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Abstract Combining-type relay systems can benefit from distributed array gain if the sig-
nals retransmitted from different relays are superimposed coherently at the destination. For
this purpose, we propose a low-complexity hybrid framework in which the non-regenerative
multiple-input-multiple-output relaying matrix at each relay is generated by cascading two
substructures, akin to an equalizer for the backward channel and a precoder for the forward
channel. For each of these two substructures, we introduced two one-dimensional parametric
families of candidate matrix transformations. The first family, non-cooperative by nature,
depends only on the backward or forward channel of the same relay. The second (coopera-
tive) family also makes use of information derived from the channels of other relays. This
hybrid framework allows for the classification and comparison of all possible combinations
of these substructures, including several previously investigated methods and their general-
izations. The design parameters can be optimized based on individual channel realizations or
on channel statistics; in the latter case, the optimum parameters can be well approximated by
linear functions of the signal-to-noise ratios. The proposed methods achieve a good balance
between performance and complexity: they outperform existing low-complexity strategies
by a large margin in terms of both capacity and bit-error rate, and at the same time, are
significantly simpler than previous near-optimal iterative algorithms.
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1 Introduction

Multiple-input multiple-output (MIMO) wireless relaying is a promising technology to
increase system throughputs and overcome the impairments caused by multipath fading,
shadowing and path-losses [14,18,21]. In non-regenerative amplify-and-forward (AF) strate-
gies, each relay applies a linear transformation matrix to its received baseband signals before
retransmitting them. These strategies incur shorter processing delays and lower implemen-
tation complexity than regenerative ones such as decode-and-forward (DF) and compress-
and-forward (CF) [25].

For the one-source–one-relay–one-destination (1S-1R-1D) configuration, the optimal
MIMO relaying matrix is well established in terms of various performance criteria
[4,7,12,15,22,26,27]. Interestingly, a majority of these criteria lead to a common singu-
lar value decomposition (SVD) structure, which can scalarize the problems so that they
can be readily solved using convex optimization. These optimal schemes can be extended
to one-source–multiple-relays–one-destination (1S-MR-1D) systems through the use of a
selection-type operation, whereby the source signals are forwarded through the single relay
that offers the best link quality [5].

Another approach in the 1S-MR-1D case is to use all the relays (or a subset of them)
simultaneously in order to benefit from distributed array gain [3,18]. However, the resulting
problem of designing optimal transformation matrices with constraints on the transmit power
of the relays remains largely unsolved. In particular, the SVD approach does not readily extend
to this case since, due to the physically separated nature of the multiple relays, their combined
transformation matrix inherits a block-diagonal form. By imposing the power constraint on
the received signals at the destination, instead of the transmitted signals from the relays, one
can circumvent this difficulty [2,28]. However, this cannot guarantee any optimality under the
original transmit power constraints. Other existing optimal designs either consider only a total
power constraint across the relays [33], or employ iterative approaches with relatively high
complexity [1,11]. As an alternative to the optimization approach, some heuristic strategies
have been proposed which “borrow” ideas from MIMO transceiver design, including matched
filtering (MF), zero-forcing (ZF), linear minimum mean square error (MMSE) [2,18] and
QR decomposition[24]. These methods achieve the distributed array gain and perform well
in 1S-MR-1D systems [32].

In theory, the relaying matrices should be chosen so that the retransmitted signals combine
coherently at the destination. To this end, we introduce a low-complexity hybrid framework
in which the transformation matrix of each relay is obtained by cascading two substructures
or factors, akin to an equalizer for the backward channel and a precoder for the forward
channel. For each of these two substructures, we propose two different one-dimensional
parametric families whose members serve as candidates. The first family, non-cooperative
by nature, depends only on the backward or forward channel corresponding to the same
relay. This family includes ZF, linear MMSE and MF as special cases [18]. The second
(cooperative) parametric family, inspired by [2,8], also makes use of information derived
from the channels of other relays. This hybrid framework allows for the classification and
comparison of all possible combinations of these substructures, including several previously
investigated methods and their generalizations.

