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Abstract

In this thesis, we present a systematic study of the subspace-based blind channel

estimation method.

We first formulate a general signal model of multiple simultaneous signals trans-

mitted through vector channels, which can be applied to a multitude of modern

digital communication systems. Based on this model, we then propose a general-

ized subspace-based channel estimator by minimizing a novel cost function, which

incorporates the set of kernel matrices of the signals sharing the target channel via a

weighted sum of projection errors.

We investigate the asymptotic performance of the proposed estimator, i.e. bias,

covariance, mean square error (MSE) and Cramer-Rao bound, for large numbers of

independent observations. We show that the performance of the estimator can be

optimized by increasing the number of kernel matrices and by using a special set of

weights in the cost function.

We also propose a novel adaptive implementation of the generalized subspace

channel estimator. The low-complexity and numerical robustness of this adaptive

implementation make it suitable for online estimation of time-varying channels over

long observation periods.

Finally, we consider the application of the proposed estimator to a down-link

CDMA system operating in frequency selective fading channel with negligible ISI.

The results of the computer simulations fully support our analytical developments.
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Sommaire

Dans ce mémoire, une étude systématique des méthodes d’estimation aveugle de

canaux basées sur les sous-espaces est présentée.

Nous formulons d’abord un modèle général du signal reçu, formé de multiples

transmissions simultanées de signaux sur des canaux vectoriels. Ce modèle peut être

utilisé par une multitude de systèmes de communications numériques modernes. À

partir de ce modèle, nous proposons un estimateur de canaux généralisé basé sur les

sous-espaces et minimisant une nouvelle fonction de coût. Cette dernière incorpore

l’ensemble des matrices noyaux des signaux partageant le canal cible via une somme

pondérée de projections d’erreurs.

Nous étudions les comportements asymptotiques de l’estimateur en question, c’est-

à-dire le biais, la covariance, l’erreur quadratique moyenne et la borne Cramér-Rao,

pour un grand nombre d’observations indépendantes. Nous démontrons que le ren-

dement de l’estimateur peut être optimisé en augmentant le nombre des matrices

noyaux et en utilisant un ensemble spécial de poids dans la fonction de coût.

Nous proposons également une nouvelle version adaptive de l’estimateur de canaux

par sous-espaces généralisés. La faible complexité et la robustesse numérique de cette

version adaptative rendent possible l’estimation de canaux instationnaires en temps

réel sur de longues périodes de temps.

Finalement, nous examinons l’application de l’estimateur proposé à la liaison de-

scendante d’un système d’accès multiple par répartition en code (CDMA) opérant

dans un canal à évanouissement sélectif de fréquences avec un brouillage intersym-

bole négligeable. Les résultats des simulations par ordinateur supportent entièrement

nos développements analytiques.
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support during my graduate studies at McGill University. I am deeply grateful for

the invaluable advice and the research freedom he has given me. Working with him

has been a great learning experience.

I would like to thank Prof. Ioannis Psaromiligkos and Prof. Jan Bajcsy for their

helpful suggestions and encouragement in both my course studies and the research

practice. I have gained plenty of knowledge and fun from the discussions with them.

I would like to thank Prof. M. Reza Soleymani from Concordia University for

reviewing this thesis. His comments and suggestions help me improve this thesis.

I would like to thank Prof. Xiao-Wen Chang from the School of Computer Science

for his useful inputs regarding the computation of subspace intersections.

I would like to thank my friends in Telecommunications and Signal Processing

Laboratory for their friendship and help; they are Mr. Benôıt Pelletier, Mr. François
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Chapter 1

Introduction

Channel estimation has become a critical function in a variety of modern wireless

communication systems, where multiple independent signals are transmitted simulta-

neously though vector channels. In effect, accurate channel information is important

to recover the original transmitted signals by signal processing techniques, e.g. com-

bining, deconvolution, detection, etc. [25].

Channel estimation algorithms can be roughly sorted into two basic categories:

data aided algorithm (training sequence or pilot aided algorithms) and non-data aided

algorithm (blind algorithms). Recently, blind channel estimation algorithms have re-

ceived considerable attention due to their advantages in terms of bandwidth efficiency.

Indeed, unlike the training sequence/pilot aided methods, blind algorithms only rely

on the received signal to carry out the channel estimation and therefore make more

efficient use of the available bandwidth (i.e. higher data rates) [36].

Of particular interest within the family of blind algorithms are the so-called

subspace-based blind channel algorithms, which derive their properties from the second-

order statistics of the received signals. In these methods, the observation space is
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separated into two orthogonal subspaces, namely the signal subspace and the noise

subspace, by applying EigenValue Decomposition (EVD) on the covariance matrix of

the received signal, or by applying the Singular Value Decomposition (SVD) on the

received signal matrix. With the help of partial prior information on the structure of

the transmitted signal, the vector channel of interest can be estimated by exploiting

the orthogonality property between signal and noise subspaces.

In the following sections, we present the motivation, contribution and organization

of the thesis, which is devoted to the study of subspace-based blind channel estimation

algorithms. We first review the literature in the area of subspace channel estimation

in Section 1.1 and then summarize the main thesis contribution in Section 1.2. The

organization of the thesis is presented in Section 1.3 followed by a list of mathematical

notations in Section 1.4.

1.1 Literature Survey

During the past decade, subspace based channel estimation algorithms have been

developed for and applied to various vector channels.

One of the earliest propositions of applying the subspace method to channel es-

timation problems can be traced back to the work by Moulines et al. in 1995 (see

[22]), which focuses on identifying time dispersive channel (modelled as an FIR filter)

in Time Division Multiple Access (TDMA) system with oversampling in time and/or

space domain by using subspace methods.

With the popularity of Code Division Multiple Access (CDMA) communication

systems, several works on the estimation of multipath channels in CDMA system by

subspace methods have been reported in [2, 19, 33]. Among them, Liu and Xu’s work
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in [19] deserves extra attention. In this work, the authors study the identifiability

problem of subspace channel estimation for the first time. Moreover, they provide a

closed form expression of the asymptotic performance of their estimator by using a

first-order perturbation analysis.

Since then, several blind subspace channel estimation methods have been pro-

posed and applied to different scenarios, such as: Single Input Multiple Output

(SIMO) channels [39, 29, 42], frequency selective fading channels in DS-CDMA sys-

tems [37, 1, 39] and Multi-Carrier CDMA (MC-CDMA) systems [41, 16], multiple re-

ceiver antennae [19, 6] and multiple transmitter antennae channels [28, 34] in CDMA

systems, multi-carrier channels [23], etc.

Although these algorithms were developed separately for certain specific trans-

mission scenarios, the similarities among them indicate that there must exist some

common features of the underlying system models, which provide for the feasibility

of the subspace channel estimation. However, so far these common features have not

been studied in the literature.

Besides, among the existing subspace-based channel estimation algorithms, a ma-

jority of them only utilize a single signal component to estimate the target channel,

e.g. [19, 6, 28]. However, in many situations of interest, the target channel is shared

by multiple signal components simultaneously, as in e.g. a typical downlink environ-

ment in cellular systems [39], time dispersive channels [39] or space-time block coded

channels [28]. Then the problem of utilizing multiple signal components to estimate

the target channel arises naturally. A pioneering work on this topic appeared in

[22], which tackles the Inter-Symbol Interference (ISI) channel estimation problem in

SIMO systems. Extension to the ISI channel in CDMA and Orthogonal Frequency

Division Multiplexing (OFDM) systems can be found in [39, 29], respectively. So
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far, there has not been a study that quantifies the effects of using multiple signal

components in subspace-based blind channel estimation.

Finally, most subspace channel estimation algorithms (e.g. [19]) were originally

proposed for time-invariant channels. In order to apply it to on-line estimation of

time-varying channels, some hybrid (adaptive-batch) algorithms have been proposed.

The hybrid algorithms use subspace tracking techniques to adaptively generate the

subspace information; however, the batch method is still used to estimate the tar-

get channel. Therefore the hybrid algorithms still require a considerable amount of

computations (e.g. [40]). Recently, a low-complexity, adaptive channel estimation

algorithm based on the Orthogonal Projection Approximation Subspace Tracking

(OPAST) method was proposed in [6]. However, OPAST only provides a basis of

the signal subspace and cannot track the individual dominant eigenvectors and eigen-

values, which are needed in advanced subspaced-based multi-user detection. Fur-

thermore, some numerical stability problems have been observed with OPAST when

running it over a large number of time iterations.

1.2 Thesis Contribution

In this thesis, motivated by the above considerations, we present a systematical study

of the subspace-based blind channel estimation method1.

We first formulate a general signal model of multiple simultaneous signals trans-

mitted through vector channels, which is applicable to a multitude of modern commu-

nication systems. In this model, individual signals are characterized by a normalized

channel vector and a kernel matrix whose specific structure depends on the transmis-

1Parts of this thesis appear in [15, 14, 13]
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sion system under consideration. Based on this model, we then propose a generalized

subspace-based channel estimator based on the minimization of a novel cost func-

tion, which incorporates the set of kernel matrices of the signal components sharing

the target channel via a weighted sum of projection errors. Through study of the

identifiability (i.e. existence and uniqueness) of the proposed estimator, we find that

enlarging the set of kernel matrices, i.e. utilizing more independent signals in the

estimator, makes it possible to identify longer channel vectors and/or to increase the

number of independent system users.

We investigate the asymptotic performance of the proposed estimator as the num-

ber of independent observations increases. We derive its bias, covariance and mean

square error (MSE), as well as the associated Cramer-Rao bound. We show that

the performance of the estimator can be optimized by incorporating the maximum

number of kernel matrices and by using a special set of weights in the cost function.

In particular, with the optimal weights and utilizing the kernel matrices of all the

signal components sharing the target channel, the proposed estimator achieves both

the minimum MSE and the CRB.

We also propose a fully adaptive implementation of the proposed generalized sub-

space channel estimator. The new adaptive implementation is derived by exploiting

common structural properties of plane rotation-based subspace trackers (e.g. [5, 27]),

whose numerical robustness has been well established. The main advantage of the

proposed adaptive implementation is its low-complexity and numerical robustness

over long periods of utilization, an essential requirement for practical operation in

wireless radio applications.

Finally, we consider a down-link synchronous CDMA system operating in fre-

quency selective fading channel with negligible ISI, where a new channel estimator
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is obtained by applying the generalized estimator to this specific scenario. The per-

formance of the proposed estimator (MSE) is studied via computer simulations. In

the simulations for the batch estimator, we consider a locally stationary environment,

where the channel does not change during T samples. We use the average value of

the square errors of the proposed estimator in a large number of independent ex-

periments to approximate the mean square error. We find that all the experimental

results match the theoretical results well, especially in the case of high SNR and large

T . In the simulations for the adaptive estimator, we compare the performance of

the proposed adaptive algorithm and the hybrid algorithm in time-varying channels,

where the channel is generated by a first-order AR model. The plane rotations based

EVD tracker used in the simulations is PROTEUS-2 [5]. Five simulation experiments

were conducted with different parameter setting. We use an average of the square

errors over a large number of iterations to approximate the mean square error of the

estimator. The simulation results show that in all the cases the performance of the

fully adaptive implementation is still comparable or superior to that of the hybrid

scheme while its computational complexity has been greatly reduced.

1.3 Organization of Thesis

The rest of the thesis is organized as follows. In Chapter 2, we formulate the prob-

lem of blind channel estimation within the framework of a general system model. In

Chapter 3, we propose a generalized subspace-based blind channel estimation algo-

rithm and derive the asymptotic performance properties of the proposed estimator.

