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Abstract

Energy detection has emerged as a prime technique for wideband spectrum sensing in cognitive
radio applications. Much of the present research in the area of energy detection assumes that the
occupancy of any particular frequency subband is independent of the occupancy of other sub-
bands. However, in practice, subband occupancy is likely to be correlated, for instance, due to
the use of wideband transmission signals by existing users, such as broadcast television. Incorpo-
ration of the prior knowledge of such correlation into the design of channel occupancy detectors
can substantially enhance the wideband sensing performance.

In this thesis, we focus on the wideband spectrum sensing task for cognitive radios in the
presence of correlation between the occupancies of frequency subbands. First, we formulate
the maximum a posteriori (MAP) estimator of channel occupancy based on measurements from
multiple frequency subbands. Since the complexity of the MAP estimator grows exponentially
with the number of subbands, we study an alternative detector, in which the energy measurements
from all the subbands are linearly combined according to a minimum mean-square error (MMSE)
criterion to form a sufficient statistic for binary hypothesis-testing in each subband. Furthermore,
we incorporate this optimum linear energy combiner into single-user and collaborative multiband
joint detection schemes that maximize the opportunistic spectrum usage while limiting the total
probabilistic interference introduced to existing users.

Through analysis and numerical experiments, we demonstrate that the proposed frequency-
coupled detector significantly outperforms the conventional decoupled one in both single-user
and collaborative detection schemes.
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Sommaire

La mesure d’énergie est aujourd’hui la technique la plus importante pour la détection du spectre
large-bande dans les applications de radios cognitives. La plus grande partie de la recherche
dans ce domaine de nos jours assume que le contenu d’une sous-bande de fréquence quelconque
est indépendant de ceux des autres sous-bandes. Cependant, d’un point de vue pratique, les
occupations des différentes sous-bandes sont probablement corrélées, par exemple, à cause de
l’utilisation de la transmission de signaux large-bande par des utilisateurs existants telle que la
transmission de la télévision hertzienne. L’intégration d’une telle corrélation dans les modèles des
détecteurs des occupations des canaux de transmission peut largement améliorer la performance
de la détection large-bande.

Dans cette thèse, nous nous concentrons sur la détection du spectre large-bande dans les
radios cognitives en présence de corrélations entre les occupations des sous-bandes. Dans un
premier temps, nous formulons l’estimateur maximum a posteriori (MAP) de l’occupation du
canal à partir de mesures faites sur plusieurs sous-bandes. Compte tenu du fait qu’un tel esti-
mateur devient exponentiellement plus complexe avec le nombre de sous-bandes, nous étudions
un nouveau détecteur. Dans ce dernier, les mesures d’énergies des différentes sous-bandes sont
linéairement combinées avec comme critère l’erreur quadratique moyenne minimale (EQMM)
afin d’obtenir une statistique suffisante pour un test d’hypothèse binaire dans chaque sous-bande.
Un tel détecteur linéaire est en outre incorporé dans des systèmes de détection à un ou plusieurs
utilisateurs. Ces systèmes maximisent l’utilisation du spectre tout en limitant la probabilité totale
de l’interférence causée aux utilisateurs existants.

À l’aide d’analyses approfondies et d’expériences numériques, nous démontrons que le dé-
tecteur avec fréquences couplées que nous proposons est largement supérieur aux détecteurs avec
fréquences découplées habituels, que ce soit dans les systèmes de détection d’un unique utilisa-
teur ou ceux de plusieurs utilisateurs.
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Chapter 1

Introduction

In this chapter, we introduce the topic of spectrum sensing in the context of cognitive radios and

briefly present some of the prominent techniques conventionally used in sensing tasks. This is

followed by the objective and a brief summary of the contributions of this thesis. Finally, the

organization of the thesis is outlined.

1.1 Wideband Spectrum Sensing for Cognitive Radios

Historically, wireless communication systems, such as broadcast radio/television and mobile

phones, have been allocated frequency bands for dedicated usage. That is, a particular type

of wireless device must use a pre-allocated frequency band at a particular location and time. In

recent years, an ever-increasing demand for multimedia applications has fuelled the proliferation

of high data-rate wireless devices, resulting in a shortage of frequency bands available for licen-

sing. However, studies by the Federal Communications Commission (FCC) show that, in certain

locations, the average spectrum occupancy is only 5.2% with a maximum occupancy of 13.1% at

any point in time [1],[2]. Therefore, the apparent lack of radio resources can be worked around
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if the empty frequency bands can be detected and opportunistically used through a suitable me-

chanism. In other words, despite the lack of spectrum availability for licensing, more wireless

devices may be accomodated if a dynamic spectrum access model is deployed to complement the

static allocation model currently in use.

In this context, a momentarily unused portion of the frequency spectrum is called a spectrum

hole and has been defined in [3] as a band of frequencies assigned to a primary user, but, which,

at a particular time and specific geographic location, is not being utilized by that user. Spectrum

sensing is the process of detecting such spectrum holes. Here, the primary user (PU) is the

wireless system to which the band of frequency in question has been licensed. In many instances,

this could be the user of a legacy technology, such as broadcast television.

Cognitive radios (CR) have emerged as a promising technology for incorporation of a dy-

namic spectrum access model. [4] defines cognitive radio as a radio or system that senses its

operational electromagnetic environment and can dynamically and autonomously adjust its ra-

dio operating parameters to modify system operation, such as maximize throughput, mitigate

interference, facilitate interoperability, access secondary markets. Thus, CRs must have the ca-

pability to detect and opportunistically use any available spectrum holes. In this scenario, one

refers to the CR in question as a secondary user (SU). Spectrum sensing based on the observation

of wideband radio signals has gained further importance as CR is an integral component of the

IEEE 802.22 wireless standard [5]. In practice, spectrum sensing must be reasonably fast and

accurate so as to maximize the opportunistic throughput without adding unacceptable level of

interference to the existing users (EU), including the PUs and other SUs.

Traditionally, several different approaches have been used to perform sensing tasks. Some

of the methods popularly considered for CR applications are matched filtering, feature detection

and energy detection. Matched filtering is a well-known technique used to demodulate commu-

nication signals [6]. It relies on the convolution of a received signal with a sample test signal to
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measure the cross-correlation. As shown in [7], this technique can also be exploited to perform

sensing tasks. However, a strong dependence on time synchronization and on the knowledge of

the primary signal makes the use of matched filtering impractical for detection problems.

The use of special signal features to detect and classify PU signals has been studied in recent

years. For instance, cyclostationarity features are used to detect and classify primarily signals

in [8]. Here, the periodic nature of the modulating signals is exploited through the computation

of cyclic autocorrelation. In [9], the wavelet transform is used to locate discontinuities in the

wideband power spectral density (PSD) in order to detect the unused portions of the spectrum.

Feature-based detection typically results in elaborate and complex detector structures that lack

customizability for particular applications.

Many studies, such as [10] and [11], advocate the use of energy detection for spectrum sensing

since it can meet the basic requirements of CR systems while offering flexibility and robustness

in implementation. Energy detection schemes compute the energy of the received signal and then

carry out hypothesis tests to decide the occupancy state of the frequency band(s) in question.

Such schemes can be used in both narrowband and wideband paradigms. Wideband detection,

for example, may be performed by dividing the broad frequency band into smaller component

subbands and carrying out narrowband detection in these individual subbands independently.

Multiband energy detection is of particular interest as it can significantly improve the overall

achievable throughput. For example, [12] considers a scheme in which the cost of interfering

with each of the EUs and the Shannon theoretic capacity for each subband are used to define

global measures for aggregate interference and aggregate opportunistic throughput respectively.

Consequently, the goal of the detection task is to maximize the opportunistic throughput aggre-

gated over all the subbands while keeping the aggregate interference under a critical value, or,

conversely, to minimize the aggregate interference across all the subbands while satisfying a lo-

wer bound on acceptable aggregate opportunistic throughput. This scheme is discussed in further
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detail in Section 2.2.

Furthermore, to overcome blockage effects in wireless transmissions, e.g., multipath fading or

shadowing, spectrum sensing may also be carried out by a cluster of collaborating CRs. This ap-

proach, known as distributed or collaborative sensing, is generally expected to outperform single-

user detection and is considered in, e.g., [2],[13], and [14]. While energy detection schemes have

gained popularity, the schemes currently being considered rely on specific assumptions about the

channel occupancy model that constrict the applicability of the resulting detectors.

1.2 Objective and Contributions of the Thesis

The current literature on wideband energy detection for spectrum sensing focuses on a decou-

pled multiband processing structure in which energy detection in any given subband is based on

a sufficient statistic computed from observed data in that particular subband only, i.e., indepen-

dently of other subbands’ data. Even sophisticated multiband detection schemes such as [12],

while jointly optimizing the set of detection thresholds used in the individual subbands from a

wideband perspective, make use of this decoupled structure. Although such a structure is indeed

optimal under the assumption that the occupancies of the frequency subbands are independent of

each other, this assumption is generally not true, especially in the presence of wideband PU/EU

signals, e.g., broadcast television or WLAN systems [15]. As a result, more recently, the topic

of spectrum sensing in the presence of correlated subband occupancy has been gaining much at-

tention. For example, [16] considers an autoregressive model to track the strengths of EU signals

along frequencies and delimit their spectral support. A sub-optimal binary detector that sums the

energy over the identified spectral band is then employed to perform spectrum sensing.

The objective of this thesis is to consider the spectrum sensing problem in a multiband fra-

mework where a priori knowledge about the correlation across subband occupancies is exploited
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to enhance the sensing performance. To achieve this, we introduce a vector of binary random

variables to model the multiple subband occupancies. By considering a Bayesian framework, we

formulate the maximum a posteriori (MAP) estimator of the wideband channel occupancy vector

based on the measurements from multiple subbands. The MAP estimator reduces to a decoupled

structure when the subband occupancies are independent of each other, but, in the general case,

its complexity grows exponentially with the number of subbands. An alternative structure is the-

refore proposed where the energy measurements from multiple subbands are linearly combined,

with weights derived from a minimum mean-square error (MMSE) criterion, to form a sufficient

statistic for binary detection in each subband. Through both analysis and numerical simulations,

it is demonstrated that the proposed optimum linear energy combiner (OLEC) can significantly

outperform (in the Neyman-Pearson sense) the traditional decoupled detector currently being

considered.

Additionally, the performance of the OLEC detector when used in conjunction with existing

spectrum sensing schemes is studied in this thesis. In particular, the OLEC detector is tested

within the multiband joint detection frameworks presented in [12]. Instead of using decoupled

hypothesis tests on the energy measurements from individual subbands, we use the test statis-

tics obtained from linearly combining energy measurements from multiple subbands. Through

numerical analysis, we show that the OLEC detector offers significant performance gains when

incorporated into both single-user and collaborative joint detection frameworks.

1.3 Organization of the Thesis

This thesis is structured as follows. In Chapter 2, an overview of spectrum sensing methodologies

is presented in the form of a survey of selected recent literature in this area. In Chapter 3, a

suitable system model for multiband energy detection is presented, followed by the development
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of the optimum Bayesian detector and the optimum linear energy combiner (OLEC), along with

an analysis of the latter’s performance. Chapter 4 shows how the OLEC detector may be used

in the context of the single-user multiband joint detection and the spatial-spectral joint detection

structures developed in [12] in order to enhance the detection performance of such sophisticated

schemes. Chapter 5 presents numerical results to corroborate the analytical developments in

Chapters 3 and 4. Finally, in Chapter 6, the thesis is summarized and conclusions are drawn.
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Chapter 2

An Overview of Spectrum Sensing

Techniques

As discussed in Section 1.1, traditionally, a few different techniques have been employed in

spectrum sensing tasks. Of these, feature detection, matched filtering, and energy detection have

been most prominently studied for cognitive radio applications. In this section, each of these is

briefly outlined. In particular, the work in [7] is discussed in detail as an example of an elaborate

scheme for multiband joint detection in both single-user and collaborative frameworks. It will

serve as a basis for the development of the new material presented in Chapter 4.

2.1 Feature Detection

Presently, a few different feature detection techniques are being studied. Three of the main

schemes are discussed below:

• Wavelet transform to locate discontinuities in the wideband power spectral density;

• Exploiting cyclostationary features to detect and classify primary signals; and
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• Matched filtering to coherently detect the presence of primary signals.

