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a b s t r a c t 

We introduce single-channel supervised speech enhancement algorithms based on regularized non- 

negative matrix factorization (NMF). In the proposed framework, the log-likelihood functions (LLF) of 

the magnitude spectra for both the clean speech and noise, based on Gaussian mixture models (GMM), 

are included as regularization terms in the NMF cost function. By using this proposed regularization 

as a priori information in the enhancement stage, we can exploit the statistical properties of both the 

clean speech and noise signals. For further improvement of the enhanced speech quality, we also in- 

corporate a masking model of the human auditory system in our approach. Specifically, we construct a 

weighted Wiener filter (WWF) where the power spectral densities (PSD) of the speech and noise are esti- 

mated from the above mentioned NMF algorithm with the proposed regularization. The weighting factor 

in the WWF is selected based on a masking threshold which is obtained from the estimated PSD of 

the enhanced speech. Experimental results of perceptual evaluation of speech quality (PESQ), source-to- 

distortion ratio (SDR) and segmental signal-to-noise ratio (SNR) show that the proposed speech enhance- 

ment algorithms (i.e., regularized NMF with and without masking model) provide better performance in 

speech enhancement than the benchmark algorithms. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Speech enhancement algorithms aim to remove additive back-

ground noise from a noisy speech signal in order to improve its

quality or intelligibility. They have been an attractive research area

for decades and find diverse applications, including mobile tele-

phony, hearing aid and speech recognition, to name a few. Nu-

merous algorithms for single channel speech enhancement have

been proposed in the past, such as: Wiener filtering ( Lim and Op-

penheim, 1979; Scalart and Filho, 1996 ), spectral subtraction ( Boll,

1979; Virag, 1999 ), minimum mean-square error (MMSE) estima-

tion of the short-time spectral amplitude (STSA) ( Ephraim and

Malah, 1984; Loizou, 2005; Plourde and Champagne, 2008; You

et al., 2005 ) and subspace decomposition ( Ephraim and Van Trees,

1995; Hermus et al., 2007; Jensen et al., 1995 ). However, these

algorithms use a minimal amount of a priori information about

the speech and noise. Consequently, they tend to provide limited
� Funding for this work was provided by Microsemi Corporation (Ottawa, Canada) 

and a grant from NSERC (Govt. of Canada) 
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erformance gains, especially when the speech is contaminated by

dverse noise, such as under low signal-to-noise ratio (SNR) or

on-stationary noise conditions. 

Further improvements of the MMSE-based estimators have

een proposed by modeling the speech spectrum as a Rayleigh

ixture model (RMM) ( Erkelens et al., 2007 ) or a Gaussian mix-

ure model (GMM) ( Ding et al., 2005; Hao et al., 2010 ). These esti-

ators, which use model parameters derived from a training set

or the clean speech, provide a more detailed and accurate de-

cription of the speech distribution and are better suited to handle

on-stationary speech features. In contrast to the speech model,

he parameters of the noise distribution are often estimated di-

ectly from the noisy speech spectrum. These can be obtained by

sing an estimation algorithm where the noise power spectral den-

ity (PSD) is calculated recursively over successive time frames

o capture non-stationary features ( Cohen, 2003; Gerkmann and

endriks, 2012; Rangachari and Loizou, 2006 ). However, the noise

pectrum is modeled by a single distribution which is one of the

ain limitations of the above MMSE-based estimators. 

Recently, the non-negative matrix factorization (NMF) ap-

roach has been applied to various problems such as image rep-

esentation ( Zafeiriou et al., 2006 ), music transcription ( Bertin

t al., 2010 ), source separation ( Virtanen, 2007a ) and speech

http://dx.doi.org/10.1016/j.specom.2016.11.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/specom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.specom.2016.11.003&domain=pdf
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nhancement ( Mohammadiha et al., 2013 ). In general, NMF is a di-

ensionality reduction tool, which decomposes a given data ma-

rix into basis and activation matrices with non-negative elements

onstraint ( Févotte et al., 2009; Lee and Seung, 2001 ). In speech

nd audio applications, the magnitude or power spectrum of the

esired signal is interpreted as a linear combination of the ba-

is vectors. In supervised learning-based NMF algorithms, the ba-

is vectors are obtained for each source independently by employ-

ng training data, and subsequently used during the separation

r enhancement stage ( Grais and Erdogan, 2013; Mohammadiha

t al., 2013 ). However, one of the main problems of such super-

ised algorithms is the existence of a mismatch between the char-

cteristics of the training and test data, which in turn leads to

 decreased quality of the estimated source signals. One possi-

le remedy to this problem is to add explicit regularization terms

o the NMF cost function that incorporate some prior knowledge.

n order to account for the temporal dependency of the succes-

ive time frames, Févotte et al. (2009) model the activations by

eans of Markov chain, Grais and Erdo ̆gan (2012) and Mysore and

maragdis (2011) use a hidden Markov model (HMM), while Grais

nd Erdogan (2013) use GMMs that help the activations to follow

ertain patterns. In Chung et al. (2014) , both the speech and noise

pectra are modeled by a GMM, and their log-likelihood functions

LLF) are used as regularization terms. 

Besides the speech enhancement or source separation algo-

ithms which mainly focus on the perspective of signal estima-

ion and reconstruction, several algorithms incorporating modeling

spects of the human auditory system have been proposed in or-

er to improve the perceptual quality of the estimated source sig-

als. Specifically, these refined algorithms exploit a psychoacous-

ical property called auditory masking which refers to a process

hereby one sound is rendered inaudible due to the presence of

nother sound ( Fastl and Zwicker, 2007 ). In the case of frequency

omain (or simultaneous) masking, the threshold which models

his effect has been used for selecting parameters in spectral sub-

raction ( Virag, 1999 ), subspace decomposition ( Jabloun and Cham-

agne, 2003 ), Wiener filtering ( Hu and Loizou, 2004 ) and MMSE-

ased estimator ( Hansen et al., 2006; Natarajan et al., 2005 ). In

he NMF-based algorithms, weighted NMF update rules have been

roposed by applying a weighting matrix based on the masking

hreshold to the NMF cost function ( Kırbız and Günsel, 2013; Vir-

anen, 2007b ). For speech enhancement, the masking threshold

hich determines the amount of the noise reduction is usually cal-

ulated from the estimated PSD of the clean speech. This suggests

hat a more accurate estimation scheme may lead to further im-

rovement of the enhanced speech quality when applying a mask-

ng threshold. 

In this paper, we introduce single-channel supervised speech

nhancement algorithms based on regularized NMF which are ex-

ensions of our previous work ( Chung et al., 2014 ). The proposed

ramework seeks to exploit the statistical properties of both the

lean speech and noise, an approach which is widely used in tra-

itional speech enhancement algorithms. This is achieved in two

ays: i) by representing the corresponding magnitude spectra,

hich capture the general ( high-level ) characteristics of the signals,

ith the help of GMMs motivated by Ding et al. (2005) and Hao

t al. (2010) , and ii) by adding regularization terms that incorpo-

ate this a priori information to the NMF cost function in the en-

ancement stage. The proposed method, therefore, can be inter-

reted as a combination of the NMF and statistical model-based

pproaches. During the training stage, by using an isolated train-

ng set for each type of clean speech and noise, we estimate the

asis matrices in the NMF model via multiplicative update rules

 Lee and Seung, 2001 ) and the parameters of the GMMs via the

xpectation-maximization (EM) algorithm ( Bishop, 2006; Demp-

ter et al., 1977 ). For the GMM, we propose to use normalized
pectral values in order to handle the magnitude difference be-

ween the training and test data, similar to the work of Grais and

rdogan (2013) . In the enhancement stage, the LLFs of the clean

peech and noise magnitude spectra are added as regularization

erms to the NMF cost function and the activation matrix of the

oisy speech is estimated. Consequently, the PSDs of the clean

peech and noise are obtained and the enhanced speech is recon-

tructed using Wiener filtering. 

