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A B S T R A C T

Most of the current approaches for speech enhancement (SE) using deep neural network (DNN) face a number
of limitations: they do not exploit information contained in the phase spectrum while their high computational
complexity and memory requirements make them unsuited for real-time applications. In this paper, a new
phase-aware composite deep neural network (PACDNN) is introduced to address these challenges. Specifically,
magnitude processing with spectral mask and phase reconstruction with phase derivative are proposed as key
subtasks of the new network to simultaneously enhance the magnitude and phase spectra. Besides, the DNN
is meticulously designed to take advantage of strong temporal and spectral dependencies of speech, while
its components perform independently and in parallel to speed up the computation. The advantages of the
proposed PACDNN model over some well-known DNN-based SE methods are demonstrated through extensive
comparative experiments.
1. Introduction

Speech signals acquired in real-word environments are often cor-
rupted by background noise. This degradation occurs in many appli-
cations, such as speech recognition, hearing prosthesis, voice commu-
nications, smart home devices, etc. Speech enhancement (SE) aims to
suppress the unwanted ambient noise contained in the acquired speech
signal, either to improve its quality or as a preprocessing procedure to
make these applications robust to various noises. A SE method can be
either unsupervised or supervised. Traditional Wiener filtering (Abd El-
Fattah et al., 2008; Wang and Chen, 2018) and statistical model-based
methods (Martin, May 2002; Parchami et al., 2016) are two well-
known classes of unsupervised methods, which rely on the statistical
properties of speech and noise, and yield good performance when these
properties are known or properly modeled. However, these methods
suffer from performance degradation in real-world scenarios where the
statistical properties are unknown or difficult to model, especially for
non-stationary noise conditions.

In recent years, with the development of ever faster computing
hardware and the availability of large datasets, supervised methods
have received increasing attention in many areas. In particular, deep
learning-based methods have achieved revolutionary progress in speech
processing, including SE. The remarkable capability of DNN in model-
ing highly complex transformations has vastly advanced SE in adverse
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and variable acoustic scenarios. Moreover, a well-trained DNN can offer
low latency processing, which is crucial to many real-time applications,
such as hearing aids (Agnew and Thornton, 2000). Various DNN-based
SE methods have been proposed during the past decade, as exposed in
further details below.

Xu et al. (2014) utilized a multi-layer perceptron (MLP) to map
the log-power spectrum of the noisy speech to the clean one. In this
work, some critical MLP issues, such as the over-fitting and global
variance normalization problems, were also investigated. Although the
MLP model achieves very good SE results, it involves a large number
of parameters, and thus has a high-complexity. Besides, MLP processes
speech samples independently in the sense that it does not consider
sequential information, whereas speech exhibits strong temporal depen-
dencies. Chen and Wang (2017) adopted the long short-term memory
(LSTM) network, a variation of recurrent neural networks (RNN), to
model contextual information of speech sequentially along time, and
showed that LSTM could keep track of such speaker dependent infor-
mation under difficult noisy conditions. They also demonstrated that
the LSTM network outperforms the MLP in generalizing the model to
numerous speakers and noises. Recently, an LSTM network operating
along both time and frequency was used to extract time–frequency
patterns for low bit-rate audio restoration (Abbaszadeh, 2016). Al-
though LSTM shows very good SE performance, it is considered a high
vailable online 30 October 2021
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complexity model. To alleviate this issue of LSTM, two of its variations,
namely the gated recurrent unit (GRU) (Dey and Salemt, 2017) and
simple recurrent unit (SRU) (Cui et al., 2020), have been recently
employed for SE. However, while GRU and SRU provide efficient
implementations of LSTM, they do not perform as well as LSTM in the
SE application.

Park and Lee (2016) investigated convolutional neural network
(CNN) for SE and compared its required number of parameters with
that of MLP and LSTM. In particular, they showed that these three
methods almost give the same SE performance although CNN requires
a smaller number of parameters. However, this study only considers the
number of parameters, while the actual complexity and implementation
cost also depend on the memory footprint, which can be significantly
larger for CNN than for LSTM and MLP. It is also noted that CNN
was originally conceived to capture local information from an image,
while speech spectrograms generally exhibit non-local correlations.
Moreover, the CNN network’s max-pooling layers only retain the coarse
information of its input. Consequently, a generative model with no
max-pooling layer but containing instead a stack of dilated causal
convolutional layer was introduced in Oord et al. (2016). This model
expands the CNN filters’ receptive field without adding more complex-
ity to the model. Inspired by this work, a fully-convolutional model in
the frequency domain was introduced in Ouyang et al. (2019) showing
promising SE results.

In contrast to the aforementioned stand-alone methods, some recent
studies have considered a combination of networks as the learning en-
gine for SE. Tan and Wang (2018) introduced a convolutional recurrent
neural network (CRN) as an encoder–decoder network for SE. They also
extended CRN by introducing a gated convolutional recurrent network
and obtained better SE results in Tan and Wang (2019). Some other
CRN-based networks operating in the frequency and time domain were
proposed in Zhao et al. (2018), Hsieh et al. (2020), respectively. In Hu
et al. (2020), a deep complex CRN was introduced in which CNN and
RNN are designed to emulate complex-valued targets. The merits of
this model have been shown in terms of both objective and subjec-
tive metrics. Although the CRN model yields good SE results, Strake
et al. (2020) argued that the internal relations and local structures of
CNN feature maps are ravished due to the reshaping of data among
different CRN components. Thus, they employed convolutional LSTM
for SE, where the fully-connected mappings in LSTM are replaced with
convolutional mappings. Based on this argument, another model block
named gruCNN was recently utilized for SE in Shifas et al. (2020),
where recurrency is added to feature extracting CNN layers. These
combined networks achieved good SE results; however, they all exhibit
very high complexity models, and some of them (due to their non-
causal formulation) introduce additional latency. Moreover, CRN-based
methods perform well when the training and testing datasets are the
same but break down on unseen datasets (Pandey and Wang, 2020).

Although the above-mentioned methods have achieved remarkable
performance in SE, most of them only focus on speech magnitude
enhancement and leave the phase unprocessed. This is because the
phase spectrogram is highly unstructured, rendering its estimation by
DNN difficult. However, the role and importance of phase enhancement
in the context of speech enhancement was pointed out in Krawczyk and
Gerkmann (2014), and consequently, different phase-aware methods
were proposed. One of the earliest attempts to incorporate phase infor-
mation into the magnitude processing with DNN was presented in Erdo-
gan et al. (2015) where a phase-sensitive mask (PSM) was introduced.
However, this approach mainly exploits the PSM to process the speech
magnitude and employs the noisy phase in the speech reconstruction.
A complex ideal ratio mask (cIRM) was introduced in Williamson et al.
(2015) where the mask is divided into real and imaginary compo-
nents to enhance the complex spectrogram. Unfortunately, use of the
cIRM introduces distortion in the enhanced speech due to the lack of
2

recognizable patterns in its imaginary component (Yin et al., 2020;
Hasannezhad et al., 2020a). Direct estimation of the complex spectro-
gram was alternatively proposed in Fu et al. (2017a), Tan and Wang
(2018), Ouyang et al. (2019), Tan and Wang (2019), where the DNN is
employed to estimate the real and imaginary parts of the clean speech
complex spectrogram from those of the noisy speech. However, these
methods require large datasets to learn an accurate mapping function;
besides, their performance on unseen data might be worse than a simple
spectral magnitude mapping method (Pandey and Wang, 2020). Yin
et al. (2020) introduced a phase and harmonics-aware model for noise
reduction, where a two-stream DNN architecture with information
exchange between the magnitude and phase spectra is proposed to
recover the complex spectrogram of the clean speech. Since the phase
spectrogram itself has an irregular structure, researchers have also
investigated alternative quantities derived from the phase that exhibit a
similar structure as the magnitude for speech reconstruction (Mowlaee
and Saeidi, 2014). Takamichi et al. (2018) tried to reconstruct phase
based on the DNN-estimated amplitude. These authors introduced a
von-Mises-distribution DNN for phase reconstruction with a loss func-
tion between the predicted and actual group delay (GD). In their
subsequent work (Takamichi et al., 2020), they used a directional-
statistics DNN in the same framework, and introduced a sine-skewed
generalized cardioid distribution DNN to model GD. Zheng and Zhang
(2018) presented a phase-aware model to jointly process the magnitude
and phase spectrogram, where the estimated magnitude is obtained
with a spectral mask, and the phase is reconstructed through a phase
derivative (PD), specifically the so-called instantaneous frequency de-
viation (IFD). Experimental results demonstrate that this phase-aware
model performs better than approaches based on the cIRM or the
magnitude-only mask. Nevertheless, it uses MLP and LSTM to estimate
the target, which limits the attainable accuracy while incurring a high
computational cost. These networks are used in the estimation, which
may limit target accuracy while incurring high computational costs.
Besides, while the IFD is used effectively in phase reconstruction, other
PDs such as GD could potentially lead to superior performance.

In a preliminary study (Hasannezhad et al., 2021), we proposed a
composite model integrating CNN and LSTM for SE. Specifically, this
model employs improved LSTM and CNN structures to exploit a com-
plementary set of features containing spectral and temporal contextual
information of speech and thus outperforms some known DNN-based SE
methods. In this paper, we further investigate this model by introducing
new ideas and processing modules for both phase and magnitude
enhancements. Inspired by Zheng and Zhang (2018), we present a new
model called phase-aware composite deep neural network (PACDNN)
that involves two subtasks: magnitude processing with a spectral mask
and phase reconstruction with PD, where a DNN estimates both targets
simultaneously. We investigate different types of masks and PDs as
well as their possible combinations to select the best targets for the
DNN. Our analysis and experimental studies reveal that the proposed
PACDNN model yields a improved SE performance compared to several
existing DNN based methods while exhibiting a significantly lower
computational complexity and memory footprint.

The rest of this paper is organized as follows: Section 2 describes
the proposed PACDNN model and its components. Then, Section 3
presents experimental presents the experimental methodology along
with comparative results and discussion. Finally, the paper is concluded
in Section 4.

2. Proposed PACDNN model

A high-level block diagram of the proposed PACDNN model is
shown in Fig. 1. The composite model integrates CNN and LSTM
streams to extract a complementary set of features that are then trans-
formed into the network targets. The composite model input consists of
the noisy speech, while its output includes a spectral mask and PD. The
mask and PD are calculated and set used as target model output in the
training stage. The clean speech is reconstructed using the estimated
mask and PD in the testing stage. The individual components of the

PACDNN model are discussed in the following.
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Fig. 1. High-level PACDNN model.

Fig. 2. 2-layer Grouped LSTM: (a) no grouping; (b) grouped with 𝐾=2; (c) grouping
and representation rearrangement.