2.1.1 Use of Wavelet Transform to Detect Discontinuity in Spectrum Utilization

The wavelet transform is discussed in detail in [9] and [17]. Its use has been proposed in the

context of spectrum sensing to detect discontinuities in the frequency spectrum, and then esti-

mate the power spectral density (PSD) in each frequency subband. The bandwidth of interest is

assumed to consist of K adjacent subbands in the frequency range B = [f0, fK ], where the PSD

in the k-th subband, Bk = [fk−1, fk], is smooth and almost flat, with the parameter fk represen-

ting the subband edge frequencies. Therefore, the discontinuities in the PSD mark the edges of

the subbands. Additive background white noise with power spectrum Sv(f) = N0/2 is assumed

to be present at all times, where f denotes the frequency variable (in Hz). If the normalized

power spectral shape in the k-th band is written as:

Sk(f) =


1 if f ∈ Bk

0 if f /∈ Bk

(2.1)

then the PSD of observed signal can be expressed as:

Sr(f) =
K∑
k=1

α2
kSk(f) + Sv(f) (2.2)

where α2
k is the EU signal power density within the k-th subband, and pk(t) is a basic time-domain

signal corresponding to the PSD shape (2.1). Equivalently, the time-domain representation of the

observed signal is:

r(t) =
K∑
k=1

αkpk(t) + v(t) (2.3)
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As a result, the problem is reduced to the estimation of the parameters N , {fk}K−1k=1 , and {α2
k}Kk=1

based on an estimate of the observed signal PSD, denoted here as Ŝr(f).

In the frequency domain, the wavelet function is represented by φs(f) = 1
s
φ(f

s
) with Fourier

transform pair Φs(τ) = Φ(sτ). Commonly used wavelet function, φ(f), includes the Gaussian

function [18],[19]. The continuous wavelet transform of Ŝr(f) is given by:

Ws{Ŝr(f)} = Ŝr(f) ~ φs(f) (2.4)

where s represents the scale factor, i.e., s = 2j with j = {1, 2, ..., J}, and ~ denotes the linear

convolution integral over the frequency f .

Since the objective is to detect discontinuities in the PSD of Ŝr(f), the transform is carried

out in the frequency domain. Discontinuities in the frequency domain are given by the extrema of

the first derivative and by the zero values of the second derivative of the wavelet transform [18].

Hence, the frequency boundaries can be estimated by:

f̂k = arg max |U(f)|, f ∈ [f0, fK ] (2.5)

where

U(f) ,
J∏
j=1

W ′
s=2j{Ŝr(f)} (2.6)

is a multiscale wavelet product used to remove the noise-induced maxima that are random at

different scales [9].

The PSD within the k-th band is β̂k = 1
fk−fk−1

∫ fk
fk−1

Ŝr(f)df . Since mink β̂k represents the

estimate of the noise power, the PSD of the EU signal is given by:

α̂2
k = β̂k −min

k
β̂k, k = 1, . . . , K (2.7)
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Although the numerical results presented in, e.g., [9], are very accurate, this method relies

on the presence of sharp discontinuities in the PSD along the frequency axis. In reality, the PSD

is expected to be somewhat smoother, making the use of wavelet transforms very difficult in

practice.

2.1.2 Use of Cyclostationarity to Detect and Classify EU Signals

References [8], [20] and [21] present the use of cyclostationarity properties of the observed signal

to detect and classify any EU signals present. A thorough treatment of the use of cyclostationarity

for detection or classification tasks can be found in [22] and [23]. Typically, the EU signal

is a modulated sinusoidal carrier and, hence, can be modelled as a wide-sense second-order

cyclostationary process with period T0, where T0 6= 0 represents the fundamental period of the

process. Therefore, its mean and autocorrelation functions are periodic with period T0. Let s(n)

denote the discrete-time representation of the EU signal. The cyclic auto-correlation function of

s(n) is defined as [23]:

Rα
s (m) , E[s(n)s∗(n+m)e−2παn] (2.8)

where α represents the integer multiples of the reciprocal of the fundamental period, T0. This

function has a finite non-zero value for α = i/T0, ∀i ∈ Z+ and is equal to 0 otherwise. The spec-

tral correlation function (SCF), denoted as Sαs (ejω), where ω ∈ [−π, π] is the digital frequency

corresponding to a sampling rate of Fs, is defined as the discrete-time Fourier transform (DTFT)

of Rα
s (m).

The SCF of the observed moving signal r(n) can be estimated using:

Ŝαr (k) =
1

N

N∑
n=1

RL

(
n, k +

kα
2

)
R∗L
(
n, k − kα

2

)
(2.9)



An Overview of Spectrum Sensing Techniques 11

where RL(n, k) is the L-point DFT of the observed signal around the n-th sample, kα = αL/Fs

is the index of the frequency bin corresponding to the cyclic frequency α, and N is the total

number of observed samples available. Given the above estimate, the following hypothesis test

can be used to detect the presence of the EU signal:

L−1∑
k=0

Ŝαr (k)[Sαs (k)]∗
H1

R
H0

γ (2.10)

Here, hypotheses H0 and H1 correspond to the absence and presence of an EU respectively.

Reference [8] treats the above in the continuous time and also presents ways of classifying the

observed signal in terms of its period using a hidden Markov model (HMM) classifier. As is

clear from (2.10), to perform these tests, a priori knowledge of the EU signal, especially its SCF,

Sαs (k), is essential. This information is generally not available in practice.

2.1.3 Matched Filtering (Coherent) Detection

In certain applications, it is possible to have a priori knowledge of the primary signal waveform,

s(n), e.g., due to known pilot signals [7]. In such cases, the CR node has complete knowledge of

s(n), and, given an observed signal r(n), a matched filtering technique can be used to detect the

presence of the EU signal using:

T ,
N∑
n=1

r(n)s∗(n)
H1

R
H0

γ (2.11)

where γ is a user-defined threshold parameter.

Under hypothesisH0, it can be shown that, for largeN , the test statistic is normally distributed

with zero mean and varianceNpsσ2
v , i.e., T ∼ CN (0, Npsσ

2
v), where σ2

v is the noise variance and

ps = 1
N

∑N
n=1 |s(n)|2 is the average power of the EU signal. Similarly, under underH1, it can be
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shown that T ∼ CN (Nps, Npsσ
2
v) [7]. Consequently, the probabilities of false alarm and missed

detection can be expressed respectively as:

Pf = P (H1|H0) = Q

(
γ

σv
√
Nps

)
(2.12)

Pm = P (H0|H1) = 1−Q
(
γ −Nps
σv
√
Nps

)
(2.13)

where Q(.) represents the tail probability of a standard normal random variable defined as:

Q(x) ,
1√
2π

∫ ∞
x

e−t
2/2dt (2.14)

From (2.12) and (2.13), the number of required measurements required to attain a particular

operating point (Pf , Pm) can be found to be:

N =

[
Q−1(Pf )−Q−1(1− Pm)

]2
SNR−1 = O(1/SNR) (2.15)

where SNR , ps
σ2
v

is the signal-to-noise ratio of the EU signal, and O is the big order notation1.

From wireless communications theory, it is well-known that when the transmitted signal is

known, the matched filter detector is optimum [6]. However, as the SNR drops, a much larger

number of samples is needed to reach a desired operating point [25]. This, in addition to a strong

dependence on synchronization and prior knowledge of the EU signal, makes the matched filter

detection unfeasible in most cases [26].
1A function f(x) is O(g(x)) if there are positive real constants c and x0 such that f(x) ≤ cg(x) for all values of

x ≥ x0 [24]
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2.2 Energy Detection

The energy measured in any particular frequency band can be used as an indicator of the oc-

cupancy of that band. For example, consider the narrowband case where the SU observes the

discrete-time, band-limited signal

H0 : r(n) = v(n) (2.16)

H1 : r(n) = s(n) + v(n) (2.17)

where n ∈ {0, 1, . . . , N−1} is the time index, s(n) is the EU signal and v(n) is modelled as a

complex Gaussian white noise sequence, i.e., v(n) ∼ CN (0, σ2
v). Based on the observation of{

r(n)
}N−1
n=0

, the optimum detector of the EU signal (in the Neyman-Pearson sense) can be shown

to be [27]:

y ,
N−1∑
n=0

|r(n)|2
H1

R
H0

γ (2.18)

In this case, [7] shows that the number of samples required to attain an operating point (Pf , Pm)

is given by:

N =

[
Q−1(Pf )−Q−1(1− Pm) (1 + SNR)

]2
SNR−2 (2.19)

where the EU signal parameters, SNR and ps, are as defined previously. When SNR � 1,

(2.19) dictates that O(1/SNR) samples are needed for a given operating point (Pf , Pm), while,

in low SNR regions, where SNR � 1, O(1/SNR2) samples are needed. Hence, the energy

detector can produce fast results (i.e., using fewer samples) in high SNR conditions, but, in

low SNR scenarios, the speed of detection deteriorates. However, because of their low cost,

implementational simplicity, and flexibility (only a minimum amount of prior information about

the EU signal is needed), energy-based detection schemes are often favoured in literature, e.g., in
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[1], [10], [13] and [16].

The energy detector can also be applied to wideband detection scenarios. Furthermore, in

order to overcome the negative impacts of multipath fading and shadowing on detection perfor-

mance, energy detectors can be incorporated into multi-user collaborative schemes. For example,

[12] considers both single-user and multi-user collaborative detection for wideband applications.

For illustrative purposes, the findings of this particular paper are summarized below; they will

serve as a basis in the developments presented in Chapter 4.

2.2.1 Single-User Multiband Joint Detection

Let r(n) denote the down-converted and uniformly sampled wideband signal observed by the SU

(i.e., CR detector):

r(n) =
L−1∑
l=0

h(l)s(n− l) + v(n) (2.20)

where s(n) is the EU signal, h(n) is the impulse response of the wireless channel between the

EU and the SU (assumed to be time-invariant), L is the length of h(n) and v(n) is an additive

noise term.

We consider a frequency-domain detector structure in which aK-point discrete Fourier Trans-

form (DFT)2 is used to decompose successive frames of r(n) into narrowband discrete frequency

components, i.e.:

Rk(m) =
K−1∑
n=0

r(mK + n)e−j2πnk/K , k = 0, 1, ..., K − 1 (2.21)

where k is the frequency and m ∈ {0, 1, . . . ,M−1} is the frame index. In a similar fashion, we

let Hk, Sk(m) and Vk(m) denote the k-th DFT coefficients of h(n), s(mK +n) and v(mK +n),

2In an actual implementation, the fast Fourier transform (FFT) algorithm is used to compute the DFT frequency
samples more efficiently [28].
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respectively. Under the assumption of a large time-bandwidth product (K > L), the convolution

in (2.20) can be approximated by the product of the corresponding DFT coefficients, that is:

H0,k : Rk(m) = Vk(m)

H1,k : Rk(m) = HkSk(m) + Vk(m)
(2.22)

Under hypothesis H0,k, the k-th frequency bin or subband is unoccupied, while, under H1,k,

the k-th subband is occupied. The EU signal and noise samples, {Sk(m)} and {Vk(m)} res-

pectively, are modelled as independent random processes. Samples from each process are as-

sumed to be independent across frequency and frame indices and to obey a zero-mean complex

circular symmetric Gaussian distribution. We set E[|Sk(m)|2] = 1, while the noise variance

E[|Vk(m)|2] = σ2
v and the channel squared magnitude response, Gk , |Hk|2, are assumed to be

known from a priori estimation.

