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Abstract

Speech enhancement algorithms are a fundamental component of digital speech and audio pro-
cessing systems and currently find applications in a wide variety of consumer products for stor-
age, transmission and playback of voice, including: cell phones, video cameras, PDAs voice
recorders, teleconference speaker phones and hands-free car phones. Over the last few decades,
the problem of speech enhancement has been vastly studied in the technical literature because
of the increasing demand for removing a certain amount of background noise from the desired
speech signal.

Different approaches have been proposed for the enhancement of speech contaminated by var-
ious types of noise. The common goal is to remove as much noise as possible without introducing
distortion to the processed speech. Among the different categories of speech enhancement meth-
ods, frequency-domain approaches are usually favored in applications due to their lower com-
plexity, ease of implementation on a real-time digital signal processor and resemblance to the
natural processing taking place in the human auditory system. Within the family of frequency-
domain approaches, Bayesian estimators of the short-time spectral amplitude (STSA) offer the
best overall performance in terms of noise reduction and speech distortion. While the STSA
methods have been successful under stationary noise conditions, the problem of speech enhance-
ment in a nonstationary noise environment is still an open issue for research.

The main goal of this thesis is to develop a Bayesian STSA estimator with the purpose of
single-channel speech enhancement in the presence of moderate levels of nonstationary noise.
In this regard, we use a Bayesian minimum mean squared error (MMSE) approach for the joint
estimation of the short-term predictor parameters of speech and noise, from the noisy speech ob-
servation. This approach is based on a recent work by Srinivasan et al. where trained codebooks
of speech and noise linear predictive (LP) coefficients are used to model the a priori information
required by the Bayesian MMSE estimation. Afterwards, the estimated power spectra are passed
to the Wβ-SA Bayesian STSA speech enhancement method, where they are used to calculate the
enhancement gain in the frequency domain. Finally, these gains are applied to the noisy speech
short-term Fourier transforms. which are then converted back to the time-domain to obtain the
desired estimate of the clean speech. When compared to an existing benchmark approach from
the literature, the proposed speech enhancement approach developed in this thesis gives rise to a
notable improvement in the quality of the processed noisy speech.
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Sommaire

Le rehaussement numérique de la parole est une composante fondamentale des systèmes de
traitement audio et trouve actuellement des applications dans une vaste gamme de produits de
consommation pour l’entreposage, la transmission et la reproduction de la voix, y compris :
les téléphones cellulaires, caméras vidéo, enregistreurs vocaux PDA (assistants numériques),
systèmes de téléconférence et téléphones mains-libres d´automobile. Au cours des dernières
décennies, le problème du rehaussement de la parole a été considérablement étudié dans la
littérature technique en raison de la demande croissante pour la réduction lu niveau de bruits
de fond à partir du signal vocal désiré dans ces applications.

Différentes approches ont été proposées pour le rehaussement de parole contaminée par
différents types de bruit. L’objectif commun est de supprimer autant de bruit que possible sans
introduire de distorsion au signal parole. Parmi les différentes catégories de méthodes proposées
pour l’amélioration de la parole, les approches dans le domaine fréquentiel sont généralement
favorisées en raison de leur complexité inférieure, la facilité de mise en œuvre sur un processeur
numérique en temps réel et la ressemblance avec le traitement naturel ayant lieu au sein du
système auditif humain. Dans la famille des approches fréquencielles, les estimateurs bayésiens
de l’amplitude spectrale à courte durée (STSA) offrent la meilleure performance globale en ter-
mes de la réduction du bruit et la distorsion de la parole. Alors que les méthodes STSA ont réussi
dans les conditions de bruit stationnaire, le probléme de l’amélioration de la parole dans un envi-
ronnement de bruit non-stationnaire est encore une question d’intérêt courant pour la recherche.

Le principal objectif de cette thèse est de développer une estimation bayésien amélior´ee
des paramètres STSA dans le but de rehausser la qualité d’un signal parole (canal unique) en
présence de niveaux modérés de bruits non-stationnaires. À cet égard, nous utilisons une formu-
lation bayesienne basé sur la minimisation de l’erreur quadratique moyennede des paramètres à
prédictifs à court terme de la parole et du bruit, partir de l’observation de la parole bruitée. Cette
approche est fondée sur un travail récent par Srinivasam et al. dans lequel des livres de codes
sont utilisés pour la représentation des coefficients de prédiction liné (LP) et gains d’excitition
de la parole et du bruit. Ces livres de codes sont à leur tour utilisés afin de réaliser l’estimation
MMSE des spectres de puissance qui sont requis lors de l’application de la méthode de rehausse-
ment STSA. Dans cette thèse, les spectres de puissance estimés par l’approache MMSE sont
utilisés au sein de la méthode Wβ-SA, où ils servent à calculer le gain de rehaussement qui sera
appliqué au signal btuité dans le domaine de fréquence. En comparaison avec une méthod exis-
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tante, la nouvelle méthode de rehaussement de la parole proposée dans cette thèse donne lieu à
des améliorations importantes de la qualité du signal.
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Chapter 1

Introduction

This chapter provides a general introduction to the thesis, which aims at developing and studying
signal processing algorithms for the problem of speech enhancement in nonstationary environ-
ments. A high level overview of speech enhancement and its applications is given in Section 1.1,
while a literature review of various speech enhancement methods and algorithms is presented in
Section 1.2. The research objectives and the contributions of the thesis are discussed in Section
1.3, and finally, an outline of the upcoming chapters is presented in Section 1.4.

1.1 Speech Enhancement in Modern Communications Systems

1.1.1 What is speech enhancement?

Speech communications refer to the transmission of information from a speaker to a listener in
the form of intelligible acoustic signals produced by the speaker vocal tract [1]. While it is the
most effective and natural way for human beings to communicate, in today’s busy world where
noise is almost always present and silence rarely happens, the speech signal at the input of a
communication system is usually degraded by various types of acoustic noises. The transmission
of this signal can be through the air, i.e. directly from the speaker to the listener, or via electronic
means including optical fibers, copper wires or radio waves [2]. The acoustic noise contami-
nates the speech and depending on its level, impairs the ability to communicate naturally or even
reliably.

In all the applications of speech communications and speech processing, additive noise is
present and degrades the quality and performance of the underlying system. Examples of such
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applications include sound recording, cell phones, hands-free communications, teleconferencing,
hearing aids, and human-machine interfaces such as an automatic speech recognition system [3].
The noise corrupting the signal affects human-to-human as well as human-to-machine commu-
nications directly. The presence of acoustic noise poses a major problem to the system design,
since it may cause significant changes in the speech signal characteristics. On the listener (i.e.,
receiver) side, the noise adds to the received signal and changes its spectral and statistical prop-
erties. However, changes may even occur on the speaker (i.e., transmitter) side where the talker
tends to change his style in response to a high level of background noise [3].

Generally, regardless of exactly how the noise changes the speech characteristics, low to mod-
erate level of noise corrupting a speech signal will lower its perceptual quality for the listener or
the processing device, while high level of noise may degrade its intelligibility or render the pro-
cessing ineffective. Therefore, the process of cleaning up the noisy speech signal at either the
transmitting or the receiving end of the communication chain is highly desirable, and sometimes
absolutely necessary. The cleaning process, which is often referred to as either speech enhance-

ment or noise reduction, has become a crucial area of study in the field of speech processing
[4].

Over the last few decades, the problem of speech enhancement has been studied vastly in
the technical literature. With the emergence of cheap and reliable digital signal processing hard-
ware, many powerful approaches and methods have been developed in order to remove a cer-
tain amount or types of noise from a corrupted speech signal. In general, these methods aim to
achieve three main goals. The first one is to improve the perceptual quality of the noise-corrupted
speech, as measured by various objective performance metrics such as the signal-to-noise ratio
(SNR). Secondly, they aim to improve the speech intelligibility which is mainly a measure of how
comprehensible is the speech. The third objective is to improve the performance of subsequent
processing functions, such as speech coding, echo cancellation and speech recognition [3].

Most, if not all, speech enhancement approaches reported in the literature attempt to reduce
the noise to an acceptable level while preserving the naturalness and intelligibility of the pro-
cessed speech. However, there is always a trade off between these two conflicting objectives and
it is often necessary to sacrifice one at the expense of the other [1]. An overview of the existing
speech enhancement methods that are relevant to this project will be presented in Section 1.2.2
and 1.2.3.
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1.1.2 What makes it difficult?

Today’s speech communication systems are used in adverse acoustic environments, where various
types of noise, interference and other undesirable effects may impair the quality and naturalness
of the desired speech. The different physical mechanisms responsible for degrading the quality
of a desired speech signal can be classified into four different categories [3]: additive noise, echo,
reverberation and interference. Additive noise usually refers to natural sounds from unwanted
acoustic sources (e.g. fan noise, traffic, etc.) or artificial sounds such as comfort noise in speech
coder. These noise sources combine additively to the desired speech and change the details of
its waveform. Echo is the phenomenon in which a delayed and distorted version of an original
sound or electrical signal is reflected back to the source. In hands free telephony instance, echo
usually occurs because of the coupling between loudspeakers and microphones [5]. In the case
of echo, these reflections can be resolved or identified by the human auditory system. Reverber-
ation is conceptually similar in that it is produced by reflection of a sound wave on walls and
other objects, but in this case the reflected sound waves are so dense and closely spaced in time
that they cannot be resolved by the auditory system. They are associated to the exponentially
decaying tail of the acoustic impulse response between the source (speaker) and the destination
(listener or microphone), which in turn is a consequence of the multiple reflections and absorp-
tion of the acoustic waves by the surrounding objects and surfaces. Finally, interference happens
when multiple competing speech sources are simultaneously active, such as in teleconferencing
or telecollaboration applications [3]. In this thesis, the main focus is on the enhancement of
speech contaminated by additive noise and especially background acoustic noise.

One of the main challenge in speech enhancement is that the nature and characteristics of
the additive noise change from one application to another. The problem is even more difficult
when the statistical characteristics of the noise degrading the speech change over time in a given
application [3]. Indeed, when the additive noise exhibits such as nonstationary behavior, the
speech processing system must be able to track the frequent changes in the noise, and it becomes
difficult to estimate its statistics which are needed as part of the enhancement process.

Another important and challenging issue is the ever present trade-off between noise reduction
and speech distortion. Indeed it is invariably found that reducing the additive noise present in
a speech signal introduces undesirable changes (distortion) to the latter. Modern approaches of
speech enhancement often include design parameters which can be adjusted to control this trade-
off. This means that the speech enhancement system should work in such a way as to achieve
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balance between reducing the amount of noise and degrading the speech quality .
Overall, the various methods of speech enhancement developed over the years, have reached

an acceptable level of performance under a limited range of operating conditions, especially for
a low level of stationary or non-stationary noise. However the enhancement of speech corrupted
by high level levels of noise, especially non-stationary, remains an open problem for research.
Below, we provide an overview of existed methods of speech enhancement indicating their ad-
vantages and their drawbacks. A more detailed description of selected speech enhancement and
related noise estimation algorithms which are more closely to this work are given in Chapter 2.

1.2 Literature Review

Speech enhancement techniques have been amply studied and a wide range of algorithms oper-
ating under different conditions have been proposed. In all these approaches, the enhancement
made to the noisy speech depends on the statistical properties of the desired speech and of the cor-
rupting noise, which must be estimated as part of the enhancement process. A crucial component
of a functional speech enhancement system, therefore is the estimation of the background noise
statistics. Consequently, many algorithms have been developed for this purpose. An overview of
which is therefore given in Section 1.2.1. This is followed by a review of speech enhancement
methods in Sections 1.2.2 and 1.2.3, where in the latter section, the focus is on methods that
employ statistical learning approaches.

1.2.1 Estimation of the noise statistics

The requirement for accurate estimates of the noise statistics is a common feature in most speech
enhancement systems. Indeed the noise statistics are needed as part of the algorithm employed
to clean the noisy speech. An example of this is in the calculation of optimum gains based on a
probabilistic noise model for the filtering of the noisy speech. Typically, these gains require the
knowledge of the short-time power spectral density (PSD) of the noise. The main problem here
is that the noise statistics must be estimated from the noisy speech data, i.e. in the presence of
the desired speech.

The most common noise estimation algorithms can be classified into two main families,
namely hard-decision and soft-decision methods. In the first family, the noise statistics are
tracked only during silence or noise-only periods of the noisy speech data, i.e. when the speech is
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inactive. This requires the use of a so-called “voice activity detector” (VAD) which apply some
hypothesis tests based on certain energy measures [6], [7], [8]. However, estimating the noise
statistics only during speech silence is not adequate in the case of a non-stationary noise envi-
ronment, where the noise power spectral density (PSD) may change notably during a period of
speech activity. Therefore, there is a need for noise estimation methods in which the noise PSD
estimates are updated more frequently.

In the second family, referred to as soft-decision methods, the noise statistics are tracked even
during speech activity. In recent years, several noise estimation algorithms have been proposed
that fit into this category. These can be further divided into different subsets depending on their
fundamental principle of operation. In a first, and possibly most important subset, the estimates
of the noise statistics are obtained through a minimum controlled process, as exemplified by [9],
[10], [11]. A short description of these algorithms is given below.