2.1. Composite model

2.1.1. Improved LSTM stream
Speech spectrogram exhibits strong temporal dependencies that can

be useful for SE. LSTM can model these long-term dependencies since
it treats the input frames as a sequence. Specifically, it can model the
changes over time and learn temporal dynamics of speech (Wang and
Chen, 2018). LSTM is made up of a memory cell and three control gates:
forget, input, and output. Denoting by 𝑀 and 𝑁 the dimensions of
he input vector and cell state, respectively, the number of trainable
arameters of an LSTM is 4 ⋅ (𝑁2 +𝑁𝑀 +𝑁) (Dey and Salemt, 2017).

One critical issue with an LSTM network is its high complexity,
hich stems from parameter redundancy in the weight and recurrent
atrices. The former transforms feature representations while the latter

ransfers hidden states between consecutive steps. To circumvent these
edundancies, a grouped recurrent network was introduced in Gao et al.
2018). Consider a two-layer LSTM network, as illustrated in Fig. 2(a).
s known, the number of parameters of LSTM for a single gate while
eglecting biases is (𝑁2 + 𝑁𝑀). By splitting input and hidden layers
nto 𝐾 groups performing independently, the number of parameters is
educed by a factor 𝐾 as follows,

⋅
(

(𝑁
𝐾

)2
+ 𝑁

𝐾
⋅
𝑀
𝐾

)

= 𝑁2 +𝑁 ⋅𝑀
𝐾

(1)

Such a grouped network is shown in Fig. 2(b) where 𝐾=2. Although
the model complexity is reduced, the grouping strategy deteriorates the
network efficiency. Indeed, while the intra-group temporal dependen-
cies are captured, the inter-group ones are lost since different groups
cannot communicate. To tackle this issue, an alternative rearrange-
ment was proposed in Gao et al. (2018) whereby different groups
are connected. This technique can be implemented using basic tensor
operations without introducing additional parameters, as shown in
Fig. 2(c). Hence, we use this grouping and connecting rearrangement
to reduce the model complexity while keeping the performance almost
the same.
3

Fig. 3. Attention technique: (a) channel-wise with average-pooling; (b) spatial with
max-pooling; (c) spatial with max and average-pooling.

2.1.2. Improved CNN stream

Dilated frequency convolution: CNN was initially designed for image
classification. A conventional CNN is made up of pairs of convolutional
and pooling layers followed by a fully-connected network. The pur-
pose of the former is to extract features, while the latter accomplish
classification.

Considering speech spectrogram as an image, its spectral contextual
information can be exploited by a CNN. However, CNN captures only
local information in its input due to the limited receptive field (the local
area from the previous layer) of its kernels, while the speech spectro-
gram exhibits non-local correlations along the frequency axis. Dilated
convolution was introduced to expand the receptive field of CNN ker-
nels in image processing applications (Yu and Koltun, 2015). Following
our recent study (Hasannezhad et al., 2021), we use a CNN with
stacked dilated convolutions to capture non-local spectral correlations
without increasing model complexity. Furthermore, residual learning
and skip connection techniques are adopted to facilitate training and
accelerate convergence. It is worth noting that this fully-convolutional
CNN structure has no pooling layers.

Attention driven CNN: CNN contains many feature maps that may have
different levels of significance. Accordingly, emphasizing informative
feature maps improves the model performance. By recalibrating feature
maps, an attention mechanism adaptively emphasizes the informa-
tive ones while suppresses the others. A successful attention mecha-
nism termed squeeze-and-excitation (SAE) was introduced in Hu et al.
2018) focusing on channel relationships. In this approach, illustrated
n Fig. 3(a), an average-pooling operation spatially aggregates the
lobal information of each feature map to a channel descriptor in the
queeze stage. Then, a fully-connected network captures channel-wise
ependencies by adjusting the descriptor in the excitation stage. Finally,

the original feature maps are recalibrated by the excitation values, and
the results are delivered to the subsequent layer. Inspired by SAE but
aiming to take advantage of pixel-wise spatial information, Roy et al.
(2018) introduced spatial SAE, illustrated in Fig. 3(b), wherein the
squeeze operation is performed along channels while the excitation is
spatial. Woo et al. (2018) introduced a convolutional block attention
module, as shown in Fig. 3(c), which is a combination of channel-wise
and spatial SAE. In this approach, both average and max-pooling are
applied as the squeezer. The outputs of the squeezing modules are then
concatenated and passed through a sigmoid activation function. Finally,
the resulting weights are element-wise applied to the original feature
maps. In this paper, we investigate the use of these attention techniques
in the PACDNN model.

2.1.3. Regression
Referring to Fig. 1, the two parallel streams in the composite model

of the proposed PACDNN exploit a complementary set of features,
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ve
Fig. 4. Spectrogram plot of speech at sampling frequency 8 kHz: (a) magnitude (log
scale); (b) phase; (c) IFD; (d) GD.

which are then transformed into a spectral mask and PD values. This
transformation can be achieved by either a low-complexity CNN or an
MLP network. These two DNN types have different attributes although
they can both accomplish the required regression task. As stated in Fu
et al. (2017b), CNN can model rapid fluctuations between contiguous
elements while MLP fails to do so. Besides, CNN requires much less
model parameters than MLP, while the latter requires way less memory
for its computations. We will compare these two networks for the
regression task from different perspectives, including SE performance
and computational complexity.

2.2. Spectral mask and phase derivative calculation

As mentioned above, the targets of the composite model in the
PACDNN consists of two parts, i.e., spectral mask and PD. The for-
mer is applied to the noisy magnitude spectrum to obtain the en-
hanced one, while the latter is employed to reconstruct the phase spec-
trum. Selecting appropriate targets is crucial for the final enhancement
performance.

Considering the noisy speech 𝑦(𝑡) as the addition of the clean speech
𝑠(𝑡) and background noise 𝑛(𝑡), where 𝑡 is the discrete time index, the
time domain noisy speech can be transformed into the TF domain using
short-time Fourier transform (STFT), that is,

𝑌 (𝑘, 𝑙) = 𝑆(𝑘, 𝑙) +𝑁(𝑘, 𝑙) (2)

where 𝑌 (𝑘, 𝑙), 𝑆(𝑘, 𝑙) and 𝑁(𝑘, 𝑙) denote the STFT spectrograms of noisy
speech, clean speech and noise, respectively, with 𝑘 and 𝑙 indicating the
frame index and frequency bin index. These complex spectrograms can
be expressed in polar coordinates, i.e., magnitude and phase spectra.
For instance, the spectrogram of the clean speech can be decomposed
as follows,

𝑆(𝑘, 𝑙) = |𝑆(𝑘, 𝑙)| 𝑒𝑖𝜙𝑆 (𝑘,𝑙) (3)

where 𝜙 and | ⋅ | denotes phase and magnitude, respectively. Our goal
in this paper is to obtain the enhanced speech by jointly reconstructing
the magnitude and phase spectra, given the noisy observations. The
following introduces several popular masks as well as PDs. In our study,
the enhancement performance is evaluated by considering different
possible combinations of these masks and PDs.

2.2.1. Spectral mask
Inspired by the masking effects of the human auditory system (Wang

and Chen, 2018), masking algorithms aim to retain the speech-dominant
regions of the noisy speech in the TF domain while suppressing the
4

noise-dominant ones. To this end, different masks have been introduced
in the literature, as summarized below for this study:

Ideal ratio mask (IRM) (Srinivasan et al., 2006) is defined as the ratio
between the energy of the clean speech and that of the noisy speech
within a TF unit, under the assumption that the noise signal and the
clean speech are uncorrelated. That is,

IRM(𝑘, 𝑙) =
(

|𝑆(𝑘, 𝑙)|2

|𝑆(𝑘, 𝑙)|2 + |𝑁(𝑘, 𝑙)|2

)

1
2

(4)

Spectral Magnitude Mask (SMM) (Wang et al., 2014), which is con-
ceptually similar to IRM, is defined as the ratio of the spectral magni-
tude of the clean speech to that of the noisy speech, that is,

SMM(𝑘, 𝑙) =
|𝑆(𝑘, 𝑙)|
|𝑌 (𝑘, 𝑙)|

(5)

Optimal Ratio Mask (ORM) (Liang et al., 2013) is derived based on
the minimization of the mean square error (MSE) between the clean
speech and the estimated speech. It is given by,

ORM(𝑘, 𝑙) =
|𝑆(𝑘, 𝑙)|2 +ℜ(𝑆(𝑘, 𝑙)𝑁∗(𝑘, 𝑙))

|𝑆(𝑘, 𝑙)|2 + |𝑁(𝑘, 𝑙)2| + 2ℜ(𝑆(𝑘, 𝑙)𝑁∗(𝑘, 𝑙))
(6)

where ∗ and ℜ denote the conjugate operation and the real part, re-
spectively. The main difference between ORM and IRM is the presence
of the term ℜ(𝑆(𝑘, 𝑙)𝑁∗(𝑘, 𝑙)) in the former. Accordingly, ORM can be
viewed as an improved version of IRM, which takes the correlation
between the clean speech and noise into consideration.

Phase Sensitive Mask (PSM) (Erdogan et al., 2015) is defined as the
real part of the ratio between the clean speech spectrogram and the
noisy speech spectrogram, as given by,

PSM(𝑘, 𝑙) = ℜ
(

𝑆(𝑘, 𝑙)
𝑌 (𝑘, 𝑙)

)

(7)

Since we use the sigmoid as the output layer’s activation function in
PACDNN, training targets’ values have to be limited to [0, 1]. Although
IRM values fall in the desired range, those of ORM, PSM, and SMM are
not limited to this range. Hence, these three masks’ outlier values are
truncated to [0, 1].

2.2.2. Phase derivative
Processing PD instead of the phase itself has been adopted in

some phase-aware speech enhancement methods. In this regard, the
instantaneous frequency (IF) (Stark and Paliwal, 2008) and group delay
(GD) (Hegde et al., 2007) are two of the most well-known PDs.

Instantaneous frequency (IF) formally defined as the first time-derivati
of the phase spectrum. In the case of spectrograms, IF can be ap-
proximated by the phase difference between two successive frames as,

IF(𝑘, 𝑙) = princ {𝜙(𝑘 + 1, 𝑙) − 𝜙(𝑘, 𝑙)} (8)

where the function princ{⋅} denotes the principal value operator, which
projects the phase difference onto [−𝜋, 𝜋). Since the IF is limited to its
principle value, the wrapping effects would occur along the frequency
axis. To alleviate the problem, the instantaneous frequency deviation
(IFD) has been adopted in Stark and Paliwal (2008) as follows,

IFD(𝑘, 𝑙) = IF(𝑘, 𝑙) − 2𝜋
𝑁

𝑘𝐿 (9)

where 2𝜋
𝑁 𝑘𝐿 is the center frequency of IFD(𝑘, 𝑙).

