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a b s t r a c t 

In this paper, we propose a new approach to estimate the late reverberant spectral variance (LRSV) for 

speech dereverberation in the short-time Fourier transform (STFT) domain. Our approach uses a model- 

based scheme involving the estimation of a smoothing (shape) parameter and the reverberant-only com- 

ponent of speech. We propose to obtain the shape parameter by using estimates of the spectral vari- 

ances of the direct-path and reverberant-only components of the speech, which in turn, can be calcu- 

lated by smoothing coarse estimates of these two components. Furthermore, an accurate estimate of the 

reverberant-only component is obtained by means of a moving average scheme. In order to obtain the 

preliminary estimates of the direct-path and reverberant speech components, we employ a modified ver- 

sion of the weighted prediction error (WPE) method. In contrast to the original WPE method, the sug- 

gested modification is implemented for shorter processing blocks, each consisting of a number of STFT 

frames. This block-wise procedure allows for adaptation to moderate changes in environment and makes 

the proposed approach also suitable for time-varying acoustic scenarios. Performance evaluations with 

respect to previous LRSV estimation methods demonstrate the superiority of the proposed approach in 

both time-invariant and time-variant reverberant environments. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Speech signals captured within an enclosure by a distant mi-

crophone are subject to reflections from the surrounding sur-

faces (walls, ceiling, etc.) and other objects within the environ-

ment. This phenomenon, often known as reverberation, can de-

teriorate the perceived quality/intelligibility of the desired speech

signals, and also degrades to a large extent the performance of

speech processing systems such as hearing aids, hands-free tele-

conferencing, source separation and localization, and automatic

speech recognition systems ( Naylor and Gaubitch, 2010; Yoshioka
Abbreviations: (BCI), Blind channel identification; (CD), Cepstrum distance; 

(DD), Decision-directed; (DRR), Direct-to-reverberant ratio; (EM), Expectation- 

maximization; (FW-SNR), Frequency-weighted segmental SNR; (ISM), Image source 

method; (LRSV), Late reverberant spectral variance; (LPC), Linear prediction co- 

efficients; (MA), Moving average; (MMSE), Minimum mean-square error; (MCLP), 

Multi-channel linear prediction; (PESQ), Perceptual evaluation of speech qual- 

ity; (RIR), Room impulse response; (STFT), Short-time Fourier transform; (SRMR), 

Signal-to-reverberation modulation energy ratio; (SNR), Signal-to-noise ratio; 

(WPE), Weighted prediction error. 
∗ Corresponding author. 
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weiping@ece.concordia.ca (W.-P. Zhu), benoit.champagne@mcgill.ca (B. Cham- 
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t al., 2012 ). Therefore, efficient suppression of reverberation in

eal world acoustic environments is highly required for these ap-

lications. 

During the past two decades, numerous single- and multi-

icrophone dereverberation methods have been developed. In the

atter case, the most conventional approaches exploit beamform-

ng techniques to coherently combine the dominant early arrivals,

s in e.g., Gannot et al. (2001) and Warsitz and Haeb-Umbach

2007) . However, unless a rather large number of microphones is

mployed, the dereverberation performance of beamforming meth-

ds is strictly limited in general ( Naylor and Gaubitch, 2010 ). Many

ther dereverberation approaches estimate the anechoic (clean)

peech by processing observations with inverse filters that can

e either calculated using the available room impulse responses

RIRs) or estimated from the reverberant observations ( Furuya and

ataoka, 2007; Kumar and Stern, 2010 ). Even though perfect acous-

ic equalization is possible in theory if the exact RIR is known, in a

ealistic acoustic environment, due to the long length and irregular

ature of the RIR, its precise estimation is often quite challenging,

f not impossible ( Habets, 2007 ). Furthermore, real world RIRs are

omprised of several thousands of coefficients in the time or fre-

uency domain, and therefore, their estimation can be a huge task.

n this regard, a major stream of research has been focused on the

http://dx.doi.org/10.1016/j.specom.2017.06.005
http://www.ScienceDirect.com
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List of Symbols 

Symbol Definition 

n, m Time index 

x ( n ) Observed reverberant speech 

s ( n ) Anechoic speech 

h n ( m ) Time-varying RIR 

L h Length of RIR (samples) 

ˆ s (n ) Estimate of anechoic speech 

N e Length of the early part of RIR (samples) 

h E n (m ) Early part of RIR 

h L n (m ) Late part of RIR 

f s Sampling frequency (Hz) 

T early Time length of early RIR (s) 

x E ( n ) Early part of observed speech 

x L ( n ) Late part of observed speech 

k Frequency bin index 

K Number of frequency bins (frame length) 

l Time frame index 

w ( n ) STFT analysis-synthesis window 

P STFT frame advance (samples) 

X ( k, l ) STFT of observed speech 

X E ( k, l ) STFT of early speech 

X L ( k, l ) STFT of late speech 

ˆ X E (k, l) Estimate of the STFT of early speech 

ˆ X L (k, l) Estimate of the STFT of late speech 

G ( k, l ) Gain function of SE 

ζ ( k, l ) A priori signal-to-reverberant ratio 

η( k, l ) A posteriori signal-to-reverberant ratio 

σ 2 
X E 

Spectral variance of early speech 

σ 2 
X L 

Spectral variance of late speech 

b ( m ) Peak of exponentially decaying RIR, h ( m ) 

T 60 dB ( k ) 60 dB reverberation time (s) 

α 3log 10/( f s T 60 dB ( k )) 

N E N e / P 

H ( k, l ) RIR model in the STFT domain 

B D ( k ) Peak of the direct-path component of H ( k, l ) 

B R ( k, l ) Peak of the reverberant component of H ( k, l ) 

ˆ σ 2 
X (k, l) Estimate of the spectral variance of entire ob- 

served speech 

ˆ σ 2 
X R 

(k, l) Estimate of the spectral variance of reverberant- 

only speech 

ˆ σ 2 
X L 

(k, l) Estimate of the spectral variance of late reverber- 

ant speech 

β Smoothing parameter in the estimation of 

σ 2 
X 
(k, l) 

κ( k, l ) Shape parameter in the estimation of σ 2 
X R 

(k, l) 

ˆ X R (k, l) Estimate of reverberant-only speech X R ( k, l ) 

σ 2 
B D 

(k ) Variance of B D ( k ) 

σ 2 
B R 

(k ) Variance of B R ( k, l ) 

DRR(k) Direct-to-reverberant ratio 

ˆ σ 2 
X D (k, l) Estimate of the spectral variance of direct-path 

speech 

ˆ σ 2 
X R (k, l) Estimate of the spectral variance of reverberant- 

only speech 

ˆ X D (k, l) Coarse estimate of direct-path speech 

ˆ X R (k, l) Coarse estimate of reverberant-only speech 

γ 1 , γ 2 Smoothing parameters in the estimation of 

ˆ σ 2 
X D (k, l) and ˆ σ 2 

X R (k, l) 

λ Processing block index (samples) 


 Length of processing blocks (samples) 
o  
M Number of speech STFT frames per processing 

block 

d Number of direct-path speech terms in the WPE 

method 

I Regression (linear prediction) length in the WPE 

method 

γ Smoothing parameter for speech variance in the 

WPE method 

ε Flooring value on speech variance in the WPE 

method 

X (k, l − d) Regression vector in the WPE method 

j Iteration index in the WPE method 

J Number of iterations in the WPE method 

g λ j 
(k ) Reverberation prediction weights in the WPE 

method 

Q Order of the linear prediction (MA-based) 

method to estimate X L ( k, l ) and X R ( k, l ) 

q Index of the MA model terms 

X de ( k, l ) Dereverberated speech 

c q ( k, λ) MA model coefficients 

δ Delay value in the MA model 

B Bias correction factor in the MA model 

ρ , ρ′ Thresholds in the criterion for the convergence 

of g λ j 
(k ) 

F j ( g j ) Cost function used for the estimation of g λ j 
(k ) 

H j ( k, λ) Thresholded term in the convergence criterion 

for g λ j 
(k ) 

g ′ λ( k ) Ultimate estimate of reverberation prediction 

weights (after smoothing) 

μ Smoothing parameter used in the recursive 

smoothing of g ′ λ( k ) 

e ( 
) Normalized error in the estimation of LRSV 

Err seg Mean segmental error 

se of so-called blind channel identification (BCI) techniques for

ereverberation ( Huang et al., 2005 ). 

Another important category of reverberation suppression meth-

ds includes model-based statistical approaches that target an op-

imal estimation of the dereverberated speech. In Yoshioka et al.

