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In this letter, the nonlinear identification problem for distributed in-network systems using diffusion 

based adaptation is addressed. The contribution is threefold: First, a so-called power diffusion algorithm 

is proposed that adopts integer powers of the input as regressors, as a means to improve identification ac- 

curacy with low computational complexity. Second, a modified version of the power diffusion algorithm, 

termed as power Levenberg diffusion (PLD) algorithm, is developed based on the Levenberg gradient de- 

scent (LGD) method to further improve performance. Finally, a new self-regularization (SR) strategy for 

the PLD algorithm is proposed to overcome issues with parameter selection during adaptation. The sim- 

ulation results for in-network distributed nonlinear system identification reveal that the newly proposed 

algorithms can provide superior performance when compared to existing algorithms. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

In recent years, distributed adaptation schemes have received

onsiderable attention, as they offer an efficient and robust means

o estimate the parameters of a physical system from noisy mea-

urements obtained through a network of sensors [1] . Compared to

ther distributed strategies, the diffusion techniques can achieve a

table behavior regardless of the network topology [2] , which is

een as a key advantage and has motivated several applications,

uch as: classification [3] , frequency estimation in power networks

4] and spectrum sensing [5] . Diffusion algorithms have also been

eveloped for distributed in-network system identification, mainly

ssuming a linear structure while preserving the conceptual sim-

licity of the classical linear adaptive filters. These algorithms in-

lude the diffusion least mean square (DLMS) [6–8] and diffusion

ecursive least squares (DRLS) [9,10] . 
� The work of L. Lu, X. Yang and W. Wu was supported in part by the National Sci- 

nce Foundation of P.R. China under grant 61701327 and China Postdoctoral Science 

oundation Funded Project under Grant 2018M640916 . Z. Zheng’s work is supported 

y the China Scholarship Council (CSC) under grant 2018070 0 0 035 and Doctoral In- 

ovation Fund Program of Southwest Jiaotong University. B. Champagne’s work is 

upported by a grant from NSERC, govt. of Canada. 
∗ Corresponding author. 

E-mail addresses: lulu19900303@126.com (L. Lu), bk20095185@my.swjtu.edu.cn 

Z. Zheng), benoit.champagne@mcgill.ca (B. Champagne), arielyang@scu.edu.cn (X. 

ang), wuwei@scu.edu.cn (W. Wu). 

m  

r  

f  

c  

a  

f  

a  

w  

c  

a

ttps://doi.org/10.1016/j.sigpro.2019.05.018 

165-1684/© 2019 Elsevier B.V. All rights reserved. 
It has been reported that the conventional DLMS algorithm is

ot effective when nonlinearities are present in the distributed in-

etwork system model. The nonlinearities are usually contributed

y the system itself, i.e., nonlinear relationship between the sys-

em’s input and output [11] . A few nonlinear diffusion algorithms

ave been introduced recently to improve the nonlinear model-

ng capability under such circumstances. In [12] , a cost-effective

ramework for diffusion algorithm was proposed, which suggests

hat even in cases where the system is linear, the adaptive learning

echnique should be nonlinear. A diffusion kernel LMS algorithm

as proposed as a suitable candidate for distributed in-network

onlinear system identification in [11,13] . However, the complex-

ty of this scheme grows linearly with the number of processed

bservations, which hinders its practical applications. The nonlin-

ar Volterra diffusion algorithm [14] , which is based on second-

rder Volterra (SOV) series, can yield a small kernel misadjust-

ent as an effective nonlinear identification approach. Another

ecently reported nonlinear diffusion adaptation scheme is the dif-

usion interpolated Volterra (DIV) algorithm, which can signifi-

antly reduce computational complexity and maintain robustness

gainst impulsive interference [14] . These nonlinear Volterra dif-

usion algorithms with logarithmic least mean p th-power (LLMP)

daptation have potential applications in the area of distributed

ireless sensor networks, where investigations reveal that the

ommunication process is often plagued by nonlinear distortions

nd impulsive interferences at the node level [14] . 
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1 In this work, we focus on the adapt-then-combine (ATC) implementation of the 

diffusion strategy, which has been shown to outperform the combine-then-adapt 

(CTA) implementation [6] . 
The nonlinear diffusion algorithms discussed above are derived

using the steepest descent method, which guarantees their con-

vergence but at the price of a relatively long convergence time.

