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Abstract

Recently, the advent of learning-based methods in speech enhancement has revived the

need for robust and reliable training features that can compactly represent speech signals

while preserving their vital information. Time-frequency domain features, such as the

Short-Term Fourier Transform (STFT) and Mel-Frequency Cepstral Coefficients (MFCC),

are preferred in many approaches. They represent the speech signal in a more compact

format and contain both temporal and frequency information. Compared to STFT, MFCC

requires less memory and drastically reduces the learning time and complexity by removing

the redundancies in the input. The MFCC are a powerful Audio FingerPrinting (AFP)

technique among others which provides for a compact representation, yet they ignore the

dynamics and distribution of energy in each mel-scale subband. In this work, a state-

of-art speech enhancement system based on Generative Adversarial Network (GAN) is

implemented and tested with a new combination of two types of AFP features obtained from

the MFCC and Normalized Spectral Subband Centroid (NSSC). The NSSC capture the

locations of speech formants and complement the MFCC in a crucial way. In experiments

with diverse speakers and noise types, GAN-based speech enhancement with the proposed

AFP feature combination achieves the best objective performance in terms of objective

measures, i.e., PESQ, STOI and SDR, while reducing implementation complexity, memory

requirements and training time.
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Sommaire

Récemment, avec l’avènement de méthodes basées sur l’apprentissage dans l’amélioration

de la parole, le besoin de de caractéristiques d’apprentissage robustes et fiables qui peuvent

représenter de manière compacte les signaux vocaux tout en préservant leurs informa-

tions vitales a été ravivé. Les caractéristiques du domaine temps-fréquence, telles que la

transformée de Fourier à court terme (STFT) et les coefficients cepstraux Mel-Frequency

(MFCC), sont préférées dans de nombreuses approches. Ils représentent le signal vocal

dans un format plus compact et contiennent à la fois des informations temporelles et

fréquentielles. Par rapport à STFT, les MFCC nécessitent moins de mémoire et réduisent

considérablement le temps d’apprentissage et la complexité en supprimant les redondances

dans les données d’entrée. Les MFCC, qui font partie de la famille de caractéristiques de

type Audio FingerPrinting (AFP), offrent une représentation compacte, mais ils ignorent

la dynamique et la distribution de l’énergie dans chaque sous-bande à l’échelle mel. Dans

cette thèse, un système d’amélioration de la parole à la pointe de la technologie basé sur le

Generative Adversarial Network (GAN) est mis en œuvre et testé avec une nouvelle com-

binaison de deux types de caractéristiques AFP, soit les MFCC et les centroides normalisés

de sous-bandes spectrales (NSSC). Les NSSC capturent les emplacements des formants de

parole et complémentent ainsi MFCC d’une manière cruciale. Dans des expériences avec

divers locuteurs et types de bruit, l’amélioration de la parole basée sur GAN avec la com-

binaison de caractéristiques AFP proposée atteint les meilleures performances en termes

de mesures objectives, à savoir PESQ, STOI et SDR, tout en réduisant la complexité de la

mise en œuvre, les besoins en mémoire et le temps d’apprentissage.
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Chapter 1

Introduction

This chapter provides a general introduction to the thesis. It begins with a high-level

overview of the single-channel speech enhancement problem under study is given. Then

existing literature aimed at solving the denoising problem is surveyed. Next, the main tech-

nical contributions made by this thesis are summarized. Finally, the thesis organization is

explained and key notations are defined for reference.

1.1 The Speech Enhancement Problem

Speech communication is an integral part of every human interaction. Over time, hu-

mans have developed a very distinct way of sound production compared to other animals.

Humans learned how to produce distinctive sounds by combining different frequencies, for-

mants and consonants produced from different vocal chord vibrations, air flow constrictions

and mouth shapes. These complex and intricate mechanisms allowed us to form words,

sentences and express concepts to transfer knowledge through our children and advance

civilization. Human development throughout centuries required us to preserve and transfer
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knowledge through different means other than mere speech, especially hand writing and

printing. Up until the last century, most of this knowledge transfer was carried out using

conventional oral and written forms.

In the 20th century, humans found ways to communicate with their voice over long dis-

tances through radio transmissions as well as to record their voices by means of electronic

devices. In the last few decades up until now, computer networks emerged as a mainstream

technology for transferring knowledge throughout the world. This has led to the escalation

of human-human voice communications and human-computer voice enabled interactions.

Nowadays, either type of interactions is extensively dependent on the voice acquisition,

recording and transmission technologies, which are available through our devices such as

personal computers, and smartphones. But there is a problem with this method of com-

munication which ultimately relies on the use of microphones, since the latter are not as

sophisticated and evolved as human ears in discerning desired speech from the acoustic

background. This has caused problems for speech-based human-human communications as

well as the more recent human-computer interactions.

From the early days of electronic voice communications, additive noise has been a re-

current problem for a variety of speech processing devices and applications. Different types

of noise corrupt the speech in hearing aids, mobile devices, airplane communications and

Automatic Speech Recognition (ASR) systems. These noise types present large variability

in terms of their temporal, spectral and other fundamental characteristics, e.g., stationary

versus non-stationary, spectrally white versus colored, etc. Speech enhancement aims to

isolate a desired speech signal from the additive background noise, and increase the qual-

ity or intelligibility of the processed speech for storage, transmission or reproduction [1].

Hence, it is very important for the speech enhancement to work with different noise types,

noise levels and speakers. In general, speech enhancement has two separate goals: (1)
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improve quality/intelligibility signals to be consumed by humans and (2) improve system

performance for signals to be consumed by machines.

1.2 Literature Review

In this section, we provide an overview of the different digital processing methods used

for single-channel speech enhancement, which can be broadly classified as statistical and

machine learning based methods. We also briefly discuss the main audio features used for

the digital representation of speech signals in these methods.

1.2.1 Statistical Methods

The early works in the field of speech enhancement were based on conventional signal

processing techniques. These approaches mainly rely on the time-frequency decomposition

of the speech signal as obtained from the Short-Time Fourier Transform (STFT). Typically,

they exploit a priori knowledge of the statistical distribution of the noise and signal power

during each time-frequency bin to enhance the degraded speech signal [2]. These approaches

make use of various probability models and distributions as well as statistical filtering

techniques.

Below, we provide a brief overview of the main approaches or algorithms within this

category of methods along with representative references; for more details, the reader is

referred to [2, 3].

Spectral subtractive algorithms: The basic principles of these methods, which rely on

the assumption of additive uncorrelated background noise, is to subtract an estimation of

the noise power spectrum from the instantaneous noisy speech power spectrum, in order

to recover the power spectrum of the clean speech. Commonly, in the statistical methods,
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the phase of the noisy speech is not processed and used directly to synthesize the enhanced

speech. However, some methods address the importance of phase in speech enhancement [4].

Spectral subtractive algorithms were initially proposed by Boll et al. [5], while further

relevant extensions can be found in [6].

Spectral subtraction algorithms, however, suffer from perceptually annoying spectral

artifacts. An improvement over these algorithms is based on modulation domain processing

[7]. These methods use the information in the speech modulation spectrum which represents

how the vocal tract changes as a function of time. More recent works in this field can be

found in [8–10].

Minimum Mean Square Error (MMSE) algorithms: These approaches seek to achieve a

better estimation of the clean speech STFT magnitude (also known as spectral magnitude)

by exploiting available a priori knowledge of signal and noise distribution within estab-

lished statistical estimation framework, including MMSE estimation and closely related

maximum likelihood and maximum a posteriori estimation. This type of approach was ini-

tially proposed in [11,12], while some more recent works along this avenue include [13,14].

Kalman filter-based algorithms: In these methods, the linear predictive model for speech

generation is recast as a state space model, allowing the use of a discrete-time Kalman

filter to estimate the clean speech from the noisy speech signal. These methods, originally

proposed in [15], operate directly on the time-domain signal samples. However, in past

several works, various extensions to subband processing have been investigated [16,17]

Subspace algorithms: Unlike the previous algorithms, the subspace algorithms use con-

cepts of linear algebra to decompose the vector of noisy speech samples into orthogonal

signal and noise components. These methods employ well-known orthogonal matrix decom-

position techniques such as the Singular Value Decomposition (SVD) [18] or the eigenvalue

decomposition [19]. Most recently in [20], the authors developed a subspace algorithm
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based on human hearing model.

Over the years, several objective metrics have been developed to characterize the qual-

ity and intelligibility of the enhanced speech [3]. This includes Segmental Signal-to-Noise

Ratio (SSNR), Signal-to-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR), short-

time objective intelligibility measure (STOI) [21], Perceptual Evaluation of Speech Quality

(PESQ) [22] and Perceptual Objective Listening Quality Analysis (POLQA) [23]. Statis-

tical methods in general tend to improve the quality of the speech with regards to these

metrics without training or a priori knowledge. Thus, compared to the learning-based

algorithms discussed below, these methods require less computational resources and are

less time-consuming. However, one of their main disadvantages is the creation of so-called

musical noise in the processed speech. Musical noise is generated partly by non-linearities

in the spectral processing stage of these classical algorithms, which results isolated peaks in

the time-frequency representation of the enhanced speech signal [3]. All the above methods

require the estimation of the noise power spectrum as well as other parameters that may

be needed to characterize particular statistical distributions. In this regard, a well-known

method for the estimation of the noise power spectrum is presented in [24]. In general,

the above statistical methods can adapt to the noise level with quasi-stationary noises, but

exhibit limited performance when used for impulse non-speech noise types [25].

1.2.2 Machine Learning Methods

In the past decade, due to important theoretical advances, faster and cheaper computational

resources, and the availability of large recorded data set for training, neural networks have

been applied successfully to a variety of non-linear mapping problems, including speech

enhancement. Multiple research studies has been conducted with different neural network

architectures and training features. Here, we provide a brief summary of these approaches
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from the perspective of speech processing, and especially enhancement.

