of data (left) and 

proceeds through various steps are indicated. 
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onditions 

 l,k = 0 if l / ∈ N k, and 

N ∑ 

k =1 

a l,k = 1 . (3) 

he total error at time i is defined as [53] 

 l,i = 

d̆ l,i − ŭ 

T 
l,i 

w √ 

w 

T �−2 
l 

w + ε −2 
0 ,l 

(4) 

here �l = diag 
{
ε 1 ,l , . . . , ε M,l 

}
is a nonsingular weighting matrix

nd ε 0 ,l , . . . , ε M,l are the positive constants. 

Several TLS-based adaptive algorithms have been developed to

olve the system identification problem under the EIV model [55–

7] . Among these, the D-GDTLS algorithm achieves the best perfor-

ance with low computational complexity. However, the weight

daptation of the D-GDTLS algorithm only employs the current ob-

ervations { ̆d k,i , ̆u k,i } . To further improve the performance of this

lgorithm, it is natural to consider designing a novel DTLS algo-

ithm with a feedback strategy. 

. Proposed algorithm 

As stated in Section 1 , the feedback scheme can be used to im-

rove the estimation performance and accelerate the convergence

ate of adaptive filters for time series prediction [63] . The diffu-

ion EIV model has gained importance in recent years, but no work

as been reported addressing the distributed adaptation with feed-

ack. Fig. 2 summarizes the schematic diagram of the proposed

TLS algorithm with multi-node feedback, where w k, i and γ k, i re-

pectively denote the estimated weight vector and feedback weight

t node k and discrete-time i . In this algorithm, a first-order (or

ingle-step) feedback mechanism is employed at each node com-

rising the network. 

Define the output signal of the adaptive filter at node k as 

 k,i = ŭ 

T 
k,i w k,i + γk,i y k,i −1 (5)

here the first term on the right-hand side (RHS) is the conven-

ional output signal according to the EIV model and the second

erm is the feedback (self-recurrent part) from the node k which

xploits the previous output y k,i −1 , as represented by the unit de-

ay operator z −1 in Fig. 2 . Following the developments in [63,65] ,

here exists an optimal feedback weight γ o 
k,i 

such that with proba-

ility one, y o 
k,i 

= ŭ 

T 
k,i 

w 

o + γ o 
k,i 

y k,i −1 holds, where y o 
k,i 

= d k,i is the de-

ired signal. Consequently, the feedback strategy can improve the

onvergence rate or the misadjustment of adaptive algorithms, as

reviously evidenced in the areas of kernel adaptive filter [63] and
ctive noise control [66] . Another motivation for introducing this

ptimal feedback is that it enables us to reveal the link between

he total error signal at node k and the other key variables in the

eedback strategy, thereby facilitating the derivation of the final

TLS algorithm. 

Specifically, the total error signal of the proposed algorithm can

e expressed as 

e k,i � ϑ k,i 

(
d̆ k,i − y k,i 

)
= ϑ k,i 

(
ŭ 

T 
k,i 

(
w 

o − w k,i 

)
+ (γ o 

k,i − γk,i ) y k,i −1 + v k,i 

) (6) 

here we define 

 k,i = 

1 √ 

w 

T 
k,i 

�−2 
k 

w k,i + ε −2 
0 ,k 

. (7) 

he proposed DTLS algorithm with multi-node feedback seeks the

nknown parameter vector w 

o by minimizing the following global

ost function: 

J glo (w, γ ) = 

N ∑ 

k =1 

J loc 
k (w, γ ) (8) 

here J loc 
k 

(w, γ ) is the local cost function associated with node k ,

hat is, 

 

loc 
k (w, γ ) = 

1 

2 

E 

(
e 2 k,i 

)
. (9)

daptive learning is applied to both the weight vector w and feed-

ack weight γ parameters by minimizing the global cost function

 

glo 

k 
(w, γ ) . In particular, using the gradient-descent method, these

arameters can be updated as follows: 

 i +1 = w i − η

[ 

N ∑ 

k =1 

∇ w i 
J loc 
k ( w, γ ) 

] 

(10) 

i +1 = γi − μ

[ 

N ∑ 

k =1 

∇ γi 
J loc 
k ( w, γ ) 

] 

(11) 

here η and μ are the corresponding (positive) step sizes.

qs. (10) and (11) are derived from a centralized learning princi-

le (steepest descent) to iteratively minimize J glo ( w , γ ). In a tra-

itional centralized solution, all the observations are collected and

rocessed in a fusion center. This mode of operation requires large

mounts of energy and communication resources, which may pro-

ibit its practical applications [57,60] . Furthermore, the gradient-

escent method needs to select suitable values of the step sizes

nd in many cases, several other operating parameters need to be
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specified. As a result, the performance of such an algorithm be-

comes highly dependent on the parameter selection. To overcome

these limitations, we focus on the in-network distributed solution

in this paper. Besides, we will develop robust adaptive strategies

for the proposed algorithm in order to tackle the parameter selec-

tion problem. 