In [9], Martin proposed an original method for estimating the noise PSD, which is based on
tracking the minimum of the noisy speech short-term PSD over a finite temporal window. This
comes from the observation that the power level of a noisy speech signal frequently decays to
that of the disturbing background noise. However, since the minimum is biased towards lower
values, an unbiased estimate was obtained by multiplying the local minimum with a bias factor
derived from the statistics of the latter [12]. The main drawback of this method is that it takes
slightly more than the duration of the minimum search window to update the noise spectrum,
when results in delays when tracking a sudden change in the noise power level [13].

In [10], Cohen proposed a new method called minima controlled recursive averaging (MCRA)
in which the estimate of the noise is updated by tracking noise-only regions of the noisy speech
spectrum over time, which in turn is achieved based on the speech presence probability in each
frequency bin. The latter is calculated using the ratio of the noisy speech PSD level to its local
minimum over a fixed time window. Then the noise estimate is obtained by averaging past PSD
values, with the use of a smoothing parameter which is derived based on the speech presence
probability. The main drawback of this method is again the delay in recognizing an abrupt change
in the noise level; this delay is almost twice the length of the data window on which the processing
is performed [10].

In [11], Cohen proposed a modified version of MCRA called improved minima controlled
recursive averaging (IMCRA) [11], aiming at resolving the problems of MCRA. In this method,
a different approach is used to track the noise-only regions of the spectrum based on the estimated
speech presence probability. The noise estimation procedure includes two iterations of smoothing
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and minimum tracking. In the first iteration, a rough decision about speech presence probability
is made in each frequency bin based on the results of smoothing and minimum tracking. In the
second iteration, smoothing in time and frequency is performed which excludes strong speech
components in order to boost the efficiency of minimum tracking in speech activity regions [11].
However, since the noise estimate is controlled by minimum tracking, IMCRA still suffers from
delays in detecting an increase in the noise level [13].

1.2.2 Speech enhancement methods

Speech enhancement algorithms can be categorized into single-channel and multi-channel al-
gorithms depending on the number of microphones being employed. Single microphone (SM)
techniques, which are simple to implement and have lower costs, have been the focus of earlier
studies [14] on speech enhancement. In recent years, there have been much interest towards the
development of microphone array (MA) techniques, which can coherently process the output of
multiple microphones and thereby discriminate sound sources spatially through the applications
of beamforming techniques [15]. However those methods are generally have high implementa-
tion costs and therefore, there is still a strong interest from industries and academia for improved
SM techniques. In this thesis the focus is on SM techniques, and accordingly only these methods
are considered in the following literature review.

In general, SM speech enhancement methods can be classified into two main groups. In the
first group, the enhancement is done by passing the noisy speech trough an enhancing filter
directly in the discrete-time domain. Thus the most critical and challenging issue is to find
a proper optimal filter that can remove the noise effectively without making distortions to the
speech signal. The optimal filter applied in the time domain should be designed on a short-time
basis due to the fact that the speech is highly nonstationary. The procedure is to first divide
the speech signal into short-time frames, where the frame length is a few tens of milliseconds.
Afterwards, for each of the frames where the speech is now considered to be stationary, the
optimal filter is constructed. By passing the noisy speech frame through the constructed filter, the
estimate of the clean speech is obtained. However, this method is computationally expensive as
it often involves the computation of a matrix inverse [4]. Examples of such processing includes
linear convolution and Kalman filtering [16], [17], [18].

In the second group, after decomposing the noisy speech into successive analysis frames,
a transform is applied to the windowed frame to produce transform coefficients, and then the
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enhancement is performed by modifying each coefficient separately. The transform has several
advantages as it can act as a decorroletor where the transform coefficients are uncorrelated or even
statistically independent. Therefore, the processing operation such as excluding a noisy transform
coefficient, can be done on each coefficient separately [19]. One of the most popular transforms
is the short-time Fourier transform (STFT) [1], which is used to map the speech samples from
a given frame into the frequency domain. The enhancement is performed by modifying STFT
coefficients which are converted back to the time-domain using an inverse STFT. These methods,
known collectively as frequency domain methods in the literature, are further discussed below.
Many other types of transforms have also applied for the purpose of enhancing speech signals
in a transform domain. Examples include the subspace methods which apply Karhunen-Loeve
Transform (KLT) on each frame of the noisy speech [20], [21], [22] as well as methods which
are based on the discrete cosine transform (DCT) and the wavelet transform domains [23],[24],
[25] [26].

Generally, it is more practical to process the speech signal in the frequency domain since
the vocal tract produces signals based on filtering mechanisms that which can be analyzed or
processed more easily in the spectral domain rather than the time domain [1]. In order to process
the signals in the STFT domain, the fast Fourier transform (FFT) is usually employed in system
implementations. The complete procedure can be explained in four steps as follows [4]:

• As in time domain processing, the noisy speech is divided into short-time frames that over-
lap partly.

• A tapering window is applied to the speech samples in each frame, which are then mapped
to the frequency domain via the FFT.

• To obtain and estimate of the clean speech, an enhancing filter (taking the form of frequency
dependent gains) is applied to the complex STFT coefficients.

• Finally, An inverse FFT is applied to the modified STFT coefficients and the enhanced
speech is obtained via an overlap-add operation in the time-domain.

This frequency-domain approach is more efficient than its time domain counterpart, due to the
use of the computationally efficient FFT algorithm. In addition, because of the decorrelating
nature of the STFT, the different complex STFT coefficients can be processed independently, i.e.
without any coupling between them. This gives us more flexibility in implementation and in
general, results in improved speech enhancement performance [4].
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Examples of such STFT-based frequency domain methods include spectral subtraction [27],
[28], Wiener filtering [29] and Bayesian approaches [30],[31],[32]. In the spectral subtraction
approach, the attempt is to estimate the spectral amplitude (i.e. magnitude of the corresponding
STFT coefficient) of the clean speech, from the observed noisy speech. This is mainly done by
subtracting an estimate of the noise spectral amplitude from that of the observed noisy speech.
Finally, the estimated amplitude is combined with the phase of the noisy speech to produce the
desired estimate of the clean speech STFT. In the Wiener filtering approach, the estimate of the
clean speech STFT is obtained using a MMSE estimator, where the statistical distributions of
the speech and noise are considered to be Gaussian. Similar to the spectral subtraction method,
the phase of the clean speech estimate is obtained from that of the noisy speech. Both spectral
subtraction and Wiener filtering methods, suffer from the a musical noise which results from the
process of obtaining the enhanced speech.

In this thesis, we focus on a group of algorithms, called Bayesian estimators, which fall in the
category of frequency domain, single-channel speech enhancement methods. In these estimators,
the estimate of the clean speech is obtained by minimizing the expected value of a cost function
which provides a measure the error between the estimated and the real speech. It is shown in
[33] that the performance of Bayesian estimators is subjectively superior than many other speech
enhancement methods. These methods further reviewed below.

Bayesian estimators typically operate in the frequency domain, where the estimate of the
clean speech is obtained by modifying the complex STFT coefficients of the speech signal in a
given analysis frame of noisy speech.

formulated as estimating the complex STFT coefficients of the speech signal in a given analy-
sis frame of noisy speech. However, it has been shown in [34] and [35] that the spectral amplitude
of the speech signal is more relevant than its phase. Therefore, it is more useful to estimate the
STSA of the speech signal instead of its STFT coefficients. In such systems the STSA of the
speech signal is therefore estimated and then combined with the short-term phase of the observed
noisy speech in order to build the enhanced signal.

As explained above, in the Bayesian estimators scheme, the estimate of the clean speech is
obtained by minimizing the expected value of a cost function which represents the error between
the estimated and the real speech. The performance of these enhancement methods mainly de-
pends on the choice of this cost function as well as certain statistical properties of the speech
and noise signals. It is shown in [30] that it is practical to model the STFT coefficients as inde-
pendent zero-mean complex Gaussian random variables with time-varying variances. All of the
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algorithms described below use this type of model for the speech and noise signal statistics.
In [30], Ephraim and Malah introduced a well-known Bayesian estimator, known as an

MMSE STSA estimator in which the cost function is the mean squared error between the es-
timated and the true speech STSA under the Gaussian assumption [30]. This approach led to
great improvement in speech enhancement performance, specially due to its lower residual noise
when compared to the Wiener filter [2]. Subsequently other Bayesian estimators were developed
by generalizing MMSE STSA method.

Based on the idea that the human auditory system performs a logarithmic compression of the
STSA, Ephraim and Malah proposed an improved version of the MMSE STSA method in [31]
which is called log-MMSE. In this method the distortion measure is based on the mean-square
error of the log-spectra. The superiority of this method compared to the original MMSE STSA, is
in producing lower level of residual noise without introducing additional distortion to the speech
signal [31].

Instead of log-MMSE, other estimators have been developed by choosing cost functions that
takes into account the internal mechanisms of the human auditory systems. Examples are given
by [36] and [37], where masking thresholds are introduced in the the cost function, and in [32]
where the cost function is based on perceptual distortion measures.

One of the best cost functions is the weighted Euclidean (WE) measure, introduced in [32],
in which the error between the enhanced and clean speech STSA is weighted by the STSA of
clean speech raised to a power p. This choice was motivated based on the masking property of
the human auditory system, where noise near spectral peaks is more likely to be masked and
therefore less audible [32]. The resulting speech enhancement algorithm is referred to as WE in
the literature.

Another modified version of the MMSE STSA called β-SA is proposed in [38]. In the under-
lying cost function, a power law with exponent β, is applied to the square root of the estimated
and clean speech. The exponent β is used to avoid over reduction of the noise and better control
of the speech distortion.

The Bayesian estimator utilized in this thesis is the modified version of MMSE STSA method,
called the Wβ-SA method, recently proposed by Plourde and Champagne in [39]. The cost
function used in Wβ-SA generalizes the one used in the two previously proposed methods [32]
and [38]. The parameters which are used to build the cost function in Wβ-SA, basically combine
those in [32] and [38]. However, these parameters are chosen based on the characteristics of
the human auditory system, such as the compressive nonlinearities of the cochlea, the perceived
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loudness and the ear’s masking properties. Choosing the model parameters in this way, decreases
the processing gain at high frequencies which in turn provides more noise reduction as well as
limiting the speech distortion at lower frequencies. A more detailed technical description of the
family of MMSE STSA Bayesian algorithms will be given in Chapter 2.

1.2.3 Data driven speech enhancement methods

Other more sophisticated methods have also been developed in which data-driven statistical learn-
ing is applied to derive a priori knowledge of the speech and noise descriptors. This knowledge
can be used to develop a probabilistic model of the observed data which, in turn, can be employed
to derive estimators of the relevant speech and noise statistics. For instance, the obtained a priori

knowledge can be used to define specific probability density functions (PDF) for the speech and
noise spectral components. As an example, the speech PDF can be described using a Laplacian
density while the noise PDF can be assumed to be Gaussian [40]. From there, various estimation
principles, such as maximum likelihood (ML) or minimum mean square error (MMSE), can be
applied to derive the estimates of the unknown noise parameters. Typical methods within this cat-
egory include the ones based on hidden Markow model (HMM) and linear predictive codebook,
which are further described below.

In [41], the parameters of the speech and noise spectral shapes, specifically the auto-regressive
(AR) coefficients and associated excitation variances, are modeled using HMMs. This type of
modeling is based on multiple hidden states with observable outputs, the states being connected
with the transition probabilities of a Markov chain. The HMMs parameters are estimated be-
forehand, i.e. trained based on data derived from various selected noise types; once the model
has been trained, it can applied to noisy speech to derive estimates of the speech and noise AR
parameters. In [41], to optimize system performance, the estimated noise variance is scaled by
a so-called gain adaptation mechanism, which adjusts the noise level based on processing the
data observed during silence regions (non-speech). The AR parameters of the noise model based
on the trained HMM are combined with those of the clean speech to obtain an MMSE estimate
of the clean speech, as a weighted sum of MMSE estimators corresponding to each state of the
HMM for the clean speech signal. In the presence of a stationary background noise, this HMM
based method can estimate the noise spectral shape effectively. However, its main problem is that
it can only update the noise parameters during non-speech activity periods, and it is therefore
slow in adapting to changes in the noise background. Actually, as pointed out in [40], the adap-
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tation speed is comparable to that of the long-term estimate based on minimum tracking in [9].
Another limitation of this HMM based method is that its performance will be degraded when the
characteristics of the actual noise differ significantly from those of the noise data used to train the
HMMs.

Other examples of such model based systems, are the methods which use trained codebooks
of speech and noise LP coefficients to provide the a priori information needed in the process
of noise statistics estimation. In contrast to HMM based methods which include the excitation
variances in the a priori information, here the gains are assumed to be unknown and need to
be evaluated. Examples of such methods are presented in [42], [43] and [44], which are briefly
reviewed below.

In [42], for each pair of speech and noise codebook entries, the speech and noise excitation
variances that maximize the likelihood function are computed. Afterwards, the computed excita-
tion variances along with the LP coefficients stored in each pair of speech and noise codevectors
are applied to model the speech and noise power spectrum. A log-likelihood score between the
observed noisy speech and the modeled one is defined and the estimates of speech and noise
spectra, that is the pair of speech and noise codebook which maximize the identified likelihood
score, together with the related excitation variances are obtained, corresponding to a standard
ML estimation. In [43], the same approach is followed, but a different distortion measure is used
instead of the log-likelihood. Indeed it is proved in [43] that maximizing the log-likelihood in
equivalent to minimizing the Itakura-Saito measure. Based on this idea, a search is performed
through the speech and noise codebooks in order to find the excitation variances which minimize
the Itakura-Saito measure. In [44] a further processing step is added to the ML estimation, in
order to make the parameter estimation more robust. In this approach, the PDF of the observed
noisy speech is defined using the ML estimates of speech and noise. Afterwards, this knowledge
of observed data PDF is applied in a MMSE approach, in which the MMSE estimates of the
speech and noise LP coefficients along with their excitation variances are derived. This method
will be used in this thesis to derive the statistics of the noise. it will therefore be explained in
further detail in Chapter 3.