Within this hybrid relaying framework, the design parameters of the matrix factors can
be further optimized. This can be done on-line after each update of the channel matrices,
or off-line based on a priori knowledge of channel statistics. In the latter case, the opti-
mum parameters can be well approximated by linear functions of the signal-to-noise ratios
(SNR), which reduces the implementation complexity significantly. Through simulations, we
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Fig. 1 A point-to-point MIMO relaying system

show that the capacity of selected hybrid schemes (with optimized parameters) comes within
1 bits/s/Hz of the upper bound achieved by the nearly capacity-optimal iterative method in
[11]. In the mid-to-high SNR range, the bit-error rate (BER) performance of one hybrid
method even exceeds that of the MSE-optimal iterative method. In summary, the proposed
hybrid methods achieve a good balance between performance and complexity: they out-
perform existing low-complexity strategies by a large margin, and at the same time, are
significantly simpler than previous near-optimal iterative algorithms.

The organization of this paper is as follows. Section 2 describes the system model and
the underlying assumptions. Section 3 presents the new hybrid framework along with the
proposed non-cooperative and cooperative matrix substructures. Suitable performance cri-
teria and methodology for choosing their design parameters are developed in Sect. 4. The
numerical results and further discussions are included in Sect. 5, followed by the conclusions
in Sect. 6. The following notations are used: superscripts ∗, T ,H and † denote conjugate,
transpose, Hermitian transpose and pseudo-inverse, respectively; I is an identity matrix of
appropriate dimension; ‖ · ‖ stands for the Euclidean norm of its vector argument; R and C

denote the sets of real and complex numbers.

2 System Model

Figure 1 illustrates a 1S-MR-1D MIMO relaying system in which the source forwards its
message to the destination through M parallel relays. The source, destination and individual
relays are equipped with NS, ND and NR antennas, respectively, where we assume that
NS = ND .1 The relays work in a half-duplex mode: their antennas are used for either
transmitting or receiving purposes during different time slots. We neglect the presence of the
direct source-to-destination link which is typically hindered by high levels of attenuation.

We assume that the wireless channels undergo frequency non-selective block fading [29].
For now, channel state information (CSI) is assumed to be available globally. After intro-
ducing the structures of the relaying matrices, we will be able to discuss in detail how
much information is needed at each node. In this work, we assume perfect synchronization
between the source, relay and destination nodes. Channel estimation and timing/frequency

1 For simplicity, each relay is equipped with the same number of antennas; however, generalization to different
numbers of antennas at the relays, i.e. NR,k , is straightforward.
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synchronization are important topics in their own rights, but fall outside the scope of this
work. For more details, we refer the reader to [10,16,20] and the references therein.

The signals, noises and channels are all modeled in terms their equivalent discrete-time
complex baseband representations. The received signal vector xk ∈ C

NR×1 at the kth relay
can be expressed as

xk = Hks + wk, k = 1, . . . , M (1)

where s ∈ C
NS×1 is the source symbol vector comprised of multiple independent streams,

Hk ∈ C
NR×NS is the backward channel matrix between the source and relay k, and wk ∈

C
NR×1 is an additive noise term. The signal and noise terms, s and {wk} for k = 1, . . . , M ,

are modeled as independent, circularly symmetric complex Gaussian random vectors with
zero mean and covariance matrices Rs = E{ssH } = σ 2

s I and Rwk = E{wkwH
k } = σ 2

wI,
respectively, where σ 2

s is the average transmit power per antenna at the source and σ 2
w is the

average noise power induced at the individual relay antennas.
The kth relay multiplies its received noisy signal xk by a linear processing matrix Fk ∈

C
NR×NR to obtain the retransmitted signal

yk = Fkxk . (2)

The received signal vector at the destination, denoted by r ∈ C
ND×1, takes the form of

r =
M∑

k=1

GkFkHks +
M∑

k=1

GkFkwk + n, (3)

where Gk ∈ C
ND×NR is the forward channel matrix from relay k to the destination and

n ∈ C
ND×1 is the noise term induced at the destination receiver. This noise term is assumed

independent from s and {wk}, and modeled as a circularly symmetric complex Gaussian
random vector with zero mean and covariance matrix Rn = E{nnH } = σ 2

n I, where σ 2
n is the

average noise power received at the individual destination antennas. Equation (3) can also
be expressed in a “block-diagonal” form as

r = GFHs + GFw + n, (4)

where we have defined G = [G1, . . . , GM ], H = [HT
1 , . . . , HT

M ]T , w = [wT
1 , . . . , wT

M ]T

and F is a block-diagonal matrix with F1, . . . , FM as main diagonal blocks. When M = 1,
this signal model reduces to the 1S-1R-1D case.