Non-negative Matrix Factorization (NMF): It is a popular dictionary-based approach

which has been successfully applied to speech enhancement [26], speech separation [27], and

speech recognition [28]. The NMF can be categorized as a learning-based approach since

it requires training based on the observed data to build dictionaries. In this approach,

a given non-negative matrix of signal descriptors is decomposed into the product of a

non-negative basis matrix (also known as dictionary) and activation matrix. NMF is a

dimensionality reduction tool which, as apposed to principal components analysis (PCA)

and vector quantization (VQ), only allows additive (and not subtractive) combinations of

the basis vectors [29]. In speech enhancement, the non-negative input matrix is usually the

Short-Time power or magnitude spectrum of the speech signal. Some recent works in this

area include [30,31].

Deep Neural Network (DNN): These types of networks consist of fully connected multi-

layer perceptrons designed to learn non-linear patterns in data. One of the early works on

the application of DNN to speech enhancement is by Narayanan and Wang [32], which uses

Relative Spectral filtered Perceptual Linear Prediction cepstral coefficients (RASTA-PLP),

Mel Frequency Cepstral Coefficients (MFCC) and Amplitude Modulation Spectrum (AMS)

as input features. Xu et al., [33] propose a supervised speech enhancement system based

on DNN that can outperform the conventional statistical methods. Finally, [34, 35] uses a

perceptually modified loss function to train a DNN model using logarithmic magnitudes of

the STFT features.

Recurrent Neural Network (RNN): RNNs are a class of neural networks which exhibit

temporal dynamic behaviour. Hence, due to the sequential nature of speech, RNN provides

a powerful tool in speech enhancement. Some notable works along this avenue include [36–

38] which report an improvement in objective measures over statistical and DNN methods.
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Convolutional Neural Network (CNN): In recent years, Covolutional Neural Networks

(CNN) have achieved notable performance improvements in the context of speech recogni-

tion and image processing [39], while requiring much smaller number of model parameters

than DNN and RNN. Because of their ability to learn and extract robust structures of

inherent within clean speech and noise signals in the time-frequency domain CNN has

found successful application in speech processing. In [40], the authors improve the CNN

architecture by using it as an auto-encoder. Their approach, called Convolutional De-

noising Auto-Encoder (CDAE), uses a fully connected CNN which takes two-dimensional

(2D) time-frequency domain inputs and encodes and decodes them into a corresponding

2D output. This technique noticeably reduces the number of parameters present in the ar-

chitecture. In these works, CNN delivers a considerable improvement in terms of objective

measures such as SDR and SIR, while significantly reducing the number of trained and

stored model parameters, when compared to DNN and RNN [41].

Generative Adversarial Network (GAN): The GAN aims to generate more realistic out-

put patterns that exhibit characteristics closer to the real data [42]. Adversarial training

can also be employed in the field of speech enhancement. Proposed by [43, 44], Speech

Enhancement GAN (SEGAN) operates in the time-domain and employs a one dimensional

Convolutional Neural Network (CNN). A similar neural network architecture is investi-

gated in [45] but using STFT features. In [46,47], the authors use Gammatone and STFT

features, respectively, along with a GAN architecture for speech enhancement, and propose

modified network training targets.

The above neural network based methods require substantial training data to give the

best performance. Thus, having a reliable feature set which reduces memory requirements

and training time is an important asset, especially for embedded systems and real-time

applications. Speech enhancement based on neural networks can work with both time [43,
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48] and frequency domain data [45–47]. However, it appears that frequency-domain features

have a clear advantage over the former, especially in terms of speech quality measures like

PESQ [48].

1.2.3 Speech Features

Multiple possibilities exist regarding the choice of audio features to be used as input in neu-

ral network based speech processing systems. These features can be classified into two main

categories, i.e., time-domain versus transform domain features. Time-domain features are

directly obtained from the discrete-time samples of the audio signals under consideration,

with a minimum amount or processing (or none). In contrast, transform-domain features

are obtained by applying a linear transformation on the audio signal samples, possibly

followed by further processing. Typical transformations include the STFT, which allows a

representation of the audio signal as a temporal sequence of complex spectral values [3], and

the Discrete Wavelet Transform (DWT), whose representation coefficients allow a balance

between temporal and frequency resolution [49–51].

Frequency-domain features, such as the unprocessed STFT, the Gammatone spectrum

and the Mel-Frequency Cepstral Coefficients (MFCC) have been used frequently in the

literature. In addition, a combination of STFT with MFCC is employed in [52] for training

wide residual networks for speech enhancement. Compared to STFT, filter-based features

derived from the latter, such as MFCC, exhibit reduced dimensionality and are more suit-

able for learning algorithms, as they can reduce memory and computational requirements

while maintaining comparable level of performance [47, 53–55]. MFCC belong to a larger

family of so-called Audio Fingerprinting (AFP)1 features, which include the Spectral Sub-

1We understand the AFP terminology is more commonly used in the music information retrieval litera-
ture. However, in this thesis, we apply the same concept to speech and prefer to use the same terminology
for the sake of simplicity.
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band Centroids (SSC) and Spectral Energy Peaks (SEP). These features have been used

effectively in the implementation of various audio processing tasks, including data com-

pression and pattern extraction [56].

The MFCC are computed by applying the Discrete Cosine Transform (DCT) to a set of

weighted subband energies obtained from the application of a Mel-spaced filterbank to the

STFT magnitude coefficients. However, the filter-based energy computation of this process

ignores important information about the audio signal in each subband, such as the locations

of energy peaks corresponding to speech formants. The SSC introduced by Paliwal [57],

provides crucial information about the centroid frequency in each subband, which has

proven to be of great value in several applications. The SSC have been successfully employed

in speech recognition, speaker identification and music classification, with non-learning or

dictionary-based systems [58–60]. Besides a combination of MFCC and SSC was proposed

for speaker authentication with non-learning methods in [61].

1.3 Thesis Objectives and Contributions

To the best of our knowledge, in the field of speech enhancement using neural networks and

machine learning, there has been minimal effort to incorporate multiple AFP features in the

training and processing phases of the network operation. In this thesis, we propose to use

and investigate the performance of a combination of AFP features in speech enhancement

applications of neural networks. To achieve this, we choose a state-of-the-art network

architecture model, namely GAN, which we adapt for training and testing with different

combinations of feature sets including two prominent AFP ones, i.e. MFCC and SSC.

Indeed, while the MFCC lead to a significant reduction of the processing complexity,

they do not perform as well as the STFT. We believe that by adding the SSC to the MFCC,
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we can palliate to their intrinsic limitation (i.e. lack of frequency resolution) without

significantly increasing the complexity, when compared to a neural network system based

on STFT features.

The main contributions can be a summarized as follows:

• We implement a state-of-art speech enhancement system based on GAN to predict

the Ideal Ratio Mask (IRM) of the noisy speech.

• We propose using a compact set of features obtained from the combination of MFCC,

Normalized SSC (NSSC) and their respective time differences (i.e. delta versions) for

training the GAN.

• We evaluate the performance of the resulting system by means of standard objective

measures, and compared the results to that of other possible combinations of features,

including the STFT coefficients.

• Our results show that the proposed combination of AFP features based on MFCC

and NSSC can achieve best (or near best) performance under a wide range of SNR

and noise type, while significantly reducing memory requirements and training time.

The above contributions have led to a publication in a peer-reviewed conference:

• F. Faraji, Y. Attabi, B. Champagne, and W.-P. Zhu, “On the use of audio fingerprint-

ing features for speech enhancement with generative adversarial network,” in Proc.

IEEE Int. Workshop on Signal Processing Systems (SiPS), Coimbra, Portugal, pp.

77-82, Oct. 2020.

Regarding the contributions of the authors to the paper above, the first author, Mr.

Farnood Faraji, developed the ideas, implemented the algorithms, conducted the experi-

ments and wrote the first draft of the manuscript. The co-authors, Dr. Y. Attabi, Prof. B.
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Champagne and Prof. W.-P. Zhu provided guidance and advice throughout the research

by suggesting further ideas, validating the theoretical developments, suggesting refinements

to the experimental methodology, and contributing to the writing and editing of the final

manuscript.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 outlines the motivation behind

deep learning and provides a brief overview on how artificial neural networks have inspired

researchers to derive successful algorithms to solve a wide variety of problems. In particular,

the chapter further discusses the fundamentals of neural network, including GAN, along

with their training by providing mathematical descriptions. In Chapter 3, different audio

features are presented and briefly discussed using mathematical representations. On the

basis of the feature equations provided in Chapters 2 and 3, a new feature combination

of AFP features, i.e. consisting of MMCF, NSSC, and their deltas, is proposed and its

incorporation into GAN is explained. The experimental evaluation and performance results

for the proposed method for various noise types are presented in Chapter 5. Finally, we

summarize the findings of our work in Chapter 6, where we also briefly discuss potential

research directions for future research.

Throughout the thesis, vectors are denoted as bold or uppercase letters while scalars

are shown as lowercase. Z and and R denote the set of signed integer and real numbers,

respectively. ‖.‖ represents the Euclidean norm of its vector argument. Finally, E denotes

the expected value of a random quantity.
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Chapter 2

Machine Learning in Speech

Enhancement

In this chapter, we will review some underlying concepts of Machine Learning (ML) and

their application to speech enhancement. First, an overview of neural networks and deep

learning is presented. Next, fundamental concepts of artificial neural network architec-

ture and training are reviewed. Finally, the principles of Generative Adversarial Networks

(GANs) are briefly discussed along with their application to speech enhancement.

2.1 Deep Learning

With the recent innovations and advancements in computer and digital processing tech-

nologies, we are able to run more computations in less time and with relatively physically

smaller devices. This technological leap has spurred the application of machine learning

methods which, although they had been around for decades, could not previously be imple-

mented in real world scenarios. Machine learning is concerned with the development of data
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processing algorithms, typically in the form of computer programs, which can learn funda-

mental laws that governing various learning processes through experience [62]. Nowadays,

Artificial Intelligence (AI) and machine learning have infiltrated several aspects of our lives,

as evidenced when we shop online, when we search on our frequently used search engines

or when we seek to find new friends through social media. AI is now deeply implanted in

our lives and it seems that this trend will continue to expand.