It is demonstrated in Stark and Paliwal (2008) that the IF values
track the frequencies of pitch harmonic peaks, while the IFD values
capture pitch and formant structures as in the magnitude spectrogram.
Similar findings are presented in Zheng and Zhang (2018), in which
the authors reconstructed the phase from the estimated IFD for speech
enhancement. They also showed that the IFD could be estimated with
DNN as it exhibits similar patterns as the magnitude spectrogram, as
illustrated in Fig. 4 (a, c).
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Fig. 5. Group delay regularization clean speech at sampling frequency 16 KHz: (a) GD
spectrogram; (b) distribution of GD values; (c) RGD spectrogram; (d) distribution of
RGD values.

Group delay (GD) is the negative of the derivative of the spectral
phase with respect to frequency, as is given by:

GD(𝑘, 𝑙) = − [𝜙(𝑘, 𝑙 + 1) − 𝜙(𝑘, 𝑙)] (10)

The authors demonstrated that the GD function behaves like a
squared magnitude response at the resonance frequency in Hegde et al.
(2007). It also exhibits structural patterns similar to the magnitude
spectrum, as seen from Fig. 4 (a, d). Moreover, the high-resolution
property discussed in Prasad et al. (2004) reveals that GD has a
higher resolving power than the magnitude spectrum. Specifically, the
formants are resolved more accurately in the group delay spectrum
when compared to the magnitude or linear prediction spectrum. Based
on this finding, we infer that GD can also be employed as a training
target of the DNN-based SE, in the same way as the widely-adopted
magnitude targets or their variants.

As the mask and PD are jointly estimated with a single DNN, their
values should be in the same range to balance the training process. We
adopted the normalization scheme in Zheng and Zhang (2018), where
the range of the spectral mask is truncated into [0, 1], and the PD values
are normalized as follows,

PDn(𝑘, 𝑙) =
1
2𝜋

PD(𝑘, 𝑙) + 1
2

(11)

As can be seen from Fig. 5 (a, b), the distribution of the normalized
GD values exhibits a U-shaped over the range [0, 1], which renders their
accurate estimation with DNN more difficult (Zheng and Zhang, 2018).
As such, we propose to use the following transformation to regularize
the normalized GD, namely,

RGD (𝑘, 𝑙) = 𝜇 +
√

2𝜎 ⋅ erf−1
(

2GD𝑛 (𝑘, 𝑙) − 1
)

(12)

where erf−1(⋅) is the inverse error function, and 𝜎 and 𝜇 are set to 0.1
and 0.5, respectively. The RGD and its distribution are shown in Figs. 5
(c, d), where the values are pulled close to the center point (0.5), which
makes the RGD a better training target.

2.3. Magnitude and phase reconstruction

In this subsection, we explain how to recover the magnitude and
phase spectra from the spectral mask and the PD estimates.
5

2.3.1. Magnitude reconstruction
After obtaining the estimated spectral mask �̂�(𝑘, 𝑙) from the trained

DNN, the magnitude reconstruction is accomplished by applying the
spectral mask to the magnitude spectrogram of the noisy speech, i.e.,

|�̂� (𝑘, 𝑙) | = �̂� (𝑘, 𝑙) |𝑌 (𝑘, 𝑙)| (13)

Typically, if a TF unit is speech dominated, �̂�(𝑘, 𝑙) will have a large
value which help preserve the speech information in the unit. Oth-
erwise, �̂�(𝑘, 𝑙) will be small, thereby contributing to suppress the
background noise. As mentioned in Section 2.2.1, four types of mask
𝑀(𝑘, 𝑙), namely IRM, SMM, ORM, and SMM, are investigated in this
work.

2.3.2. Phase reconstruction
Phase reconstruction is performed after obtaining the estimated

PDs by the well-trained DNN. Since IF and GD are defined as phase
differences between TF units of the spectrogram along the time and
frequency axes, respectively, an appropriate initial phase estimate over
some chosen TF unit is required to recover the phase spectrogram.
Based on the initial estimate, the entire phase spectrogram can be
reconstructed along the time and frequency axes through the difference
equations in (8) and (10).

(1) Initial phase estimation: When the clean speech power is much
larger than the noise power, the noisy phase is approximately equal
to the clean phase. Hence, using the noisy phase as an initial esti-
mate is justified in TF units with higher signal-to-noise ratio (SNR).
As suggested in Zheng and Zhang (2018), we adopt the noisy phase
spectrogram as the initial estimate of the clean phase, that is,

�̂�𝑖𝑛𝑖𝑡 (𝑘, 𝑙) = 𝜙𝑌 (𝑘, 𝑙) ,∀𝑘, 𝑙. (14)

We then use the local SNR of each TF unit as an index to determine
the initial estimate’s reliability, where the local SNR is approximated
by the estimated mask �̂�(𝑘, 𝑙).

(2) Phase reconstruction with GD: At first, the estimated RGD, de-
noted as R̂GD(𝑘, 𝑙), should be mapped back to GD𝑛(𝑘, 𝑙) using the
following transformation,

ĜD𝑛 (𝑘, 𝑙) =
1
2

(

erf

(

R̂GD (𝑘, 𝑙) − 𝜇
√

2𝜎

)

+ 1

)

(15)

where the 𝑒𝑟𝑓 (⋅) is the error function. Then the estimated GD is ob-
tained by denormalizing ĜD𝑛,

ĜD (𝑘, 𝑙) = 2𝜋
(

ĜD𝑛 (𝑘, 𝑙) −
1
2

)

(16)

Inspired by the phase reconstruction with IFD in Zheng and Zhang
(2018), we compute the phase spectrogram using the initial phase esti-
mate and the GD between the initial estimate and the target phase. For
each TF unit, we generate 2𝑁𝑠 + 1 frame-conditioned phase estimates,
given by,

�̂�𝑖 (𝑘, 𝑙) =

⎧

⎪

⎨

⎪

⎩

�̂�𝑖𝑛𝑖𝑡 (𝑘, 𝑙+𝑖)+
𝑖−1
∑

𝑛=0
ĜD (𝑘, 𝑙+𝑛) , 𝑖 ≠ 0

�̂�𝑖𝑛𝑖𝑡 (𝑘, 𝑙+𝑖) , 𝑖 = 0
, (17)

where −𝑁𝑠 ≤ 𝑖 ≤ 𝑁𝑠 is the frame distance between the initialized and
the target TF units. In this work, we 𝑁𝑠 = 2. These phase estimates are
then unwrapped, i.e.,

�̄�𝑖 (𝑘, 𝑙) = unwrap(�̂�𝑖 (𝑘, 𝑙) |�̂�𝑖 (𝑘, 𝑙 − 1)) (18)

The reconstructed phase of the (𝑘, 𝑙)th unit is finally obtained by
smoothing the frame-conditioned estimates �̄�𝑖 (𝑘, 𝑙) with the following
weighted average operation,

�̂� (𝑘, 𝑙) =

∑𝑁𝑠
𝑖=−𝑁𝑠

(

𝑠(𝑖)�̂� (𝑘, 𝑙+𝑖)
)

�̄�𝑖 (𝑘, 𝑙)
∑𝑁𝑠 ̂

(19)

𝑖=−𝑁𝑠

𝑠(𝑖)𝑀 (𝑘, 𝑙+𝑖)
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Fig. 6. Composite Model Architecture.
here 𝑠(𝑖) denotes the proximity weight for �̄�𝑖 (𝑘, 𝑙), which is inversely
related to the absolute value of the frame distance, that is, a phase
estimate �̄�𝑖 (𝑘, 𝑙) with a larger distance |𝑖| is assigned a smaller prox-
imity weight 𝑠(𝑖), and to lessen its effect on �̂�(𝑘, 𝑙). In this work,
following (Zheng and Zhang, 2018), we chose 𝑠(𝑖) as the Hamming
window. Moreover, the estimated mask �̂�(𝑘, 𝑙) is used as an measure of
the initial estimate’s reliability. For instance, a larger value of �̂�(𝑘, 𝑙+𝑖)
indicates that the local SNR of the 𝑖th TF unit is higher. In this case,
the phase estimate �̄�𝑖 (𝑘, 𝑙) is more reliable and contributes more to the
final estimate �̂� (𝑘, 𝑙).

(3) Phase reconstruction with IFD: The procedure of phase recon-
struction with IFD is presented in Zheng and Zhang (2018). To begin
with, the estimated IFD𝑛, denoted as ÎFDn(𝑘, 𝑙), should be denormalized
and converted to ÎF(𝑘, 𝑙). Then, the phase spectrogram is reconstructed
using the noisy phase spectrogram and ÎF(𝑘, 𝑙), with the help of the
spectral mask �̂�(𝑘, 𝑙). Note that phase reconstruction with IFD is similar
to the reconstruction with GD. The only difference is that the former
is reconstructed along the time axis, while the latter is reconstructed
along the frequency axis.

Besides reconstructing the phase with GD only or with IFD only, we
also propose the following combination schemes for reconstruction and
investigate their corresponding performance in the next section.

• Two-step reconstruction: In this scheme, we first take the noisy
phase as the initial estimate and use GD/IFD to get the prelim-
inary reconstructed phase. The later is then treated as the initial
estimate, which is employed to obtain the final reconstructed
phase with IFD/GD.

• Average reconstruction: In this scheme, we separately reconstruct
the preliminary phase with IFD and GD, respectively. The final
reconstructed phase is obtained by averaging the preliminary
ones.

With the combination schemes, the final phase estimate 𝜙𝑆 (𝑘, 𝑙) is
obtained along both time and frequency axes.

Finally, the estimated clean speech spectrogram can be obtained by
combining, the reconstructed magnitude and phase spectra.

2.4. Detailed PACDNN architecture

The composite neural network architecture of our proposed PACDNN
model is shown in Fig. 6. The upper stream comprises an LSTM network
with two layers, each having 128 LSTM units. We use Mel-frequency
cepstral coefficients (MFCCs) as the LSTM network input, since MFCC
is an optimal input for the LSTM network in terms of complexity and
performance, as demonstrated in Hasannezhad et al. (2020b). More
specifically, MFCC features are concatenated with their first and second
differences, and then normalized to zero mean and unit variance. As
mentioned in Section 2.1.1, the grouping strategy is adopted to reduce
the LSTM network complexity where the input and hidden layers are
divided into 𝐾 groups. Empirically, we found that grouping only the
second layer with 𝐾=2 leads to the best SE results.

In the bottom stream of Fig. 6, the noisy speech STFT magnitude
is used as input to the CNN network, which consists of a stack of four
dilated-frequency convolutional layers with increasing dilation rates of
1, 2, 4, and 8. The number of kernels in these layers is 16, 32, 16, and 8,
6

with rectified linear unit (ReLU) activation function. Since we want this
stream to capture spectral contextual information, the convolutions are
1-dimensional with kernel sizes of 1 along with the time and 7 along the
frequency dimension. The feed-forward lines around these layers are
residual paths, in the form of convolutional layers with kernel size (1,
1), are used to improve the training procedure. As shown, the outputs of
each layer are added up (with a skip connection) to make the output
of the CNN network. The output then goes to an attention block, as
explained in Section 2.1.2.

