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a b s t r a c t 

In this paper, we propose a new dereverberation approach based on the weighted prediction error (WPE) 

method implemented in the short-time Fourier transform (STFT) domain. Our main contribution is to 

model the temporal correlation of the STFT coefficients across analysis frames, referred to as inter-frame 

correlation (IFC), and exploit it in the dereverberation process. Since accurate modeling of the IFC is 

not tractable, we consider an approximate model wherein only a finite number of consecutive speech 

frames are considered correlated. It is shown that, given an estimate of the IFC matrix, the proposed 

approach results in a convex quadratic optimization problem with respect to the reverberation prediction 

weights, and a closed-form solution can be accordingly derived. Furthermore, an efficient method for 

the estimation of the underlying IFC matrix is developed based on the extension of a recently proposed 

speech variance estimator. We evaluate the performance of our approach incorporating the estimated IFC 

matrix and compare it to the original and several variants of the WPE method. The results reveal lower 

residual reverberation and higher overall quality of the enhanced speech when the proposed method is 

employed. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Speech signals captured by distant microphones in an acous-

ic environment are subject to reflections from the surrounding

urfaces and objects, such as walls or furniture. The consequence

f this phenomenon, known as reverberation, can deteriorate the

erceived quality/intelligibility of the captured speech and also

an degrade to a large extent the performance of speech commu-

ication systems such as hearing aids, hands-free teleconferenc-

ng, source separation, passive source localization, and automatic

peech recognition systems ( Naylor and Gaubitch, 2010; Yoshioka

t al., 2012 ). Therefore, to improve the overall quality of speech
Abbreviations: ATF, acoustic transfer function; AR, auto-regressive; CD, cepstrum 

istance; CGG, complex generalized Gaussian; DRR, direct to reverberant ratio; EM, 

xpectation-maximization; FW-SNR, frequency-weighted segmental SNR; IFC, inter- 

rame correlation; ISM, image source method; LRSV, late reverberation spectral vari- 

nce; LPC, linear prediction coefficients; ML, maximum likelihood; MMSE, minimum 

ean-squared error; MCLP, multi-channel linear prediction; PESQ, perceptual evalu- 

tion of speech quality; RIR, room impulse response; STFT, short-time Fourier trans- 

orm; SRMR, signal to reverberation modulation energy ratio; SNR, signal to noise 

atio; WPE, weighted prediction error. 
∗ Corresponding author. 

E-mail addresses: m_parch@ece.concordia.ca (M. Parchami), weiping@ece. 

oncordia.ca (W.-P. Zhu), benoit.champagne@mcgill.ca (B. Champagne). 
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ignals in these important applications, highly efficient reverbera-

ion suppression algorithms are required. 

Over the past three decades, various single- and multi-

icrophone dereverberation techniques have been developed,

hich can be broadly classified into: blind system identifica-

ion and inversion, multi-channel spatial processing, spectral

nhancement and probabilistic model-based approaches ( Naylor

nd Gaubitch, 2010; Habets, 2007 ). In addition, a few alternative

ereverberation approaches emerged recently, such as those based

n the use of expectation-maximization (EM) and Kalman filtering

lgorithms, as reported in Schmid et al. (2012) and Togami and

awaguchi (2013) . Among all these techniques, the model-based

tatistical approaches, which seek to optimally estimate the

nechoic speech, have attracted considerable interest as further

iscussed below. 

In Attias et al. (2001) , probabilistic models of speech were

ncorporated into a variational Bayesian EM algorithm which esti-

ates the source signal, the acoustic channel and all the involved

arameters in an iterative manner. A different strategy was fol-

owed in Yoshioka et al. (2009) , where the parameters of all-pole

odels for both the desired speech signal and the reverberation

omponent are iteratively determined by maximizing the likeli-

ood function of the model parameters through an EM approach.

n this way, a minimum mean-squared error (MMSE) estimator is

http://dx.doi.org/10.1016/j.specom.2017.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/specom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.specom.2017.01.004&domain=pdf
mailto:m_parch@ece.concordia.ca
mailto:weiping@ece.concordia.ca
mailto:benoit.champagne@mcgill.ca
http://dx.doi.org/10.1016/j.specom.2017.01.004
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derived that yields the enhanced speech. In a similar way, by using

a time-varying statistical model for the speech and a multi-channel

linear prediction (MCLP) model for the reverberation, an efficient

dereverberation approach has been developed in Nakatani et al.

(2008a ) and Kinoshita et al. (2009) . Since the implementation of

such methods in the time domain is computationally expensive, it

was proposed in Nakatani et al. (2008b, 2010) to employ the MCLP-

based method in the short-time Fourier transform (STFT) domain.

The resulting approach, referred to as the weighted prediction

error (WPE) method, is an iterative algorithm that alternatively

estimates the reverberation prediction coefficients and speech

spectral variance, using batch processing of the speech utterance. 

Basically, the WPE method and its variants consider temporally/

spectrally independent speech components in the STFT domain.