2009) , the parameters of an all-pole model for speech and re-

erberation are iteratively determined by maximizing the likeli-

ood function of the model parameters through an expectation-

aximization (EM) approach. Subsequently, a minimum mean-

quare error (MMSE) estimator is derived that yields the enhanced

peech. As an alternative, the time-varying nature of the speech

ignal and the multi-channel linear prediction (MCLP) model of re-

erberation can be exploited for efficient dereverberation, although

he implementation of such methods in the time domain is com-

utationally costly ( Kinoshita et al., 2009 ). To overcome this prob-

em and to achieve higher quality in dereverberation, in Nakatani

t al. (2008) ; 2010 ), it is proposed to implement the MCLP ap-

roach in the short-time Fourier transform (STFT) domain. The

esulting approach, referred to as the weighted prediction error

WPE) method, is an iterative algorithm that alternatively esti-

ates the reverberation prediction coefficients and speech spec-

ral variance using batch processing of speech utterances. However,

ne of the drawbacks of this method is that it requires at least a

ew seconds of the observed speech utterance in order to ensure

he convergence of the reverberation prediction coefficients. Addi-

ionally, the RIR should remain constant during the estimation and

ereverberation processes. 

Spectral enhancement (SE) methods based on a gain function,

riginally developed for the purpose of noise reduction, have also
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been modified and used for dereverberation ( Habets, 2007 ). The

major advantage of SE methods over the aforementioned tech-

niques is their simplicity of implementation in the STFT domain

and low computational complexity. In essence, the SE-based dere-

verberation aims at the suppression of late reverberation, which

is the major cause for the deterioration of the speech quality in

many scenarios. Assuming that early and late reverberations are

independent and under the phase equivalence of the reverberant

and anechoic speech, these methods can be employed for late re-

verberation suppression by estimating the late reverberant spectral

variance (LRSV) and using it in place of the noise spectral variance

( Habets, 2007 ). Therefore, the main challenge in reverberation sup-

pression using SE is to estimate the LRSV blindly from reverberant

speech observations. 

As originally suggested by Lebart et al. in Lebart et al. (2001) ,

the late reverberation can be treated as an additive disturbance.

Therein, through a statistical modeling of the RIR, an estimator

of the LRSV is derived and used in a spectral subtraction rule. In

the same line of work, several estimators of the LRSV have been

proposed in the past decade. Since the LRSV estimator in Lebart

et al. (2001) is based on a time domain model of the RIR and also

assumes that the source-to-microphone distance is larger than a

critical distance, 1 Habets developed in Habets et al. (2009) a new

LRSV estimator that overcomes these deficiencies. Therein, a statis-

tical RIR model in the STFT domain is proposed and used to derive

an extension of the Lebart’s LRSV estimator that takes into account

the energy contribution of the direct path and reverberant parts

of speech. This statistical RIR model only depends on the rever-

beration time, which is generally almost constant over time. How-

ever, similar to Lebart’s method, the LRSV estimator in Habets et al.

(2009) assumes a fixed RIR, i.e. a time-invariant environment, and

also requires the prior knowledge of the RIR statistics or the direct-

to-reverberant ratio (DRR) parameter. Consequently, this method

cannot be implemented blindly, i.e. by processing only the input

reverberant speech. 

In Erkelens and Heusdens (2010) , therefore, an LRSV estima-

tor that is based on the correlation between the reverberant and

anechoic speech has been proposed, in contrast to the previous

model-based LRSV estimator in Habets et al. (2009) . This new

LRSV estimator requires no knowledge of the RIR model parame-

ters such as the reverberation time or DRR, and outperforms the

previous methods. However, the method in Erkelens and Heusdens

(2010) can only track very slow changes in the RIR and underesti-

mates the LRSV in case of time-varying RIRs. Therefore, it is sug-

gested in Erkelens and Heusdens (2010) to use a model-based LRSV

estimation for the general case of time-varying RIRs. While it is

shown therein that this scheme is advantageous in slowly changing

environments, the amount of data needed for the blind estimation

of the required shape parameter is on the order of several seconds.

This does not allow the developed scheme in Erkelens and Heus-

dens (2010) to be adapted to real world changing environments. 

Along the same direction, a few recursive smoothing schemes

for LRSV estimation have been suggested in the recent literature,

such as the one in Bao and Zhu (2013) . Therein, since the smooth-

ing (or the so-called shape) parameter is affected by the estima-

tion errors of the LRSV, it is suggested therein to use more than

one term of the past spectral variances of the reverberant speech

in the recursive smoothing scheme used for the calculation of the

shape parameter. However, only minor improvements can be ob-

served by using the latter method with respect to the previous

schemes in Habets et al. (2009) and Erkelens and Heusdens (2010) .

In summary, it is concluded that despite the existence of a few ma-

jor schemes for the estimation of the LRSV, blind estimation of this
1 In smaller distances, the LRSV estimator in Lebart et al. (2001) largely overesti- 

mates the LRSV. 

b

s

n

arameter, particularly in changing acoustic environments, remains

 challenging problem. 

In this work, we present a new approach for the estimation

f the LRSV that relies on the statistical model-based method

n Habets et al. (2009) . Our approach mainly targets the task

f speech enhancement in highly reverberant environment, even

hough it can be further extended and employed for other related

asks such as speech recognition. The new approach uses a recur-

ive smoothing scheme which requires the proper selection of the

nderlying shape parameter as well as an accurate estimate of the

everberant-only speech component. To approximate the optimal

hape parameter, we employ the spectral variances of the direct-

ath and reverberant-only speech components, which in turn, can

e estimated by smoothing coarse estimates of these components.

urther, to obtain an accurate estimate of the reverberant-only

peech, we employ a moving average (MA) scheme which requires

 coarse estimate of the direct-path speech component. To obtain

he coarse estimates of the direct-path and reverberant-only com-

onents, we take advantage of the WPE dereverberation method.

et, in contrast to the original WPE method, which requires the

ntire set of speech observations to estimate the underlying re-

erberation prediction weights, we implement the WPE method in

n incremental fashion, where the observed speech is processed

lock by block. This makes the overall proposed LRSV estimation

pproach suitable for changing environments where the reverbera-

ion prediction weights have to be adapted over time. 

This paper is organized as follows. In Section 2 , a brief overview

f late reverberation suppression using the SE method and the es-

imation of LRSV is presented. The proposed approach for LRSV es-

imation is developed in Section 3 . Section 4 is devoted to perfor-

ance evaluation via experimentation and Section 5 concludes the

aper. 

. Background 

In this section, we first present a brief background on late re-

erberation suppression based on a gain function. Next, we review

he model-based method for the estimation of LRSV, which is the

ost critical component in the calculation of gain functions. 

.1. Reverberation suppression using a gain function 

In an acoustic environment, the captured reverberant signal by

 microphone, x ( n ), with n ∈ {0, 1, ���} as the discrete-time index,

an be modeled in the time domain as the convolution of the ane-

hoic speech, s ( n ), with the causal time-varying RIR, h n ( m ), where

 ∈ {0, 1, ���, L h } denotes the sample index and L h is the length of

he RIR ( Naylor and Gaubitch, 2010 ): 

 (n ) = 

L h −1 ∑ 

m =0 

h n (m ) s (n − m ) (1)

he ultimate goal of dereverberation is to obtain an estimate of

he anechoic speech signal denoted as ˆ s (n ) , using the observation

ignal x ( n ). The problem of interest is termed as blind dereverber-

tion, since neither the speech signal s ( n ) (and its characteristics)

or the acoustic RIR h n ( m ) is available. Since our aim is to suppress

he late reverberant speech 

2 , we divide the RIR in (1) into the early

nd late parts as 

 n (m ) = 

⎧ ⎨ 

⎩ 

h E n (m ) , 0 ≤ m < N e 

h L n (m ) , N e ≤ m < L h 

0 , Otherwise 

(2)
2 It should be noted that in most applications of speech enhancement in rever- 

erant environments, the main cause of degradation in the quality/intelligibility of 

peech is the late reverberant component with the early component even improving 

oise-related measures such as the SNR ( Habets, 2007 ). 
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R R 
ith h E n (m ) and h L n (m ) as the early and late parts of the RIR re-

pectively and N e as the length of early reflections. In practice, N e 

an be obtained as f s T early with f s being the sampling frequency

n Hz and T early as the early speech duration ranging from 40 to

0 ms ( Naylor and Gaubitch, 2010 ). Inserting (2) into (1) results in

 (n ) = 

N e −1 ∑ 

m =0 

h E n (m ) s (n − m ) ︸ ︷︷ ︸ 
x E (n ) 

+ 

L h −1 ∑ 

m = N e 
h L n (m ) s (n − m ) ︸ ︷︷ ︸ 

x L (n ) 

(3)

here x E ( n ) and x L ( n ) can be respectively referred to as the early

nd late reverberant components of speech. In the STFT domain, by

enoting the frequency bin and time frame indices respectively as

 ∈ { 0 , 1 , · · · , K − 1 } with K as the number of total frequency bins

nd l ∈ N , it follows that 

 (k, l) = 

K−1 ∑ 

n =0 

x (n + l P ) w (n ) e − j 2 πk 
K n = X E (k, l ) + X L (k, l) (4)

here w ( n ) is the analysis window, P is the STFT frame advance

hop size), and X E ( k, l ) and X L ( k, l ) are respectively the early and

ate reverberant components in the STFT domain. 