In Chapter 4, we propose a novel adaptive implementation of the generalized subspace

channel estimator. In Chapter 5, we present and discuss the results of the computer
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experiments for the down-link CDMA system. In Chapter 6, we make a brief sum-

mary of the thesis and present some unsolved open problems. This is followed by

Appendices that contain the proofs of various theorems.
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1.4 Notation

AT the transpose of matrix A

A∗ the conjugate of matrix A

AH the conjugate transpose of matrix A

A−1 the inverse of non-singular matrix A

A† the pseudo-inverse of singular matrix A

E[A] the expectation of matrix A

Tr[A] the trace of matrix A

Span[A] the space spanned by the columns of A

Â the estimate of A

A(t) the sample of time varying variable A at the t-th time iteration

||v|| the norm of vector v

IL the identity matrix with size L× L

vec[A] , [aT1 , . . . , a
T
N ]T , where A = [a1, . . . , aN ]

diag[v] ,







v1

. . .

vM







, where v = [v1, . . . , vM ]

A ⊗ B ,







a1,1B · · · a1,NB
...

. . .
...

aM,1B · · · aM,NB







, where A =







a1,1 · · · a1,N

...
. . .

...

aM,1 · · · aM,N







∂

∂v
,

1

2







∂
∂x1

− j ∂
∂y1

...
∂

∂xM
− j ∂

∂yM







, where v =







x1 + jy1

...

xM + jyM







δi,j ,

{

0 i 6= j

1 i = j
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Chapter 2

Problem Formulation

During the past decade, subspace based channel estimation algorithms have been

developed for and applied to various vector channels. Each of these algorithms focuses

on the channel estimation problem in a specific communication system. However, the

similarities among these algorithms indicate that there must exist some common

features of the underlying system models. In this chapter, we intend to formulate a

general signal model which is applicable to a multitude of communication systems.

In this general model, we incorporate the common features of the applicable systems

and leave their unique distinguishing features as user-specified parameters.

In this chapter, we first review the signal models of three existing subspace channel

estimation algorithms in Section 2.1. We then propose a general signal model in

Section 2.2. The connection between this general model and different specific systems

is discussed in Section 2.3. At last, in Section 2.4, we formulate the problem of

subspace channel estimation within the framework of the suggested general model.
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2.1 Background Review

In this Section, we review three signal models of existing subspace channel estimation

algorithms. In Subsection 2.1.1, we study the signal model of CDMA system operating

in a frequency selective fading channel with negligible ISI; in Subsection 2.1.2, we

consider the signal model of space time block coded CDMA system; in Subsection

2.1.3, we review the signal model of SIMO channels in TDMA system. Several features

common among the above discussed systems are summarized in Subsection 2.1.4.

2.1.1 Synchronous CDMA System in a Frequency Selective Fading

Channel with Negligible ISI

A synchronous CDMA system operating in a frequency selective fading channel has

been studied in [19]. In a direct sequence-spread spectrum (DS-SS) CDMA system,

information symbols are modulated by pre-assigned signature waveforms of length

Lc. For the q-th user, the normalized signature waveform is represented by cq =

[cq1, · · · , cqLc
]T . At time t, the spread transmitted signal of the q-th user xq(t) may be

represented in vector form as

xq(t) = γq1(t)b
q(t)cq (2.1)

where γq1(t) is the amplitude of the q-th user signal and bq(t) is the corresponding

information bit.

The frequency selective fading channel can be modelled as a FIR filter. When
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xq(t) is input into the channel, the output signal can be represented as follows:

y′q(t) = γ2(t)[x
q(t) ∗ hq(t)]

= γq(t)bq(t)[cq ∗ hq(t)]

= [yq1(t), · · · , yqLc+M−1(t)]
T (2.2)

where γ2(t) is the channel propagation gain, hq(t) is an M × 1 discrete normalized

channel impulse response vector, γq(t) , γ2(t)γ
q
1(t) represents the received amplitude,

and the operator ∗ is defined as follows:

cq ∗ hq(t) =






















cq1(t)

cq2(t) cq1(t)

... cq2(t)
. . .

cqLc
(t)

...
. . . cq1(t)

cqLc
(t)

... cq2(t)

. . .
...

cqLc
(t)






















︸ ︷︷ ︸

(Lc+M−1)×M

hq(t) (2.3)

Since the length of y′q(t) is Lc+M − 1 and the symbol duration is Lc chips, there

exists an (M − 1)-chip overlap, or Inter-Symbol Interference (ISI), between y′q(t− 1)

and y′q(t) at the receiver. We may assume M � Lc in the case that the time delay

spread of the channel is much smaller than the symbol period [19]. To avoid the

ambiguity caused by ISI, we consider yq(t), the ISI-free section of y′q(t):

yq(t) , [yqM(t), · · · , yqLc
(t)]T (2.4)
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Denote L , Lc−M+1 as the length of the vector yq(t). Then yq(t) can be expressed

as

yq(t) = γq(t)bq(t)Cqhq(t) (2.5)

where matrix Cq comprises the M -th to the Lc-th rows of the matrix in (2.3):

Cq ,












cqM(t) · · · cq1(t)

cqM+1(t) · · · cq2(t)

...
...

...

cqLc
(t) · · · cqL(t)












︸ ︷︷ ︸

L×M

(2.6)

In the synchronous system, the received noisy signal has the following form

r(t) =
N∑

q=1

yq(t) + e(t) =
N∑

q=1

γq(t)bq(t)Cqhq(t) + e(t) (2.7)

where N is the number of users and e(t) is a zero-mean white Gaussian noise vector.

In an up-link system, the signals of the q-th user experience a unique channel

hq(t). In a conventional down-link system1, the signals of all the users share the same

channel, so that

h(t) , h1(t) = · · · = hN(t) (2.8)

2.1.2 Space-Time Block Coded CDMA

The channel estimation algorithm in space-time block coded CDMA system has been

studied in [28, 34].

1Here conventional down-link system refers to that where the base station does not equipped by
antenna array.
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In a CDMA system, information symbols of multiple users are transmitted through

the wireless connection simultaneously. We consider a connection between the trans-

mitter, which is equipped with B transmitting antennae, to a receiver, which has 1

receiving antenna. To obtain the diversity gain of multiple transmitter antennae, the

information symbols are firstly encoded by a space-time block encoder. Without loss

of generality, we assume that the encoder for each user is identical. If we input F

continuous information symbols of the i-th user, si,1, . . . , si,F , into a space-time block

encoder, the output is an F ×B matrix Yi, where the (j, l)-th element of Yi will be

transmitted at the j-th symbol duration by the l-th antenna. Here we consider code

matrices Yi satisfying the real orthogonal design [35]. Recall that a real orthogonal

design of size n is an n × n orthogonal matrix with entries ±si,1, . . . ,±si,F ; such an

orthogonal design exists only if n = 2, 4, 8. Thus we conclude that Yi is a square

matrix and

Yi(Yi)H = cIF (2.9)

where F = B ∈ {2, 4, or 8} and c is a constant. The orthogonal design matrix has

the following property [9]:

Yi =

F∑

j=1

Ajs
i,j (2.10)

where Aj is a matrix with all the entries being 0, +1 or −1.

A unique signature waveform ci,l = [ci,l(1), . . . , ci,l(Lc)] is assigned to spread the

information bits of the i-th user transmitted by the l-th antenna, where Lc is the

processing gain. After spreading, the code matrix Yi turns into a LcF ×F matrix Y i

Y i = (Yi ⊗ ILc
)Oi =

F∑

j=1

(Aj ⊗ ILc
)Oisi,j (2.11)
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where Oi , diag[ci,1, . . . , ci,F ]

Assume that the signals of different users are synchronized, then the received

signal can be expressed as

r =

D∑

i=1

F∑

j=1

γiC(i, j)hisi,j + e (2.12)

where C(i, j) , (Aj⊗ILc
)Oi, and where γi and hi are the channel gain and normalized

channel vector of the i-th user, respectively.

Similar to the case in the last subsection, in an up-link system, the signals of the

q-th user experiences a unique channel hq(t) and in a down-link system, the signals

of all the users share the same channels.

2.1.3 SIMO Channel in TDMA System

The Single Input Multiple Output (SIMO) Channel estimation problem has been

studied in [22].

We consider a single user time dispersive channel:

r(t) =

∞∑

m=−∞

h(t−mT )bm + e(t) (2.13)

where bm denotes the transmitted symbol at timemT , e(t) is an independent Gaussian

noise process, and h(t) is the channel response.

Multiple outputs of the received signal can be obtained by oversampling the re-

ceived signal in the time domain by a factor Lc. Assuming the channel has a finite
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time-span, the received signal can be represented as

rin =
M∑

m=0

bn−mh(t+ iT/Lc +mT ) + ein (2.14)

where

rin , r(t+ iT/Lc + nT ) (2.15)

ein , e(t+ iT/Lc + nT ) (2.16)

The received signal sequence rin depends on a discrete channel impulse response

hi defined as follows:

hi , [hi0, . . . , h
i
M ]T (2.17)

, [h(t + iT/Lc), . . . , h(t+MT + it/Lc)]
T (2.18)

We stack signals within N consecutive symbol durations and obtain the sequence

rin , [rin, . . . , r
i
n−N+1] (2.19)

Then

rin = Hi
Nbn + ein (2.20)

where

bn , [bn, . . . , bn−N+1] (2.21)

en , [ein, . . . , e
i
n−N+1] (2.22)
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Hi
N ,












hi0 · · · hiM 0 · · · · · · 0

0 hi0 · · · hiM 0 · · · 0

...
...

0 · · · · · · 0 hi0 · · · hiM












︸ ︷︷ ︸

N×(N+M)

(2.23)

Consequently

rn = HNbn + en (2.24)

where

rn , vec[r0
n, . . . , r

Lc−1
n ] (2.25)

en , vec[e0
n, . . . , e

Lc−1
n ] (2.26)

HN , [(H0
N)T , . . . , (HLc−1

N )T ]T (2.27)

Multiple outputs of the received signal can also be obtained by using oversampling

in spacial domain, i.e. using Lc sensors at the receiver. Thus the received signal at

the i-th sensor may be represented as

ri(t) =
M∑

m=0

bn−mh
i(t +mT ) + ei(t) (2.28)

In this case, we denote the discrete channel response vector as

hi , [hi0, . . . , h
i
M ]T (2.29)

, [hi(t), . . . , hi(t +MT )]T (2.30)
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Proceeding as in a similar way, the problem naturally takes the same form as (2.24).

We note that the matrix H has the entries him, for i = 0, . . . , Lc − 1 and m =

0, . . . ,M . By defining the channel vector h as

h , vec[h0, . . . ,hLc−1] (2.31)

and denoting the k-th column of H as h̄k, we have

h̄k = Ckh (2.32)

where Ck is a matrix with entries 0 and 1, where there is at most one 1 in each row

or column.

Based on the above definition, the signal model in (2.24) can be reformed as

rn =
N+M∑

k=1

Ckhbn−k+1 + en n = ∞, . . . , 0, . . . ,∞ (2.33)

2.1.4 Common Features

Although the above signal models are formulated for different communication systems,

there exist some common features among them, e.g.

1. The received signals have multiple outputs, which are represented as a vector;

2. The received signals contain multiple simultaneous signal components, which

carrier different information symbols;

3. Each information symbol is spread by an effective signature waveform, which is

modelled as a product of a user-specified kernel matrix and a channel vector.
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In the next section, we propose a general system model applicable to a multitude

of communication systems, such as those presented in Subsections 2.1.1 to 2.1.3. This

general model preserves the above common features found in these examples, while

allowing the treatment of their distinguishing features via user-specified parameters,

e.g. kernel matrices. This way, our further work within the framework of the general

model, such as the proposition of a new channel estimator, performance analysis of

the estimator, etc., will be applicable to any particular system satisfying the general

model by properly specifying its parameters.