This assumption, despite greatly simplifying the derivation and ap-

plication of the WPE method, is inaccurate and lacks the modeling

of inherent dependencies across time frames and spectral compo-

nents at each time frame. In Erkelens and Heusdens (2010) , it was

shown that the STFT coefficients of anechoic speech exhibit sig-

nificant correlation in time, even with frame overlaps of less than

50%. This correlation, referred to as inter-frame correlation (IFC),

is further pronounced in case of highly reverberant speech, due to

the convolutive nature of the reverberation. In Habets et al. (2012) ,

in the context of multi-microphone noise reduction in a reverber-

ant environment, it was demonstrated that the achievable perfor-

mance in terms of noise reduction and speech distortion can be

further improved by exploiting IFC. The noise reduction problem

using IFC has also been addressed partially in Esch (2012) where,

in the propagation step of a noise reduction method based on

Kalman filter, the complex-valued prediction weight is used to ex-

ploit the temporal correlation of successive speech and noise STFT

coefficients. However, similar to Habets et al. (2012) , this work as-

sumes perfect knowledge of the theoretical IFC in the derivation of

various enhancement algorithms. In summary, the IFC has not been

fully explored in the context of STFT domain speech enhancement

and the accurate modeling and applications of the speech IFC re-

mains an attractive area for future research, especially in the con-

text of dereverberation where the channel impulse responses are

characterized by long memory ( Vaseghi, 2006 ). 

In this work, in order to take into account the considerable

IFC present in the desired speech (due to the speech character-

istics, STFT framing overlaps and heavy reverberation), we refor-

mulate the WPE method through the introduction of an approx-

imate model for the joint probability distribution of the desired

speech STFT coefficients within finite segments, each consisting of

consecutive frames. Following an ML approach similar to the orig-

inal WPE method, it is shown that the resulting dereverberation

problem leads to a convex optimization problem with a closed-

form solution for the reverberation prediction weights, since it can

be solved efficiently in a single attempt, unlike the original WPE

method whose solution requires an iterative procedure. In addi-

tion, regarding the estimation of the underlying IFC matrix for

the desired speech component, an extension of the method for

speech spectral variance estimation in Parchami et al. (2016) is

proposed. The proposed method can efficiently eliminate the re-

verberant component from the observed speech, prior to the esti-

mation of the cross-spectral variance of the desired speech, that is

performed by a first order smoothing scheme. Finally, we evaluate

the performance of our approach incorporating the estimated IFC

matrix and compare it to the original and several variants of the

WPE method. The results reveal lower residual reverberation and

higher overall quality of the enhanced speech when the proposed

method is employed. 

The remainder of this paper is organized as follows. In

Section 2 , a brief overview of the WPE method is presented. In

Section 3 , a closed-form solution for the optimum reverberation
rediction weights in the WPE method with IFC is developed and

 novel technique for the estimation of the IFC matrix is presented.

he objective performance evaluation of the proposed approach

sing different types of reverberant speech signals is discussed in

ection 4 . Finally, a brief conclusion is given in Section 5 . 

. A brief review of the WPE method 

Suppose that a speech signal emanating from a single source

s captured by M microphones located in a reverberant enclo-

ure. In the STFT domain, we denote the clean speech signal by

 n, k with time frame index n ∈ { 1 , . . . , N} and frequency bin in-

ex k ∈ { 1 , . . . , K} where N is the total number of frames and K

s the number of available frequency bins. Then, the reverberant

peech signal observed at the m th microphone, x (m ) 
n,k 

, can be rep-

esented in the STFT domain using a linear prediction model as

akatani et al. (2010) 

 

(m ) 
n,k 

= 

L h −1 ∑ 

l=0 

h 

(m ) ∗
l,k 

s n −l,k + e (m ) 
n,k 

(1)

here h (m ) 
l,k 

is an approximation of the acoustic transfer func-

ion (ATF) between the speech source and the m th microphone in

he STFT domain, L h denotes the length of the ATF (measured in

rames) and 

∗ denotes the complex conjugate. The additive term

 

(m ) 
n,k 

models the linear prediction error and the additive noise and

s neglected here as in Nakatani et al. (2010) . Therefore, (1) can be

ewritten as 

 

(m ) 
n,k 

= d (m ) 
n,k 

+ 

L h −1 ∑ 

l= D 
h 

(m ) ∗
l,k 

s n −l,k (2)

here d (m ) 
n,k 

= 

∑ D −1 
l=0 

h (m ) ∗
l,k 

s n −l,k is the sum of anechoic (direct-path)

peech and early reflections at the m th microphone and D corre-

ponds to the duration of the early reflections. Most dereverbera-

ion techniques, including the WPE method, aim at reconstructing

he desired signal, say d n,k ≡ d (1) 
n,k 

, or suppressing the late rever-

erant terms represented by the summation in (2) . Replacing the

onvolutive model in (2) by an auto-regressive (AR) model results

n the well-known multi-channel linear prediction (MCLP) form for

he observation at the first microphone, i.e., 

 n,k = x (1) 
n,k 

−
M ∑ 

m =1 

g 

(m ) H 
k 

x 

(m ) 
n,k 

= x (1) 
n,k 

− G 

H 
k X n,k (3)

ith superscript H as the Hermitian transpose and the vectors x (m ) 
n,k 

nd g (m ) 
k 

are defined as 

 

(m ) 
k 

= [ g (m ) 
0 ,k 

, g (m ) 
1 ,k 

, . . . , g (m ) 
L k −1 ,k 

] T 

x 

(m ) 
n,k 

= [ x (m ) 
n −D,k 

, x (m ) 
n −D −1 ,k 

, . . . , x (m ) 
n −D −(L k −1) ,k 

] T (4)

here g (m ) 
k 

is the regression vector (reverberation prediction

eights) of order L k for the m th channel and the superscript T de-

otes transpose. The right-hand side of (3) has been obtained by

oncatenating { x (m ) 
n,k 

} and { g (m ) 
k 

} over m to respectively form X n, k 

nd G k . Estimation of the regression vector G k and insertion of it in

3) can provide an estimate of the desired (dereverberated) speech.

rom a statistical viewpoint, estimation of G k can be performed by

pplying the maximum likelihood (ML) criterion at each frequency

in. To this end, the conventional WPE method ( Nakatani et al.,

008b, 2010 ) assumes a circular complex Gaussian distribution for

he desired speech coefficients, d n, k , with (unknown) time-varying

pectral variance σ 2 
d n,k 

= E {| d n, k | 
2 } and zero mean. Assuming that

he desired speech STFT coefficients d n, k are independent across

rames, i.e., using zero IFC, the joint distribution of the desired
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Table 1 

Outline of the steps of the conventional WPE method with temporally independent 

speech STFT coefficients. 