For convenience, we introduce two important SNR parameters. The first SNR ρ1 describes
the link quality of the backward channels and is defined as the ratio of the average transmit
power per source antenna to the noise power per relay antenna, i.e., ρ1 = σs

2/σ 2
w . The second

SNR parameter ρ2 characterizes the forward channels. Let the total transmit power of the
relays be P and ρ2 is defined as the ratio of average transmit power per relay antenna to the
power of the noise induced at the individual destination antennas, i.e., ρ2 = P/(M NRσ 2

n ).
Note that P is consumed by the relays to transmit both the desired signal component s and
the additive relay noise terms {wk}. We emphasize that if one of these two SNR parameters
is fixed, the system performance is upper bounded due to the corresponding noise term, even
if the other SNR goes to infinity.

Note that the above signal model is applicable to a much broader scope than multi-antenna
1S-MR-1D systems. For example, since broadband channels for single-antenna systems can
also be represented by matrices, the relaying framework in this paper applies immediately to
broadband single-antenna 1S-MR-1D relaying systems.
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3 The Unified Hybrid Framework

The focus of this paper is to design the relay matrices {Fk} for 1S-MR-1D systems, based
on the knowledge of the instantaneous channel matrices. One immediate option is to solve
for matrices Fk that collaboratively optimize a suitable performance criterion. However, the
block-diagonal matrix F in (4) complicates this problem significantly. Instead, we propose a
sub-optimal, yet highly flexible hybrid framework as explained below.

One may contemplate the process of designing the relaying matrices Fk in (2) as that of
selecting the equivalent channel

GFH =
M∑

k=1

GkFkHk, (5)

with the purpose of maximizing the power of the received signal vector GFHs, without over-
amplifying the noise terms wk in (3). Intuitively, this requires a coherent signal combining of
the M parallel transmissions at the destination, i.e., the matrix terms on the right-hand side
of (5) are superimposed constructively, thereby leading to an M-fold distributed array gain.

Motivated by this interpretation, we propose a unified hybrid framework in which the
individual relaying matrices Fk are obtained by cascading two substructures (or factors),
Ak ∈ C

NS×NR and Bk ∈ C
NR×NS , as follows:

Fk = ηkBkAk . (6)

In light of (5), matrix Ak equalizes the kth backward MIMO channel Hk , generating NS

summary statistics, each of which is a signal stream impaired by noise and also interferences
from other streams. Matrix Bk then serves as the MIMO precoder for the kth forward chan-
nel Gk , pre-canceling interstream interferences before transmitting these summary statistics
through the forward channels. Finally, ηk is a positive scaling parameter introduced to satisfy
the transmit power constraints

E{‖yk‖2} = tr
(

FkRxk FH
k

)
= Pk, ∀1 ≤ k ≤ M, (7)

where Rxk = E{xkxH
k } = σ 2

s HkHH
k + σ 2

wI. Henceforth, the scaling factor ηk in (6) satisfies

ηk =
√

Pk

tr
(
BkAkRxk AH

k BH
k

) . (8)

Under the above framework, the relaying strategies can be either non-cooperative or
cooperative. For the non-cooperative strategies, the relaying matrix for the kth relay, Fk ,
only depends on its own backward and forward channel matrices, i.e., Hk and Gk . For the
cooperative strategies, at least one of the substructures also relies on some shared information
related to the channels of the other relays. That is, Fk depends not only on Hk or Gk , but also
on a function of the other channel matrices, as explained below.
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Table 1 Special cases of the non-cooperative hybrid framework

λa λb Ak Bk Previous methods

0 0 ZF ZF ZF relaying [18]

ρ−1
1 ρ−1

2 MMSE MMSE Linear MMSE [5,18]

∞ ∞ MF MF MF [3,5,18]

ρ−1
1 0 MMSE ZF 2-step MMSE[2,8]

{
0, ρ−1

1 , ∞
} {

0, ρ−1
2 , ∞

}
ZF/MMSE/MF Hybrid [32]

3.1 Non-cooperative Approach

Here, each one of the substructures Ak and Bk is selected from a corresponding one-
dimensional parametric family of matrices. That is, we let