2.2 General System Model

We consider the following model of an L-dimensional received signal vector in a

communication system:

r =
N∑

i=1

γibiCihi + e (2.34)

where N is the number of independent informatin symbols. γi is a real-value channel

gain, bi is the i-th information symbol, Ci is defined as a kernel matrix with size

L ×M , hi is an M × 1 normalized channel vector, and e is an L × 1 additive noise

vector. We assume that the information symbols bi, for i = 1, . . . , N , are independent

and identically distributed with zero mean and equal variance. The additive noise

vector e is zero mean circularly complex Gaussian with covariance matrix σ2IL and is

independent from the transmitted symbols bi. That is, if we define the i-th element
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of the vector e as ei, then

E[ei] = 0 i = 1, . . . , L (2.35)

E[eie
∗
j ] = σ2δi,j i, j = 1, . . . , L (2.36)

E[eiej] = 0 i, j = 1, . . . , L (2.37)

We define an N × 1 data vector b, an N ×N amplitude matrix Γ, and an L×N

signature waveform matrix W, respectively, as follows:

b , [b1, . . . , bN ]T (2.38)

Γ , diag[γ1, . . . γN ] (2.39)

W , [w1, . . . ,wN ] (2.40)

where

wi , Cihi i = 1, . . . , N (2.41)

is the effective signature waveform of the i-th information symbol, i.e. combined

effect of channel and kernel matrix as seen by the receiver. Using the above matrix

notations, the signal model (2.34) can be expressed more compactly as

r = WΓb + e = x + e (2.42)

where we define x , WΓb.

The system model Equation (2.42) explicitly contains the random information

symbol vector b, which is convenient for subspace-based analysis (see Section 3.2).

However, for the purpose of deriving a channel estimation algorithm and analyzing
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its performance, it is more appropriate to reformulate (2.34) in a matrix format that

explicitly displays the channel vectors.

We assume that the N independent signals (in the sequel, the term signal refers

to the variables γibiCihi) experience J different channels, 1 ≤ J ≤ N . Then we

separate the N signals into J groups, such that the signals in each group share the

same channel. We denote the number of independent signals in each group as Km

(m = 1, . . . , J), so that
∑J

m=1 K
m = N . In the m-th group, we use the superscript

m to denote group affiliation, as in the common channel parameters γm and hm, and

we use the superscript l to further distinguish among the Km independent signals, as

in bml, Cm,l and wm,l. Finally, introducing the following quantities

Gm , γm
Km
∑

l=1

bm,lCm,l (2.43)

G , [G1, . . . ,GJ ] (2.44)

hT , vec[h1, . . . ,hJ ] (2.45)

the received signal vector can also be expressed as

r = Gh + e (2.46)

2.3 Connection to Existing Works

The specific physical meaning of the various parameters entering the above model

depends on the wireless communication system being considered. As such, the model

is sufficiently general to accommodate several situations of interest, as exemplified

below for different system features.
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1. Direction of propagation:

• Conventional downlink: All the signals share the same channel so that

there is only one group, as in e.g. [39].

• Uplink: The signals from the same remote user share the same channel and

the number of groups is equal to the number of remote users, e.g. [19, 39].

2. Nature of information bits:

• Inter-symbol Interference (ISI): The entries of vector b represent consecu-

tive information bits in the data stream, e.g. [22, 29, 39].

• Multiple Access Interference (MAI): Vector b contains the simultaneous

information bits of the different users, e.g. [19, 2, 39].

• Space-Time Block Codes (STBC): Vector b contains the input symbols of

a STBC encoder, e.g. [28, 34].

• Orthogonal transmission: Vector b is generated by applying a unitary

transformation on the original symbols, e.g. [29] where the unitary trans-

formation is IFFT.

3. Nature of the kernel matrix:

• CDMA: The kernel matrix Ci is a function of the signature waveform, or

spreading code, of the i-th user. This is the case for instance in DS-CDMA

with time spreading, e.g. [19, 2, 6, 28], and in MC-CDMA with frequency

spreading, e.g. [41, 16, 34].

• Oversampling in TDMA: This is used in ISI channels where the kernel

matrix Ci = [0M×l, IM , 0M×k]
T with k + l +M = L, e.g. [22, 29, 42].
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4. Nature of the channel vectors:

• Dispersive Channel: The mth multi-path channel is modelled as a tapped-

delay-line [26] with tap coefficient vector hm e.g. [19, 2, 39, 28].

• MIMO channel: Vector hm is a concatenation of the various channel im-

pulse responses (or gains) between the multiple transmit antennae and

multiple receiver antennae, e.g. [28, 34, 19, 6].

• Multiple carrier: Vector hm contains the gains of the different sub-carriers,

e.g. [23].

The above list is far from exhaustive, but in some degree it demonstrates the

generality of the proposed signal model.

2.4 Blind Channel Estimation

Within the above framework, the goal of blind channel estimation is to determine

one or more target channel vectors hm, m = 1, . . . , J , using T observations of the

received signal vector in (2.34), say rj (j = 1, . . . , T ). In this thesis, and without loss

of generality, we only consider the problem of estimating one target channel vector. As

we explain in Section 3.4, the problem of estimating multiple target channel vectors

is equivalent to multiple independent estimation problems for the case of a single

channel vector.

We define the estimation error vector as

∆hm , ĥm − hm (2.47)

where ĥm and hm respectively denote the estimated and true target channel vector
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for the m-th group. The performance criteria of interest are the bias, covariance and

mean square error of the proposed estimator, respectively defined as

Bias , E[∆hm] (2.48)

Cov , E[(∆hm − E[∆hm])(∆hm − E[∆hm])H ] (2.49)

MSE , E[||∆hm||2] (2.50)

A “good” estimator is one that is unbiased (i.e. Bias = 0) and minimizes the covari-

ance and the mean square error.

For blind channel estimation, the transmitted symbols b is unknown. This is

the main difference between blind and training sequence/pilot aided algorithms. To

guarantee the estimation of the target channel vector hm, at least one kernel matrix

in the m-th group needs to be known by the estimating algorithm. In practice, the

specific available knowledge of the kernel matrices depends on the particular system

under consideration.

In the next Chapter, we formulate a generalized cost function for subspace-based

blind channel estimation, which incorporates the set of kernel matrices of the sig-

nals sharing the target channel. We then investigate the asymptotic performance of

the estimator, including bias, covariance and mean square error (MSE), as the num-

ber of independent observations T increases. In particular, we shall show that the

performance of the estimator can be improved by increasing the number of kernel

matrices.
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2.5 Chapter Summary

In this chapter, we discussed the signal model of different applications of subspace

channel estimation methods. We began by reviewing the signal models of three spe-

cific communication systems. By incorporating the common features of the different

signal models, we then proposed a general signal model, which is applicable to a

multitude of communication systems. This was demonstrated by establishing the

connections between the above general model and some specific examples of com-

munication systems. At last, we formulated the problem of blind subspace channel

estimation within the framework of the proposed general model.
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Chapter 3

Generalized Blind Subspace

Channel Estimation

In this chapter, we propose a generalized blind subspace channel estimator within

the framework of the general signal model formulated in the Section 2.2. We also

study the asymptotic performance of the proposed estimator with a large number of

observed data.

This chapter is organized as follows. In Section 3.1, we firstly review the concept of

subspace decomposition of the covariance matrix. Based on this concept, we formulate

the theoretical foundation of subspace channel estimation algorithm and study the

identifiability (i.e. existence and uniqueness of the solutions) of the subspace channel

estimation problem in Section 3.2. In Section 3.3, we propose a generalized subspace-

based channel estimator by minimizing a novel cost function, which incorporates the

set of kernel matrices of the signals sharing the target channel via a weighted sum of

projection errors. In Section 3.4, we investigate the asymptotic performance of the

proposed estimator, i.e. bias, covariance, mean square error (MSE) and Cramer-Rao
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bound, for large numbers of independent observations. We show that the performance

of the estimator can be optimized by increasing the number of kernel matrices and

by using a special set of weights in the cost function.

3.1 Subspace Decomposition

Let R denote the covariance matrix of received signal vector r in (2.34):

R = E[rrH ] = WΓ2WH + σ2IL (3.1)

Blind subspace methods exploit the special structure of R to estimate the channel

parameters. Specifically, let us express the EigenValue Decomposition (EVD) (see

[10]) of R in the form

R = UΛUH (3.2)

where Λ = diag[λ1, . . . , λL] denotes the eigenvalue matrix, with the eigenvalues in

a non-increasing order, and U is a unitary matrix that contains the corresponding

eigenvectors. Since the rank of matrix WΓ2WH in (3.1) is N , it follows that

λ1 ≥ · · · ≥ λN > λN+1 = · · · = λL = σ2 (3.3)

Thus, the eigenvalues can be separated into two distinct groups, the signal eigenvalues

and the noise eigenvalues, respectively represented by matrices

Λs , diag[λ1, . . . , λN ] (3.4)

Λn , diag[λN+1, . . . , λL] (3.5)
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Accordingly, the eigenvectors can be separated into the signal and noise eigenvectors,

as represented by matrices Us and Un with dimensions L × N and L × (L − N),

respectively. With this notation, the EVD in (3.2) can be expressed in the form

R =

[

Us Un

]






Λs 0

0 Λn











UH
s

UH
n




 (3.6)

The columns of Us span the so-called signal subspace with dimension N , while those

of Un span its orthogonal complement, i.e. the noise subspace.

The problem of computing EVD, or more generally Singular Value Decomposition

(SVD), has already been deeply studied. The emphasis of the research on this topic is

to reduce the huge computational complexity. Currently, the most efficient algorithms

may calculate the eigenvalues and eigenvectors with the complexity as O(L3) [10].

3.2 Theoretical Foundation

The special structure of the covariance matrix of the received signal in (3.1) provides

the following important property: the signal subspace is indeed equal to the space

spanned by the columns of W:

Span[W] = Span[Us] (3.7)

From the orthogonality between the signal subspace and the noise subspace, it follows

that

Span[W] ⊥ Span[Un] (3.8)

To estimate the target channel vector hm, which is shared by the signal compo-
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nents in the m-th group, we select 1 ≤ P ≤ Km effective signature waveforms from

the m-th group, say wm,j (j = 1, . . . , P ) without loss of generality, and construct a

matrix

W̄ , [wm,1, . . . ,wm,P ] (3.9)

From the above definition, it follows that Span[W̄] ⊆ Span[W], Thus according to

(3.8), we have

Span[W̄] ⊥ Span[Un] (3.10)

Consequently

UH
n W̄ = 0 (3.11)

Define

Us , IP ⊗ Us (3.12)

Un , IP ⊗ Un (3.13)

CT , [(Cm,1)T , . . . , (Cm,P )T ] (3.14)

and note from (2.41) that

vec[W̄] = Chm (3.15)

Applying vectorization operation on UH
n W̄, we obtain

vec[UH
n W̄] = UH

n vec[W̄] = UH
n Chm = 0 (3.16)

Theoretically, we may determine the target channel vector by solving (3.16). However,

there still exist several practical difficulties in doing that, such as the identifiability
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of the solution, which will be discussed in the following subsection, and the noise

perturbation in Un as discussed in Section 3.3.

3.2.1 Identifiability

To determine hm as a unique non-trivial solution of (3.16), the matrix Us (3.12) and

the matrix C (3.14) must satisfy the identifiability condition, that is: the intersection

space of Span[C] and Span[Us] should have dimension one (see [19]). To understand

this condition, we note that (3.16) implies that vector Chm belongs to the subspace

Span[Us], which is orthogonal to Span[Un]. Thus, if Span[C]∪Span[Us] has dimension

0, there is no non-trivial solution of (3.16); if the dimension Span[C] ∪ Span[Us] is

greater than 1, the solution of (3.16) is not unique (i.e. dimensions of solution space

> 1).