1.3 Thesis Contribution

As discussed before, Wβ-SA method of speech enhancement as demonstrated in [39], shows
improved performance compared to other Bayesian speech enhancement methods. However,
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the results presented in [39] have been obtained under stationary noise conditions, where the
required statistics of the noise are obtained beforehand by processing a sample of the clean noise
signal. But in practice, we can hardly proceed in this way since the clean noise is not readily
available. The other problem is that in reality, the noise which degrades the speech signal quality
is nonstationary and its statistics (e.g. spectral properties) change over time.

In this thesis, to overcome this limitation, our main goal is to use one of the data driven
methods explained in Section 1.2.3 to derive the statistical knowledge of the noise signal. Once
an estimate of the noise statistics is obtained, it will be applied in the Wβ-SA speech enhancement
method described in Section 1.2.2 in order to obtain the estimate of the clean speech signal, even
in the presence of the noise with nonstationary properties.

The model based method used in this thesis is a combination of the methods proposed in [42]
and [44]. Each of these methods exploit trained codebooks of speech and noise LP coefficients
to model the required a priori knowledge. First, the maximum likelihood estimates of the speech
and noise excitation variances are derived using the method proposed in [42]. Then the ML
estimates are used in the MMSE approach explained in [44] in order to obtain the final speech
and noise LP coefficients and excitation variances. Afterwards, the speech and noise spectra
are modeled using the derived parameters. The estimated speech and noise PSDs are then fed
into the Wβ-SA speech enhancement scheme to derive the estimate of the clean speech. Since
the estimate of the noise is constantly updated, this method performs efficiently in nonstationary
environments.

The speech enhancement method used in this work, is the Wβ-SA method developed in [39].
As it was discussed in Section 1.2.2, this method offers a better trade off between noise reduction
and speech distortion results by making use of perceptually adjusted parameters. In this thesis,
we examine in detail the incorporation of the above codebook based noise estimation method
[44] within the Wβ-SA speech enhancement method [39].

This combination is achieved by replacing the noise variance in the calculation of the a priori

and a posteriori SNR parameters, which are then used in the calculation of the gain function.
The latter is then applied to the STSA of the observed noisy speech, in order to derive the clean
speech data, as will be further explained in Chapter 3.

In Chapter 4, we evaluate the performance of the resulting speech enhancement algorithm
which combines the codebook-based scheme with Wβ-SA speech enhancement method. In par-
ticular, its performance is compared to that of the STFT-based Wiener filtering method [29] under
non-stationary noise conditions. To this end, different types of noise are used, including train,
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street, car, restaurant and airport noise. The comparison is made by computing PESQ objective
measures of speech quality. The results, which are also supported by informal listening, point to
the superiority of the newly developed approach over the Wiener filter in terms of both subjective
and objective measures.

1.4 Organization

In Chapter 2, various important noise estimation algorithms are first reviewed where we point out
the advantages and drawbacks of each technique. Afterwards, the MMSE STSA Bayesian speech
enhancement method is explained in detail, followed a presentation of its by the improved ver-
sions including Wβ-SA. In Chapter 3, the codebook based parameter estimation method [44] is
presented in detail and then it is explained how it can be incorporated within the Wβ-SA speech
enhancement method. The performance of the method with respect to different parameter set-
tings and under different noise environment is studied Chapter 4, where objective, i.e. numerical
evaluation results are presented. Concluding remarks and possible opportunities for future work
are summarized in Chapter 5.
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Chapter 2

Background Material

This chapter includes two main sections. In the first section, selected methods of noise PSD
estimation which fall into the category of soft-decision approaches are described in detail. In the
second section, several speech enhancement algorithms within the category of frequency domain
Bayesian STSA approaches are explained, including the Wβ-SA method which plays a central
role in this thesis. In our presentation, we try to explain the advantages and drawbacks of the
various methods and algorithms under consideration.

2.1 Noise PSD Estimation

As explained before in Section 1.2.1, the soft-decision noise PSD estimation methods differ from
the hard-decision ones in the underlying approach used for updating the noise statistics estimates.
While these estimates are updated only during silence regions in the hard-decision methods,
they are updated continually, i.e. regardless of whether speech is present or absent, in the soft-
decision schemes. In this section two noise PSD estimation methods which fall into the category
of soft-decision methods are reviewed and their operation is explained. The first method is that
of minimum tracking proposed by Martin [9], while the second method is the so-called IMCRA
proposed by Cohen [11]. Before proceeding however, we introduce certain modeling elements
which are common to both methods.

The general model used in these selected methods in order to represent the discretized noisy
speech, is the basic additive noise model, which can be expanded as follows:
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y(n) = x(n) + w(n) (2.1)

where y(n), x(n) and w(n) denote the samples of the noisy speech, the desired speech and the
additive noise data respectively, and integer n represents the discrete-time index, where uniform
sampling at a given rate Fs is assumed.

In a short observation interval of about 20-40ms, it can be assumed that the desired speech
signal x(n) and additive noise w(n) are realizations of independent, zero mean and wide-sense
stationary random processes. Therefore, it is useful to separate the set of observed noisy speech
samples y(n), 0 ≤ n ≤ L, into overlapping frames with duration less than 40 ms [2]. This can
be written as follows:

yl(n) = y(n + �M), 0 ≤ n < N, 0 ≤ l < Nf (2.2)

where � denotes the frame index, M is the frame advance, N is the frame length with N ≥ M

(N −M is the number of samples that overlap between two successive frames) and Nf is the total
number of frames. An analysis window ha(n) is applied on each frame for the purpose of trading-
off between resolution and the sidelobe suppression in the frequency analysis [2]. Afterwards,
each windowed frame of noisy speech data is transformed into the frequency domain using the
discrete Fourier transform (DFT) as follows:

Y(k, �) =
N−1∑
n=0

yl(n)ha(n)e− j 2π
N kn (2.3)

where k ∈ {0, 1, ...,N − 1} is the frequency index and Y(k, �) denotes the corresponding STFT
coefficient of the noisy speech for the lth frame. Therefore, the additive noise model (2.1) can be
represented in the STFT domain as:

Y(k, �) = X(k, �) +W(k, �) (2.4)

where X(k, �) and W(k, �) denote the STFT coefficients of the clean speech and noise in the lth
frame, respectively.

In the literature an speech enhancement, noise estimation refers to the estimation of the vari-
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ance of W(k, �) which under the zero-mean assumption is given by

σ2
W(k, �) = E{|W(k, �)|2}. (2.5)

This quantity is also referred to as the short-term power spectrum. Similarly, we can define:

σ2
X(k, �) = E{|X(k, �)|2} (2.6)

σ2
Y(k, �) = E{|Y(k, �)|2}. (2.7)

Under the independence assumption it follows from (2.4) that:

σ2
Y(k, �) = σ2

X(k, �) + σ2
W(l, �) (2.8)

The main goal of the methods reviewed in the following sub-sections is to obtain a running
estimate of the noise PSD, i.e. σ2

W(k, l) in (2.5), based on the observations of the noise speech
STFT Y(k, �).

2.1.1 Minimum statistics (MS) noise estimation

In [9], Martin proposed an original method for estimating the noise PSD from the observed noisy
speech. This method, which is based on minimum statistics and optimal smoothing, relies on
two fundamental premises. First, it is assumed that the clean speech and additive noise signals
are statistically independent. Second, as it is observed experimentally, the PSD level of the noisy
speech signal often decays to that of the background noise. Therefore, the estimate of the noise
PSD can be derived by tracking the minimum of the noisy speech power spectrum.

An estimate of the noise PSD σ2
W(k, l) in (2.5) can be obtained through a first order recur-

sive averaging of the instantaneous magnitude spectrum |Y(k, �)|2, also called periodogram , as
follows:

P(k, �) = αP(k, � − 1) + (1 − α)|Y(k, �)|2 (2.9)

where P(k, �) is the desired estimate and 0 ≤ α ≤ 1 is a smoothing parameter.
More generally, the smoothing parameter α used in (2.9) can be considered as time and fre-
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quency dependent. i.e. α ≡ α(k, �). Using such a time and frequency dependent parameter, (2.9)
can be rewritten as follows:

P(k, �) = α(k, �)P(k, � − 1) + (1 − α(k, �))|Y(k, �)|2 (2.10)

In order to derive an optimal value for α(k, �), only the speech silence regions are considered.
Since in theory the speech signal PSD is equal to zero during these intervals, i.e. σ2

S (k, �) = 0,
P(k, �) should be as close as possible to the noise PSD. This can be fulfilled by minimizing the
mean squared error between P(k, �) and σ2

D(k, �), given the previous estimate P(k, � − 1), which
can be formally expanded as:

E{(P(k, �) − σ2
W(k, �))2|P(k, � − 1)}. (2.11)

Substituting (2.9) in (2.11) and setting the first derivative with respect to α to zero, the optimal
value of α, denoted as αopt is derived as follows:

αopt(k, �) =
1

1 + (P(k, � − 1)/σ2
W(k, �) − 1)2

. (2.12)

In practical implementations, it has been observed that the use of (2.12) leads to errors in
estimating the noise PSD, and therefore the smoothing parameter should be modified. To this
end, the estimation errors are tracked by comparing P(k, �) and a reference quantity, which is
considered to be the frequency averaged periodogram. Specifically an error monitoring algorithm
is employed in [9] which compares the average smoothed PSD estimate of the previous frame

(1/N)
N−1∑
k=0

P(k, � − 1) and the average periodogram of the current frame (1/N)
N−1∑
k=0
|Y(k, �)|2, where

the average is over all the frequency bins. A correction factor denoted as αc(l) is calculated
in each frame using the ratio of these averaged quantities. The corrected value of the optimal
smoothing parameter is calculated by multiplying the right hand side of (2.12) by αc(l) as in:

αopt(k, �) =
αmaxαc(�)

1 + (P(k, � − 1)/σ2
W(k, �) − 1)2

(2.13)
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where αmax = 0.96 is used as an upper limit on the smoothing parameter.
In the minimum tracking PSD estimation approach, the minimum value of the smoothed PSD

estimate P(k, �) (2.10) over a finite temporal window of length L frames is used as the desired
estimate, that is:

Pmin(k, �) = min{P(k,m) : L − l < m ≤ L} (2.14)

The minimum noise PSD estimate is necessarily biased since, for nontrivial probability densities,
the minimum value of a set of random variables is smaller than their mean [45]. Therefore, a bias
factor is needed to compensate the use of the minimum operation in this estimation approach.
Similar to the procedure for finding the smoothing parameter, one only needs to consider the
speech silence periods of the noisy speech in order to derive the bias factor.

It can be seen from the denominator of the optimum smoothing parameter in (2.13) that the
PSD estimate P(k, �) is normalized by the variance of the noise or PSD, i.e. σ2

W(k, �). More gener-
ally, it can be shown that the PDF of P(k, �) in (2.10) in scaled by σ2

W(k, �), which in turn implies
that the minimum statistics of the smoothed PSD P(k, �) is also scaled by σ2

W(k, �). Therefore,
it can be concluded that the mean and the variance of Pmin(k, �) are respectively proportional to
σ2

W(k, �) and σ4
W(k, �), and without loss of generality, it is sufficient to compute the mean and the

variance for the case that σ2
W(k, �) = 1 [9]. Hence, the bias compensation factor can be defined

as:

B−1
min(k, �) = E{Pmin(k, �)}σ2

W (k,�)=1 (2.15)

and after some manipulations, it is obtained as follows:

Bmin(k, �) ≈ 1 + (L − 1)
2

Qeq
(k, �) (2.16)

where L is the window length and Qeq is the so-called equivalent degrees of freedom, defined as
Qeq(k, �) = 2σ4

W(k, �)/var{P(k, �)}.
Finally, the desired unbiased noise PSD estimate can be expressed as follows:

σ̂2
W(k, �) = Bmin(k, �)Pmin(k, �) (2.17)
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It can be seen that the minimum tracking of the noise PSD is done over a fixed window of
length L. The window length must be large enough to cover at least one silence period as well
as extending beyond the broadest peaks of speech energy in the noisy speech waveform [12]. As
we are dealing with sources of nonstationary noise, there may also be abrupt changes in the noise
level. An example is a talker who uses his cell phone while moving from a quiet place to a noisy
one [12]. Since the minimum is obtained over a fixed window of length L, it may take a time in
excess of L frames to track a sudden change in noise. This is clearly an undesirable behavior,
since we are looking for a system which can track the nonstationarities of the noise source in
real time. Other advanced methods have been proposed to reduce this delay in tracking an abrupt
change in the noise level in [10] and [11].