The goal of late reverberation suppression by means of SE is

o obtain an estimate of the early reverberant component, X E ( k, l ).

his was originally accomplished by Lebart et al. (2001) where the

onventional spectral subtraction rule, initially developed for ad-

itive noise reduction, is applied on the reverberant observation

hrough a multiplicative gain function, namely, 

ˆ 
 E (k, l) = G (k , l) X (k , l) (5)

ith 

ˆ X E (k, l) and G ( k, l ) respectively as the estimated early rever-

erant speech and spectral gain function. Various expressions for

 ( k, l ) can be found from the noise reduction literature, e.g., those

mployed in Lebart et al. (2001) . In turn, this gain function gener-

lly depends on two important parameters, which in the context

f late reverberation suppression, are 

(k, l) = 

σ 2 
X E 

(k, l) 

σ 2 
X L 

(k, l) 
, η(k , l) = 

| X (k , l) | 2 
σ 2 

X L 
(k , l) 

(6)

here the two parameters σ 2 
X E 

(k, l) = E {| X E ( k, l )| 2 } and

2 
X L 

(k, l) = E {| X L ( k, l )| 2 } are respectively the spectral variances

f the early and late reverberant components. Borrowing from

he noise reduction context, ζ ( k, l ) can be estimated through

he conventional decision-directed (DD) approach ( Ephraim and

alah, 1984 ), using an estimate of σ 2 
X L 

(k, l) . Within this frame-

ork, the estimation of σ 2 
X L 

(k, l) , i.e. the so-called LRSV, due to

ts high influence on the overall performance of the SE method,

as received considerable attention in the recent literature and is

herefore the main focus of this work. 

.2. Model-based method for LRSV estimation 

Polack (1988) originally modeled an RIR in the time domain as

 (m ) = b(m ) e −αm (7)

here b ( m ) is a zero-mean white Gaussian random process, and α
s defined as 3log 10/( f s T 60 dB ) with f s as the sampling frequency in

z and T 60 dB as the 60dB reverberation time in seconds. Based on

his model, Lebart et al. (2001) derived the following estimator for

he LRSV 

ˆ 2 X L 
(k, l) = e −2 αPN E σ 2 

X (k, l − N E ) (8)

ith σ 2 
X 
(k, l) = E {| X ( k, l )| 2 } denoting the spectral variance of the

bservation and N E = N e /P . It should be noted that the indepen-

ence of the early and late reverberant components has been as-

umed to derive (8) and also in other prominent LRSV estimators. 
In Habets et al. (2009) , Habets suggests the following statistical

IR model in the STFT domain 

(k, l) = 

{ 

B D (k ) , l = 0 

B R (k, l) e −α(k ) lP , l ≥ 1 

(9) 

here B D ( k ) and B R ( k, l ) are zero-mean mutually independent

nd identically distributed (i.i.d.) Gaussian random processes cor-

esponding respectively to the direct-path and reverberant compo-

ents of the RIR. Note that in this model, α( k ) has been defined

s 3log 10/( f s T 60 dB ( k )) with T 60 dB ( k ) considered as a frequency-

ependent parameter. Based on this model, a recursive scheme for

he LRSV estimator is derived in Habets et al. (2009) as given be-

ow 

ˆ 2 X (k, l) = [1 − β] ̂  σ 2 
X (k, l − 1) + β| X (k, l) | 2 (10a) 

ˆ 2 X R 
(k, l) = [1 − κ(k )] e −2 α(k ) P ˆ σ 2 

X R 
(k, l − 1) (10b) 

+ κ(k ) e −2 α(k ) P ˆ σ 2 
X (k, l − 1) 

ˆ 2 X L 
(k, l) = e −2 α(k ) P(N E −1) ˆ σ 2 

X R 
(k, l − N E + 1) (10c) 

ith β= 0.15 as a fixed smoothing parameter and κ( k ) the shape

arameter used to estimate the reverberant spectral variance
2 
X R 

(k, l) . Herein, the reverberant component X R ( k, l ) is in fact the

ntire reverberant speech X ( k, l ) except the direct-path (first) term.

Since σ 2 
X R 

(k, l) should exclude the direct-path speech compo-

ent in order to avoid distorting this component by the underly-

ng spectral suppression rule, the selection of the shape parameter

( k ) is of high importance. In Habets et al. (2009) , it is proved that

he optimal value of this parameter is in fact the ratio of the vari-

nce of B R ( k, l ) to that of B D ( k ), which can be obtained by 

(k ) = 

σ 2 
B R 

(k ) 

σ 2 
B D 

(k ) 
= 

e 2 α(k ) P − 1 

DRR (k ) 
(11) 

here DRR( k ) is the so-called direct-to-reverberant ratio defined

s the ratio of the energy of the direct-path RIR to that of the

everberant RIR. However, the use of (11) poses a number of dif-

culties. First, DRR( k ) has to be estimated beforehand in a blind

anner, implying an additional task requiring at least a few sec-

nds of reverberant observations. Secondly, this scheme does not

roperly suit the case of a changing environment (RIR). Thirdly, as

bserved from (10), the estimation of the reverberant spectral vari-

nce σ 2 
X R 

(k, l) is performed by recursively smoothing the entire re-

erberant observation X ( k, l ), and therefore, the estimated ˆ σ 2 
X R 

(k, l)

ncludes the direct-path component of speech as well. 

In the following section, we propose a new scheme for the es-

imation of the LRSV, which is suitable for moderately changing

nvironments. Our scheme takes advantage of a linear prediction-

ased dereverberation method in eliminating the direct-path com-

onent when estimating the reverberant spectral variance σ 2 
X R 

(k, l) .

. Proposed LRSV estimator 

Although our approach for estimating the LRSV is based on the

cheme in Habets et al. (2009) , as discussed in the previous sec-

ion, we target time-varying acoustic environments where the RIR

annot be assumed constant over a period of a few seconds. In

his respect, as opposed to (10a) and (10b) , we use the following

cheme for the estimation of the reverberant-only spectral vari-

nce: 

ˆ 2 X (k, l) = [1 − κ(k, l)] ̂  σ 2 
X (k, l − 1) + κ(k, l) | ̂  X R (k, l) | 2 (12) 
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Fig. 1. An illustration of the STFT frames and the processing blocks over speech time samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

t

 

(  

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v  

e  

v  

m  

e  

o  

b  

d  

i  

a  

w

and then use (10c) to obtain the LRSV, σ 2 
X L 

(k, l) . As compared

to (10b) , a new time and frequency dependent scheme for the

shape parameter κ( k, l ) is proposed, which fits properly the case

of a time-varying RIR. In addition, rather than estimating the

reverberant-only spectral variance σ 2 
X R 

(k, l) by smoothing | X ( k,

l )| 2 , we will exploit an estimate of the reverberant-only speech,
ˆ X R (k, l) , which excludes the direct-path component. This, to a large

extent, helps avoiding the leakage of the direct-path speech into

the estimated LRSV. In Sections 3.1 and 3.2 below, we will respec-

tively present the proposed schemes for the shape parameter κ( k,

l ) and the estimation of the reverberant-only component ˆ X R (k, l) . 

3.1. Suggested scheme for the shape parameter 

Based on (11) , we propose a new blind scheme to obtain the

shape parameter κ . This is achieved by finding a proper estimator

for the DRR( k ) in (11) as a function of time frame l and frequency

bin k . In this regard, we propose to choose the shape parameter by

the following 

κ1 (k, l) = 

e 2 α(k ) P − 1 

ˆ σ 2 
X D (k, l) / ̂  σ 2 

X R (k, l) 

κ(k, l) = min { max { κ1 (k, l) , 0 } , 1 } 
(13)

where ˆ σ 2 
X D (k, l) and ˆ σ 2 

X R (k, l) are the estimate of the spectral vari-

ance of the direct-path and that of the reverberant speech, respec-

tively, and the second equation is to ensure that the shape param-

eter lies in [0, 1]. To estimate the two spectral variances in (13) ,

we use the recursive smoothing method, i.e., 

ˆ σ 2 
X D (k, l) = [1 − γ1 ] ̂  σ

2 
X D (k, l − 1) + γ1 | ˆ X D (k, l) | 2 

ˆ σ 2 
X R (k, l) = [1 − γ2 ] ̂  σ

2 
X R (k, l − 1) + γ2 | ˆ X R (k, l) | 2 

(14)

with γ 1 and γ 2 as two fixed smoothing parameters taken to be

0.25, and 

ˆ X D (k, l) and 

ˆ X R (k, l) as coarse estimates of the direct-

path and reverberant components of speech, respectively. Here, we

resort to a linear prediction-based dereverberation method in the

STFT domain, namely the WPE method ( Nakatani et al., 2010 ), in

order to obtain 

ˆ X D (k, l) and 

ˆ X R (k, l) . However, the WPE method is

in essence a batch processing technique and it requires the prepro-

cessing of the entire speech utterance in order to provide an accu-

rate performance. This is not suitable when dealing with a time-

varying acoustic environment, where the RIR is prone to change.