Here, the dimensions 1 of Span[C] and Span[Us] are respectively given by M and

NP . Clearly, the dimension of Span[C]∪Span[Us] cannot exceeds LP , the number of

rows of matrices C and Us. Thus, the identifiability condition implies that

M +NP − 1 ≤ LP ⇐⇒ N ≤ L− M − 1

P

⇐⇒ M ≤ (L−N)P + 1 (3.17)

From the above inequalities, we conclude that increasing P will allow more indepen-

dent signals in the system (i.e. a larger N) and/or enable the estimator to identify a

longer channel (i.e. a large M).

Another problem related to the identifiability issue is that there exists a phase

ambiguity in the solution of (3.16), i.e. the solution of (3.16) is φhm, where φ is

1To simplify the discussion, we assume that matrix C has full column rank.
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an arbitrary phase factor, |φ| = 1. The phase ambiguity indeed exists in all kinds

of blind channel estimators, and can be remedied by introducing extra constraints,

e.g. by using differentially encoded information bits (more details about this problem

can be found in [7]). Thus, we assume that the phase factor is known exactly in the

rest of this Chapter.

3.3 The Algorithm

Ideally, the target vector channel hm can be determined exactly by solving (3.16)

when the covariance matrix R = E[rrH ], and thus the noise eigenvector matrix Un

are known accurately. In practice, however, R is usually unknown and must be

estimated from the observed data via time averaging. Assuming a locally stationary

environment, one such estimate based on a rectangular window of T samples is given

by

R̂ =
1

T

T∑

j=1

rjr
H
j (3.18)

where rj now denotes the received signal vector at the j-th time instant for j =

1, . . . , T (with similar modifications for other quantities of interest in (2.42)-(2.44),

b → bj, e → ej, Gm → Gm
j and G → Gj).

In practice, the EVD is applied to R̂, resulting in

R̂ =

[

Ûs Ûn

]






Λ̂s 0

0 Λ̂n











ÛH
s

ÛH
n




 (3.19)

where Ûs,Ûn, Λ̂s and Λ̂n are noisy estimates of Us,Un, Λs and Λn, respectively.

Consequently, the noisy estimates of Us (3.12) and Un (3.13) are respectively defined
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as

Ûn , IP ⊗ Ûn (3.20)

Ûs , IP ⊗ Ûs (3.21)

In this work, we consider the following optimization criterion for the blind esti-

mation of channel vector hm:

ĥm = arg min
||t||=1

tHCH ÛnÛH
n Ct (3.22)

= arg min
||t||=1

tH [

P∑

i=1

(Cm,i)HÛnÛ
H
n Cm,i]t (3.23)

Ideally, if Ûn = Un and the identifiability condition is satisfied, all the eigenvalues of

CH ÛnÛH
n C in the above criterion are positive except the smallest one, which is equal

to 0. However, in practice, the estimation error in Ûn may result in a positive pertur-

bation in the smallest eigenvalue so that the matrix CHÛnÛH
n C is positive definite. In

this case, (3.16) does not have a (non-trivial) solution, but the target channel vector

still can be estimated by minimizing the cost function in (3.22). Thus, we conclude

that the optimization criterion in (3.22) is more robust to the perturbation of Un than

(3.16).

The choice of kernel matrices Cm,i included in the proposed criterion (3.22) is

specified by the user, allowing a generalization of previous work. For example, the

single signal algorithm in [19] can be obtained as a special case of (30) with P =

Km = 1, while the multiple signals algorithms in [22] corresponds to P = Km. Here

any value of P between 1 and Km can be used.

A further modification to the above criterion is motivated by the consideration of
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performance (see Sections 3.4). Specifically, we shall allow the assignment of different

weights to the different terms (Cm,i)HÛnÛ
H
n Cm,i, i.e.

ĥm = arg min
||t||=1

tH [

P∑

i=1

αi(Cm,i)HÛnÛ
H
n Cm,i]t (3.24)

where αi > 0 are user-specified weight parameters. We define

A , diag[
√
α1, . . . ,

√
αP ] ⊗ IL−N (3.25)

so that criterion (3.24) can be expressed in matrix form as:

ĥm = arg min
||t||=1

tHCH ÛnAAHÛH
n Ct (3.26)

From an algorithmic viewpoint, the solution ĥm of (3.26) can be calculated as the

eigenvector corresponding to the smallest eigenvalue of CHÛnAAHÛH
n C. The resulting

estimation algorithm is summarized in Table 3.1.

The computational complexity under consideration in this thesis refers to the

number of complex multiplications. The computational complexity of each step in

the proposed algorithm is explained as follows. In the first step, each product rjr
H
j

requires L2/2 complex multiplications. In the second step, the EVD requires O(L3)

complex multiplications as we mentioned before. In the step 9, for each of the P

terms of αi(Cm,i)HÛnÛ
H
n Cm,i, we first calculate the matrix B , (Cm,i)HÛn which

requires (L−N)ML complex multiplications; then we calculate the product BBH with

complexity (L− N)M 2; at last, we apply the coefficient αi to the Hermitian matrix

BBH , which needs M2/2 complex multiplications. The complexity of the EVD in the

last step is O(M 3).



3 Generalized Blind Subspace Channel Estimation 33

We call the proposed estimator in Table 3.1 the generalized blind subspace channel

estimation algorithm. Not only is this algorithm based on a general signal model,

but it also gives the freedom to choose the kernel matrices and specify the weight

parameters so as to optimize performance (see Section 3.4).

Table 3.1 Generalized Blind Subspace Channel Estimation
Algorithm

Step Complexity

1. R̂ = 1
T

∑T
j=1 rjr

H
j

1
2
TL2

2. R̂ = [ Ûs Ûn]




Λ̂s 0

0 Λ̂n








ÛH
s

ÛH
n



 O(L3)1

3. P is user specified

4. Ûn , IP ⊗ Ûn

5. CT , [(Cm,1)T , . . . , (Cm,P )T ]

6. αi, i = 1, . . . , P , are user specified

7. A , diag[
√
α1, . . . ,

√
αP ]

8. A , A ⊗ IN

9. Construct the matrix CHÛnAAÛH
n C P [(L−N)ML

or
∑P

i=1 α
i(Cm,i)HÛnÛ

H
n Cm,i +1

2
(L−N)M2 + 1

2
M2]

10. Find eigenvector ĥm corresponding to O(M 3)

smallest eigenvalue of CHÛnAAÛH
n C

1 The exact figure for the computational complexity of the EVD de-
pend on which specific algorithm is being used (see e.g. [10]).
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3.4 Asymptotic Performance Analysis

In this section, we investigate the asymptotic performance of the proposed generalized

blind subspace channel estimation algorithm (see Table 3.1). The performance criteria

under consideration here are the bias, the covariance and the mean square error of

the proposed estimator, as defined in (2.48), (2.49) and (2.50), respectively. We study

these performance measures under the assumption that the number of time samples

T in (3.18) is large, so that

1

T

T∑

j=1

bjb
H
j ≈ IN (3.27)

Accordingly, the algorithm performance shall not depend on the specific sequence of

information symbols {bj} being transmitted.

The main results take the form of Theorems that describe the specific performance

properties of the proposed algorithm. The proofs of these theorems are relatively

tedious. To simplify the presentation, we have found it appropriate to collect these

proofs in Appendix A at the end of the thesis.

Theorem 1 The proposed generalized estimator ĥm is asymptotically unbiased, that

is Bias = 0, with the covariance

Cov =
σ2

T
[(CHUnA)†]HAHΥ−2A(CHUnA)† (3.28)

and mean square error

MSE =
σ2

T
Tr[(Υ−1A)(AHUH

n CCHUnA)†(Υ−1A)H] (3.29)

where Υ , diag[γm,1, . . . , γm,P ] ⊗ IL−N
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Proof : See Appendix A Section A.1.

Theorem 1 indicates that the performance of the proposed estimator depends on

the user specified parameters, i.e. the weight matrix A (3.25) and the compounded

kernel matrix C (3.14), which is determined by the set of kernel matrices utilized in

the estimator, i.e. S , {Cm,1, . . . ,Cm,P}.

We next investigate the optimal choice of parameters A and S that minimizes the

mean square error and the covariance of the estimator. To this end, it is convenient

to explicitly indicate the functional dependence of these measures on A and S, i.e.

MSE(A, S) and Cov(A, S).

We begin with the minimization of MSE(A, S), which proceeds in two steps.

Firstly we minimize this measure by adjusting the weight matrix A in the case of a

fixed set S; secondly we search for a best choice of S to minimize MSE(A, S) when

the optimal weight matrix determined in the first step is used. Then the resulting

choice on the parameters A and S minimizes MSE(A, S).

Theorem 2 Aopt = cΥ is the optimal weight matrix in the sense of minimizing

MSE(A, S) for a fixed set of kernel matrices S:

MSEo(S) , min
A

MSE(A, S)

= MSE(cΥ, S) =
σ2

T
Tr[Q†] (3.30)

where c is an arbitrary constant and

Q , CHUnΥ2UH
n C (3.31)

Proof : See Appendix A Section A.2.
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Theorem 2 shows that the optimal weights αi (i = 1, . . . , P ) are proportional to

the corresponding received powers (γm,i)2.

Next we consider the set of kernel matrices S = {Cm,1, . . . ,Cm,P} utilized in the

estimator with optimal weight matrix. We define the universal set of kernel matrices

in the m-th group as U , {Cm,1, . . . ,Cm,Km}, so that S ⊆ U . We also consider an

arbitrary partition of S into Q non-empty subsets as Sq (q = 1, . . . , Q):

Q
⋃

q=1

Sq = S (3.32)

Sp ∩ Sq = ∅ for any p 6= q (3.33)

Theorem 3 For any proper subset Sq of S, that is Sq ⊂ S ⊆ U , we have

MSEo(S) < MSEo(Sq) (3.34)

Proof : See Appendix A Section A.3.

The above theorem implies qualitatively that enlarging the set of kernel matrices

S in the estimator will decrease its mean square error. Consequently the minimum

mean square error is achieved when the estimator utilizes the kernel matrices of all

the signal components in this group, i.e. S = U :

MSEo , min
S⊆U

MSEo(S) = MSEo(U)

=
σ2

T
Tr[(Qm)†] (3.35)
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where

Qm , (Cm)HUm
n (Υm)2(Um

n )HCm (3.36)

Cm , [(Cm,1)T , . . . , (Cm,Km

)T ]T (3.37)

Um
n , IKm ⊗ Un (3.38)

Υm , diag[γm,1, . . . , γm,K
m

] ⊗ IL−N (3.39)

The next theorem provides a better indication of the relationship between the

achievable mean square error MSEo(S) and the individual mean square errors MSEo(Sq)

for the subsets of kernel matrices forming the partition in (3.32)-(3.33).

Theorem 4 For arbitrary positive integers cq, q = 1, . . . , Q

MSEo(S) ≤
∑Q

q=1 c
2
qMSEo(Sq)

(
∑Q

q=1 cq)
2

(3.40)

Proof : See Appendix A Section A.4.

As a special case of Theorem 4, assume that for q = 1, . . . , Q, cq = 1, and subset

Sq only has one element, i.e. Sq = {Cm,q}, and consequently Q = P . Then MSEo(Sq)

represents the mean square error of the single signal estimator (e.g. [19]) applied on

Cm,q. Thus according to Theorem 4

MSEo(S) ≤ 1

P 2

P∑

q=1

MSEo(Sq) =
MSE

P
(3.41)

where MSE , 1
P

∑P
q=1 MSEo(Sq) denotes the average mean square error of single

signal estimator over the set S. This result provides an easy way to roughly evaluate

the performance gain of a multiple signal estimator over the single signal estimator
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without calculating their mean square errors.