The convergence rate of gradient descent type algorithms can be

enhanced by using the Levenberg gradient descent (LGD) method

[15,16] , which combines the properties of the steepest descent and

the Gauss-Newton methods. When the current solution is far from

the exact one, LGD behaves like a steepest descent method and

provides slow, but guaranteed convergence [16] . When the cur-

rent solution is close to the correct solution, it becomes a Gauss-

Newton method and achieves fast convergence. Because of these

remarkable properties, LGD provides an effective search method

for nonlinear systems and in recent years, LGD-based learning al-

gorithms have received significant attention [17–20] . 

In this paper, to improve the performance of existing diffusion

algorithms for distributed in-network nonlinear system identifica-

tion, we first propose a so-called power diffusion algorithm, moti-

vated by [21,22] . By adopting integer powers of the input as regres-

sors, the proposed algorithm offers im proved capabilities in terms

of both convergence rate and implementation complexity. Second,

a modified version of the power diffusion algorithm, termed as

power Levenberg diffusion (PLD) algorithm, is proposed that com-

bines the former with the LGD search method. The computational

cost of the PLD algorithm is higher than that of the power diffu-

sion algorithm, but it significantly reduces the steady-state misad-

justment. As a last contribution, we further propose a new self-

regularization (SR) strategy for the PLD algorithm to overcome the

difficult selection of internal algorithm parameters during adap-

tation. Through simulations, we show that the proposed algo-

rithms achieve better performance than the conventional DLMS

and Volterra diffusion algorithms for nonlinear system identifica-

tion. 

The rest of the paper is organized as follows. In Section 2 , we

formulate the problem of distributed in-network nonlinear sys-

tem identification based on the diffusion strategy. In Section 3 , we

present the proposed power diffusion and PLD algorithms in de-

tail. In Section 4 , the new SR scheme for the PLD algorithm is de-

veloped. Simulation results and accompanying discussions are pre-

sented in Section 5 . Finally, Section 6 concludes this work. 

2. Problem formulation 

Let us consider a network of N sensors or nodes, indexed by

k ∈ { 1 , . . . , N} , which are distributed over some geographical area.

The neighborhood of node k , i.e. the set of nodes linked to k by a

direct communication path, is denoted by N k (including k itself). At

every time instant i ∈ N , every node k has at its disposition an ob-

servation { x k ( i ), d k ( i )}, where x k (i ) ∈ R 

M×1 denotes a data regressor

vector, whose entries may be related in a nonlinear fashion to the

inputs of the unknown nonlinear system under consideration, and

d k ( i ) ∈ R is a scalar measurement representing a noisy output from

this same system. The system output at node k can be represented

by 

d k (i ) = h 

T 
opt x k (i ) + v k (i ) (1)

where h opt ∈ R 

M×1 is the parameter vector of the system, ( ·) T de-

notes transposition, and v k (i ) ∈ R is the additive measurement

noise. Define the error signal at node k as 

e k (i ) � d k (i ) − y k (i ) (2)

where y k (i ) = h 

T 
k (i − 1) x k (i ) is the local filter output and h k (i − 1)

is the estimate of h opt at time i − 1 . Below, we briefly recall the

distinguishing features of the DLMS and Volterra diffusion algo-

rithms, which provide the starting point for this work. 

DLMS algorithm [6] : This algorithm seeks to minimize the cost

functions J loc 
k 

( h ) = 

∑ 

l∈ N k a l,k E 
(
e 2 

l 
(i ) 

)
at every nodes k , where E( ·)
enotes statistical expectation. Its update equations, obtained by

ncorporating the LMS into the diffusion scheme, are given by 1 

 

ϕ k (i ) = h k (i − 1) + μx k (i ) e k (i ) ( adaptation ) 
h k (i ) = 

∑ 

l∈ N k 
a l,k ϕ l (i ) ( combination ) (3)

here μ is the step size (learning rate), x k (i ) = [ x k (i ) , x k (i −
) , . . . , x k (i − M + 1)] T , and ϕk ( i ) is the intermediate estimate at

ode k and time i . The weighting coefficients { a l,k } are real non-

egative numbers such that a l,k = 0 if l / ∈ N k . 