Deep learning is an important branch of machine learning methods based on Artificial

Neural Networks (ANN). This branch includes a variety of methods such as DNN, Con-

volutional Neural Network (CNN), Recurrent Neural Network (RNN), etc. which aim to

learn complex and non-linear patterns and relationships in large amounts of data. These

methods are very flexible and come in various forms, namely: unsupervised, supervised and

reinforcement learning, as further explained below.

The goal of unsupervised methods is to find the underlying pattern in data as well as

a corresponding mapping function, without any target values. This form of learning only

employs the unlabelled data. In neural networks the Adaptive Self-Organizing Map (SOM)

[63] and Resonance Theory (ART) [64] are commonly used for unsupervised learning.

The most commonly used machine learning methods belong to the category of super-

vised learning which is the approach used in this thesis. In this type of method, the

input values have corresponding output targets and the underlying neural network model

is trained in a way to learn this mapping. A well-defined and trained model is capable of

extending the learned patterns to unseen examples. Supervised learning is widely used in

the field of speech enhancement, while unsupervised learning has been studied as well [65].

The third machine learning method is Reinforcement Learning (RL), in which the soft-

ware agent is trained in a way to maximize its cumulative reward in a given environment.

The difference between RL and supervised learning is the lack of labelled target outputs.
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In RL, unlike supervised learning, sub-optimal actions of the model are not explicitly cor-

rected. Thus, the model is trained in a way to find a balance between exploration and

exploitation that is, exploring new knowledge territories while retaining the attained ones.

This type of problem is studied in many disciplines, such as information theory, genetic

algorithm, game theory, etc. and the realm of applications is still growing [66].

2.2 Artificial Neural Networks

2.2.1 Fundamental Concepts

The basic ideas behind ANN and machine learning first originated from analogies with

Biological Neural Networks (BNN). The human brain or BNN consists of approximately

1011 interconnected brain cells, also called neurons. The structure of a typical biological

neuron is illustrated in Fig. 2.1. A neuron consists of three main parts, namely: dendrites,

cell body and axon. Electrical or chemical signals are captured by the dendrites, processed

by the cell body, and then carried away through the axon to connect to thousands of other

neurons via their dendrites, forming a BNN. The juncture between the axon terminal and

the dendrites is referred to as a synapse which serves like a gate, regulating the flow of

information within the brain.

This conceptually simple interconnected web of neurons comprising billions of intercon-

nected neurons, can learn and execute very complex processes. The ANN aims to imitate

the concept in BNN ability to solve complex problems and use it in engineering and scien-

tific applications. Fig. 2.2 illustrates the model of an artificial neuron, which consists of

several components, namely: inputs, weights, bias, accumulator, activation function and

output. The input feature vector is defined as x = [x1, x2, . . . , xI ], where I is the number of

inputs. TWhile the features can be in any form, in the case speech signal processing, they
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Fig. 2.1 Structure of a biological neuron

often consist of time-frequency features such as the STFT, MFCC, etc. The weight vector

is defined as W = [w1, w2, . . . , wI ], where the individual weight wi is associated with input

xi. The operation of an artificial neuron, which aim to imitate the behavior of a biological

cell, and especially the synaptic connection, can be mathematically expressed as,

z =
I∑
i=1

wixi + w0, (2.1)

y = f(z), (2.2)

where w0 is a bias, z is the output after applying the weights and bias to the input and y

is the output after applying an activation function f(.) to z. Activation functions are used

to add non-linearity to the network, thereby providing the capability to learn very complex

and nontrivial tasks.

In BNNs, the activation function usually an abstraction representing the rate of action

potential firing in the cell. The role of the activation functions is to map or compress the

permissible amplitude range of the output signal to some other more appropriate range.
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Therefore, depending on the application, the desired activation function can vary.

Fig. 2.2 Block diagram of an artificial neuron

Below, we provide a summary and mathematical description of the most used activation

functions in the field of neural network, which are also shown plotted in Fig. 2.3 for

illustration:

• The linear activation function is an identity function which is mostly used in linear

problems or for regression purposes. The activation function is expressed as,

flinear(x) = x. (2.3)

• The Rectified Linear Unit (ReLU) only keeps the positive values of the input and

outputs zero for any negative input. This function is commonly used because of

its simplicity and effectiveness. In this thesis, we extensively use ReLU since our
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inputs are non-negative quantities derived from power spectrum measurements and

are greater than 0 in the input. This activation function is expressed as,

fReLU(x) = max(0, x). (2.4)

• The Sigmoid activation function is the most commonly used function in the literature

because of its many desirable features, i.e.: continuous, non-linear, differentiable and

outputs a value between 0 and 1. In our case, the sigmoid function is used in the last

network layer to output a Wiener-type filtering value. It can be expressed as,

fsigmoid(x) =
1

1 + e−x
. (2.5)

• The Hyperbolic Tangent (tanH) activation function is the ratio between the hyper-

bolic sine and cosine. Similar to the sigmoid function, it is continuous, non-linear

and differentiable. Its outputs is always between -1 and 1 and is calculated as,

ftanh(x) = tanh(x) =
ex − e−x

ex + e−x
. (2.6)

2.2.2 Network Training

Connecting a group of artificial neurons in multiple layers gives us a deep neural network

as depicted in Fig. 2.4. This goal of the network is to change its set of weight and

bias parameters in a way to perform a certain mapping from inputs to the outputs. In

the context of supervised learning, the corresponding inputs and outputs, represented by

vectors x = [x1, . . . , xI ] and y = [y1 . . . , yK ], respectively, are given to the network. A cost
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Fig. 2.3 Illustration of the most common activation functions: (a) linear,
(b) rectified linear unit (ReLU), (c) sigmoid and (d) tanh

function is used to quantitatively measure the error (or loss) between the network’s output

vector ŷ = [ŷ1, . . . , ŷK ] and the desired output. Two most common cost functions are the

Mean Square Error (MSE) and the cross-entropy, which can be expressed as, respectively,

CMSE(W (l)) =
K∑
i=1

|ŷi − yi|2, (2.7)
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CMSE(W (l)) = −
K∑
i=1

yi ln ŷi + (1− yi) ln (1− ŷi), (2.8)

where yi and ŷi are the i-th target and estimated output, respectively. These quantities are

functions of the network parameters, represented by W = [W (1), . . . ,W (l)] where in turn,

each matrix W (l) = [w
(l)
ij ], comprises the weights and bias parameters of the l-th layer,

and L being the total number of layers. The network parameters are chosen in a way to

minimize the cost function C(W (l)),

Fig. 2.4 Example of a feed-forward deep neural network

In neural networks, it is very important to find the optimal weights to achieve a better

performance and lower the cost. Many algorithms exist for this purpose, which of which

are iterative nature, i.e., wherein the weights are updated at each iteration with the goal

of reducing the cost. Different algorithms use different weight update paradigms which for
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the most part involve the weight gradient and possibly higher derivatives. In the literature,

the gradient descent algorithm represents the general updating rule form as,

W (l)(τ + 1) = W (l)(τ)− µ∇W (l)(τ), (2.9)

where W (l)(τ) is the weight matrix of layer l at iteration τ , µ > 0 is a step size controlling

the learning rate, and ∇W (l)(τ) is defined as the gradient of the cost function, as shown

in,

∇W (l)(τ) =
∂C(W (l))

∂W (l)

∣∣∣∣
W (l)=W (l)(τ)

. (2.10)

The learning process consists of two stages, i.e.: feed-forward and feed-backward prop-

agation. In the feed-forward stage, input data are supplied to the network and the output

of each hidden layer is calculated until it reaches the last layer. In the last layer, the error

is calculated and propagated back through the network in order to update the weights in a

way to reduce the loss calculated from the cost function. Assuming the MSE cost function

and gradient descent optimization, the rate of change of the error with respect to each

weight in the hidden layer, w
(l)
ij , in the network is given by,

δ
(l)
j =

∂C

∂z
(l)
j

, (2.11)

∂C

∂w
(l)
ij

= y
(l−1)
j δ

(l)
j = y

(l−1)
j

∑
k∈Il+1

w
(l+1)
kj f ′(z

(l)
j )δ

(l+1)
k , (2.12)

where δ
(l)
j represents the error at each layer l and neuron j. Using this error change rate,

we update each network weight using (2.9), to minimize the total network loss.
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2.3 Deep Learning and Speech Enhancement

In this section, we first present an overview of how deep learning and neural networks can

be applied to speech enhancement problems in general. Next, we summarize the basic

concepts and operation of GAN and explain how it can be adapted for use in the speech

enhancement application.

2.3.1 Overview

The majority of single-channel speech enhancement methods use the Analysis-Modification-

Synthesis (AMS) as the underlying processing framework. In this approach, the noisy

speech, which results from an additive combination of acoustic noise to the desired speech,

is first analyzed into fundamental components (e.g. via STFT analysis), the components

are then processed to remove noise artifacts, and finally, the processed components are

used to synthesize the enhanced speech at the system’s output. This approach is typically

employed for both classical (i.e., statistical) and learning-based methods. In the latter

case, the modification stage amounts to extracting a set of desired features and processing

them with a trained neural network. Thus, unlike more conventional deep learning-based

classification methods which predict a label or category at their output, deep learning in

speech enhancement applications aims to predict a clean speech signal from a sequence of

input feature vectors by enhancing with the network a sequence of input feature extracted

from the noisy speech signal.

As previously outlined in Chapter 1, the extracted features (used as input to the net-

work) could be in time-domain, as in e.g. SEGAN [43] or in frequency-domain [46], which is

a special case of AMS. The only advantage of time-domain features over the AMS framework

is the lack feature-extraction step, which saves the resources allocated to the signal analysis
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and synthesis (i.e., STFT and inverse STFT). However, the frequency-domain analysis of

audio signals naturally mimics the processing taking place in the human auditory system

and lends itself to several lower-dimensional representations such as the MFCC. In turn,

these representations make it possible to significantly reduce the processing and training

complexity of the network without critically affecting performance. Such representations,

which are furthered discussed in Chapter 3, play a key role in this thesis.