Based on the above considerations, we suggest the following principles for mini-

mizing the mean square error of the proposed estimator:

1. Choose the weights proportional to the received powers;

2. Include the maximum possible number of kernel matrices.

Clearly, as can be seen from Table 1, increasing the number of kernel matrices will

entail an additional computational cost.

We now turn our attention to the optimization of the covariance of the proposed

estimator, as defined in (2.49). So far, we have not been able to extend the results

of Theorems 2 to 4 to the covariance matrix so that they remain valid in the form

of matrix inequalities. Fortunately, we can use the Cramer-Rao bound (CRB) to

judge the optimality of the parameter choice obtained in the case of mean square

error. That is: if the covariance matrix with the parameters A = cΥ and S = U

achieves the CRB, this parameter setting is considered the optimal one to minimize

the covariance of the estimator.

As mentioned before, some constraints are usually imposed on the estimated chan-

nel vector, e.g. unit norm and/or known phase factor. In this case, the traditional

CRB (see e.g. [38]) is no longer applicable. The CRB for parameter estimation under

constraints was recently given in [31], where a so-called constrained CRB is derived

which depends on the specific algebraic constraints imposed on the estimated param-

eters. In [7], the concept of minimal constrained CRB is further introduced, which

corresponds to the CRB matrix with the smallest trace (i.e. MSE) among the various

constrained CRB matrices within the constraint class.
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Theorem 5 The minimal constrained CRB of the vector h, which contains all the

channel vectors, is given by

CRBC,h =
σ2

T
diag[(Q1)†, . . . , (QJ)†] (3.42)

and the minimal constrained CRB for the channel vector of interest is given by

CRBC,hm =
σ2

T
(Qm)† (3.43)

Proof : See Appendix A Section A.5.

From the previously derived expression (3.28) for the covariance matrix of the

target channel, we find that the proposed generalized subspace estimator ĥm achieves

the minimal constrained CRB when A = cΥ and S = U . Therefore, we conclude that

the choice of parameters A = cΥ and S = U not only minimizes the mean square

error, but also minimizes the covariance of the estimator. Finally, we note that

the minimal constrained CRB in (3.42) is block diagonal, providing a justification

for our earlier statement that joint multiple channel estimation can be uncoupled

into several independent single channel estimation problems, without any loss in

theoretical achievable performance.

3.5 Chapter Summary

In this chapter, we proposed the generalized blind subspace channel estimation algo-

rithm. We first introduced the subspace concepts and properties. Based on them, we

formulated the theoretical foundation of the subspace channel estimation algorithm.

Through the study of the identifiability, we showed that by enlarging the set of the
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kernel matrices, we may enable the estimator to identify a longer channel and/or to be

used in a system having larger number of independent signals. With the consideration

of robustness to the error in the data correlation matrix, we proposed a generalized

blind subspace channel estimator by minimizing a novel cost function, which incorpo-

rates a set of kernel matrices via a weighted projection error. Through an asymptotic

performance analysis, we showed that the performance of the proposed estimator can

be optimized by utilizing the kernel matrices of all the signal components sharing the

target channel and by using a special set of weights in the cost function.
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Chapter 4

Adaptive Implementation

In the previous chapter, the proposed generalized channel estimation algorithm (see

Table 3.1) and its performance analysis were based on the assumption that the channel

does not vary within an observation window of T time samples (i.e. block stationary).

However, in some practical applications, the systems of interest operate in dynamic

signal environments, where the target channel varies from time to time. To estimate

the time varying target channel in real time (i.e. updating the estimation on each time

iteration), we consider the adaptive implementation of the proposed generalized sub-

space channel estimation algorithm in this chapter. The most important issue under

consideration here is the computational complexity of the adaptive implementation,

which greatly impacts its practicality for real-time applications.

This chapter is organized as follows. In Section 4.1, we review a class of subspace

trackers, which can provide the required subspace information with low complexities.

In Section 4.2, based on this class of subspace trackers, we propose a novel low-

complexity adaptive implementation of the generalized subspace channel estimation

algorithm presented in Chapter 3.
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4.1 Spherical Subspace Tracking Techniques

In dynamic signal environments, the subspace information needs to be updated when

the new data becomes available. In such cases, the estimation method of the co-

variance matrix of the received signal based on a rectangular window (3.18) is no

longer applicable. Instead, the Exponentially Weighted Moving Averaging (EWMA)

window is commonly used to estimate the covariance matrix as:

R̂(t) = αR̂(t− 1) + (1 − α)r(t)r(t)H (4.1)

where R̂(t) denotes the estimate of the L × L covariance matrix at the t-th time

iteration, r(t) is the L × 1 received signal vector at the t-th time iteration, and α is

the forgetting factor used to deemphasize the effect of the past data, which takes the

value in the interval (0, 1).

The subspace information can be generated by applying an EVD to R̂(t) at

each time iteration. However, the computational complexity of each EVD is O(L3),

which is too expensive for the online algorithms. To update the subspace informa-

tion cheaply, several subspace tracking algorithms with much less complexity have

been developed (see e.g. [5, 27, 8, 43, 30, 32, 24]), among which a group of so-called

spherical subspace trackers are of special interest (e.g. [5, 27, 8, 24]).

The spherical subspace trackers utilize the property that the noise eigenvalues are

equal to each other due to the whiteness of the noise vector (see (3.3)). Thus, in prac-

tice, the spherical subspace trackers only track one noise eigenvalue, say λ̂A(t), which

can be calculated as the average value of the power lying along each noise eigenvector

[4]. As a result, the estimated noise subspace can be replaced by a spherical subspace,
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where the orthogonal basis of this subspace, say Ûn(t), can be selected arbitrarily.

When new data arrive, it is possible to make the component of the new data vector

within the noise subspace lie on a single noise eigenvector by wisely choosing Ûn(t).

Then, the dimension of the EVD updating is reduced from L to N + 1 and this

updating can be achieved with a complexity as low as O(NL).

Given the estimated signal eigenvector matrix Ûs(t − 1), estimated signal eigen-

value matrix Λ̂s(t − 1), estimated noise eigenvalue λ̂A(t − 1) and the incoming data

vector r(t), the spherical subspace tracker usually update the subspace information

as follows [4]:

Data projection:

ys(t) = Ûs(t− 1)Hr(t) (4.2)

rn(t) = r(t) − Ûs(t− 1)ys(t) (4.3)

yA(t) = ||rn(t)|| (4.4)

ûbn(t) = rn(t)/yA(t) (4.5)

where ûbn(t) is the noise eigenvector before updating.

Eigenvector updating:

[Ûs(t), û
a
n(t)] = T [Ûs(t− 1), ûbn(t)] (4.6)

where ûan(t) is the noise eigenvector after updating.
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Eigenvalue updating:

λ̂i(t) = αλ̂i(t− 1) + (1 − α)|yi(t)|2 (4.7)

λ̂A(t) = αλ̂A(t− 1) + (1 − α)
|yA(t)|2
L−N

(4.8)

where λ̂i(t) is the i-th estimated signal eigenvalue at time iteration t and yi(t) is the

i-th element of the vector ys(t). Note that the noise eigenvalue λ̂A(t) is updated by

the average value of the power lying in the noise subspace.

The exact form of the eigenvector updating function T [·] in (4.6) depends on the

specific spherical subspace tracker being used. Of special interest here are the so-called

plane rotation-based subspace/EVD trackers, including PROTEUS [5], RO-FST [27],

etc. The common feature of these trackers is that the signal subspace eigenvectors

are updated as

[Ûs(t), û
a
n(t)] = [Ûs(t− 1), ûbn(t)]

∏

i

Ḡi (4.9)

where {Ḡi} is a sequence of O(N) plane (or Givens) rotations which depend on the

specific subspace/EVD tracker being used.

Plane rotation matrix Ḡi here is defined as a matrix similar to an (N+1)×(N+1)

identity matrix except for four elements: the (j, j)-th element is ci, the (j, k)-th
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element is si, the (k, j)-th element is −si and the (k, k)-th element is ci, namely:

Ḡi =






















1 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...

0 · · · ci · · · si · · · 0

...
...

. . .
...

...

0 · · · −si · · · ci · · · 0

...
...

...
. . .

...

0 · · · 0 · · · 0 · · · 1






















(4.10)

where ci and si are real parameters respectively defined as

ci = cos θi (4.11)

si = sin θi (4.12)

As a result, it follows that the matrix Ḡi is unitary, i.e.

ḠiḠ
H
i = IN+1 (4.13)

The angle parameter θi and the position parameters j and k are functions of the

subspace information before updating, i.e. Ûs(t−1), Λ̂s(t−1), λ̂A(t−1) and the new

data vector r(t). It is convenient to introduce

Ḡ ,
∏

i

Ḡi (4.14)
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as a compact notation for the product of notations in (4.9). We then have

ḠḠH = IN+1 (4.15)

4.2 Adaptive Subspace Channel Estimation

Here, we consider the signal model (2.34) in a dynamic signal environment, where the

M × 1 channel vector hm(t) is assumed to be a time varying parameter.

Define the following variables for convenience:

Ā , diag[
√
α1, . . . ,

√
αP ] ⊗ IL (4.16)

w̄(t) , Āvec[W̄(t)] (4.17)

C̄ , ĀC (4.18)

where Ā is a PL× PL matrix, W̄(t) is the time varying version of W̄ in (3.9) with

size L× P , C is defined in (3.14) with size PL×M and C̄ has the same size as C.

The proposed subspace channel estimation algorithm in Table 3.1 estimates the

target channel by calculating the eigenvector corresponding to the smallest eigenvalue

of CH ÛnAAÛH
n C, which can be reformed as follows:

CHÛnAAÛH
n C =

P∑

i=1

αi(Cm,i)HÛnÛ
H
n Cm,i

= C̄H ÛnÛH
n C̄ (4.19)

Here we begin from a different viewpoint. From (3.9), (3.10), (3.12) and (4.17), it
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can be verified that

w̄(t) ∈ Span[IP ⊗ W̄(t)] ⊆ Span[Us(t)]. (4.20)

and from (3.15), (4.17) and (4.18), we find

w̄(t) = Āvec[W̄(t)] = ĀChm = C̄hm ∈ Span[C̄] (4.21)

Thus, w̄(t) belongs to the intersection of Span[C̄] and Span[Us(t)].

w̄(t) ∈ Span[C̄] ∩ Span[Us(t)] (4.22)

Thus, we may uniquely determine the vector w̄(t) as the intersection of Span[C̄] and

Span[Us(t)] when this intersection space has dimension one [19].

A standard method to compute the intersection of two subspaces is given in [10].

1. A QR decomposition is applied to C̄, i.e.

C̄ = Q̄R̄ (4.23)

where the columns of the LP × M matrix Q̄ form an orthonormal basis of

Span[C] and the matrix R̄ is an M ×M upper-triangular matrix.

2. Find hmR (t) as the the dominant left singular vector of Q̄HUs(t).

3. Vector w(t) is given by

w̄(t) = Q̄hmR (t) (4.24)

In most situations, what is of interests is the target channel vector hm. From
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(4.21) and (4.24), it follows that

w̄(t) = C̄hm = Q̄R̄hm = Q̄hmR (t) (4.25)

Since the LP × M matrix Q̄ is of full column rank and the square matrix R̄ is

non-singular, the target channel can be determined by

hm = R̄−1hmR (t) (4.26)

4.2.1 Hybrid Algorithm

In practice, only Ûs(t), a noisy estimate of Us(t), is available. Let ŵ(t), ĥmR (t) and

ĥm(t) respectively denote the noisy estimates of w̄(t), hmR (t) and hm(t) obtained from

the above calculations when Ûs(t) instead of Us(t) is being used.