The outputs of the LSTM and CNN networks are then concatenated
along the channel dimension to form the complementary feature set.
Subsequently, another low complexity attention-driven CNN transforms
this feature set into the desired targets. This CNN is made up of
three convolutional layers with kernel size (1,3) where the number of
channels is 32, 16, and 2. The first two layers are followed by ReLU,
while the activation function of the output layer is the sigmoid. As
explained before, the network estimates the spectral mask and the PDs,
respectively, in the two CNN channels. Since the structures of these
estimators are similar, they are included as two subtasks for the same
network through a parameter sharing mechanism. This mechanism
provides better generalization and improves learning because it induces
a regularization effect between the two subtasks (Tan and Wang, 2019).
In the signal reconstruction block, the information from these two
channels is used to resynthesize both magnitude and phase as explained
in Section 2.3. Finally, the clean speech samples in the time domain are
generated using inverse STFT and overlap-add operation.

3. Experimental evaluation

3.1. Experimental setup

To evaluate the performance of the proposed PACDNN model, the
TIMIT database (Garofolo et al., 1993) and IEEE corpus (Rothauser,
1969) are utilized. TIMIT dataset consists of 6300 utterances spo-
ken by 630 male and female speakers, representing eight major di-
alect divisions of American English, each speaking ten phonetically-
rich sentences. The IEEE corpus contains 720 utterances spoken by
a single male speaker. For the noise dataset, we use 20 noises (air-
port, babble, buccaneer1, car, destroyerengine, destroyerops, exhibi-
tion, f16, factory, hfchannel, leopard, m109, machinegun, pink, restau-
rant, street, subway, train, volvo, and white) from NOISEX-92 (Varga
and Steeneken, 1993). All the noise files are divided into two parts
where random portions of the first part are used for training. The
utterances are additively mixed with the noises at SNR levels of −5, 0,
5, and 10 dB in the training stage. In the testing stage, 60 unmatched
utterances are randomly selected from each dataset and mixed with
random portions of the second part of the noise files at unmatched SNR
levels of −6, 0, 6, and 12 dB. Besides, four unseen highly-nonstationary
noises, namely, Coffee Shop, Busy City Street, Car Interior, and Street
Traffic, are selected from Premium Beat to evaluate the generalization
capability of the proposed model.

The sampling rate is set to 16 kHz, and each mixture is divided into
20 ms time frames with a 10 ms frame shift, i.e., 50% overlap. For each
frame, a Hanning window is applied and the 320-point discrete Fourier
transform (DFT) is then computed; hence, each frame is represented by
160 STFT coefficients or frequency bins. The STFT are used to extract
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Table 1
Comparison of different model targets.

Cases Objective PESQ STOI SSNR

A

IRM 2.61 0.818 4.33
ORM 2.61 0.814 4.10
PSM 2.66 0.824 4.28
SMM 2.54 0.831 4.26

B

IFD+IRM 2.67 0.847 5.51
IFD+ORM 2.66 0.837 4.52
IFD+PSM 2.71 0.853 6.42
IFD+SMM 2.64 0.860 5.73

C

GD+IRM 2.67 0.848 5.60
GD+ORM 2.68 0.844 5.64
GD+PSM 2.75 0.853 6.47
GD+SMM 2.66 0.861 5.62

D

(GD-IFD)+IRM 2.70 0.849 5.69
(GD-IFD)+ORM 2.70 0.843 5.73
(GD-IFD)+PSM 2.74 0.854 6.43
(GD-IFD)+SMM 2.65 0.860 5.58

E

(IFD-GD)+IRM 2.70 0.850 5.72
(IFD-GD)+ORM 2.70 0.844 5.74
(IFD-GD)+PSM 2.74 0.854 6.42
(IFD-GD)+SMM 2.65 0.860 5.56

F

Avg(IFD&GD)+IRM 2.70 0.849 5.67
Avg(IFD&GD)+ORM 2.70 0.843 5.72
Avg(IFD&GD)+PSM 2.74 0.853 6.41
Avg(IFD&GD)+SMM 2.65 0.860 5.58

26 MFCC, using a suitable mel-scale filter bank. The MFCCs are finally
concatenated with their first and second time differences. Hence, the
total length of the feature vector used as input to the LSTM network
is 78 (i.e., 26 × 3). The MSE is selected as the cost function, while
he Adam optimizer is used as an extension to the stochastic gradient
escent (Kingma and Ba, 2014) to minimize the error between ideal
ground truth) and estimated values of the desired mask and PD, as
ollows,

SE = 1
𝐿𝐾

∑

𝑙

∑

𝑘
[(𝑀(𝑘, 𝑙) − �̂�(𝑘, 𝑙))2

(𝑃𝐷(𝑘, 𝑙) − 𝑃𝐷(𝑘, 𝑙))2] (20)

here 𝐿 and 𝐾 respectively denote the number of time frames and
requency bins.

The speech enhancement performance is evaluated in terms of the
ollowing network objective measures: PESQ, short-time objective in-
elligibility (STOI), and segmental signal-to-noise ratio (SSNR) metrics.
ESQ compares the enhanced and clean speech in terms of quality;
t generates a score between −0.5 and 4.5, where a higher value
orresponding to better quality. STOI measures speech intelligibility
y using the correlation between short-time temporal envelopes the
lean and enhanced speech; the corresponding range lies between 0
nd 1, with a higher value corresponding to better intelligibility. SSNR
uantifies amount of residual noise in a in the enhanced speech by
omputing and averaging the weighted SNR over segments with speech
ctivity. As stated in Hu and Loizou (2007), these three metrics are
ighly correlated with subjective measurements. The comparisons are
ccomplished with the same dataset and configuration using a GeForce
TX 2080 graphic card and 2.2 GHz AMD 12-Core Processor.

.2. Phase-aware method evaluation

The proposed DNN aims to simultaneously estimate the values of
oth PD and spectral mask. We treat IFD, GD, and their combinations
s general PDs. Besides, we investigate four spectral masks, i.e., IRM,
RM, PSM, and SMM.

The comparative performance of the PACDNN model using different
ombinations of the masks and PDs is shown in Table 1. The experi-
ents are performed using the TIMIT dataset and restaurant, factory,
7

a

treet, and babble as noises. The numbers in the table are averaged over
ll noises and SNR levels. The table is made up of six parts as explained
elow.
A. This part shows the evaluation metric scores when only a mask

s considered as the network’s training target with no PD. As seen, PSM
ields the best PESQ score while SMM and IRM lead to better STOI and
SNR scores, respectively.
B. This part compares the use of different masks alongside IFD. The

esults are better than the previous scenario, showing the advantage of
nhancing phase alongside magnitude. In this case, IFD+PSM performs
etter in terms of PESQ and SSNR, while IFD+SMM yields a slightly
etter STOI score.
C. This part compares the use of different spectral masks alongside

D. The results are better than both previous scenarios illustrating GD’s
dvantage over IFD. GD+PSM outperforms other combinations in this
roup in terms of PESQ and SSNR, but not STOI.
D. In this part, a two-stage phase reconstruction is investigated

here the noisy phase and GD estimation are used to reconstruct the
hase in the first stage, and then the reconstructed phase and IFD
stimation are used to obtain the final clean phase estimate in the
econd stage.
E. This part is similar to the previous one, but in a reverses order,

.e.: the noisy phase and IFD are first used to reconstruct the phase, and
he reconstructed phase is the used with GD estimation to obtain the
inal phase estimate.
F. This part shows the results when the average of the reconstructed

hase using IFD and GD estimation is considered as the clean phase.
lthough these combinations give good results, the best PESQ and
SNR are obtained using GD+PSM, and the best STOI with GD+SMM.

Hence, we can conclude that the model using PSM+GD as the
raining target outperforms other scenarios, and thus we adopt it for
he rest of our experiments.

.3. Advantages of grouped LSTM

In the PACDNN model, the LSTM stream exploits the input speech
pectrogram’s temporal contextual information. LSTM is the most com-
on RNN variation, which is used in this work to avoid the explod-

ng and vanishing gradient problems (Chen and Wang, 2017). Other
NN variations are also considered, such as, GRU and bidirectional

orms called BLSTM and BGRU. Furthermore, we adopt the grouping
trategy in the LSTM stream to reduce its complexity, as explained
n Section 2.1.1. This section evaluates the PACDNN model perfor-
ance using the above-mentioned RNN variations with and without

he grouping strategy.
In addition to the metrics mentioned in Section 3.1, we compare

hese variations in terms of: the number of parameters and the required
emory to store them; computation time for processing one second of

nput noisy speech; and memory footprint, measured in terms of the
equired floating-points operations (FLOPs). These additional measure-
ents are essential for characterizing the implementation complexity

f SE algorithms. These measurements are all made during the testing
tage since the trained model parameters are to be saved in the device
ardware.

Fig. 7 presents the performance results of the PACDNN model using
RU, LSTM, BGRU, BLSTM, and their grouped versions. In this figure,

and MB denote million and megabyte, respectively. Note that the
ataset is the same as in Section 3.2, and the values for PESQ, STOI,
nd SSNR (dB) show the average improvement over all the noises and
NR levels. As shown in the figure, using grouped-LSTM yields the
est STOI and SSNR scores, while LSTM outperforms others in terms
f PESQ score. While the objective results do not show a considerable
ifference, the results for the complexity measures, especially FLOPs
nd number of parameters, display huge variations. With respect to
rocessing time, GRU is clearly the fastest while BLSTM is the slowest

pproach. The grouped variations lead to models with smaller number
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Fig. 7. Comparison of PACDNN performance when using different RNN variations.
of parameters and FLOPs, and among them, grouped-GRU requires the
least number of parameters and FLOPs, while grouped-LSTM ranks
second. Considering both objective speech quality and computational
complexity metrics, the grouped-LSTM offers the best trade-off among
the RNN variations in the PACDNN model.

3.4. Benefits of attention-driven CNN

CNN generates many feature maps, each containing some spec-
trogram characteristics. These feature maps mostly convey noise or
speech information. In the PACDNN model, the attention technique is
embedded in CNNs to recalibrate feature map weights and emphasize
the speech-bearing ones. As mentioned in Section 2.1.2, we consider
three attention techniques, i.e., channel-wise, spatial, and parallel, to
be embedded in the PACDNN model, and compare the overall model
performance. The results of the different cases, using the same dataset
as in Section 3.2, are illustrated in Fig. 8, where the values show the
average improvement over all the noises and SNR levels. Considering
the PESQ score, the PACDNN model with no attention gives the lowest
score, while embedding the parallel attention technique yields the
highest score. Regarding STOI, the model with the parallel attention
again outperforms others, while that with no attention leads to the
lowest score. These results demonstrate the effectiveness of attention
techniques in emphasizing the informative feature maps. The parallel
attention technique made up of average and max pooling can also
capture important information of the input feature maps from different
perspectives and further improve their representation power. Regarding
SSNR, the use of attention model tends to reduce, although marginally,
the attainable values.