Volterra diffusion algorithm [14] : In the quadratic case, this algo-

ithm can be interpreted as a nonlinear extension of DLMS, with

xpanded input and coefficient vectors at node k defined as 

x k (i ) � [ x k (i ) , . . . , x k (i − L + 1) , 

x 2 k (i ) , x k (i ) x k (i − 1) , . . . , x 2 k (i − L + 1)] T (4)

h k (i ) � [ h k, 1 (0) , h k, 1 (1) , . . . , h k, 1 (L − 1) , 

h k, 2 (0 , 0) , h k, 2 (0 , 1) , . . . , h k, 2 (L − 1 , L − 1)] T (5)

here h k ,1 ( m 1 ) and h k ,2 ( m 1 , m 2 ) respectively denote the first and

econd (triangular) Volterra kernels at node k , the kernel lag pa-

ameters 0 ≤ m 1 ≤ m 2 < L , and L denote the length of the linear

ernel, and the length of the SOV filter can be calculated as M =
 (L + 3) / 2 . While the adaptation and combination rules in (3) can

e applied here, an alternative form of adaptation based on an im-

roved cost function that is robust to impulsive noise is considered

n [14] . 

. Proposed algorithms 

.1. Power diffusion algorithm 

In this section, the power diffusion algorithm is proposed,

hich can be regarded as a specialized form of the Volterra diffu-

ion algorithm where the DLMS adaptation and combination rules

re exploited. In particular, the input regressor vector of the power

iffusion algorithm at node k is expressed as 

 k (i ) = [ x k (i ) , x 2 
k 
(i ) , . . . , x M 

k 
(i )] T (6)

hich is a memoryless nonlinear vector function (i.e., finite se-

uence of integer powers) of an instantaneous scalar input x k ( i ).

he corresponding weight vector at node k is given by 

 k (i ) = [ h k, 1 (i ) , h k, 2 (i ) , . . . , h k,M 

(i )] T (7)

hich is updated based on the adaptation and combinations rules

n (3) . 

The main difference between the proposed power diffusion and

olterra diffusion algorithms is that the former does not include

ast measurements and related cross-terms in the power series

xpansion used to model the system output. In effect, the under-

ying motivation is to trade-off memory for nonlinear modeling

apability: for a given length of coefficient vector, a higher order

f non-linearity can be modeled without increasing computational

omplexity. Thus, if prior knowledge about the unknown system is

vailable, the order of non-linearity can be adjusted (possibly dif-

erently at each node) for improved performance compared to the

LMS and Volterra diffusion algorithms, as illustrated in Section 6 .

esides, due to the memoryless nature of regressor vector x k ( i ), the

emporal correlation properties of x k ( i ) have limited impact on the

onvergence rate of the algorithm (see the proof in [23] ). Indeed,

hen moments of the type E[ x k (i ) x T 
l 
( j)] with i � = j are considered
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n the convergence analysis, the various entries in these matrices

ecorrelate at the same rate as a function of the difference | i − j|
ue to the absence of memory. In turn, this lack of memory leads

o faster converge of the adaptive learning rule. Consequently, the

ower diffusion algorithm is well suited for practical applications

uch as nonlinear acoustic echo cancellation and nonlinear system

dentification. 

.2. PLD algorithm 

To further improve performance, we next introduce the PLD al-

orithm, which combines the power diffusion algorithm with the

GD method. The LGD method is characterized by its good nonlin-

ar optimization capability, and can converge to the optimal solu-

ion in both linear and nonlinear problems [24] . Within the diffu-

ion framework, the LGD method allows us to formulate the fol-

owing update equation for the weight vector h k ( i ) at node k : 

 k (i ) = h k (i − 1) − μ
∑ 

l∈N k 
a l,k [ G l (i ) + λI ] 