For further improvement of the enhanced speech quality, we

ncorporate the masking effects of the human auditory system in

ur approach. Specifically, we construct a weighted Wiener filter

WWF) where the PSDs of the speech and noise are estimated

rom the above mentioned NMF algorithm with the proposed reg-

larization. The weighting factor in the WWF is selected based

n a masking threshold which is obtained from the estimated

SD of the speech based on Painter and Spanias (20 0 0) . Experi-

ental results of perceptual evaluation of speech quality (PESQ)

 Recommendation, 2001 ), source-to-distortion ratio ( Vincent et al.,

006 ) and segmental signal-to-noise ratio (SNR) show that the

roposed speech enhancement algorithms provide better perfor-

ance in speech enhancement than the benchmark algorithms. 

The rest of the paper is organized as follows. In Section 2 , we

riefly review the basic principles of NMF-based single channel

peech enhancement. The proposed NMF training stage with GMM

arameter estimation is described in Section 3 . In Section 4 , the

roposed modifications to the enhancement stage, including NMF

lgorithm with regularization, masking threshold estimation and

erceptually motivated NMF algorithm for speech enhancement

re explained. Experimental results are presented in Section 5 and

nally, a conclusion is given in Section 6 . 

. NMF-based speech enhancement 

For a given matrix V = [ v kl ] ∈ R 

K×L 
+ , NMF finds a local optimal

ecomposition V = W H , where W = [ w km 

] ∈ R 

K×M 

+ is a basis ma-

rix, H = [ h ml ] ∈ R 

M×L 
+ is an activation matrix, R + denotes the set of

on-negative real numbers and M is the number of basis vectors,

ypically chosen such that KM + ML � KL ( Févotte et al., 2009; Lee

nd Seung, 2001 ). The factorization is obtained by minimizing a

uitable cost function, denoted as J ( V , W H ) . By expressing the

radient of the cost function as the difference of two non-negative

erms such that ∇J ( V , W H ) = ∇ 

+ J ( V , W H ) − ∇ 

−J ( V , W H ) , so-

utions can be obtained iteratively using the following heuristic

ultiplicative update rules ( Bertin et al., 2010; Févotte et al., 2009;

rais and Erdogan, 2013 ): 

 ← W �
∇ 

−
W 

J ( V , W H ) 

∇ 

+ 
W 

J ( V , W H ) 
, H ← H �

∇ 

−
H 
J ( V , W H ) 

∇ 

+ 
H 
J ( V , W H ) 

(1) 

here the operator � and the quotient line respectively denote

lement-wise multiplication and division, and the ← refers to an

terative overwrite. Among various cost functions, the most widely

sed one is the Kullback–Leibler (KL) divergence (e.g., FitzGerald

t al., 2008 ), defined as 

 ( V , W H ) = D KL ( V , W H ) � 

K ∑ 

k =1 

L ∑ 

l=1 

(
v kl ln 

v kl 

[ W H ] kl 

−v kl + [ W H ] kl 

)
(2) 

here [ · ] kl denotes the ( k , l )th entry of its matrix argument. The

pdate rules of the NMF with KL-divergence based on (1) are given

s 

 ← W �
( V / ( W H )) H 

T 

1 H 

T 
, H ← H �

W 

T ( V / ( W H )) 

W 

T 1 

(3) 

here 1 is a K × L matrix with all entries equal to one, the opera-

or / denotes element-wise division and the superscript T denotes
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1 According to (6) , only the magnitude of the noisy speech Y ( k , l ) is modified 

during the enhancement stage. This approach is common in most of the literature 

on speech enhancement ( O’Shaughnessy, 1987 ). 
2 Alternatively, we can model the PDF of the magnitude spectra by a RMM (e.g., 

Erkelens et al., 2007 ) or Gamma mixture model (e.g., Virtanen and Cemgil, 2009 ), 

which remain an interesting avenue for our future explorative work. 
3 Indeed, we could verify through independent experiments that there was no 

significant difference in the enhancement performance when considering either V 

or W H as the observation matrix. 
matrix transpose. The scale indeterminacies of W and H can be

prevented by including a normalization step which leaves the cost

function unchanged ( Févotte et al., 2009 ). Specifically, at the end

of each iteration, we can use the l 1 -norm to normalize the column

vectors of the basis matrix, W , and scale the row vectors of the ac-

tivation matrix, H , accordingly, e.g., Cichocki et al. (2006) ; Zafeiriou

et al. (2006) . As for the initialization of W and H , positive random

numbers are commonly used ( Févotte et al., 2009 ). Numerical in-

stability due to division by zero or taking the logarithm of zero,

which may appear in the KL-divergence in (2) or in the update

rules given by (3) , can be avoided in a practical implementation by

adding a small positive number, e.g., 10 −20 , to the various denom-

inators in (2) and (3) and the numerator of the log function in (3) ,

e.g., ( Cichocki et al., 2006; Lefevre et al., 2011 ). 

Note that the update rules given in (1) do not guarantee the

convergence to a stationary point in general ( Févotte et al., 2009 ).

Nevertheless, they are widely used due to the simplicity of their

derivation and implementation, especially in diverse regularized

algorithms, e.g., Virtanen (2007a ), Grais and Erdogan (2013) . By

adding an additional regularization term to the KL-divergence, we

can construct a regularized cost function as, 

J ( V , W H ) = D KL ( V , W H ) + αR ( W , H ) (4)

where α > 0 is a regularization coefficient and R ( W , H ) denotes

a regularization term. An iterative solution algorithm is easily ob-

tained using the update rules given in (1) . Various approaches for

choosing the regularization term have been introduced by consid-

ering sparsity ( Virtanen, 2007a ), temporal continuity ( Bertin et al.,

2010; Virtanen, 2007a ), harmonicity of music signals ( Bertin et al.,

2010 ) and statistical priors ( Chung et al., 2014; Grais and Erdogan,

2013 ). 

In single-channel speech enhancement, the observed noisy

speech signal can be expressed in the time-frequency domain via

the short-time Fourier transform (STFT) as ( O’Shaughnessy, 1987 ),

 (k, l) = S(k, l) + N(k, l) (5)

where Y ( k , l ), S ( k , l ) and N ( k , l ) respectively denote the STFT of

the noisy speech, clean speech and noise for the k th frequency bin

of the l th time frame. We assume that the magnitude spectrum

of the noisy speech can be approximated by | Y (k, l) | ≈ | S(k, l) | +
| N(k, l) | , as it is a practical assumption widely used in NMF-based

audio and speech signal processing ( Grais and Erdogan, 2013; Mo-

hammadiha et al., 2011; Virtanen, 2007a ). Throughout this paper,

we will use the following notations to represent the magnitude

spectrum matrices of the different signals under consideration:

V = [ v kl ] ∈ R 

K×L 
+ where v kl is the magnitude spectral value for the

k th frequency bin of the l th time frame, K is the number of fre-

quency bins and L is the number of time frames. Furthermore, we

shall use the subscripts or superscripts Y , S and N , respectively,

to indicate the noisy speech, clean speech and noise (as in, e.g.,

v Y 
kl 

= | Y (k, l) | ). We also adopt a similar convention for the basis

and activation matrices. 