3.1. Weight adaptation 

In the multi-node feedback scheme, the weight vector w k, i and

the feedback weight γ k, i will be adapted separately by using their

own gradient information. To begin with, the error signal in (6) can

be rewritten as 

e k,i = ϑ k,i 

[ 
−

(
ŭ 

T 
k,i ˜ w k,i + γk,i y k,i −1 

)
+ γ o 

k,i y k,i −1 + v k,i 

] 
= − ξk,i + �

γ
k,i 

(12)

where the weight error vector is defined as 

˜ w k,i � w k,i − w 

o , (13)

the a priori error is defined as 

ξk,i � ϑ k,i 

(
ŭ 

T 
k,i ˜ w k,i + γk,i y k,i −1 

)
, (14)

and the equivalent disturbance (which reduces the error in the

feedback process) is defined as 

�
γ
k,i 

� ϑ k,i 

[
γ o 

k,i y k,i −1 + v k,i 

]
. (15)

The error signal can also be expressed in terms of the feedback

weight error as 

e k,i = −ς k,i + �w 

k,i (16)

where we define 

ς k,i � ϑ k,i y k,i −1 ̃  γk,i (17)

the feedback weight error is defined as 

˜ γk,i � γk,i − γ o 
k,i (18)

and the equivalent disturbance �w 

k,i 
is defined as 

�w 

k,i � ϑ k,i 

[
−ŭ 

T 
k,i ˜ w k,i + v k,i 

]
. (19)

Borrowing from the field of artifical neural networks, let use

denote by D k ( i ) the hybrid derivative of the output y k, i with respect

to the weight vector, which can be computed as [62] 

D k (i ) = ∇ w k,i 
y k,i 

= 

∂y k,i 

∂w k,i 

+ βk (i ) 
∂y k,i 

∂y k,i −1 

∂y k,i −1 

∂w k,i 

. 
(20)

In this expression, βk ( i ) is the so-called hybrid learning rate of

D k ( i ), which serves to constrain the recurrent gradient term, i.e.,
∂y k,i 

∂y k,i −1 

∂y k,i −1 

∂w k,i 
. We note that the hybrid derivative of output y k, i is

linearly related to the previous derivative through the recurrent

gradient term. This makes it possible to adapt the gradient infor-

mation in a recursive manner by reusing the past gradient infor-

mation [62,63] . Upon substitution of w k, i by w k,i −1 in the second

term of (20) and using (5) , we obtain 

D k (i ) ≈ ∂y k,i 

∂w k,i 

+ βk (i ) 
∂y k,i 

∂y k,i −1 

∂y k,i −1 

∂w k,i −1 

= ŭ k,i + βk (i ) γk,i D k (i − 1) . 

(21)

The rationality of this approximation is based on the slow time-

variation lemma [67] : If the step size (learning rate) is small, the

time variation of w k, i is also slow. Such an approximation has

been used advantageously in [63,64] . Similarly, we can obtain the

derivative of the output y k, i with respect to the feedback weight

as 
 k (i ) = ∇ γk,i 
y k,i 

= 

∂y k,i 

∂γk,i 

+ ρk (i ) 
∂y k,i 

∂y k,i −1 

∂y k,i −1 

∂γk,i 

≈ ∂y k,i 

∂γk,i 

+ ρk (i ) 

∂y k,i 

∂y k,i −1 

∂y k,i −1 

∂γk,i −1 

= y k,i −1 + ρk (i ) γk,i S k (i − 1) (22)

here ρk ( i ) is the learning rate of S k ( i ), which is introduced to con-

train the adaptation of the recurrent gradient information. 

Substituting (20) and (22) into (10) and (11) , respectively, the

daptation rules for w k, i and γ k, i are obtained as 

 k,i +1 = w k,i −
ηk (i ) 

ˆ � k (i ) 
∇ w k,i 

J loc 
k (w, γ ) 

= w k,i + 

ηk (i ) 

ˆ � k (i ) 
e k,i 

∂( ϑ k,i ( ̆d k,i − y k,i )) 

∂w k,i 

≈ w k,i + 

ηk (i ) 

� k (i ) 
e k,i ∇ w k,i 

y k,i 

= w k,i + 

ηk (i ) 

� k (i ) 
e k,i 

[
ŭ k,i + βk (i ) γk,i D k (i − 1) 

]
, (23)

k,i +1 = γk,i −
μk (i ) 

ˆ τk (i ) 
∇ γk,i 

J loc 
k (w, γ ) 

= γk,i + 

μk (i ) 

ˆ τk (i ) 
e k,i 

∂( ϑ k,i ( ̆d k,i − y k,i )) 

∂ γk,i 

≈ γk,i + 

μk (i ) 

τk (i ) 
e k,i ∇ γk,i 

y k,i 

= γk,i + 

μk (i ) 

τk (i ) 
e k,i 

[
y k,i −1 + ρk (i ) γk,i S k (i − 1) 

]
(24)

here ηk ( i ) and μk ( i ) are the step sizes, and ˆ � k (i ) , ϱk ( i ), ˆ τk (i )

nd τ k ( i ) are normalization factors needed to prevent the so-called

anishing cone (or vanishing radius) problem with adaptive control

ystems [68] . In turn, proper adjustment of these parameters en-

ures convergence towards the optimal weights [62,69] . These pa-

ameters will be discussed in further details in Section 3.2 . For ease

f calculation, we assume that the derivatives of ϑk, i w.r.t. to w k, i 

nd γ k, i are nearly zero; and we also absorb the residual factor

k, i in the parameters ϱk ( i ) and τ k ( i ) in (23) and (24) , respectively.

uch assumptions are reasonable, since the range of permissible

alues for ϑk, i is small, i.e. this quantity can be roughly consid-

red as a constant. For instance, under the simulation conditions

f Example 2 , its values fluctuates around 0.7. 