−1 ∇ξl (i ) . (8)

here G l ( i ) stands for the Hessian matrix of the underlying objec-

ive function ξ l ( i ), I denotes the identity matrix, and λ is a reg-

larization parameter which determines the desired trade-off be-

ween steepest descent and Gauss-Newton search. This method is

erived from Newton’s method and is often used in the context

f adaptive linear neuron (ADALINE) structures [16] . The conven-

ional Levenberg-Marquardt (LM) based-algorithms require the cal-

ulation of the Hessian matrix, which for a statistically based ob-

ective function entails high computational cost and memory re-

uirements [17] . To overcome this problem, we directly calculate

he Hessian matrix based on instantaneous estimation. Specifically,

t each iteration, the objection function ξ l ( i ) at node l is defined

y the squared error criterion 

l (i ) � 

1 

2 

( e l (i ) ) 
2 = 

1 

2 

(
d l (i ) − h 

T 
l (i − 1) x l (i ) 

)2 
. (9)

aking partial derivatives of (9) , we obtain the corresponding gra-

ient 

∇ξl (i ) = 

∂ξl (i ) 

∂ h l 

= −e l (i ) x l (i ) (10) 

rom which the instantaneous Hessian is obtained as 

G l (i ) = 

∂ 2 ξl (i ) 

∂ h l ∂ h l 

= x l (i ) x T l (i ) . (11) 

n the diffusion framework, since the local estimates ϕl ( k ) made

y neighboring nodes l ∈ N k are available at node k , an improved

stimate is first obtained via linear combination of the former es-

imates [6] , that is 

 k (i − 1) = 

∑ 

l∈ N k 
a l,k ϕ l (i − 1) . (12)

ubstituting (12) into (8) , we have 

h k (i ) = 

∑ 

l∈ N k 
a l,k ϕ l (i − 1) − μ

∑ 

l∈N k 
a l,k [ G l (i ) + λI ] 

−1 ∇ξl (i ) 
∣∣

h k (i −1) 

= 

∑ 

l∈ N k 
a l,k 

[ 
ϕ l (i − 1) − μ[ G l (i ) + λI ] 

−1 ∇ξl (i ) 
∣∣

h k (i −1) 

] 
(13) 

here the gradient is evaluated at h k (i − 1) . Based on (13) , we

an obtain the following expression for the local estimate ϕl ( i ) at

ime i , 
ϕ l (i ) = ϕ l (i − 1) − μ[ G l (i ) + λI ] 
−1 ∇ξl (i ) 

∣∣
h k (i −1) 

≈ ϕ l (i − 1) − μ[ G l (i ) + λI ] 
−1 ∇ξl (i ) 

∣∣
h l (i −1) 

≈ h l (i − 1) − μ[ G l (i ) + λI ] 
−1 ∇ξl (i ) 

∣∣
h l (i −1) 

(14) 

he approximation in the second line of (14) , which is valid if the

ifferences between the estimates h l (i − 1) at different nodes l are

mall, makes it possible to update ϕl ( i ) locally, i.e. only based on

bservations available at node l . The approximation in the third

ine of (14) , where we replace ϕ l (i − 1) by h l (i − 1) , is justified

ince h l (i − 1) includes more information than the corresponding

ntermediate estimate ϕ l (i − 1) . Note that with this last substitu-

ion, initialization of ϕk (0) is no longer needed [25] . This substitu-

ion is not necessary for the derivation, but previous studies have

hown that it can improve the performance of the diffusion algo-

ithm [6] . Finally, by combining (7), (8), (12) and (14) , we obtain

he main weight update equations of the proposed PLD algorithm

s follows, 

 

 

 

ϕ k (i ) = h k (i − 1) + μ
(
x k (i ) x T 

k 
(i ) + λI 

)−1 
x k (i ) e k (i ) ( adaptation ) 

h k (i ) = 

∑ 

l∈ N k 
a l,k ϕ l (i ) ( combination ) 

(15) 

It should be noted that the proposed algorithm is conceptu-

lly different from the diffusion affine projection algorithm (DAPA)

ith projection order set to 1. Indeed, the term 

(
x k (i ) x T 

k 
(i ) + λI 

)−1 

f the PLD algorithm represents a matrix operation, while the cor-

esponding term of the DAPA becomes a scalar. 