ANC
k =

(
λaI + HH

k Hk

)−1
HH

k , (9a)

BNC
k = GH

k

(
λbI + GkGH

k

)−1
, (9b)

where λa and λb are real, nonnegative design parameters. For instance, by choosing λa equal
to ∞, 0 or 1/ρ1, ANC

k is proportional to HH
k , H†

k or (I + ρ1HH
k Hk)

−1HH
k , respectively.2

In turn, these matrices correspond to the MF, ZF and MMSE substructures which were
studied in previous works [3,5,18]. A similar argumentation can be made about BNC

k . The
superscript NC in (9a) means that these substructures are non-cooperative by nature, for they
are determined only by the local backward or forward channels, Hk or Gk .

By cascading ANC
k and BNC

k as in (6), we can obtain a non-cooperative hybrid relaying
strategy which includes several previous methods as special cases, as summarized in Table 1.
By varying each one of the design parameters λa and λb in (9a) from zero to infinity, we
generalize these previously proposed methods to other intermediate situations of interest.

3.2 Cooperative Approach

Next, we extend the proposed hybrid framework by considering cooperative strategies where
the design of the relaying matrices Fk explicitly takes into account the combining nature of
the signal transmission in 1S-MR-1D systems. This is achieved by exploiting some shared
information (but not necessarily all the channel matrices). To this end, we propose alternative
parametric families of matrix transformations for Ak and Bk :

AC
k =

⎛

⎝λaI +
M∑

j=1

HH
j H j

⎞

⎠
−1

HH
k , (10a)

BC
k = GH

k

⎛

⎝λbI +
M∑

j=1

G j GH
j

⎞

⎠
−1

, (10b)

2 As λa goes to infinity, ANC
k approaches λ−1

a HH
k asymptotically; when λa = 1/ρ1, ANC

k = ρ1(I +
ρ1HH

k Hk )−1HH
k . In both cases, the resulting scalar factor can be absorbed by ηk in (6).
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Fig. 2 CSI exchange for cooperative relaying strategies

where the superscript C stands for “cooperative”. Here, the equalizer (10a) is inspired by the
works in [2,8] and we extend it to the precoder side as well in (10b). The sums in (10a) and
(10b) are the information needed to be shared between relays.

More generally, the hybrid relaying matrix Fk in (6) can be formed by combin-
ing factors Ak and Bk selected from any of the above proposed non-cooperative and
cooperative parametric families of matrices. For notational simplicity, we refer to these
hybrid strategies as “A-B(λa, λb)” where for example, NC-C(0, 0) means that the Ak

factor of the relaying matrix Fk is the non-cooperative substructure ANC
k and the Bk

factor is the cooperative substructure BC
k , with λa = λb = 0. In this sense, the

proposed hybrid framework enables the formal classification of previously investigated
methods as well as their generalization by supplementing them with a rich set of
alternatives.

3.3 Implementation Issues

The relaying matrices are computed based on the knowledge of the wireless channels. For the
NC-NC strategy, each relay only needs its own backward and forward channel matrices that
can be obtained in the same way as in 1S-1R-1D systems [4,7,12,15,22,26,27]. For the coop-
erative hybrid relaying strategies, it is also essential to share the matrix sums

∑M
k=1 HkHH

k

and/or
∑M

k=1 GH
k Gk (but not all the channel matrices) among the relays. These sums can be

computed at a fusion center, which may be one of the relays or the destination, and broadcasted
to the relays, as shown in Fig. 2. In practice, the number of relays M will not be very large, e.g.,
between 2 and 4. Therefore, compared with non-cooperative NC-NC, the cooperative hybrid
strategies can be implemented without much added difficulty, especially when the relays are
not far from each other so that dedicated local wireless links or wireline connections are
possible.

The procedures for computing Ak, Bk and ηk are simple and involve only a small num-
ber of matrix multiplications and inverses. The resulting complexity is very low, though
the Cholesky/QR factorizations and backward-forward substitution can be used for further
simplification [6].
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4 Optimization of the Parameters

4.1 Motivations

λa and λb can be regarded as “regularization” or “diagonal loading” parameters for the
substructures Ak and Bk : λa prevents over-amplification of the noise terms wk in (1) when
equalizing ill-conditioned backward channels; λb prevents the transmit power of the relays
from being wasted in pre-compensating ill-conditioned forward channels [13,30]. In the
context of a point-to-point MIMO channel, the use of λa = ρ−1

1 and λb = ρ−1
2 in (9a) leads

to the optimal linear MMSE equalizer and precoder, respectively. These are known to offer
the best trade-off between noise and interference cancellation, outperforming both MF and
ZF over the complete SNR range [9,29].