A channel estimation algorithm based on the above derivation is presented in

Table 4.1. We refer to this algorithm as an hybrid (adaptive-batch) approach because

the signal subspace eigenvectors are updated adaptively with a subspace tracker but

the subspace intersection (4.22) is computed using an exact (batch) Singular Value

Decomposition (SVD).

In practice, the length of channel vector M is usually smaller than the dimension

of the observation space L. In this case, the computational bottleneck in the this

algorithm is that of constructing the matrix Q̄H Ûs(t) in the 3-rd step. If M >

L, we may apply the power method [10] to iteratively update the estimate of the

channel vector ĥm(t) with the complexity O(PNM) (details of the power method

is discussed below). Thus the 3-rd step is still the computational bottleneck of the

hybrid algorithm.
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Table 4.1 Hybrid Channel Estimation Algorithm

Step Complexity

1. [Q̄, R̄] = QR decomposition of C̄ Negligiblea

FOR t = 1, 2, . . .

2. Ûs(t) is given by the subspace tracker O(NL)b

3. Construct the matrix Q̄HÛs(t) PNML

4. Find ĥmR (t) the dominant left singular vector of Q̄H Ûs(t) O(PNM2)c

5. ĥm(t) = R̄−1ĥmR (t) M2

END

a This step can be calculated off-line.
b The exact computational complexity depends on which specific subspace

tracker is being used.
c The exact computational complexity depends on which specific SVD algo-

rithm is being used.
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4.2.2 Adaptive Algorithm

Here, we propose a new adaptive channel estimation algorithm by utilizing the special

updating form of plane rotation-based subspace/EVD trackers in (4.9),

Note that the dominant left singular vector of Q̄HÛs(t) is identical to the dominant

eigenvector of the following M ×M matrix

D(t) , Q̄H Ûs(t)Ûs(t)HQ̄ (4.27)

By defining

Q̄T , [Q̄T
1 , . . . , Q̄T

P ] (4.28)

Di(t) , Q̄H
i Ûs(t)Ûs(t)

HQ̄i (4.29)

we have

D(t) =

P∑

i=1

Di(t) (4.30)

To construct D(t) directly requires a huge computational complexity (PNML +

PNM2/2). By using the special updating form in (4.9) and the property of plane

rotations in (4.15), we may develop a simple recursive update for D(t). We consider
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the matrix Di(t)

Di(t) = Q̄H
i

[

Ûs(t) uan(t)

]






Ûs(t)
H

uan(t)
H




 Q̄i

−Q̄H
i uan(t)u

a
n(t)

HQ̄i

= Q̄H
i

[

Ûs(t− 1) ubn(t)

]

ḠḠH






Ûs(t− 1)H

ubn(t)
H




 Q̄i

−Q̄H
i uan(t)u

a
n(t)

HQ̄i

= Q̄H
i Ûs(t− 1)Ûs(t− 1)HQ̄i + Q̄H

i ubn(t)u
b
n(t)

HQ̄i

−Q̄H
i uan(t)u

a
n(t)

HQ̄i

= Di(t− 1) + vbi (t)v
b
i (t)

H − vai (t)v
a
i (t)

H (4.31)

where

vbi (t) , Q̄H
i ubn(t) (4.32)

vai (t) , Q̄H
i uan(t) (4.33)

are vectors with size M × 1. Then D(t) can be updated recursively as:

D(t) = D(t− 1) +
P∑

i=1

[vbi (t)v
b
i (t)

H − vai (t)v
a
i (t)

H ] (4.34)

By using (4.32)-(4.34), the complexity of updating D(t) is reduced from PNML +

PNM2/2 to 2PML + PM 2.

A further reduction in complexity can be achieved by using the power method to

search the dominant eigenvector of D(t) iteratively [10]. In the present application,
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where the true channel estimate is varying slowly over time, a single iteration of

the power method can be applied at each time step to update ĥmR (t), the dominant

eigenvector of D(t). Specifically:

ĥmR (t) = D(t)ĥmR (t− 1) (4.35)

ĥmR (t) =
ĥmR (t)

||ĥmR (t)||
(4.36)

In a stationary environment, the power method will converge to the dominant eigen-

vector of D ≡ D(t) when the initialization is not orthogonal to the eigenvector [10].

Based on (4.34), (4.35) and (4.36), a fully adaptive subspace channel estimation

algorithm is developed in Table 4.2. The complexity of this adaptive algorithm at

each iteration (not including that of subspace tracker) is 2PLM + (P + 2)M 2 + 2M ,

which is an order of magnitude lower than that of the hybrid algorithm. A compar-

ison of the complexity for both algorithms is presented in Table 4.2.2 for reference.

We note that the power method can also be applied to the 4-th step of the hybrid

algorithm (see Table 4.1). By doing so, the complexity of this step can be reduced

from O(PNM2) to O(PNM). However, in this case the complexity of the 3-rd step

(O(PNML)) becomes the computation bottleneck of the algorithm, which is still an

order of magnitude larger than that of the adaptive algorithm (Table 4.2). Thus we

conclude that the power method can not reduce the computational complexity of the

hybrid algorithm to the same order as that of the adaptive algorithm.
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Table 4.2 Adaptive Channel Estimation Algorithm

Step Complexity

1. [Q̄, R̄] = QR decomposition of Q̄ Negligible

2. Ûs(0) is given by the subspace tracker Negligible

3. ĥmR (0): an arbitrary vector

4. D(0) = Q̄H Ûs(0)Ûs(0)HQ̄ Negligible

FOR t = 1, 2, . . .

5. Ûs(t), ubn(t) and uan(t) are updated by the subspace tracker O(NL)

6. vbi (t) = Q̄H
i ubn(t), i = 1, . . . , P PML

7. vai (t) = Q̄H
i uan(t), i = 1, . . . , P PML

8. D(t) = D(t− 1) +
∑P

i=1[v
b
i (t)v

b
i (t)

H − vai (t)v
a
i (t)

H ] PM2

9. ĥmR (t) = D(t)ĥmR (t− 1) M2

10. ĥmR (t) = ĥmR (t)/||ĥmR (t)|| 2M

11. ĥm(t) = R̄−1ĥmR (t) M2

END

Table 4.3 Complexity Comparison

Algorithm Complexity

Hybrid Algorithm PNML + O(PNM 2) +M2 + O(NL)

Adaptive Algorithm 2PML+ PM 2 +M2 + 2M + O(NL)
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4.3 Chapter Summary

In this chapter, we have studied the adaptive implementation of the proposed gener-

alized subspace blind channel estimation algorithm. We firstly reviewed the spherical

subspace tracking methods, which can update the desired subspace information with

low complexity. Then we proposed a novel low-complexity subspace implementation

of subspace channel estimator by utilizing the special updating feature of plane ro-

tation based spherical subspace trackers. The complexity of the resulting adaptive

estimator is an order of magnitude lower than the hybrid estimator, i.e. the adaptive

subspace tracker followed by batch estimation at each time step.
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Chapter 5

Computer Experiments

In this Chapter, we present and discuss the simulation results of the proposed channel

estimator in a down-link synchronous CDMA system operating in a frequency selec-

tive fading channel with negligible ISI, which satisfies the general model formulated

in 2.2. In Section 5.1, we describe the specific signal model of the system under con-

sideration. In Section 5.2, we show the simulation results of the generalized estimator

proposed in Chapter 3 (batch algorithm). In Section 5.3, we show the simulation

results of the adaptive implementation proposed in Chapter 4.

5.1 System Model

Here, we briefly review the signal model of the down-link CDMA system operating

in frequency selective fading channel with negligible ISI, as previously introduced in

Subsection 2.1.1.

Consider a synchronous down-link DS-CDMA connection from a base station to N

remote users. The information bit to the i-th user bi is spread by a unique spreading
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code ci , [ci1, . . . , c
i
Lc

]H , where Lc is the processing gain. The frequency-selective

channel is modelled as an FIR filter. The normalized coefficient vector of the filter is

represented by vector h with size M × 1. The kernel matrix of the i-th user Ci is an

(Lc −M + 1) ×M Toeplitz matrix with the first column equal to [ciM , . . . , c
i
Lc

]T and

the first row equal to [ciM , . . . , c
i
1] [19]. Assuming the received amplitude of the i-th

user is γi and the signal of all the users are synchronized, the received signal can be

represented as

r = (

N∑

i=1

γiCibi)h + e (5.1)

where e is a white Gaussian noise vector.

5.2 Simulations for Batch Algorithm

Computer experiments are conducted to verify the theoretical performance results of

the batch algorithm derived in Section 3.4. In the simulations, we consider a locally

stationary environment, where within T samples, the channel vector h(t) and the

received amplitudes γi(t), i = 1, . . . , N do not change, i.e. h , h(1) = . . . ,h(T ) and

γi , γi(1) = . . . , γi(T ).

In the simulations, the following parameter values are used: the information bits

are BPSK modulated (±1), number of active users N = 4, processing gain Lc = 12

and length of the channel vector M = 4. The binary spreading codes were randomly

generated and stored for later use. We assume that some power control technique is

applied so that the received amplitudes [γ1, γ2, γ3, γ4] are proportional to [1, 2, 3, 4],

respectively. The following sets of kernel matrices were considered in the evaluation:

S1 = {C1} ⊂ S2 = {C1,C2} ⊂ S3 = {C1,C2,C3} ⊂ S4 = {C1,C2,C3,C4}. We use

the average value of the square error in 104 independent experiments to approximate
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the mean square error.

According to the analysis in Section 3.4, the asymptotic MSE performance of the

proposed estimator has the following properties: From (3.30), it follows that

MSEo(S4) = MSE(Υ, S4) ≤ MSE(I4(L−N), S
4) (5.2)

where Υ , diag[γ1, . . . , γ4] ⊗ I4(L−N) and L = Lc −M + 1. From (3.34), it follows

that

MSEo(S4) < MSEo(S3) < MSEo(S2) < MSEo(S1) (5.3)

Finally, from (3.41), we have

MSEo(S4) ≤ 1

42

4∑

i=1

MSEo({Ci}) (5.4)

The simulation results are presented in Fig. 5.1 to 5.6. In all the figures, both

theoretical and experimental results are illustrated, where the theoretical results are

calculated according to (3.29) and the experimental results are given by the Monte-

Carlo simulations. Fig. 5.1 to 5.3, respectively, show the MSEs in (5.2), (5.3) and

(5.4) plotted for as a function of SNR, with a number of observed samples T = 104.

Fig. 5.4 to 5.6 show the MSEs in (5.2), (5.3) and (5.4) plotted as a function the

number of observed samples T , with the SNR set to 10dB.

Clearly, the theoretical performance properties in (5.2), (5.3) an (5.4) are verified

in our simulations. From Fig. 5.1 and Fig. 5.4, we find that the estimator with optimal

weights greatly outperforms the estimator with equal weights. Fig. 5.2 and Fig. 5.5

show that the performance of the estimators with optimal weights will be improved

when the set of kernel matrices utilized is enlarged. Fig. 5.3 and Fig. 5.6 indicate
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that the mean square error of the estimator using all the kernel matrices in set S4

is much smaller than one quarter of the average mean square error of the estimator

with single kernel matrix over the set S4.

Generally, we find that there is a very good match between all the experimental

results and the theoretical results derived in Section 3.4, especially in the case of

high SNR and large T . The former is because our theoretical results are derived on

the basis of a first-order perturbation analysis, which is accurate in the case of small

perturbations (i.e. high SNR region); the latter is because our asymptotic analysis is

based on the assumption of a large number of sample T .