In general, NMF-based supervised speech enhancement algo-

rithms consist of two stages ( Grais and Erdogan, 2013; Moham-

madiha et al., 2013 ). During the training stage, by applying (3) to

the training data V S ∈ R 

K×L S + and V N ∈ R 

K×L N + separately, the ba-

sis matrices for both the clean speech and noise, W S = [ w 

S 
km 

] ∈
R 

K×M S + and W N = [ w 

N 
km 

] ∈ R 

K×M N + , are obtained. The activation ma-

trices for the clean speech and noise, which are computed along

with the basis matrices, are discarded after the training stage. In

the enhancement stage, by fixing these basis matrices as W Y =
[ W S W N ] ∈ R 

K×(M S + M N ) + , the activation matrix of the noisy speech

is estimated, i.e., ˆ H Y = [ ̂  H 

T 

S 
ˆ H 

T 

N ] 
T ∈ R 

(M S + M N ) ×L Y + , by applying the

NMF activation update in (3) to the noisy speech magnitude spec-

trum V Y ∈ R 

K×L Y + . Note that the regularized NMF algorithm can be
pplied instead to exploit some prior knowledge of the signals,

here the update rules can be derived by using the heuristic mul-

iplicative update rules given in (1) based on the cost function

iven in (4) . Once the activation matrix of the noisy speech is ob-

ained, the clean speech spectrum can be estimated using a Wiener

lter (WF) as ( Févotte et al., 2009; Kırbız and Günsel, 2013; Mo-

ammadiha et al., 2011 ), 

ˆ 
 = 

ˆ P S 

ˆ P S + 

ˆ P N 

� Y (6)

here ˆ P S = [ ̂  P S (k, l)] and 

ˆ P N = [ ̂  P N (k, l)] ∈ R 

K×L Y + respectively de-

ote the estimated power spectral density (PSD) matrices of the

lean speech and noise and Y = [ Y (k, l)] ∈ C 

K×L Y denotes the ma-

rix of noisy speech STFT coefficients. Hence, the estimated clean

peech in (6) makes use of the phase from the initial noisy speech

n Y . 1 The PSDs can be obtained via temporal smoothing of the

MF-based periodograms as given by Kwon et al. (2015) , 

ˆ P S (k, l) = τS ̂
 P S (k, l − 1) + (1 − τS )([ W S ̂

 H S ] kl ) 
2 (7)

ˆ P N (k, l) = τN ̂
 P N (k, l − 1) + (1 − τN )([ W N ̂

 H N ] kl ) 
2 (8)

here τ S and τN are the temporal smoothing factors for the

peech and noise, respectively. Finally, the enhanced speech signal

n the time-domain is reconstructed by applying an inverse STFT

n (6) followed by the overlap-add method ( O’Shaughnessy, 1987 ).

. Proposed training stage 

In the proposed framework, a priori knowledge about the mag-

itude spectra of the clean speech and noise is captured by distinct

MMs. As a brief overview of the training stage, we first estimate

he basis and activation matrices for the clean speech and noise

ndependently using isolated training data. To this end, we con-

ider the KL-divergence given in (2) and apply the resulting update

ules in (3) , leading to factorizations V S = W S H S and V N = W N H N .

ubsequently, the GMM parameters for the speech and noise are

stimated from the corresponding NMF parameters. The details of

his computation, which is identical for the speech and noise, are

urther developed below where for convenience in notation, the

ubscripts S and N are dropped. 

In Ding et al. (2005) and Hao et al. (2010) , the probability den-

ity function (PDF) of the clean speech spectrum is modeled by

 GMM. Motivated by this approach, we model the PDFs of the

agnitude spectra for both the clean speech and noise by distinct

MMs. 2 Therefore, we can expect that a more detailed and accu-

ate statistical description is provided for the noise as well as the

lean speech. In the proposed algorithm, we consider the prod-

ct W H , which is an approximation of V , as the observation ma-

rix for the parameter estimation of the magnitude spectrum PDF, 3 

ince we intend to introduce a clear connection with the regular-

zation term shown in (4) . Specifically, by expressing the observa-

ion as W H , we can directly differentiate the regularization term

ith respect to H while deriving the update rule given by (1) dur-

ng the enhancement stage (a detailed derivation will be presented

n Section 4.1 ). Moreover, in order to handle the magnitude differ-

nce between the training and test data, we consider normalized
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bservations where the columns of W H are normalized by their l 1 -

orm, 4 similar to Grais and Erdogan (2013) . Specifically, we define

he normalized column of the observation matrix as, 

¯
 l � 

[ W H ] l ∑ 

m 

h ml 

(9) 

here [ ·] l denotes the l th column of its matrix argument. Note

hat the l 1 -norm of [ W H ] l , i.e., 
∑ 

k [ W H ] kl , simply turns into �m 

h ml 

ince the basis vectors are normalized with respect to the l 1 -norm,

.e., 
∑ 

k w km 

= 1 for m ∈ {1, ... M }. The GMM is defined in terms of

he following parametric model for the PDF of V̄ l 

p( ̄V l | θ) = 

∑ 

z 

p( z ) p( ̄V l | z ) = 

I ∑ 

i =1 

g i N ( ̄V l | μi , �i ) (10)

here I is the number of Gaussian components, z = [ z 1 , ..., z I ] 
T is

n I -dimensional vector of discrete latent variables z i ∈ {0, 1} with
 

i z i = 1 , and the set θ � { g i , μi , �i } I i =1 
consists of the GMM pa-

ameters. The marginal distribution over z is specified in terms

f the mixing coefficients g i � p(z i = 1) . The conditional PDF of V̄ l 

iven a particular value for the latent variable z i is a K -dimensional

aussian distribution such that p( ̄V l | z i = 1) = N ( ̄V l | μi , �i ) where

i = [ μi,k ] is the mean vector and �i is the covariance matrix. In

his work, we ignore possible correlations between different spec-

ral components and therefore consider diagonal covariance matri-

es for simplicity, i.e., �i = diag { σ 2 
i,k 

} . Recall that the entries of the

bservation matrix V̄ = [ ̄v kl ] are magnitude spectral values which

re strictly non-negative, while the GMM can in theory assign non-

ero probability to negative values. Nevertheless, modeling matrix
¯
 by a GMM is perfectly reasonable if the mean value of its entries 

xceed the corresponding standard deviation by a significant mar-

in. More specifically, if say μi , k ≥ 3 σ i , k for every Gaussian com-

onent i = 1 , ..., I, then we can safely assume that P r [ ̄v kl < 0] ≈ 0 .

n effect, we have been able to verify that this condition is gener-

lly satisfied in our experimental work. 

The parameter set θ = { g i , μi , �i } I i =1 
can be estimated using the

xpectation-maximization (EM) algorithm ( Bishop, 2006; Demp-

ter et al., 1977 ). For a given observation V̄ = [ ̄V 1 , ̄V 2 , ..., ̄V L ] = [ ̄v kl ] ,

here the column vectors V̄ l are assumed to be drawn indepen-

ently, the LLF can be written as, 

 ( ̄V | θ) � ln p( ̄V | θ) 

= 

L ∑ 

l=1 

ln 

{ I ∑ 

i =1 

g i N ( ̄V l | μi , �i ) 
} 

≥
L ∑ 

l=1 

I ∑ 

i =1 

q (z i ) ln 

{ 

g i N ( ̄V l | μi , �i ) 

q (z i ) 

} 

� L B ( ̄V | θ) (11) 

here q ( z i ) is an arbitrary probability distribution. The inequality

olds for any choice of q ( z i ) due to Jensen’s inequality ( Cemgil,

009; Hao et al., 2010 ). Note that L B ( ̄V | θ) defines a lower bound

n L ( ̄V | θ) where the equality holds for q (z i ) = p(z i = 1 | ̄V l , θ) ,

hich is the posterior distribution of latent variable z i given the

bservation V̄ l . The EM algorithm is an iterative procedure which

onsists of two steps. During the expectation step (E-step), the pos-

erior distribution of each latent variable given the observation is

alculated, which is shown as 

(r) 
il 

� p(z i = 1 | ̄V l , θ
(r) 

) = 

g (r) 
i 
N ( ̄V l | μ(r) 

i 
, �(r) 

i 
) ∑ I 

i =1 g 
(r) 
i 
N ( ̄V l | μ(r) 

i 
, �(r) 

i 
) 

(12)

here the superscript ( r ) denotes the r th iteration. In the maxi-

ization step (M-step), by fixing the posterior distribution to γ (r) 
,

il 

4 Note that this normalization step differs from the one included in the NMF up- 

ate introduced in Section 2 , where we normalize the basis matrix and scale the 

ctivation matrix accordingly to avoid the scale indeterminacy. 

c  

a  

f

J  
he parameter set θ which maximizes L B ( ̄V | θ) is determined. In

ffect, since γ (r) 
il 

in (12) does not depend on θ, this is equivalent

o the maximization criterion of the expectation of the complete

ata LLF with respect to the posterior distribution, 

 C ( ̄V | θ) � 

L ∑ 

l=1 

I ∑ 

i =1 

γ (r) 
il 

ln { g i N ( ̄V l | μi , �i ) } . (13)

he solution of the M-step can be obtained in closed form as, 

 

(r+1) 
i 

= 

1 

L 

L ∑ 

l=1 

γ (r) 
il 

, 

(r+1) 
i,k 

= 

∑ L 
l=1 γ

(r) 
il 

v̄ kl ∑ L 
l=1 γ

(r) 
il 

, 

2 (r+1) 
i,k 

= 

∑ L 
l=1 γ

(r) 
il 

( ̄v kl − μ(r+1) 
i,k 

) 2 ∑ L 
l=1 γ

(r) 
il 

. (14) 

s for the initialization of θ, we apply k -means clustering to V̄ ,

hich is an iterative algorithm aiming to partition the observa-

ions into clusters, such that each observation belongs to the clus-

er with the nearest mean ( Bishop, 2006 ). The number of clusters

s set equal to I , the number of Gaussian components in the GMM,

hile the cluster mean values are initialized randomly. 