To reduce the communication and computational requirements

t each time instant, we here consider the diffusion strategy over

he network. In [18] , the adapt-then-combine (ATC) and combine-

hen-adapt (CTA) strategies were developed for distributed param-

ter estimation, where the ATC-based algorithm outperforms the

TA-based one. Motivated by these facts, we propose the ATC-

ased DTLS algorithm with multi-node feedback scheme. To this

nd, let us introduce intermediate estimates of the weight vector

nd the feedback weight, which we denote as ϕk, i and ψ k, i re-

pectively. Under the ATC assumption with linear combination, the

riginal steepest descent type of iterations in (23) and (24) are

ach transformed into two step sequence of operations. Specifi-

ally, in the first step, the intermediate estimates are updated as 

 k,i +1 = ϕ k,i + 

ηk (i ) 

� k (i ) 

∑ 

l∈ N k 
a l,k e l,i D l (i ) (25)

 k,i +1 = ψ k,i + 

μk (i ) 

τk (i ) 

∑ 

l∈ N k 
a l,k e l,i S l (i ) . (26)
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eplacing the intermediate estimates ϕk, i and ψ k, i in (25) and

26) by the desired estimates from the previous steps, i.e. w k, i and

k, i respectively, we have 

 k,i +1 = w k,i + 

ηk (i ) 

� k (i ) 

∑ 

l∈ N k 
a l,k e l,i D l (i ) (27)

 k,i +1 = γk,i + 

μk (i ) 

τk (i ) 

∑ 

l∈ N k 
a l,k e l,i S l (i ) . (28)

uch substitutions are reasonable since at a given time instant i ,

he weight parameters w k, i and γ k, i , contain more information

han the corresponding intermediate estimates ϕk, i and ψ k, i , and

herefore can enhance the estimation performance of the proposed

lgorithm. Furthermore, these substitutions avoid the initialization

f the new parameters [18] . Then, in the second step, the final

eight vector and feedback weight are estimated through linear

ombinations as follows, 

 k,i +1 = 

∑ 

l∈ N k 
c l,k ϕ l,i +1 (29) 

k,i +1 = 

∑ 

l∈ N k 
c l,k ψ l,i +1 (30) 

here c l, k ≥ 0 are non-negative real constants satisfying 

 l,k = 0 if l / ∈ N k, and 

N ∑ 

k =1 

c l,k = 1 . (31) 

.2. Robust adaptive parameter selection 

Referring to (21) - (22) and (27) - (28) , the normalization factors

k ( i ) and τ k ( i ), the step size of the weight vector ηk ( i ), the step

ize of the feedback weight μk ( i ), the learning rate βk ( i ) of D k ( i ),

nd the learning rate ρk ( i ) of S k ( i ), play an important role in the

roposed algorithm. Indeed, the DTLS algorithm with multi-node

eedback strategy may not work reliably since it depends on sev-

ral parameters that are not simple to tune in practice. To over-

ome this limitation, suitable parameter selection rules are devel-

ped in this subsection that are easy to implement and lead to

ood performance for distributed system identification under the

IV system model. 

election of step sizes 

To overcome the inherent compromise between fast conver-

ence rate and small misadjustment, an adaptive approach to up-

ate the step size is warranted. Motivated by [63] , the following

daptation rule is considered 

k (i + 1) = 

{ 

3 ( 1+ 1 
i ) 

i 

2 m 

if e 2 
k,i 

≥ g 2 + η2 
k 
(i −1) q k,i −1 e 

2 
k,i −1 

1 
ϑ k,i 

−ηk (i ) q k,i 

κ otherwise 

(32) 

here m is a positive constant, κ is a small positive constant (close

o zero), g = ι is the threshold parameter, ι is a positive constant,

 k,i = ϑ k,i v k,i − ς k,i , and q k,i = 

‖ D k (i ) ‖ 2 2 
� k (i ) 

is the regularization factor.

n a similar way, the adaptation of μk ( i ) can also be obtained by

odifying (32) as 

k (i + 1) = 

{ 

3 ( 1+ 1 
i ) 

i 

2 m 

if e 2 
k,i 

≥ s 2 + μ2 
k 
(i −1) r k,i −1 e 

2 
k,i −1 

1 
ϑ k,i 

−μk (i ) r k,i 

κ otherwise 

(33) 

here r k,i = 

| S 2 
k 
(i ) | 

τk (i ) 
is the regularization factor, and s = g is the

hreshold parameter. 

emark 1. The adaptation rules in (32) and (33) are based on the

ain concept that large error values require a large step size κ ,
hile small error values require a small step to obtain a small

isadjustment. Specifically, for large values of the error e k, i , the

hoice 3(1 + 1 /i ) i / 2 m results in a large value of the step size

uring the initial stage of the algorithm. The two thresholds pa-

ameters s and g allow to achieve the desired trade-off between

he convergence rate and estimation accuracy. Large values of

hese parameters lead to fast convergence speed and large mis-

djustment. In contrast, small values provide a very good estima-

ion accuracy (in a stationary environment) but slow convergence

ate. 