Furthermore, a large processing delay is introduced due to the pre-

processing step, which is undesirable for real-time processing of

the speech. To overcome these obstacles, here, we employ the WPE

method for processing blocks of typically 0.5 s long. We then ex-

ploit the estimated direct-path and reverberant components ob-

tained from the WPE method for ˆ X D (k, l) and 

ˆ X R (k, l) , respec-

tively, in (14) at each processing block. A schematic of the pro-

cessing blocks and the corresponding frames over time is shown

in Fig. 1 . Within this framework, the resulting coarse estimates of

the direct-path and reverberant components are precise enough for
he suggested scheme for κ( k, l ) in (13) and (14) , as will be inves-

igated thoroughly in Section 4 . 

Now, denoting each processing block by λ and the block length

in samples) by 
, based on Nakatani et al. (2010) , the resulting

lock-wise WPE method can be summarized as follows: 

• At the processing block λ, the observation X ( k, l ) is consid-

ered for l ∈ { λM, λM + 1 , · · · , λM + M − 1 } (which are actually

M STFT frames). We set the following parameters: the num-

ber of direct-path speech terms d = 1 , the regression (linear

prediction) length I = 15 , the smoothing parameter for speech

variance γ = 0 . 65 and the flooring value on speech variance

ε = 10 −3 . Next, we form the regression vector X (k, l − d) as be-

low 

X (k, l − d) = [ X (k, l − d) , X (k, l − d − 1) , · · · (15)

· · · , X (k, l − d − I + 1)] T 

• The speech spectral variance σ 2 
X D (k, l) is initialized as

σ 2 
X D 0 

(k, l) = | X(k, l) | 2 . 
• Repeat the following for j from 0 to J − 1 , with J as the number

of iterations 

A λ j 
(k ) = 

∑ 

l 

X (k, l − d) X 

H (k, l − d) 

σ 2 
X D j 

(k, l) 

a λ j 
(k ) = 

∑ 

l 

X (k, l − d) X 

∗(k, l) 

σ 2 
X D j 

(k, l) 

(16)

where l ∈ { λM, λM + 1 , · · · , λM + M − 1 } , and {.} H and {.} ∗ re-

spectively denote matrix hermitian and complex conjugation. 

g λ j 
(k ) = A 

−1 
λ j 

(k ) a λ j 
(k ) (17)

X R j (k, l) = g 

H 
λ j 

(k )X (k, l − d) 

X D j (k, l) = X (k, l) − X R j (k, l) 
(18)

σ 2 
X D j+1 

(k, l) = [1 − γ ] σ 2 
X D j+1 

(k, l − 1) 

+ γ max 
{|X D j (k, l) | 2 , ε} (19)

• The terms X R j 
(k, l) and X D j 

(k, l) at the last iteration are con-

sidered as ˆ X R (k, l) and 

ˆ X D (k, l) in (14) . 

Note that, contrary to the original WPE method, here the re-

erberation prediction weights g λ j 
(k ) are estimated separately for

ach time block λ. Also, to obtain a smoother speech spectral

ariance σ 2 
X D (k, l) , which reasonably enhances the overall perfor-

ance, a smoothing scheme has been considered for this param-

ter in (19) rather than its instantaneous estimate used in the

riginal method. In our case, the parameter setting d = 1 should

e considered so that X D j 
(k, l) in (18) particularly estimates the

irect-path component of speech. Even though the WPE method

s often implemented for a fixed number of iterations J , we use

 more efficient heuristic criterion for the number of iterations,

hich will be discussed in Section 3.3 . 
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.2. Estimation of the reverberant component 

To obtain a proper estimate of the reverberant-only compo-

ent of the speech, we modify the correlation-based approach sug-

ested in Erkelens and Heusdens (2010) , which was originally pro-

osed to estimate the late reverberant component. This approach

odels the estimate of the late reverberant speech, ˆ X L (k, l) , as a

eighted sum of Q previous frames of the dereverberated (direct-

ath) speech, as the following 

ˆ 
 L (k, l) = 

√ 

B 

Q−1 ∑ 

q =0 

c q (k ) X de (k, l − δ − q ) (20)

here X de ( k, l ) is the dereverberated speech, δ is a delay (in the

rder of a few frames) to skip the direct-path and early reverber-

nt components, c q ’s are the MA model (prediction) coefficients,

 = 60 is the number of MA terms and B = 1 . 65 is a bias correc-

ion factor ( Erkelens and Heusdens, 2010 ). Since we here aim at

he estimation of the entire reverberant speech including the early

nd late components, we set δ = 1 in the above to only skip the

irect-path component at the current frame and use the direct-

ath component obtained from the WPE method in Section 3.1 for

 de ( k, l ). This results in 

ˆ 
 R (k, l) = 

√ 

B 

Q−1 ∑ 

q =0 

c q (k , λ) ˆ X D (k , l − 1 − q ) (21)

here we have used the term 

ˆ X D (k, l) as an estimate for X de ( k, l ).

lso, in a similar fashion to the reverberation prediction weights

 λ( k ), we have considered the prediction coefficients c q ( k, λ) to be

pdated as a function of the block index λ to account for moderate

hanges in the environment. Now, what remains is to obtain the

rediction coefficients c q ( k, λ), as required by (21) . As in Erkelens

nd Heusdens (2010) , the prediction coefficients can be optimally

btained by minimizing the mean squared error between X ( k, l )

nd c q (k, λ) ˆ X D (k, l − 1 − q ) , which leads to the following solution

ˆ 
 q (k, λ) = 

E l { X (k, l) ˆ X D (k, l − 1 − q ) } 
E l {| ˆ X D (k, l − 1 − q ) | 2 } (22) 

here E l {.} denotes the expectation over frames. Even though cal-

ulating E l {.} requires long-term time averaging, here, the block

rocessing framework allows to perform the time averaging with

nough number of frames. In this sense, denoting the terms in the

umerator and denominator of (22) by E (1) and E (2) , respectively,

e use the following sample averaging 

E (1) ≈ 1 

M 

∑ 

l 

X (k, l) ˆ X D (k, l − 1 − q ) 

E (2) ≈ 1 

M 

∑ 

l 

| ˆ X D (k, l − 1 − q ) | 2 
(23) 

here we let l ∈ { λM, λM + 1 , · · · , λM + M − 1 } , i.e., we perform

he sample means over the M frames of the processing block, λ. It

hould be noted that, even though the block-wise implementation

f the WPE method, as discussed in Section 3.1 , introduces devia-

ions in the prediction weights g λ( k ) from those obtained through

he full batch processing, the WPE method still does a good job at

solating the direct-path component from the reverberant one as

btained by (21) . Further details regarding the performance of the

PE method-based on block processing will be further discussed

n Section 4 . 

In Fig. 2 , a block diagram of the main steps of the proposed

pproach for LRSV estimation is illustrated. It is observed that the

stimates of the direct and reverberant components by the WPE

ethod are used for updating both the shape parameter κ( k, l ) and

he reverberant component ˆ X R (k, l) , as required in the proposed

RSV estimation scheme. 
.3. Implementation of the WPE method 

The original WPE method essentially requires batch processing

sing at least a few seconds of the reverberant observation. In

pite of this, we apply the WPE method for processing blocks of

.5 s, since it is employed only to provide preliminary estimates

f the direct-path and reverberant speech components. Further-

ore, to make the underlying WPE method suitable for our block

rocessing-based approach, we make a few modifications to the

riginal version of this method. First, as discussed in Section 3.1 , a

moothing scheme is added for the estimation of the speech spec-

ral variance σ 2 
X D (k, l) in (19) . Next, we employ a heuristic criterion

or the number of iterations performed in (15) –(19) . Convention-

lly, a fixed or a maximum number of iterations can be employed,

r more precisely, the following convergence criterion can be used

t the j th iteration ( Yoshioka, 2010 ) ∥∥g j (k ) − g j−1 (k ) 
∥∥

2 ∥∥g j−1 (k ) 
∥∥

2 

< ρ (24) 

ith ‖ . ‖ 2 denoting the � 2 -norm and ρ as a fixed threshold value;

he iterations are discarded if the above holds. Here, we suggest

 convergence criterion based on a heuristic interpretation of the

PE method in Yoshioka (2010) , as follows. The reverberation pre-

iction weights g j ( k ) can actually be derived based on the mini-

ization of the following cost function ( Yoshioka, 2010 ) 

 j (g j ) = 

∑ 

l 

∣∣X (k, l) − g 

H 
j 
(k )X (k, l − d) 

∣∣2 

|X D j−1 
(k, l) | 2 

= 

∑ 

l 

|X D j (k, l) | 2 
|X D j−1 

(k, l) | 2 (25) 

hich in fact penalizes the sparsity of the dereverberated speech

n the numerator as compared to the anechoic speech in the de-

ominator. Here, we take advantage of the criterion expressed in

25) to formulate a more efficient convergence criterion than the

ne in (24) for the reverberation prediction weights at the λ-th

rocessing block, g λ j 
(k ) , as the following 

 j (k, λ) = 

λM + M −1 ∑ 

l= λM 

|X D j (k, l) | 2 
|X D j−1 

(k, l) | 2 < ρ ′ (26)

here the summation is performed on all frames of the λ-th pro-

essing block and the threshold value ρ ′ is experimentally set to

.01 M . This choice of the convergence criterion ensures that a cer-

ain level of sparsity in the dereverberated speech, as inspired by

he cost function in (25) , is reached before discarding the itera-

ions. Since the values of |X D j 
(k, l) | 2 and |X D j−1 

(k, l) | 2 may change

ramatically in some time-frequency units, we set the maximum

llowed number of iterations to 10. 