• At each frequency bin k , consider the speech observations x (m ) 
n,k 

, for all n and 

m and the parameters D, L k and ε. 

• Initialize σ 2 
d n,k 

by σ 2[1] 

d n,k 
= | x n,k | 2 . 

• For, j = 1, 2, ���, J (with a fixed number of iterations, J ) , repeat the 

following: 

A [ j] 
k 

= 

∑ N 
n =1 σ

−2[ j] 

d n,k 
X n,k X 

H 
n,k 

a [ j] 
k 

= 

∑ N 
n =1 σ

−2[ j] 

d n,k 
X n,k x 

(1) ∗
n,k 

G [ j] 
k 

= A −1[ j] 

k 
a [ j] 

k 

r [ j] 
n,k 

= G [ j] H 
k 

X n,k 

d [ j] 
n,k 

= x (1) 
n,k 

− r [ j] 
n,k 

σ 2[ j+1] 

d n,k 
= max {| d [ j] 

n,k 
| 2 , ε} 

• G [ j] 
k 

is the desired reverberation prediction weight vector after convergence. 
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Fig. 1. Normalized IFC of the early speech d n, k averaged over frequency bins versus 

STFT frame number for a selected speech utterance. 
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1 Note that, considering D = 3 early terms and using a frame length of 40 ms 

with 50% overlap, the early speech component corresponds to the first 60 ms of 

the RIR. 
peech coefficients for all frames at frequency bin k , as represented

y the vector d k , is given by 

p(d k ) = 

N ∏ 

n =1 

p(d n,k ) = 

N ∏ 

n =1 

1 

πσ 2 
d n,k 

exp 

( 

−| d n,k | 2 
σ 2 

d n,k 

) 

(5)

ow, by inserting d n, k from (3) into (5) , the joint distribution p ( d k )

an be viewed as a function of the regression vector G k and the

esired speech spectral variances σ 2 
d k 

= { σ 2 
d 1 ,k 

, σ 2 
d 2 ,k 

, · · · , σ 2 
d N,k 

} . De-

oting this set of unknown parameters at each frequency bin by

k = { G k , σ
2 
d k 

} and taking the negative of logarithm of p ( d k ) ≡
 ( d k | �k ) in (5) , the objective function for �k can be written as 

 (�k ) = − log p(d k | �k ) 

= 

N ∑ 

n =1 

( 

log σ 2 
d n,k 

+ 

∣∣x (1) 
n,k 

− G 

H 
k 

X n,k 

∣∣2 

σ 2 
d n,k 

) 

(6) 

here the constant terms have been discarded. To obtain the

L estimate of the parameter set �k , (6) has to be minimized

.r.t. �k . Since the optimization of (6) jointly w.r.t. G k and σ 2 
d k 

s not mathematically tractable, an alternative sub-optimal solu-

ion is suggested in Nakatani et al. (2008b, 2010) , where a two-

tep optimization procedure is performed, where at each step, only

ne of the two parameter subsets G k and σ 2 
d k 

is optimized alterna-

ively. The two-step procedure is repeated iteratively until a con-

ergence criterion is satisfied or a maximum number of iterations

s reached. While this strategy is rather straightforward, there is no

uarantee that the alternating procedure results in a globally opti-

al solution ( Jukic et al., 2015 ). A summary of the conventional

PE method is outlined in Table 1 . It should be noted that, due

o the simple instantaneous estimator used for σ 2 
d n,k 

, as seen in

his table, the obtained value for this parameter has to be lower

ounded by ε to avoid unreasonably small values when | d n, k | ap-

roaches zero. 

In the following section, we propose an extension of the WPE

pproach by taking into account the correlation of d n, k across the

TFT frame index, n , namely the IFC. 

. WPE method using inter-frame correlations 

To demonstrate the importance of the temporal correlation in

he desired early speech component, d n, k , across STFT frames,

hich is the main motivation to develop the WPE method using

FC in this work, we have illustrated in Fig. 1 the IFC present in

he early speech for a given frame lag. To generate this figure, we

xtracted the early part, i.e. the first 60 ms, of a room impulse re-

ponse (RIR) with 60 dB reverberation time T 60dB = 800 ms, and

hen convolved it with the anechoic speech utterance to obtain the
arly speech d n, k . 
1 Next, the IFC measure | E{ d n,k d 

∗
n −l,k 

}| was esti-

ated through time averaging (i.e. long-term recursive smoothing)

f the product d n,k d 
∗

n −l,k 
over n and then normalized by the esti-

ated value of E {| d n, k | 
2 }. The plotted values are the average over

ll frequency bins and have been obtained for the lag of l = 3. As

bserved from Fig. 1 , the amount of correlation between the early

peech components d n, k and d n −l,k is quite considerable as com-

ared to the spectral variance E {| d n, k | 
2 }. Whereas this correlation

s neglected in earlier versions of the WPE method, the method

hat we here propose takes this correlation into account by jointly

odeling the early speech terms. From Fig. 1 , it is also observed

hat, even though the updating rate of the underlying smoothing is

ot high, the estimated IFC fluctuates rapidly across frames. There-

ore, an efficient approach with fast convergence should be devised

or its estimation. 