One of the main problems facing the LGD algorithm in the non-

inear system identification task is the selection of the regulariza-

ion (or mixing) parameter λ. Indeed, we have been able to ob-

erved that the convergence performance of PLD is greatly depen-

ent on this parameter. Furthermore, since different nodes have

ccess to different measurements, it would seem preferable to ad-

ust the parameter λ separately at each node in order to optimize

erformance. To tackle these issues, a SR strategy is developed in

he next section. 

. Self-regularization strategy 

When implementing the subband adaptive filter algorithm [26] ,

ormalized LMS algorithm [27] and affine projection algorithm

28] , a small regularization parameter (leading to a large step

ize) is required at the onset of adaptation, in order to accelerate

onvergence during initialization. As the iteration cycles progress,

he error becomes small in steady-state, and a larger regulariza-

ion parameter is required for small misadjustment. Such variable

arameter scheme can also be found in recursive least squares

ethod, as well as Gauss-Newton strategy. In [29] , the Gauss-

ewton type variable forgetting factor-recursive least-squares (VFF-

LS) algorithm was proposed for improving the tracking capabil-

ty. Following this method, several VFF strategies were developed

or distributed in-network system identification [30,31] . In these

pproaches, a forgetting factor is used when the error is large to

chieve a faster convergence rate, whereas the forgetting factor in-

reases when the error becomes small so as to yield better steady-

tate performance. In the PLD algorithm, when the error signal is

mall, the adaptive weight vector estimate is near its optimal value

nd it is hence preferable to use a smaller value of λ to reduce

he influence of gradient descent. On the contrary, if the error sig-

al becomes large, it is preferable to increase this same parameter.

here is little literature addressing the adaptation problem of the

ixing parameter in LM type algorithms. Motivated by [28] , we

ropose a new SR scheme for the PLD algorithm. 
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In contrast to the use of a constant scalar regularization pa-

rameter λ common to every node, as in the previous section, we

here consider the use of a more general time-varying mixing vec-

tor λk (i ) ∈ R 

M×1 at node k , that is: we replace the diagonal ma-

trix λI by a more general diagonal matrix ϒk (i ) = diag [ λk (i )] . We

propose to use a stochastic gradient descent approach to update

the mixing vector, with the aim to minimize the local error signal

power at each node over time. Specifically, we let 

λk (i ) = λk (i − 1) − ρζl (i − 1) (16)

where λk (i ) = [ λ0 ,k (i ) , . . . , λM−1 ,k (i )] T denotes the parameter vec-

tor at node k and time i, ρ denotes the learning rate, and ζl (i −
1) = [ ζ0 ,k (i − 1) , . . . , ζM−1 ,k (i − 1)] T is the search direction. The lat-

ter is defined by 

ζ j,k (i − 1) � 

1 

2 

∂e 2 
k 
(i ) 

∂λ j,k (i − 1) 

= 

1 

2 

∂e 2 
k 
(i ) 

∂e k (i ) 

∂e k (i ) 

∂ h k (i − 1) 

∂ h k (i − 1) 

∂λ j,k (i − 1) 

(17)

The right-hand side of (17) can be calculated by using 

∂e 2 
k 
(i ) 

∂e k (i ) 
= 2 e k (i ) , 

∂e k (i ) 

∂ h k (i − 1) 
= −x T k (i ) (18)

∂ h k (i − 1) 

∂λ j,k (i − 1) 
= −μ

∑ 

l∈N k 
a l,k 

[
x l (i − 1) x T l (i − 1) + ϒl (i − 1) 

]−1 

· ∂ ϒl (i − 1) 

∂λ j,l (i − 1) 

[
x l (i − 1) x T l (i − 1) + ϒl (i − 1) 

]−1 

× x l (i − 1) e l (i − 1) (19)

Additional details about the derivation of (19) are given in

Appendix A . 