Finally, to smooth the changes of the reverberation prediction

eight g λ( k ) across processing blocks, we perform a smoothing

cheme on g λ( k ) to obtain its ultimate value, g ′ λ( k ), as 

 

′ 
λ(k ) = [1 − μ] g 

′ 
λ−1 (k ) + μg λ(k ) (27)

ith μ fixed at 0.8, to update the values of g ′ λ( k ) by using mostly

he current processing block. 

.4. Relation between the SE and WPE methods 

The SE methods were originally developed based on a gain

unction for the purpose of noise reduction ( Loizou, 2013 ), and

ater, they were modified in order to handle the late reverberation

uppression problem ( Habets, 2007 ). This group of methods mainly

odels the additive disturbances (noise or reverberation) by a zero

ean complex Gaussian distribution and aims at estimating the
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Coarse estimation of the direct-path and 
reverberant components              and                

             by the WPE method in (15)-(19)

    Updating the shape 
parameter            by (13)

MA-based estimation of the 
reverberant-only component,            

by (21)           

Reverberant-only spectral 
variance estimation by (12)

LRSV estimation 
by (10.c)

Fig. 2. Block diagram of the proposed algorithm for LRSV estimation. 
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3 Note that M can be calculated by dividing the block length 
 by the STFT hop 

size P . 
4 This has been studied in detail in ( Nakatani et al., 2010 ) in terms of the real 

time factor. 
clean speech by means of a maximum likelihood (ML), maximum

a posteriori (MAP) or Bayesian MMSE approach. More precisely, it

follows that 

X (k, l) = S(k, l) + V (k, l) (28)

with S(k, l) = A (k, l) e jθ (k,l) as the clean speech and V ( k, l ) as the

sum of additive disturbance terms. Classic SE techniques tackle

this problem by maximizing the likelihood, p(X| ̂  A ) , or the MAP

distribution, p( ̂  A | X ) , or by minimizing the expectation of a cost

function such as (A − ˆ A ) 2 w.r.t. the speech amplitude estimate Â

( Loizou, 2013 ). Given that a proper estimate of the disturbance

spectral variance (the LRSV in our case), σ 2 
V 
(k, l) , is at hand, the

gain function G ( k, l ) can be computed and multiplied by the ob-

served speech X ( k, l ) in order to suppression the disturbance. The

WPE method, on the other hand, is a fully blind method which

need not any prior knowledge of the acoustic environment or dis-

turbance statistics. This method is based on a linear predictive

modeling for the disturbance V ( k, l ), expressed as g H ( k ) X ( k, l ) or∑ I 
� =1 g 

∗(k, � ) X(k, l − � ) . Using the WPE method, one is able to es-

timate the linear prediction weights g ( k ) and thus the clean speech

S ( k, l ) in a fully blind way by means of an ML method, as the fol-

lowing ( Nakatani et al., 2010 ) 

ˆ g = max 
g 

p(S| g ) = max 
g 

p 
(
(X − g 

H X ) | g 

)
(29)

According to the linear predictive model used for V ( k, l ) with I be-

ing a rather large number, V ( k, l ) is in fact a sum of many ran-

dom terms. This, based on the central limit theorem, implies that

the disturbance V ( k, l ) is assumed to be approximately normally

distributed, as is the case with SE methods. Therefore, it can be

concluded that both the WPE and SE methods rely on almost the

same set of assumptions. The main difference is that, however, the

SE methods provide no means of estimating the disturbance spec-

tral variance, necessitating the use of an LRSV estimator when used

for dereverberation. On the other hand, the WPE method relies on

a set of STFT frames, namely a processing block, in order to obtain

the prediction weights g ( k ). 

It is well-known that the biggest challenge in modifying the SE

technique for the task of dereverberation is the estimation of the

LRSV ( Habets, 2007 ). In the model-based LRSV estimation prob-

lem of interest, we found that the biggest obstacle in using the

smoothing scheme of (12) is the lack of proper estimates for the

direct-path and reverberant-only speech components. Given that

the WPE method can reliably provide preliminary estimates of

these two speech components, we employed a modification of this

blind method in our approach, where the number of early speech

terms d is set to 1, to only account for the direct-path compo-

nent (first speech term). Yet, in order to make the underlying WPE

method compatible with the online estimation of LRSV, we used

the block-wise WPE method described in (15) –(19) to have the

smallest possible processing delay. 
. Performance evaluation 

.1. Methodology 

In this section, we evaluate the performance of the proposed

RSV estimator as compared to a few major LRSV estimation

ethods for both time-invariant and time-varying RIRs. To this

nd, anechoic speech utterances including 10 male and 10 female

peakers are used from the TIMIT database ( Garofolo et al., 1993 ),

he sampling frequency f s is set to 16 kHz and a 25 ms Ham-

ing window with overlap of 75% is used for the STFT analysis-

ynthesis. To implement our block processing-based approach, we

onsider a block length of 0.5 s, resulting in M = 80 frames in each

rocessing block. 3 It should be noted that there exists a trade-

ff in choosing the length of processing blocks, since the shorter

he block length the more erroneous the prediction weights g λ( k )

hereas the longer the block length the higher the processing de-

ay and also the slower the adaptation of the estimated LRSV to

he changing RIR. With the current choice for the processing block

ength, considering the computational complexity of the underly-

ng WPE method, 4 the proposed approach seems suitable for real

ime applications in which the dereverberation algorithm needs to

e performed incrementally from the beginning of the captured

peech utterance with a small algorithmic delay. To obtain the best

erformance, T early is chosen to be 62.5 ms, resulting in N E = 10 for

ur experiments. As for the estimation of the reverberation time

 60 dB , we use the blind reverberation time estimator in Löllmann

t al. (2010) which is capable of estimating T 60 dB within the al-

owed processing blocks with low complexity and enough accu-

acy for our LRSV estimation method. Note that, even for mildly

hanging environments, the reverberation time T 60 dB does not of-

en change considerably ( Naylor and Gaubitch, 2010 ). Our approach

oes not require the estimation of the DRR parameter. As opposed

o Erkelens and Heusdens (2010) , where Q in (20) was taken as

0 to account for heavy reverberations with T 60 dB ’s of up to 2 s,

e choose Q in (21) to be 20 to deal with moderate amounts of

everberation but we increase the bias correction factor to B = 3.2.

For the evaluation of the reverberation suppression achieved by

sing the proposed approach in a spectral suppression rule, we

se four performance measures recommended by REVERB Chal-

enge ( Kinoshita et al., 2013 ). These performance metrics include:

he perceptual evaluation of speech quality (PESQ), the cepstrum

istance (CD), the frequency-weighted segmental SNR (FW-SNR)

nd the signal-to-reverberation modulation energy ratio (SRMR).

he PESQ score is one of the most frequently used performance

easures in the speech enhancement literature and is the one

ecommended by ITU-T standards for speech quality assessment
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Fig. 3. A two-dimensional schematic of the geometric setup used to synthesize the 

time-invariant RIR by the ISM method. 

Fig. 4. Normalized error in the estimation of the LRSV w.r.t. to the case of using 

the entire speech utterance, versus the processing block length for different rever- 

beration times. 
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 Recommendation P.862, 2001 ). It ranges between 1 and 4.5 with

igher values corresponding to better speech quality. The CD is cal-

ulated as the log-spectral distance between the linear prediction

oefficients (LPC) of the enhanced and clean speech spectra ( Hu

nd Loizou, 2008 ). It is often limited in the range of [0,10], where

 smaller CD value shows less deviation from the clean speech.

he FW-SNR is calculated based on a critical band analysis with

el-frequency filter bank and using clean speech amplitude as the

orresponding weights ( Hu and Loizou, 2008 ). It generally takes

 value in the range of [ −10,35] dB with the higher the better.

he SRMR, which has been exclusively devised for the assessment

f dereverberation, is a non-intrusive measure (i.e., one requiring

nly the enhanced speech for its calculation), and is based on an

uditory-inspired filterbank analysis of critical band temporal en-

elopes of the speech signal ( Falk et al., 2010 ). A higher SRMR

efers to a higher energy of the anechoic speech relative to that

f the reverberant-only speech. 