In this section, we first derive a solution for the reverbera-

ion prediction vector G k by considering the IFC, in contrast to

he model in (5) . Next, based on an extension of the method

roposed for the estimation of the speech spectral variance in

archami et al. (2016) , an approach for the estimation of the IFC

atrix of the desired speech terms, as required by the derived so-

ution, will be developed. 

.1. Proposed approach 

Considering the joint distribution of the desired speech STFT

oefficients and assuming the independence across frequency bins,

he temporally/spectrally independent model in (5) should be re-

laced by 

p(d k ) = p(d 1 ,k ) 
N ∏ 

n =2 

p(d n,k | D n,k ) (7)

ith p ( d n, k | D n, k ) denoting the distribution of d n, k conditioned on

 n, k = [ d n −1 ,k , d n −2 ,k , · · · , d 1 ,k ] 
T . Considering the fact that d n, k de-

ends only on a limited number of the speech coefficients from

revious frames, or equivalently, the fact that the IFC length is fi-

ite, (7) can be written as 
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p(d k ) = p(d 1 ,k ) 
N ∏ 

n =2 

p(d n,k | d 

′ 
n −1 ,k ) 

= p(d 1 ,k ) 
N ∏ 

n =2 

p(d n,k , d 

′ 
n −1 ,k 

) 

p(d 

′ 
n −1 ,k 

) 
(8)

where the conditioning term D n, k in (7) has been replaced by the

shorter segment d 

′ 
n −1 ,k 

= [ d n −1 ,k , d n −2 ,k , · · · , d n −τk ,k 
] T with τ k as

the assumed IFC length in frames. Unfortunately, proceeding with

the model in (8) to find an ML solution for the regression vec-

tor G k does not lead to a convex optimization problem. Therefore,

to overcome this limitation, we alternatively exploit an approxi-

mate model by considering only the correlations among the frames

within each segment, d 

′ 
n,k 

= [ d n,k , d n −1 ,k , · · · , d n −τk +1 ,k ] 
T , and dis-

regarding the correlations across the segments. This results in the

following approximate model 

p(d k ) � 

� N τk 
� ∏ 

n =1 

p 
(
d 

′ 
n,k 

)
= 

� N τk 
� ∏ 

n =1 

1 

πτk det �n,k 

exp 

(
−d 

′ H 
n,k �

−1 
n,k 

d 

′ 
n,k 

)
(9)

where �n, k = E{ d 

′ 
n,k 

d 

′ H 
n,k 

} represents the correlation matrix of d 

′ 
n,k 

,

det denotes the determinant of a matrix and � . � is the floor func-

tion. Now, using (3) , the desired speech segment d 

′ 
n,k 

can be ex-

pressed as 

d 

′ 
n,k = u n,k − U 

H 
n,k h k (10)

where 

u n,k = [ x (1) 
n,k 

, x (1) 
n −1 ,k 

, · · · , x (1) 
n −τk +1 ,k 

] T (11)

U n,k = [ X n,k , X n −1 ,k , · · · , X n −τk +1 ,k ] 
∗

h k = G 

∗
k 

In the same manner as the original WPE method ( Nakatani et al.,

2010 ), by considering the negative of the logarithm of p ( d k | h k ), an

ML-based objective function for the regression weight vector h k 

can be derived as follows, 

J (h k ) � − log p(d k | h k ) = 

� N τk 
� ∑ 

n =1 

(
d 

′ H 
n,k �

−1 
n,k 

d 

′ 
n,k + K n,k 

)
(12)

with K n,k representing the terms independent of h k , which can be

discarded. Inserting (10) into (12) and doing further manipulation

result in 

J (h k ) = 

� N τk 
� ∑ 

n =1 

(
h 

H 
k A n,k h k − b 

H 
n,k h k − h 

H 
k b n,k + c n,k 

)
(13)

where we defined 

A n,k = U n,k �
−1 
n,k 

U 

H 
n,k 

b n,k = U n,k �
−1 
n,k 

u n,k (14)

c n,k = u 

H 
n,k �

−1 
n,k 

u n,k 

Now by neglecting the constant term c n, k , (13) can be arranged as

J (h k ) = h 

H 
k ̃

 A k h k −˜ b 

H 
k h k − h 

H 
k ̃

 b k (15)

with ̃

 A k and ̃

 b k as 

 A k = 

� N τk 
� ∑ 

n =1 

A n,k , 
˜ b k = 

� N τk 
� ∑ 

n =1 

b n,k (16)
t can be shown that the matrix ˜ A k is positive semidefinite, and

herefore, the quadratic objective function in (15) is real-valued

nd convex in terms of h k . Subsequently, to find the global min-

mum of J (h k ) , we can express (15) in the following form 

 (h k ) = 

(
h k − ̂ h k 

)H ˜ A k 

(
h k − ̂ h k 

)
+ c ′ k (17)

here c ′ 
k 

is an independent term and 

 

 k = ̃

 A 

−1 
k 

˜ b 

H 
k (18)

t is evident that ̂ h k in the above is the global minimum of the

bjective function J (h k ) in (17) , or equivalently, it is the esti-

ate of the reverberation prediction weights by the proposed WPE

ethod. 