2.1.2 Minima controlled recursive averaging (MCRA)

In [10], Cohen presented a more sophisticated noise PSD estimation method, in which the noise
estimate is updated by averaging the past spectral values of the noisy speech. The estimate is
controlled by a smoothing parameter, which is dependent on both time and frequency. This de-
pendence is achieved via the a priori speech absence probability in each frequency bin separately.
In order to derive the speech presence probability, first the local minimum is obtained over a fixed
window of time, and then the probability is calculated using the ratio of the noisy speech power
spectrum to the local minimum in that frame. This method, called Minima Controlled Recursive
Averaging (MCRA) is explained in further detail below:

The noise estimation process is mainly based on two hypotheses, corresponding on whether
the speech is present or not. Specifically, these hypotheses can be expressed as follows:

H0(k, �) : Y(k, �) = W(k, �)

H1(k, �) : Y(k, �) = X(k, �) +W(k, �) (2.18)

where Y(k, �), S (k, �) and D(k, �) denote the STFT coefficients of the noisy speech, clean speech
and noise, l denotes the frame index and k represents the frequency bin. As can be observed from
the definitions of the hypotheses, it is considered under H0(k, �) that the speech is absent, while
under H1(k, �) the presence of both speech and noise is assumed.

Let P(k, �) denote the desired estimate of the noise spectrum (or variance), i.e. σ2
W(k, �) =

E{|W(k, �)|2}. Based on the above hypotheses, P(k, �) is updated differently during frames where
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speech is absent and frames where it is present, as follows:

H0(k, l) : P(k, � + 1) = αdP(k, �) + (1 − αd)|Y(k, �)|2
H1(k, l) : P(k, � + 1) = P(k, �) (2.19)

where αd (0 < αd < 1) is the smoothing factor. It can be observed that the noise spectrum
estimate is only updated during frames where speech is absent. The two equations in (2.19) can
be combined in a single equation, by making use of the speech presence probability as follows:

P(k, � + 1) = P(k, �)pr(k, �) + [αdP(k, �) + (1 − αd)|Y(k, �)|2](1 − p(k, �)) (2.20)

where pr(k, �) denotes the conditional speech presence probability under the observation of Y(k, �),
defined as pr(H1(k, �)|Y(k, �). Equivalently, recursion (2.20) can be written in the form:

P(k, � + 1) = α̃d(k, �)P(k, �) + [1 − α̃d(k, �)]|Y(k, �)|2 (2.21)

where the new smoothing parameter α̃d(k, �) is given by:

α̃d(k, �) = αd + (1 − αd)pr(k, �) (2.22)

As can be observed from (2.22), the computation of α̃d(k, �) requires the knowledge of the
conditional speech presence probability pr(k, �). In [10], the latter is estimated based on the ratio
between the local energy of the noisy speech and its minimum over a specified time window
of length L frames, where the value of L is chosen to cover the duration of the broadest peaks
in speech activity. The local energy of the noisy speech is obtained by smoothing the squared
magnitude spectrum of the noisy speech in the time and frequency domain, as explained below.

In the frequency domain, the smoothed power spectrum is obtained as follows:

S f (k, �) =
w∑
−w

b(i)|Y(k − i, �)|2 (2.23)

where b(i) is a window function whose length is 2w + 1. In the time domain, the smoothing is
performed by a first order recursive averaging as follows:



22 Background Material

S (k, �) = αsS (� − 1, k) + (1 − αs)S f (k, �) (2.24)

where αs is a smoothing factor. The minimum value of a specific frame is obtained by comparing
the local energy in that frame to the minimum value of the previous frame, as in:

S min(k, �) = min{S min(k, � − 1), S (k, �)} (2.25)

The actual implementation of this scheme is slightly more complicated than this as it involves the
use of temporary variable, say S tmp(k, �), which is employed and re-initialized with every block
of L consecutive frames. We refer to reader to [10] for additional detail.

Let the indicator function I(k, �) ∈ {0, 1} represent the presence of speech in each frame,
that is I(k, �) = 1 when speech is present and 0 otherwise. I(k, �) is specified by using the ratio
between the noisy speech power and its minimum, defined as S r(k, �) = S (k, �)/S min(k, �). Let
δ > 0 be a threshold introduced to determine whether the speech is present or absent in a given
frame. Then we have:

I(k, �) =

⎧⎪⎪⎨⎪⎪⎩
1 if S r(k, �) > δ (speech present)
0 if S r(k, �) < δ (speech absent)

(2.26)

Using this indicator function, the speech presence probability is estimated as:

pr(k, �) = αp pr(k, � − 1) + (1 − αp)I(k, �) (2.27)

where 0 < αp < 1 is a smoothing parameter.
Finally having estimated the conditional speech presence probability pr(k, �) as above, the

smoothing parameter α̃d is computed and the noise PSD estimate P(k, �) is updated using (2.21).
As pointed out above, however, because of a time window of L frames, this proposed approach
also has a memory in excess of L frames. Consequently, a similar problem as in [9] appears in
tracking sudden change in the noise power.
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Improved version of MCRA (IMCRA)

In [11], Cohen proposed an improved version of MCRA which is called IMCRA in the literature.
Likewise MCRA, it includes averaging past spectral values using a smoothing factor which is
dependent on the speech presence probability. Compared to MCRA, improvements have been
made with respect to minimum tracking, speech presence probability calculation and introducing
a bias compensation factor [12].

Similar to (2.18) in MCRA, two hypotheses H0(k, l) and H1(k, l) are defined, which re-
fer to the case of speech absence and speech presence. The noise PSD estimate is updated
exactly as in (2.21) and (2.22), where the conditional speech presence probability pr(k, �) =
pr(H1(k, �)|Y(k, �)|) is now computed on the basis of a Gaussian model for the speech signal and
noise component. Specifically,

pr(k, �) =
{

1 +
q(k, �)

1 − q(k, �)
(1 + ξ(k, �)) exp(−v(k, �))

}−1

, (2.28)

where

γ(k, �) =
σ2

X(k, �)
σ2

W(k, �)
ζ(k, �) =

|Y(k, �)|2
σ2

W(k, �)
(2.29)

are the a priori and a posteriori SNRs, v = γζ/(1 + ζ) and q(k, �) = pr(H0|(k, �)) is the a priori

probability for speech absence.
The estimation of q(k, �) is controlled by the minima values of a smoothed power spectrum of

the noisy speech and comprises two iterations of smoothing and minimum tracking, as explained
below:

The first iteration provides a coarse decision to identify the frames of speech in each frequency
band. At first, the noisy speech PSD S (k, �) is smoothed in frequency and time domain as in (2.23)
and (2.24). Afterwards, the minimum of the smoothed noisy PSD is searched over a window of
length L frames, that is:

S min(k, �) = min{S (k,m)|� − L < m ≤ �} (2.30)

Consequently, a posterior and a prior SNR measures are defined respectively as follows:

γmin(k, �) =
|Y(k, �)|2

BminS min(k, �)
ζ(k, �) =

S (k, �)
BminS min(k, �)

(2.31)
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where Bmin denoted the bias of the minimum noise power estimate. Based on these two SNRs,
a criterion is defined upon which a decision is made whether the speech is present or not, as
follows:

I(k, �) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if γmin(k, �) < γ0 and ζ(k, �) < ζ0 speech absent

0 otherwise speech present.
(2.32)

where the parameters γ0 = 4.6 and ζ0 = 1.67.
The second iteration of smoothing includes only the power spectral components, which have

been identified as containing primarily noise. The smoothing in frequency domain is obtained
based on the made decision as follows:

S̃ f (k, �) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑w
−w b(i)I(k − i, �)|Y(k − i, �|2∑w

−w b(i)I(k − i, �)
if

∑w
−w I(k − i, �) � 0

S̃ f (k, � − 1) otherwise
(2.33)

Consequently, smoothing in time is achieved by a recursive averaging as follows:

S̃ (k, �) = αsS̃ (k, � − 1) + (1 − αs)S̃ f (k, �) (2.34)

The minimum power spectrum S̃ min(k, �) of S̃ (k, �) is derived in the second iteration of minimum
tracking as in (2.30). Similar to the first iteration, SNR measures are computed as follows:

γ̃min(k, �) =
|Y(k, �)|2

BminS̃ min(k, �)
ζ̃(k, �) =

S (k, �)
BminS̃ min(k, �)

. (2.35)

Finally, the speech absence probability is derived as follows:

q̂(k, �) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if γ̃min(k, �) < 1 and ζ̃(k, �) < ζ0
γ1 − γ̃min(k, �)
γ1 − 1

, if 1 < γ̃min(k, �) < γ1 and ζ̃(k, �) < ζ0

0, otherwise

(2.36)

where γ1 = 3 and ζ0 = 1.67.
Having found the speech absence probability q(k, �), it is possible to compute the conditional

speech presence probability pr(k, �) (2.28) and then update the noise PSD estimate P(k, �) by
means of (2.21) and (2.22). The delay of this method is slightly less than MCRA, but remains
significant, specially in the case of an abrupt change in the noise power.
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2.2 Bayesian Speech Enhancement Algorithms

As discussed in Chapter 1, there is a strong motivation to use single-channel speech enhance-
ment systems in many applications, due to their low cost and small size. Among all the com-
peting methods, frequency domain Bayesian approaches have received considerable attention.
In this section, we review several Bayesian approaches for single-channel speech enhancement,
including Wβ-SA method which we utilize in this thesis.

In general, we seek to find an estimate of the clean speech spectrum, denoted by X̂(k, �), based
on the observation of the noisy speech STFT coefficients Y(k, �) introduced in (2.4). At first, the
estimate of the clean speech spectrum is derived in each frame of the noisy data separately.
Afterwards, the time domain estimate of the clean speech in each frame is evaluated using the
inverse Fourier transform which we denote as X̂(k, �). Then the clean speech estimates from all
the frames are combined using an overlap-add method in order to derive the overall time domain
estimate of the speech signal [46]. In the sequel, considering that frequency domain processing is
done on each frame separately, we shall drop the frame index l and use the notation X̂k = X(k, �),
Ŷk = Y(k, �), etc, To simplify the presentation.

In order to estimate X̂k from Yk, a distance metric, or cost function is defined between Xk and
X̂k. Specifically, in the Bayesian approach, the speech estimate X̂k is derived by minimizing the
expected value of a cost function as a measure of the error between Xk and X̂k, as given by:

E{C(Xk, X̂k)} =
∫ ∫

C(Xk, X̂k) fXk ,Yk(Xk,Yk)dXkdYk (2.37)

where fXk ,Yk(Xk,Yk) is the joint PDF of Xk and Yk. Equation (2.37) can be rewritten as in the form:

E(C(Xk, X̂k)) =
∫

fYk(Yk)
∫

C(Xk, X̂k) fXk |Yk(Xk|Yk)dXkdYk (2.38)

where fXk |Yk(Xk|Yk) is the conditional PDF of Xk given Yk and is often referred to the a posteriori

PDF in the literature, while fXk(Xk) is called a priori PDF. From (2.38), we have:

E(C(Xk, X̂k)) ≥
∫

fYk(Yk) min
X̂k

{∫
C(Xk, X̂k) fXk |Yk(Xk|Yk)dXk

}
dYk (2.39)

Therefore, in order to minimize the expected value of the cost function, it is sufficient to minimize
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the inner integral in (2.38). Finally, the Bayesian estimate X̂k is obtained as:

X̂k = arg min
X̂k

∫
C(Xk, X̂k) fXk |Yk(Xk|Yk)dXk (2.40)

In general, X̂k includes an the amplitude and phase estimate of the clean speech spectrum. In
many applications of speech processing however, it is more relevant to estimate the spectral
amplitude of the speech signal rather than its phase [34], [35]. Therefore, Bayesian estimators
have been developed in which the spectral amplitude of the STSA of the speech is estimated and
then combined with the phase of the noisy speech [30]. The estimates referred to as Bayesian
STSA estimation in the literature, can be expanded in the form:

X̂0
k = arg minX̂k

∫ ∞

0
C(Xk, X̂k) fXk |Yk(Xk|Yk)dXk (2.41)

where Xk = |Xk| denotes the STSA of the clean speech, and X̂0
k is the corresponding Bayesian es-

timate. Having found the amplitude of the enhanced speech spectrum using (2.41), it is combined
with the phase of the noisy speech to obtain the final estimate of the clean speech as follows:

X̂k = X̂0
ke j�Yk (2.42)

In general, the problem of estimating the clean speech with such Bayesian estimator mainly
depends on defining a proper cost function C(Xk, X̂k) and statistical model for signal and noise
components [2], and different Bayesian STSA estimators have been developed in this way. In the
following sub-sections we review some of the most important frequency domain Bayesian STSA
estimators in detail.