elections of normalization factors 

The normalization factors in the proposed algorithm are de-

igned based on the methods introduced in [62,63] . Specifically,

hey are adjusted at each iteration according to 

 k (i ) = max 
{
� k (i − 1) , υ� k (i − 1) + max 

(
ρ̄, ‖ 

D k (i ) ‖ 

2 
2 

)}
(34) 

k (i ) = max 
{
τk (i − 1) , λτk (i − 1) + max 

(
τ̄ , S 2 k (i ) 

)}
(35) 

here υ and λ are the forgetting factors, and ρ̄ and τ̄ are two

ositive constants. 

elections of learning rates 

The hybrid learning rate of the proposed algorithm is used to

ontrol the feedback information, which can be computed as fol-

ow: 

k (i ) = 

{
μβ sign 

{
z D 

k 
(i ) 

}
if | e k,i | < 

| e k,i −1 ηk (i −1) | 
h̄ + | γk,i | 

0 otherwise 
(36) 

here μβ > 0 is a scalar, z D 
k 
(i ) = ηk (i − 1) γk,i e k,i e k,i −1 , � is the

mall positive constant, and sign{ · } is the sign function. Likewise,

k ( i ) can be computed as follow: 

k (i ) = 

{
μρ sign 

{
z S 

k 
(i ) 

}
if | e k,i | < 

| e k,i −1 μk (i −1) | 
h̄ + | γk,i | 

0 otherwise 
(37) 

here μρ > 0 is a scalar and z S 
k 
(i ) = μk (i − 1) γk,i e k,i e k,i −1 . The

ain idea for designing the learning parameters is to allow the

atter to switch between positive and negative values according to

he instantaneous error, and use a scalar parameter (amplification

arameter, μβ and μρ ) to further adjust adaptation. 

.3. Choice of weighting factor 

The choice of the weighting factors εl, k in the proposed al-

orithm is application-specific. For the sake of simplicity, in this

ork, we set �k = I in (7) [50,53] . If prior knowledge of the in-

ut noise variance σ 2 
u,k 

and the output noise variance σ 2 
d,k 

can be

btained, ε0, k can be calculated as ε 0 ,k = 

σu,k 
σd,k 

[50,53] . 

Consider a more realistic situation where the input noise vari-

nce σ 2 
u,k 

and the output noise variance σ 2 
d,k 

are different for each

ode k . Moreover, the exact values of noise variances are unknown

nd σ 2 
u,k 

is assumed to be comparable to σ 2 
d,k 

. In this case, we can

oughly set 

 0 ,k = 1 (38) 

o avoid the effect brought by the inequality of the input and out-

ut noise variances [53] . 

The proposed DTLS algorithm with multi-node feedback for dis-

ributed linear system identification is summarized in Table 1 . 

. Comparisons of computational complexity 

In this section, we compare the computational complexity of

he proposed algorithm with that of the DLMS and D-GDTLS
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Table 1 

Summary of the algorithm. 

Algorithm 1 : Diffusion TLS algorithm with multi-node feedback 

Initialization : 

Initialize w k , 0 for each node k 

Chose non-negative real coefficients { a l, k , c l, k } 

Initialize ι, m, κ , υ, λ, ρ̄, τ̄ , μβ and μρ

Adaptation : 

1) Compute the output signal at node k : 

y k,i = ŭ T 
k,i 

w k,i + γk,i y k,i −1 

2) Compute the error signal at node k : 

e k,i = 

d̆ k,i −y k,i √ 
w T 

k,i 
�−2 

l 
w k,i + ε −2 

0 ,l 

3) Compute the hybrid derivatives D k ( i ) and S k ( i ): 

Use (32), (34) and (36) to adapt ηk ( i ), ϱk ( i ), and βk ( i ) 

D k (i ) = ŭ k,i + βk (i ) γk,i D k (i − 1) 

Use (33), (35) and (37) to adapt μk ( i ), τ k ( i ), and ρk ( i ) 

S k (i ) = y k,i −1 + ρk (i ) γk,i S k (i − 1) 

4) Update the intermediate weight vector and feedback weight: 

ϕ k,i +1 = w k,i + 

ηk (i ) 
� k (i ) 

∑ 

l∈ N k 
a l,k e l,i D l (i ) 

ψ k,i +1 = γk,i + 

μk (i ) 
τk (i ) 

∑ 

l∈ N k 
a l,k e l,i S l (i ) 

Combination : 

w k,i +1 = 

∑ 

l∈ N k 
c l,k ϕ l,i +1 

γk,i +1 = 

∑ 

l∈ N k 
c l,k ψ l,i +1 

Table 2 

Summary of the computational complexity. 

Operation DLMS D-GDTLS Proposed 

Additions 3 N k M − M 4 N k M + N k − M 4 N k M + 3 N k − M + 1 

Multiplications 3 N k M + M + 2 N k 5 N k M + M + 2 N k 5 N k M + M + 9 N k + 2 
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algorithms for distributed system identification. Table 2 shows the

total number of additions and multiplications per iteration for the

conventional DLMS, D-GDTLS and the proposed algorithm at node

k , where N k denotes the number of nodes in the neighborhood set

N k . Compared with the DLMS and D-GDTLS algorithms, the pro-

posed algorithm requires additional computations for calculating

the feedback parameters, which is the price paid for its superior

performance, as investigated in the next Section. 