Then, for MIMO relaying systems, it is legitimate to ask why it might be more appropriate
to choose values other than 0, ρ−1

i (i = 1, 2), or ∞? To begin with, two independent noise
sources arise in the signal model. For the first hop, the outputs from the equalizer Ak are
not decoded immediately but need further processing, and thus setting λa to 0, ρ−1

1 or ∞ is
not necessarily optimal. For the second hop, the input signals have already been impaired by
noise and interferences before being processed by the precoders Bk and retransmitted, and
therefore choosing λb = 0, ρ−1

2 or ∞ is not optimal, either. Furthermore, the combining of
signals from multiple relays makes it more complicated to predict the joint effects of λa and
λb on system performance.

Another important concern is that the presence of a linear MIMO equalizer at the desti-
nation makes it possible to exploit the inter-stream interferences. In contrast to the ZF-type
substructures with λa or λb = 0, these interferences do not necessarily have to be small
or completely eliminated at intermediate steps, such as in the output of the substructure Ak

or in the received signal vector r. Provided that the interfering streams can be efficiently
recombined at the destination, the power used by the relays to transmit them can actually
contribute to performance improvement.

Therefore, in a relaying scenario, the parameter values 0, ρ−1
i (i = 1, 2), or ∞ are

not optimal in general. Our proposed parametric approach provides additional flexibility in
balancing various factors that hinder system performance, and thereby can fully exploit the
potential in these seemingly simple substructures.

4.2 Performance Measures and Power Constraints

Here, we introduce two classes of performance criteria that can be used to optimize the
parameters λa and λb, as well as to compare the performance of different relaying strategies.

The most fundamental theoretical limit is the channel capacity. In a strict sense, it is the
maximum asymptotically achievable rate over all possible transceiver schemes and relaying
strategies. Here, we abuse this terminology slightly by viewing the AF relaying matrices
as parts of the channel. Different relaying schemes result in different equivalent channels
between the source and the destination, and we refer to the maximum mutual information
between s and r as the channel capacity. For deterministic channels, it can be written as

C(F) = 1

2
log det

(
I + HeqRsHH

eq

)
, (11)

where Heq = (GFRwFH GH +Rn)−1/2GFH [27]. The factor of 1/2 in (11) is due to the half
duplex mode of operation. Under slow fading, as assumed throughout this paper, the system
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performance is characterized through the outage probability pout(R) = Pr(C(Heq, F) < R)

and the corresponding outage capacity defined as the supremum

Cout(ε) = sup {R|pout(R) < ε} . (12)

Practical systems compromise transmission rate for lower complexity, cost and latency
[23]. In this sense, it is also of interest to examine other criteria such as the MSE, the
signal to interference-plus-noise ratio (SINR) and the average BER. In this paper, we
assume a V-BLAST (Vertical-Bell-Laboratories-Layered-Space-Time) scheme in which the
source antennas transmit independent symbol streams with the same average power, and the
destination applies a linear MMSE MIMO combiner followed by single-stream decoding
[29, p. 333]. Within this framework, the MSE, SINR and theoretical BER of each substream
are linked together through the normalized MSE matrix, as defined in [19] and [22] by

E =
(

I + ρ1HH FH GH
(

GFFH GH + σ 2
n

σ 2
w

I
)−1

GFH

)−1

. (13)

Specifically:

1. The normalized MSE of the kth substream is the kth diagonal entry

MSEk = E(k, k) ∈ (0, 1] . (14)

2. The SINR of the kth substream is a function of its MSE:

SINRk = 1 − MSEk

MSEk
. (15)

3. If the interferences and noise terms are all Gaussian random variables, the symbol error-
rate (SER) of the kth substream is upper bounded by a function of SINRk :

ps(k) = α Q
(√

β SINRk

)
, (16)

where α and β depend on the constellation, and Q(x) = (1/
√

2π)
∫ ∞

x e−y2/2dy. If
the source uses Gray codes in symbol-to-bit mapping, the BER of the kth substream is
≈ ps(k)/n, where 2n is the constellation size.