In the sequel, to simplify the developments considering space

limitations, we let λ0 ,k (i ) = . . . = λM−1 ,k (i ) ≡ λk (i ) , so that λk (i ) =
λk (i )[1 , . . . , 1] T ) , but generalizations are possible. Combining (16),

(18) and (19) , and employing again the linear combination strategy,

we obtain the following procedure for updating the mixing vectors

λk ( i ) within the diffusion framework: 
Fig. 1. Number of coefficients of the Volterra diffusion algorithm and power diffusion a

algorithm, x -axis is M .) (a) N k = 20 , (b) N k = 40 . 
χ ′ 
k (i ) = λk (i − 1) − ρμe k (i ) x T k (i ) 

·
[
x k (i − 1) x T k (i − 1) + λk (i − 1) I 

]−2 
x k (i − 1) e k (i − 1) 

(20a)

χk (i ) = 

{ 

λmax if χ ′ 
k 
(i ) ≥ λmax 

λmin if χ ′ 
k 
(i ) ≤ λmin 

χ ′ 
k 
(i ) otherwise 

(20b)

k (i ) = 

∑ 

l∈ N k 
a l,k χl (i ) . (20c)

here χ k ( i ) is the local intermediate estimate of λk ( i ), λmin is

hosen to impose a minimum value for the mixing parameters

k ( i ), and λmax is chosen to ensure that these parameters remain

ounded. By using (20a) –(20c) along with the PLD adaptation in

15) , we obtain the update equation of the proposed SR-PLD algo-

ithm, 

 

 

 

 

 

 

 

 

 

ϕ k (i ) = h k (i − 1) + μ
[
x k (i ) x T 

k 
(i ) + λk (i ) I 

]−1 
x k (i ) e k (i ) ( adaptation ) 

h k (i ) = 

∑ 

l∈ N k 
a l,k ϕ l (i ) ( combination ) . (21)

. Comparison of memory requirement 

In this section, we compare the memory requirements of the

roposed power diffusion and Volterra diffusion algorithms. Ac-

ording to [14] , the number of model coefficients of the Volterra

iffusion algorithm for each node is P 1 = 

(L +2)! 
L !2! − 1 . In contrast,

he power diffusion algorithm requires P 2 = M coefficients for each

ode (see (6) ). Fig. 1 shows the number of coefficients of the

olterra diffusion algorithm [14] and the proposed power diffu-

ion algorithm, where N k = |N k | denotes the cardinal of neighbor-

ood set N k . One can see that the proposed algorithm has reduced

emory requirement as compared to the diffusion Volterra algo-

ithm. 

. Simulation results 

To illustrate the merits of the proposed diffusion-based algo-

ithms, simulations are carried out in the context of distributed
lgorithm (for the Volterra diffusion algorithm, x -axis is L ; for the power diffusion 
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Fig. 2. Network topology. 
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Fig. 4. Network EMSE of the PLD algorithm versus iteration number for different 

choices of λ. 
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n-network nonlinear system identification. We consider a network

ith N = 20 nodes in the plane, as shown in Fig. 2 . The com-

ination coefficients { a k,l } are set according to the uniform rule

6] . The network excess mean square error (EMSE), defined as

etwork EMSE = 

1 
N 

∑ N 
k =1 (z k (i ) − y k (i )) 2 , is used as a performance

easure, where z k ( i ) is the true unknown system output. The re-

ults are averaged over 200 independent simulations. 

xample 1. In order to evaluate performance of the proposed al-

orithms in a nonlinear system with memory, the following model

s used 

 k (i ) = x k (i ) + 0 . 1 x k (i ) x k (i − 1) + 0 . 45 x 3 k (i ) 

+ 0 . 2 x k (i ) x 2 k (i − 1) + 0 . 4 x 5 k (i ) . (22) 

he input signal x k ( i ) is obtained by truncating independent sam-

les from a zero-mean Gaussian distribution with unit variance to

he range [ −1 , +1] [21] . The noise signal v k ( i ) is obtained from in-

ependent samples of a zero-mean Gaussian distribution. The dis-

ribution of the signal-to-noise ratio (SNR) at the different nodes

s shown in Fig. 3 . For the Volterra diffusion algorithm, we set

 = 2 (corresponding to 5 adaptive coefficients), and for the other

lgorithms, we set M = 6 . For the SR-PLD, we set λmin = 0 . 01 ,

max = 10 and ρ = 0 . 2 . Fig. 4 shows the network EMSE learning

urves with different λ. As can be seen from this figure, the dif-

erent choices of λ lead to a similar performance in convergence,
Fig. 3. Distribution of SNRs used in Example 1 . 
lthough the best performance is obtained with λ = 0 . 1 . To fur-