5. Convergence analysis 

In this section, the convergence analysis of the proposed DTLS

algorithm with feedback is presented. Since the global stability

of the proposed algorithm with observation exchange is difficult

to analyze exactly, here to simplify the presentation, we focus

on the stability performance of the weight vector and feedback

weight at individual nodes. Previous studies have demonstrated

that the stability over each node can under certain conditions guar-

antee the global stability of the algorithm [70] . Below, we show

that the DTLS algorithm with multi-node feedback can ensure the

stability and convergence of the distributed in-network system

identification at each node. First, the following Lemma is intro-

duced. 

Lemma 1. Define a Lyapunov function at node k as V k (i ) . Let αk ( i )

and εk ( i ) denote time series satisfying αk ( i ) ≥ 0 and εk ( i ) ≤ 0 . If V k (i )

is initially set to V k (0) = 0 and the following condition hold: 

V k (i ) = αk (i ) V k (i − 1) + εk (i ) (39)

then, we have V k (i ) ≤ 0 , ∀ i, k. 

Proof. Considering initial condition, we have V k (1) = αk (1) V k (0) +
εk (1) ≤ 0 . Thus, for time i , we have 

V k (i + 1) = αk (i + 1) V k (i ) + εk (i + 1) ≤ 0 . (40)
According to the LST, the asymptotic stability can be guar-

nteed if Lyapunov function V k (i ) for the problem at hand is

egative [71,72] . The above Lemma has been used as a tool in

nalyzing active noise control algorithms [73] , kernel adaptive

lgorithms [62,65] , and neural networks [74,75] . Here, we use

his Lemma to analyze the convergence behavior of the proposed

lgorithm. �

heorem 1. The weight error vector ˜ w k,i produced by the DTLS algo-

ithm with adaptive parameters determined by (32) , (34) and (36) is

uaranteed to be convergent in the sense of Lyapunov, that is, 

 ̃

 w k,i +1 ‖ 

2 
2 ≤ ‖ ̃

 w k,i ‖ 

2 
2 ∀ i, k. 

roof. Subtracting w 

o from both sides of (23) , and using (20) , we

ave 

˜ w k,i +1 � w k,i +1 − w 

o 

= ˜ w k,i + 

ηk (i ) 

� k (i ) 
e k,i D k (i ) . 

(41)

aking the squared norm on both sides of (41) , we obtain 

�‖ ̃

 w k,i ‖ 

2 
2 � ‖ ̃

 w k,i +1 ‖ 

2 
2 − ‖ ̃

 w k,i ‖ 

2 
2 

= 

[
ηk (i ) 

� k (i ) 
e k,i 

]2 

‖ 

D k (i ) ‖ 

2 
2 + 2 

ηk (i ) 

� k (i ) 
e k,i D k (i ) ̃  w 

T 
k,i 

= 

[
ηk (i ) 

� k (i ) 
e k,i 

]2 

‖ 

D k (i ) ‖ 

2 
2 + 2 

ηk (i ) 

� k (i ) 
e k,i ˜ w 

T 
k,i 

· { ̆u k,i + βk (i ) γk,i D k (i − 1) } 
= 

ηk (i ) 

� k (i ) 

[
P 1 ,k (i ) + P 2 ,k (i ) + P 3 ,k (i ) 

]
(42)

here we define 

 1 ,k (i ) � 

ηk (i ) 

� k (i ) 
e 2 k,i ‖ 

D k (i ) ‖ 

2 
2 (43)

P 2 ,k (i ) � 2 e k,i ˜ w 

T 
k,i ̆u k,i 

= 2 e k,i 

(
v k,i −

�w 

k,i 

ϑ k,i 

)

= 2 e k,i 

(
ϑ k,i v k,i − ς k,i − �w 

k,i 
+ ς k,i 

ϑ k,i 

)

= 2 e k,i 

(
� k,i − e k,i 

ϑ k,i 

)
(44)

P 3 ,k (i ) � 2 e k,i βk (i ) γk,i ˜ w 

T 
k,i D k (i − 1) . (45)

sing (41), (45) can be rewritten as 

P 3 ,k (i ) = 2 e k,i βk (i ) γk,i 

[
˜ w k,i −1 + 

ηk (i − 1) 

� k (i − 1) 
e k,i −1 D k (i − 1) 

]T 

· D k (i − 1) . 

(46)

efine G k (i ) > 0 based on (36) as follow: 

 k (i ) = 

{ | γk,i e k,i βk (i ) | 
| e k,i −1 ηk (i −1) | if | e k,i | < 

| e k,i −1 ηk (i −1) | 
h̄ + | γk,i | 

0 otherwise . 
(47)
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Fig. 3. The topology of the simulated diffusion network consisting of 20 nodes. 
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hus, we have 

P 3 ,k (i ) = G k (i ) � k (i − 1) 

[
2 

ηk (i − 1) 

� k (i − 1) 
e k,i −1 ˜ w k,i −1 

+ 2 

(
ηk (i − 1) 

� k (i − 1) 

)2 

e 2 k,i −1 D k (i − 1) 

]
T D k (i − 1) 

= G k (i ) 
η2 

k 
(i − 1) ‖ 

D k (i − 1) ‖ 

2 
2 

� k ( i − 1) 
e 2 k,i −1 

+ G k (i ) � k (i − 1)�‖ ̃

 w k,i −1 ‖ 

2 
2 . 