In [12], detection is performed using the following decision rule:

Yk ,
M−1∑
m=0

|Rk(m)|2
H1,k

R
H0,k

γk (2.23)

where γk is the detection threshold used in the k-th subband. The central limit theorem dictates

that, for a large enoughM , the random variables {Yk}K−1k=0 are approximately normally distributed

with mean:

E[Yk] =


Mσ2

v , H0,k

M(σ2
v + |Hk|2), H1,k

(2.24)
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and variance3:

Var[Yk] =


Mσ4

v , H0,k

M(σ2
v + |Hk|2)2 H1,k

(2.25)

It follows that the probabilities of false alarm and detection associated with (2.23) can be

respectively expressed as:

P
(k)
f (γk) = Pr(Yk > γk|H0,k)

= Q

(
γk −Mσ2

v

σ2
v

√
M

)
(2.26)

P
(k)
d (γk) = Pr(Yk > γk|H1,k)

= Q

(
γk −M(σ2

v + |Hk|2)
(σ2

v + |Hk|2)
√
M

)
(2.27)

In the wideband case, the detection thresholds, the probabilities of false alarm and the proba-

bilities of missed detection for the K subbands can be represented compactly using the vector

notation:

γ ≡ [γ0, γ1, . . . , γK−1]
T (2.28)

Pf (γ) ≡ [P
(0)
f (γ0), P

(1)
f (γ1), . . . , P

(K−1)
f (γK−1)]

T (2.29)

Pm(γ) ≡ [P (0)
m (γ0), P

(1)
m (γ1), . . . , P

(K−1)
m (γK−1)]

T (2.30)

In the present context of CRs, the probability of missed detection, i.e., P (k)
m (γk) = 1− P (k)

d (γk),

represents the likelihood of the SU’s interfering with any EU in the k-th subband. Furthermore,

1 − P (k)
f is a measure of the likelihood of detecting and, hence, using a spectrum hole. If rk is

used to denote the achievable throughput in the k-th subband and r ≡ [r0, r1, . . . , rK−1]
T denotes

3Some discrepancies were found in the computation of Var[Yk] in [12]. These have been corrected here. Further
details can be found in Appendix B.
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the set of throughputs for the K subbands, the aggregate opportunistic throughput of the SU can

be defined as [12]:

R(γ) , rT [1− Pf (γ)] (2.31)

In principle, the quantity rk can be calculated using Shannon’s capacity formula as the maximum

theoretic data rate achievable in the k-th subband (see [29]).

Conversely, consider a case where one or more EUs are using the system. Let ck denote the

cost of interfering with the EU(s) in the k-th subband and vector c , [c0, c1, . . . , cK−1]
T represent

the costs associated with interfering in the K subbands. Since the probability of missed detection

is a measure of the likelihood of interfering with the EU(s), the aggregate interference added by

the SU (to all the EUs) can be defined as [12]:

C(γ) , cTPm(γ) (2.32)

If the detection is carried out in the Neyman-Pearson framework, the goal is to find the opti-

mum threshold γ̂k for the k-th subband that minimizes P (k)
m given an upper bound on P (k)

f ≤ βk.

However, given different interference costs, ck, and Shannon capacities, rk for different subbands,

band-by-band optimization of thresholds proves to be a sub-optimal solution. Instead, the objec-

tive of [12] is to find an optimal set of thresholds {γk}K−1k=0 that achieves one of the following:

• Maximization of the aggregate opportunistic throughput with constraint on the aggregate
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interference4:

max
γ

R(γ) (2.33a)

s.t. cTPm(γ) ≤ ε (2.33b)

Pm(γ) ≤ α (2.33c)

Pf (γ) ≤ β (2.33d)

• Minimization of the aggregate interference with constraint on the aggregate opportunistic

throughput:

min
γ

C(γ) (2.34a)

s.t. rT [1− Pf (γ)] ≥ δ (2.34b)

Pm(γ) ≤ α (2.34c)

Pf (γ) ≤ β (2.34d)

where α = [α0, α1, . . . , αK−1]
T are the interference limits for the K subbands and β = [β0,

β1, . . . , βK−1]
T ; the mimimum opportunistic spectrum utilization is represented by 1 − β =

[1− β0, 1− β1, . . . , 1− βK−1]T . Both the objective and constraint functions above are generally

non-convex. However, by carefully analyzing the problem, the search of the optimum solu-

tion can be simplified. Firstly, the fact that the Q-function is monotonically non-increasing, in

conjunction (2.26) and (2.27), allows the constraints in (2.33c) - (2.34d) to be transformed into a

4It is possible to extend this formulation to the case where a number J of EUs are using the system, with the
j-th EU occupying a subset Sj of the K subbands, and to contain the total interference to any specific EU, i.e.,∑

i∈Sj
ciP

(i)
m (γi) < εj for j = 0, 1, . . . , J−1. However, we do not consider this scenario in this work; see [12].
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linear constraint:

γmin,k ≤ γk ≤ γmax,k

where:

γmin,k , σ2
v

[
M +

√
MQ−1(βk)

]
γmax,k , (σ2

v + |Hk|2)
[
M +

√
MQ−1(1− αk)

]

Secondly, it can be shown that the functions P (k)
f (γk) and P

(k)
m (γk) are both convex in γk if

P
(k)
f (γk) ≤ 0.5 and P (k)

m (γk) ≤ 0.5. Accordingly, the above optimization problems are convex

when properly restricted to the corresponding feasible set. To this end, the parameters αk and βk

must lie in [0, 1
2
].

Therefore, the multiband joint optimization problems may be simplified to:

• Maximization of the aggregate opportunistic throughput with constraint on the aggregate

interference:

max
γ

R(γ) (2.35)

s.t. cTPm(γ) ≤ ε

γmin,k ≤ γk ≤ γmax,k

• Minimization of the aggregate interference with constraint on the aggregate opportunistic



An Overview of Spectrum Sensing Techniques 20

throughput:

min
γ

C(γ) (2.36)

s.t. rT [1− Pf (γ)] ≥ δ

γmin,k ≤ γk ≤ γmax,k

Reproduced results of the above optimizations will be presented in Section 5.2 for reference

in our study.

2.2.2 Collaborative Multiband Joint Detection

Although single-user detection, as described in Section 2.2.1, can satisfy the requirements of

spectrum sensing applications, it performs poorly in the presence of blockage effects, such as

multipath fading. In such conditions, use of collaborative detection, whereby a network of co-

operating SUs (i.e., CR detectors) share information, demonstrates better robustness. In this

section, such a scheme is discussed. The procedure described in this section is analogous to what

was presented in section 2.2.1 and uses similar notations.

Consider a case where a number N of SUs collaborate to perform spectrum sensing. Using

notations similar to those used in Section 2.2.1, the signal observed by the n-th SU in the k-th

subband during the m-th time frame can be represented as:

H0,k : Rn
k(m) = V n

k (m)

H1,k : Rn
k(m) = Hn

kSk(m) + V n
k (m)

Y n
k ,

∑M−1
m=0 |Rn

k(m)|2 is the n-th SU’s observed energy in the k-th subband. For the k-th

subband, we define a vector Yk = [Y 0
k , Y

1
k , . . . , Y

N−1
k ]T , which consists of energy measurements
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from all N SUs. Consequently, the following test statistic can be computed using a linear fusion

scheme to combine the energy measurements of the N collaborating SUs:

Zk =
N−1∑
n=0

wnkY
n
k = wT

k Yk (2.37)

wherewk = [w0
k, w

1
k, . . . , w

N−1
k ]T are the corresponding weight coefficients used for the subband

k. The weight vectors for different subbands may be concatenated to construct a weight matrix:

W = [w0|w1| . . . |wK−1]. Note that the individual weights wnk ≥ 0.

The following decision rule is now used for the k-th subband:

Zk

H1,k

R
H0,k

γk, k = 0, 1, . . . , K − 1 (2.38)

As before, the central limit theorem dictates that for a large enough number of samples M , Zk is

approximately normally distributed with mean:

E[Zk] =


MwT

k σ
2
v1, H0,k

MwT
k (σ2

v1 +Gk), H1,k

(2.39)

and variance:

Var[Zk] =


MwT

k σ
4
vwk, H0,k

MwT
k Σkwk H1,k

(2.40)

where 1 = [1, 1, . . . , 1]T , Gk = [|H0
k |2, |H1

k |2, . . . , |HN−1
k |2] is the vector of channel squa-

red magnitude responses between the EU and the N collaborating SUs, and Σk = σ4
vIN +

2σ2
vdiag{Gk}+ [diag{Gk}]2.

On this basis, the probabilities of false alarm and detection associated with (2.38) can be
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computed as:

P
(k)
f (γk) = Pr(Yk > γk|H0,k)

= Q

(
γk −MwT

k σ
2
v1√

MwT
k σ

4
vwk

)
(2.41)

P
(k)
d (γk) = Pr(Yk > γk|H1,k)

= Q

(
γk −MwT

k (σ2
v1 +Gk)√

MwT
k Σkwk

)
(2.42)

As was done in the case of single-user detection case, by defining a cost vector, c = [c0,

c1, . . . , cK−1]
T , comprising of the costs of adding interference in each of the K subbands, and a

Shannon capacity vector, r = [r0, r1, . . . , rK−1]
T , we can define the performance metrics for the

collaborative joint detection framework. In particularly, the aggregate opportunistic throughput

is defined as:

R(W,γ) , rT [1− Pf (W,γ)] (2.43)

and the aggregate interference is defined as:

C(W,γ) , cTPm(W,γ) (2.44)

where the dependence on the weight matrix has been made explicit. It is now possible to formu-

late global optimization problems in order to find a set of thresholds {γk}K−1k=0 and a set of fusion

weights {wk}K−1k=0 that achieve one of the following:

• Maximization of the aggregate opportunistic throughput with constraint on the aggregate

interference;

• Minimization of the aggregate interference with constraint on the aggregate opportunistic
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throughput.

The resulting problems are similar to those in (2.33) and (2.34), except for the explicit dependence

of Pf , Pf , R and C on W .

As in the previous section, the resulting objective and constraint functions above are non-

convex in general. Therefore, it is necessary to limit the search to suitable feasible sets. Mo-

reover, in the spatially distributed case, in addition to the optimum set of thresholds, {γk}K−1k=0 ,

the optimum set of weight vectors, {wk}K−1k=0 , has to be computed as well. [12] shows that the

optimum weight vector is given by:

wo
k =

Σ−1k Gk

‖Σ−1k Gk‖2
(2.45)

In order to simplify the spectral optimization problem, once again, the fact that theQ-function

is monotonically non-increasing is exploited to transform (2.33c) - (2.33d) into a linear constraint:

γmin,k ≤ γk ≤ γmax,k

where, this time:

γmin,k ,Mσ2
v1

Two
k +Q−1(βk)

√
MwoT

k σ4
vw

o
k

γmax,k ,M(σ2
v1 +Gk)

Two
k +Q−1(1− αk)

√
MwoT

k Σkwo
k

As in Section 2.2.1, the simplified optimization problems will be convex if parameters αk and βk

are restricted to [0, 1
2
].

Therefore, the spatial-spectral optimization problems may be formulated as:

• Maximization of the aggregate opportunistic throughput with constraint on the aggregate
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interference:

max
γ

R(W o,γ) (2.46)

s.t. cTPm(γ) ≤ ε

γmin,k ≤ γk ≤ γmax,k

• Minimization of the aggregate interference with constraint on the aggregate opportunistic

throughput:

min
γ

C(W o,γ) (2.47)

s.t. rT [1− Pf (W o,γ)] ≥ δ

γmin,k ≤ γk ≤ γmax,k

2.3 Final Remark

The detection schemes presented in this section assume that the occupany of any particular sub-

band is independent of that of the other subbands. In general, as discussed in Section 3.1, this

assumption does not hold true. As will be shown in Chapter 4, it is possible to exploit a priori

knowledge of the correlation between subband occupany to improve spectrum sensing perfor-

mance in multiband joint detection frameworks. In the next two chapters, detection schemes that

exploit such a priori knowledge of correlation are discussed, starting with the development of

improved detectors of multiband channel occupancy in Chapter 3 and their application to extend

the work of [12] in Chapter 4.
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Chapter 3

Optimum Detectors of Multiband Channel

Occupancy

In this chapter, the optimum detectors of the multiband channel occupancy are developed. We

present an occupancy model to characterize the wideband signal observed by the SU using an

underlying occupancy vector. First, considering a Bayesian framework, the MAP estimator of

the occupancy vector is developed. However, the MAP estimator proves to be computationally

intractable. Consequently, a lower-complexity detector of the occupancy vector that relies only

on optimal linear combination of subband energy measurements is constructed and analyzed.