In the modification stage, depending on the considered method, the deep learning speech

enhancement model is used to output either the magnitude spectrum of the enhanced speech

or a Wiener-type filter to be used for enhancing the noisy speech as in the statistical-based

methods. In neural network-based models, this procedure is performed as discussed in

Section 2.2 by applying the non-linear mapping from the trained network to the to a

temporal sequence of input feature vectors extracted from the noisy speech. Finally, in the

synthesis stage, the modified and enhanced speech representation in the frequency domain

is employed to reconstruct the speech signal. This stage involves the application of the

inverse STFT to the frequency domain data along with the overlap-add method in the

time-domain, since the data have initially been processed in separated window frames.

In this thesis, we study a learning-based speech enhancement model developed based

on the GAN framework and evaluate it with different feature sets derived from frequency-

domain, i.e., STFT analysis of the noisy input speech, with emphasis on so-called audio

fingerprinting features. In particular, the enhanced features predicted by the trained neural

network model will be used as Wiener filter, which in turn will be applied to the STFT

magnitudes of the noisy speech in order to remove unwanted acoustic noise.
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2.3.2 Generative Adversarial Network

The Generative Adversarial Network (GAN) is a class of machine learning methods intro-

duced by Goodfellow et al. [42] in 2014. The GAN aims to solve certain problems which

arise due to the difficulty of approximating intractable probabilistic computations in deep

generative models, by proposing an adversarial setting. GANs have proven to be useful for

supervised [67] and reinforcement learning [66] in applications such as image enhancement

and synthesis [68].

Specifically, GANs are generative models designed to map noisy sample vectors, say z,

from a prior distribution into outputs that resemble those generated from the real (i.e.,

actual) data distribution. To achieve this, a generator (G) learns to effectively imitate

the real data distribution under adversarial conditions. The adversary in this case is the

discriminator (D) which is a binary classifier whose inputs are either samples from the real

distribution, or fake samples made up by G. The training process is a game between G

and D: G is trying to fool D to accept its outputs as real, and D gets better in detecting

fake inputs from G and distinguishing them from real data. As a result, G adjusts its

parameters to move towards the real data manifold described by the training data [42].

The adversarial training described above can be formulated as the following minmax

problem,

min
G

max
D

V (D,G) = E[logD(x)] + E[log(1−D(G(z)))], (2.13)

where V (D,G) is the value function of the system, referred to as sigmoid cross entropy

loss function, x is the feature vector from the real data distribution, z is the latent vector

generated from a noisy distribution, D(x) and G(x) are the outputs of D and G, and E

denotes expected value.

In speech enhancement applications, it has been observed that Conditional GAN
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(CGAN) [67, 69] results in better performance than conventional GAN [43,46, 47]. CGAN

uses an additional data vector xc in both G and D for regression purposes, while the value

function from (2.13) is changed to,

min
G

max
D

VC(D,G) = E[logD(x,xc)] + E[log(1−D(G(z,xc),xc))]. (2.14)

The training steps of CGAN are depicted in Fig. 2.5. The training consists of three

consecutive steps: First, D is trained with a concatenation of the vector x and the additional

conditional feature vector xc, in such a way that it recognizes x as real (or output 1). Next,

D learns to categorize the concatenation of x̂ = G(z,x) and xc as fake data distribution

(or output 0). Finally, D’s variables are frozen and G is trained with the xc features to

fool the D.

The GAN methods based on (2.13) and (2.14) use the sigmoid cross entropy loss function

which causes vanishing gradients problem for some fake samples far from the real data,

which in turn leads to saturation of the loss function. Alternatively, CGAN can be combined

with the Least-Squares GAN (LSGAN) [70], which solves this problem by stabilizing GAN

training and increasing G’s output quality. This is achieved by substituting the cross-

entropy loss with a binary-coded least-squares function, and training G and D individually.

The objective function of the resulting modified GAN expressed by,

min
D

V (D) = E[(D(x,xc)− 1)2] + E[(D(G(z,xc),xc))
2], (2.15)

min
G
V (G) = E[(D(G(z,xc),xc)− 1)2]. (2.16)

The use of the objective function in (2.15) and (2.16) which is a combination of CGAN

and LSGAN, alleviates the saturation and convergence problems occurring in the conven-
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Fig. 2.5 Training steps of Conditional GAN.

tional GAN model. This final architecture is implemented in this thesis to study and

compare the performance of different feature sets, including the proposed combination of

audio fingerprinting features, in learning-based speech enhancement.
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Chapter 3

Speech Features

In this chapter, we first present the discrete-time speech signal model and its Short-Time

Fourier Transform (STFT) representation. Subsequently, different feature extraction meth-

ods based on the STFT are presented and briefly explained. This includes the Mel-Frequency

Cepstral Coefficients (MFCC), Spectral Subband Centroids (SSC), Spectral Energy Peaks

(SEP), Spectral Band Energies (SBE), and Spectral Flatness Measures (SFM).

3.1 Speech Model

Let y[m] denote the observed noisy speech signal, where m ∈ Z is the discrete-time index.

The noisy speech results from the contamination of a desired, clean speech signal s[m] with

an additive noise signal n[m], i.e.,

y[m] = s[m] + n[m], m ∈ Z, (3.1)

where no particular assumptions are made on the noise type. We represent the signals of

interest in the time-frequency domain, as obtained from application of the STFT to (3.1).
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Specifically, the STFT coefficients of the noisy speech signal y[m] are defined as,

STFT{y[m]} ≡ Y (k, f) =
M−1∑
m=0

y[m+ kL]h[m]e−j2πfm/M , (3.2)

where k ∈ Z is the frame index, L is the frame advance, f ∈ {0, 1, 2, ...,M/2} is the

frequency bin index, M is the frame size and h[m] is a non-negative window function.

In practice, the calculation in (3.2) is implemented by means of an M -point Fast Fourier

Transform (FFT) algorithm. Applying the STFT formula from (3.2) on the time-domain

model (3.1) yields the time-frequency model representation as,

Y (k, f) = S(k, f) +N(k, f), (3.3)

where S(k, f) and N(k, f) are the STFT of the clean speech and noise signals, respectively.

3.2 Audio Fingerprinting Features

To train the GAN architecture, we will propose and study in the next chapter, a new feature

set obtained by combination of MFCC and NSSC. In this part, we explain the calculation

and combination of these and other AFP features.

3.2.1 Mel-Frequency Cepstral Coefficients (MFCC)

MFCC are widely used in speech recognition and enhancement due to their remarkable

capabilities to compress speech while preserving its essential information [53, 54, 71]. As a

first step in the calculation of the MFCC features, the time-domain signal y[m] is passed

through a first-order FIR filter to boost the highband formants in a so-called pre-emphasis
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stage, as given by,

y′[m] = y[m]− αy[m− 1], (3.4)

where α is the pre-emphasis coefficient, typically in the range 0.95 ≤ α ≤ 1.

Next, the STFT of the filtered signal y′[m] is calculated as in (3.2), yielding the STFT

coefficients Y ′(k, f). For each data frame, these STFT coefficients are used to calculate a set

of Spectral Subband Energies (SSE) defined in terms of a bank of overlapping narrow-band

filters. Specifically, the SSE of the k-th frame are calculated as,

SSEy(k, b) =

hb∑
f=lb

wb(f)|Y ′(k, f)|2, (3.5)

where b ∈ {0, 1, . . . , B − 1} is the subband index, B is the number of subbands in the

filterbank, and wb(f) ≥ 0 is the spectral shaping filter of the b-th subband, with lb and hb

denoting the lower and upper frequency limits of wb(f). More specifically, the filters wb(f)

together form a mel-spaced filterbank, i.e., they are characterized by triangular shapes with

peak frequencies distributed according to the mel-scale of frequency [72].

Finally, the Discrete Cosine Transform (DCT) - Type III [73] is applied to the logarithm

of the SSE to obtain the desired MFCC features, which can be expressed as,

MFCCy(k, p) =

√
2

B

B−1∑
b=0

log10(SSEy(k, b)) cos (
pπ

B
(b− 0.5)), (3.6)

where p ∈ {0, 1, . . . , P − 1} is the DCT index, and P is the number of coefficients. We

define the MFCC feature vector of the current data frame as,

MFCCy = [MFCCy(k, 0), . . . ,MFCCy(k, P − 1)]. (3.7)
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3.2.2 Spectral Subband Centroids (SSC)

The SSC were introduced in [57] to measure the center of mass of a subband spectrum in

terms of frequency, using a weighted average technique. These features exhibit robustness

against the equalization, data compression and additive noise which do not significantly

alter the peak frequencies at moderate to high Signal-to-Noise Ratio (SNR) [56]. In [74], the

SSC outperform MFCC when used as inputs in a audio recognition task based on dictionary

matching. To generate SSC values, the noisy speech signal y[m] is pre-emphasized as in

(3.4) and the corresponding STFT coefficients Y ′(k, f) are computed. For each frame, a set

of SSC is obtained by calculating the centroid frequencies of a bank of narrowband filters

as in the MFCC. Specifically, the SSC of the k-th frame are calculated as,

SSCy(k, b) =

∑hb
f=lb

f w′b(f)|Y ′(k, f)|2∑hb
f=lb

w′b(f)|Y ′(k, f)|2
, (3.8)

where b ∈ {0, 1, . . . , B − 1} and w′b(f) is the corresponding subband filter. In this work,

to simplify implementation, we use the same bank of triangular mel-scale filters for both

MFCC and SSC calculations, i.e. w′b(f) = wb(f), but this constraint could be relaxed.

Finally, following [74], the SSC values are normalized within the range [−1, 1], which is

more convenient for use in neural network layers and activation functions. The normalized

SSC (NSSC) features are obtained as,

NSSCy(k, b) =
2 SSCy(k, b)− (hb + lb)

hb − lb
. (3.9)

For later reference, we define the NSSC feature vector of signal y[m] at the current frame

k as,
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NSSCy = [NSSCy(k, 0), . . . ,NSSCy(k,B − 1)]. (3.10)

3.2.3 Spectral Energy Peaks (SEP)

SEP have been used for music identification systems in [75] where a time-frequency point is

considered as a peak if it has higher amplitude than its neighboring points. SEP is argued to

be intrinsically robust to even high-level background noise and can provide discrimination

in sound mixtures [76]. Shazam’s system [75] is a very good real-world application of this

type of audio features where time-frequency coordinates of the energy peaks are described

as sparse landmark points. Furthermore, by using pairs of landmark points rather than

single points, SEP can be exploited to characterize the spectral structure of sound sources.