At this point, we emphasize the main difference between the

bove proposed training algorithm and the one presented in our

revious work ( Chung et al., 2014 ). In the latter, we considered

oint training of W , H and θ, where we used a regularized cost

unction as in (4) in which the regularization term was the ex-

ected LLF given in (13) . We observed that the regularization coef-

cient α not only determines the convergence behavior of the iter-

tive update but that it also affects the enhancement performance.

ence, selecting an appropriate value for this coefficient is difficult.

n addition, the iterative update using the joint training converges

lowly and hence requires a more extensive computational effort.

or these reasons, we chose to consider here instead a sequential

orm of training, which is found to be simpler and more efficient

n both terms of computation and enhancement performance. 

. Proposed enhancement stage 

In this section, we introduce the proposed regularized NMF al-

orithms. The LLF of the magnitude spectra for both the clean

peech and noise based on distinct GMMs are included as regular-

zation terms in the NMF cost function, which will be discussed in

ection 4.1 . For further improvement of enhancement performance,

e incorporate a masking model of the human auditory system in

ur approach, which will be provided in Section 4.2 . Specifically,

e construct a WWF where the PSDs of the speech and noise are

stimated by using the method in Section 4.1 , and the weighting

actor in the WWF is selected based on a masking threshold which

s obtained from the estimated PSD of the clean speech. 

.1. Regularized NMF with Gaussian mixtures 

In the proposed enhancement stage, the activation matrix of

he noisy speech H Y = [ H 

T 
S H 

T 
N ] 

T is estimated using the regularized

MF algorithm based on (1) and (4) , by fixing the basis matrices

 Y = [ W S W N ] and the GMM parameter sets of the clean speech

nd noise, θS = { g S 
i 
, μS 

i 
, �S 

i } I S i =1 
and θN = { g N 

i 
, μN 

i 
, �N 

i } I N i =1 
, which are

btained during the training stage. Specifically, the LLFs of the

lean speech and noise based on (11) , i.e., L ( ̄V S | θS ) and L ( ̄V N | θN ) ,

re used as regularization terms. The proposed regularized cost

unction is shown as, 

 = D KL ( V Y , W Y H Y ) − R Y ( W Y , H Y ) (15)
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c  

w  

n  
where D KL (·) is the KL-divergence given in (2) and R Y ( W Y , H Y ) is

the proposed regularization term written as, 

R Y ( W Y , H Y ) = αS L ( ̄V S | θS ) + αN L ( ̄V N | θN ) (16)

where L (·|·) is given in (11) and V̄ S , V̄ N are the normalized clean

speech and noise spectra defined by (9) . The values αS > 0 and

αN > 0 are the regularization coefficients for the clean speech and

noise, respectively. The optimal choices for αS and αN depend on

the input SNR as well as the speaker, the type of noise and regular-

ization term. In this paper, however, we do not consider such de-

pendencies (except the type of regularization term), and use con-

stant values for simplicity, as we found indeed that the optimal

choices mostly depend on the regularization term. Note that a neg-

ative sign is applied to the regularization term in (15) , since the

latter will represent a reward as opposed to a penalty. 

For the derivation of the update rule of H Y , we first compute

the gradient of D KL ( V Y , W Y H Y ) with respect to H Y . This gradient is

shown as 

∇ H Y D KL = ∇ 

+ 
H Y 
D KL − ∇ 

−
H Y 
D KL (17)

where the dependence of D KL ( V Y , W Y H Y ) on V Y and W Y H Y is

omitted for notational convenience, and the values on the right-

hand side are 

∇ 

+ 
H Y 
D KL = W 

T 
Y 1 (18)

∇ 

−
H Y 
D KL = W 

T 
Y ( V Y / ( W Y H Y )) (19)

where 1 is a K × L Y matrix with all entries equal to one. Note

that (18) and (19) appear respectively in the denominator and nu-

merator in (3) . Next, we derive the gradient of the regularization

term R Y ( W Y , H Y ) in (16) with respect to H Y . Note that by using

the equality in (11) , i.e., L ( ̄V | θ) = L B ( ̄V | θ) for q (z i ) = γil , the gra-

dient of L ( ̄V | θ) is identical to that of L B ( ̄V | θ) , which is equivalent

to the gradient of L C ( ̄V | θ) . Consequently, the gradient of (16) can

be shown in terms of the gradients of L C ( ̄V S | θS ) and L C ( ̄V N | θS )

with respect to H S and H N , respectively, as, 

∇ H Y R Y ( W Y , H Y ) = 

[
αS ∇ H S L C ( ̄V S | θS ) 

αN ∇ H N L C ( ̄V N | θN ) 

]
(20)

where L C (·|·) is the expected LLF given in (13) . As we can see from

(9) , the observations V̄ S and V̄ N are expressed in terms of the cor-

responding basis and activation matrices. Hence, using (13) , we can

derive the gradients of the expected LLF with respect to the acti-

vation matrix in (20) , which is shown as 

∇ H L C = ∇ 

+ 
H 
L C − ∇ 

−
H 
L C (21)

where H stands for either H S or H N , and the dependence of

L C ( ̄V | θ) on V̄ and θ is omitted for convenience. In (21) , the entries

of the gradient terms on the right-hand side are 

[ ∇ 

+ 
H 
L C ] ml = 

K ∑ 

k =1 

I ∑ 

i =1 

γil σ
−2 
i,k 

(
μi,k 

w km 

c l 
+ 

([ W H ] kl ) 
2 

c 3 
l 

)
(22)

[ ∇ 

−
H 
L C ] ml = 

K ∑ 

k =1 

I ∑ 

i =1 

γil σ
−2 
i,k 

(w km 

+ μi,k ) 
[ W H ] kl 

c 2 
l 

(23)

where γ il is the posterior distribution given in (12) and c l =∑ 

m 

h ml is the normalizing factor. Specifically, γ il is computed

based on W S and W S obtained during the training stage and H Y es-

timated in the previous multiplicative update iteration. Note that,

based on the concept of the lower bound in (11) and the objective

used in the M-step given by (13) , the posterior γ il is considered as

a fixed constant value during the derivations of (22) and (23) . 5 
5 Alternatively, we can derive the gradient terms directly from (16) , which also 

lead to (22) and (23) . 

i  

t

b  
Based on the heuristic multiplicative update rules given in (1) ,

he update rule of H Y can be written as, 

ˆ 
 Y ← 

ˆ H Y �

∇ 

−
H Y 

D KL ( V Y , W Y 
ˆ H Y ) + ∇ 

+ 
H Y 
R Y ( W Y , ˆ H Y ) 

∇ 

+ 
H Y 

D KL ( V Y , W Y 
ˆ H Y ) + ∇ 

−
H Y 
R Y ( W Y , ˆ H Y ) 

(24)

here ∇ 

+ 
H Y 

D KL ( V Y , W Y H Y ) and ∇ 

−
H Y 

D KL ( V Y , W Y H Y ) are given

n (18) and (19) . The components ∇ 

+ 
H Y 

R Y ( W Y , H Y ) and

 

−
H Y 

R Y ( W Y , H Y ) are easily found by substituting (21) into (20) .

hat is, 

 

+ 
H Y 
R Y ( W Y , H Y ) = 

[
αS ∇ 

+ 
H S 
L C ( ̄V S | θS ) 

αN ∇ 

+ 
H N 

L C ( ̄V N | θN ) 

]
(25)

 

−
H Y 
R Y ( W Y , H Y ) = 

[
αS ∇ 

−
H S 
L C ( ̄V S | θS ) 

αN ∇ 

−
H N 

L C ( ̄V N | θN ) 

]
(26)

here ∇ 

+ 
H (·) 

L C (·|·) in (25) and ∇ 

−
H (·) 

L C (·|·) in (26) are given in

22) and (23) , respectively. 