Substituting (8) and (6) into (11) or (13), the above mentioned performance measures all
become continuously differentiable functions of λ = [λa, λb]T .

4.3 Methodology

Assume that we are minimizing the function f (λ) based on a single instance of the fading
channels. In general, setting the gradient to zero, i.e. 
λ f = 0, does not lead to a closed-form
optimal solution. Instead, we can resort to several numerical algorithms that start from an
initial point, λ0, and search for the optimal λopt = [λo

a, λo
b]T iteratively. In this process, due

to the large dynamic range of the SNR parameters, it is more convenient to work with the
logarithmic values of λ. Furthermore, the initial point may be taken as λ0 = [ρ−1

1 , ρ−1
2 ]T .

Gradient-based methods such as gradient descent, Newton and quasi-Newton methods,
update λ in the following way

log λk+1 = log λk − αkBk
log λ f |λ=λk , (17)
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where Bk depends on the specific algorithm and αk is the step size which satisfies the Wolfe
conditions [31]. If the closed form of 
log λ f is too complicated or unavailable, a finite
difference can be used to approximate it [17, Section 8.1].

The above approach is applied on-line after each update of the channel matrices. Alter-
natively, we can optimize λ off-line based on a priori knowledge of system configurations,
fading statistics and SNR values. The above gradient descent method still applies, provided
that f (λ) is replaced by its expectation EH,G{ f (λ)}.3 The latter is computed by averaging
f (λ) over channel realizations numerically, but this can be done beforehand for various pos-
sible fading statistics and SNRs. Following this approach, we have found through numerous
experiments that the resulting optimal λopt can be well approximated by linear functions of
log ρ1 and log ρ2, as in e.g.,

log10 λo
a ≈ cT

a ρ + da , (18)

where ρ = [log10 ρ1, log10 ρ2]T , and ca, da are model coefficients. Consequently, we have
to minimize EH,G{ f (λ)} for only a small set of representative SNRs, and then use total
least-square fitting to get the model coefficients. Then, (18) is used in practical system imple-
mentation to update λ based on the instantaneous SNR measurements.

The complexity of optimizing λ depends on which of the above two approaches is taken.
If λ is optimized for each channel realization, the complexity is relatively high, but still
lower than the methods in [11]. The major complexity comes from computing the gradients.
For instance, in order to obtain the gradient of the MSE (using finite difference), NC-NC
needs approximately 8M matrix multiplications and 6 matrix inverses (of size NS × NS)
per iteration. In contrast, the method in [11] requires 13M multiplications and 2M inverses
(matrix sizes between NS × NS and NR × NR) per iteration. In our simulations using finite
difference, it usually takes the gradient descent method fewer iterations to converge than the
method in [11].

More importantly, if the optimal parameters are designed off-line, the complexity of
obtaining the parameters from a table lookup or the linear formula in (18) is almost negligible.
This simplicity is one of the most attractive aspects of the proposed hybrid framework,
especially for systems with fixed relay infrastructures whose channels remain relatively
stationary.

5 Numerical Results and Discussion

In this section, the performance criteria introduced in Sect. 4.2 are studied numerically to
gain a better understanding of the proposed hybrid relaying framework. First, the behaviors
of the capacity and sum MSE provide new insights into how the parameters λa and λb affect
system performance, which complements the interpretations in Sect. 4.1. Then, numerical
comparisons with existing designs illustrate that the hybrid framework achieves a good bal-
ance between performance and complexity. Lastly, the linear formula in (18) brings further
simplifications with minor performance loss.

The following system configurations and parameters are used throughout this section.
Unless otherwise stated, the system of interest is a 1S-3R-1D system with NS = NR = ND =4
and ρ1 = ρ2 = 15 dB. The noises induced at the relay and destination have the same power:
σ 2

w = σ 2
n . The M relay stations transmit the same amount of power: P/M , which means that

3 For the outage capacity, f (λ) is replaced by a corresponding implicit function, cf. (12), instead of the
expectation.
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Fig. 3 Capacity and MSE contours versus (λa , λb) for a given realization of the backward and forward
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λo
1, λo

2
)
. For capacity, the units are bits/s/Hz, while the MSE is normalized between 0 and NS
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the individual power constraints in (7) are uniquely specified by ρ2. The wireless channels
undergo slow fading, and the channel matrices have statistically independent, circularly
symmetric complex Gaussian entries with zero mean and unit variance.