3.5. Investigation of the regression model

This section evaluates the CNN in Section 2.4 against an MLP for
the final regression part of the PACDNN model. The MLP contains
three layers, each having 512 nodes with a ReLU activation function.
A dropout at the rate of 0.3 is also applied to avoid over-fitting. The
output layer consists of 322 nodes with sigmoid activation functions to
build the desired mask and PD.

The comparative performance of the two networks in terms of objec-
tive speech quality and computational complexity metrics is presented
in Fig. 9. As shown, MLP yields slightly better results in terms of
objective measurements. This marginal advantage of MLP stems from
its number of parameters. Using MLP in PACDNN requires around five
times more trainable parameters than using CNN, which means the
model with MLP can learn more specific patterns of the training dataset.
It is worth mentioning that a low complexity model is preferable from
the implementation and generalization perspectives. While a model
with a low number of parameters does not have the capacity to learn
specific patterns or detailed information about noise and speech utter-
ances in the training dataset, and it can perform very well under unseen
8

Fig. 8. Comparison of PACDNN performance when embedding different attention
methods.

Fig. 9. Comparison of PACDNN model performance while using CNN or MPL for the
final regression.

acoustic conditions. Apart from that, using CNN and MLP in the model
respectively requires 0.74 MB and 3.82 MB of memory to store the fixed
model parameters, which is proportional to the number of parameters.
While the basic computations in MLP are conceptually simpler than in
CNN, the former still requires 1.46 times more FLOPs than the former,
which is due to the larger number of model parameters. At last, the
computation time of CNN, which performs a large number of matrix
multiplications, slightly exceeds that of MLP.

3.6. Comparison with other DNN-based methods

This section compares the proposed PACDNN model with some
well-known DNN models in the SE task. The selected models have
moderate complexity. All the selected methods consider phase infor-
mation for SE along with magnitude enhancement. All the models,
including PACDNN, are trained and tested with the same dataset under
the same condition to ensure a fair comparison. The selected methods
are summarized below:
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Table 2
Comparison of different methods with unseen male utterances from TIMIT dataset.

SNR Method PESQ STOI SSNR

bble ftry rtrt strt bble ftry rtrt strt bble ftry rtrt strt

−6 dB

Unprocessed 1.23 1.08 1.29 1.25 0.522 0.509 0.516 0.609 −10.6 −10.3 −9.97 −9.64
IRM-MIFD-MLP 1.57 1.57 1.68 1.95 0.588 0.591 0.647 0.724 −3.83 −2.52 −1.78 −0.30
cIRM-MLP 1.57 1.74 1.68 2.06 0.562 0.568 0.624 0.712 −1.02 0.29 0.14 1.65
MCIRM-CNNGRU 1.57 1.71 1.53 1.90 0.523 0.544 0.545 0.657 −2.42 −0.80 −2.01 0.45
cIRM-CNNLSTM 1.67 1.80 1.84 2.04 0.578 0.589 0.667 0.716 −1.29 −0.80 −0.26 1.53
CS-CNN 1.53 1.41 1.48 1.72 0.515 0.518 0.506 0.612 −4.25 −3.86 −5.22 −1.95
DCTCRN 1.68 1.70 1.79 2.32 0.586 0.591 0.687 0.721 −0.22 −0.71 0.08 1.22
TCNN 1.59 1.64 1.69 2.02 0.586 0.584 0.638 0.722 −0.17 −0.35 0.00 1.05
Proposed 1.72 1.81 1.87 2.19 0.591 0.591 0.660 0.740 −1.10 −0.46 0.17 1.66

0 dB

Unprocessed 1.66 1.52 1.65 1.74 0.659 0.647 0.651 0.718 −5.97 −5.72 −5.45 −4.84
IRM-MIFD-MLP 2.12 2.15 2.24 2.49 0.732 0.738 0.762 0.803 0.97 1.96 2.22 3.98
cIRM-MLP 2.17 2.25 2.24 2.53 0.724 0.716 0.744 0.796 2.21 2.84 2.76 4.18
MCIRM-CNNGRU 2.10 2.17 2.03 2.42 0.696 0.700 0.698 0.767 1.36 1.65 1.44 3.22
cIRM-CNNLSTM 2.24 2.31 2.32 2.53 0.736 0.743 0.773 0.813 1.84 2.12 2.52 3.91
CS-CNN 2.01 1.87 1.88 2.12 0.667 0.662 0.652 0.722 0.17 0.28 −1.23 1.35
DCTCRN 2.22 2.30 2.28 2.75 0.745 0.743 0.769 0.821 1.13 2.10 2.56 4.16
TCNN 2.16 2.14 2.22 2.49 0.741 0.762 0.763 0.850 3.07 2.18 2.17 5.17
Proposed 2.28 2.34 2.34 2.67 0.751 0.750 0.778 0.824 2.48 3.04 3.23 4.60

6 dB

Unprocessed 2.12 1.98 2.08 2.23 0.778 0.780 0.789 0.806 −0.17 −0.21 0.21 0.29
IRM-MIFD-MLP 2.71 2.70 2.73 2.97 0.837 0.840 0.852 0.862 5.46 5.83 5.73 6.79
cIRM-MLP 2.74 2.73 2.74 2.94 0.828 0.824 0.845 0.854 5.49 5.35 5.59 6.49
MCIRM-CNNGRU 2.60 2.63 2.57 2.82 0.811 0.810 0.819 0.836 4.13 4.13 4.33 5.40
cIRM-CNNLSTM 2.79 2.86 2.84 3.13 0.850 0.850 0.859 0.872 5.33 5.38 6.32 5.44
CS-CNN 2.41 2.24 2.33 2.51 0.780 0.770 0.776 0.800 3.48 3.48 2.87 4.06
DCTCRN 2.90 2.85 2.80 3.01 0.855 0.845 0.861 0.877 6.26 5.58 5.59 6.89
TCNN 2.66 2.55 2.68 2.93 0.833 0.848 0.867 0.822 6.68 5.21 5.71 7.20
Proposed 2.83 2.89 2.85 3.08 0.860 0.855 0.875 0.882 6.26 6.66 6.51 7.72

12 dB

Unprocessed 2.53 2.46 2.51 2.66 0.877 0.890 0.896 0.886 5.51 5.46 5.88 6.05
IRM-MIFD-MLP 3.22 3.16 3.20 3.37 0.906 0.907 0.918 0.913 8.42 8.56 8.28 9.09
cIRM-MLP 3.16 3.17 3.19 3.33 0.897 0.896 0.909 0.903 7.86 7.80 7.79 8.49
MCIRM-CNNGRU 3.02 3.08 3.04 3.25 0.888 0.882 0.896 0.891 6.73 6.31 6.72 7.51
cIRM-CNNLSTM 3.27 3.25 3.26 3.49 0.910 0.910 0.920 0.916 8.13 8.19 8.21 8.78
CS-CNN 2.77 2.63 2.74 2.86 0.854 0.848 0.856 0.860 6.01 5.96 5.83 6.42
DCTCRN 3.26 3.16 3.09 3.43 0.912 0.922 0.924 0.923 9.93 9.27 9.05 10.13
TCNN 3.10 2.94 3.11 3.24 0.914 0.932 0.926 0.950 10.74 9.23 9.65 11.54
Proposed 3.30 3.26 3.27 3.47 0.920 0.921 0.930 0.927 10.08 10.33 10.18 11.11
Fig. 10. Comparison of the number of trainable parameters and average PESQ score
f different methods.

1. IRM-MIFD-MLP (Zheng and Zhang, 2018): A MLP with three
layers is employed in this multi-objective DNN method. Each
hidden layer contains 1024 nodes with ReLU activation func-
tion while the output layer contains 512 nodes with sigmoid
activation function. IRM and IFD are used as training targets.

2. cIRM-MLP (Williamson et al., 2015): In this method, three-
layer MLP is employed to approximate cIRM. Each layer has
1024 nodes with ReLU activation function. The output layer
9

with linear activation function estimates the real and imaginary
parts of cIRM. The input to the network is a complementary set
of acoustic features. To incorporate temporal information, the
features from 5 frames are concatenated and fed to the network
at once.

3. MCIRM-CNNGRU (Hasannezhad et al., 2020a): In this method,
a hybrid model is used to estimate the real and imaginary
parts of a modified cIRM. The network is made up of a CNN
for feature extraction and a GRU network for regression. The
complex spectrogram is used as the input and a 322-node output
layer with linear activation function generates the desired mask
values.

4. cIRM-CNNLSTM (Hasannezhad et al., 2020b): Here, a CNN,
LSTM, and MLP are integrated to estimate cIRM. The feature
extraction is performed by the CNN and LSTM networks while
the regression is accomplished by the MLP, which maps the
features into the real and imaginary components of cIRM.

5. CS-CNN (Ouyang et al., 2019): A fully-convolutional CNN is
utilized to estimate the real and imaginary parts of the clean
speech complex spectrogram. The input consists of 13 frames of
the noisy speech complex spectrogram presented to the network.
The middle frame of the output (frame 7) is considered as the
enhanced output frame.

6. DCTCRN (Li et al., 2021): Unlike the previous methods that
all perform in the frequency domain, this method accomplishes
speech enhancement in the discrete cosine transform (DCT)
domain so that the magnitude and phase are simultaneously
enhanced. The input is the short-time DCT (STDCT) and the
training target is a ratio mask including implicit phase informa-
tion. The CRN is used as the learning machine to perform the

mapping between the input STDCT and the ratio mask.
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Table 3
Comparison of different methods with unseen female utterances from TIMIT dataset.