It is easy to show that the update rule given in (24) takes on

on-negative values. In fact, since the posterior distribution and all

lements of the mean vector and the diagonal entries of the covari-

nce matrix are non-negative, the values given in (22) and (23) are

on-negative. Moreover, the values in (18) and (19) are also non-

egative, and therefore the activation matrix is updated under the

on-negative elements constraint. 

After estimating the activation matrix of the noisy speech, the

moothed PSDs of both the clean speech and noise, ˆ P S and 

ˆ P N , are

btained by using (7) and (8) . Then the clean speech spectrum is

stimated by Wiener filtering as given in (6) . This proposed algo-

ithm based on regularized NMF with Gaussian mixtures will be

eferred to as RNG. 

.2. RNG with weighted Wiener filtering 

In this subsection, we describe our second method which

ses a WWF. First, the masking threshold estimation is described

n Section 4.2.1 , and then we introduce the proposed WWF in

ection 4.2.2 . 

.2.1. Masking threshold estimation 

The masking effect, which is a psychoacoustical property of

he human auditory system, has been employed in diverse ap-

lications such as audio and speech coding ( Painter and Spanias,

0 0 0 ) and speech enhancement ( Hu and Loizou, 2004; Jabloun

nd Champagne, 2003; Virag, 1999 ). Masking refers to a process

here one sound is rendered inaudible (maskee) due to the pres-

nce of another sound (masker) ( Fastl and Zwicker, 2007 ). The

asking properties are modeled using a masking threshold, where

he components below the threshold are not perceived. There are

wo main masking phenomena, simultaneous (spectral) and non-

imultaneous (temporal) masking. The former occurs whenever

wo or more stimuli are simultaneously presented to the auditory

ystem. The latter takes place in the time domain, where the mask-

ng occurs both prior and after the onset and offset of the masker

ith finite duration ( Fastl and Zwicker, 2007 ). In this paper, we

nly consider the simultaneous masking effect. 

Simultaneous masking can be explained in terms of critical

and analysis which is a central mechanism in the inner ear. The

ritical band is specified by means of the so-called Bark scale,

hich is a perceptual measure relating acoustical frequency to the

onlinear perceptual resolution, in which one Bark covers one crit-

cal band. The analytical expression of the mapping function from

he frequency f [kHz] to the Bark frequency b [Bark] is shown as 

( f ) = 13 arctan (0 . 76 f ) + 3 . 5 arctan [( f/ 7 . 5) 2 ] . (27)
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Fig. 1. Example of masking threshold (dotted: normalized power spectrum of a fe- 

male speaker, solid: masking threshold, dashed: absolute hearing threshold). 

Fig. 2. SDR, SIR and SAR values for different weighting factors in WWF. 
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We followed the procedure introduced in Painter and Spanias

20 0 0) for evaluating the masking threshold in the l th time frame,

here we here briefly summarize the different steps involved

n the computation; further implementation details are given in

ainter and Spanias (20 0 0) . 

(1) Spectral analysis and normalization : The PSD is normalized

and presented in dB scale as, 

P̄ (k, l) = 90 . 302 + 10 log 10 [ ̂  P S (k, l) /L 2 w 

] (28)

where L w 

denotes the analysis window length for the STFT,

the constant 90.302 is used for the power compensation,

and 

ˆ P S (k, l) is the estimated clean speech PSD given in (7) . 

(2) Identification of tonal and non-tonal maskers : Tonal maskers

are identified according to the local maxima of the normal-

ized PSD, P̄ (k, l) . A single non-tonal (noise-like) masker for

each critical band is then identified by summing the energy

of the spectral components which have not contributed to a

tonal masker. 

(3) Reorganization of maskers : Any tonal or non-tonal maskers

below the absolute hearing threshold (AHTH) are discarded,

where the AHTH in dB versus frequency f [kHz] is shown as

T A ( f ) = 3 . 65 f −0 . 8 − 6 . 5 e −0 . 6( f−3 . 3) 2 + 10 

−3 f 4 (29)

Next, any pair of maskers within a distance of 0.5 Bark are

replaced by the stronger of the two. 

(4) Individual masking threshold : The individual masking thresh-

old at frequency bin i due to a tonal masker at frequency bin

j is given in dB as 

T tm 

(i, j) = P̄ tm 

( j) − 0 . 275 b( f j ) + SF (i, j) − 6 . 025 (30)

where P̄ tm 

( j) is the level of tonal masker, f j [kHz] is the cor-

responding frequency of the j th bin, b ( f j ) denotes the Bark

frequency given in (27) and SF( i , j ) is the spreading func-

tion which accounts for the inter-band masking. The latter

is given as 

SF (i, j) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

17�b − 0 . 4 ̄P tm 

( j) + 11 , −3 ≤ �b < −1 

(0 . 4 ̄P tm 

( j) + 6)�b , −1 ≤ �b < 0 

−17�b , 0 ≤ �b < 1 

(0 . 15 ̄P tm 

( j) − 17)�b − 0 . 15 ̄P tm 

( j) , 1 ≤ �b < 8 

(31) 

where �b = b( f i ) − b( f j ) . Similarly, the masking threshold

of a non-tonal masker is given as, 

T nm 

(i, j) = P̄ nm 

( j) − 0 . 175 b( f j ) + SF (i, j) − 2 . 025 (32)

where P̄ nm 

( j) is the non-tonal masker level. The spreading

function used in (32) is identical to (31) where P̄ tm 

( j) is

replaced by P̄ nm 

( j) . The above computation of the masking

thresholds T tm 

( i , j ) for tonal maskers and T nm 

( i , j ) for non-

tonal ones are repeated for each frame; whenever such a

computed threshold value falls below the AHTH, it is re-

placed by the latter. 

(5) Global masking threshold : Finally, the resulting individual

masking thresholds are summed linearly along with the

AHTH to obtain the global masking threshold in dB in the

k th frequency bin, which is shown as, 

T g (k, l) = 10 log 10 

(
10 

0 . 1 T A ( f k ) + 

N tm ∑ 

n =1 

10 

0 . 1 T tm (k, j n ) 

+ 

N nm ∑ 

n =1 

10 

0 . 1 T nm (k, j n ) 
)

(33) 

where N tm 

and N nm 

respectively denote the number of tonal

and non-tonal maskers and j n is the frequency bin location
of the n th masker. An example of the global masking thresh-

old is illustrated in Fig. 1 , where we considered a speech sig-

nal of a female speaker. 

.2.2. Weighted Wiener filtering 

A generalized Wiener filtering has been introduced in Lim and

ppenheim (1979) , which is shown as, 

ˆ 
 (k, l) = 

( ˆ P S (k, l) 

ˆ P S (k, l) + η ˆ P N (k, l) 

)ν

Y (k, l) (34)

here η and ν are tuning parameters. For simplicity, we will fix

to 1 in the proposed framework, and refer to the resulting

ethod as weighted Wiener filtering (WWF) ( Spriet et al., 2005 ).

he weighting factor η is known to control the trade-off between

oise reduction and speech distortion. For a large η, for instance,

ore noise reduction is performed at the expense of increased

peech distortion, and vice versa. This phenomenon is illustrated

n Fig. 2 where we computed different objective measures while

arying η from 1 to 20. The objective measures considered are the

ource-to-interference ratio (SIR), source-to-artifact ratio (SAR) and
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Fig. 3. Proposed mapping function from NMR, 
( k , l ), to weighting factor, η( k , l ), 

based on a sigmoid function. 

Fig. 4. Simplified block diagrams of RNG and RNG-WWF methods. 
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source-to-distortion ratio (SDR) ( Vincent et al., 2006 ). 6 The noisy

speech was generated by adding a factory noise to selected clean

speech files 7 at a 5 dB input SNR, and the results were obtained by

averaging over different speakers. For each noisy speech, the clean

speech and noise PSDs were computed from the proposed RNG

method introduced in Section 4.1 , followed by temporal smoothing

given in (7) and (8) . As we can see from Fig. 2 , the results obtained

for the different objective measures vary greatly as a function of η
and therefore, an appropriate selection of the weighting factor is

necessary. 