2.2.1 The MMSE STSA estimator

In [30], Ephraim and Malah proposed a Bayesian STSA estimation method, which is known
as MMSE estimator in the literature. In the model they proposed, the STFT coefficients of the
speech and noise are considered to be independent complex Gaussian random variables. The
corresponding marginal PDFs are given by:
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fXk(Xk) =
1
πσ2

X,k

e−|Xk |2/σ2
X,k (2.43)

fWk(Wk) =
1
πσ2

W,k

e−|Wk |2/σ2
W,k (2.44)

where σ2
X,k = E{|Xk|2} and σ2

W,k = E{|Wk|2} are the speech and noise variances, respectively.
The cost function they proposed is the squared error between the clean speech STSA and its

estimate, which can be expanded as:

C(Xk, X̂k) = (Xk − X̂k)2. (2.45)

Using (2.45) in (2.41), the corresponding Bayesian STSA estimator can be obtained as:

X̂0
k = E{X|Yk} =

∫
|Xk| fXk |Yk(Xk|Yk)dXk (2.46)

Using Bayes rule, (2.46) can be rewritten in the form:

X̂0
k =

∫ |Xk| fYk |Xk(Yk|Xk) fXk(Xk)dXk∫
fYk |Xk(Yk|Xk) fXk(Xk)dXk

(2.47)

Under the additive noise model (2.4) for the STFT coefficients Yk, it follows from the above
independence assumption that fYk |Xk(Yk|Xk) = fWk(Yk−Xk). Hence (2.47) can be further simplified
as:

X̂0
k =

∫ |Xk| fWk(Yk − Xk) fXk(Xk)dXk∫
fWk(Yk − Xk) fXk(Xk)dXk

(2.48)

Applying (2.44) in (2.48), and changing coordinates in the complex plane Xk from rectangular
to polar , the MMSE estimator is derived and can be written as follows:
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X̂0
k = Gk|Yk| (2.49)

where Gk > 0 is the gain applied to the spectral magnitude of the noisy speech. This gain is
defined as follows:

Gk =

√
πvk

2γk
exp(
−vk
2

)[(1 + vk)I0(
vk
2

) + vkI1(
vk
2

)] (2.50)

where I0(.) and I1(.) are the modified Bessel functions of zero and first order, respectively, and

vk =
ξk

1 + ξk
γk ξk =

σ2
X,k

σ2
W,k

γk =
|Yk|2
σ2

W,k

(2.51)

The parameters ξk and γk are referred to as the a priori and a posteriori SNRs, respectively.

2.2.2 Improved forms of MMSE STSA

MMSE log-STSA

In [31], Ephraim and Malah proposed a more advanced form of the MMSE STSA estimator,
in which the cost function (2.45) is modified. Specifically, based on the observation that the
human auditory system performs a logarithmic compression of the STSA [31], the modified cost
function uses the logarithm of the STSA, rather than the STSA itself. Hence the MMSE log-
STSA estimator is based on the modified cost function:

C(Xk, X̂k) = [ln(Xk) − ln(X̂k)]2. (2.52)

where ln(.) is the natural logarithm in base 2. Applying (2.52) in (2.41), it can be shown that:

X̂0
k = exp(E[lnX|Yk]) (2.53)

Using the same statistical model and following the same procedure as in [30], this estimator can
be expanded as in (2.49) where the gain function Gk is now given by:
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Gk =
vk
γk

exp(
1
2

∫ ∞

vk

e−t

t
dt) (2.54)

Compared to the MMSE STSA estimator, this method usually results in lower residual errors
while slightly increasing the speech distortion [2].

β-order STSA MMSE

Another generalized form of the MMSE STSA estimator was introduced in [38] which is called
β-order STSA MMSE estimator. The cost function used in the work is defined as:

C(Xk, X̂k) = (Xβk − X̂βk)2 (2.55)

where β is a positive real parameter, introduced as a means to trade-off between speech distortion
and noise reduction.

Using (2.55) in (2.41), it can be shown that:

X̂0
k =

√
βE{Xβk |Yk} (2.56)

Following the same steps as before, this estimator can be expanded as in (2.49) where the gain
function is evaluated as follows:

Gk =

√
vk

γk

[
Γ(
β

2
+ 1)M(−β

2
, 1;−vk)

]1/β

. (2.57)

In this expansion, Γ(.) stands for the gamma function, which is defined as follows:

Γ(x) =
∫ ∞

0
tx−1e−tdt (2.58)

and M(a, b; z) is the confluent hypergeometric function defined as [47]:

M(a, b; z) = 1 +
a
b

z
1!
+

a(a + 1)
b(b + 1)

z2

2!
+

a(a + 1)(a + 2)
b(b + 1)(b + 2)

z3

3!
+ ... (2.59)

In general, as the exponent β decreases towards 0, the gain Gk (2.57) increases which results
in more noise suppression while producing more speech distortion. In [38] the value of β is
adapted in each frame based on the corresponding SNR in that frame, such that a smaller β is
assigned to frames with smaller SNR and vice versa. Therefore, more noise is removed in frames
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with low SNR, which speech distortion is limited in frames with larger SNR.

Weighted euclidean

In [32], Loizou studied the functionality of several perceptually meaningful distance measures
such as the weighted likelihood ratio, the Itakura-Saito distance measure and the COSH distance
measure. He proposed a cost function based on a perceptually-weighted error criterion, referred
to as the weighted Euclidean (WE) estimator in the literature. The WE cost function can be
expressed as follows:

C(Xk, X̂k) = Xp
k (Xk − X̂k)2 (2.60)

where p is a real parameter which is larger than −2. Proceeding as before, the corresponding gain
function of the WE estimator is obtained in the form:

Gk =

√
vk

γk

Γ( p+1
2 + 1)

Γ( p
2 + 1)

M(− p+1
2 , 1;−vk)

M(− p
2 , 1;−vk) (2.61)

where the parameters γk and vk are already defined in (2.51), respectively. Similar to β in [38],
the parameter p controls the trade-off between the noise reduction and the speech distortion; in
particular, a smaller value of p will contribute to suppress more noise at the expense of more
speech distortion. In practice, the value of p = −1 offers a good compromise between the speech
distortion and noise reduction.

Wβ-SA STSA

In [39], Plourde and Champagne introduced a new family of Bayesian estimators where the cost
function includes both a power law and a weighting factor. Specifically, in this new estimator,
the cost function is given by

C(Xk, X̂k) =

⎛⎜⎜⎜⎜⎜⎝X
β
k − X̂βk
Xαk

⎞⎟⎟⎟⎟⎟⎠
2

(2.62)

where p is the related to the parameter p in the WE estimator [32] through α = −p/2 and β is
related to the β-order STSA estimator [38]. In the Wβ-SA estimator, these parameters are chosen
based on the human auditory systems and ear’s masking properties; as a result they become
frequency dependent. This characteristic of the proposed Wβ-SA estimator results in a better
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noise reduction while controlling the speech distortion.
Using the cost function defined in (2.62) and proceeding as the other Bayesian STSA estima-

tors, it can be shown in [39] that the gain for this estimator is:

Gk =

√
υk

γk

⎛⎜⎜⎜⎜⎜⎜⎝
Γ
(
β

2 − α + 1
)

M
(
α − β2 , 1;−υk

)
Γ (−α + 1) M (α, 1;−υk)

⎞⎟⎟⎟⎟⎟⎟⎠
1/β

(2.63)

where Γ(a) and M(a, b; z) are the gamma and confluent hypergeometric functions, β > 2(α − 1),
α < 1, vk = γkξ/(1 + ξk), with γk and ξk being a posteriori and a priori SNR, respectively, as
defined in (2.51).

In [39], it is also shown that appropriate values of β and α can be chosen by considering the
human auditory system rather the frame SNR. Considering the perceived loudness of sound and
the compressive nonlinearities of the cochlea, it is suggested that β be chosen for each frequency
bin as follows:

βk = dk
(βhigh − βlow)

1
ρ

log10

(
Fs
2A + 1

) + βlow, (2.64)

where βlow = 1, βhigh = 0.2, Fs is the sampling frequency and dk is defined as follows:

dk =
1
ρ

log10

(
fk

A
+ 1

)
(2.65)

where ρ = 0.06 and A is a scaling parameter allowing for the frequency fk to be expressed in Hz.
Considering the masking properties of the human auditory system, it is shown that α can also be
calculated in a frequency dependent measure given by

αk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αlow fk ≤ 2 kHz
( fk − 2000)(αhigh − αlow)

Fs/2 − 2000
+ αlow else

(2.66)

where αlow = 0.5 and αhigh = 0.9.



32



33

Chapter 3

Combination of Speech Enhancement and

Noise Estimation Algorithms

In the first part of this chapter, a codebook based approach for estimating noise and speech statis-
tics, specially the short term predictor (STP) parameters, is presented. In the second part, the
incorporation of the codebook based method with the Wβ-SA speech enhancement algorithm is
explained in detail.

3.1 Codebook Based Noise PSD Estimation

As exposed in Section 1.2.3, an important category of speech enhancement methods employs a

priori knowledge of speech and noise to estimate the statistics of the noise signal. In particular,
the method which is presented in this section, exploits trained codebooks of speech and noise LP
coefficients to provide the required a priori knowledge.

In general, the possible shapes of the speech spectral envelop are constrained due to physiol-
ogy of speech production. As will be further explained in Section 3.1.1, one way to specify the
spectral envelop of a signal is by using its LP power spectrum [40], where the spectral envelop is
dependent on the LP coefficients. The possible spectral shapes for the speech and noise signals
can be modeled using sufficiently large codebooks of speech and noise LP coefficients, obtained
from large training data sets. Such trained codebooks are then used as the a priori information on
the speech and noise signals, which can be exploited in various applications of speech processing,
to estimate the statistics of the speech and noise signals.
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The codebook based method used in this thesis, employs a Bayesian MMSE approach for the
estimation of the short-term predictor parameters of speech and noise. The short-term predictor
parameters mainly refer to the AR coefficients and the excitation variance (gain). In other words,
the MMSE estimates of the speech and noise AR spectra are derived, which mainly include the
estimation of AR coefficients and the excitation variances, that define the AR spectra.

Given the observation of the noisy data, there are two possible avenues for the estimation of
unknown speech and noise parameters. If the parameters are assumed to be deterministic (but
unknown), the estimation process is counted as a classical estimation, including ML estimation.
On the other hand, if the unknown parameters are assumed to be random variables with a specific
joint PDF, then this estimation is called Bayesian estimation. [40] . In [43], Srinivasan and
Kleijn proposed a codebook based method based on the first concept, while in [44], Srinivasan,
Samuelsson and Kleijn introduced another method following the second approach. The method
used in this thesis, is a combination the of methods presented in [42] and [44]. The two methods
are explained in Sections 3.1.3 and 3.1.4, respectively, but first the AR model of the speech
and noise PSD is explained in Section 3.1.1, while in Section 3.1.2 we briefly review the Lloyd
algorithm for codebook generation.

3.1.1 Autoregressive modeling of speech spectra

In general, the LP coding is widely used in speech processing applications since it provides an
accurate and economical representation of relevant speech parameters that can reduce transmis-
sion rates in speech coding and lead to efficient speech synthesis [1]. LP parameters provide a
rigorous representation of the speech spectral magnitude, while it remains relatively simple in
terms of computation. The main applications of LP includes low-bit rate speech coding, adaptive
digital filters and speech recognition systems [1].

Based on the human speech production system, the generation of each phoneme of speech
involves two factors, i.e. the source excitation and the vocal tract shaping. Considering these two
factors, the speech production system can be modeled as is shown in Figure 3.1, where the vocal
tract, modeled as a linear filter with the impulse response h(n), is excited by a discrete time glottal
signal u(n) to produce the speech signal x(n). In case of unvoiced sounds, where the excitation
is similar to white noise, u(n) is chosen to have a flat spectrum. For voice sounds, the source is
modeled as periodic impulse train with period N samples, where N is selected for the pitch period
[1].
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Fig. 3.1 Speech production system

A standard model for the vocal tract filter, is the autoregressive moving average (ARMA)
model. In this case, the speech sample x(n) is formed as a linear combination of past outputs and
the present and past inputs. This can be expanded as follows:

x(n) =
p∑

k=1

akx(n − k) +G
q∑

l=0

blu(n − l) (3.1)

where G is the gain factor and ak and bk are the so-called filter coefficients (where b0 = 1 is
assumed). Applying the z-transform to the above equation, the transfer function of the vocal
tract, can be obtained as follows:

H(z) =
X(z)
U(z)

= G
1 +

∑q
l=1 blz−1

1 −∑p
k=1 akz−k

(3.2)

where we define the z-transform of signal x(n) as X(z) =
∑n=∞

n=−∞ x(n)z−n and similarly for U(z) in
terms of u(n). As it can be seen, the transfer function corresponds to a pole-zero model, where in
the context of the human auditory system, the zeros represent the nasals and the poles represent
the formants in a vowel spectrum. In order to reduce the complexity, it is generally assumed that
the transfer function has no zeros. This is referred to an all-pole or AR model. Therefore, the
all-pole transfer function can be represented:

H(z) =
G

1 −∑p
k=1 akz−k

. (3.3)

Or equivalently, the time-domain equation is derived as:
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x(n) =
p∑

k=1

akx(n − k) +Gu(n (3.4)

where filter coefficients ak are called LP or AR coefficients. The error signal e(n), also called
residual error, is defined as the difference between the output signal and its predicted value, that
is:

e(n) = x(n) −
p∑

k=1

akx(n − k) = Gu(n) (3.5)

In z-domain (3.5) is equivalent to:

E(z) = X(z)A(z) (3.6)

where we define A(z) = 1 −∑p
k=1 akz−k.

On the above basis, it can be concluded that LP provides an analysis-synthesis framework for
speech signals. The analysis system takes the speech signal x(n) as the input to a spectral shaping
filter, with transfer function H(z), in order to produce the error signal e(n). Alternatively, the error
signal e(n) can be fed to the synthesis system, where the input is filtered by 1/H(z) to produce
the speech signal x(n). These operations are demonstrated in Figure 3.2 [48].