.2. Estimation of the IFC matrix 

To calculate the optimal reverberation prediction weights by

18) , ˜ A k and ˜ b k in (16) , and in turn, A n, k and b n, k given by

14) have to be calculated. To do so, as seen in (14) , the IFC ma-

rix of the desired speech terms, �n, k , has to be estimated be-

orehand. In Parchami et al. (2016) , a new variant of the WPE

ethod has been suggested, that exploits the geometric spec-

ral subtraction approach in Lu and Loizou (2008) along with the

stimation of late reverberation spectral variance (LRSV), in or-

er to estimate the spectral variance of the desired speech, σ 2 
d n,k 

,

nlike the iterative scheme in the original WPE method, as in

able 1 . We here develop an extension of the proposed method

n Parchami et al. (2016) to estimate the spectral cross-variances

f the desired speech terms, ρn 1 ,n 2 ,k 
= E{ d n 1 ,k d ∗n 2 ,k } , which in

act constitute the IFC matrix �n, k . In this regard, by resorting

o the dereverberation by spectral enhancement (gain function-

ased approach), the following estimate of d n, k can be obtained

 Parchami et al., 2016 ) 

ˆ 
 n,k = 

√ √ √ √ 

1 − (γn,k −ξn,k +1) 2 

4 γn,k 

1 − (γn,k −ξn,k −1) 2 

4 ξn,k 

x (1) 
n,k 

(19)

here the two parameters ξ n, k and γ n, k are defined as 

n,k = 

| d n,k | 2 
| r n,k | 2 , γn,k = 

| x (1) 
n,k 

| 2 
| r n,k | 2 

(20)

ith r n, k = x (1) 
n,k 

− d n,k as the reverberant-only component. We ex-

loit (19) to provide primary estimates of d n 1 ,k and d n 2 ,k and then

se recursive smoothing of d n 1 ,k d 
∗
n 2 ,k 

to estimate the elements of

he IFC matrix �n, k . As explained in Parchami et al. (2016) , due

o the unavailability of | d n, k | 
2 and | r n, k | 

2 , the two parameters de-

ned in (20) are not known a priori and have to be substituted

y their approximations. To this end, we use | ̂  d n −1 ,k | 2 given by

19) for | d n, k | 
2 and a short-term estimate of the spectral variance

2 
r n,k 

for | r n, k | 
2 . To determine the spectral variance σ 2 

r n,k 
, we re-

ort to the statistical model-based estimation of the LRSV, which

as been widely explored in the context of spectral enhancement

 Habets, 2007 ). Therein, an estimator of the LRSV was derived, us-

ng a statistical model for the RIR in the spectral domain along

ith a few recursive smoothing schemes. In brief, the follow-

ng scheme has been conventionally used to estimate the LRSV

 Habets et al., 2009 ) 

2 

x (1) 
n,k 

= ( 1 − β) σ 2 

x (1) 
n −1 ,k 

+ β| x (1) 
n,k 

| 2 (21a)

2 
˜ r n,k 

= ( 1 − κ) σ 2 
˜ r n −1 ,k 

+ κ σ 2 

x (1) 
n −1 ,k 

(21b)

2 
r n,k 

= e −2 αk RN e σ 2 
˜ r n −(N −1) ,k 

(21c)

e 
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Fig. 2. A two-dimensional illustration for the geometry of the synthesized scenario 

of a noisy reverberant environment. 
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2 Note that only two of the available 8 channels are used herein. 
here αk is related to the 60 dB reverberation time, T 60dB, k , by

k = 3log 10/( T 60dB, k f s ) with f s as the sampling frequency in Hz, R

s the STFT frame advance in samples, β and κ are two smooth-

ng parameters and N e is the frame delay specifying the number

f assumed early speech frames, which is chosen herein as D . This

hoice is made so that the number of frames considered as early

peech in the LRSV estimation scheme will be equal to the number

f included frames in the desired speech d n, k by the WPE method,

s in (2) . The term ˜ r n,k actually represents the entire reverberant

peech including both the early and late reverberations but exclud-

ng the direct-path. Using the LRSV estimator in (21) , the short-

erm estimate of σ 2 
r n,k 

is obtained by choosing the smoothing pa-

ameters β and κ to be close to one. By this choice, the estimate of
2 
r n,k 

includes more updates (less smoothing) and will therefore be

 closer approximation to | r n, k | 
2 . Yet, to avoid unreasonably small

alues for the approximated | r n, k | 
2 in the denominator of (20) , this

arameter is lower thresholded by 10 −3 . 

Now given the estimate of the desired speech components
ˆ 
 n 1 ,k 

and 

ˆ d n 2 ,k , as by (19) , it is straightforward to use a recursive

moothing scheme to estimate the spectral cross-variance ρn 1 ,n 2 ,k 
,

s the following 

̂ n 1 ,n 2 ,k = ( 1 − η) ̂  ρ(n 1 −1) , (n 2 −1) ,k + η ˆ d n 1 ,k 
ˆ d ∗n 2 ,k (22) 

ith η as a fixed smoothing parameter. Equivalently, by expressing

22) in matrix form, it follows ̂ 

n,k = ( 1 − η) ̂  �n −1 ,k + η ˆ d 

′ 
n,k 

ˆ d 

′ H 
n,k (23) 

ith the vector of the estimated desired speech terms ˆ d 

′ 
n,k 

=
 ̂

 d n,k , 
ˆ d n −1 ,k , · · · , ˆ d n −τk +1 ,k ] 