In contrast to using a constant value as the weighting factor in

(34) , it has been proposed to select different weighting factor for

each time-frequency bin, i.e., η( k , l ), based on the masking thresh-

old computed for each of these bins. Gustafsson et al. (1998) pro-

posed a heuristic approach where the linear estimator of the clean

speech spectrum was derived, aiming to mask the distortion of the

residual noise which is defined as the difference between the ac-

tual and residual noise powers. This estimator was extended in Hu

and Loizou (2004) by solving an optimization problem which min-

imizes a related error criterion. Defraene et al. (2012) proposed to

use an exponential function to map the so-called noise-to-mask ra-

tio (NMR) into the weighting factor, where the NMR in dB, 
( k , l ),

is defined as the log distance from the minimum masking thresh-

old in one critical band to the noise level ( Painter and Spanias,

20 0 0 ): 


(k, l) = P̄ N (k, l) − min 

k ∈ C b 
T g (k, l) (35)

where C b is the set of frequency bins for the b th critical band and

P̄ N (k, l) is the normalized PSD given in (28) . 

For all these algorithms, a zero weighting factor is applied

when the noise power is lower than the masking threshold, i.e.,

η(k, l) = 0 for T g (k, l) > P̄ N (k, l) . However, this strict condition lim-

its the performance, since the masking threshold is calculated from

an inaccurate estimate of the clean speech PSD. Although we can

expect that a more accurate clean speech PSD can be obtained

by using the proposed RNG method, we further suggest to relax

this strict condition by taking into account in a continuous way

the case where the noise power is even lower than the masking

threshold. This approach can be regarded as a soft decision on the

weighting factor. 

In advance of describing the proposed method, we summarize

several intuitive aspects, which should be considered for selecting

the weighting factors in the WWF, as follows. When T g ( k , l ) is low,

the noise signal (maskee) is easily perceived due to the low mask-

ing capability of the speech signal (masker). The emphasis then

should be put on reducing this perceivable noise. Consequently, a

high weighting factor is necessary in the WWF. On the contrary, if

T g ( k , l ) is high, the noise is easily masked by the speech. Hence, a

small weighting factor is selected. Note that these aspects hold for

both the cases where the NMR is either positive or negative. The

difference is that a much smaller weighting factor for the case of

negative NMR is necessary compared to the positive NMR. 

In the proposed WWF, the weighting factor is selected through

a heuristic approach using a sigmoid function as a mapping from

the NMR to the weighting factor. The motivation for using the sig-

moid function is to limit the range of the weighting factor to be
6 For a given target source, the interference refers to unwanted signal compo- 

nents such as noise, whereas the artifact refers to components caused by other 

phenomena, such as e.g., forbidden distortion. In speech enhancement applications, 

these measures can be interpreted as follows: the SIR and SAR are proportional 

o the amount of noise reduction and inversely proportional to the speech distor- 

tion, respectively, while SDR measures the overall quality of the enhanced speech 

( Mohammadiha et al., 2013 ) 
7 Further details about various speech and noise files used in our experimental 

work are described in detail in Section 5 . 

5

 

o

5

 

C  

S  
elected, therefore avoiding extreme values that could lead to in-

tability ( Fig. 3 ). The proposed mapping function is given by 

(k, l) = 

2 β1 (k, l) 

1 + exp (−β2 (k, l)
(k, l)) 
(36)

here β1 ( k , l ), β2 ( k , l ) > 0 are tuning parameters and the NMR,

( k , l ), is given in (35) . The value β1 ( k , l ) defines the range of η( k ,

 ) ∈ (0, 2 β1 ( k , l )) and β2 ( k , l ) determines the slope of the sigmoid

unction. For simplicity of the implementation, we consider a con-

tant slope, i.e., β2 (k, l) = β2 , and identical values of β1 ( k , l ) across

he frequency bins for a given time frame, i.e., β1 (k, l) = β1 (l) . 

The value β1 ( l ) is calculated using the following function, 

1 (l) = ρ1 e 
−ρ2 R (l) (37)

here ρ1 , ρ2 > 0 are tuning parameters and R ( l ) is defined as 

 (l) = 10 log 10 

∑ 

k 
ˆ P S (k, l) ∑ 

k 
ˆ P N (k, l) 

. (38)

he underlying motivation for using the form given in (37) and

38) is similar to the approach introduced in Kodrasi et al. (2015) .

hat is, a small weighting factor is selected for a high input SNR.

pecifically in the proposed method, the input SNR for a given time

rame of the noisy speech is estimated from R ( l ) given in (38) ,

hich is then applied to determine the range of η( k , l ) through

1 ( l ) given in (37) . 

The proposed enhancement algorithm based on the regularized

MF with Gaussian mixtures and weighted Wiener filtering will

e referred to as RNG-WWF. A simplified block diagram of both

he RNG and RNG-WWF methods is illustrated in Fig. 4 . We note

hat for both algorithms, the same training approach as described

n Section 3 is employed. 

. Experiments 

In this section, a performance evaluation of the proposed meth-

ds is presented. 

.1. Methodology 

We used clean speech from the TSP ( Kabal, 2002 ) and Grid

orpus ( Cooke et al., 2006 ) databases and noise from the NOI-

EX database ( Varga and Steeneken, 1993 ), where the sampling
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Table 1 

A comparison between different perceptually-motivated and/or weighting methods. 

Reference Gain function, G ( k , l ) Description 

( ̂ S (k, l) = G (k , l) Y (k , l)) 

Gustafsson et al. (1998) min 

(√ 

T g (k, l) 

ˆ P N (k, l) 
+ ζ , 1 

)
Heuristic gain function, aiming to mask the distortion of the residual noise 

Hu and Loizou (2004) 

( 

1 + max 

( √ 

ˆ P N (k, l) 

T g (k, l) 
− 1 , 0 

) ) −1 

Gain function obtained by minimizing an error criterion (extension of Gustafsson et al., 1998 ) 

Defraene et al. (2012) 
ˆ P S (k, l) 

ˆ P S (k, l) + η(k , l) ̂ P N (k , l) 
Heuristic mapping from the NMR to η( k , l ) ( hard decision) 

Kodrasi et al. (2015) Curvature-based optimization for the estimation of η( k , l ) 

Proposed Heuristic mapping from the NMR to η( k , l ) ( soft decision) 
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ate of all signals was adjusted to 16 kHz. For the clean speech,

0 speakers (10 males and 10 females) were selected from the TSP

nd 34 speakers (17 males and 17 females) from the Grid Corpus

atabases for a total of 54 speakers. For the noises, we selected

he buccaneer 1, hfchannel, babble and factory 1 noises from the

OISEX database. Each clean speech and noise signal was divided

nto three disjoint groups: i) training data , used for estimating the

MF and GMM parameters, ii) validation data , used for selecting

he regularization coefficients and tuning parameters, and iii) test

ata , used for final verification. Specifically, the training data con-

isted of approximately 2 min (50 sentences) and 8 min (350 ut-

erances) of long speech segments for each speaker from the TSP

nd Grid Corpus databases, respectively, as well as 3 min segment

or the noises. The validation data consisted of 12 s (5 sentences)

nd 20 s (15 utterances) of speech for each speaker from the TSP

nd Grid Corpus databases, respectively, and 30 s of noise from the

OISEX database. The same partitioning was used for the test data.

he noisy speech signals were generated from the test and valida-

ion signals by scaling and adding the noise to the clean speech

based on the estimated variances of the time-domain signals) to

btain input SNRs of 0, 5 and 10 dB. The STFT analysis was im-

lemented by using a Hanning window of 512 samples with 50 %

verlap. After enhancement, the estimated clean speech signal in

he time-domain was reconstructed by applying the inverse STFT

n its spectrum followed by the overlap-add method. 