5.1 Effects of the Parameters on Capacity and MSE Performance

We study the impact of λ on system performance by plotting the contours of the capacity
and the sum of MSE’s in Fig. 3. To obtain these contours, each of the backward and forward
channel matrices, i.e., Hk or Gk for k = 1, . . . , M , is randomly generated but held constant.
All the hybrid strategies, NC-NC, C-NC, NC-C and C-C, are considered and for simplicity, the
same λa and λb are used for different relays.4 In each subplot, the circle represents the optimal
operating point, while the square represents the parameter pair λρ � [ρ−1

1 , ρ−1
2 ]T , which is

associated to linear MMSE processing (cf. Table 1). Several observations and conclusions
can be made from these performance contours (and those for other channel realizations not
shown here):

1. Although optimizing λ is bound to improve performance, the performance gap can be
quite remarkable. The optimal parameter pair λopt = [λo

1, λ
o
2]T is also notably larger

than λρ .
2. The capacity or MSE is not sensitive to small perturbations of λ. In addition, the system

performance is less sensitive to the parameter of the cooperative substructure, than to
that of the non-cooperative substructure. This can be explained by the fact that the term∑M

j=1 HH
j H j , or

∑M
j=1 G j GH

j , is the sum of multiple statistically independent, positive
semidefinite Wishart-distributed matrices, and therefore should be well-conditioned with
high probability.

3. If either λa or λb is fixed and the other parameter increases from zero to infinity, the MSE
(or capacity) using first decreases (increases) and then increases (decreases).

From the above observations, the proposed non-cooperative and cooperative relaying sub-
structures, although simple, show strong potential and advantage which were not realized in
previous works.

5.2 Performance Comparison

We next compare the proposed hybrid relaying strategies with other existing approaches
in terms of 10 %-outage capacity and average BER, based on Monte-Carlo simulations.
The non-regenerative MIMO relaying strategies under comparison are listed in Table 2.
In Sect. 5.1, the design parameters λ = [λa, λb]T were optimized for a fading channel
instance. Here for simplicity, they are optimized using (18) based on the a priori knowledge
of the channel statistics. In the BER simulations, the source antennas transmit independent
uncoded 16-QAM modulated streams, and the destination user employs the linear MMSE
MIMO combiner described in Sect. 4.2 to decode the information bits. The theoretical SER
for each substream is upper bounded by (16), in which α = 3 and β = 10 for 16-QAM. The
theoretical BER is approximately equal to Pε/4, which is used to search for the BER-optimal
λopt = [λo

a, λo
b]T . In the simulations, we set the first SNR ρ1 = 15 dB and increase the second

SNR ρ2 from 5 to 25 dB.
The 10 %-outage capacity of the 1S-3R-1D link for the different relaying strategies is

plotted in Fig. 4. As predicted by previous analysis, SAF and SVD perform unsatisfacto-

4 In fact, we have verified numerically that choosing different values for each relay brings only marginal
performance improvement, but leads to higher complexity because of the multi-dimensional search for the
optimal parameters.
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Table 2 The relaying strategies
under comparison

Strategy Comments

Simplistic AF (SAF) Fk = ηkI

SVD with uniform power allocation Fk = ηkV2kUH
1k [22]

MF [18] NC-NC(∞, ∞)

ZF [18] NC-NC(0, 0)

Linear MMSE [18] NC-NC
(
ρ−1

1 , ρ−2
2

)

Two-step MMSE [2] C-NC
(
ρ−1

1 , 0
)

NC-NC, C-NC, NC-C, C-C Proposed hybrid methods

Upper bound Iterative algorithms [11]