T . The inverse of the estimated IFC ma-

rix ̂ �n,k is to be used to obtain A n, k and b n, k in (14) . Here, to

void the complexity involved in direct inversion of ̂ �n,k and also

o overcome the common singularity issue encountered in the in-

ersion of the sample correlation matrix, we use the Sherman–

orrison matrix inversion lemma ( Hager, 1989 ) to implicitly invert̂ 

n,k , as given by (23) . The simplified form of this lemma can be

ritten as ( Hager, 1989 ) 

A − UV H 
)−1 = A 

−1 + 

A 

−1 UV H A 

−1 

1 − V H A 

−1 U 

(24) 

or an invertible matrix A and any two column vectors U and V .

sing (24) for the inverse of ̂ �n,k in (23) , i.e. by taking A , U and V
espectively as ( 1 − η) ̂  �n −1 ,k , −η ˆ d n,k and 

ˆ d 

′ 
n,k 

, it can be deduced

hat 

̂ 

−1 
n,k 

= 

̂ �−1 
n −1 ,k 

1 − η
− η

1 − η

̂ �−1 
n −1 ,k 

ˆ d 

′ 
n,k 

ˆ d 

′ H 
n,k 

̂ �−1 
n −1 ,k 

1 − η + η ˆ d 

′ H 
n,k 

̂ �−1 
n −1 ,k 

ˆ d 

′ 
n,k 

(25) 

he above can be recursively implemented to update the inverse

f ̂ �n,k at each frame without the need for direct matrix inversion.

It should be noted that the overall WPE-based dereverberation

pproach presented in this section can be considered as an exten-

ion of the method presented in Parchami et al. (2016) , by tak-

ng into account the IFC of the desired speech signal. Namely, for

he choice of τ k = 1, it can be shown that the proposed solution in

18) degenerates to the method suggested in Parchami et al. (2016) .

. Performance evaluation 

In this section, the performance of the proposed dereverbera-

ion approach is evaluated in comparison with the original WPE

ethod and a few recent variations of this method from the lit-

rature. To this end, 20 clean speech utterances (including 10

ale and 10 female speakers) are used from the TIMIT database

 Garofolo et al., 1993 ), where the average length of the speech

amples is 3.7 s and the average speech-to-silence ratio is 4.8. Both
eal-world recorded and synthetic RIRs are used to generate mi-

rophone array signals in a reverberant noisy environments. In the

rst case, to account for a real-world scenario, the clean speech

tterances are convolved with measured RIRs from the SimData of

he REVERB Challenge ( REVERB, 2013 ), wherein an 8-channel cir-

ular microphone array with a diameter of 20 cm was placed in

hree rectangular rooms (labeled 1–3) to measure the RIRs. 2 Room

 is 3.7 × 5.5 m with T 60dB of 250 ms, room 2 is 4.8 × 6.2 m

ith T 60dB of 680 ms and room 3 is 6.6 × 6.1 m with T 60dB of

30 ms. The height for all rooms is 2.5 m and the microphone

rray and speakers are placed 1.1 m high. To account for differ-

nt types of noise (i.e. babble, white and pink), the resulting re-

erberant signals are combined with different noises taken from

he Noisex-92 ( Varga and Steeneken, 1993 ) database at a global

ignal-to-noise ratio (SNR) of 15 dB. Although we report the results

or three types of noise here, considering other types of noise led

o the same conclusions as the ones drawn next. To properly add

oise to the reverberant signals, we use the function v_addnoise

f the speech processing toolbox VoiceBOX ( Brookes, 2009 ), which

alculates the speech signal level according to the ITU-T recom-

endation P.56 ( ITU-T, 1993 ). In the second case, to further analyze

he performance of the considered methods under different levels

f reverberation, the image source method (ISM) ( Lehmann, 2016 )

s used to simulate the scenario illustrated in Fig. 2 . As viewed, a

ource of anechoic speech and two independent anechoic sources

f babble noise taken from Noisex-92 ( Varga and Steeneken, 1993 )

re placed in an acoustic room with the indicated dimensions. The

IRs from the speech and noise sources to the microphones are

ynthesized to achieve a desired reverberation time T 60dB . These

re convolved with the anechoic signals to generate reverberant

icrophone signals, which are next linearly combined to achieve

 desired global SNR of 15 dB. 

For the relative evaluation of different dereverberation methods,

e use four performance measures, as recommended by the RE-

ERB Challenge ( Kinoshita et al., 2013 ). These performance metrics
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Fig. 3. Normalized IFC averaged over frequency bins and frames versus the frame 

lag for speech samples with different amounts of reverberation. 

Fig. 4. Performance of the proposed WPE method versus the assumed IFC length, 

τ , for different D . 
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3 Note that in this case, the approximate model in (9) turns into an accurate joint 

model for all the desired speech frames. 
include: the perceptual evaluation of speech quality (PESQ), the

cepstrum distance (CD), the frequency-weighted segmental SNR

(FW-SNR) and the signal to reverberation modulation energy ratio

(SRMR). The PESQ score is one of the most frequently used per-

formance measures in the speech enhancement literature, which

has been recommended by ITU-T standards for speech quality as-

sessment ( PESQ, 2001 ). It ranges between 1 and 4.5 with higher

values corresponding to better speech quality. The CD is calculated

as the log-spectral distance between the linear prediction coeffi-

cients (LPC) of the enhanced and clean speech spectra ( Hu and

Loizou, 2008 ). It is often limited in the range of [0,10], where

a smaller CD value shows less deviation from the clean speech.

The FW-SNR is calculated based on a critical band analysis with

mel-frequency filter bank and using clean speech amplitude as the

corresponding weights ( Hu and Loizou, 2008 ). It generally takes

a value in the range of [ −10,35] dB with the higher the better.