Regarding the implementation of the proposed algorithms, we

onsidered a speaker-dependent (SD) application, where one basis

atrix and associated GMM parameter set were trained for each

peaker. We used M = 80 basis vectors and I = 8 Gaussian compo-

ents in the GMM for both the clean speech and noise. The values

f (τS , τN ) = (0 . 4 , 0 . 9) were chosen empirically using the valida-

ion set and used as the temporal smoothing factors in (7) and

8) . For the regularization coefficients αS and αN in (16) , we ex-

mined different values from 0.0 0 05 to 0.1 and obtained good

esults in the range [0.005, 0.01]. Hence, we selected (αS , αN ) =
(0 . 005 , 0 . 01) . We also examined several choices for the tuning pa-

ameters in the proposed weighting function (36) , i.e. ρ1 , ρ2 and

2 . We first fixed ρ1 to 4, 5 and 6, based on the results shown

n Fig. 2 . For each value of ρ1 , we then considered various choices

f β1 and ρ2 and determined the ones that gave the highest SDR

alues. Good results for both β2 and ρ2 were found around [0.005,

.1]. Ultimately, we chose β2 = 0 . 01 and (ρ1 , ρ2 ) = (5 , 0 . 1) for the

xperiments. 

We used the PESQ ( Recommendation, 2001 ), SDR ( Vincent

t al., 2006 ), as well as the segmental SNR as the objective mea-

ures of performance. The PESQ attempts to predict overall per-

eptual quality in mean opinion score (MOS) and the SDR mea-

ures the overall quality of the enhanced speech in dB by consid-

ring both the speech distortion and noise reduction as explained

n Section 4.2.2 . For all the measures, a higher value indicates a

etter result. 
.2. Benchmark algorithms 

To evaluate the speech enhancement performance of the newly

roposed algorithms, we compared them against several algo-

ithms from the literature. Basic settings such as the STFT analysis

nd synthesis, number of basis vectors and Gaussian components

n the GMM, and masking threshold calculations, when applica-

le, were kept identical for all the benchmark and proposed algo-

ithms. Also, we considered the SD application for all NMF-based

lgorithms. 

The benchmark algorithms were categorized into two groups.

he purpose of the first group was only to compare the enhance-

ent performance of the proposed WWF (i.e., RNG-WWF) to that

f other perceptually-motivated and/or weighting methods. Specif-

cally, we considered the algorithms proposed by Gustafsson et al.

1998) , Hu and Loizou (2004) , Defraene et al. (2012) , Kodrasi et al.

2015) ; in the sequel, we shall refer to each algorithm using the

ames of its authors for simplicity. Although the algorithms in

efraene et al. (2012) and Kodrasi et al. (2015) were proposed

or multi-channel speech enhancement, they can still be applied

n the current single-channel framework. We used the following

uning parameters for these algorithms: a trade-off control param-

ter ζ = 0 . 1 in Gustafsson et al. (1998) , (γ , δ, ε) = (0 . 2 , 0 . 9 , 0 . 9)

n Defraene et al. (2012) and (α, β) = (1 , 2) in Kodrasi et al.

2015) (see the references for the meaning of these notations).

or all the benchmark algorithms and RNG-WWF method, we

mployed identical PSDs of the clean speech and noise, which

ere estimated using the RNG method. The salient features of

he benchmarks and proposed algorithms are summarized in

able 1 . 

The purpose of the second group was to compare the en-

ancement performance of the proposed algorithms with that of

arious speech enhancement algorithms, which are given below.

ote that, for all NMF-based algorithms, except the proposed RNG-

WF method which requires a weighting factor, we used the

ame reconstruction method introduced in Section 2 , i.e., comput-

ng smoothed PSDs and Wiener filtering, for fair comparison. 

(1) Short-time spectral amplitude estimator (STSA) : We imple-

mented the well-known classical STSA estimator proposed

by Ephraim and Malah (1984) . A smoothing factor of 0.98

in the decision-directed (DD) method for a priori SNR esti-

mation was used. The noise PSD was estimated using an al-

gorithm described in Gerkmann and Hendriks (2012) with a

value of 0.8 for the smoothing factor. 

(2) Spectral subtraction with masking properties (SSM) : We con-

sidered a spectral subtraction algorithm with masking prop-

erties proposed in Virag (1999) . The noise PSD in this

approach was also estimated using the algorithm from

Gerkmann and Hendriks (2012) with 0.8 for the smoothing

factor. 
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Fig. 5. Examples of proposed weighting factor. Each column from left to right respectively correspond to input SNR of 0, 5 and 10 dB. Each row from top to bottom shows 

the noisy speech magnitude spectrum, time-frequency representation of the proposed weighting factor and the weighting factor at the time frame of 1.3 s and 2.1 s. 
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presence period). 
(3) Standard NMF : The standard NMF algorithm based on KL-

divergence introduced in Section 2 was evaluated, which

will be referred to as NMF. 

(4) Regularized NMF : In order to compare with other

regularization-based NMF algorithms, we chose an

algorithm proposed by Grais and Erdogan (2013) , where the

column vectors of the activation matrix of the clean speech

and noise are modeled by distinct GMMs. We employed

the sequential form of training, and used the regularization

coefficients of (αS , αN ) = (0 . 0 05 , 0 . 0 01) in our experiments

as they provided good results. This method will be referred

to as RNMF-AGM. 

(5) Weighted NMF (WNMF) : We evaluated a perceptually

weighted NMF (WNMF) algorithm introduced in Virtanen

(2007b ), where the perceptual weighting matrix was con-

structed (based on the masking threshold) as in Nikunen

and Virtanen (2010) . Although the WNMF algorithm was

originally proposed for an unsupervised application, we ap-

plied it in a supervised manner. That is, the basis matrices

for the clean speech and noise were obtained independently

during the training stage. In the enhancement stage, the

WNMF activation update was applied to the noisy speech,

where the masking threshold was calculated from the noisy
speech. Although the masking threshold can be obtained

from the estimated clean speech PSD by first applying a

simple speech enhancement scheme ( Defraene et al., 2012;

Virag, 1999 ), we followed the original paper, since we ob-

served similar results when using the masking threshold ei-

ther computed from the noisy or estimated clean speech

PSD. 

.3. Results 

We first illustrate an example of the proposed weighting factor

( k , l ) for different input SNRs in Fig. 5 . In this particular exam-

le, a male speech is degraded with buccaneer 1 noise at 0, 5 and

0 dB input SNR. We can make the following observations: 

• The values of η( k , l ) around 3 kHz, which corresponds to the

intense ringing sound of the buccaneer 1 noise, are larger com-

pared to the other frequencies; 
• For a given time-frequency bin, η( k , l ) decreases as the input

SNR increases from 0 to 10 dB; 
• The values of η( k , l ) at the time frame of 2.1 s (a speech-

absence period) are larger than the ones at 1.3 s (a speech-
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Fig. 6. SDR and segmental SNR comparisons for factory 1 (top) and hfchannel (bottom) noises. 
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These phenomena are essentially due to the estimated input

NR R ( l ) given by (38) . That is, as we intended, a larger value of

( k , l ) is selected based on (36) and (37) , for a lower value of R ( l ).

onsequently, the noise components will be further suppressed in

he corresponding time-frequency bins. 