(48) 

ubstituting (43), (44) , and (48) into (42) , we can obtain the fol-

owing expression for �
∥∥ ˜ w k,i 

∥∥2 

2 
: 

�‖ ̃

 w k,i ‖ 

2 
2 = 

ηk (i ) 

� k (i ) 
{ P 1 ,k (i ) + P 2 ,k (i ) + P 3 ,k (i ) } 

= P 4 ,k (i ) + 

ηk (i ) G k (i ) � k (i − 1) 

� k ( i ) 
�‖ ̃

 w k,i −1 ‖ 

2 
2 

(49) 

here 

P 4 ,k (i ) = 

ηk (i ) 

� k (i ) 

(
ηk (i ) 

� k (i ) 
e 2 k,i ‖ 

D k (i ) ‖ 

2 
2 

+ 2 e k,i 

(
� k,i − e k,i 

ϑ k,i 

)

+ G k (i ) 
η2 

k 
(i − 1) ‖ 

D k (i − 1) ‖ 

2 
2 

� k (i − 1) 
e 2 k,i −1 

)
. 

(50) 

Then, we have 

P 4 ,k (i ) ≤ ηk (i ) 

� k (i ) 

[
� 

2 
k,i 

ϑ k,i 

−
(

1 

ϑ k,i 

− ηk (i ) ‖ 

D k (i ) ‖ 

2 
2 

� k (i ) 

)
e 2 k,i 

+ G k (i ) 
η2 

k 
(i − 1) ‖ 

D k (i − 1) ‖ 

2 
2 

� k ( i − 1) 
e 2 k,i −1 

]

≤ ηk (i ) 

� k (i ) 

[
ζ 2 

m 

−
(

1 

ϑ k,i 

− ηk (i ) ‖ 

D k (i ) ‖ 

2 
2 

� k (i ) 

)
e 2 k,i 

+ 

η2 
k 
(i − 1) ‖ 

D k (i − 1) ‖ 

2 
2 

� k (i − 1) 
e 2 k,i −1 

]
(51) 

here the first inequality is due to the fact that 2 e k,i � k,i ≤ e 2 
k,i 

+
 

2 
k,i 

, and the second inequality results from the definition of

k (i + 1) in (32) . Invoking the condition in (32) and letting g =
ax 
k 

{ 

� k,i √ 

ϑ k,i 

} 

, it can be shown that 

 4 ,k (i ) ≤ 0 . (52)

oreover, using (47) , it can be shown that 
ηk (i ) G k (i ) � k (i −1) 

� k (i ) 
≥ 0 . Ac-

ording to Lemma, with the identifications 

k (i ) = P 4 ,k (i ) , αk (i ) = 

ηk (i ) G k (i ) � k (i − 1) 

� k (i ) 
, (53)

e can conclude that �
∥∥ ˜ w k,i 

∥∥2 

2 
is a Lyapunov function, that is 

‖ ̃

 w k,i ‖ 

2 
2 ≤ 0 . (54) 

n the above discussions, we only carried on the convergence anal-

sis of the weight vector of the proposed algorithm, while the

eedback convergence behavior was not involved. Next, we present

he convergence analysis of the feedback weight. �

heorem 2. The feedback weight error ˜ γk,i produced by the proposed

lgorithm with adaptive parameters determined by (33) , (35) and
37) is guaranteed to be convergent in the sense of Lyapunov, that

s, 

˜ 2 k,i +1 ≤ ˜ γ 2 
k,i ∀ i, k. 

roof. Subtracting γ o 
k,i 

from both sides of (24) , we get 

˜ γk,i +1 � γk,i − γ o 
k,i 

= ˜ γk,i + 

μk (i ) 

τk (i ) 
e k,i S k (i ) . 

(55) 

aking the squared norm on both sides of (55) and rearranging

erms, we have 

� ˜ γ 2 
k,i � ˜ γ 2 

k,i +1 − ˜ γ 2 
k,i 

= 

(
μk (i ) 

τk (i ) 
e k,i 

)2 

S 2 k (i ) + 2 

μk (i ) 

τk (i ) 
e k,i ̃  γk,i 

· { y k,i −1 + ρk (i ) γk,i S k (i − 1) } 
= 

μk (i ) 

τk (i ) 

[
Q 1 ,k (i ) + Q 2 ,k (i ) + Q 3 ,k (i ) 

]
(56) 

here we define 

 1 ,k (i ) � 

μk (i ) S 2 
k 
(i ) 

τk (i ) 
e 2 k,i (57) 

Q 2 ,k (i ) � 2 e k,i ̃  γk,i y k,i −1 

= 2 e k,i 

(
ς k,i 

ϑ k,i 

)

= 2 e k,i 

(
�w 

k,i 
− e k,i 

ϑ k,i 

) (58) 

 3 ,k (i ) � 2 e k,i ̃  γk,i ρk (i ) γk,i S k (i − 1) 

= 2 e k,i ρk (i ) γk,i 

·
{

˜ γk,i −1 + 

μk (i − 1) 

τk (i − 1) 
e k,i −1 S k (i − 1) 

}
S k (i − 1) 

= H k (i ) τk (i − 1) 

[
2 

μk (i − 1) 

τk (i − 1) 
e k,i −1 ̃  γk,i −1 
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Fig. 4. The SNR of the input noise and output noise of all nodes in the diffusion network (top). The variance of the input signal (bottom). 