In [77], start times of the SEP, referred to as onsets, are used for the automatic alignment

of audio occurrences in an audio fingerprinting system.

3.2.4 Spectral Band Energies (SBE)

In addition to SEP, the SBE have been widely used in fingerprinting algorithms [78]. Let

us denote Y (k, f) as the STFT coefficients of an audio signal at time frame index k and

frequency bin index f , 0 ≤ f ≤M/2. Let us also consider an auditory-motivated filterbank

denoted with wb(f), e.g., in either Mel, Bark, Log, or Cent scale, with lb and hb as the

lower and upper frequencies and b ∈ {0, 1., ..., B − 1} as the subband index subband. The

SBE are then computed as,

SBEy(k, b) =

∑hb
f=lb

wb(f)|Y (k, f)|2∑M/2
f=0 wb(f)|Y (k, f)|2

. (3.11)
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3.2.5 Spectral Flatness Measures (SFM)

SFM, also known as Wiener entropies, characterize the tonality aspect of an audio signals

within different subbands and are therefore often used as an audio matching feature to

distinguish different recordings [79]. The SFM for each time-frequency subband point

(k, b) is computed as,

SFMy(k, b) =
(
∏hb

f=lb
|Y (k, f)|2)

1
hb−lb+1

1
hb−lb+1

∑hb
f=lb
|Y (k, f)|2

. (3.12)

A high SFM in a given subband indicates the similarity of signal power over all fre-

quencies within that subband, while a low SFM means that signal power is concentrated

in a relatively small number of frequency bins over the full subband. This feature is shown

to be a measure of multiplicative noise in [80].
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Chapter 4

Proposed Method

In this chapter, the proposed Audio FingerPrinting (AFP) feature combination made out

of MFCC and NSSC is presented, and its incorporation into GAN is explained. Finally,

the procedure for synthesizing the final enhanced speech using these features within GAN is

explained.

4.1 Proposed Feature Combination

In this thesis, we propose to use the concatenation of MFCC and NSSC vectors, along

with some of their first and second differences (i.e., delta and double-delta) for training the

GAN architecture. In the sequel, we refer to this extended feature set as AFP Combination

(AFPC). Other AFP features, such as SEP are not included in our combination, since

their information content is redundant when combined with the SSC. The MFCC and their

deltas have long been used as an efficient alternative to the STFT, as they contain crucial

information about the spectral subband energies and their temporal evolution [81].

Nevertheless, due to the smoothing nature of (3.5), the MFCC ignore the dynamics of
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the formant present in each subband. In contrast, the NSSC and their deltas can provide

critical information about the formant locations and their temporal variations. At the same

time, the NSSC tend to be more noise-robust, compared to the MFCC, since the formant

locations are not significantly disturbed by the additive noise distortion [57]. Thence, the

proposed AFPC features have the ability to capture information about the distribution of

energy, both across and inside spectral subbands. The NSSC and MFCC use the same

STFT spectrum and mel-filterbank and they share the same processing unit for computing

the STFT coefficients and the SSE. Thus, compared to the MFCC, the AFPC maintains

the computational efficiency, even though it increases the memory requirements.

To obtain the AFPC, the MFCC and NSSC are both extracted from the STFT of the

noisy signal, Y (k, f) as described in Chapter 3. The proposed AFPC feature vector at the

k-th time frame for signal y[m] is then defined as,

AFPCy = [MFCCy,∆MFCCy,∆
2MFCCy,NSSCy,∆NSSCy,∆

2NSSCy], (4.1)

where ∆MFCCy and ∆2MFCCy are the deltas and double-deltas of the MFCC. Similarly,

∆NSSCy and ∆2NSSCy are the deltas and double deltas of the NSSC.

4.2 Incorporation of AFPC within GAN

We assume that the magnitude spectrum of the noisy speech can be approximated by the

sum of the clean speech and noise magnitude spectra, i.e, |Y (k, f)| ≈ |S(k, f)|+ |N(k, f)|.

The generator in the adversarial setting is trained to predict a real output, which is taken as

the Ideal Ratio Mask (IRM) generated from the known clean speech and noise signals [32],
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i.e.,

IRM(k, f) =

√
|S(k, f)|2

|S(k, f)|2 + |N(k, f)|2
, (4.2)

where IRM(k, f) is the IRM value at the k-th frame and frequency bin f . We define the

IRM vector at the current frame k as IRM = [IRM(k, 0), ..., IRM(k,M/2)] . Then, the

generator produces the estimated IRM whose patterns and distribution should be close to

the real IRM, as expressed by,

ÎRM = G(z,AFPCj
y), (4.3)

where AFPCj
y represents the extended AFPC feature vector at the current frame, obtained

by concatenating the AFPC feature vectors from a subset of 2j + 1 consecutive context

frames centered at the current one (i.e., by including the j adjacent frames to its left and

right). The estimated output ÎRM in (4.3) is only calculated for the current frame. By

examining ÎRM and the AFPCy of the current frame, D decides whether its input is the

real IRM from (4.2), or the fake output ÎRM, this decision is reflected in,

D(ÎRM,AFPCy) ∈ {fake ≡ 0, real ≡ 1}. (4.4)

In [43], it is reported that having an extra term in training the generator using CGAN

is very useful. Pandey et al. [47] show that using a penalty term based on the `1-norm gives

a better performance compared to the `2-norm in speech enhancement applications. This

approach allows adversarial component to produce more refined and realistic results. The

weight of the `1-norm component in the objective function is controlled by a parameter
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λ > 0. Therefore, the objective functions from (2.16) are modified as,

min
D

V (D) = E[(D(IRM,AFPCy)− 1)2] + E[(D(G(z,AFPCj
y),AFPCy))

2], (4.5)

min
G
V (G) = E[(D(G(z,AFPCj

y),AFPCy)− 1)2] + λ‖G(z,AFPCj
y)− IRM‖1, (4.6)

where ‖.‖1 denote the `1 norm of its vector argument.

A schematic diagram of this adversarial training procedure is illustrated in Fig. 4.1.

The training consists of three consecutive steps: First, D is trained with a concatenation

of the IRM vector and the AFPCy feature vector, in such a way that it recognizes the

IRM as real (or output 1). Next, D learns to categorize the concatenation of the ÎRM

and AFPCy feature vector as fake data distribution (or output 0). Finally, the D variables

are frozen and the G is trained with the AFPCj
y features to fool the D.

4.3 Overall System

A block diagram of the system architecture is depicted in Fig. 4.2. The operation consists of

two stages: training and enhancement, where the corresponding processing paths are shown

by continuous and dashed blue lines, respectively. During the training stage, the system

uses the AFPC feature set to train the D and G as shown in Fig. 4.1 in an adversarial

setting. Using G, the model learns estimates the output IRM.

In the enhancement stage, the estimated IRM by G for every frame and frequency

index is used as a Wiener type of filter on the STFT magnitude of the noisy speech. This

method only enhances the amplitude of the signal and uses the phase from the noisy speech

to reconstruct the time-domain enhanced signal using the overlap-add and Inverse STFT
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(ISTFT) as shown in,

|Ŝ(k, f)| = ÎRM(k, f)|Y (k, f)|, (4.7)

ŝ[m] = ISTFT{|Ŝ(k, f)|ejk∠Y (k,f)}. (4.8)

This method could be further improved to enhance the speech phase as well, but in this

work we only limit our model to enhancing the speech magnitude. In [4], the authors study

the importance of phase in speech enhancement. A possible solution to exploit the speech

phase in the present ANN context is by using Complex IRM (cIRM) proposed by [82] or

phase-sensitive solutions such as [37,83].

Fig. 4.1 The Proposed GAN training procedure used with the AFPC. First,
the discriminator is trained with a concatenation of real IRM and AFPC fea-
tures of the noisy signal. Next, the discriminator is trained with the estimated
IRM and the noisy AFP features. Finally, the discriminator is frozen and the
generator is trained with AFPC features so that it fools the discriminator.
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Fig. 4.2 Block diagram of the proposed AFPC feature set extraction (top)
and its incorporation into GAN (bottom).
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Chapter 5

Experiments and Results

In this chapter, we first describe the experimental setup and methodology used to train and

evaluate the performance of the proposed GAN system for speech enhancement. We then

present and discuss experimental results where the performance of the system is compared

for different combination of STFT-based feature sets, including the proposed Audio Finger-

Printing (AFP) combination, consisting of MFCC and NSSC. The performance is evaluated

in terms of objective measures, i.e., PESQ, SDR and STOI, as well as model complexity

and training time.

5.1 Experimental Setup

5.1.1 Dataset

We use the LibriSpeech [84] dataset which is an open corpus based on audio books and

containing 1000 hours of relatively noise-free speech in English. The corpus provides us

with the speaker and word diversity required for a speaker-general speech enhancement

system. For training, 1755 utterances are randomly selected from 250 speakers (half male,
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half female) for a total of 6 hours of speech. For testing, 255 different utterances are selected

from 40 speakers (half male, half female), for a total of 30 minutes of speech. The clean

files are contaminated with additive noise at -5dB, 0dB and 5dB SNRs for both training

and testing sets, while two extra SNRs of 10dB and 15dB are added for testing under

unmatched SNR conditions. Five different noise types from NOISEX-92 [85] are used for

both training and testing: babble, pink, buccaneer2, factory1 and hfchannel.

All the audio files are sampled at 16 KHz. The STFT coefficients are extracted with an

M = 512 STFT, using a 32ms Hanning window, overlap of 50% (L = 256) and three context

frames (i.e. j = 1). The MFCC and NSSC are computed from the STFT parameters using

B = 64 subbands with mel-frequency triangular filters wb(f) distributed between 0Hz and

8KHz. The number of MFCC is set to P = 22 while for NSSC, only the first 22 coefficients

are kept in the feature vector. The pre-emphasis factor α = 0.97 is used in (3.4). The delta

and double-delta variations are included in the feature sets for each context frame [57].