We compared the proposed RNG-WWF method with other

ethods in the first group of benchmark algorithms in order to

erify the performance of the proposed weighting method. Av-

rage SDR and segmental SNR values over all speakers for fac-

ory 1 and hfchannel noises, with 0, 5 and 10 dB input SNRs, are

isplayed in Fig. 6 . We can see that in all cases, the proposed

eighting scheme provides the best results. It is worth noting that

he perceptually-motivated benchmark algorithms showed a worse

erformance than using a constant weighting factor of η = 2 , and

end to show similar quality to using η = 0 . 1 . This is mainly due

o the hard decision on the weighting factor such that η(k, l) = 0

or P̄ N (k, l) < T g (k, l) , which leads to ˆ S (k, l) = Y (k, l) , i.e., the noise

omponents are not reduced in such time-frequency bins. There-

ore, it is verified through experiments that employing soft deci-

ion on the weighting factor, i.e., applying non-zero value on η( k ,

 ) for P̄ N (k, l) < T g (k, l) , improves the enhancement performance.

imilar results were also found for the babble and buccaneer 1

oises. 
Regarding the benchmark algorithms in the second group and

he proposed algorithms, the average results over all speakers of

he three objective measures (i.e., PESQ, SDR and segmental SNR)

re shown for each noise type, respectively, in Tables 2–5 . The

alues in bold indicate the best performance along the row. As

t can be observed, the best enhancement results were obtained

ith the proposed RNG-WWF method for all the different noise

ypes and input SNRs. Moreover, the RNG method generally pro-

ided better results than the benchmark algorithms except in spe-

ific cases, e.g., segmental SNR for the factory 1 noise at 0 dB input

NR. Among the benchmark algorithms, the STSA and SSM which

sed no training data provided reasonable results for babble and

actory 1 noises compared to the NMF-based algorithms. However,

hey resulted in poorer performances for buccaneer 1 and hfchan-

el noises. Among the NMF-based benchmark algorithms, which

sed training data to obtain some prior knowledge of the clean

peech and noise, it was found in general that the RNMF-AGM

rovided slightly better results compared to the NMF and WNMF

ethods (except in some cases, e.g., slightly better PESQ results us-

ng the WNMF method for the buccaneer 1 and factory 1 noises).

f we only compare between the two proposed methods, the RNG-

WF method provided much better results than the RNG method,
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Table 2 

Average results for buccaneer 1 noise. 

Input Eval. Noisy STSA SSM NMF WNMF RNMF RNG RNG 

SNR -AGM -WWF 

0 dB PESQ 1.25 1.58 1.61 1.79 1.83 1.81 1.98 2.22 

SDR 0.02 4.31 4.25 5.25 5.74 5.43 6.13 7.92 

SNRseg −3.97 −0.27 −0.56 0.13 1.15 0.28 1.79 3.18 

5 dB PESQ 1.54 1.94 1.99 2.18 2.21 2.20 2.35 2.47 

SDR 5.01 8.56 8.79 9.75 9.63 9.92 10.59 11.38 

SNRseg −0.49 2.79 2.78 3.58 4.07 3.75 4.40 6.17 

10 dB PESQ 1.89 2.32 2.39 2.53 2.55 2.55 2.64 2.69 

SDR 10.01 12.43 12.97 13.80 13.23 13.91 14.59 14.85 

SNRseg 3.48 6.14 6.47 7.14 7.28 7.33 8.06 9.19 

Table 3 

Average results for hfchannel noise. 

Input Eval. Noisy STSA SSM NMF WNMF RNMF RNG RNG 

SNR -AGM -WWF 

0 dB PESQ 1.23 1.50 1.59 1.78 1.71 1.79 2.01 2.30 

SDR 0.03 7.11 7.62 7.32 6.97 7.51 8.31 9.88 

SNRseg −3.97 1.95 2.35 1.64 2.16 1.81 2.56 5.46 

5 dB PESQ 1.45 1.92 2.04 2.15 2.08 2.16 2.35 2.51 

SDR 5.02 10.80 11.66 11.50 10.85 11.66 12.37 13.05 

SNRseg −0.50 4.96 5.78 5.12 5.22 5.30 6.20 8.35 

10 dB PESQ 1.75 2.31 2.46 2.50 2.43 2.52 2.63 2.70 

SDR 10.01 14.12 15.19 15.12 14.44 15.22 15.91 16.11 

SNRseg 3.47 7.91 9.03 8.58 8.48 8.74 9.67 11.09 

Table 4 

Average results for babble noise. 

Input Eval. Noisy STSA SSM NMF WNMF RNMF RNG RNG 

SNR -AGM -WWF 

0 dB PESQ 1.52 1.68 1.62 1.77 1.72 1.78 1.81 1.84 

SDR 0.02 2.76 2.69 3.06 2.52 3.18 3.36 4.55 

SNRseg −3.48 −0.57 −0.65 −0.36 −0.34 −0.32 −0.29 1.28 

5 dB PESQ 1.86 2.05 2.02 2.16 2.11 2.17 2.20 2.24 

SDR 5.01 7.39 7.53 7.70 6.80 7.89 8.12 8.53 

SNRseg 0.05 2.44 2.58 2.79 2.54 2.94 3.09 4.06 

10 dB PESQ 2.22 2.42 2.43 2.53 2.47 2.55 2.56 2.59 

SDR 10.01 11.52 11.90 11.53 10.38 11.73 12.17 12.21 

SNRseg 4.05 5.84 6.23 5.91 5.66 6.16 6.66 7.07 

Table 5 

Average results for factory 1 noise. 

Input Eval. Noisy STSA SSM NMF WNMF RNMF RNG RNG 

SNR -AGM -WWF 

0 dB PESQ 1.36 1.68 1.66 1.74 1.80 1.76 1.80 1.98 

SDR 0.02 4.44 4.16 4.34 4.29 4.54 4.49 6.60 

SNRseg −3.72 0.28 0.17 −0.14 0.28 0.12 −0.10 1.99 

5 dB PESQ 1.70 2.09 2.10 2.15 2.18 2.16 2.19 2.34 

SDR 5.01 8.62 8.69 9.07 8.53 9.24 9.27 10.48 

SNRseg −0.21 3.21 3.34 3.33 3.19 3.53 3.42 4.99 

10 dB PESQ 2.07 2.45 2.50 2.53 2.52 2.54 2.54 2.64 

SDR 10.01 12.49 12.91 13.33 12.42 13.37 13.61 14.22 

SNRseg 3.78 6.48 6.91 6.91 6.46 6.96 7.12 8.13 
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which further validates that using the proposed weighting factor

improves the enhanced speech quality. 

Fig. 7 illustrates the magnitude spectra of clean, noisy and en-

hanced speech for several benchmark and proposed algorithms.

In this particular example, a female speech is degraded with

buccaneer 1 noise at 0 dB input SNR. As we can see, the pro-

posed RNG-WWF method could reduce the background noise sig-

nificantly, and especially during the speech-absence periods where

the noise is further reduced. 
1  
Informal listening tests were also conducted to compare the

erformance of the benchmark algorithms in the second group

nd the proposed algorithms. It was generally found that the lat-

er, and especially the RNG-WWF method offered the best per-

ormance, both in terms of noise reduction and speech distortion.

ore specifically, the STSA and SSM gave an enhanced speech with

easonable quality for the babble and factory 1 noises although

ome musical noise was found in the SSM method. However, they

oth failed to remove high frequency components in the buccaneer

 noise which resulted in a highly annoying ringing sound. The
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Fig. 7. Example of magnitude spectra of the clean, noisy and estimated clean speech for the benchmark and proposed algorithms. A female speech is degraded with 

buccaneer 1 noise at 0 dB input SNR. 
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nhanced speech with the benchmark NMF algorithms, i.e., NMF,

NMF-AGM and WNMF, was perceived as being similar to that ob-

ained with the STSA and SSM for babble and factory 1 noises, but

f better quality for buccaneer 1 and hfchannel noises. Focusing on

he proposed algorithms, the RNG method could remove more low

requency noise than the benchmark algorithms, whereas the high

requency components were further removed using the RNG-WWF

ethod. Consequently, the enhanced speech using the RNG-WWF

ethod was perceived as having much better quality than the one

sing the RNG method. 

. Conclusion 

New single-channel speech enhancement algorithms based on

egularized NMF have been introduced. In the proposed frame-

ork, a priori knowledge about the magnitude spectra of the clean

peech and noise is captured by distinct GMMs, where normalized

pectra are employed to handle the magnitude difference between

he training and test data. The corresponding LLFs are included as

egularization terms in the NMF cost function during the enhance-

ent stage. Further improvement of the enhanced speech qual-

ty was obtained by exploiting the masking effects of the human

uditory system. Specifically, we constructed a weighted Wiener

lter where the weighting factor is selected based on the mask-
ng threshold calculated from estimated clean speech PSD. In ad-

ition to informal listening tests and visual inspection of spectro-

rams, experimental results using three different objective mea-

ures (PESQ, SDR, and segmental SNR) showed that the proposed

peech enhancement algorithms could provide better performance

han the benchmark algorithms for several types of noises and in-

ut SNRs. 
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