SNR Method PESQ STOI SSNR

bble ftry rtrt strt bble ftry rtrt strt bble ftry rtrt strt

−6 dB

Unprocessed 0.95 0.87 0.93 0.93 0.512 0.504 0.497 0.588 −9.97 −10.0 −9.51 −9.51
IRM-MIFD-MLP 1.22 1.23 1.28 1.54 0.568 0.579 0.631 0.693 −3.51 −2.26 −1.19 −0.13
cIRM-MLP 1.27 1.43 1.31 1.67 0.545 0.549 0.601 0.679 −0.92 0.40 0.32 1.97
MCIRM-CNNGRU 1.28 1.37 1.23 1.60 0.506 0.526 0.544 0.635 −2.15 −0.95 −1.90 0.56
cIRM-CNNLSTM 1.38 1.45 1.44 1.79 0.551 0.564 0.635 0.690 −0.93 −0.58 0.48 1.90
CS-CNN 1.27 1.23 1.23 1.45 0.505 0.517 0.497 0.588 −3.85 −3.04 −5.03 −1.58
DCTCRN 1.36 1.36 1.31 1.95 0.561 0.580 0.656 0.685 −0.88 −1.18 0.41 1.39
TCNN 1.34 1.41 1.46 1.78 0.564 0.599 0.623 0.670 −1.46 −0.30 0.79 1.04
Proposed 1.40 1.48 1.46 1.80 0.570 0.561 0.629 0.703 −0.70 −0.12 0.94 2.35

0 dB

Unprocessed 1.36 1.28 1.36 1.48 0.640 0.635 0.641 0.694 −5.58 −5.64 −5.00 −4.89
IRM-MIFD-MLP 1.77 1.81 1.82 2.09 0.709 0.718 0.743 0.784 1.34 2.13 2.50 3.97
cIRM-MLP 1.81 1.94 1.88 2.15 0.687 0.690 0.729 0.765 2.46 2.90 3.09 4.40
MCIRM-CNNGRU 1.83 1.92 1.75 2.10 0.674 0.676 0.699 0.754 1.44 1.83 1.63 3.61
cIRM-CNNLSTM 1.92 1.98 1.93 2.41 0.710 0.716 0.749 0.787 2.12 2.32 3.15 4.33
CS-CNN 1.76 1.65 1.67 1.91 0.653 0.649 0.643 0.702 0.46 0.59 −0.73 1.65
DCTCRN 2.03 1.98 1.87 2.58 0.719 0.748 0.735 0.752 2.05 2.91 3.34 4.13
TCNN 1.90 1.95 1.85 2.30 0.767 0.765 0.748 0.786 2.52 2.93 3.61 5.75
Proposed 1.94 2.06 1.96 2.30 0.721 0.711 0.750 0.798 3.00 3.50 3.80 5.35

6 dB

Unprocessed 1.85 1.77 1.84 2.01 0.766 0.763 0.777 0.798 −0.18 −0.30 0.16 0.49
IRM-MIFD-MLP 2.34 2.37 2.35 2.63 0.822 0.824 0.838 0.849 5.61 6.00 6.06 7.31
cIRM-MLP 2.34 2.42 2.36 2.63 0.805 0.802 0.823 0.836 5.31 5.41 5.68 6.94
MCIRM-CNNGRU 2.31 2.37 2.25 2.54 0.795 0.788 0.810 0.824 4.34 4.23 4.59 5.75
cIRM-CNNLSTM 2.47 2.52 2.52 2.85 0.824 0.830 0.845 0.857 5.67 5.59 5.76 7.08
CS-CNN 2.17 2.11 2.09 2.31 0.768 0.763 0.770 0.790 3.70 3.84 3.13 4.41
DCTCRN 2.32 2.46 2.48 2.93 0.792 0.802 0.805 0.829 6.23 7.29 7.00 8.19
TCNN 2.41 2.38 2.47 2.75 0.882 0.794 0.815 0.830 6.27 7.41 7.00 8.47
Proposed 2.50 2.58 2.47 2.78 0.836 0.837 0.849 0.869 6.82 7.09 7.06 8.75

12 dB

Unprocessed 2.34 2.30 2.31 2.50 0.869 0.883 0.888 0.882 5.53 5.50 5.91 6.11
IRM-MIFD-MLP 2.90 2.92 2.85 3.09 0.896 0.900 0.905 0.899 8.61 8.67 8.42 9.24
cIRM-MLP 2.86 2.96 2.84 3.05 0.882 0.887 0.892 0.891 7.67 7.65 7.71 8.62
MCIRM-CNNGRU 2.82 2.85 2.76 2.99 0.875 0.873 0.887 0.881 7.23 6.69 7.15 7.74
cIRM-CNNLSTM 3.00 2.99 2.95 3.25 0.898 0.903 0.909 0.907 8.25 8.4 8.52 9.46
CS-CNN 2.56 2.47 2.52 2.70 0.843 0.840 0.847 0.853 6.16 6.07 5.95 6.52
DCTCRN 2.90 3.00 2.85 3.37 0.877 0.861 0.901 0.894 10.68 10.81 10.80 11.85
TCNN 2.93 2.79 2.91 3.12 0.897 0.882 0.917 0.855 10.32 9.74 10.16 11.31
Proposed 3.02 3.07 2.97 3.23 0.915 0.916 0.922 0.920 10.89 11.04 10.89 12.16
Table 4
Comparison of different methods with unseen utterances from IEEE corpus and 20 different noises.

Method PESQ STOI SSNR

−6 0 6 12 −6 0 6 12 −6 0 6 12

Unprocessed 1.40 1.76 2.13 2.54 0.588 0.708 0.825 0.913 −8.99 −5.17 0.01 5.75
IRM-MIFD-MLP 1.83 2.36 2.88 3.30 0.711 0.824 0.898 0.942 −1.77 3.19 7.30 10.16
cIRM-MLP 1.85 2.37 2.86 3.27 0.690 0.810 0.889 0.938 1.03 4.35 7.26 10.02
MCIRM-CNNGRU 1.85 2.34 2.78 3.15 0.658 0.782 0.869 0.922 0.22 3.45 6.14 8.26
cIRM-CNNLSTM 2.06 2.58 3.06 3.44 0.720 0.832 0.907 0.949 1.02 4.54 8.07 10.88
CS-CNN 1.98 2.46 2.82 3.09 0.685 0.817 0.896 0.939 2.11 4.98 9.23 11.01
DCTCRN 1.91 2.39 2.83 3.21 0.704 0.840 0.891 0.937 1.42 4.96 9.43 11.47
TCNN 1.85 2.30 2.64 2.93 0.690 0.811 0.877 0.912 1.52 5.06 8.05 10.36
Proposed 2.07 2.60 3.08 3.46 0.724 0.838 0.911 0.955 1.63 5.08 8.34 11.76
7. TCNN (Pandey and Wang, 2019): This method is designed to
perform in the time domain where a temporal convolutional neu-
ral network (TCNN), along with an embedded encoder–decoder
architecture with a temporal convolutional network, is employed
to directly map the noisy speech to the clean one.

Fig. 10 illustrates the number of trainable parameters of each
ethod along with the average PESQ score of the processed speech

ver different noises and SNR levels evaluated with the TIMIT dataset.
s shown, TCNN and DCTCRN are of high numbers of model parame-

ers; thus, they have high computational complexity. As expected, the
LP-based models, i.e., IRM-MIFD-MLP and cIRM-MLP, also contain

igh numbers of model parameters and, consequently, require a large
emory to store them. It is worth mentioning that the computations

f TCNN and DCTCRN are much higher than MLP-based models since
he formers contain many convolutional operations. Two other hybrid
odels, i.e., MCIRM-CNNGRU and cIRM-CNNLSTM, have a fair number
10
of parameters, each around 1 million. The lowest number of parameters
belongs to CS-CNN and the proposed model, with the latter requiring
slightly fewer parameters. Although the number of model parameters
of PACDNN is only 3% of TCNN and 6% of DCTCRN, it outperforms
all these aforementioned models in the SE task, as shown in the figure
and further discussed below.

Since speech characteristics differ between males and females, we
evaluate different models separately to show the generalization capa-
bility of the desired models to different genders. The comparison results
for male test utterances from the TIMIT dataset are shown in Table 2
where bble, ftry, rtrt, and strt denote babble, factory, restaurant, and
street noises, respectively. As shown, the proposed model outperforms
all the other ones in terms of the various objective quality metrics,
except for a few cases, including PESQ at SNR levels of −6 and 0 dB for
street noise where DCTCRN give slightly better scores and SNR levels
of 6 and 12 dB where cIRM-CNNLSTM achieves slightly better scores.
Also, at the SNR level of 0 and 12 dB, TCNN yields marginally better
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Table 5
Comparison of different methods with unseen utterances form IEEE corpus mixed with unseen noises at unmatched SNR levels.

SNR Method PESQ STOI SSNR

bscs cair cfsp sttc bscs cair cfsp sttc bscs cair cfsp sttc

−6 dB

Unprocessed 1.30 1.12 1.71 1.18 0.587 0.506 0.715 0.497 −7.06 −8.66 −9.16 −9.26
IRM-MIFD-MLP 1.76 1.37 2.20 1.42 0.693 0.579 0.817 0.584 −2.01 −3.35 −1.28 −3.50
cIRM-MLP 1.73 1.25 2.23 1.34 0.678 0.557 0.814 0.544 0.58 −0.97 2.14 −1.00
MCIRM-CNNGRU 1.69 1.42 2.09 1.37 0.632 0.539 0.756 0.518 −0.71 −2.21 1.03 −2.85
cIRM-CNNLSTM 1.74 1.30 2.37 1.30 0.677 0.562 0.815 0.542 0.23 −1.18 2.73 −1.77
CS-CNN 1.64 1.46 2.14 1.53 0.657 0.554 0.786 0.535 0.99 −0.95 3.12 −2.08
DCTCRN 1.62 1.27 2.16 1.13 0.651 0.543 0.799 0.491 0.24 −1.09 3.05 −1.62
TCNN 1.59 1.46 2.15 1.47 0.661 0.586 0.748 0.608 1.00 −0.89 2.91 −0.93
Proposed 1.96 1.51 2.59 1.55 0.701 0.601 0.845 0.578 0.90 −0.65 3.86 −1.08

0 dB

Unprocessed 1.81 1.60 2.17 1.52 0.727 0.632 0.807 0.629 −4.33 −4.97 −4.96 −5.38
IRM-MIFD-MLP 2.27 1.96 2.70 1.93 0.815 0.742 0.876 0.728 2.68 1.35 4.05 1.36
cIRM-MLP 2.28 1.91 2.80 1.91 0.803 0.736 0.873 0.722 3.85 2.77 5.23 2.81
MCIRM-CNNGRU 2.18 1.89 2.58 1.84 0.777 0.686 0.852 0.682 2.55 1.36 3.90 1.36
cIRM-CNNLSTM 2.34 1.99 2.84 1.97 0.815 0.733 0.882 0.728 4.04 2.38 5.68 2.76
CS-CNN 2.29 1.96 2.63 2.05 0.827 0.731 0.882 0.725 5.66 3.35 6.09 2.65
DCTCRN 2.18 1.89 2.61 1.77 0.805 0.719 0.877 0.708 4.17 2.69 6.14 2.87
TCNN 2.15 2.09 2.60 2.06 0.815 0.723 0.853 0.710 5.04 3.78 6.16 3.00
Proposed 2.49 2.10 3.02 2.14 0.837 0.758 0.897 0.753 4.62 3.41 6.33 3.05