her demonstrate its performance, we compare the proposed algo-

ithms with other existing algorithms. To obtain nonlinear model-

ng capability of the algorithm, the diffusion recursive least-squares

DRLS) algorithm is combined with integer power of the input re-

ressor (6) . The forgetting factor is set to θ = 0 . 999 , P k (0) = δI ,

nd δ = 15 for the DRLS algorithm and its nonlinear variant. As

an be seen from Fig. 5 , the DRLS with integer power of the in-

ut regressor algorithm achieves smaller steady-state error than

he linear DRLS algorithm. Moreover, the DRLS with integer power

f the input regressor has similar performance as the power dif-

usion algorithm. It requires 4 M 

2 + 3 M + N k M multiplications and

 M 

2 + N k M additions. In contrast, the proposed PLD algorithm re-

uires 2 M 

2 + 4 M + N k M multiplications and M 

2 + 2 M + N k M addi-

ions. Note that the term N k M comes from the combination step

nd it depends on network size of the diffusion algorithm. These

onsiderations strongly motivate the use of the proposed PLD al-

orithm for in-network distributed nonlinear system identification.

he network EMSE presented in Fig. 5 also show that the proposed

lgorithms achieve better results than the Volterra diffusion algo-

ithm. Specifically, among the PLD and SR-PLD algorithms exhibit
Fig. 5. Network EMSE of the proposed and existing algorithms. 
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Fig. 6. Distribution of SNRs used in Example 2 . 

Fig. 7. Network EMSE of the PLD algorithm versus iteration number for different 

choices of λ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Network EMSE of the proposed and existing algorithms. 

Fig. 9. Input signals used in Example 3 . 
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the fastest convergence and lowest network EMSE, outperforming

Volterra diffusion algorithm by more than 10dB in steady-state. 

Example 2. The system output at node k is generated according to

Dogariu et al. [21] 

z k (i ) = x k (i ) + 0 . 3 x 3 k (i ) + 0 . 5 x 5 k (i ) . (23)

The input signal x k ( i ) and the noise signal v k ( i ) are obtained as

in the previous example. The SNR distribution over the network

is illustrated in Fig. 6 . The memory size and filter length are the

same as in the previous example. First, we investigate the perfor-

mance of the PLD algorithm with μ = 1 . 5 using different values of

the mixing parameter λ. As can be seen in Fig. 7 , the performance

of PLD largely depends on the value of λ, with λ = 0 . 3 providing

the best choice in terms of convergence speed and misadjustment.

Next, we compare the performance of the power diffusion, PLD and

SR-PLD algorithms to that of the Volterra diffusion algorithm. In

the SR-PLD algorithm, we set λmin = 0 . 01 , λmax = 10 and ρ = 0 . 2 .

As can be seen from the results in Fig. 8 , when compared with a

Volterra diffusion algorithm with similar complexity, the proposed

algorithms can significantly improve the convergence rate and the

misadjustment. Among these, the SR-PLD achieves the best over-

all performance in convergence, while further enabling automatic

adjustment of the mixing parameters λk ( i ). 

Example 3. Next, we repeat the same simulation experiments as

Example 2 , but this time using input waveforms from a power sys-
em application. Such input waveforms can be expressed as (see

ig. 9 ) [18] 

 k (i ) = sin (ω k i + 29 . 3 

◦) + 0 . 5 sin (3 ω k i + 81 . 6 

◦) 

+ 0 . 1 sin (5 ω k i − 66 . 2 

◦) (24)

here ω k denotes the fundamental frequency at node k . The dis-

ribution of SNR and ω k values employed here are given in Fig. 10 .

he performance of the PLD algorithm with μ = 1 for different

alues of λ is shown in Fig. 11 , where the best choice is 0.1.