Our results thus support the performance analysis in the general model derived

in Section 3.4.
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5.3 Simulations for Adaptive Algorithm

In this section, we show the simulation results related to the performance evaluation

of the proposed adaptive algorithm (Table 4.2) and the hybrid algorithm (Table 4.1)

in time-varying channels. We use the same parameter settings as those in Section 5.2

except for the following differences: The channel is assumed to be a first-order AR

model, i.e.

h(t) = βh(t− 1) + (1 − β)f(t) (5.5)

where f(t) is an i.i.d complex white Gaussian source and parameter β is used to control

the rate of change of the radio channel. The plane rotations based EVD tracker used

in the simulations is PROTEUS-2 [5], with forgetting factor α. We use an average

of the square errors over T = 105 iterations to approximate the mean square error of

the estimators.

The computational complexities of the hybrid algorithm (Table 4.1) and the adap-

tive algorithm (Table 4.2) in our simulations are calculated here with the parameter

setting: L = 9, M = 4, N = 6, P = 4. In this case, the computational complex-

ity of the hybrid algorithm is 880 + O(384) while that of the adaptive algorithm is

392 + O(36).

Five simulation experiments were conducted to test the performance of the two

algorithms in the case of different Signal-to-Noise Ratio (SNR), different number N

of users, different number P of kernel matrices utilized in the estimator, different

forgetting factor α, and different rate of channel variation β. The corresponding

results are presented in Fig. 5.7 to 5.11, respectively. The simulations show that

the performance of both hybrid and adaptive estimator are effected by the above

parameters. Generally, a better performance will be obtained in the case of a larger
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SNR, a smaller number of users N , a larger number of kernel matrices P , a properly

selected forgetting factor α and/or a smaller rate of channel variation β. In all

the above cases, the performance of the fully adaptive algorithm is comparable or

superior to that of the hybrid scheme, while the computational complexity of the

adaptive algorithm is an order of magnitude lower than that of the hybrid algorithm.

Especially we note, from Fig. 5.8, 5.9 and 5.10, that in the case of large N , small

P and/or large α, the proposed adaptive algorithm performs better than the hybrid

algorithm.

Fig. 5.12 (top) compares the time evolution of the square error produced by both

algorithms during a single run in the case SNR = 10dB, N = 6, P = 1 and α =

β = 0.005; Fig. 5.12 (bottom) shows the time evolution of the first two dominant

eigenvalues of D(t) during the same experiment. In general, we find that the proposed

adaptive algorithm is more robust than the hybrid algorithm in case when the second

eigenvalue approaches 1. In this case, the identifiability condition is no longer valid

and then the batch estimation in the hybrid algorithm (i.e. step 3 to 5 in Table 4.1)

can not provide an accurate estimate. We note that this kind of errors usually last

only for a short time duration. However, the power method in the adaptive algorithm,

which tracks the channel vector adaptively, limits the speed of the divergence from

the the “true” value of the channel vector, thus making the algorithm robust to this

kind of short time errors.

We also investigate the performance of the estimators in the case when there is a

user entering/exiting the system, which corresponds to the increase/decrease in the

rank of the signal subspace. The time evolution of the various quantities of interest

are showed in Fig. 5.13. We find that the adaptive algorithm is robust to the rank

change and after a short transient period, the channel estimate re-converges to the
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desired channel vector.
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Fig. 5.7 MSE vs. SNR, N = 6, P = 4, α = 10−3, β = 10−4

5.4 Chapter Summary

In this chapter, we showed the results of computer simulations in a down-link CDMA

system operating in frequency selective fading channel with negligible ISI. The sim-

ulations in the stationary environments confirmed our performance analysis in the

Section 3.4. The simulations in the dynamic signal environment showed that the

proposed adaptive algorithm in Section 4.2 keeps a comparable performance to the
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hybrid algorithm while greatly reducing the computational complexity.



75

Chapter 6

Conclusion

In this thesis, we presented a systematic study of the subspace-based blind channel

estimation method.

We first discussed the signal model of different applications of subspace channel

estimation methods. We began by reviewing the signal models of three specific com-

munication systems. By incorporating the common features of the different signal

models, we then proposed a general signal model, which is applicable to a multitude

of communication systems. Within the framework of the proposed general model, we

formulated the problem of blind subspace channel estimation.

Based on the proposed general signal model, we proposed the generalized blind

subspace channel estimation algorithm. We formulated the theoretical foundation

of the subspace channel estimation algorithm based on the orthogonality property

between the signal and noise subspace. Through the study of the identifiability, we

showed that by enlarging the set of the kernel matrices, we may enable the estimator

to identify a longer channel and/or to be used in a system having a larger number

of independent signals. With the consideration of robustness to the error in the data
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correlation matrix, we proposed a generalized blind subspace channel estimator by

minimizing a novel cost function, which incorporates a set of kernel matrices via a

weighted projection error.

We investigated the asymptotic performance of the proposed estimator when the

number of independent observations is large. We derive its bias, covariance and mean

square error (MSE), as well as the associated Cramer-Rao bound. We showed that

the performance of the estimator can be optimized by increasing the number of kernel

matrices and by using a special set of weights in the cost function. In particular, with

the optimal weights and utilizing the kernel matrices of all the signal components

sharing the target channel, the proposed estimator achieves both the minimum MSE

and the CRB.

We also studied the adaptive implementation of the proposed generalized subspace

blind channel estimation algorithm. We firstly reviewed the spherical subspace track-

ing methods, which can update the desired subspace information with low complexity.

Then we proposed a novel low-complexity subspace implementation of the subspace

channel estimator by utilizing the special updating feature of plane rotation based

spherical subspace trackers. The complexity of the resulting adaptive estimator is an

order of magnitude lower than the hybrid estimator, that is the adaptive subspace

tracker followed by batch estimation at each time step.

Finally, we showed the results of computer simulations in a down-link CDMA

system operating in frequency selective fading channel with negligible ISI. The sim-

ulations in the stationary environments confirmed our performance analysis for the

batch estimator in the Section 3.4. The simulations in the dynamic signal environment

showed that the performance of the proposed adaptive algorithm in Section 4.2 was

comparable to that of the hybrid algorithm while greatly reducing the computational
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complexity.

In this thesis, there are still several problems, which remain open for future re-

search. These are described briefly below.

First, according to the identifiability condition discussed in Section 3.2.1, the

dimension of Span[C] ∩ Span[Us] must be 1. However, the subspace Span[Us] =

Span[IP ⊗ W] depends on the realization of the random channel vector h, which

is unknown to the transmitter. Therefore this identifiability condition can not pro-

vide a useful, definite constraint for the configuration of the transmitter. To overcome

this problem, we would need to find an alternative identifiability condition, where the

randomness of the vector h is incorporated into the development. That is, we should

find the constraints on the parameters controllable at the transmitter, e.g. number

of independent symbols, structure of kernel matrices, etc., which are sufficient and

necessary to ensure that the dimension of Span[Us] = Span[IP ⊗ W] is one with

probability one.

Second, as explained in Section 3.4, we have not been able to extend Theorem 2

to 4 to the case of the covariance of the proposed estimator in the form of matrix

inequalities. A possible way to prove the validity of the extension of Theorem 2 is

by checking the constrained CRB with partial knowledge of kernel matrices. That

is, we assume that only the kernel matrices in the set S are available and those in

the set U − S are unknown. In this case, we can derive the constrained CRB of

the joint estimation of the channel vector h, transmitted symbol b and the kernel

matrices in the set U − S. If the resulting constrained CRB can be achieved by the

proposed estimator with some parameter A, we view this parameter as the optimal

one minimizing the covariance of the estimator.
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Appendix A

Proofs of Theorems

A.1 Proof of Theorem 1

For convenience of further derivation, we define the following variables:

X , [x1, . . . ,xT ] (A.1)

E , [e1, . . . , eT ] (A.2)

Ē , UH
n E = [ē1, · · · , ēT ] (A.3)

T , CHUnA (A.4)

X , IP ⊗ X† (A.5)

E , IP ⊗ Ē = [E1, . . . , EP ] (A.6)

Ei , ιi ⊗ Ē i = 1, . . . , P (A.7)

ιi , the i-th column of the identity matrix (A.8)

zm,i , X†wm,i = X†Cm,ih = [zm,i1 , . . . , zm,iT ]T (A.9)

z , vec[zm,1, . . . , zm,P ] = Xvec[W̄] (A.10)

Z , X†W (A.11)
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where zm,i, for i = 1, . . . , Km and m = 1, . . . , J , comprises the column of Z.

According to [19], the first order perturbation of Un is

∆Un = −(X†)HEHUn = −(X†)HĒH (A.12)

Consequently the perturbations of Un and T are:

∆Un = IP ⊗ ∆Un = IP ⊗ [−(X†)HĒH ]

= −[IP ⊗ (X†)H ][IP ⊗ ĒH ] = −XHEH (A.13)

∆T = CH∆UnA = −(AHEXC)H (A.14)

According to [19], the estimation error in the target channel ĥ is

∆h = −(T †)H(∆T )Hh = (T †)HAHEXCh

= (T †)HAHEXvec[W̄] = (T †)HAHEz (A.15)

It is known that E[E ] = 0. Then the bias of the proposed estimator is

Bias = E[∆h] = E[(T †)HAEz]

= (T †)HAE[E ]z = 0 (A.16)

Therefore, we conclude that the proposed estimator ĥ is unbiased. Accordingly, the

covariance of ĥ can be expressed as

Cov = E[∆h∆hH ] = (T †)HAHE[EzzHEH]AT † (A.17)
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According to [18], E[EzzHEH ] can be expressed as

E[EzzHEH ] = E[

P∑

i=1

T∑

p=1

zm,ip (ιi ⊗ ēp)

P∑

j=1

T∑

q=1

(zm,jq )∗(ιj ⊗ ēq)
H ] (A.18)

To calculate E[EzzHEH], we need to study z and E respectively.

Firstly, according to the result in [17] and the asymptotic property in (3.27), we

have

ZHZ =
1

T
Γ−2 (A.19)

Thus

(zm,i)Hzm,j =
1

γm,iγm,jT
δi,j (A.20)

where the Kronecker delta function δi,j is defined as δi,j = 1 for i = j and otherwise

equal to 0.

Secondly, since the i-th column of Ep is ιi ⊗ ēp, we derive the following results

based on the definition in (A.6) and (A.8)

E[(ιi ⊗ ēp)(ιj ⊗ ēq)
H ] = σ2(ιi,j ⊗ I(L−K))δp,q (A.21)

where ιi,j is an P × P matrix with all zero elements except that the (i, j)-th element

is equal to one.
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Based on the results in (A.20) and (A.21), we simplify (A.18) as

E[EzzHEH ] =

P∑

i=1

P∑

j=1

T∑

p=1

T∑

q=1

[zm,ip (zm,jq )∗]E[(ιi ⊗ ēp)(ιj ⊗ ēq)
H ]

=

P∑

i=1

P∑

j=1

T∑

p=1

T∑

q=1

[zm,ip (zn,jq )∗]σ2(ιi,j ⊗ I(Lc−K))δp,q

=
P∑

i=1

P∑

j=1

σ2(ιi,j ⊗ I(Lc−K))
T∑

p=1

zm,ip (zm,jp )∗

=

P∑

i=1

P∑

j=1

σ2(ιi,j ⊗ I(Lc−K))(z
m,j)Hzm,i

=

P∑

i=1

P∑

j=1

σ2

γm,iγm,jT
(ιi,j ⊗ I(Lc−K))δi,j

=
σ2

T

P∑

i=1

1

(γm,i)2
(ιi,i ⊗ I(L−K))

=
σ2

(γm)2T
Υ (A.22)

By substituting (A.22) into (A.17), we have

Cov =
σ2

T
(T †)HAHΥ−2AT †

=
σ2

T
[(CHUnA)†]HAHΥ−2A(CHUnA)† (A.23)

Finally,

MSE = E[∆hH∆h] = Tr[Cov]

=
σ2

T
Tr[(Υ−1A)(AHUH

n CCHUnA)†(Υ−1A)H ] (A.24)
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A.2 Proof of Theorem 2

Lemma 1 [3] If A ∈ C
m×n and B ∈ C

n×p, then

(AB)† = (PR(AH )B)†(APR(B))
† (A.25)

where R(A) denotes the linear span of the columns of A and PR(A) denotes the

orthogonal projector onto R(A).