Fig. 5. Learning curves for the proposed algorithm for different ι in example 1. 

 

 

 

w

Q

 

+2 

(
μk (i − 1) 

τk (i − 1) 

)2 

e 2 k,i −1 S k (i − 1) 

]
S k (i − 1) 

= H k (i ) 
μ2 

k 
(i − 1) S 2 

k 
(i − 1) 

τk ( i − 1) 
e 2 k,i −1 

+ H k (i ) τk (i − 1)� ˜ γ 2 
k,i −1 (59)

where 

H k (i ) = 

{ | γk,i e k,i ρk (i ) | 
| e k,i −1 μk (i −1) | if | e k,i | < 

| e k,i −1 μk (i −1) | 
h̄ + | γk,i | 

0 otherwise . 
(60)

Using the definition of H k (i ) , (56) is simplified to 

� ˜ γ 2 
k,i = 

μk (i ) 

τk (i ) 

[
μk (i ) S 2 

k 
(i ) 

τk (i ) 
e 2 k,i + 2 e k,i 

(
�w 

k,i 
− e k,i 

ϑ k,i 

)

+ H k (i ) 
μ2 

k 
(i − 1) S 2 

k 
(i − 1) 

τk ( i − 1) 
e 2 k,i −1 

+ H k (i ) τk (i − 1)� ˜ γ 2 
k,i −1 

]

= Q 4 ,k (i ) + 

μk (i ) H k (i ) τk (i − 1) 

τk ( i ) 
� ˜ γ 2 

k,i −1 (61)

here 

 4 ,k (i ) = 

μk (i ) 

τk (i ) 

[
μk (i ) S 2 

k 
(i ) 

τk (i ) 
e 2 k,i + 2 e k,i 

(
�w 

k,i 
− e k,i 

ϑ k,i 

)

+ H k (i ) 
μ2 

k 
(i − 1) S 2 

k 
(i − 1) 

τk ( i − 1) 
e 2 k,i −1 

]
. (62)
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Fig. 6. Network MSD for different diffusion algorithms. 

Fig. 7. Evolutions of βk ( i ) and ρk ( i ) at node 7. 
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w  
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s

�

This completes the proof. �
Therefore, Q 4, k ( i ) can be expressed as 

 4 ,k (i ) ≤ μk (i ) 

τk (i ) 

{ | �w 

k,i 
| 2 

ϑ k,i 

−
(

1 

ϑ k,i 

− μk (i ) S 2 
k 
(i ) 

τk (i ) 

)
e 2 k,i 

+ H k (i ) 
μ2 

k 
(i − 1) S 2 

k 
(i − 1) 

τk (i − 1) 
e 2 k,i −1 

}

≤ μk (i ) 

τk (i ) 

{
φ2 

m 

−
(

1 

ϑ k,i 

− μk (i ) S 2 
k 
(i ) 

τk (i ) 

)
e 2 k,i 

+ 

μ2 
k 
(i − 1) S 2 

k 
(i − 1) 

τk (i − 1) 
e 2 k,i −1 

}
(63) 

here the first inequality in (63) follows from the fact that

 e k,i �
w 

k,i 
≤ e 2 

k,i 
+ | �w 

k,i 
| 2 . According to the definition of μk (i + 1) in
33) and letting s = max 
k 

{
| �w 

k,i 
| 2 

ϑ k,i 

}
, the second inequality (63) can

e obtained. 

Recalling (33) , we have 

 4 ,k (i ) ≤ 0 . (64)

Similarly, according to Lemma, we define 

k (i ) = Q 4 ,k (i ) , αk (i ) = 

μk (i ) H k (i ) τk (i − 1) 

τk (i ) 
. (65)

From (64) to (65) , we can conclude that � ˜ γ 2 
k,i 

is a Lyapunov

unction and the feedback weight is asymptotically stable in the

ense of Lyapunov, that is 

γ 2 
k,i ≤ 0 . (66) 
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Fig. 8. The SNR of the input noise and output noise of all nodes in the diffusion network (top). The variance of the input signal (bottom). 

Fig. 9. Network MSD for different diffusion algorithms in low SNR environment. 