ig. 12 illustrates the comparative performance of the proposed

ower diffusion and Volterra diffusion algorithms, where for the

R-PLD, we set λmin = 0 . 01 , λmax = 5 and ρ = 0 . 1 . Compared to

he Volterra diffusion algorithm, the power diffusion and PLD al-

orithms yield reduced misadjustment. In addition, the SR-PLD

lgorithm enhances the performance of the PLD algorithm while

ffering a self-regularization mechanism that allows automatic ad-

ustment of the mixing parameters at the different nodes. To fur-

her demonstrate the adaptation of the mixing parameters in the

R-PLD algorithm, Fig. 13 shows the time evolution of λk ( i ) as com-

uted on the basis of adaptive update (20). As can be seen, the

ariations in the parameters λk ( i ) are consistent with the changes

n the size of the identification errors, in the sense that a reduction



L. Lu, Z. Zheng and B. Champagne et al. / Signal Processing 163 (2019) 107–114 113 

Fig. 10. Distribution of SNRs and angular frequencies used in Example 3 . 

Fig. 11. Network EMSE of the power Levenberg diffusion algorithm versus different 

λ. 

Fig. 12. Network EMSE of the proposed and existing algorithms. 

Fig. 13. Time evolution of mixing parameter λk ( i ) in SR-PLD algorithm at selected 

nodes. 
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n the error e k ( i ) time leads to a reduction in the corresponding

arameter value λk ( i ). 

. Conclusion 

Novel diffusion algorithms for distributed in-network nonlin-

ar system identification have been proposed. The power diffu-

ion algorithm can be regarded as a special form of the Volterra

iffusion algorithm where only instantaneous powers of the in-

ut are employed. It was shown that in the considered applica-

ion, the power diffusion algorithm enjoys improved performance

n comparison to the Volterra diffusion LMS algorithm, with sim-

lar or reduced computational complexity. To further improve the

onvergence rate and steady-state performance of the power dif-

usion algorithm, we developed the PLD algorithm based on the

GD method. Considering that the selection of its regularization

arameter may pose difficulties in practice, we further proposed

he SR scheme for the PLD algorithm. Simulation results in the

ontext of distributed in-network nonlinear system identification

ave shown that these new nonlinear diffusion algorithms can sig-

ificantly outperform existing algorithms. 
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ppendix A. Derivation of (19) 

Making use of the adaptation rules in (15) , we can write, 

∂ h k (i − 1) 

∂λ j,k (i − 1) 
= μ

∑ 

l∈N k 
a l,k 

[
∂[ x l (i − 1) x T 

l 
(i − 1) + ϒl (i − 1)] −1 

∂λ j,l (i − 1) 

]
× x l (i − 1) e l (i − 1) . (A.1) 

e then define 

� x k (i − 1) x T k (i − 1) + ϒk (i − 1) . (A.2)

ifferentiating ��−1 = I with respect to λk,j ( i ) yields 

∂ �

∂λ j,k (i − 1) 
�−1 + �

∂ �−1 

∂λ j,k (i − 1) 
= 0 

(A.3) 

rom which we obtain 

∂ �−1 

∂λ j,k (i − 1) 
= −�−1 ∂ �

∂λ j,k (i − 1) 
�−1 

. (A.4) 

ubstituting � = x k (i − 1) x T 
k 
(i − 1) + ϒk (i − 1) into (A.4) , we

ave 
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∂ 
[
x k (i − 1) x T 

k 
(i − 1) + ϒk (i − 1) 

]−1 

∂λ j,k (i − 1) 

= −
[
x k (i − 1) x T k (i − 1) + ϒk (i − 1) 

]−1 

×
∂ 
[
x k (i − 1) x T 

k 
(i − 1) + ϒk (i − 1) 

]
∂λ j,k (i − 1) 

×
[
x k (i − 1) x T k (i − 1) + ϒk (i − 1) 

]−1 

= −
[
x k (i − 1) x T k (i − 1) + ϒk (i − 1) 

]−1 

× ∂ ϒk (i − 1) 

∂λ j,k (i − 1) 

[
x k (i − 1) x T k (i − 1) + ϒk (i − 1) 

]−1 
. (A.5)

Using (A.1) and (A.5), (19) is finally obtained. 
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