In practice, the order p and coefficients ak, k ∈ {1..p} of the LP analysis system should be
chosen such that the residual error e(n) has the character of white noise, that is e(n) should have
a zero-mean and an impulse like correlation function, as in E[e(n)e(m)] = σ2δ(n − m), or that
the resulting PSD level is constant ad equal to σ2 for all frequencies, Under this condition an
accurate representation of the speech signal x(n) PSD say Px(ω) can be achieved using suitable
LP coefficients ak, k ∈ {1..p} and residual error power σ2. In practice, it can be shown that

Px(ω) =
σ2

x

|Ax(e( jω))|2 (3.7)

Therefore, an accurate representation of the speech signal spectrum can be achieved using
suitable LP coefficients and residual error variance.
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Fig. 3.2 LP analysis and synthesis model

3.1.2 Codebook generation using Generalized Lloyd vector quantization method

As explained before, trained codebooks of speech and noise LP coefficients can be used to model
the a priori information needed in the process of speech enhancement. In [49] these code-
books are generated using a vector quantization (VQ) method called Generalized Lloyd algorithm
(GLA).

In general, a vector quantizer of dimension K and size S is described as a mapping from the
K dimensional data vectors defined in Euclidean space to a finite subset C, in which C includes
N vectors called codevectors. The set C of all codevectors is called the codebook, while N is the
size of the codebook. The GLA method is one of the most popular VQ algorithms for codebook
generation. It was first introduced in [49] and is also named as LBG based on the initials of the
authors of the paper Linde, Buzo and Gray.

LBG is an iterative clustering algorithm, which produces an optimum codebook for a given
data source, by minimizing a distortion measure between a training vector and the codevector
which is closest to it.

In order to apply this algorithm, there is a need for a training sequence which provides the
basic model for the data to be encoded. The training sequence is usually obtained from a large
database, for example in the case of the speech signals, the training sequence can be obtained by
recording several long conversations. When applying the LBG algorithm, the training sequence
is partitioned into several groups based on the codebook size. Among all the vectors in a specific
group, a centroid vector is chosen to be the codevector, based on minimization of a distortion
measure. The centroid vector is actually the representative of that group. The main goal of LBG
is to minimize the distortion measure between the training vectors and their representation code-
vectors, that is: finding the optimal partition and codevectors to minimize the overall distortion.

In effect, LBG employs and iterative procedure which is repeated until the averaged distortion
is minimized. The main step of this process can be summarized as follows [50]:

1) An initial codebook containing N codevectors is first chosen.
2) The training sequence is partitioned into N groups using the distortion measure.
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3) For each group, a centroid vector is selected to get an improved codevector.
4) Step 2 is repeated if the distortion measure is larger than the minimum average considered

as the threshold.
Different methods have been proposed in order to generate the initial codebook in step 1. The

original method applied in LBG is called binary splitting. In this method, an initial codevector
is obtained as the average of the entire training sequence. This codevector is then split into two
and the iterative algorithm is run with these two vectors as initial codebooks. The final two code
vectors are split into four and the process is repeated until the desired number of codevectors is
obtained.

In order to implement the codebook based method for estimating speech and noise statistics,
the GLA method will be applied. For this application, the training sequence will include vectors
of LP coefficients obtained from different male and female recorded speech segments, and then
different codebooks of speech and noise LP coefficients are produced. The methodology used for
codebook generation will be discussed in further Chapter 4.

3.1.3 Codebook based ML parameter estimation

In this section, we discuss the estimation of excitation variances of the speech and noise AR
models, based on the a priori information stored in the codebooks. At first, it is assumed that the
excitation variances are unknown deterministic parameters. Consequently, an ML based method
is used to estimate the excitation variances of the speech and noise.

Assuming that we have an additive noise model as in (2.1), the general idea of the ML-based
parameter estimation method is to search through the codebooks in order to derive the maximum
likelihood estimates of speech and noise excitation variances. The main step of this procedure
can be summarized as follows [42]:

• For each pair of the speech and noise LP coefficients in the codebook, the speech and noise
excitation variances which maximize the likelihood function are derived.

• Using the derived excitation variances and associated LP coefficients, the AR spectra are
constructed using the AR model as explained in Section 3.1.1.

• Based on these AR spectra, a log-likelihood score which represents the error between the
modeled spectra and the measured powers in the given time frame, is computed.
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• A search is done through all the computed log-likelihood scores in order to find the spectra
which maximize the score.

• The excitation variances associated with these spectra, are considered as maximum likeli-
hood estimates of the speech and noise excitation variances.

Figure 3.3 provides a schematic diagram of the above method, which is explained in further
mathematical detail below.

Fig. 3.3 ML scheme

Let θix and θ j
w represent the ith and jth codebook vectors of speech and noise LP coefficients,

respectively which are defined as:

θi
x = (ai

x0
, · · · , ai

xp
), θ j

w = (aj
w0
, · · · , aj

wq
) (3.8)

where p and q are the LP orders of the speech and noise AR models, respectively and ai
xk

and
aj
wk are the corresponding LP coefficients. The ML estimates of the speech and noise excitation

variances are obtained according to :
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{σ2∗
x , σ

2∗
w } = arg max

i, j,σ2
x,σ

2
w

py(y|θi
x,θ

j
w;σ

2
x, σ

2
w) (3.9)

where y = [y(0), y(1)...y(L − 1)]T is the vector of observed noisy speech samples in the given
frame and L is the frame length.

Assuming that the conditional PDF in (3.9) is Gaussian, the likelihood function for each frame
of the noisy speech can be written as [42]:

py(y|θi
x,θ

j
w;σ

2
x, σ

2
w) =

1
(2π)L/2|Ry|1/2 e−(1/2)(ytR−1

y y) (3.10)

where Ry is the noisy speech covariance matrix which is defined as the sum of the speech and
noise covariance matrices Ry = Rx + Rw.

In the following paragraph, we summarize the developments from [42] leading to an approx-
imate ML solution for the optimal gains σ2

x and σ2
w corresponding to a particular codebook pair

(i, j).
Using (3.10) the log- likelihood function (LLF) can be written as:

l(σ2
x, σ

2
w) = ln Py(y|θi

x,θ
j
w;σ

2
x, σ

2
w) = C − 1

2
ln|Ry| − 1

2
yT R−1

y y (3.11)

where |Ry| denotes the determinant of Ry.
It is possible to simplify the LLF (3.11), using properties of the Toeplitz Hermitian matrices

developed in [51]. Therefore a simplified version of the LLF only dependent on the excitation
variances and normalized spectra can be written as [42]:

l(σ2
x, σ

2
w) =

∫ 2π

0

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝σ

2
x|Ai

x|2 + σ2
w|Aj
w|2

|Ai
x|2 + |Aj

w|2
⎞⎟⎟⎟⎟⎠ + Py

⎛⎜⎜⎜⎜⎝ |Ai
x|2|Aj

w|2
σ2

x|Ai
x|2 + σ2

w|Aj
w|2
|Ai

x|2 + |Aj
w|2

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ dω (3.12)

where Ai
x and Aj

w are the ith speech codebook and jth noise codebook spectra, previously defined
as:

Ai
x ≡ Ai

x(ω) =
p∑

k=0

ai
xk

e− jωk, Aj
w ≡ Aj

w(ω) =
p∑

k=0

aj
wk

e− jωk (3.13)
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where ai
xk

and aj
wk represent the LP coefficients of the speech and noise, respectively and Py ≡

Py(ω) = |Y(ω)|2 with Y(ω) =
∑L−1

k=0 y[k]e(− jωk). As we are looking for the gains which make the
LLF maximum, we should set the partial derivatives of (3.12) to zero which yields:

∫ 2π

0

|Aw|2(Py|Ax|2|Aw|2 − σ2
x|Aw|2 − σ2

w|Ax|2)
σ2

x|Aw|2 + σ2
w|Ax|2 dω = 0 (3.14)

∫ 2π

0

|Ax|2(Py|Aw|2|Ax|2 − σ2
x|Aw|2 − σ2

w|Ax|2)
σ2

x|Aw|2 + σ2
w|Ax|2 dω = 0 (3.15)

These equations can be solved exactly; only if the codebooks contain spectral shapes Ai
x and Aj

w

that fulfill the following condition:

Py =
σ2

x

|Ax|2 +
σ2
w

|Aw|2 , ∀ ∈ [0, 2π] (3.16)

To obtain a solution in practice, let us assume that (3.16) is fulfilled with small error σ = Z − Z0,
where we define:

Z0 = Py|Ai
x|2|Aw j|2 (3.17)

Z = σ2
x|Aj
w|2 + σ2

w|Ai
x|2 (3.18)

Then we can see how the LLF in (3.12) behaves in the neighborhood of the maximum. Substi-
tuting (3.18) into (3.12), and using a Taylor series expansion of (3.12) around σ = 0, it can be
shown that [42]:

l(σ) =
∫ 2π

0
(1 + ln(Py) +

1
2(Py|Ax|2|Aw|2)2σ

2)dω + O(σ3) (3.19)

Hence, for small σ, the LLF depends only on the weighted squared error l2. Assuming that the
effect of the weight P2

y|Ai
x|4|Aj

w|4 can be neglected, maximization of (3.19) is equivalent to:

arg min
σ2

x,σ
2
w

(||Py|Ax|2|Aw|2 − σ2
x|Aw|2 − σ2

w|Ax|2||2) (3.20)
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where we define || f (ω)||h = ∫ 2π

0
| f (ω)|hdω for h > 0. Setting the partial derivatives with respect

to σx and σw to zero, the excitation variances are obtained as the solution to the following linear
system of equations:

C

⎡⎢⎢⎢⎢⎢⎣σ
2
x

σ2
w

⎤⎥⎥⎥⎥⎥⎦ = D (3.21)

C =

⎡⎢⎢⎢⎢⎢⎣
∥∥∥|Aj
w(ω)|4∥∥∥ ∥∥∥|Ai

x(ω)|2|Aj
w(ω)|2∥∥∥∥∥∥|Ai

x(ω)|2|Aj
w(ω)|2∥∥∥ ∥∥∥|Ai

x(ω)|4∥∥∥
⎤⎥⎥⎥⎥⎥⎦ (3.22)

D =

⎡⎢⎢⎢⎢⎢⎣
∥∥∥Py(ω)|Ai

x(ω)|2|Aj
w(ω)|4∥∥∥∥∥∥Py(ω)|Ai

x(ω)|4|Aj
w(ω)|2∥∥∥

⎤⎥⎥⎥⎥⎥⎦ (3.23)

Having found the excitation variances corresponding to a given pair of speech and noise
spectra in the codebook, that is, Ai

x and Aj
w, the LLF score based on (3.12) can be evaluated.

Consequently, the combination of the speech and noise spectra, that is the pair of codebook
indexes i and j which maximize the likelihood score is considered as the maximum likelihood
estimates of the speech and noise spectra.

3.1.4 MMSE estimation of short time predictive (STP) parameters

In the previous section, the excitation variances and AR parameters were treated as unknown
deterministic parameters. A possible alternative is to consider the gains and AR parameters to
be random variables, which should be estimated based on the characteristics of their PDF. In
this regard, the ML estimates derived in Section 3.1.3 can be exploited in defining the a priori

distributions of the speech and noise parameters needed in the Bayesian framework. Below we
summarize this technique which was originally exposed in [44].

In this formulation, the parameters subject to estimation are the LP coefficients of the speech
and noise, as represented by vectors
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θx = [ax0 , ..., axp], θw = [aw0 , ..., awq] (3.24)

and respectively the associated excitation variances σ2
x and σ2

w. This complete set of parameters
can be represented by a single vector

θ = [θx,θw, σ
2
x, σ

2
w] (3.25)

which is modeled as a random entity with joint PDF p(θ). The main goal here is to estimate θ on
the observed noisy speech samples contained in vector y.

In the MMSE approach, we seek an estimator of θ which minimizes the mean square error
E{θ̂(y) − θ|2}. The solution to this problem is given by the conditional expectation [52].

θ̂ ≡ θ̂(y) = E{θ|y} (3.26)

Expanding the expected value, we can rewrite (3.26) as follows:

θ̂ =

∫
Θ

θp(θ|y)dθ =
∫
Θ

θ
p(y|θ)p(θ)

p(y)
dθ (3.27)

where Θ is the support-space of the LP coefficients and excitation variances, defined as Θ = Θx ×
Θw ×∑

x ×∑
w where Θx and Θw represent the support-space of the vectors of the LP coefficients

of speech and noise, and
∑

x and
∑
w are the support-space for the speech and noise excitation

variances. [44].
Based on the definition of (3.10), the conditional probability p(y|θ) in (3.27) can be modeled

as a zero-mean Gaussian with covariance matrix Rx+Rw. The speech covariance matrix Rx can be
defined as Rx = σ

2
x(A

T
x Ax)−1, where Ax is the L × L lower triangular Teoplitz matrix in which the

first column is [1, ax1 , ax2 · · · axp , 0 · · · 0] and L is the frame length. The noise covariance matrix
Rw can be defined similarly.