3.1 Model for Multiband Channel Occupany

As in Section 2.2.1, the wideband signal observed by the SU (i.e., CR detector) after down-

conversion and uniform sampling, denoted byr(n), is expressed as:

r(n) =
L−1∑
l=0

h(l)s(n− l) + v(n) (3.1)
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where s(n) is the EU signal, h(n) is the impulse response of the wireless channel between the EU

and SU (assumed to be time-invariant), L is the length of h(n) and v(n) is an additive noise term.

Using a K-point discrete Fourier Transform (DFT), successive frames of r(n) are decomposed

into narrow-band discrete frequency components, i.e.:

Rk(m) =
K−1∑
n=0

r(mK + n)e−j2πnk/K , k = 0, 1, . . . , K−1 (3.2)

where k is the frequency index, m = 0, 1, . . . ,M−1 is the frame index and M is the number

of frames available. As before, Hk, Sk(m) and Vk(m) denote the k-th DFT coefficients of h(n),

s(mK+n) and v(mK+n), respectively. Assuming a large time-bandwidth product (K > L), the

convolution in (3.1) maps into a product of the DFT coefficients of the corresponding quantities.

Accordingly, we can represent the m-th sample of the observed signal in the k-th subband as:

Rk(m) = HkSk(m) + Vk(m), k = 0, 1, . . . , K−1. (3.3)

The sequence of EU signal samples, {Sk(m)}, and of background noise samples, {Vk(m)},

are modelled as independent random processes. Given a particular state of occupancy of the

wideband channel, samples from each process are assumed to be independent across frequency

and frame indices and to obey a zero-mean complex circular symmetric Gaussian distribution.

The noise variance, σ2
v , E[|Vk(m)|2], and the channel squared magnitude response, Gk ,

|Hk|2, are assumed to be known from a priori estimation. Without loss in generality, we set

E[|Sk(m)|2] = 1, if the k-th subband is occupied and 0 otherwise. Note that this corresponds to

the occupancy model being used in current literature, such as the one described in (2.22). Indeed,

in the absence of an EU, E[|Sk(m)|2] = 0 and (3.3) reduces to Rk(m) = Vk(m).

In this thesis, we adopt a Bayesian framework and model the occupancy of the k-th subband

as a binary random variable, Bk, with realization bk ∈ {0, 1}. As above, 0 and 1 respectively
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indicate an empty and occupied subband; accordingly, we have E[|Sk(m)|2
∣∣Bk = bk] = bk. The

wideband spectrum occupancy may then be described by the random vector

B = [B0, B1, . . . , BK−1]
T (3.4)

with realizations b = [b0, b1, . . . , bK−1]
T ∈ {0, 1}K . The joint probability mass function (PMF)

of B is denoted by PB(b) = Pr(B0 = b0, . . . , BK−1 = bK−1). Additionally, we define the mean

vector µ = E[B], with entries µi = E[Bi], and the correlation matrix Λ = E[BBT ], with entries

λij = E[BiBj]. The occupancy vector B is assumed to be independent of {Vk(m)} and to remain

unchanged during the detection interval.

Given the above signal model and observed time-frequency data in (3.3), we seek an efficient

detector structure that will enable the SU to determine the state of occupancy of the wideband

channel respresented by the random vectorB. Under the conventional assumption of independent

subband occupancy, the solution to this problem amounts to comparing the received signal energy

in each subband to a decision threshold, i.e., K decoupled binary tests. Here, we consider the

general situation in which the occupancy variables Bi and Bj may not be independent for i 6= j.

For instance, because of spectral allocation plan, an EU (such as WLAN or broadcast television)

may be transmitting over a wideband spectrum, which maps to multiple subbands for the SU;

or, as discussed in [16], a contiguous section of the wireless spectrum licensed to the EU may

be deeply faded due to multipath fading effects. In this situation, EU detection in the faded

subbands is difficult, but there exists a correlation between the occupancies of the faded and

unfaded subbands. We will show in this thesis that significant gains may be achieved in detection

performance if such a priori knowledge of correlation is exploited.
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3.2 Bayesian Estimation of Channel Occupancy Vector

Given the model described in Section 3.1, the mean and variance of Rk(m) conditioned on Bk =

bk are given by:

E[Rk(m)
∣∣Bk = bk] = 0 (3.5)

Var[Rk(m)
∣∣Bk = bk] = bkGk + σ2

v (3.6)

Let R denote a random vector containing the complete set of observed data in (3.3), i.e.: R =

[RT
0 ,R

T
1 , . . . ,R

T
K−1]

T , whereRk = [Rk(0), Rk(1), . . . , Rk(M − 1)]T , with corresponding reali-

zation r = [rT0 , r
T
1 , . . . , r

T
K−1]

T , where rk = [rk(0), rk(1), . . . , rk(M − 1)]T . Consequently, the

conditional probability density function (PDF) of r givenB = b can be written as:

fR|B(r|b) =
M−1∏
m=0

K−1∏
k=0

1

π(bkGk + σ2
v)

exp
{
− |rk(m)|2

bkGk + σ2
v

}
(3.7)

Using (3.7), the MAP estimator ofB given the observationR = r can be formulated as:

B̂MAP = arg max
b
LMAP(b|r) (3.8)

The associated log-likelihood function is given by:

LMAP(b|r) = lnPB(b)−M
K−1∑
k=0

ln(bkGk + σ2
v)−

K−1∑
k=0

yk
bkGk + σ2

v

(3.9)

where yk is the energy measured in the k-th subband over M frames and is defined as:

yk =
M−1∑
m=0

|rk(m)|2 (3.10)
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In the next subsections, we consider, by way of example, special cases of occupancy vector

B models to illustrate the use and complexity of the optimum Bayesian estimator of spectrum

occupancy in (3.8).

3.2.1 Estimation of Channel Occupancy for K = 2 Case

In order to illustrate the use of (3.8) to estimate the channel state of occupancy, we first consider

a lower dimensionality situation with K = 2 subbands. In this case, the wideband channel

occupancy is represented by B = [B0, B1]
T with possible realizations [0, 0]T , [0, 1]T , [1, 0]T and

[1, 1]T . The observed data can be denoted usingR = [RT
0 ,R

T
1 ]T and the energies measured in the

0th and 1st subbands are denoted using y0 and y1 respectively. By evaluating the log-likelihood

function (3.9) for each of the four possible realizations, it is possible to construct a decision

diagram in the (y0, y1) plane, such as the one shown in Figure 3.1.

[0,0]T

[1,0]T

[0,1]T

[1,1]T

y0

y1

Y0
HY0

L

Y1
L

Y1
H

Figure 3.1 Decision regions of the MAP estimator for K = 2
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The labels associated with the decision boundaries are defined as follows:

Y L
0 = σ2

v

(
1 +

σ2
v

G0

)[
M ln

(
1 +

G0

σ2
v

)
+ ln

PB(0, 0)

PB(1, 0)

]
(3.11)

Y H
0 = σ2

v

(
1 +

σ2
v

G0

)[
M ln

(
1 +

G0

σ2
v

)
+ ln

PB(0, 1)

PB(1, 1)

]
(3.12)

Y L
1 = σ2

v

(
1 +

σ2
v

G1

)[
M ln

(
1 +

G1

σ2
v

)
+ ln

PB(0, 0)

PB(0, 1)

]
(3.13)

Y H
1 = σ2

v

(
1 +

σ2
v

G1

)[
M ln

(
1 +

G1

σ2
v

)
+ ln

PB(1, 0)

PB(1, 1)

]
(3.14)

For instance, if the pair of measured energies (y0, y1) falls in the region labelled [1, 0]T , then

the MAP detector will decide in favour of subband 0 being occupied (y0 > Y L
0 ) and subband 1

being unoccupied (y1 < Y H
1 ).

In general, for K subbands, the size of the sample space, i.e., the number of distinct integer

vector elements b, is 2K . Therefore, although the MAP estimator leads to simple decision regions

such as those in Figure 3.1 for low dimensionality, for higher number of subbands, such construc-

tions have to be done in K dimensional space, making the process computationally complex.

3.2.2 Estimation of Channel Occupancy for Uncorrelated Case

Here we consider the special case where the subband occupancies are independent of each other,

i.e., PB(b) =
∏K−1

k=0 PBk
(bk), where PBk

(bk) = Pr(Bk = bk) denotes the marginal probability of

occupancy of the k-th subband. The maximization in (3.9) can then be done independently for

each k, i.e., B̂k = arg maxbk Lk(bk|rk) where:

Lk(bk|rk) = lnPBk
(bk)−M ln(bkGk + σ2

v)−
yk

bkGk + σ2
v

(3.15)
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Maximization of (3.15) leads to an independent binary hypothesis test for each subband:

yk

H1,k

R
H0,k

γk, k = 0, 1, . . . , K − 1 (3.16)

where γk is the threshold parameter used in the k-th subband. Present literature largely deals

with this special case where the optimal multiband detector consists of K parallel decoupled

narrowband ones.

However, as pointed out earlier, the occupancy of ajacent subbands is likely to be correlated

in practice, i.e., the random variable Bk will not be statistically independent. In the general case

where the subband occupancies Bk are not independent of each other, (3.9) leads to a non-linear

integer optimization in K-dimensional space. As we can infer from the example in Subsec-

tion 3.2.1, this is a computationally challenging problem with intricate decision regions whose

complexity grows exponentially with the number of subbands K. Therefore, to solve the mul-

tiband energy detection problem with correlated subband occupancy within reasonable limits of

processing time and complexity, we need a simpler detector structure, such as the one discussed

next.

3.3 Optimum Linear Energy Combiner (OLEC) Detector

From (3.9), we note that the measured energies {yk}K−1k=0 define a set of sufficient statistics for

the MAP estimator. Furthermore, only linear processing of these quantities is required. However,

since the weights applied to the energies {yk}K−1k=0 depend on the particular hypothesis being

tested, 2K linear combiners are needed in order to obtain the MAP estimator. This exponential

growth in complexity of the MAP estimator motivates the use of simpler detector structures.

In particular, we investigate here a simplified detector structure in which subband energies are
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linearly combined, using one combiner per subband, and a hypothesis test is carried out on the

resulting statistic for each subband.

Specifically, we let

B̂k = ξTk Y + εk (3.17)

denote an estimate of the unknown occupancy Bk of the k-th subband, as obtained by an affine

transformation on the random energy vector Y = [Y0, Y1, . . . , YK−1]
T , where

Yk =
M−1∑
m=0

|Rk(m)|2 (3.18)

We propose to compute the optimum weight vector ξk and constant εk in (3.17) as the mini-

mizer of the MSE defined as:

J(ξk, εk) = E[(B̂k −Bk)
2] (3.19)

= E[(ξTk Y + εk −Bk)
2] (3.20)

As shown in Appendix A, the MMSE weight vector is found to be:

ξok = E[Ỹ Ỹ T ]−1E[Ỹ B̃k] (3.21)

where we define the centred quantities Ỹ = Y − E[Y ] and B̃k = Bk − µk. The optimum value

of εk, given by εok = µk − ξok
TE[Y ], is needed in the MMSE estimation of Bk since the latter has

non-zero mean.

Substituting (3.3) into (3.18) and making use of the modelling assumptions in Section 3.1, we

can show that1:
1Further details can be found in Appendix B.
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E[ỸiB̃k] = M(λik − µiµk)Gi (3.22)

E[ỸiỸj] = M2(λij − µiµj)GiGj +M(µiG
2
i + 2µiGiσ

2
v + σ4

v)δij (3.23)

These moments, which are needed to evaluate the MMSE weight vector in (3.21), depend on

the following parameters:

• M , the number of frames being processed;

• µi and λij , the 1st and 2nd moments of the occupancy vectorB;

• Gi, the channel gain; and

• σ2
v , the background noise power.

We assume that these quantities are known a priori. The resulting multiband detector structure,

R0(m)

Rk(m)

Y0

Yk
H1,k / H0,k

RK-1(m) YK-1

ξk,iYi

γk

m=0
|·|2

M-1

i=0

K-1

m=0
|·|2

M-1

m=0
|·|2

M-1

Zko

Figure 3.2 Single block of the optimum linear energy combiner (only the detector
for the k-th subband is shown)

illustrated in Figure 3.2 for the k-th subband, amounts to implementing the following test:

Zk = ξok
TY

H1,k

R
H0,k

γk, k = 0, 1, . . . , K − 1 (3.24)

where Zk represents the output of the optimum linear energy combiner. That is, if Zk > γk, we

decide in favour ofH1,k, i.e., the k-th subband is occupied, while, if Zk < γk, we decide in favour
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of H0,k, i.e., the k-th subband is unoccupied. The bias term εok is not shown in Figure 3.2 as it is

absorbed in the detection threshold γk. Also, ξok can be normalized such that ξokk = 1.