The SRMR, which has been exclusively devised for the assessment

of dereverberation, is a non-intrusive measure (i.e., one requiring

only the enhanced speech for its calculation), and is based on an

auditory-inspired filterbank analysis of critical band temporal en-

velopes of the speech signal ( Falk et al., 2010 ). A higher SRMR

refers to a higher energy of the anechoic speech relative to that

of the reverberant-only speech. 

In the conducted experiments, the sampling rate is set to

16 kHz and a 40 ms Hamming window with overlap of 50% is used

for the STFT analysis-synthesis. To achieve the best dereverberation

performance, the number of early speech terms is chosen as D =
3 while the order of the regression vector G k is chosen as L k = 20.

To implement the original (iterative) version of the WPE method

( Nakatani et al., 2010 ), we take the number of iteration to be J =
5, since more iterations do not result in better performance. The

number of microphones is taken to be M = 2, as the results ob-

tained by using larger number of microphones lead to the same

conclusions. We use the first 10 s of the reverberant speech obser-

vation to estimate the reverberation prediction weights G k in all

reported experiments. We take the length of IFC to be independent

of frequency, i.e. τ k ≡ τ , for our experiments. 

In order to perform the matrix inversion in (18) with better ac-

curacy, we use the QR factorization of the matrix ˜ A k in (16) with

forward-backward substitution ( Press et al., 2007 ). Also, to esti-

mate the LRSV through (21) , knowledge of the reverberation time

T 60dB is required. Here, we use the reverberation time estimation

method in Löllmann et al. (2010) to estimate this parameter blindly

from the observed speech. The estimated T 60dB in this way is ac-

curate enough not to degrade the performance of the underlying

LRSV estimator in (21) . The smoothing parameters β and κ in

(21) are respectively selected as 0.5 and 0.8 while η in (25) is fixed

at 0.7. Our approach requires no prior knowledge of the direct to

reverberant ratio (DRR) parameter or its estimate. 

To investigate the IFC present between early speech terms with

different frame lags, we calculated the normalized IFC by sam-

ple averaging over all frequency bins and frames. The results are

shown in Fig. 3 for both anechoic and reverberant speech signals

with different values of the reverberation time. As seen, the IFC

is quite pronounced for smaller lag values (say 5 or less), but de-

creases to a lower level for larger lags. We will take into account

this observation in choosing the appropriate IFC length, τ , in the

sequel. A more detailed study of the IFC in the STFT domain can

be found in Cohen (2005) . 

Next, we study the effect of the assumed number of correlated

speech frames, τ , on the overall performance of the proposed dere-

verberation approach. It was found that the choice of this param-

eter is more dependent on the number of early speech frames, D ,

than on other involved parameters, e.g. L k and T 60dB . This theoret-

ically makes sense since the parameter D determines the duration

of the early reflections, and therefore, the IFC is controlled by D
o a large extent. Fig. 4 shows the PESQ scores of the proposed

pproach versus different τ with D ranging from 1 to 4, when us-

ng the measured RIRs from the SimData of the REVERB Challenge.

part from the observation that the performance of the proposed

pproach is best for D = 3, it can be seen that the higher the value

f D the larger the value of the choice of τ resulting in the best

erformance. This result is due to the fact that the higher the value

f D the larger the amount of the IFC between subsequent frames

f the desired speech. It is also observed that the best choice of the

arameter τ occurs in the range of 2-6, despite the fact that the

heoretically optimal choice of τ is N , i.e., the number of frames

n the entire speech utterance. 3 The reason for this limitation in

he performance of the proposed approach seems to be due to the

imited accuracy in the estimation of the IFC matrix, �n, k . In ef-

ect, the estimation error in 

̂ �n,k , which grows with the size τ of

he matrix �n, k , degrades the overall performance of the proposed

ethod. Therefore, we choose the value of τ = 5 for the case of



M. Parchami et al. / Speech Communication 87 (2017) 49–57 55 

Table 2 

Performance comparison of different WPE-based dereverberation methods using the 

recorded RIR of room 1 from REVERB Challenge with babble noise. 

Method PESQ CD FW-SNR SRMR 

(dB) (dB) 

Unprocessed 2 .26 4 .26 2 .90 3 .82 

Original WPE ( Nakatani et al., 2010 ) 2 .57 3 .55 5 .11 6 .42 

CGG-based WPE ( Jukic et al., 2015 ) 2 .60 3 .50 5 .33 6 .74 

WPE suggested in Parchami et al. (2016) 2 .67 3 .42 6 .08 7 .53 

Proposed WPE 2 .73 3 .24 6 .79 7 .99 

Proposed WPE with IFC knowledge 2 .81 3 .11 7 .52 8 .40 

Table 3 

Performance comparison of different WPE-based dereverberation methods using the 

recorded RIR of room 2 from REVERB Challenge with white noise. 

Method PESQ CD FW-SNR SRMR 

(dB) (dB) 

Unprocessed 1 .94 4 .62 0 .90 2 .05 

Original WPE ( Nakatani et al., 2010 ) 2 .10 3 .75 1 .88 3 .17 

CGG-based WPE ( Jukic et al., 2015 ) 2 .12 3 .70 1 .98 3 .25 

WPE suggested in Parchami et al. (2016) 2 .18 3 .44 2 .30 3 .67 

Proposed WPE 2 .23 3 .32 2 .51 3 .99 

Proposed WPE with IFC knowledge 2 .30 3 .15 2 .74 4 .24 

Table 4 

Performance comparison of different WPE-based dereverberation methods using the 

recorded RIR of room 3 from REVERB Challenge with pink noise. 