The estimated IRM (4.3) is calculated only for the middle STFT frame. For each feature

set, one model is trained for all noise types, SNRs and speakers.

5.1.2 Training

The parameters used to build each system is explained here. Most of the parameters in

this section are empirically found or dynamically tuned for the specific conditions to avoid

under/over-fitting. The generator’s architecture has three hidden layers, each including 512

nodes. The ReLU activation function is used after each hidden layer with a dropout rate of

0.2. The discriminator has the same structure as the generator but uses instead the leaky

ReLU activation function. Both employ the sigmoid activation at the output layer because

they predict the IRM. A batch normalization layer with momentum 0.8 is used after each

dense layer [86]. The latent vector z has 15 elements generated randomly from a normal
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Gaussian distribution. The GAN architecture is trained in 50 epochs with a learning rate

of 10−4 for the first half and 10−5 for the second half of the epochs. The batch size is set to

128 and ADAM optimizer [87] is used for training. We set λ = 100 in (4.6), which provides

good convergence.

5.1.3 Evaluation

In our evaluation, we compare the effect of different combinations of feature sets on the

overall performance of the GAN-based speech enhancement system. Specifically, we con-

sider the previously discussed STFT coefficients, MFCC and NSSC as basic feature sets,

along with various combinations thereof. The MFCC and NSSC features always include

the delta and double delta coefficients. The various combinations are designated with ”+”,

which means concatenation of the indicated feature vectors. Out of the seven distinct pos-

sible combinations, MFCC+NSSC corresponds to the proposed AFPC feature vector in

(4.1). For each comparative experiment, the same GAN architecture is trained indepen-

dently for each combination of features using all SNRs and noise types, audio training, and

hyper-parameters.

The feature sets are compared objectively in terms of PESQ, which provides a measure

of signal quality between -0.5 and 4.5, Signal-to-Distortion Ratio (SDR) which measures

the speech quality in dB based on the introduced speech distortion, and Short-Time Ob-

jective Intelligibility (STOI), which provides a measure of intelligibility between 0 and 1.

Here, we use a version of PESQ called ITU-T P.862.2 which is the second version of the

original PESQ [88]. The comparative performance results demonstrate the effectiveness of

each combination as well as the amount of information present in the concatenated feature

vectors. Besides these performance measures, we also compare the different feature combi-

nations in terms of system efficiency, i.e. feature vector size, training time per epoch, and
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number of network parameters.

5.2 Results and Discussion

In this section, we study how STFT, MFCC and NSSC perform when used individually or

when combined into an extended feature vector. In particular, the proposed system with

audio fingerprinting features, MFCC+NSSC, is objectively compared to other alternatives

and their combinations in terms of PESQ, SDR and STOI measures. The baseline system

is STFT-based GAN which is widely used in the recent literature. The comparative results

demonstrate to some extent the information overlap between different feature sets and their

combinations. Finally, the different combinations of features are compared in terms of the

processing complexity and training time for the underlying GAN system.

5.2.1 Number of Context Frames

The number of context frames directly affects the overall system latency and complexity by

increasing the number of inputs and the processing time, for both training and enhancement

stages. Our goal here is to choose the least number of context frames while maintaining the

performance. Ideally, increasing the number of context frames improves the enhancement

performance as more information in input to the system. However, as we increase the

number of context frames, the level of correlation (or mutual information) between the

middle frame and the more distant ones decreases, so that the potential benefit of additional

frames is diminished. Thus, the performance improvement resulting from increasing the

number of context frames saturates at a certain level while the complexity continues to

grow [89].

To select the optimal number of context frames (i.e., 2j + 1), the PESQ, SDR and
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STOI performances of three selected feature sets are studied and representative results are

presented in Fig. 5.1, 5.2 and 5.3. According to the results in these figures, when the

number of context frames increases from 1 to 9 (i.e., j ∈ {0, 1, 2, 3, 4}), the performance

tends to improve for each feature set. However, since most of the gains for MFCC+NSSC

and STFT+MFCC are obtained with 3 context frames, we use the value of j = 1 for all

subsequent experiments.

Another interesting observation from these figures is that the performance increases

sharply from 1 to 3 context frames for MFCC+STFT and STFT+MFCC and nearly satu-

rates after 3 context frames. However, in the case of the STFT, the performance tends to

increase more ”linearly” (or less sharply) as j increases.

Fig. 5.1 Average PESQ performance for three feature sets: STFT (baseline),
MFCC+NSSC and STFT+MFCC versus number of context frames 2j + 1.
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Fig. 5.2 Average SDR performance for three feature sets: STFT (baseline),
MFCC+NSSC and STFT+MFCC versus number of context frames 2j + 1.

Fig. 5.3 Average STOI performance for three feature sets: STFT (baseline),
MFCC+NSSC and STFT+MFCC versus number of context frames 2j + 1.
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5.2.2 Enhancement Performance

As explained in section 5.1, the performance results in terms of speech enhancement are

reported for every combination of feature sets. Various noise types, i.e., babble, pink,

buccaneer2, factory1 and hfchannel at various SNR levels, i.e., -5dB, 0dB, 5dB, 10dB

and 15dB SNRs are used to conduct the experiments. For the purpose of applications,

it is important to characterize the performance of the difference combinations of features

for different noise types and SNR levels. Indeed, different applications such as aviation,

hearing aids, etc. may involve quite different and specific noise environments and it is

therefore of great interest to see how the trained GAN system for speech enhancement

performance on different noise types. In this study, we train our model using all the noise

types and SNR levels in a general format. However, studying noise types individually gives

us a better idea of what to expect from our model under different conditions. The different

noise types considered herein differ in terms of their fundamental attribute, i.e.: stationary

versus non-stationary in the time domain and white versus colored in the frequency domain.

Babble noise: This non-stationary non-white noise is the most challenging noise type

in speech enhancement scenarios since its temporal and spectral characteristics are similar

to the target speech. This noise type is encountered in many different places such as

restaurants, streets, etc. and it is therefore very useful to have a high performance for

this noise type, specially for hearing aids and automatic speech recognition applications.

Tables 5.1, 5.2 and 5.3 present the PESQ, SDR and STOI results obtained with the different

feature combinations for the enhancement results of this noise type. In terms of PESQ,

the more computationally demanding STFT+MFCC+NSSC combination achieves the best

overall performance. The proposed AFPC=MFCC+NSSC outperforms the latter at low

SNR, i.e. -5dB, while achieving near best performance at other SNRs. In terms of SDR,
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there is a close competition between the last 4 combinations of feature sets, while a similar

observation can be made for the STOI metric.

Table 5.1 Average PESQ results at various SNRs - babble Noise

Feature Set
PESQ

-5dB 0dB 5dB 10dB 15dB

Noisy 1.33 1.62 1.98 2.33 2.67

STFT 1.51 1.97 2.45 2.87 3.20

NSSC 1.40 1.90 2.36 2.73 3.04

MFCC 1.60 2.01 2.43 2.82 3.18

STFT+NSSC 1.56 2.04 2.52 2.95 3.26

STFT+MFCC 1.64 2.12 2.56 2.94 3.26

MFCC+NSSC 1.66 2.11 2.53 2.92 3.26

STFT+MFCC+NSSC 1.64 2.13 2.57 2.95 3.27
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Table 5.2 Average SDR results at various SNRs - babble noise

Feature Set
SDR(dB)

-5dB 0dB 5dB 10dB 15dB

Noisy -5.26 -0.40 4.55 9.54 14.53

STFT 0.56 5.44 9.83 13.94 17.40

NSSC -0.25 4.58 8.75 12.33 15.14

MFCC 1.02 4.90 9.01 12.91 16.16

STFT+NSSC 0.95 5.68 9.94 14.05 17.56

STFT+MFCC 1.16 5.72 9.94 14.05 17.64

MFCC+NSSC 1.47 5.62 9.77 13.91 17.70

STFT+MFCC+NSSC 1.11 5.76 9.95 13.93 17.32

Table 5.3 Average STOI results at various SNRs - babble noise

Feature Set
STOI

-5dB 0dB 5dB 10dB 15dB

Noisy 0.56 0.67 0.78 0.87 0.93

STFT 0.63 0.75 0.85 0.91 0.94

NSSC 0.61 0.72 0.81 0.88 0.92

MFCC 0.66 0.76 0.84 0.90 0.94

STFT+NSSC 0.64 0.76 0.86 0.92 0.95

STFT+MFCC 0.66 0.77 0.86 0.92 0.95

MFCC+NSSC 0.67 0.77 0.86 0.92 0.95

STFT+MFCC+NSSC 0.66 0.77 0.86 0.92 0.95
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Pink noise: Pink noise is a stationary colored noise which is often used as a refer-

ence signal in audio engineering applications. The power spectral density of pink noise

decreases linearly on a logarithmic scale so that every octave contains the same amount

of energy. It is important to study the effects of speech noise in the context of speech

enhancement, since the latter is perceived similarly in different frequency bands. Tables

5.4, 5.5 and 5.6 illustrate the GAN-based enhancement results for this noise type when us-

ing different combinations of features. In this scenario, STFT+MFCC, MFCC+NSSC and

STFT+MFCC+NSSC achieve the best and nearly similar performance for each one of the

three measures, i.e. PESQ, SDR and STOI, while the proposed combination MFCC+NSSC

slightly outperforms the other two at 15dB SNR. It is noteworthy that the STFT can achieve

a decent performance with this noise type at lower SNR levels.