 

 

 

 

 

 

i⎧⎪⎨
⎪⎩  

w  

s  
6. Simulation results 

We use simulations to illustrate the effectiveness of the pro-

posed DTLS algorithm with feedback for distributed identification

of EIV systems, as per the system model introduced in Section 2 ,

and compare it with the conventional DLMS and D-GDTLS algo-

rithms. 3 The diffusion network under study is composed of N = 20

nodes, as shown in Fig. 3 . The linear combination coefficients { a l, k }
3 The distributed TLS algorithm [55,56] is characterized by a heavy computation 

load, while the D-GDTLS algorithm outperforms the BC-DLMS algorithm [57] ; hence 

we decided to compare our approach to the DLMS and D-GDTLS algorithms in this 

section. 

n  

a  

n

N  
n (27) and (28) are based on the Metropolis rule [18] , 
 

 

 

 

 

a l,k = 

1 
max ( h k , h l ) 

, l ∈ N k , l � = k 

a l,k = 0 , l / ∈ N k 

a l,k = 1 − ∑ 

l∈ N k \ k 
{ a l,k } , l = k 

(67)

here h k and h l denote the degrees of nodes k and l , 4 and l ∈ N k \ k
tands for the neighbors of node k except itself. The linear combi-

ation coefficients { c l, k } are defined in the same way, i.e., c l,k =
 l,k . To quantify the estimation performance, we use the following

etwork-averaged mean-square deviation (MSD) [18] 

etwork MSD = 

1 

N 

N ∑ 

k =1 

�‖ ̃

 w k,i ‖ 

2 
2 . (68)
4 The degree of node k denotes the number of its neighbors [18,76] . 
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Fig. 10. Learning curve of γ k, i of node 10. 
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he parameters of the three algorithms under study are selected

o guarantee rapid convergence and stability. The results presented

re averaged over 100 independent trials. 

xample 1. In this example, the entries of the input vector u k, i ,

hose of the input noise signal n k, i and the additive noise sig-

al v k, i are modeled as independent white Gaussian noise (WGN)

equences with zero-mean. Fig. 4 shows the signal-to-noise ratio

SNR) of the input and output noises, together with the variance

f the input signal. The unknown parameter vector w 

o is generated

andomly with M = 2 [41,57] . We set m = 0 . 3 , κ = 0 . 01 , υ = 0 . 75 ,

= 0 . 95 , ρ̄ = 1 , h̄ = 0 . 001 , τ̄ = 10 , μβ = 10 and μρ = 5 for the

roposed algorithm. Fig. 5 shows the learning curves of the net-

ork MSD of the proposed algorithm for different choices of the

arameter ι in (32) and (33) . As can be seen, the proposed algo-

ithm is not sensitive to this choice. In the following simulations,

e set ι = 0 . 003 . Fig. 6 shows a performance comparison of the

LMS algorithm, the D-GDTLS algorithm and the proposed algo-

ithm. Fig. 7 depicts the evolutions of βk ( i ) and ρk ( i ) for the pro-

osed algorithm. It can be observed that all the algorithms reach

he steady state after almost 300 iterations. The D-GDTLS algo-

ithm has relatively large steady-state error during adaptation. In

ontrast, the proposed algorithm achieves the smallest steady-state

rror as compared with the existing algorithms with the similar

nitial convergence rate. Owing to using the multi-node feedback

trategy, the proposed algorithm reaches a lower network MSD

han the D-GDTLS algorithm. 

xample 2. In the second example, we study the performance of

he algorithms in a relatively high input and output noise environ-

ent. The unknown parameter vector w 

o has M = 5 entries and is

elected randomly. The input and noise signals used in this exam-

le have similar characteristics as in Example 1 . We use the feed-

ack scheme with parameters m = 0 . 3 , κ = 0 . 01 , υ = 0 . 15 , λ =
 . 95 , ρ̄ = 1 , τ̄ = 10 , h̄ = 0 . 0 01 , ι = 0 . 0 03 , μβ = 20 and μρ = 1 .

he SNR and the input variance are shown in Fig. 8 . Fig. 9 com-

ares the network MSDs of the DLMS, D-GDTLS and the proposed

lgorithm. We observe that the proposed algorithm with multi-

ode feedback outperforms the proposed algorithm with γk,i = 0 ,

nd the proposed algorithm performs better than the DLMS and

-GDTLS algorithms, achieving a network MSD of around −18 dB

n the steady state. To further demonstrate the performance of

he proposed algorithm, Fig. 10 shows the learning curve of γ k, i .

s shown in the figure, γ k, i reaches large values during ini-

ial convergence, but remains relative small and stable in steady
tate. 
. Conclusion 

In this paper, we proposed and investigated a new DTLS algo-

ithm based on multi-node feedback scheme, to address the prob-

em of in-network distributed system identification in EIV model.

ompared with the conventional DTLS algorithm, the proposed al-

orithm additionally considered using the output information of

ach node to adapt the weight vector for performance improve-

ent. Besides, the convergence analyses of the weight vector and

eedback weight have been performed according to LST. We also

eveloped robust adaptive strategies to update the various param-

ters entering the proposed algorithm that are easy to implement

nd enjoy excellent performance. Simulations under the diffusion

IV model have shown that the new algorithm outperforms the

LMS and D-GDTLS algorithms. 

The price paid for the better performance of the newly pro-

osed DTLS algorithm is a slight increase in computational com-

lexity, when compared to the other distributed schemes under

valuation. We also note that for all these schemes, the processing

omplexity at a given node increases linearly with its number of

eighbours. This increase in complexity can be harnessed through

he application of sparsification techniques (see e.g. [77] ), which

an be directly combined with the proposed algorithm. 
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