Method PESQ CD FW-SNR SRMR 

(dB) (dB) 

Unprocessed 1 .87 4 .96 0 .52 1 .98 

Original WPE ( Nakatani et al., 2010 ) 2 .01 3 .82 1 .38 3 .09 

CGG-based WPE ( Jukic et al., 2015 ) 2 .02 3 .73 1 .51 3 .23 

WPE suggested in Parchami et al. (2016) 2 .07 3 .50 1 .82 3 .60 

Proposed WPE 2 .13 3 .36 2 .06 3 .87 

Proposed WPE with IFC knowledge 2 .21 3 .19 2 .29 4 .20 
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Fig. 5. Improvement in PESQ for different WPE-based dereverberation methods. 

Fig. 6. Improvement in CD for different WPE-based dereverberation methods. 
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 = 3 in our experiments. This is also consistent with the fact that

he IFC is more strongly present in the lag values of around 5 or

ess, as inferred before from Fig. 3 . 

To evaluate the reverberation suppression performance of the

roposed method, we compare it to the original WPE method

 Nakatani et al., 2010 ), two recent developments of the same

ethod based on the complex generalized Gaussian (CGG) fam-

ly of distributions ( Jukic et al., 2015 ) and the Laplacian dis-

ribution ( Jukic and Doclo, 2014 ) for the desired speech, the

PE method using the estimation of speech spectral variance

 Parchami et al., 2016 ), and finally, the proposed method by us-

ng the perfect knowledge of the desired speech component. The

GG-based method makes use of the same solution for the regres-

ion vector G k as the original WPE method but with a different

stimator of the speech spectral variance in its iterative procedure.

he Laplacian-based method does not have a closed-form solution

or the reverberation prediction weights, G k , and has to be imple-

ented through numerical optimization, e.g. by using the CVX op-

imization toolbox ( CVX Research, 2012 ). Next, the WPE method

resented in Parchami et al. (2016) , is actually a particular case

f the presented method in this work by disregarding the IFC and

stimating only the speech spectral variance at each frame inde-

endently. Finally, the proposed WPE method with IFC knowledge

s obtained by exploiting only the early component of the speech

this can be obtained in the same manner as that for Fig. 1 ) as ˆ d 

′ 
n,k 

n (23) , and is considered as a reference for comparison. The com-

arative results obtained by using the recorded RIRs from REVERB

hallenge with different noise types are presented in Tables 2–4 in

erms of the aforementioned objective performance measures. 
As observed, whereas the CGG and Laplacian-based methods

chieve better scores w.r.t. the original WPE, the WPE with speech

pectral variance estimation performs better than the former three

ethods, and finally, the proposed WPE method in this work

chieves the best results as compared to the previous methods.

t should be noted that the superior performance of the proposed

PE with knowledge of IFC shows the possibility of improving the

roposed method through the availability of more accurate IFC ma-

rix estimates. It is found that the relative performance of the con-

idered methods in terms of the four investigated scores is consis-

ent. 

Next, to evaluate the performance of the considered dereverber-

tion methods for different amounts of reverberation, the objec-

ive performance measures are obtained by using the synthesized

IRs with different T 60dB . The results are presented in Figs. 5–8 for

 60dB in the range of 100–1000 ms. For better visualization, only

he resulting improvements in the performance scores w.r.t. the

nprocessed speech (denoted by �PESQ and such) are illustrated.

s seen in these figures, the proposed method in this work and

he one in Parchami et al. (2016) , which are both based on the

stimation of the speech spectral variance by means of an LRSV

stimator, perform significantly better than the previous versions

f the WPE method, which estimate the speech spectral variance

teratively along with the reverberation prediction weights. Also,

t is observed that the proposed method achieves the best scores

n comparison with the others in almost the entire range of T .
60dB 
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Fig. 7. Improvement in FW-SNR for different WPE-based dereverberation methods. 

Fig. 8. Improvement in SRMR for different WPE-based dereverberation methods. 
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This advantage is more visible for the moderate values of T 60dB .

There is also a considerable gap between the results obtained by

using the proposed approach with the suggested estimation of the

IFC matrix and those by using the perfect knowledge of the early

speech, which indicates an avenue for further research for the es-

timation of the IFC. 

5. Conclusion 

In this work, we proposed a novel WPE dereverberation method

based on an approximate model for the correlation across desired

speech frames, namely the IFC, in the STFT domain. It was shown

that, given an estimate of the IFC matrix, the dereverberation prob-

lem of interest can be formulated as a convex quadratic optimiza-

tion leading to a closed-form Wiener-like solution. Performance

evaluations using both recorded and synthesized RIRs reveal that

the proposed method considerably outperforms the previous vari-

ations of the WPE method. 

It can be concluded that incorporating the statistical model-

based estimation of the desired speech spectral variance (or cor-

relation matrix in general) into the WPE dereverberation method

can lead to a better reverberation suppression performance. Such

an approach, unlike the original WPE method, results in a non-

iterative estimator for the reverberation prediction weight vector,

provided that proper estimates of the spectral auto- and cross-

variance of the desired speech terms are available. According to
he performed experimentations, it can be concluded that the ex-

sting limit on the performance of the suggested WPE method in

his work is mostly due to the limited accuracy in the estimation

f the IFC matrix, and therefore, this shortcoming can be overcome

y developing a more precise estimator for the IFC. This can serve

s a topic of future research on linear prediction-based dereverber-

tion in the STFT domain. 
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