Note that the weights ξok were chosen to minimize the MSE in detection for the class of

detectors based on linear energy combination, thereby making the detector in (3.24) optimal in the

MMSE sense. Some cases of sub-optimal linear energy combiners are presented in Section 3.3.1

below.

To exploit spatial diversity, linear combination of energies measured within a given subband

by spatially distributed CRs has been applied to distributed sensing, e.g., in [13]. The proposed

approach here is different in that it attempts to optimally combine the energies measured by a

single CR across multiple subbands based on the correlation between the subband occupancies

of EUs. In fact, as will be shown in Sections 4.2 and 5.2.2, the OLEC detector in (3.24) can be

used to improve the performance of collaborative detection schemes, such as those in [12] and

[13].

3.3.1 Lower Dimensionality Energy Combiners

For certain subband occupancy models used in current literature, for example, [16], where the

degree of correlation between Bj and Bk decreases as the frequency separation |k− i| increases,

we find that the relative weights ξoki given to Yi in the computation of Zk decreases in a similar

way. Consequently, the greatest amount of weight is placed on the energy measurements of the

current and adjacent subbands, with indices k and k ± 1. This suggests the consideration of

a simplified, sub-optimal linear combiner structure in which the sufficient statistic used by the

binary detector in the k-th subband is obtained from2:

Z±k = Yk + η−Yk−1 + η+Yk+1 (3.25)
2With obvious modifications for the edge frequencies k = 0 and K − 1.
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where the gains η± can be chosen in a number of different ways, such as:

• Truncation of the optimum solution (3.21);

• Solution of a simplified (3-dimensional) version of the MMSE problem; or

• Minimization of the probability of missed detection for a given probability of false alarm.

Some of these options will be considered in connection with our simulation experiments reported

in Section 5.1.

3.3.2 Performance of the OLEC Detector

For detection tasks based on hypothesis-testing, the minimum attainable probability of missed

detection for a given upper limit on the probability of false alarm is generally used as an objec-

tive measure of the performance. Here, we compute these probabilities for the OLEC detector

developed above. First, conditioned on Bk = bk, the mean and variance of the test statistic (3.24)

can be expressed as:

E[Zk|Bk = bk] = ξok
TE[Y |Bk = bk] (3.26)

Var[Zk|Bk = bk] = ξok
TE[Ỹ Ỹ T |Bk = bk]ξ

o
k (3.27)

By extending the derivations for the unconditional mean and correlation of Y presented in Ap-

pendix B, it can be shown that:

E[Yi|Bk = bk] = M(µi|kGi + σ2
v) (3.28)

E[ỸiỸj|Bk = bk] = M2GiGj(λij|k − µi|kµj|k) +M [µi|kGi(Gi + 2σ2
v) + σ4

v ]δij (3.29)

where the following short-hand notations are used for convenience:
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µi|k ≡ E[Bi|Bk = bk] (3.30)

λij|k ≡ E[BiBj|Bk = bk] (3.31)

According to the central limit theorem [30], for a sufficiently large number of frames M , it is

reasonable to assume that the random variables Yk in (3.18) are normally distributed under each

of the hypotheses. In turn, this implies that the linearly combined output Zk in (3.24) is also

normally distributed under each of the hypotheses. Consequently, the probability of false alarm

and the probability of missed detection associated with the test in (3.24) are given by:

P
(k)
f (γk, ξ

o
k) = Q

(
γk − E[Zk|Bk = 0]√

Var[Zk|Bk = 0]

)
(3.32)

P (k)
m (γk, ξ

o
k) = 1−Q

(
γk − E[Zk|Bk = 1]√

Var[Zk|Bk = 1]

)
(3.33)

where the conditional mean and variance are as calculated in (3.26)-(3.31). Note that the above

expressions hold true for hypothesis tests carried out on Z±k defined in (3.25) if ξok is replaced

by ξ±k = [0, . . . , 0, η−, 1, η+, 0, . . . , 0]T . To evaluate the probabilities in (3.32) and (3.33), know-

ledge of the conditional moments, µi|k and λij|k, is needed. These quantities can be obtained from

measurements of subband occupancies by EUs, or from a suitable occupancy model, as shown in

Chapter 5.
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Chapter 4

Multiband Joint Detection with the

Optimum Linear Energy Combiner

As discussed in Section 1.1, multiband joint energy detection has gained importance in the

context of spectrum sensing for cognitive radios. In Section 2.2, we presented detailed examples

of contemporary spectrum sensing techniques in both single-user and collaborative multiband

joint detection frameworks. We noted that even in such sophisticated sensing schemes, current

literature assumes the subband occupancies to be independent of each other. In this section, we

show how we can exploit a priori knowledge of correlation between subband occupancies in

order to obtain significant performance gains in multiband joint detection tasks. Here, we consi-

der the use of the OLEC detector, developed in Section 3.3, within the multiband joint detection

scheme presented in [12]. First, the OLEC is applied to single-user multiband joint detection.

Then, the OLEC is adapted for the multi-user collaborative detection case as well.
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4.1 Single-User Multiband Joint Detection

We begin with the occupancy model developed in Section 3.1. Following a K-point discrete

fourier transform to decompose the successive frames of the signal observed by the SU, we

represent the narrowband discrete frequency components as:

Rk(m) = HkSk(m) + Vk(m), k = 0, 1, . . . , K − 1 (4.1)

where k is the frequency and m is the frame index. Hk, Sk(m) and Vk(m) denote the k-th DFT

coefficients of the subband impulse reponse, h(n); the EU signal, s(mK + n); and the additive

white noise, v(mK + n), respectively. Under hypothesis H0,k, the k-th subband is unoccupied

and we set E[|Sk(m)|2] = 0, while, under hypothesis H1,k, an EU is present in the k-th subband

and we set E[|Sk(m)|2] = 1. The EU signal samples, {Sk(m)}, and noise samples, {Vk(m)},

are modelled as independent random processes, whose samples are assumed to be independent

across frequency and frame indices under each hypothesis and to obey a zero-mean complex

circular symmetric Gaussian distribution. The noise variance, σ2
v , E[|Vk(m)|2], and the channel

squared magnitude response, Gk , |Hk|2, are assumed to be known from a priori estimation.

The measured energy in each subband is denoted as Yk, which is given by:

Yk ,
M∑
m=1

|Rk(m)|2 (4.2)

In [12], Yk is used as the test statistic for the hypothesis test in the k-th subband. This leads to

an independent hypothesis test for each of the K subbands. As shown in Section 3.2.2, this is

indeed optimum when the subband occupancies are independent of each other. However, in the

general case where correlation exists between subband occupancy, the OLEC detector is expected

to outperform such decoupled detector structures. Consequently, the SU formulates the following
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hypothesis test to perform detection in the k-th subband:

Zk = ξok
TY

H1,k

R
H0,k

γk, k = 0, 1, . . . , K − 1 (4.3)

where ξok is the weight vector of the linear combiner for the k-th subband.

In Section 3.3.2, the performance of the OLEC detector is analyzed in terms of the probabili-

ties of false alarm and missed detection. Here, we consider a multiband joint detection framework

where we seek the optimum use of the unoccupied spectrum without introducing undesirable in-

terference to the EU systems. In order to achieve this, we quantify the net spectrum use and the

net interference addition using two global metrics.

Given (3.32), (3.33) and (4.3), we construct vectors of the detection thresholds used in each

of the K subbands and the associated probabilities of false alarm and missed detection for K

subbands:

γ ≡ [γ0, γ1, . . . , γK−1]
T (4.4)

Pf (γ) ≡ [P
(0)
f (γ0), P

(1)
f (γ1), . . . , P

(K−1)
f (γK−1)]

T (4.5)

Pm(γ) ≡ [P (0)
m (γ0), P

(1)
m (γ1), . . . , P

(K−1)
m (γK−1)]

T (4.6)

Consequently, as discussed in Section 2.2.1, if r ≡ [r0, r1, . . . , rK−1]
T denotes the Shannon

theoretic capacity for the K subbands, the aggregate opportunistic throughput of the SU can be

defined as:

R(γ) , rT [1− Pf (γ)] (4.7)

Similarly, if c , [c0, c1, . . . , cK−1]
T represents the costs associated with interfering with the EUs

in the K subbands, the aggregate interference added by the SU (to all the EUs) can be defined
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as:

C(γ) , cTPm(γ) (4.8)

Given these global metrics of performance, we seek an optimal set of detection thresholds

{γk}K−1k=0 such that one of the following is achieved:

• Maximize the aggregate opportunistic throughput given an upper bound on the aggregate

interference, i.e.:

max
γ

R(γ) (4.9a)

s.t. C(γ) ≤ ε (4.9b)

Pm(γ) ≤ α (4.9c)

Pf (γ) ≤ β (4.9d)

• Minimize the aggregate interference given a lower bound on the aggregate opportunistic

throughput, i.e.:

min
γ

C(γ) (4.10a)

s.t. R(γ) ≥ δ (4.10b)

Pm(γ) ≤ α (4.10c)

Pf (γ) ≤ β (4.10d)

As can be seen, the resulting optimization problems are identical to those in (2.33) and (2.34) in

Section 2.2.1 except that, now, P (k)
f and P (k)

m are as defined in (3.32) and (3.33) respectively.

In order to bring these problems into tractable forms, we first exploit the monotonicity of the
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Q-function to transform (4.9c)-(4.9d) into a linear constraint on the feasible set. The result of this

transformation is:

γmin,k ≤ γk ≤ γmax,k (4.11)

with:

γmin,k , E[Zk|Bk = 0] +Q−1(βk)
√

Var[Zk|Bk = 0] (4.12)

γmax,k , E[Zk|Bk = 1] +Q−1(1− αk)
√

Var[Zk|Bk = 1] (4.13)

where the moments of Zk are available from our developments in Section 3.3.2.

As in Section 2.2, in general, the resulting objective and constraint functions are not convex.

Hence, neither the existence nor the computability of a solution is guaranteed. However, it can be

shown that (4.9) and (4.10) are convex if the parameters αk and βk are restricted to [0, 1
2
]. Under

these practical restrictions, the multiband joint optimization problems may be simplified to:

• Maximization of the aggregate opportunistic throughput with constraint on the aggregate

interference:

max
γ

R(γ) (4.14)

s.t. cTPm(γ) ≤ ε

γmin,k ≤ γk ≤ γmax,k

• Minimization of the aggregate interference with constraint on the aggregate opportunistic
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throughput:

min
γ

C(γ) (4.15)

s.t. rT [1− Pf (γ)] ≥ δ

γmin,k ≤ γk ≤ γmax,k

The above inequality-constrained convex optimizations may be solved using any well-known

technique such as the interior point or Lagrange-Newton method. In particular, the MATLAB

routine fmincon provides implementations of several constrained minimization algorithms which

may be applied here. In Section 5.2.1, we present numerical results for single-user multiband joint

detection to show that the use of the OLEC detector offers significant performance improvements

over the use of the traditional decoupled energy detectors. In order to obtain these results, we

used MATLAB’s implementation of the active set algorithm to solve the optimization problems

since it is expected to achieve faster convergence than the other options available in fmincon.