Table 5.4 Average PESQ results at various SNRs - pink noise

Feature Set
PESQ

-5dB 0dB 5dB 10dB 15dB

Noisy 1.09 1.39 1.74 2.12 2.50

STFT 1.83 2.25 2.65 2.87 3.01

NSSC 1.63 2.20 2.61 2.93 3.19

MFCC 1.76 2.24 2.64 2.96 3.18

STFT+NSSC 1.88 2.33 2.73 2.96 3.10

STFT+MFCC 1.93 2.40 2.77 3.04 3.18

MFCC+NSSC 1.90 2.37 2.75 3.06 3.28

STFT+MFCC+NSSC 1.94 2.40 2.77 3.02 3.17
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Table 5.5 Average SDR results at various SNRs - pink noise

Feature Set
SDR(dB)

-5dB 0dB 5dB 10dB 15dB

Noisy -5.10 -0.20 4.77 9.76 14.76

STFT 4.47 8.28 12.03 15.38 17.98

NSSC 3.49 7.55 11.19 14.23 16.51

MFCC 3.58 7.43 11.23 14.52 17.12

STFT+NSSC 4.81 8.49 12.22 15.55 18.16

STFT+MFCC 4.81 8.49 12.19 15.65 18.45

MFCC+NSSC 4.58 8.28 12.00 15.58 18.68

STFT+MFCC+NSSC 4.83 8.50 12.20 15.61 18.35

Table 5.6 Average STOI results at various SNRs - pink noise

Feature Set
STOI

-5dB 0dB 5dB 10dB 15dB

Noisy 0.55 0.68 0.80 0.89 0.94

STFT 0.71 0.81 0.89 0.93 0.95

NSSC 0.64 0.78 0.86 0.91 0.94

MFCC 0.69 0.80 0.88 0.92 0.95

STFT+NSSC 0.72 0.82 0.89 0.93 0.95

STFT+MFCC 0.72 0.83 0.89 0.93 0.96

MFCC+NSSC 0.71 0.82 0.89 0.93 0.96

STFT+MFCC+NSSC 0.72 0.83 0.89 0.93 0.95
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Buccaneer2 noise: This noise type, a travelling jet noise recorded in a cockpit, is useful

to study aviation applications, especially noise reduction for crew members operating in

flights. This noise is colored and non-stationary due to changes in noise frequency emit-

ted from the engine. Tables 5.7, 5.8 and 5.9 illustrate the results for this noise type.

Similar results as in the case of pink noise can be observed for this noise type: better

performance of AFPC at high SNRs and close performance for APFC, STFT+MFCC and

STFT+MFCC+NSSC at lower SNR values. Again, the STFT performance is relatively

good at low SNR, although not as good as the above three feature sets.

Table 5.7 Average PESQ results at various SNRs - buccaneer2 noise

Feature Set
PESQ

-5dB 0dB 5dB 10dB 15dB

Noisy 1.03 1.32 1.68 2.06 2.43

STFT 1.81 2.21 2.60 2.85 2.88

NSSC 1.59 2.11 2.54 2.85 3.09

MFCC 1.74 2.18 2.57 2.91 3.13

STFT+NSSC 1.87 2.29 2.68 2.91 2.91

STFT+MFCC 1.91 2.36 2.72 2.99 3.11

MFCC+NSSC 1.88 2.32 2.71 3.01 3.21

STFT+MFCC+NSSC 1.91 2.35 2.72 2.98 3.12
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Table 5.8 Average SDR results at various SNRs - buccaneer2 noise

Feature Set
SDR(dB)

-5dB 0dB 5dB 10dB 15dB

Noisy -4.99 -0.10 4.86 9.85 14.85

STFT 4.43 7.92 11.60 15.02 17.55

NSSC 3.48 7.25 10.90 14.22 16.84

MFCC 3.58 7.14 10.82 14.32 16.93

STFT+NSSC 4.78 8.12 11.73 15.14 17.57

STFT+MFCC 4.75 8.17 11.72 15.22 18.08

MFCC+NSSC 4.60 8.00 11.57 15.20 18.37

STFT+MFCC+NSSC 4.78 8.16 11.73 15.19 18.01

Table 5.9 Average STOI results at various SNRs - buccaneer2 noise

Feature Set
STOI

-5dB 0dB 5dB 10dB 15dB

Noisy 0.54 0.65 0.77 0.86 0.92

STFT 0.70 0.80 0.87 0.91 0.94

NSSC 0.62 0.75 0.84 0.90 0.93

MFCC 0.66 0.78 0.86 0.91 0.94

STFT+NSSC 0.71 0.81 0.88 0.91 0.94

STFT+MFCC 0.72 0.81 0.88 0.92 0.94

MFCC+NSSC 0.69 0.80 0.88 0.92 0.95

STFT+MFCC+NSSC 0.71 0.81 0.88 0.92 0.94
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Factory1 noise: This noise was recorded in a factory near plate-cutting and electrical

welding equipment. These machines produce a non-stationary colored noise with a number

of spectral peaks over a wide frequency band. It is useful in noise reduction applications

intended for factory and construction workers. Tables 5.10, 5.11 and 5.12 illustrate the

results for this noise type. In terms of PESQ, AFPC equals or outperforms all the other

features sets over the complete SNR range. This is an important result considering the

importance of PESQ as a speech quality metric and the challenges posed by this particular

type of noise. In terms of SDR and STOI, the results are similar to the pink and buccaneer2

results, where the proposed AFPC only outperform the other feature sets at higher SNRs.

Table 5.10 Average PESQ results at various SNRs - factory1 noise

Feature Set
PESQ

-5dB 0dB 5dB 10dB 15dB

Noisy 1.02 1.34 1.68 2.04 2.41

STFT 1.48 1.94 2.38 2.73 2.97

NSSC 1.40 1.93 2.37 2.72 3.02

MFCC 1.55 1.99 2.40 2.78 3.08

STFT+NSSC 1.54 2.02 2.46 2.79 3.04

STFT+MFCC 1.61 2.09 2.50 2.83 3.08

MFCC+NSSC 1.63 2.09 2.50 2.86 3.15

STFT+MFCC+NSSC 1.60 2.09 2.50 2.83 3.09
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Table 5.11 Average SDR results at various SNRs - factory1 noise

Feature Set
SDR(dB)

-5dB 0dB 5dB 10dB 15dB

Noisy -5.60 -0.75 4.21 9.19 14.18

STFT 2.69 6.78 10.59 14.25 17.19

NSSC 2.35 6.30 10.00 13.31 15.91

MFCC 1.94 5.97 9.92 13.61 16.81

STFT+NSSC 3.08 6.99 10.78 14.45 17.45

STFT+MFCC 3.04 6.99 10.77 14.50 17.67

MFCC+NSSC 2.84 6.74 10.60 14.44 17.96

STFT+MFCC+NSSC 3.09 7.02 10.79 14.48 17.65

Table 5.12 Average STOI results at various SNRs - factory1 noise

Feature Set
STOI

-5dB 0dB 5dB 10dB 15dB

Noisy 0.55 0.67 0.79 0.87 0.93

STFT 0.67 0.78 0.86 0.91 0.94

NSSC 0.63 0.76 0.85 0.90 0.93

MFCC 0.67 0.77 0.85 0.91 0.94

STFT+NSSC 0.68 0.79 0.87 0.91 0.94

STFT+MFCC 0.69 0.80 0.87 0.92 0.95

MFCC+NSSC 0.68 0.79 0.87 0.92 0.95

STFT+MFCC+NSSC 0.69 0.80 0.87 0.92 0.95
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Hfchannel noise: This is a classic noise type which has been since the beginning of

telecommunications. The hfchannel noise is acquired from an High Frequency (HF) radio

channel after demodulation at the receiver. It is useful in the study of noise reduction for

traditional radio applications, since it embodies the main features of HF noise characteris-

tics. This noise is stationary but colored: its power spectrum is nearly flat below (similar

to white noise), exhibits a peak around 2kHz, and decreases thereafter. Tables 5.13, 5.14

and 5.15 illustrate the results for this noise type. In this case, it is interesting to note that

AFPC=MFCC+NSSC, STFT+MFCC and STFT+MFCC+NSSC achieve the best perfor-

mance, while the proposed AFPC slightly outperforms the other two combinations at 15dB

SNR.

Table 5.13 Average PESQ results at various SNRs - hfchannel noise

Feature Set
PESQ

-5dB 0dB 5dB 10dB 15dB

Noisy 1.18 1.32 1.54 1.81 2.13

STFT 1.93 2.21 2.50 2.78 2.88

NSSC 1.76 2.19 2.51 2.79 3.01

MFCC 1.92 2.25 2.56 2.86 3.11

STFT+NSSC 2.00 2.31 2.61 2.87 2.88

STFT+MFCC 2.04 2.36 2.64 2.91 3.06

MFCC+NSSC 2.04 2.34 2.63 2.93 3.16

STFT+MFCC+NSSC 2.04 2.35 2.64 2.89 3.06
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Table 5.14 Average SDR results at various SNRs - hfchannel noise

Feature Set
SDR(dB)

-5dB 0dB 5dB 10dB 15dB

Noisy -5.13 -0.25 4.71 9.70 14.70

STFT 6.84 10.13 13.50 16.83 19.07

NSSC 6.19 9.80 13.15 16.01 17.91

MFCC 6.32 9.73 13.11 16.37 18.92

STFT+NSSC 7.17 10.46 13.78 16.92 18.87

STFT+MFCC 7.16 10.45 13.76 17.08 19.62

MFCC+NSSC 7.05 10.34 13.64 16.96 19.71

STFT+MFCC+NSSC 7.19 10.45 13.77 17.05 19.65

Table 5.15 Average STOI results at various SNRs - hfchannel noise

Feature Set
STOI

-5dB 0dB 5dB 10dB 15dB

Noisy 0.59 0.69 0.77 0.85 0.91

STFT 0.74 0.82 0.88 0.92 0.94

NSSC 0.70 0.80 0.86 0.90 0.93

MFCC 0.74 0.82 0.88 0.92 0.94

STFT+NSSC 0.76 0.83 0.88 0.92 0.93

STFT+MFCC 0.76 0.84 0.89 0.92 0.94

MFCC+NSSC 0.76 0.83 0.88 0.92 0.95

STFT+MFCC+NSSC 0.76 0.84 0.89 0.92 0.94
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Average Performance: For each feature set, results are obtained for five different noise

types at five SNR levels from -5dB to 15dB. Average PESQ, SDR and STOI measures over

all noise types are reported in Tables 5.16, 5.17 and 5.18, where the best results (within 2%

of the observed maximum) are highlighted for each SNR. When used separately, MFCC

and NSSC improve the overall speech quality compared to the noisy speech but do not

generally outperform STFT. The NSSC are weaker than STFT and MFCC in all three

measures, although they lead to improvement over the noisy speech. This is due to the

fact that NSSC is only a normalized weighted average and does not represent the energy

contained in each subband. Comparing STFT with STFT+NSSC and STFT+MFCC in-

dicates that both AFP features add important information to the STFT features, from the

perspective of noise reduction. In particular, STFT+MFCC outperforms STFT+NSSC in

terms of both PESQ and STOI, while achieving a similar SDR performance. Interestingly,

the combination of the three feature sets STFT+MFCC+NSSC does only matches the per-

formance of the previous pairs of features, but does outperform them in any significant way,

suggesting that it only brings redundant information to the training of the GAN system.