In the following, we evaluate the relative performance of the

roposed LRSV estimator in both time-invariant and time-varying

everberant environments. 

.2. Performance in time-invariant RIRs 

In this part, we assess the performance of the proposed ap-

roach in comparison with other methods in a scenario where the

nvironment is invariant using both synthesized and recorded RIRs.

n case of the recorded RIR, we use the measured RIR from Sim-

ata of the REVERB Challenge ( Kinoshita et al., 2013 ), where an

 channel circular array with diameter of 20 cm was placed in

 3.7 m × 5.5 m acoustic room. 5 The resulting signal was con-

aminated with additive babble noise from the same database at

 global reverberant SNR of 10 dB. Furthermore, in order to verify

he performance of the proposed approach in different amounts of

everberation, we use the image source method (ISM) Lehmann to

ynthesize RIRs with controllable T 60 dB . In all cases, the anechoic

peech is convolved with the RIR to obtain the reverberant speech

ignal. The geometry of the synthesized reverberant environment

ith T 60 dB ranging from 100 ms to 800 ms is shown in Fig. 3 . The

lobal SNR is fixed at 15 dB for this experiment. 

In case of the time-invariant RIR, we compare the proposed ap-

roach to the Lebart’s method ( Lebart et al., 2001 ), the correlation-

ased method in Erkelens and Heusdens (2010) , the improved

odel-based method in Bao and Zhu (2013) and the true (perfect)

RSV estimator. The Lebart’s method is actually a special case of

he scheme in (10) with κ( k ) = 1. The correlation-based method,

s expressed by Eq. (26) in Erkelens and Heusdens (2010) , is based

n obtaining ˆ X R (k, l) by (20) and then smoothing it to estimate

he LRSV. Yet, due to the unavailability of long-term expectations

n (22) , this method uses a recursive smoothing scheme to find the

rediction coefficients c q ( k ). The improved model-based method in

ao and Zhu (2013) uses more than one term of the past spectral

ariances of the reverberant speech in order to obtain a smoother

hape parameter and is in fact an extension of the model-based

ethod in Erkelens and Heusdens (2010) . The latter, as expressed

y Eq. (51) in Erkelens and Heusdens (2010) , exploits past es-

imates of the LRSV averaged over frequency bins to obtain the

hape parameter κ( l ). It should be noted that the correlation-based

nd model-based methods in Erkelens and Heusdens (2010) are

eveloped respectively for time-invariant and time-variant RIRs. Fi-

ally, the true LRSV, which is used as a reference for comparison,

s obtained by temporal smoothing of the late reverberant magni-

ude spectrum. The latter can in turn be calculated by convolving
5 Only the RIR at the first channel is considered as the observation herein. 

L  

u  

e  

b  
he anechoic speech with the late component of the RIR, i.e. that

xcluding the first 60 ms. 

To evaluate the efficiency of the proposed method w.r.t. the

ength of processing blocks, we calculate a measure of the error

n the estimation of LRSV versus the block length for different re-

erberation times, as shown in Fig 4 . For this figure, we consider a

 s speech segment using processing block lengths of 0.1 to 1.5 s

o estimate the LRSV and calculated the following normalized error

 (
) = E l 

{ 

|| ̂  σ̄ 2 
X L 

(k, l, 
) − σ̄ 2 
X L 

(k, l) || 2 
|| ̄σ 2 

X L 
(k, l) || 2 

} 

(30) 

here ˆ σ̄ 2 
X L 

(k, l, 
) and σ̄ 2 
X L 

(k, l) respectively denote the estimated

RSV using a block length of 
 and that using the entire speech

tterance, ||.|| 2 is the � 2 -norm over frequency bins and E l {.} is the

xpected value over frames. As observed in Fig. 4 , for a processing

lock length of 0.5 s, the relative error in the estimation of LRSV
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Fig. 5. Mean spectral variances using the recorded RIR from REVERB Challenge 

( Kinoshita et al., 2013 ) for: (a) the true LRSV, the LRSV estimated using RIR vari- 

ances and the proposed LRSV (b) the true LRSV, the LRSV estimated by the im- 

proved model-based method ( Bao and Zhu, 2013 ) and the one estimated by Lebart’s 

method ( Lebart et al., 2001 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Mean segmental error for different LRSV estimators using the synthesized 

RIRs by the ISM method Lehmann with a source-to-microphone distances of (a): 

1 m (b): 2 m. 
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is much smaller than that for shorter blocks of around 0.1 to 0.2 s,

and is almost close to that for longer blocks of 1 or even 1.5 s. In

fact, even though choosing a longer processing block reduces the

error defined in (30) , due to the processing delay imposed by the

block length, a trade-off has to be considered in the choice of the

block length. 

Next, to determine how close the estimated LRSVs are w.r.t.

the true LRSV, we investigate the mean spectral variances, which

are obtained by averaging the LRSVs over all frequency bins, as

in Habets et al. (2009) . The results are illustrated in Fig. 5 for an

speech utterance of 425 frames. All mean spectral variance values

are lower thresholded for better illustration. In order to examine

how fast the methods can track abrupt changes in LRSV, we con-

sider a short period of deactivation for the anechoic speech around

the middle of the utterance. In Fig. 5 (a), the mean spectral vari-

ance of the proposed LRSV compared to that of the true LRSV and

the LRSV obtained by using the knowledge of RIR variances are

shown. The latter, which is used as another reference method for

comparison, is obtained by using the available RIR, i.e. h ( n ), as the
ollowing. First, we calculate the DRR as 

RR (k ) = 

∑ N E −1 
m =0 [ h (m )] 2 ∑ L h −1 
m = N E [ h (m )] 2 

, ∀ k (31)

nd then we use the calculated DRR in (11) to obtain the shape

arameter κ . The latter is next used in the smoothing scheme in

10), as in Habets et al. (2009) . It is observed that the proposed

RSV is able to closely track the true LRSV and the one by using

IR variances, even in the duration of the abrupt drops/rises. As

een in Fig. 5 (b), the Lebart’s ( Lebart et al., 2001 ) and the im-

roved model-based ( Bao and Zhu, 2013 ) methods, still follow the

RSV but with larger errors and more delays w.r.t. the true LRSV. 

Next, to evaluate the error in the proposed and considered LRSV

stimation methods w.r.t. the true LRSV estimate, we calculate the

ean segmental error for different reverberation times, as shown

n Fig. 6 . The mean segmental error can be computed by Habets

t al. (2009) 

rr seg = E l 

{ 

E k 
{| ̂  σ 2 

X L 
(k, l) − σ 2 

X L 
(k, l) | 2 }

E k 
{| σ 2 

X L 
(k, l) | 2 }

} 

(32)

here ˆ σ 2 
X L 

(k, l) and σ 2 
X L 

(k, l) are respectively the estimated and

rue LRSVs, and E l {.} and E k {.} respectively denote the expectation

ver frames and frequency bins. As seen in Fig. 6 , for both source-

o-microphone distances of 1 m and 2 m, the proposed LRSV esti-
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Table 1 

Performance measures using the recorded RIR from REVERB Challenge. 

Method PESQ CD FWSNR SRMR 

Unprocessed 1.87 4.97 3.64 4.04 

True LRSV 2.25 4.40 6.70 6.74 

Proposed method 2.13 4.61 5.89 5.91 

Method in Bao and Zhu (2013) 2.03 4.82 5.26 5.58 

Method in Erkelens and Heusdens (2010) 1.97 4.88 5.10 5.52 

Lebart’s method ( Lebart et al., 2001 ) 1.88 5.03 4.65 5.11 
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Fig. 7. A two-dimensional schematic of the geometric setup used to synthesize the 

time-variant RIR (moving talker) by the ISM method. 
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ator attains smaller errors in the entire range of T 60 dB , as com-

ared to the other methods. 