4.2 Collaborative Multiband Joint Detection

The single-user detection schemes, such as the one considered in Section 4.1, are susceptible to

blockage effects, such as shadowing or multipath fading, that negatively impact the sensing per-

formance. Current literature advocates the use of multi-user collaboration in order to overcome

these effects. For example, [2], [13] and [14], discuss distributed sensing using linear coope-

ration. Here, we study the performance improvement obtained through the use of the OLEC

detector in the multi-user detection framework discussed in Section 2.2.2 when subband occu-

pancies are correlated. This development is analogous to the single-user counterpart described

above in Section 4.1.
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4.2.1 Optimum Linear Energy Combiner for Collaborative Detection

Consider N SUs (i.e., CR units) that collaborate to detect the presence of EU signals in K sub-

bands. As in the single-user case, following a K-point discrete fourier transform to decompose

the signal frames observed by each SU, the narrowband frequency component observed by the

n-th SU can be written as:

Rn
k(m) = Hn

kSk(m) + V n
k (m)


k = 0, 1, . . . , K − 1

m = 0, 1, . . . ,M − 1

n = 0, 1, . . . , N − 1

(4.16)

where k is the frequency index and m is the frame index. Hn
k denotes the k-th DFT coefficient

of the subband impulse response between the EU and the n-th SU, and Gn
k = |Hn

k |2 denotes

its square magnitude. Rn
k(m) and V n

k (m) respectively denote the k-th DFT coefficients of the

received signal and the white noise observed by n-th SU during the m-th frame. The squared

channel magnitudes, Gn
k , and the noise variance, σ2

v , are expected to be known from a priori

estimation.

The same EU signal, Sk(m), is observed by all the SUs. UnderH0,k, we setE[|Sk(m)|2] = 0,

indicating an absence of EU signal, while, underH1,k, we set E[|Sk(m)|2] = 1, indicating a pre-

sence of EU signal. Under each hypothesis, samples of {Sk(m)} and {V n
k (m)} are assumed to be

independent across time, frequency, and SU indices and to follow zero-mean circular symmetric

Gaussian distribution. We model the occupancy of the k-th subband using the binary random va-

riable, Bk, with realization bk ∈ {0, 1}, where 0 and 1 correspond to H0,k and H1,k respectively.

It follows that E[|Sk(m)|2
∣∣Bk = bk] = bk.
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The n-th SU measures the energy in the k-th subband as follows:

Y n
k =

M−1∑
m=0

|Rn
k(m)|2 (4.17)

Detection is carried out at the so-called fusion centre, which may be one of the collaborating SUs

(e.g., the 0th SU) or a network entity (e.g., a base station), based on the observations made by

these N spatially distributed SUs. The fusion centre takes a decision about the occupancy of the

k-th subband based on the energy measurements from the N SUs, which we represent by the

following N × 1 vector:

Yk ≡ [Y 0
k , Y

1
k , . . . , Y

N−1
k ]T (4.18)

Although a few different fusion schemes have been proposed in the literature for generating test

statistics from measurements made at multiple spatially dispersed SUs, here, we consider the

linear weighing scheme discussed in [12]:

Uk =
N−1∑
n=0

wnkY
n
k = wT

k Yk (4.19)

where wk = [w0
k, w

1
k, . . . , w

N−1
k ]T are the weights used to combine the N energy measurements

for the k-th subband. The weight values used for all the subbands can be compactly denoted as:

W = [w0,w1, . . . ,wK−1] =



w0
0 w0

1 · · · w0
K−1

w1
0 w1

1 · · · w1
K−1

...
... . . . ...

wN−10 wN−11 · · · wN−1K−1


(4.20)

Given such a fusion scheme, our objective is to develop a multi-user counterpart of the single-
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user OLEC detector described in Section 3.3. That is, we seek to detect the k-th subband’s

occupancy, as represented by Bk, through a single hypothesis test on a statistic generated by

linearly combining the energy measurements, {Uk}K−1k=0 . Consequently, we define B̂k, the es-

timate of the occupancy of the k-th subband, as an affine transformation on the energy vector

U = [U0, U1, . . . , UK−1]
T :

B̂k = ξTkU + εk (4.21)

As in the single-user detection case, the weight vector ξk and the constant εk are obtained as the

minimizer of the MSE:

J(ξk, εk) = E[(B̂k −Bk)
2] (4.22)

= E[(ξTkU + εk −Bk)
2] (4.23)

As before, by defining the centred quantities Ũ = U − E[U ] and B̃k = Bk − µk, where

µk = E[Bk], the MMSE weight vector can be shown to be1:

ξok = E[ŨŨT ]−1E[Ũ B̃k] (4.24)

Since Bk has a non-zero mean, the optimum value of the bias term εk is necessary and it can be

shown to be εok = µk − ξok
TE[U ], where E[Ui] = wT

i E[Yi]. Using (4.19), we can write:

E[ŨiB̃k] = wT
i E[ỸiB̃k] (4.25)

E[ŨiŨj] = wT
i E[ỸiỸ

T
j ]wT

j (4.26)

where we define the centred quantity, Ỹk = Yk − E[Yk]. By substituting (4.16) into (4.17), we

1Further details can be found in Appendix A.
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can further show that:

E[Ỹ n
i B̃k] = M(λik − µiµk)Gn

i (4.27)

E[Ỹ n
i Ỹ

n′

j ] = M2(λij − µiµj)Gn
iG

n′

j +M(µiG
n
iG

n′

i + 2µiG
n
i σ

2
vδnn′ + σ4

vδnn′)δij (4.28)

where λij = E[BiBj] as defined in Section 3.1. From (4.28), it should be noted that, in constrast

to the treatment shown in [7], the matrix E[YkY
T
k ] is not diagonal in general.

The resulting detector for the k-th subband can be written as:

Zk = ξok
TU

H1,k

R
H0,k

γk, k = 0, 1, . . . , K − 1 (4.29)

It should be noted that the bias term εok is absorbed in the detection threshold γk and ξok can be

normalized such that ξokk = 1.

4.2.2 Performance of OLEC-based Collaborative Detection

The minimum attainable probability of missed detection for a given upper limit on the probability

of false alarm provides an objective measure of the detection performance. Hence, we compute

these probabilities for the multi-user OLEC detector developed here. Conditioned on Bk = bk,

the mean and variance of the test statistic, Zk, in (4.29) can be written as2:

E[Zk|Bk = bk] = ξok
TE[U |Bk = bk] (4.30)

Var[Zk|Bk = bk] = ξok
TE[ŨŨT |Bk = bk]ξ

o
k (4.31)

2Further details can be found in Appendix B.
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Using the definition of Uk in (4.19), we can show:

E[Ui|Bk = bk] = wT
i E[Yi|Bk = bk] (4.32)

E[ŨiŨj|Bk = bk] = wT
i E[ỸiỸ

T
j |Bk = bk]w

T
j (4.33)

Evaluation of the expected values of the right-hand sides of (4.32) and (4.33) yields:

E[Y n
i |Bk = bk] = M(Gn

i µi|k + σ2
v) (4.34)

E[Ỹ n
i Ỹ

n′

j |Bk = bk] = M2Gn
iG

n′

j (λij|k − µi|kµj|k) +M [µi|kG
n
iG

n′

i + 2µi|kG
n
i σ

2
vδnn′ + σ4

vδnn′ ]δij

(4.35)

where µi|k = E[Bi|Bk = bk] and λij|k = E[BiBj|Bk = bk] as defined in Section 3.3.2.

According to the central limit theorem, for a sufficiently large M , Uk and, hence, in turn, Zk

can be assumed to be normally distributed under bothH0 andH1. Consequently, the probabilities

of false alarm and missed detection associated with (4.29) are given by:

P
(k)
f (W, γk) = Q

(
γk − E[Zk|Bk = 0]√

Var[Zk|Bk = 0]

)
(4.36)

P (k)
m (W, γk) = 1−Q

(
γk − E[Zk|Bk = 1]√

Var[Zk|Bk = 1]

)
(4.37)

4.2.3 Spatial-Spectral Joint Detection Using the OLEC

In order to attain the optimal use of the spectrum holes without adding undesirabele levels of

interference to the EUs, we need quantifiable measures of the net spectrum usage and net inter-

ference addition to EUs. Hence, in a similar fashion to the single-user multiband joint detection



Multiband Joint Detection with the OLEC 48

scenario, using (4.29), (4.36) and (4.37), we construct the following vectors:

γ ≡ [γ0, γ1, . . . , γK−1]
T (4.38)

Pf (W,γ) ≡ [P
(0)
f (W, γ0), P

(1)
f (W, γ1), . . . , P

(K−1)
f (W, γK−1)]

T (4.39)

Pm(W,γ) ≡ [P (0)
m (W, γ0), P

(1)
m (W, γ1), . . . , P

(K−1)
m (W, γK−1)]

T (4.40)

As in Section 2.2.2, in this formulation the dependence on the weight matrix has been made expli-

cit. Using these notations, the aggregate opportunistic throughput and the aggregate interference

can be defined as perfomance metrics for the multi-user case as follows:

R(W,γ) , rT [1− Pf (W,γ)] (4.41)

C(W,γ) , cTPm(W,γ) (4.42)

where c , [c0, c1, . . . , cK−1]
T represents the costs associated with interfering with the primary

users in the K subbands, and r ≡ [r0, r1, . . . , rK−1]
T denotes the Shannon theoretic capacity for

the K subbands.

Given these performance metrics, we seek an optimum set of detection thresholds, {γk}K−1k=0 ,

and an optimum set of fusion weights, {wk}K=1
k=0 , that achieve one of the following:

• Maximize the aggregate opportunistic throughput given an upper bound on the aggregate

interference

• Minimize the aggregate interference given a lower bound on the aggregate opportunistic

throughput

The resulting optimization problems are similar to those in (4.9) and (4.10) except for the addi-

tional dependence on W . In [12], a sequential optimization procedure is described whereby the
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weight coefficients, W , are chosen to maximize the signal-to-noise ratio. This same method is

adopted in our work. The optimal weight coefficient for the k-th subband is given by:

wo
k =

Σ−1k Gk

‖Σ−1k Gk‖2
(4.43)

where Gk = [G0
k, G

1
k, . . . , G

N−1
k ] is the vector of the channel squared magnitude responses bet-

ween the EU and the N collaborating SUs in the k-th subband, and matrix Σk = E[ỸkỸ
T
k

∣∣Bk =

1].

The monotonicity of the Q-function can be exploited to transform (4.9c)-(4.9d) into the fol-

lowing linear constraint on the feasible set:

γmin,k ≤ γk ≤ γmax,k (4.44)

with:

γmin,k , E[Zk|Bk = 0] +Q−1(βk)
√

Var[Zk|Bk = 0] (4.45)

γmax,k , E[Zk|Bk = 1] +Q−1(1− αk)
√

Var[Zk|Bk = 1] (4.46)

The moments of Zk in (4.45) and (4.46) are as found in Section 4.2.2.

The resulting objective and constraint functions are not generally convex. However, restric-

ting the parameters αk and βk to [0, 1
2
] ensures the optimization problems are convex. Hence, the

spatial-spectral problems may be simplified as:

• Maximization of the aggregate opportunistic throughput with constraint on the aggregate
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interference:

max
γ

R(W o,γ) (4.47)

s.t. cTPm(γ) ≤ ε

γmin,k ≤ γk ≤ γmax,k

• Minimization of the aggregate interference with constraint on the aggregate opportunistic

throughput:

min
γ

C(W o,γ) (4.48)

s.t. rT [1− Pf (W o,γ)] ≥ δ

γmin,k ≤ γk ≤ γmax,k

As in the single-user detection case, the inequality-constrained convex optimizations for the

multi-user detection case above may be solved using the MATLAB routine fmincon, which

provides implementations of several constrained minimization algorithms. In Section 5.2.2, we

present numerical results for collaborative multiband joint detection to show that the use of the

OLEC detector offers significant performance improvements over the use of the traditional de-

coupled energy detectors. In order to obtain these results, we used MATLAB’s implementation

of the active set algorithm to solve the optimization problems since it is expected to achieve faster

convergence than the other options available in fmincon.
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Chapter 5

Numerical Results

In Section 3.3 of this thesis, the optimum linear energy combiner (OLEC) was developed to ex-

ploit a priori knowledge of correlation between subband occupancy to enhance spectrum sensing

performance. In addition to the structure of the OLEC detector, we presented a performance

analysis of the detection scheme. In Section 4.1, we studied the theoretical performance of a

single-user multiband joint detection scheme when used in conjunction with the OLEC detector;

and, in Section 4.2, we extended the use of the OLEC detector to spatial-spectral joint detection.

Here, we look at suitable experiments to corroborate the analysis with numerical results.

First, we present the receiver operating characteristic (ROC) curves for the hypothesis test

(3.24). We also study the level of performance gain as correlation between subbands varies.