6 dB

Unprocessed 2.15 2.00 2.58 1.87 0.837 0.774 0.878 0.761 0.63 0.17 0.29 −0.18
IRM-MIFD-MLP 2.76 2.54 3.17 2.51 0.897 0.853 0.916 0.849 6.85 5.99 7.75 6.16
cIRM-MLP 2.76 2.52 3.24 2.50 0.885 0.853 0.915 0.848 6.89 6.08 7.75 6.04
MCIRM-CNNGRU 2.64 2.42 3.06 2.37 0.872 0.822 0.904 0.819 5.74 4.71 6.68 4.84
cIRM-CNNLSTM 2.86 2.61 3.30 2.55 0.903 0.858 0.928 0.854 7.13 6.16 8.90 6.68
CS-CNN 2.66 2.48 3.05 2.49 0.902 0.860 0.937 0.848 9.17 6.91 10.1 6.54
DCTCRN 2.67 2.42 3.04 2.36 0.901 0.854 0.930 0.846 7.99 6.89 8.96 6.82
TCNN 2.56 2.53 2.95 2.43 0.884 0.868 0.902 0.852 8.08 7.32 8.82 6.65
Proposed 2.92 2.67 3.41 2.67 0.906 0.873 0.935 0.866 7.86 7.12 8.92 6.97

12 dB

Unprocessed 2.54 2.44 2.98 2.30 0.927 0.889 0.933 0.883 6.56 6.10 6.15 5.49
IRM-MIFD-MLP 3.29 3.04 3.59 2.99 0.947 0.922 0.950 0.922 10.07 9.37 10.34 9.62
cIRM-MLP 3.21 3.02 3.63 3.01 0.940 0.920 0.949 0.922 10.00 9.27 10.21 9.25
MCIRM-CNNGRU 3.05 2.89 3.48 2.87 0.931 0.905 0.939 0.902 8.24 7.80 9.09 7.34
cIRM-CNNLSTM 3.26 3.10 3.63 3.07 0.950 0.932 0.954 0.923 10.22 9.12 10.15 9.91
CS-CNN 2.98 2.87 3.38 2.87 0.948 0.930 0.964 0.924 12.04 10.17 12.58 10.64
DCTCRN 3.02 2.96 3.42 2.90 0.943 0.934 0.960 0.930 11.48 10.19 11.80 10.83
TCNN 2.81 2.88 3.20 2.85 0.914 0.911 0.925 0.903 10.39 10.07 10.74 9.59
Proposed 3.36 3.19 3.70 3.17 0.955 0.936 0.962 0.936 11.45 10.79 11.80 10.93
Table 6
Cross-corpus evaluation, where the training and testing are accomplished with TIMIT dataset and IEEE corpus, respectively.

Method PESQ STOI SSNR

−6 0 6 12 −6 0 6 12 −6 0 6 12

Unprocessed 1.29 1.70 2.10 2.52 0.541 0.676 0.814 0.913 −8.27 −4.64 0.61 6.34
IRM-MIFD-MLP 1.57 2.05 2.53 3.01 0.609 0.741 0.837 0.922 −2.44 1.63 4.76 6.51
cIRM-MLP 1.53 2.03 2.51 2.97 0.591 0.731 0.840 0.907 −0.17 2.21 4.22 5.77
MCIRM-CNNGRU 1.55 2.00 2.44 2.87 0.531 0.703 0.822 0.891 −1.69 1.50 3.45 4.57
cIRM-CNNLSTM 1.66 2.09 2.58 3.01 0.598 0.740 0.843 0.907 −0.72 2.57 4.35 5.96
CS-CNN 1.48 1.84 2.24 2.57 0.513 0.658 0.764 0.827 −3.99 −0.32 2.84 4.88
DCTCRN 1.66 1.99 2.46 3.00 0.589 0.745 0.850 0.920 −0.93 2.04 5.16 7.00
TCNN 1.47 1.97 2.43 2.82 0.592 0.751 0.857 0.909 −0.06 2.24 5.18 6.97
Proposed 1.64 2.12 2.60 3.05 0.604 0.752 0.858 0.926 −0.30 2.62 5.37 7.96
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STOI for street and factory noises. Furthermore, TCNN gives better
SSNR scores for babble and street noises at SNR levels of 0 and 12 dB.
Table 3 illustrates results for the female utterances from the TIMIT
dataset. Again, we can see that the proposed model outperforms the
others in nearly all cases, except for a few cases of STOI at SNR level
of −6 and 0 where DCTCRN and TCNN gives better results.

In another experiment, we compare the different methods on the
EEE corpus where 20 noises are mixed with the selected utterances,
ith unmatched SNR levels between the training and testing stages.
s can be seen from Table 4, which presents the average scores for the
ESQ, STOI and SSNR metrics, the proposed model clearly outperforms
ll the other methods in all cases, except for the SSNR scores at SNR
evels of −6 and 6 dB, where CS-CNN and DCTCRN give slightly bet-
er results. This experiment demonstrates that although the proposed
odel has a very small number of parameters, it can perform well
nder different noise conditions.
11

r

Under the same training conditions as for Table 4, we tested the
ifferent methods with unseen highly-nonstationary noises mixed with
nseen utterances from IEEE corpus at unmatched SNR levels to eval-
ate their generalization capability in unseen conditions. The com-
arison results are shown in Table 5 where bscs, cair, cfsp, and sttc
enote Coffee Shop, Busy City Street, Car Interior, and Street Traffic. It
an be seen that the proposed model generally outperforms all the other
ethods, except for a few cases. This experiment demonstrates that the
roposed model has very good generalization capability thanks to its
areful design and the small number of parameters making it not learn
pecific patterns of the training dataset but instead rely on the general
nformation of speech and noise.

As shown in Pandey and Wang (2020), there can be a considerable
erformance degradation with DNN methods when the training and
esting datasets are different, especially at low SNR levels. This study

eveals that some well-known but highly complex SE methods do not
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Fig. 11. Illustration of the STFT magnitudes (log scale) of a enhanced speech using
different models. The models are trained with TIMIT dataset and tested with an
utterance from IEEE corpus. The utterance is mixed with the street noise at the SNR
level of 0 dB.

perform well on untrained corpora. In this last experiment, we com-
pare the cross-corpus generalization capability of different methods.
To this end, we trained different models with the TIMIT dataset and
tested them with the IEEE corpus. The results, shown in Table 6 for
different SNR levels, reveal that the proposed model outperforms the
other ones when the training and testing datasets are different, except
at SNR −6 dB, where other methods yield somehow better results.
Furthermore, a sample spectrograms is illustrated in Fig. 11 showing
the differences of different methods. Hence, we can conclude that the
proposed PACDNN model offers very good generalization capability to
unseen datasets.

4. Conclusion

This paper proposed a phase-aware composite deep neural network
called PACDNN for speech enhancement where both speech magnitude
and phase are enhanced. Specifically, we designed a masking-based
method to enhance the magnitude and employed phase derivative to re-
construct the clean speech phase. Due to the structural similarity of the
spectral mask and phase derivative, a single neural network was used to
estimate both information types through simultaneous parameter shar-
ing. The proposed network integrates improved LSTM and CNN, which
perform in parallel to exploit a complementary set of features. Different
potential DNN solutions were investigated and compared in terms of
objective speech quality and computational complexity measures in
order to optimize the final regression between the features and the
desired targets. Through extensive series of experiments, the resulting
12
PACDNN model was evaluated and compared with several known DNN-
based SE methods using different datasets and objective measures.
In particular, the capability of the proposed model in dealing with
unseen noisy conditions, cross-corpus generalization, and unmatched
SNR levels in testing and training were investigated, demonstrating the
advantages of PACDNN over other methods in SE applications, in spite
of its lower complexity.

CRediT authorship contribution statement

Mojtaba Hasannezhad: Conceptualization, Methodology, Software,
Formal analysis, Writing – original draft. Hongjiang Yu: Methodology,
Software, Formal analysis, Writing – original draft. Wei-Ping Zhu:
Validation, Formal analysis, Writing – review & editing, Supervision,
Resources. Benoit Champagne: Validation, Formal analysis, Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work was supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada under a CRD grant from NSERC
(Govt. of Canada) with industrial sponsor Microchip (Ottawa, Canada).

References

Abbaszadeh, P., 2016. Improving hydrological process modeling using optimized
threshold-based wavelet de-noising technique. Water Resour. Manag. 30 (5),
1701–1721.

Abd El-Fattah, M., Dessouky, M.I., Diab, S.M., Abd El-Samie, F.E.-S., 2008. Speech
enhancement using an adaptive wiener filtering approach. Prog. Electromagn. Res.
4, 167–184.

Agnew, J., Thornton, J.M., 2000. Just noticeable and objectionable group delays in
digital hearing aids. J. Am. Acad. Audiol. 11 (6), 330–336.

Chen, J., Wang, D., 2017. Long short-term memory for speaker generalization in
supervised speech separation. J. Acoust. Soc. Am. 141 (6), 4705–4714.

Cui, X., Chen, Z., Yin, F., 2020. Speech enhancement based on simple recurrent unit
network. Appl. Acoust. 157, 107019.

Dey, R., Salemt, F.M., 2017. Gate-variants of gated recurrent unit (GRU) neural
networks. In: Int. Midwest Symposium on Circuits and Systems. MWSCAS, IEEE,
pp. 1597–1600.

Erdogan, H., Hershey, J.R., Watanabe, S., Le Roux, J., 2015. Phase-sensitive and
recognition-boosted speech separation using deep recurrent neural networks. In:
IEEE Int. Conf. on Acoustics, Speech and Signal Processing. ICASSP, pp. 708–712.

Fu, S.-W., Hu, T.-y., Tsao, Y., Lu, X., 2017a. Complex spectrogram enhancement by
convolutional neural network with multi-metrics learning. In: Int. Workshop on
Machine Learning for Signal Processing. MLSP, IEEE, pp. 1–6.

Fu, S.-W., Tsao, Y., Lu, X., Kawai, H., 2017. Raw waveform-based speech enhancement
by fully convolutional networks. In: IEEE Asia-Pacific Signal and Information
Processing Association Annual Summit and Conf. APSIPA ASC, pp. 006–012.

Gao, F., Wu, L., Zhao, L., Qin, T., Cheng, X., Liu, T.-Y., 2018. Efficient sequence learning
with group recurrent networks. In: Proc. of Conf. of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Vol. 1. pp. 799–808, Long Papers.

Garofolo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G., Pallett, D.S., 1993. DARPA TIMIT
Acoustic-Phonetic Continuous Speech Corpus CD-ROM. NIST speech disc 1-1.1.
NASA STI/Recon Technical Report, vol. 93.

Hasannezhad, M., Ouyang, Z., Zhu, W.-P., Champagne, B., 2020a. An integrated CNN-
gru framework for complex ratio mask estimation in speech enhancement. In:
IEEE Asia-Pacific Signal and Information Processing Association Annual Summit
and Conf. APSIPA ASC, pp. 764–768.

Hasannezhad, M., Ouyang, Z., Zhu, W.-P., Champagne, B., 2020b. Speech separation
using a composite model for complex mask estimation. In: Int. Midwest Symposium
on Circuits and Systems. MWSCAS, IEEE, pp. 578–581.