As explained before, we assume that the speech and noise samples are statistically indepen-
dent. Therefore, the PDF of speech and noise STP parameters are also assumed to be independent.
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This can be shown as:

p(θ) = p(θx, σ
2
x)p(θw, σ2

w). (3.28)

It can also be assumed that the spectral shapes and gains are independent, therefore p(θx, σ
2
x) =

p(θx)p(σ2
x) and the same for the noise. It is proved in [44] that the conditional probability p(y|θ)

decays rapidly from its maximum value as a function of the deviation from the true excitation
variances, which are approximated by the ML estimates denoted by σ2,ML

x and σ2,ML
w , and de-

rived in the previous section. Therefore the conditional probability p(y|θ) is approximated by
p(y|θ)δ(σ2

x −σ2,ML
x )δ(σ2

w −σ2,ML
w ), where δ(.) is the Dirac-delta function. Therefore, the equation

(3.27) can be approximated as follows [44]:

θ̂ ≈
∫
Θ

θ
p(y|θ)δ(σ2

x − σ2,ML
x )δ(σ2

w − σ2,ML
w )p(θx)p(θw)

p(y)
dθ

=

∫
Θx

∫
Θw

θ
p(y|θx,θw, σ

2,ML
x , σ2,ML

w )p(θx)p(θw)
p(y)

dθxxdθw (3.29)

It should be noticed that the support-space in (3.29) has been reduced to the support-space of the
two of LP vectors. Using the approximated conditional probability p(y|θ) , the PDF of y can be
obtained as follows:

p(y) =
∫
Θx

∫
Θw

p(y|θx,θw, σ
2,ML
x , σ2,ML

w )p(θx)p(θw)dθxdθw (3.30)

Using numerical integration, (3.29) and (3.30) can be evaluated with the help of the trained
codebooks as follows:

θ̂ =
1

NxNw

Nx,Nw∑
i, j=1

θ′i, j
p(y|θi

x,θ
j
w, σ

2,ML
x,i j , σ

2,ML
w,i j )p(θi

x)p(θ j
w)

p(y)
(3.31)

p(y) =
1

NxNw

Nx,Nw∑
i, j=1

p(y|θi
x,θ

j
w, σ

2,ML
x,i j , σ

2,ML
w,i j )p(θi

x)p(y| jw) (3.32)

where θ′i, j is defined as θ′i, j = [θi
x,θ

j
w, σ

2,ML
x,i j , σ

2,ML
w,i j ] , θi

x and θ j
w are the ith speech codebook and

jthe noise codebook, σ2,ML
x,i j and σ2,ML

w,i j are the ML estimates of speech and noise variances based
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on the ith speech codebook entry and jth noise codebook entry as given by (3.21), and Nx and
Nw are the speech and noise codebook sizes.The quantities p(θi

x) and p(y| jw) denote the a priori

PDF of the speech and noise AR parameters, evaluated at the codebook entries. These can be
approximated as Ni

x
Nx

and N j
w

Nw
, where Ni

x and N j
w are the number of training vectors in respective

Voronoi cells. These probabilities are constant if the number of training vectors in each Voronoi
cells is the same [53], assumed to be the case in this thesis.

Along with the log-likelihood measure, another well-known distortion measure is the Itakura-
Saito distance [54]. It is shown in [54] that maximizing the log-likelihood, is equivalent to mini-
mizing the Itakura-Saito distance between the spectra of the observed noisy data y and the mod-
eled spectra. The modeled spectra can be defined as follows:

P̂y =
σ2

x

|Ax(ω)|2 +
σ2
w

|Aw(ω)|2 (3.33)

where Ai
x and Aj

w, defined in (3.13) are the AR spectra of the speech and noise. as follows:

Ai
x =

p∑
k=0

ai
xk

e− jωk (3.34)

Aj
w =

q∑
k=0

aj
wk

e− jωk (3.35)

The Itakura-Saito measure between the two spectra is defined as follows [54]:

dIS (Py, P̂y) =
1

2π

∫ 2π

0

⎛⎜⎜⎜⎜⎝Py(ω)

P̂y(ω)
− ln(

Py(ω)

P̂y(ω)
) − 1

⎞⎟⎟⎟⎟⎠ dω (3.36)

Based on the above assertion, it is shown in [44] that the conditional PDF in (3.32) can be ex-
pressed as follows:

p(y|θi
x,θ

i
w, σ

2,ML
x,i j , σ

2,ML
w,i j ) = C exp(−dIS (py, p̂i, j,ML

y ) (3.37)

where C is a numerical constant that will cancel out from the nominator and denominator in(3.32)
so that is the value is not important. The codebook combination which produces negative val-
ues for the speech or noise excitation variances should be neglected due to the nonnegativity
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constraints on the variances [43].
Having computed θ̂ based on (3.32) it is possible to build the modeled spectra of speech and

noise according to AR model in (3.33). Once the desired speech and noise LP power spectra has
been completed, they are fed into a speech enhancement system, which evaluates the estimated
clean speech spectrum. This is further discussed in Section 3.2.

3.2 Incorporation of the Codebook Based STP Parameter Estimation into

the Wβ-SA Method

As discussed in Section 2.2, in the Bayesian STSA methods of speech enhancement, a gain
function is applied to the spectral magnitude of the noisy speech in order to find the estimate of
the clean speech spectrum. The Bayesian speech enhancement used in this thesis is the Wβ-SA
method from [39] as described in Section 2.2.2. The gain function utilized in this method is given
by the following expression:

Gk =

√
υk

γk

⎛⎜⎜⎜⎜⎜⎜⎝
Γ
(
β

2 − α + 1
)

M
(
α − β2 , 1;−υk

)
Γ (−α + 1) M (α, 1;−υk)

⎞⎟⎟⎟⎟⎟⎟⎠
1/β

(3.38)

where the physical interpretation of the various parameters, i.e. α, β, γ and ξ, has been previously
given in Section 2.2.

As it can be observed from (3.38), the gain Gk is a function of γk and vk, where in turn vk is
a function of the a posteriori and a priroi SNRs γ and ξ as defined in (2.51). Therefore, it can
be concluded that only the two values of γk and ξk need to be evaluated to compute the clean
speech estimate. The values of these two parameters are defined in (2.51) and reproduced here
for convenience:

ξk =
σ2

X,k

σ2
W,k

, γk =
|Yk|2
σ2

W,k

. (3.39)

As it can be seen these two parameters are dependent on the noise and speech variances denoted
by σ2

X,k and σ2
W,k.

Equation (3.39) provides the required link for incorporating the codebook based STP param-
eter estimation into the Wβ-SA speech enhancement method. Specifically, the variances of the
speech and noise can be approximated by the speech and noise PSD, derived in Section 3.1.4.
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Therefore recalling our discussion on the speech and noise PSD from Section 3.1.4, we obtain
the following expressions:

σ2
X,k = p̂x(ωk) =

σ2
x,k

|Ax(ωk)|2 σ2
W,k = p̂w(ωk) =

σ2
w,k

|Aw(ωk)|2 (3.40)

Using (3.40), it is possible to apply the speech and noise PSDs estimated from the codebook
based approach presented in Section 3.1 to calculate the gain function (3.38), which is needed for
the application of the Wβ-SA method on each frame. The complete procedure is summarized in
the following block diagram.

Fig. 3.4 Block diagram of the complete procedure for Wβ-SA speech enhancement
using codebook based STP estimation
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3.2.1 Decision-directed estimation approach

A major problem that arises in the application of various speech enhancement methods is the
production of musical noise. Musical noise is a perceptual phenomenon characterized by tones at
different frequencies, which appear and disappear haphazardly, and can be extremely annoying to
a human listener.This occurs when the enhancement algorithm is too aggressive in removing the
noise, which tends to the production of musical noise [39]. Some methods have been introduced
in the literature to reduce the musical noise produced in Bayesian speech enhancement methods.
Some of these methods, focus on computing the a priori SNR, or ξk, using some alternative
approaches instead of its definition (3.39). The method we applied in this thesis is called decision-
directed and was first introduced in [30]; it is explained in further detail below.

On the other hand, as discussed before, the a priori SNR ξ is given by its definition in (3.39)
as the ratio of the clean speech variance to that of the noise. On the other hand, under the
independence assumption for the speech signal and noise, the relationship between the a priori

and a posteriori SNR can be expressed as:

ξk = E{γk − 1}. (3.41)

Combining the two equations, we can obtain a recursive estimator of ξk at the �-th frame, denoted
by ξ(k, l), via the following operation:

ξ(k, �) = τ
G(k, � − 1)2|Y(k, � − 1)|

σ2
W(k, � − 1)

+ (1 − τ) max[γ(k, �) − 1, 0] (3.42)

where τ is a weighting or smoothing factor in the range of 0.95 ≤ τ < 1. The max[.,.] operation
prevents negativity in the instantaneous SNR, i.e. γ(k, �) − 1.

In this work we used a slightly modified version of (3.42) as follows:

ξ(k, �) = τ
G(k, � − 1)ρ|Y(k, � − 1)|

σ2
W(k, � − 1)

+ (1 − τ)σ
2
X(k, �)
σ2

W(k, �)
(3.43)

where τ is a weighting or smoothing factor in the range of 0.95 ≤ γ < 1, and σ2
X(k, �) and σ2

W(k, �)
are the speech and noise PSDs obtained from the codebook approach at the �th frame. In practice,
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we found that a value of ρ smaller than one produces better results. This nonlinear smoothing has
the great advantage of eliminating large power variations in consecutive frames, which in turn
tend to reduce the level of musical noise [55]. The processed speech will be more comfortable
for a listener while listening to the enhanced speech file.
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Chapter 4

Experimental Results

In this chapter, we investigate the performance of the newly proposed speech enhancement
method developed in Chapter 3 by presenting the results of selected experiments, including both
objective and subjective performance evaluations. In all of the experiments, we compare the new
method, which combines the Wβ-SA speech enhancement with the codebook-based approach for
estimating the noise and speech statistics, with a similar but alternative scheme where the Wβ-SA
is replaced by the Wiener filter [29]. We begin by describing the methodology and then present
and discuss the results so obtained.

4.1 Methodology

An 8-bit speech codebook of LP coefficients of dimension p=10 was trained using the generalized
Lloyd algorithm (GLA) as explained in Section 3.1.2. The speech training set consists of 4
minutes of recorded clean speech from 2 male and 2 female speakers, available from the McGill
TSP database [56]. A 3-bit noise codebook of LP coefficients of dimension q=10 was trained
in the same way. It may be argued that the use of 3 bits for the noise codebook size is small.
However, this value is consistent with those used in [43] where codebook of sizes 1 up to 4 bits
(i.e. 2 up to 16 entries) were found to be optimal for different types of noise, e.g. highway,
white, babble, and siren noise. The noise training set consists of a 10 minutes concatenation of
five different types of recorded noise from the AURORA database [57], that is: car, train, street,
restaurant and airport noise. Some of the noise files in the training set may contain background
speech. For example the train noise file contains a brief announcement while the restaurant noise
file might contain some low level of barely discernible voice sounds from people speaking. We
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understand that the presence of speech in the noise samples used in the training set might impair
the quality of the noise codebook, but we could not further investigate this aspect, which remains
open for future work.

Selected noise segments were added to the clean speech and enhancement experiments were
conducted for noisy speech with input SNR of 0, 5, 10 and 15 dB. In this thesis, we used a simple
measure of SNR, defined as the ratio of total speech energy to noise energy. However, in speech
processing applications, since the speech may have gaps or periods of silence, more sophisticated
measures of SNR can be used that only consider non-silent portions of the speech signals [58].

The sampling frequency of the speech and noise signals is set to Fs=8kHz. In the application
of the STFT processing, a frame length of N=256 samples with 50% overlap is used, where the
frames are windowed using a Hanning window. In the STFT domain, the enhancement of the
noisy speech is carried out by applying a gain to the noisy speech STFT, as (2.49). We compare
two different methods namely:

• Combination of Wβ-SA with codebook based estimation of spectral statistics, as described
in Section 3.1.4.

• Combination of Wiener filter [29] with codebook based approach where the enhancement
gain is given by:

Gk =
σ2

x,k

|Ax(ωk)|2 /(
σ2

x,k

|Ax(ωk)|2 +
σ2
w,k

|Aw(ωk)|2 ) (4.1)

The two algorithms are first compared in terms of a well-known objective measure, i.e. per-
ceptual evaluation of speech quality (PESQ). This measure is recommended by ITU-T for speech
quality [59], and it is generally well correlated with subjective results.

In the process of implementing the proposed method, we found that the noise PSD obtained
by the codebook based algorithm tends to be underestimated and that better results could be
obtained by applying a multiplicative bias, whose value was found and adjusted through separate
experiments. Regarding (3.43), the best results were obtained by setting τ = 0.85 and ρ = 1. In
this approach, once the codebooks have been trained properly, it is possible to estimate the noise
PSD without performing any specific estimation of noise parameters on a noise-only preamble to
the noisy speech signal.

In Section 4.2, first the accuracy of the speech and noise codebook spectra is examined by
comparing them with the actual power spectra of the speech and noise. It will be observed that the
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codebook spectra lie in the same range as the actual ones. The MMSE estimates of the noise spec-
trum, based on the codebook approach in Section 3.1.4, are then compared with the actual noise
power spectrum for different scenarios. It will be seen that the algorithm performs well in esti-
mating the noise power spectrum. Afterwards, the waveforms of the noisy, clean and enhanced
speech are compared in order to evaluate the algorithm performance in removing background
noise. It will be observed that better results are obtained with the proposed approach compared
to Wiener filter. Finally, in Section 4.4, the results of the two methods are compared subjectively,
where the listeners mostly prefer the enhancement speech obtained with our proposed approach.

4.2 Numerical Experiments

4.2.1 Accuracy of the trained codebooks

At first, we need to ensure that the speech and noise codebooks are generated properly. In order
to demonstrate the validity of the codebooks, we examine whether the spectra from the speech
and noise codebook entries fall in the same range as the real spectra of the speech and noise.