In order to evaluate the reverberation suppression achieved

y exploiting the proposed LRSV estimation approach in a gain

unction-based SE method, we employ the popular Bayesian log-

pectral amplitude (LSA) gain function in Ephraim and Malah

1985) . This scheme tends to perform late reverberation suppres-

ion using the true and estimated LRSVs. The a priori signal-to-

everberation ratio (SRR) required by the gain function is esti-

ated by the DD approach ( Ephraim and Malah, 1984 ), and to ob-

ain the best subjective performance, the LSA gain function was

ower bounded to −10 dB. In Table 1 , the four aforementioned

erformance scores have been respectively shown for the unpro-

essed speech and the enhanced one by using the true LRSV,

roposed LRSV, improved model-based method ( Bao and Zhu,

013 ), correlation-based method ( Erkelens and Heusdens, 2010 )

nd Lebart’s method ( Lebart et al., 2001 ). The results are obtained

y using the recorded RIR from the REVERB Challenge dataset

 Kinoshita et al., 2013 ). Furthermore, the same performance scores

ave been reported in Table 2 for the case of synthetic RIRs us-

ng the ISM method with T 60 dB changing from 200 ms to 800 ms

nd the source-to-microphone distance of 1 m. It is seen that the

roposed method is able to achieve the closest performance to the

rue LRSV as compared to the others. While the improved model-

ased method performs slightly better than the correlation-based

ethod, the Lebart’s method has the lowest scores. Furthermore,

t can be inferred that as T 60 dB is increased, the performance of

ll LRSV estimation methods degrades w.r.t. that of the true LRSV,

ndicating that the estimation of LRSV is a more challenging prob-

em for highly reverberant environments. This is consistent with

he results obtained for the mean segmental error in Fig. 6 . Table 3

hows the same trend for a source-to-microphone distance of 2 m,

esulting in slightly degraded performance as compared to Table 2 .

t is found that the relative performance of the considered meth-

ds in terms of the four investigated scores is consistent. 

.3. Performance in time-varying RIRs 

In this part, we evaluate the relative performance of the pro-

osed LRSV estimation method in a scenario where the RIR is

ime-variant. In Fig. 7 , an illustration of this scenario where the

SM method is used to generate the corresponding impulse re-

ponses is shown. As seen, a talker is moving from the initial point

t t = 0 to the ending position at t = 10 s along a straight line, result-

ng in a variable impulse response for the source-to-microphone

hannel. Here, we estimate the continuous trajectory by 20 dis-

rete points and obtain the corresponding RIR for each point by

sing the ISM method. Next, a 10 s anechoic speech utterance is

egmented into 20 utterances and the resulting utterances are fil-

ered by the generated RIRs at the discrete points. The entire re-

erberant speech sample is generated next by combining the 20

ndividual segments. In this way, the continuous trajectory is well

pproximated by the 20 discrete points. 

In Fig. 8 , the mean spectral variances are shown for the true

RSV, the one obtained by the knowledge of RIR variances, the es-
imated LRSV by the proposed and other methods. It is observed

hat, whereas the proposed method is able to follow the true LRSV

ith visibly good precision, the other indicated methods track the

hanges in the true LRSV with a higher error which becomes larger

n the location of abrupt decays and rises. Yet, the proposed LRSV

stimator proves to be more robust against the abrupt changes in

he LRSV values due to its adaptation with the changing RIR. 

Next, we evaluate the mean segmental error in (32) in case

f the time-varying RIR for the proposed method along with

he improved model-based method ( Bao and Zhu, 2013 ), model-

ased method ( Erkelens and Heusdens, 2010 ) and Lebart’s method

 Lebart et al., 2001 ). As observed in Fig. 9 , the same trend as that

or the time-invariant RIR applies for the proposed method achiev-

ng the closest result to the true LRSV, whereas the model-based

nd improved model-based methods provide almost the same re-

ults particularly at higher reverberation times. 

We further evaluate the reverberation suppression performance

f the proposed and other methods in terms of the four aforemen-

ioned objective performance scores. In this respect, we consider

he time-variant RIR scenario in Fig. 7 and compare our LRSV es-

imation method with the other methods. The results have been

eported in Table 4 for the vertical distance H in Fig. 7 to be

 m. Based on these results, it can be inferred that in general,

he performance scores of all methods falls below those in case of

ime-invariant RIR. Consistent with all the performance scores, it

s observed that the proposed method achieves considerably closer

cores to those obtained by the true LRSV, even in higher reverber-

tion times where the performance scores of the other methods

re further degraded. This shows the advantage of the proposed

ethod especially for changing environments. Also, it is seen that

hile the model-based and improved model-based methods result

n almost same scores, the performance of the Lebart’s method, i.e.

hat with a constant shape parameter, is deteriorated further than

hat in the case of time-invariant RIR. This shows the importance

f adapting the shape parameter to the changing RIR in the esti-

ation of LRSV. 
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Table 2 

Performance measures using the ISM method for a source-to-microphone distance of 

1 m. 

PESQ 

T 60 dB (ms) 200 400 600 800 

Unprocessed 2.31 2.14 1.92 1.78 

True LRSV 2.83 2.61 2.37 2.16 

Proposed method 2.75 2.48 2.21 1.97 

Improved model-based ( Bao and Zhu, 2013 ) 2.71 2.43 2.14 1.90 

Correlation-based ( Erkelens and Heusdens, 2010 ) 2.70 2.41 2.12 1.88 

Lebart’s method ( Lebart et al., 2001 ) 2.63 2.32 1.99 1.81 

CD 

T 60 dB (ms) 200 400 600 800 

Unprocessed 3.72 4.06 4.65 5.48 

True LRSV 3.03 3.39 4.11 5.06 

Proposed method 3.12 3.51 4.26 5.24 

Improved model-based ( Bao and Zhu, 2013 ) 3.18 3.59 4.34 5.33 

Correlation-based ( Erkelens and Heusdens, 2010 ) 3.20 3.63 4.37 5.36 

Lebart’s method ( Lebart et al., 2001 ) 3.26 3.73 4.48 5.44 

FWSNR (dB) 

T 60 dB (ms) 200 400 600 800 

Unprocessed 6.03 5.12 4.16 3.04 

True LRSV 9.21 8.03 6.97 5.90 

Proposed method 8.69 7.32 6.27 4.95 

Improved model-based ( Bao and Zhu, 2013 ) 8.38 6.99 6.02 4.61 

Correlation-based ( Erkelens and Heusdens, 2010 ) 8.35 6.90 5.87 4.48 

Lebart’s method ( Lebart et al., 2001 ) 8.02 6.64 5.49 4.16 

SRMR (dB) 

T 60 dB (ms) 200 400 600 800 

Unprocessed 6.56 5.58 4.50 3.47 

True LRSV 9.63 8.49 7.32 6.25 

Proposed method 8.97 7.68 6.54 5.22 

Improved model-based ( Bao and Zhu, 2013 ) 8.60 7.28 6.27 4.95 

Correlation-based ( Erkelens and Heusdens, 2010 ) 8.57 7.14 6.00 4.84 

Lebart’s method ( Lebart et al., 2001 ) 8.35 6.91 5.68 4.45 

Table 3 

Performance measures using the ISM method for a source-to-microphone distance of 

2 m. 

PESQ 

T 60 dB (ms) 200 400 600 800 

Unprocessed 2.28 2.12 1.87 1.75 

True LRSV 2.81 2.59 2.33 2.15 

Proposed method 2.72 2.46 2.20 1.94 

Improved model-based ( Bao and Zhu, 2013 ) 2.68 2.39 2.10 1.88 

Correlation-based ( Erkelens and Heusdens, 2010 ) 2.66 2.38 2.09 1.86 

Lebart’s method ( Lebart et al., 2001 ) 2.60 2.29 1.96 1.78 

CD 

T 60 dB (ms) 200 400 600 800 

Unprocessed 3.76 4.08 4.71 5.57 

True LRSV 3.08 3.45 4.20 5.15 

Proposed method 3.16 3.56 4.31 5.23 

Improved model-based ( Bao and Zhu, 2013 ) 3.21 3.63 4.40 5.39 

Correlation-based ( Erkelens and Heusdens, 2010 ) 3.24 3.67 4.46 5.42 

Lebart’s method ( Lebart et al., 2001 ) 3.30 3.78 4.57 5.51 

FWSNR (dB) 

T 60 dB (ms) 200 400 600 800 

Unprocessed 5.92 4.90 4.00 2.84 

True LRSV 9.04 7.88 6.79 5.71 

Proposed method 8.57 7.18 6.09 4.80 

Improved model-based ( Bao and Zhu, 2013 ) 8.24 6.83 5.87 4.45 

Correlation-based ( Erkelens and Heusdens, 2010 ) 8.33 7.03 5.97 4.71 

Lebart’s method ( Lebart et al., 2001 ) 8.18 6.69 5.45 4.31 

SRMR (dB) 

T 60 dB (ms) 200 400 600 800 

Unprocessed 6.41 5.35 4.29 3.30 

True LRSV 9.52 8.30 7.19 6.08 

Proposed method 8.81 7.49 6.42 5.10 

Improved model-based ( Bao and Zhu, 2013 ) 8.47 7.15 6.13 4.80 

Correlation-based ( Erkelens and Heusdens, 2010 ) 8.33 7.03 5.97 4.71 

Lebart’s method ( Lebart et al., 2001 ) 8.03 6.59 5.40 4.22 
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Fig. 8. Mean spectral variances for: (a) the true LRSV, the LRSV estimated using 