ρ

ρ

Fig. 4 10 %-outage capacity for 1S-3R-1D system with ρ1 = 15 dB

rily due to their inability to achieve sufficient distributed array gain. Among the four hybrid
relaying strategies with special parameter values, i.e., MF, ZF, linear MMSE and two-step
MMSE, only MF can outperform SVD over a broad range of SNR values. This is because the
good performance of a hybrid relaying strategy is guaranteed not only by coherent superpo-
sition of parallel transmissions, but also by efficient exploitation of the interferences without
noise over-amplification. As expected, the performance of MF remains inferior to that of
the proposed hybrid relaying strategies with optimal parameters. Indeed, the latter can result
in significant improvement over MF in spectral efficiency by 1 to 1.5 bits/s/Hz. They come
within less than one bit of the upper bound set by the iterative algorithm in [11], but with
much lower complexity. Of the four methods, NC-C, C-C and C-NC are, respectively, the
best strategy for high, intermediate and low ρ2 values. The non-cooperative strategy NC-NC
remains close to the best performance achieved by the other three cooperative strategies over
the range of SNR values considered.
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ρ

ρ

Fig. 5 BER performance for 1S-3R-1D system with ρ1 = 15 dB

The BER results are plotted in Fig. 5 where again, the performance of SAF and SVD
are unsatisfactory and ZF, MF and linear MMSE perform slightly better. The BER of
C-NC(ρ−1

1 , 0) is much lower for high ρ2, because this strategy can benefit from the cooper-
ation between relays. However, with the optimal choice of parameters, 1S-MR-1D systems
can fully exploit the potential of the proposed hybrid relaying framework: NC-NC, C-C and
C-NC all lead to much lower BER values than previously investigated methods. In the mid-
to-high SNR range, C-NC even performs better than the iterative MMSE method in [11]. In
terms of BER, cooperation between relays brings in significant performance gain.

Finally, simulation results not shown demonstrate that small errors in channel estimation
and SNR estimation only lead to small performance degradation. That is, the proposed hybrid
strategies are not overly sensitive to such modeling errors.

5.3 Further Simplifications

In Sect. 4.3, we proposed that the logarithmic values of the optimal parameters, λopt =
[λo

a, λo
b]T , can be well approximated by linear functions ofρ = [log ρ1, log ρ2]T . Considering

for example the NC-NC method, the optimal parameters that maximize the outage capacity
are plotted against ρ1 and ρ2 in Fig. 6, where the logarithmic scale is used. It is observed
that the relationship between log λo

a (or log λo
b) and ρ is very close to a plane, implying that

the expression in (18) is sufficiently accurate. Similar relationships can be established for
the criterion of average BER, and also for the other three hybrid methods: C-NC, NC-C and
C-C.

The outage capacity under the parameters obtained from the empirical linear formulas
is now compared with that when the parameters are optimized per channel instance. As
seen in Fig. 7, the hybrid relaying strategies designed in this way cause negligible loss in
performance, but the optimization of the parameters has much lower complexity.
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ρ

λ

ρ ρ

λ

ρ

Fig. 6 The outage-capacity-optimal λo
a and λo

b values versus ρ1 and ρ2

ρ

Fig. 7 10 %-outage capacity: fitted parameters versus optimal parameters

6 Conclusion

In this work, to achieve a balance between performance and complexity for non-regenerative
1S-MR-1D relay systems, we proposed a unified hybrid framework in which the relaying
matrices are generated by cascading two substructures. For each of these two substructures,
we introduced both non-cooperative and cooperative, one-dimensional parametric families
of candidate matrix transformations. This unified framework provides a generalization of
several existing approaches and allows for the classification and comparison of all the possible
combinations of the proposed substructures.
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Within this hybrid framework, the design parameters λ can be further optimized, resulting
in significant performance improvements. This can be done on-line based on individual
channel estimates or off-line based on a priori knowledge of the channel statistics. In the
latter case, the optimal parameters can be well approximated by linear functions of SNR
[log ρ1, log ρ2]T with minor performance loss.

The optimal λopt differs significantly from those corresponding to the ZF, MF and linear
MMSE relaying strategies. Through simulations, we showed that the capacity of selected
hybrid schemes (with optimized parameters) comes within 1 bits/s/Hz of the upper bound
achieved by the capacity-optimal iterative method in [11]. In the mid-to-high SNR range,
the BER performance of C-NC even exceeds that of the MSE-optimal iterative method.
The proposed hybrid methods therefore achieve a good balance between performance and
complexity: they outperform existing low-complexity strategies by a large margin in terms
of both capacity and BER, and at the same time, are significantly simpler than previous
near-optimal iterative algorithms.
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