Then, experimental results are shown for the single-user multiband joint detection case. Finally,

test results for the multi-user joint detection framework are presented.
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5.1 Simulations for OLEC Performance

In this section, we first look at Monte Carlo simulations to support the developments in Sec-

tion 3.3. In these simulations, instances of the random occupancy vector B are generated using

a homogeneous Markov chain defined over the discrete frequency index k. The initial state

of the chain, B0, is set to 1 with probability PB0(1) ≡ 0.5, while the states at frequencies

k = 1, . . . , K − 1 are generated by means of a binary symmetric transition model with para-

meter p denoting the probability of a change in occupancy, that is:

PBk+1|Bk
(1|0) = PBk+1|Bk

(0|1) = p (5.1)

Use of this model allows the computation of the moments µi, µi|k, λij and λij|k introduced in

Section 3.3. In particular, given this model, the correlation coefficient between random variables

Bk+1 and Bk can be calculated exactly as:

ρ = 1− 2p (5.2)

The noise samples, Vk(m), and EU signal samples, Sk(m), are independently generated complex

circular Gaussian random variables with variances σ2
v = 1 and E[|Sk(m)|2] = 1. For each

realization of B, M data frames, {Rk(m)}, are generated as per (3.3). Here, we set K = 8,

M = 100 and use: G = [G0, . . . , G7] = [0.39, 0.11, 0.25, 0.10, 0.42, 0.37, 0.20, 0.29]. For this

set of parameters, and focusing our evaluation on subband k = 2, the optimum weight vector is

found to be as shown in Table 5.1.

In addition to the K-dimensional OLEC, we present the sub-optimal combiner in (3.25):

using a simplified 3-dimensional version of the MMSE problem for k = 2, i.e., using energy

measurements from bands k = 1 and k = 3 only, we obtain the weight values shown in Table 5.2.
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Table 5.1 Optimum Weight Vector for OLEC Detector
p ρ ξo2
0.20 0.6 [0.132, 0.217, 1.0, 0.200, 0.120, 0.025, 0.006, 0.002]T

0.15 0.7 [0.203, 0.249, 1.0, 0.227, 0.176, 0.047, 0.013, 0.007]T

As is expected from intuition, greater weight is placed on energy measurements from adjacent

subbands when the occupancy correlation is higher.

Table 5.2 Optimum Weight Values for Reduced Dimensionality Detector
p ρ η− η+
0.20 0.6 0.258 0.243
0.15 0.7 0.311 0.291

Detection is performed on the simulated data samples {Rk(m)} using hypothesis tests based

on the various choices of test statistics, i.e., Yk (3.18), Zk = ξok
TYk (3.24) and Z±k (3.25). In order

to obtain reliable estimates of the probabilities of false alarm and missed detection, 105 trials are

used for each choice of threshold value.
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Figure 5.1 P
(k)
m versus P (k)

f for ρ = 0.6 (k = 2, p = 0.20)

Figure 5.1 shows the receiver operating characteristic (ROC) curve of the detectors, obtained

by plotting P (k)
m ≡ P

(k)
m (γk) against P (k)

f ≡ P
(k)
f (γk) over a range of threshold parameter values
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Figure 5.2 P
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m versus P (k)

f for ρ = 0.7 (k = 2, p = 0.15)

γk, for subband k = 2 in the case p = 0.25, corresponding to a correlation of ρ = 0.5. Figure 5.2

shows the ROC curve for the subband k = 2 when p = 0.15, or, equivalently, ρ = 0.7. Ideally,

the operating point should be as close to the origin as possible. For all values of P (k)
f , use of

the proposed Zk as a test statistic, instead of the conventional Yk, significantly reduces P (k)
m . In

this case, because of the choice of the occupancy probability model, the use of the simplified test

statistic Z±k also provides significant improvement, but, in general, its performance may not be as

good as that of Zk. We notice that using Yk as the test statistic makes the detection performance

indifferent to the level of correlation between the subband occupancy. This case represents what

we see in contemporary literature, where we assume independent subband occupancy. However,

use of Zk or Z±k allows us to exploit a priori knowledge of occupancy correlation and, thereby,

improve detection performance.

We note that a bigger performance gain is obtained for ρ = 0.7 than for ρ = 0.6. This trend

seen in Figure 5.1 and Figure 5.2 holds true for other choices of the transition probability p.

To illustrate this point, in Figure 5.3, we show the analytically computed probability of missed

detection, P (k)
m as a function of the angle θ = arccos(ρ) between random variables Bk and

Bk+1, under the Neyman-Pearson constraint of P (k)
f = 0.05. The curves clearly demonstrate the
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potential advantages of exploiting a priori knowledge of correlation across subband occupancies

in the design of a detector structure for spectrum sensing.
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In the following sections, we look at the use of the OLEC detector within the multiband joint

detection framework.

5.2 Results for Multiband Joint Detection Using the OLEC

In Section 5.1, we looked at the sensing performance of the OLEC when used to detect the

occupancy of a single subband. Here, we will analyze the deployment of OLEC detectors for

a multiband system where joint detection is carried out for the occupancy of all the subbands

in order to optimise the performance of the overall system through the definition of some global

metrics, viz., aggregate opportunistic throughput and aggregate interference, which are described

in detail in Chapter 4.

The results presented in this section are based on the analytically computated values of Pf (k)

and Pm(k). This requires the definition of some system parameters as well as a description of

the probability model for the occupancy vector B. As in Section 5.1, the multiband occupancy
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is considered to follow a homogeneous Markov chain defined over the discrete frequency index

k. The initial state of the chain, B0, is set to 1 with probability PB0(1) ≡ 0.5, while the states

at frequencies k = 1, . . . , K − 1 are generated by means of a binary symmetric transition model

with parameter p denoting the probability of a change in occupancy, that is:

PBk+1|Bk
(1|0) = PBk+1|Bk

(0|1) = p (5.3)

As before, given this model, the moments µi, µi|k, λij and λij|k introduced in Section 3.3 can be

computed.

In addition, the noise variance, σ2
v = 1, and the EU signal variance, E[|Sk(m)|2] = 1. For

both the single-user and multi-user detection scenarios, we set the number of subbands, K = 8,

and the number of data frames, M = 100. In the following subsections, we analyze these two

cases separately. For these experiments, the minimum opportunistic spectrum use is set to 50%,

or, equivalently, βk = 0.5. The maximum acceptable probability that the SU interfers with the

EU is set to, 20%, or, αk = 0.2.

5.2.1 Results for Single-User Detection

In this numerical evaluation, we compare a (single-user) multiband joint detection scheme using

independent band-by-band hypothesis tests to one employing the OLEC to detect the occupancy

in every subband based on multiband energy measurements. The former is described in Sec-

tion 2.2.1, while the latter is described in Section 4.1. The values of the channel squared magni-

tude, opportunistic rate and interference penalty for each subband are summarized in Table 5.3.

Figure 5.4 plots the maximum aggregate opportunistic throughput attainable against the cons-

traint on the aggregate interference obtained by solving the optimization problem in (4.9) for the

case where occupancy correlation between adjacent subbands, Bk and Bk+1, is ρ = 0.7. It can
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Table 5.3 Parameters Used in the Single-User Multiband Joint Detection Expe-
riment

k 0 1 2 3 4 5 6 7
Gk 0.61 0.49 0.35 0.25 0.23 0.35 0.52 0.59
rk (kbps) 612 524 623 139 451 409 909 401
ck 1.91 8.17 4.23 3.86 7.16 6.05 0.82 1.30

be seen that the use of the OLEC achieves much higher throughput than does the use of the

decoupled detectors. The detector proposed in this thesis is able to exploit the knowledge of

correlation to improve spectral utilization for any choice of constraint on the interference.
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Figure 5.4 The maximum aggregate opportunistic throughput of the SU against the
constraint on the aggregate interference to the EU when ρ = 0.7 (p = 0.15)

In Figure 5.5, we look at the converse problem formulated in (4.10). This figure plots the

minimum aggregate interference attainable against the constraint on the aggregate opportunistic

throughput. As in the dual problem, we set the occupancy correlation between adjacent subbands,

Bk andBk+1, to be ρ = 0.7. Similar performance improvements are seen in this case too. For any

choice of lower bound on the aggregate opportunistic throughput, the use of the OLEC achieves

much lower aggregate interference by exploiting the knowledge of occupancy correlation.

In both cases, we see that the use of a priori knowlege of correlation between subband oc-
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Figure 5.5 The minimum aggregate interference to the EU against the constraint
on the aggregate opportunistic throughput of the SU when ρ = 0.7 (p = 0.15)

cupancy can obtain significant performance gains in multiband joint spectrum sensing tasks. For

instance, in the results shown here, the gain in spectral utilization was as high as 25% for an

interference limit of 0.4. In the next section, we will study the performance of the OLEC in the

multi-user case.

5.2.2 Results for Collaborative Detection

In this section, we present some numerical results for a collaborative multiband joint detection

scheme in order to compare the performance of a system using decoupled detection against one

using the OLEC detector for each subband. These detection schemes are described in Sec-

tions 2.2.2 and 4.2 respectively. Here, we consider a system with two collaborating SUs, i.e.,

N = 2. Table 5.4 shows the values of the channel squared magnitude for the SUs, and the

opportunistic rate and interference penalty for each subband.

For this choice of parameters, Figure 5.6 plots the maximum aggregate opportunistic through-

put attainable against the constraint on the aggregate interference obtained by solving the optimi-

zation problem in (4.47) for the case where occupancy correlation between adjacent subbands,Bk
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Table 5.4 Parameters Used in the Collaborative Multiband Joint Detection Expe-
riment

k 0 1 2 3 4 5 6 7
G0
k 0.38 0.29 0.23 0.26 0.35 0.39 0.33 0.27

G1
k 0.51 0.40 0.31 0.19 0.21 0.27 0.43 0.50

rk (kbps) 802 755 356 327 68 720 15 972
ck 5.95 3.91 0.71 4.21 0.44 2.03 0.58 2.85

and Bk+1, is ρ = 0.7. It can be seen that the use of the OLEC achieves much higher throughput

than does the use of the decoupled detectors.
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Figure 5.6 The maximum aggregate opportunistic throughput of the SUs against
the constraint on the aggregate interference to the EU when ρ = 0.7 (p = 0.15)

In Figure 5.7, we look at the solutions to the dual problem formulated in (4.48). This fi-

gure plots the minimum aggregate interference attainable against the constraint on the aggregate

opportunistic throughput. As in the above problem, we set the occupancy correlation between

adjacent subbands, Bk and Bk+1, to be ρ = 0.7. We notice similar performance improvements

here as well. For any choice of lower bound on the aggregate opportunistic throughput, the use of

the OLEC achieves much lower aggregate interference by exploiting the knowledge of subband

occupancy correlation.

The results in this section demonstrate the advantage of using the OLEC detector when sub-
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Figure 5.7 The minimum aggregate interference to the EU against the constraint
on the aggregate opportunistic throughput of the SUs when ρ = 0.7 (p = 0.15)

band occupancies are correlated. Compared to the decoupled detector, the OLEC attains much

better spectral utilization for any given interference limit. This not only applies to the detection

task for a single subband, but also extends to (single-user) multiband joint detection as well as

multi-user collaborative detection. Through numerical results, we were able to establish the su-

perior sensing performance of the OLEC detector compared to the traditional decoupled detector

contemporarily being used for cognitive radio applications.
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Chapter 6

Conclusion

This thesis considered the problem of wideband spectrum sensing for cognitive radio applica-

tions. In particular, we considered the sensing task in scenarios where there exists a correlation

between subband occupancy. The goal was to exploit a priori knowledge of such correlation to

improve detection performance. In this section, we summarize the various detector structures

presented in this thesis and we also suggest some directions that may be considered for furthur

work in this area.

6.1 Thesis Summary

The thesis began with an overview of spectrum sensing in the context of cognitive radios. To this

end, some of the techniques currently in use were presented. We broadly classified the sensing

schemes under feature detection and energy detection. We discussed how feature detection tech-

niques, such as the use of cyclostationarity properties and matched filtering, are heavily reliant

on prior knowledge of the EU signal. This drawback renders such techniques less useful in the

context of wideband occupancy detection. We then proceeded to discuss energy detection, which
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has found widespread use in literature owing to its flexibility and robustness. Energy detector’s

performance can be further enhanced by multi-user collaboration in the detection task. Examples

of both single-user and multi-user collaborative detection shemes were presented in Section 2.2.