RIR variances and the proposed LRSV (b) the true LRSV, the LRSV estimated by the 

improved model-based method ( Bao and Zhu, 2013 ) and the one estimated by the 

Lebart’s method ( Lebart et al., 2001 ). 
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Fig. 9. Mean segmental error for different LRSV estimators using the configuration 

in Fig. 7 with H as (a): 1 m (b): 2 m. 
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In order to demonstrate the advantage of the proposed LRSV es-

imation method against the previous methods in real world time-

arying environments, we use the RevDyn speech database avail-

ble at Schwarz (2017) . In this experimentation, the recordings

ere performed in a room with dimensions of 6 m × 5.9 m ×
.3 m and a T 60 dB of 750 ms. The experiments involve speaking

n different locations in the room and walking naturally between

hem. Also, there are other experiments where only slight move-

ents such as head turning, sitting down and standing up are con-

idered. The speaker-to-microphone distance varies between 2 m

nd 3.8 m. To take into account the effect of background noise,

e also add babble noise to the recorded reverberant signals at

ifferent reverberant SNRs in the range of [5, 20] dB. Since the in-

ccuracy in the estimation of the spectral variance, LRSV, can also

ppear as distortion in the enhanced speech, we focus this time

n the resulting distortion introduced by using each of the LRSV

stimators. We here employ two frequently used measures of dis-

ortion, namely, the log-spectral distance (LSD) ( Habets, 2007 ) and

he Mel-frequency cepstral coefficients (MFCC) ( Zheng et al., 2001 )

istance. Spectral domain measures, e.g. the LSD, are often less in-

uenced by time misalignments between the clean and enhanced

peech. We therefore use the LSD as one of the oldest distortion

easures exploited for speech enhancement, which can be formed

y the � p -norm of the difference between the log-STFT of the ane-

hoic and reverberant/dereverberated signals ( Habets, 2007 ). As
ell, we use the MSE between the MFCC of the anechoic and en-

anced signals, to have a more complete performance assessment

n the case of noisy reverberant environments, since the MFCC co-

fficients are rather sensitive to background noise ( Zheng et al.,

001; Bao and Zhu, 2013 ). The MFCC distance, in addition to the

udible quality of speech, is related to automatic speech recog-

ition (ASR) performance and has been used as one of the main

eatures for ASR systems. The corresponding results are shown in

ig. 10 versus different noise levels. The presented values are av-

rages for three different scenarios from Schwarz (2017) . As ob-

erved, the smaller LSD and MFCC distances for the proposed LRSV

stimator is indicative of a lower distortion implied by using our

pproach, as compared to the rest of the methods. This demon-

trates the advantage of the proposed method in changing envi-

onments where the RIR is time-variant. It has to be noted that,

or SNR values of 5 dB and lower, the problem becomes more of a

oint noise and reverberation suppression, and therefore, the per-

ormance of all employed methods tends to degrade. 

The main contribution of the proposed LRSV estimation ap-

roach has two aspects: the selection of the shape parameter κ( k,

 ) by (13) and the MA-based method to estimate the reverberant-

nly component X R ( k, l ) by (21) . The latter method, in fact, plays

n important role in the entire LRSV estimation approach by elim-

nating the direct-path component from the observed reverber-

nt speech. In order to show the pure advantage with the pro-

osed scheme for the estimation of X ( k, l ), we employ the WPE-
R 
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Table 4 

Performance measures for the time-variant RIR in Fig. 7 with H = 1 m. 

PESQ 

T 60 dB (ms) 200 400 600 800 

Unprocessed 2.28 2.13 1.92 1.77 

True LRSV 2.76 2.58 2.29 2.10 

Proposed method 2.71 2.40 2.16 1.93 

Improved model-based ( Bao and Zhu, 2013 ) 2.66 2.35 2.10 1.84 

Model-based ( Erkelens and Heusdens, 2010 ) 2.66 2.36 2.09 1.83 

Lebart’s method ( Lebart et al., 2001 ) 2.56 2.27 1.93 1.76 

CD 

T 60 dB (ms) 200 400 600 800 

Unprocessed 3.80 4.09 4.65 5.49 

True LRSV 3.16 3.54 4.26 5.28 

Proposed method 3.20 3.62 4.37 5.39 

Improved model-based ( Bao and Zhu, 2013 ) 3.25 3.71 4.50 5.44 

Model-based ( Erkelens and Heusdens, 2010 ) 3.26 3.71 4.52 5.45 

Lebart’s method ( Lebart et al., 2001 ) 3.31 3.77 4.61 5.52 

FWSNR (dB) 

T 60 dB (ms) 200 400 600 800 

Unprocessed 5.90 5.07 4.15 3.02 

True LRSV 8.97 7.82 6.69 5.63 

Proposed method 8.30 7.21 6.02 4.60 

Improved model-based ( Bao and Zhu, 2013 ) 8.21 6.70 5.52 4.08 

Model-based ( Erkelens and Heusdens, 2010 ) 8.20 6.68 5.52 4.06 

Lebart’s method ( Lebart et al., 2001 ) 7.92 6.43 5.18 3.81 

SRMR (dB) 

T 60 dB (ms) 200 400 600 800 

Unprocessed 6.48 5.55 4.51 3.44 

True LRSV 9.46 8.21 6.97 5.90 

Proposed method 8.64 7.32 6.22 4.91 

Improved model-based ( Bao and Zhu, 2013 ) 8.32 6.96 5.92 4.60 

Model-based ( Erkelens and Heusdens, 2010 ) 8.30 6.92 5.84 4.57 

Lebart’s method ( Lebart et al., 2001 ) 8.03 6.59 5.40 4.22 
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Fig. 10. (a): Log-spectral distance (lower is better) and (b): MFCC distance (lower 

is better), versus the reverberant SNR for the time-varying acoustic scenario in 

Schwarz (2017) using different methods. 

16
15

13
based scheme in (13) to obtain the shape parameter in the re-

cursive smoothing step in different LRSV estimation methods from

the literature. The corresponding PESQ measure for the resulting

combination of the LRSV estimation methods with the scheme in

(13) along with that for the proposed approach have been shown

in Fig. 11 for the same scenario as Table 4 . Apart from the improve-

ment of the underlying methods as compared to Table 4 , it can be

observed that the proposed approach still outperforms the rest of

the LRSV estimation methods, which is due to the benefit from the

reverberant-only estimation scheme provided by (13) . 

As aforementioned, we used the LSA gain function in Ephraim

and Malah (1985) as the underlying SE method to suppress the

late reverberation for our experiments. In fact, we experimented

that the most efficient gain function-based SE method for the sup-

pression of late reverberation is the log-MMSE method, i.e. the LSA

gain function, in Ephraim and Malah (1985) and that the other

more recent similar methods did not provide further performance

advantage 6 . Nevertheless, in order to show the applicability of the

proposed LRSV estimation to different gain function-based SE tech-

niques, we here present an experiment with a few of the other

such techniques, namely, the traditional Wiener filtering ( Loizou,

2013 ), a version of the spectral subtractive method ( Loizou, 2013 ),

and the MAP amplitude estimation with a super-Gaussian speech

prior ( Lotter and Vary, 2005 ). The resulting PESQ scores for the

same scenario as Table 4 are presented in Fig. 12 with the pro-

posed LRSV estimator used in different gain functions to suppress

late reverberation. It can be inferred that, while the LSA gain func-

tion performs best, the rest of the methods score almost closely to

this gain function when using the proposed LRSV approach. 
6 This is in contrast with the gain function-based noise reduction where there are 

plenty of gain functions and their modified versions, being able to provide further 

enhancement. For a complete literature review on this, the reader is referred to 

Parchami et al. (2016) . 

Fig. 11. Performance comparison of different LRSV estimation methods using the 

proposed WPE-based shape parameter in (13) in their recursive smoothing scheme. 
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Fig. 12. Performance comparison of different gain function-based SE methods with 

the proposed LRSV estimation approach. 
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. Conclusion 

We proposed a model-based estimator for the spectral variance

f the late reverberant speech using a modification of the WPE

ereverberation method. The suggested approach employs the WPE

ethod in an incremental processing manner with a short delay,

here preliminary estimates of the reverberant and direct-path

omponents of speech are extracted from each processing block.

hese estimates are further exploited in a model-based smooth-

ng scheme to estimate the LRSV. We evaluated the performance of

he proposed LRSV estimation method in terms of different perfor-

ance measures recommended by the REVERB Challenge in both

ime-invariant and time-variant acoustic environments. According 

o the experiments, the proposed LRSV estimator outperforms the

revious major methods considerably and scores the closest re-

ults to the theoretically true LRSV estimator. Particularly, in case

f changing RIRs where other methods fail to precisely follow the

rue LRSV estimator, our estimator is able to track the true LRSV

alues closely. The proposed approach is performed in a blind way

nd does not require any prior information about the speech or

coustic parameters. Future work in this direction involves taking

nto account the inherent correlation of the early and late rever-

erant components of speech, reducing the processing block length

nd making the proposed approach robust against fast changes in

he RIR. 
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