According to Tables 5.16-5.18, the proposed AFPC, i.e., MFCC+NSSC, substantially in-

creases the performance of the GAN-based speech enhancement system in all three measures

compared to MFCC or STFT. Furthermore, MFCC+NSSC achieves the best PESQ perfor-

mance (within the error margin) and demonstrates a performance close to STFT+MFCC

in terms of SDR and STOI. In particular, MFCC+NSSC outperforms the other feature

sets in all three measures at high unmatched SNR of 15dB. This is due to the fact that at

such high SNR, the additive noise does not significantly corrupt the extraction of formant

frequencies with NSSC.
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Table 5.16 Average PESQ Results for all noise types at various SNRs

Feature Set
PESQ

-5dB 0dB 5dB 10dB 15dB

Noisy 1.13 1.40 1.72 2.07 2.43

STFT 1.71 2.12 2.52 2.82 2.99

NSSC 1.56 2.07 2.48 2.80 3.07

MFCC 1.69 2.11 2.50 2.84 3.12

STFT+NSSC 1.77 2.20 2.60 2.90 3.04

STFT+MFCC 1.83 2.27 2.64 2.94 3.14

MFCC+NSSC 1.82 2.25 2.63 2.96 3.21

STFT+MFCC+NSSC 1.83 2.26 2.64 2.93 3.14

Table 5.17 Average SDR Results for all noise types at various SNRs

Feature Set
SDR(dB)

-5dB 0dB 5dB 10dB 15dB

Noisy -5.21 -0.34 4.62 9.61 14.6

STFT 3.80 7.71 11.5 15.1 17.8

NSSC 3.05 7.10 10.8 14.0 16.5

MFCC 3.17 6.96 10.7 14.3 17.2

STFT+NSSC 4.16 7.95 11.7 15.2 17.9

STFT+MFCC 4.18 7.96 11.7 15.3 18.3

MFCC+NSSC 4.11 7.80 11.6 15.2 18.5

STFT+MFCC+NSSC 4.20 7.98 11.7 15.2 18.2
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Table 5.18 Average STOI Results for all noise types at various SNRs

Feature Set
STOI

-5dB 0dB 5dB 10dB 15dB

Noisy 0.56 0.67 0.78 0.87 0.93

STFT 0.69 0.79 0.87 0.92 0.94

NSSC 0.64 0.76 0.85 0.90 0.93

MFCC 0.68 0.79 0.86 0.91 0.94

STFT+NSSC 0.70 0.80 0.88 0.92 0.94

STFT+MFCC 0.71 0.81 0.88 0.92 0.95

MFCC+NSSC 0.70 0.80 0.88 0.92 0.95

STFT+MFCC+NSSC 0.71 0.81 0.88 0.92 0.95

Fig. 5.4 shows the spectrograms of: (a) clean speech; (b) noisy speech after contam-

ination with babble noise at 0dB SNR; (c) enhanced speech using GAN with STFT; (d)

enhanced speech using MFCC features; (e) enhanced speech using the combination of STFT

and MFCC, and; (f) enhanced speech using the proposed AFPC. It can be seen that the

proposed AFPC features preserve the speech formants while removing more noise during

non-speech segments. Visually the difference between AFPC and STFT+MFCC is not

detectable, except for some small parts where the AFPC removes more isolated speech

formants in the spectrogram. Apart from that, the visualization of the signals with the

spectrograms is consistent with the results in Table 5.16, 5.17 and 5.18.
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(a) Clean speech (b) Noisy speech

(c) Processed with STFT (d) Processed with MFCC

(e) Processed with STFT+MFCC (f) Processed with AFPC

Fig. 5.4 Spectrograms of (a) Clean speech (b) Noisy speech (0dB babble
noise) (c) Processed speech using STFT features (d) Processed speech using
MFCC features (e) Processed speech using STFT+MFCC (f) Processed speech
using the AFPC features.
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5.2.3 Complexity Analysis

While the bottom 3 feature sets in Tables 5.16, 5.17 and 5.18, i.e., STFT+MFCC,

MFCC+NSSC and STFT+MFCC+NSSC, achieve the best performance in terms of av-

erage PESQ, STOI and SDR, the cost of this improvement for a GAN-based system

using STFT in combination with other features is much more than for the proposed

AFPC=MFCC+NSSC. As shown in Table 5.19, the latter significantly outperforms the

STFT-based combinations in terms of feature size, training time and number of network

parameters. Specifically, compared to STFT+MFCC, the AFPC leads to reductions of

59.1% in memory storage for the training data, 43.3% in training time for the GAN sys-

tem, and 25.0% in the number of network parameters. Compared to the STFT baseline,

MFCC+NSCC requires 49.6% less memory storage for features and 30.1% less training

time, while achieving significant performance improvements. The savings in training time

and network size with the proposed AFPC become larger when we add more context frames

(i.e., j > 1). The testing time is not reported in Table IV since it is almost the same for

all systems. In testing, most of the processing time is allocated to the STFT computation

which is needed for all feature combinations.
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Table 5.19 Size of Feature Vector, Training Time per Epoch and number
of Network Parameters for Different Combinations of Features.

Feature Set
Average

PESQ

Feature

Size

Training Time

per epoch

Network

Param.

STFT 2.43 257 17.6 mins 1.06M

NSSC 2.39 66 10.5 mins 770K

MFCC 2.47 66 10.5 mins 770K

STFT+NSSC 2.50 323 21.7 mins 1.16M

STFT+MFCC 2.56 323 21.7 mins 1.16M

MFCC+NSSC 2.57 132 12.3 mins 870K

STFT+MFCC+NSSC 2.56 389 24.9 mins 1.26M



61

Chapter 6

Conclusion and Future Work

This chapter provides some concluding remarks about the research presented in this thesis.

Specifically, Section 6.1 presents a brief summary of the thesis work and contributions,

while Section 6.2 provides suggestions for possible future work in this active area.

6.1 Conclusion

In this work, we proposed using a compact set of features obtained from the combination

of two AFP techniques, i.e., MFCC and NSSC, to implement a speech enhancement system

based on GAN and trained to predict the IRM of the noisy speech. The NSSC capture the

speech formants and the distribution of energy in each subband, and therefore complement

the MFCC in a crucial way.

Below, we present a chapter-wise sequential overview of the main topics discussed in

this work.

• In Chapter 1, the speech enhancement problem was exposed. This was followed by a

literature survey on the conventional (i.e., statistical) and machine learning methods.
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Finally, an overview of the audio features used for the latter type of methods was

presented.

• In Chapter 2, a brief introduction to deep learning was first presented. Then, moti-

vated by biological networks, the principles of neural networks were reviewed. This

was followed by the presentation of Generative Adversarial Network concepts.

• In Chapter 3, a detailed description of the underlying speech model and the basic

STFT audio feature extraction was given. This was followed by a comprehensive

explanation of two important AFP features, namely: MFCC and NSSC. Other AFP

features of interest were also briefly introduced.

• In Chapter 4, the proposed AFPC feature set, which consists of the combination of

the MFCC, NSSC, their deltas and double deltas, was presented. This was followed by

detailed explanations regarding the incorporation and use of this feature set within the

GAN framework, with particular attention on the enhancement and reconstruction

procedures.

• In Chapter 5, experimental results for several different audio feature combinations

were presented and discussed in terms of three objective measures, i.e, PESQ, SDR

and STOI. The results showed that the AFPC feature sets significantly outperform

the two conventional STFT and MFCC features and perform as well as the more

complex combinations of STFT+MFCC and STFT+MFCC+NSSC.

In experiments with diverse speakers and noise types, GAN-based speech enhancement

with the proposed AFPC (MFCC+NSCC) achieved the best average performance in terms

of PESQ, STOI and SDR objective measures. Furthermore, compared to the STFT+MFCC

combination with nearly similar performance, AFPC led to reductions of about 60% in
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memory storage, 45% in training time, and 25% in network size. Hence, the proposed

AFPC set is a promising feature-extraction method in learning-based speech enhancement

systems.

6.2 Future Works

In this section, we point out some possible directions for future research work. In this work

we proposed using a combination of two AFP features within GAN, allowing us to achieve

near best performance while reducing the number of parameters and training time in our

system. Possible avenues for research include the following:

• It is possible to explore the use of AFP features with other neural network mod-

els and architectures such as CNN and RNN. It is difficult to claim that the same

improvement is achievable with other deep learning architectures, so it would be in-

teresting to further explore how different architectures perform with the proposed

AFPC features.

• It is important to know the effect of unseen noise types when the system is tested on

other noise types that are not seen during the training phase. Also, it is suggested

to use more realistic and recent noise recordings compared to the ones used in this

study.

• Statistical significance testing is usually overlooked in speech enhancement studies

and it is useful to perform such a test in future speech enhancement model studies

including future studies involving the AFP features.

• Besides the MFCC and NSSC, there are other AFP features which were shortly

introduced in this thesis, but studying and analyzing them fell beyond the scope
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of this research. It would be of interest to study how these other AFP features and

their combinations can affect the performance of GAN-based and other learning-based

speech enhancement systems.

• Finally, our study of APFC has shown that it is possible to achieve good performance

in speech enhancement while using a reduced number of input features. A challenging

area for possible study would be to explore and create a new feature set with even

smaller dimensionality than the AFPC that can yet achieve a similar performance

in the speech enhancement task. For applications with reduced vocabulary where

processing complexity is a key factor, e.g, wake-up word detection on smart home

devices, this type of investigation is indeed of great interest.
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