As was seen, even in sophisticated contemporary work, it is assumed that subband occupancies

are independent of each other, when in reality, due to the presence of wideband PU/EU signals,

e.g., WLAN or broadcast television [31], such assumptions are generally not accurate.

In practice, subband occupancy is expected to exhibit various degrees of correlation owing

to the spectral allocation plan and to the presence of wideband PU/EU signals. Hence, by suita-

bly modelling the wideband channel occupancy through the use of a random indicator vector, we

sought an efficient detector of spectrum holes that could exploit a priori knowledge of correlation

in occupancy for better sensing performance. We formulated a MAP estimator of this wideband

channel occupancy vector. Although the MAP estimator produces computationally tractable de-

tectors in the special case of independent subband occupancy, in the general case of correlated

subband occupancy, its complexity grows exponentially with the number of subbands. We there-

fore proposed an alternative multiband detection structure, the optimum linear energy combiner

(OLEC). In this scheme, energy measurements from multiple subbands are linearly combined,

using weights derived through a minimum mean-square (MMSE) error criterion, to form a sta-

tistic on which a binary hypothesis test can be run to detect the occupancy of any subband. A

simpler reduced dimensionality version of the OLEC was also presented along with a detailed

performance analysis of the general OLEC detector. In Section 5.1, through numerical simula-

tions, we showed that indeed the OLEC detector outperforms the traditional decoupled detectors

in the presence of correlated subband occupancy.

Finally, we looked at the deployment of the OLEC detector in multiband joint detection

schemes, e.g., [12] — both in single-user and multi-user frameworks. Instead of optimizing the

detector performance in the Neyman-Pearson sense, we considered definition of global metrics,
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aggregate opportunistic throughput and aggregate interference, to seek optimal spectrum usage

for the overall wideband system given a global interference limit. We presented the overall detec-

tor structures as well as detailed performance analyses of the detectors. In Section 5.2, we used

numerical test results to show that the use of OLEC detector significantly improves the detec-

tion performance of both the multiband joint detection and the collaborative multiband detection

(spatial-spectral joint detection) schemes.

6.2 Future Research Directions

This thesis showed ways to exploit a priori knowledge of correlation between subband occupancy

in order to improve wideband channel sensing performance. However, there is scope for furthur

improvement to channel sensing techniques in the cognitive radio context. Some examples in-

clude:

• In a similar fashion to the development of the OLEC detector in thesis, it is possible to

create a multi-user detection framework where energy measurements from multiple users

as well as multiple subbands is combined by the OLEC to make decisions in each subband.

This should create a simpler multi-user detector structure where only a single layer of

combination of energy measurements is used. The performance is also likely to be better.

• The formalism used in this thesis opens the door to incorporation of ideas from the field

of digital communications (e.g., multi-user detection and decision feedback) in order to

obtain a more flexible trade-off between complexity and performance of wideband channel

sensing.

• It may be possible to optimize the number of observation samples used to make decisions

as a function of the signal-to-noise ratio in a particular subband. Some overview of such
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optimization can be found in [7]. This approach would seem attractive for time-varying

applications or it could make the sensing task faster.
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Appendix A

Derivation of OLEC Weights

In this appendix, we derive (3.21). Using (3.17) and (3.19), we can write the MSE as:

J(ξk, εk) = ξTkE[Y Y T ]ξk + 2ξTkE[Y (εk −Bk)] + E[(εk −Bk)
2] (A.1)

First, we can minimize the MSE with respect to the scalar parameter εk as follows:

∂

∂εk
J(ξk, εk) = 2ξTkE[Y ] + 2E[(εk −Bk)] = 0

∴ εok = E[Bk]− ξTkE[Y ] (A.2)

Given the optimum value of εok, the MSE can be re-written as follows:

J(ξk) = ξTkE[Ỹ Ỹ T ]ξk − 2ξTkE[B̃kỸ ] + E[B̃2
k] (A.3)

where Ỹ = Y − E[Y ] and B̃k = Bk − E[Bk] as described in Section 3.3. Consequently, the
MSE can be minimized with respect to ξk as follows:

∂

∂ξk
J(ξk) = 2E[Ỹ Ỹ T ]ξk − 2E[B̃kỸ ] = 0

∴ ξok = E[Ỹ Ỹ T ]−1E[B̃kỸ ] (A.4)

Computation of the moments E[Y ], E[Ỹ Ỹ T ] and E[BkỸ ] needed to evaluate the optimum
solutions, (A.2) and (A.4), can be found in Appendix B.
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Appendix B

Derivation of Moments of Y

In this appendix, we show the derivation of the E[Y ], E[Y Y T ] and E[BkY ] used in this thesis.
Although only the single-user unconditional case is shown here, the multi-user and conditioned
versions of the moments can be computed similarly as well.

B.1 Derivation of E[Y ]

Using the definition of Yk in (3.18) and of Rk(m) in (3.3), we can proceed as follows:

E[Yi] = E

[
M−1∑
m=0

|Ri(m)|2
]

=
M−1∑
m=0

E[(HiSi(m) + Vi(m))∗(HiSi(m) + Vi(m))]

=
M−1∑
m=0

E[|Hi|2|Si(m)|2 +H∗i S
∗
i (m)Vi(m) +HiSi(m)V ∗i (m) + |Vi(m)|2]

= M
(
E[Bi]Gi + σ2

v

)
. (B.1)
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B.2 Derivation of E[B̃kỸ ]

We first consider the moment E[BkYi]. Using (3.18) and (3.3), we can write:

E[BkYi] = E

[
Bk

M−1∑
m=0

|Ri(m)|2
]

=
M−1∑
m=0

E[Bk(HiSi(m) + Vi(m))∗(HiSi(m) + Vi(m))]

=
M−1∑
m=0

E[Bk(|Hi|2|Si(m)|2 +H∗i S
∗
i (m)Vi(m) +HiSi(m)V ∗i (m) + |Vi(m)|2)]

= M
(
E[Bk|Si(m)|2]Gi + E[Bk]σ

2
v

)
(B.2)

Now, E[Bk|Si(m)|2] may be computed as follows:

E[Bk|Si(m)|2] =
1∑

b0=0

· · ·
1∑

bK−1=0

E[Bk|Si(m)|2
∣∣B = b] Pr(B = b)

=
1∑

b0=0

· · ·
1∑

bK−1=0

bkbi Pr(B = b)

= E[BkBi] (B.3)

Consequently,
E[BkYi] = M

(
E[BkBi]Gi + E[Bk]σ

2
v

)
(B.4)

and, finally,

E[B̃kỸi] = E[BkYi]− E[Bk]E[Yi]

= M
(
E[BkBi]Gi + E[Bk]σ

2
v

)
−M

(
E[Bi]Gi + σ2

v

)
E[Bk]

= M
(
E[BiBk]− E[Bi]E[Bk]

)
Gi. (B.5)
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B.3 Derivation of E[Ỹ Ỹ T ]

First consider the moment E[YiYj]. As before, using (3.18) and (3.3), we can write:

E[YiYj] =
M−1∑
m=0

M−1∑
m′=0

E

[
|Ri(m)|2|Rj(m

′)|2
]

(B.6)

where

|Ri(m)|2 = |Hi|2|Si(m)|2 +H∗i S
∗
i (m)Vi(m) +HiSi(m)V ∗i (m) + |Vi(m)|2 (B.7)

|Rj(m
′)|2 = |Hj|2|Sj(m′)|2 +H∗j S

∗
j (m

′)Vj(m
′) +HjSj(m

′)V ∗j (m′) + |Vj(m′)|2 (B.8)

∴ E[YiYj] =
M−1∑
m=0

M−1∑
m′=0

4∑
p=1

4∑
q=1

T pqij (B.9)

where T pqij refers to the following terms:

T 11
ij = GiGjE[|Si(m)|2|Sj(m′)|2]

= GiGjE[Si(m)S∗i (m)Sj(m
′)S∗j (m

′)]

= GiGjE[BiBj](1 + δijδmm′) (B.10)

T 12
ij = GiH

∗
jE[|Si(m)|2S∗j (m′)Vj(m)] = 0 (B.11)

T 13
ij = GiHjE[|Si(m)|2Sj(m′)V ∗j (m′)] = 0 (B.12)

T 14
ij = GiE[|Si(m)|2|Vj(m′)|2]

= Giσ
2
vE[Bi] (B.13)

T 21
ij = GjH

∗
i E[S∗i (m)Vi(m)|Sj(m′)|2] = 0 (B.14)

T 22
ij = H∗iH

∗
jE[S∗i (m)Vi(m)S∗j (m

′)Vj(m
′)] = 0 (B.15)

T 23
ij = H∗iHjE[S∗i (m)Vi(m)Sj(m

′)V ∗j (m′)]

= Giσ
2
vE[Bi]δijδmm

′ (B.16)

T 24
ij = H∗i E[S∗i (m)Vi(m)|Vj(m′)|2] = 0 (B.17)

T 31
ij = Hi|Hj|2E[Si(m)V ∗i (m)|Sj(m′)|2] = 0 (B.18)

T 32
ij = HiH

∗
jE[Si(m)V ∗i (m)S∗j (m

′)Vj(m
′)]

= Giσ
2
vE[Bi]δijδmm

′ (B.19)
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T 33
ij = HiHjE[Si(m)V ∗i (m)Sj(m

′)V ∗j (m′)] = 0 (B.20)

T 34
ij = HiE[Si(m)V ∗i (m)|Vj(m′)|2] = 0 (B.21)

T 41
ij = GjE[|Vi(m)|2|Sj(m′)|2]

= Gjσ
2
vE[Bj] (B.22)

T 42
ij = H∗jE|Vi(m)|2S∗j (m′)Vj(m′)] = 0 (B.23)

T 43
ij = HjE[|Vi(m)|2Sj(m′)V ∗j (m′)] = 0 (B.24)

T 44
ij = E[|Vi(m)|2|Vj(m′)|2]

= E[Vi(m)V ∗i (m)Vj(m
′)V ∗j (m′)]

= E[Vi(m)V ∗i (m)]E[Vj(m
′)V ∗j (m′)] + E[Vi(m)V ∗j (m′)]E[V ∗i (m)Vj(m

′)]

= σ4
v(1 + δijδmm′) (B.25)

The above derivation makes use of a standard formula for the 4th moment of jointly Gaussian
complex circular random variables [32], [33]. The following was used to compute joint moments
of Si(m) and Sj(m′):

E[Si(m)S∗i (m)Sj(m
′)S∗j (m

′)]

=
1∑

b0=0

· · ·
1∑

bK−1=0

E[Si(m)S∗i (m)Sj(m
′)S∗j (m

′)
∣∣B = b] Pr(B = b)

=
1∑

b0=0

· · ·
1∑

bK−1=0

bibj(1 + δijδmm′) Pr(B = b)

= E[BiBj](1 + δijδmm′) (B.26)

since:

E[Si(m)S∗i (m)Sj(m
′)S∗j (m

′)
∣∣B = b] = E[|Si(m)|2

∣∣B = b]E[|Sj(m′)|2
∣∣B = b]

+ E[Si(m)S∗j (m
′)
∣∣B = b]E[S∗i (m)Sj(m

′)
∣∣B = b]

= bibj(1 + δijδmm′) (B.27)
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∴ E[ỸiỸj]

= E[YiYj]− E[Yi]E[Yj]

= M2GiGjE[BiBj] +MG2
iE[Bi]δij +M2σ4

v +Mσ4
vδij

+M2Giσ
2
vE[Bi] +M2Gjσ

2
vE[Bj] +MGiσ

2
vE[Bi]δij +MGiσ

2
vE[Bi]δij

−M2
(
E[Bi]Gi + σ2

v

)(
E[Bj]Gj + σ2

v

)
= M2GiGj

(
E[BiBj]− E[Bi]E[Bj]

)
+Mδij

(
G2
iE[Bi] + 2Giσ

2
vE[Bi] + σ4

v

)
(B.28)
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