In Figure 4.1, the LP spectrum from a selected portion of train noise and the LP spectra
obtained from the corresponding noise codebook entries are depicted. As it can be observed,
the noise codebook is generated such that the spectra associated with its entries follow the same
pattern as the real spectrum of the noise, which is a desirable property.
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Fig. 4.1 Plot of the true noise LP power spectrum and the noise codebook entries
LP spectra

In Figure 4.2 the same calculations are repeated for the speech codebook. This figure shows



54 Experimental Results

the LP spectrum of a selected speech utterance from one of the female speakers whose recorded
speech is included in the training set, along with the LP spectra obtained from the speech code-
book. The spectrum of the speech codebook entry which is closest (in the squared error sense) to
the spectrum of the true speech is also shown in 4.2. The spectra of the speech codebook entries
fall in the same range as the true speech spectrum, which is again a desirable property.
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Fig. 4.2 Plot of the true speech LP power spectrum and the speech codebook entries
spectra. Top: all the codebook entries; Bottom: the best match between speech
spectrum and speech codebook entry spectrum

4.2.2 Accuracy of the noise estimation

As it has been discussed before, a crucial component of any speech enhancement system is the
estimation of the noise statistics. In this section, the quality of the codebook based noise spectrum
estimation is examined by comparing the complete codebook based estimator, as given by σ2

W,k

in (3.40) which incorporates both the LP modeling and the gain estimator, to the STFT-based
periodogram derived from the corresponding noise-only data frame. The results are given for
different scenarios, i.e. different speakers, noise types and SNR.
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In Figure 4.3, the estimated noise spectrum from a noisy speech is compared with the actual
STFT-based noise power spectrum. Four different types of noise are considered, namely: train,
car, street and airport noise. In all four cases, the noise is added to the clean speech from a fe-
male speaker with SNR=0dB to obtain the noisy speech file. The figure shows the noise power
spectrum estimated with the codebook based approach along with the periodogram based spec-
trum for a selected frame of the noisy speech. It can be observed from these various plots that
the codebook based algorithm can estimate relatively well the spectral envelopes of these various
noise types.
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Fig. 4.3 Plot of the true and estimated noise power spectra, for female speaker at
SNR=0dB. From top to bottom: train noise, car noise, street noise and airport noise

Another series of experiments have been carried out to evaluate the performance of the
codebook-based noise estimation algorithm for different SNRs. Figure 4.4 compares the results of
the codebook-based noise PSD estimation to the corresponding periodograms of the noisy speech.
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The methodology is similar to that is Figure 4.3, except that here, we fix the noise type and vary
the SNR. Specifically, we consider speech from a male speaker, contaminated by train noise at
SNR=0.5 and 10dB. These results demonstrate the ability of the codebook based approach to
properly estimate the noise envelope over a wide range of SNR values. Figure 4.5 present the
results of a similar experiment for a different male speaker with airport noise at SNR=0dB and
10dB.
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Fig. 4.4 Plot of the true and estimated noise power spectra, for a male speaker
contaminated by train noise. From top to bottom: SNR=0dB, SNR=5dB, SNR=10dB
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Fig. 4.5 Plot of the true and estimated noise power spectra, for a male speaker
contaminated by airport noise. From top to bottom: SNR=5dB, SNR=10dB

4.2.3 Enhanced speech results

In this section, the quality of the enhanced speech estimates obtained with the proposed algorithm
is examined. The time-domain signal waveforms of the noisy, true and the enhanced speech are
plotted in Figure 4.7 in order to test the algorithm’s efficiency. The results correspond to the
speech of a male speaker, contaminated by the street noise at 5dB SNR. As it can be observed,
the proposed algorithm performs relatively well in removing street noise from the noisy speech.
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Fig. 4.6 Time domain waveforms for a male speaker and street noise at SNR=5dB.
From top to bottom: clean speech, noisy speech, enhanced speech

The same experiment is repeated for a different scenario where the speech of a female speaker
is contaminated by train noise at 10dB SNR.. The results are given in Figure 4.7 . It can be
observed that certain amount of noise has been removed from the noisy speech signal.
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Fig. 4.7 Time domain waveforms, for a female speaker and train noise at
SNR=10dB. From top to bottom: clean speech, noisy speech, enhanced speech

4.3 Objective Measure Results

In this section, the results obtained from the two speech enhancement algorithms, obtained by
Wβ-SA and Wiener filter with the codebook-based MMSE noise PSD estimation approach, are
compared in terms of the PESQ objective measure. At first the codebook-based method is applied
in order to obtain the speech and noise PSD, and then the acquired PSDs are used in the Wβ-SA
and Wiener filter methods to obtain the enhanced speech. In each table presented in this section,
the PESQ objective measure is examined for the speech of a different speaker contaminated by
four different types of noise at various SNRs.
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In the Table 4.1 the PESQ objective measure is presented for the case where the speech of
a female speaker is degraded by four different types of noise, including train, airport, car and
street noise. The results are given for 3 different values of SNR, i.e. 5dB and 10dB. In tables 4.2,
4.3 and 4.4, we present similar results for the second female, the first male and the second male
speakers, respectively.

Table 4.1 PESQ objective measure for enhancement of noisy speech from first fe-
male speaker

Train noise Airport noise Street noise Car noise
Wiener Wβ-SA Wiener Wβ-SA Wiener Wβ-SA Wiener Wβ-SA

SNR=0dB 1.41 1.61 1.32 1.80 0.25 0.39 1.49 1.73
SNR=5dB 1.60 2.31 1.98 2.02 0.23 0.97 1.71 2.05
SNR=10dB 2.30 2.40 2.19 2.35 1.92 2.21 2.07 2.35

Table 4.2 PESQ objective measure for enhancement of noisy speech from first fe-
male speaker

Train noise Airport noise Street noise Car noise
Wiener Wβ-SA Wiener Wβ-SA Wiener Wβ-SA Wiener Wβ-SA

SNR=0dB 1.78 1.94 1.78 2.10 1.45 1.66 1.59 2.05
SNR=5dB 1.94 2.42 2.52 2.62 2.01 2.32 1.92 2.43
SNR=10dB 2.26 2.68 2.36 2.58 2.47 2.50 2.32 2.59

Table 4.3 PESQ objective measure for enhancement of noisy speech from first fe-
male speaker

Train noise Airport noise Street noise Car noise
Wiener Wβ-SA Wiener Wβ-SA Wiener Wβ-SA Wiener Wβ-SA

SNR=0dB 1.67 2.40 1.99 2.17 1.96 2.21 1.64 2.11
SNR=5dB 2.15 2.46 2.52 2.69 1.89 2.41 2.37 2.59
SNR=10dB 2.73 2.86 2.51 2.63 2.37 2.59 0.83 0.70
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Table 4.4 PESQ objective measure for enhancement of noisy speech from first fe-
male speaker

Train noise Airport noise Street noise Car noise
Wiener Wβ-SA Wiener Wβ-SA Wiener Wβ-SA Wiener Wβ-SA

SNR=0dB 1.64 2.12 1.74 1.98 1.38 1.63 1.55 1.81
SNR=5dB 2.07 2.15 1.93 2.21 1.83 2.04 2.06 2.22
SNR=10dB 1.99 2.46 2.37 2.52 2.32 2.39 2.26 2.40

According to the results, the proposed algorithm is superior to the Wiener filter in all cases
expect for one (Table 4.3, car noise, 10dB), in terms of the PESQ measure. On average, PESQ
measure is improved by 0.23 when the proposed method is used compared to the combination of
codebook-based method and the Wiener filter.

4.4 Subjective Measure Results

The enhanced speech obtained using the described codebook-based method incorporated into the
Wβ-SA speech enhancement technique was compared to the enhanced speech obtained using the
codebook-based method combined with Wiener filter speech enhancement system. The results
were evaluated by 10 students in Telecommunications and Signal Processing laboratory at McGill
university. The methods were evaluated by pairwise comparisons to each of the noisy utterances.
Almost in all cases, the students preferred the sound files obtained with the proposed method
over the results obtained by the combination of codebook-based and Wiener filter.
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Chapter 5

Summary and Conclusion

5.1 Summary and Conclusion

There exist several commercial systems where the removal of background additive noise from a
speech signal is desirable. These include sound recording, cell phones, hands-free communica-
tions, teleconferencing, hearing aids, and human-machine interfaces such as an automatic speech
recognition system [3]. Over the years, many speech enhancement approaches have been pro-
posed to remove additive noise including spectral subtraction [27], [28], Wiener filtering [29] and
Bayesian approaches [30],[31],[32].

In Chapter 1, an introduction to the speech enhancement problem and the different meth-
ods available for its solution were presented. Among all these different methods, Bayesian ap-
proaches are found to be superior to others in terms of the overall quality of the enhanced speech,
the amount of speech distortion introduced by the processing and the background noise reduc-
tion. In general, in the Bayesian estimation approach for single-channel speech enhancement, an
estimate of the clean speech in the frequency domain is derived by minimizing the expectation of
a cost function which represents the error between the estimated and the real speech. This leads
to computing a gain function which is then applied to the spectrum of the noisy speech in order to
derive and estimate of the spectrum of the enhanced speech. The MMSE estimator is one of the
most well-known Bayesian estimators, in which the cost function is the squared error between
the estimated and actual clean speech STSA [30]. Subsequently other Bayesian estimators were
developed by generalizing the MMSE STSA method, including the log-MMSE [31], WE [32],
β-SA [38] and Wβ-SA [39] methods.

In Chapter 2 we began by reviewing two noise PSD estimation methods, namely the minimum
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statistics and IMCRA method. This was followed by a detailed discussion of the Bayesian speech
enhancement algorithms. As explained, the WE estimator [32] incorporates a weighting factor
while the β-SA estimator [38] incorporates a power law in the definition of their cost function. In
the Wβ-SA estimator [39], the power law of the β-SA estimator and the weighting factor of the
WE estimator are combined to build the cost function. The parameters (i.e. β and α) in the gain
function of the Wβ-SA estimator are chosen according to characteristics of the human auditory
system, namely, the compressive nonlinearities of the cochlea, the perceived loudness and the
ears masking properties. Compared to other Bayesian estimators, Wβ-SA is known to achieve
better enhancement performance [2].

In Chapter 3 two well-known methods which use the trained codebooks of speech and noise
as a priori knowledge of these signals were discussed. In [42], a search is done through the code-
books in order to find the excitation variances of speech and noise that maximize the likelihood
function. Afterwards, the computed excitation variances along with the LP coefficients stored
in each pair of speech and noise codevectors are applied to model the speech and noise power
spectrum. In [44] a similar approach is followed but instead of maximizing the log-likelihood
measure, a Bayesian MMSE approach based on the Itakura-Saito measure is applied. in this
method, a search is performed through the speech and noise codebooks in order to find the exci-
tation variances which minimize the Itakura-Saito measure. Afterwards, the PDF of the observed
noisy speech is modeled using the ML estimates of speech and noise, and then this knowledge of
observed data PDF is applied in a Bayesian MMSE approach, in which the MMSE estimates of
the speech and noise LP coefficients along with their excitation variances are derived.

In this thesis, the Bayesian MMSE estimator of the speech and noise statistics is incorporated
in the Wβ-SA speech enhancement method. The knowledge of the speech and noise statistics
obtained by the Bayesian scheme is applied to calculate the Wβ-SA gain function in order to
derive an estimate of the enhanced speech. The incorporation of the Bayesian MMSE estimator
into the Wβ-SA speech enhancement method is explained in detail in Chapter 3.

In Chapter 4, we investigated the performance of the newly proposed speech enhancement
method developed in Chapter 3 by presenting the results of selected experiments, including both
objective and subjective performance evaluations. In all of the experiments, we compared the new
method, which combines the Wβ-SA speech enhancement with the codebook-based approach for
estimating the noise and speech statistics, with a similar but alternative scheme where the Wβ-SA
is replaced by the Wiener filter. When compared to combination of codebook-based method with
Wiener filter, the proposed speech enhancement approach gave rise to a notable improvement in
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terms of the quality of the processed noisy speech represented by the PESQ objective measure.
Informal listening tests were also performed, where almost in all cases the listeners preferred the
sound files obtained with the proposed method over the results obtained by the combination of
codebook-based and Wiener filter.

5.2 Future Work

In the process of implementing the proposed method, we faced some difficulties in estimating the
noise power spectrum. The PSD estimates tend to be underestimated at some point, and we had
to apply a bias factor for the purpose of compensating this analogy. In future, we will try to make
some modifications in order to resolve this problem.

In [43], Srinivasan et al. proposed an alternative approach in order to train the noise code-
book. They proposed a classified noise codebook scheme, where multiple small noise codebooks
are trained for a particular noise type. They asserted that using this method leads to lower the
complexity while increasing the accuracy of the estimates of the speech and noise excitation vari-
ances. In the future work we will be focusing on using this alternative method in the process of
training the noise codebook.

these authors also developed a memory based MMSE estimator in [44], where the PSD esti-
mates of the previous method affects the estimates of the current method. They concluded that the
memory based MMSE estimator can significantly reduced both the mean and the variance of the
squared error, compared to the MMSE estimator without memory. In our future work, we could
try to develop the memory based MMSE estimator with the purpose of estimating the speech and
noise statistics, and then combine with the Wβ-SA method.
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