Hasannezhad, M., Zhu, W.-P., Champagne, B., 2021. A novel low-complexity attention-
driven composite model for speech enhancement. In: International Symposium on
Circuits and Systems. ISCAS, IEEE, pp. 1–5.

http://refhub.elsevier.com/S0167-6393(21)00112-6/sb1
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb1
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb1
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb1
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb1
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb2
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb2
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb2
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb2
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb2
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb3
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb3
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb3
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb4
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb4
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb4
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb5
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb5
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb5
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb6
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb6
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb6
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb6
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb6
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb7
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb7
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb7
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb7
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb7
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb8
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb8
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb8
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb8
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb8
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb10
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb10
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb10
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb10
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb10
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb10
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb10
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb11
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb11
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb11
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb11
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb11
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb12
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb12
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb12
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb12
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb12
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb12
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb12
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb13
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb13
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb13
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb13
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb13
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb14
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb14
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb14
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb14
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb14


Speech Communication 136 (2022) 1–13M. Hasannezhad et al.
Hegde, R.M., Murthy, H.A., Gadde, V.R.R., 2007. Significance of the modified group
delay feature in speech recognition. IEEE Trans. Audio, Speech, Lang. Process. 15
(1), 190–202.

Hsieh, T.-A., Wang, H.-M., Lu, X., Tsao, Y., 2020. WaveCRN: An efficient convolutional
recurrent neural network for end-to-end speech enhancement. arXiv preprint arXiv:
2004.04098.

Hu, Y., Liu, Y., Lv, S., Xing, M., Zhang, S., Fu, Y., Wu, J., Zhang, B., Xie, L.,
2020. DCCRN: deep complex convolution recurrent network for phase-aware speech
enhancement. arXiv preprint arXiv:2008.00264.

Hu, Y., Loizou, P.C., 2007. Evaluation of objective quality measures for speech
enhancement. IEEE/ACM Trans. Audio, Speech, Lang. Process. 16 (1), 229–238.

Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition. pp. 7132–7141.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Krawczyk, M., Gerkmann, T., 2014. STFT phase reconstruction in voiced speech for
an improved single-channel speech enhancement. IEEE/ACM Trans. Audio, Speech,
Lang. Process. 22 (12), 1931–1940.

Li, Q., Gao, F., Guan, H., Ma, K., 2021. Real-time monaural speech enhancement with
short-time discrete cosine transform. arXiv preprint arXiv:2102.04629.

Liang, S., Liu, W., Jiang, W., Xue, W., 2013. The optimal ratio time-frequency mask
for speech separation in terms of the signal-to-noise ratio. J. Acoust. Soc. Am. 134
(5), EL452–EL458.

Martin, R., May 2002. Speech enhancement using MMSE short time spectral estimation
with gamma distributed speech priors. In: IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, Vol. 1. pp. I–253.

Mowlaee, P., Saeidi, R., 2014. Time-frequency constraints for phase estimation in single-
channel speech enhancement. In: Int. Workshop on Acoustic Signal Enhancement.
IWAENC, IEEE, pp. 337–341.

Oord, A.v.d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbren-
ner, N., Senior, A., Kavukcuoglu, K., 2016. Wavenet: a generative model for raw
audio. arXiv preprint arXiv:1609.03499.

Ouyang, Z., Yu, H., Zhu, W.-P., Champagne, B., 2019. A fully convolutional neural
network for complex spectrogram processing in speech enhancement. In: IEEE Int.
Conf. on Acoustics, Speech and Signal Processing. ICASSP, pp. 5756–5760.

Pandey, A., Wang, D., 2019. TCNN: Temporal convolutional neural network for
real-time speech enhancement in the time domain. In: ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing. ICASSP, IEEE,
pp. 6875–6879.

Pandey, A., Wang, D., 2020. Learning complex spectral mapping for speech en-
hancement with improved cross-corpus generalization. Proc. Interspeech 2020
4511–4515.

Parchami, M., Zhu, W.-P., Champagne, B., Plourde, E., 2016. Recent developments in
speech enhancement in the short-time Fourier transform domain. IEEE Circuits Syst.
Mag. 16 (3), 45–77.

Park, S.R., Lee, J., 2016. A fully convolutional neural network for speech enhancement.
arXiv preprint arXiv:1609.07132.

Prasad, V.K., Nagarajan, T., Murthy, H.A., 2004. Automatic segmentation of continuous
speech using minimum phase group delay functions. Speech Commun. 42 (3–4),
429–446.
13
Premium Beat, www.premiumbeat.com.
Rothauser, E., 1969. IEEE Recommended practice for speech quality measurements.

IEEE Trans. Audio Electroacoust. 17, 225–246.
Roy, A.G., Navab, N., Wachinger, C., 2018. Concurrent Spatial and Channel ‘Squeeze

& Excitation’ in Fully Convolutional Networks. In: Int. Conf. on Medical Image
Computing and Computer-Assisted Intervention, pp. 421–429.

Shifas, M.P., Claudio, S., Stylianou, Y., et al., 2020. A fully recurrent feature extraction
for single channel speech enhancement. arXiv preprint arXiv:2006.05233.

Srinivasan, S., Roman, N., Wang, D., 2006. Binary and ratio time-frequency masks for
robust speech recognition. Speech Commun. 48 (11), 1486–1501.

Stark, A.P., Paliwal, K.K., 2008. Speech analysis using instantaneous frequency
deviation. In: INTERSPEECH.

Strake, M., Defraene, B., Fluyt, K., Tirry, W., Fingscheidt, T., 2020. Fully convolutional
recurrent networks for speech enhancement. In: IEEE Int. Conf. on Acoustics,
Speech and Signal Processing. ICASSP, pp. 6674–6678.

Takamichi, S., Saito, Y., Takamune, N., Kitamura, D., Saruwatari, H., 2018. Phase recon-
struction from amplitude spectrograms based on von-Mises-distribution deep neural
network. In: 2018 16th International Workshop on Acoustic Signal Enhancement.
IWAENC, IEEE, pp. 286–290.

Takamichi, S., Saito, Y., Takamune, N., Kitamura, D., Saruwatari, H., 2020. Phase
reconstruction from amplitude spectrograms based on directional-statistics deep
neural networks. Signal Process. 169, 107368.

Tan, K., Wang, D., 2018. A convolutional recurrent neural network for real-time speech
enhancement.. In: INTERSPEECH. pp. 3229–3233.

Tan, K., Wang, D., 2019. Learning complex spectral mapping with gated convolutional
recurrent networks for monaural speech enhancement. IEEE/ACM Trans. Audio,
Speech, Lang. Process. 28, 380–390.

Varga, A., Steeneken, H.J., 1993. Assessment for automatic speech recognition: Ii.
NOISEX-92: A database and an experiment to study the effect of additive noise
on speech recognition systems. Speech Commun. 12 (3), 247–251.

Wang, D., Chen, J., 2018. Supervised speech separation based on deep learning: An
overview. IEEE/ACM Trans. Audio, Speech, Lang. Process. 26 (10), 1702–1726.

Wang, Y., Narayanan, A., Wang, D., 2014. On training targets for supervised speech
separation. IEEE/ACM Trans. Audio, Speech, Lang. Process. 22 (12), 1849–1858.

Williamson, D.S., Wang, Y., Wang, D., 2015. Complex ratio masking for monaural
speech separation. IEEE/ACM Trans. Audio, Speech, Lang. Process. 24 (3), 483–492.

Woo, S., Park, J., Lee, J.-Y., So Kweon, I., 2018. CBAM: Convolutional block attention
module. In: Proc. of the European Conf. on Computer Vision. ECCV, pp. 3–19.

Xu, Y., Du, J., Dai, L.-R., Lee, C.-H., 2014. A regression approach to speech enhancement
based on deep neural networks. IEEE/ACM Trans. Audio, Speech, Lang. Process.
23 (1), 7–19.

Yin, D., Luo, C., Xiong, Z., Zeng, W., 2020. PHASEN: A phase-and-harmonics-aware
speech enhancement network.. In: Association for the Advancement of Artificial
Intelligence. AAAI, pp. 9458–9465.

Yu, F., Koltun, V., 2015. Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122.

Zhao, H., Zarar, S., Tashev, I., Lee, C.-H., 2018. Convolutional-recurrent neural networks
for speech enhancement. In: IEEE Int. Conf. on Acoustics, Speech and Signal
Processing. ICASSP, pp. 2401–2405.

Zheng, N., Zhang, X.-L., 2018. Phase-aware speech enhancement based on deep neural
networks. IEEE/ACM Trans. Audio, Speech, Lang. Process. 27 (1), 63–76.

http://refhub.elsevier.com/S0167-6393(21)00112-6/sb15
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb15
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb15
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb15
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb15
http://arxiv.org/abs/2004.04098
http://arxiv.org/abs/2004.04098
http://arxiv.org/abs/2004.04098
http://arxiv.org/abs/2008.00264
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb18
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb18
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb18
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb19
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb19
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb19
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb21
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb21
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb21
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb21
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb21
http://arxiv.org/abs/2102.04629
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb23
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb23
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb23
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb23
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb23
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb24
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb24
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb24
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb24
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb24
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb25
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb25
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb25
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb25
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb25
http://arxiv.org/abs/1609.03499
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb27
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb27
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb27
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb27
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb27
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb28
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb28
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb28
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb28
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb28
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb28
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb28
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb29
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb29
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb29
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb29
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb29
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb30
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb30
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb30
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb30
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb30
http://arxiv.org/abs/1609.07132
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb32
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb32
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb32
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb32
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb32
http://www.premiumbeat.com
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb34
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb34
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb34
http://arxiv.org/abs/2006.05233
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb37
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb37
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb37
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb38
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb38
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb38
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb39
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb39
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb39
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb39
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb39
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb40
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb40
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb40
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb40
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb40
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb40
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb40
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb41
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb41
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb41
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb41
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb41
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb42
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb42
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb42
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb43
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb43
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb43
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb43
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb43
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb44
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb44
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb44
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb44
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb44
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb45
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb45
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb45
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb46
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb46
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb46
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb47
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb47
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb47
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb49
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb49
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb49
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb49
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb49
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb50
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb50
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb50
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb50
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb50
http://arxiv.org/abs/1511.07122
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb52
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb52
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb52
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb52
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb52
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb53
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb53
http://refhub.elsevier.com/S0167-6393(21)00112-6/sb53

	PACDNN: A phase-aware composite deep neural network for speech enhancement
	Introduction
	Proposed PACDNN model
	Composite model
	Improved LSTM stream
	Improved CNN stream
	Regression

	Spectral mask and phase derivative calculation
	Spectral mask
	Phase derivative

	Magnitude and phase reconstruction
	Magnitude reconstruction
	Phase reconstruction

	Detailed PACDNN architecture

	Experimental evaluation
	Experimental setup
	Phase-aware method evaluation
	Advantages of grouped LSTM
	Benefits of attention-driven CNN
	Investigation of the regression model
	Comparison with other DNN-based methods

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