According to the definition of Ā , Υ−1A, we may express the mean square error

in the following form

MSE(A, S) =
σ2

T
Tr[(Υ−1A)(AHUH

n CCHUnA)†(Υ−1A)H ]

=
σ2

T
Tr[Ā(ĀHQĀ)†ĀH ] (A.26)

According to Lemma 1, the term (ĀHQĀ)† can be expressed as

(ĀHQĀ)† = [PR[(ĀHQ)H ]Ā]†[ĀHQPR(Ā)]
†

= [PR[(ĀHQ)H ]Ā]†[PR(Ā)QPR(Ā)]
†

[ĀHPR[QPR(Ā)]
]† (A.27)

Here Ā is full-rank and referring to (3.16), Q is Hermitian and semi-positive definite.
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Thus

PR(Ā) = IP (Lc−K) (A.28)

PR[QPR(Ā)]
= PR(Q) (A.29)

PR[(ĀHQ)H ] = PR(QH ) (A.30)

Define

P , PR(QH) = PR(Q) (A.31)

P⊥ , IP (Lc−K) − P (A.32)

Then

(ĀHQĀ)† = [PĀ]†Q†[ĀHP]† (A.33)

Consequently

Tr[Ā(ĀHQĀ)†ĀH] = Tr[Ā[PĀ]†Q†[ĀHP]†ĀH ]

= Tr[(P + P⊥)Ā][PĀ]†Q†[ĀHP]†[ĀH(P + P⊥)]

= Tr[PA][PA]†Q†[AHP]†[AHP]

+Tr[P⊥Ā][PĀ]†[Q]†[ĀHP]†[ĀHP]

+Tr[PĀ][PĀ]†[Q]†[ĀHP]†[ĀHP⊥]

+Tr[P⊥Ā][PĀ]†Q†[ĀHP]†[ĀHP⊥] (A.34)
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We study on the trace of the four terms in (A.34), separately. In the first term

[PĀ][PĀ]† = PR(PĀ) = P (A.35)

Then

Tr[[PĀ][PĀ]†Q†[ĀHP]†[ĀHP]] = Tr[PQ†P] = Tr[Q†] (A.36)

The second term

Tr[[P⊥Ā][PĀ]†[Q]†[ĀHP]†[ĀHP]] = Tr[[ĀHPP⊥Ā][PĀ]†[Q]†[ĀHP]†] = 0 (A.37)

Similarly, the third term

Tr[[PĀ][PĀ]†[Q]†[ĀHP]†[ĀHP⊥]] = 0 (A.38)

In the fourth term, since Q is semi-positive definite, we have

Tr[[P⊥Ā][PĀ]†[Q]†[ĀHP]†[ĀHP⊥]] ≥ 0 (A.39)

Finally, we observe that when Ā = cIP (L−N), i.e. A = cΥ,

Tr[[P⊥A][PA]†[Q]†[AHP]†[AHP⊥]] = 0 (A.40)

Therefore

MSEo(S) = MSE(cΥ, S) =
σ2

T
Tr[Q†] (A.41)
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According to Lemma 1,

Q† = (ΥHUH
n CCHUnΥ)† = (CHUnΥ)†(ΥHUH

n C)† (A.42)

Q† = (CHUnΥΥHUH
n C)† = (ΥHUH

n C)†(CHUnΥ)† (A.43)

Therefore

Tr[Q†] = Tr[Q†] (A.44)

and

MSEo(S) =
σ2

T
Tr[Q†] =

σ2

T
Tr[Q†] (A.45)

A.3 Proof of Theorem 3

Definition 1 [21] Let x1, . . . , xn and y1, . . . , yn be real numbers. A vector y =

[y1, . . . , yn] is said to be majorized by a vector x = [x1, . . . , xn], in symbols x � y

or y ≺ x, if, after possible reordering of its components so that

x1 ≥ · · · ≥ xn, and y1 ≥ · · · ≥ yn (A.46)

we have

k∑

i=1

xi ≥
k∑

i=1

yi for k = 1, . . . , n− 1 (A.47)

n∑

i=1

xi =

n∑

i=1

yi (A.48)

Lemma 2 [20] H is an n × n Hermitian matrix with diagonal elements h1, . . . , hn
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and eigenvalues λ1, . . . , λn, then

[λ1, . . . , λn] � [h1, . . . , hn] (A.49)

Lemma 3 (Majorization Inequality) [21] [x1, . . . , xn] majorizes [y1, . . . , yn] iff for

every convex function f
n∑

i=1

f(xi) ≥
n∑

i=1

f(yi) (A.50)

According to Theorem 2,

MSEo(S) =
σ2

(γm)2T
Tr[Q†] (A.51)

MSEo(Sq) =
σ2

(γm)2T
Tr[Q†

q] q = 1, . . . , Q (A.52)

where

Q = CHUnΥ2UH
n C

=
∑

Cm,i∈S

(γm,i)2(Cm,i)HUUHCm,i (A.53)

Qq ,
∑

Cm,i∈Sq

(γm,i)2(Cm,i)HUUHCm,i (A.54)

Clearly

Q =

Q
∑

q=1

Qq (A.55)

Apply EVD on Q and Qq respectively

Q = VΨVH (A.56)

Qq = VqΨqV
H
q q = 1, . . . , Q (A.57)
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where Ψ , diag[ψ1, . . . , ψM ] and Ψq , diag[ψ1
q , . . . , ψ

M
q ] are the eigenvalue matrices

of Q and Qq, respectively. According to the property of the trace of matrix [12], we

have

Tr[Q†] =
M−1∑

j=1

1

ψj
(A.58)

Tr[Q†
q] =

M−1∑

j=1

1

ψjq
q = 1, . . . , Q (A.59)

For convenience of comparing Tr[Q†] and Tr[Q†
q], we define

V̄q , VHVq (A.60)

Ψ̄q , V̄qΨqV̄
H
q = VHQqV (A.61)

where the (j, j)-th element of Ψ̄q is denoted as ψ̄jq.

On one hand, since V in (A.53) is a unitary matrix, Ψ̄q and Qq have the same

eigenvalues [12], i.e. Ψq are the eigenvalue matrix of Ψ̄q. According to Lemma 2,

[ψ1
q , . . . , ψ

M
q ] � [ψ̄1

q , . . . , ψ̄
M
q ] (A.62)

We know the function x−1 is only strictly convex in the interval (0,∞). To satisfy

the condition in Lemma 3, we need to check if the ranges of elements of [ψ1
q , . . . , ψ

M
q ]

and [ψ̄1
q , . . . , ψ̄

M
q ] are within (0,∞). From the previous discussion, we know ψjq > 0

for j = 1, . . . ,M − 1 and ψMq = 0. Since Qq is semi-positive definite, ψ̄jq ≥ 0,

j = 1, . . . ,M . Since ψM =
∑Q

q=1 ψ̄
M
q = 0, it follows that ψ̄Mq = 0. According to the
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definition of majorization, we may modify (A.62) as

[ψ1
q , . . . , ψ

M−1
q ] � [ψ̄1

q , . . . , ψ̄
M−1
q ] (A.63)

Define ψoq as the minimum of [ψ1
q , . . . , ψ

M−1
q ] and ψ̄oq as the minimum of [ψ̄1

q , . . . , ψ̄
M−1
q ].

According to (A.47) and (A.48), ψ̄oq ≥ ψoq . Since ψoq > 0, then ψ̄oq > 0. Consequently

we conclude that ψ̄jq > 0 j = 1, . . . ,M − 1. Applying Lemma 3 to [ψ1
q , . . . , ψ

M−1
q ]

and [ψ̄1
q , . . . , ψ̄

M−1
q ] with f(x) = x−1, then

M−1∑

j=1

1

ψjq
≥

M−1∑

j=1

1

ψ̄jq
(A.64)

On the other hand, from Q =
∑Q

q=1 Qq, it follows that

Ψ = VHQV = VH(

Q
∑

q=1

Qq)V = VH(

Q
∑

q=1

VqΨqV
H
q )V

=

Q∑

q=1

V̄qΨqV̄
H
q =

Q∑

q=1

Ψ̄q (A.65)

and consequently

ψj =

Q
∑

q=1

ψ̄jq > ψ̄jq > 0 j = 1, . . . ,M − 1 (A.66)

Thus
M−1∑

j=1

1

ψ̄jq
>

M−1∑

j=1

1

ψj
(A.67)

Based on (A.64) and (A.67), we have

Tr[Q†
q] > Tr[Q†] (A.68)
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Therefore, we conclude that MSEo(Sq) > MSEo(S) for any Sq ⊂ S.

A.4 Proof of Theorem 4

Lemma 4 (AM-GM-HM Inequality) [21] For any finite sequence of positive num-

bers a = [a1, . . . , an], we have

AM =
a1 + · · · + an

n
≥ GM = (a1 · · ·an)1/n ≥ HM =

n
1
a1

+ · · ·+ 1
an

(A.69)

with equality if and only if a1 = · · · = an

According to (A.64) and (A.69), we have

Tr[Q†] =
M−1∑

j=1

1
∑Q

q=1 ψ̄
j
q

=
M−1∑

j=1

1
∑Q

q=1 cq
ψ̄j

q

cq

≤
M−1∑

j=1

∑Q
q=1

c2q

ψ̄j
q

(
∑Q

q=1 cq)
2

=

∑Q
q=1 c

2
q

∑M−1
j=1

1

ψ̄j
q

(
∑Q

q=1 cq)
2

≤
∑Q

q=1 c
2
q

∑M−1
j=1

1

ψj
q

(
∑Q

q=1 cq)
2

=

∑Q
q=1 c

2
qTr[Q†

q]

(
∑Q

q=1 cq)
2

(A.70)

Therefore

MSEo(S) ≤
∑Q

q=1 c
2
qMSEo(Sq)

(
∑Q

q=1 cq)
2

(A.71)
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A.5 Proof of Theorem 5

We define the following variables for convenience:

rT , [rT1 , . . . , r
T
T ] (A.72)

xT , [xT1 , . . . ,x
T
T ] (A.73)

eT , [eT1 , . . . , e
T
T ] (A.74)

bT , [bT1 , . . . ,b
T
T ] (A.75)

yT , [hT ,bT ] (A.76)

GT , [GT
1 , . . . ,G

T
T ] (A.77)

W , IT ⊗ (WΓ) (A.78)

where r, x, e are vectors with size LT × 1; b and y are vectors with size NT × 1 and

(JM +NT )×1, respectively; G and W are matrix with size LT ×JM and LT ×NT ,

respectively.

The received signal in T time iterations can be expressed as

r = x + e = Wb + e = Gh + e (A.79)

The probability density function of noise vector e is

f(e) =
1

(πσ2)LT
exp[− 1

σ2
[r − x]H [r − x]] (A.80)
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The Fisher’s Information Matrix (FIM) is defined as [11]

J , E[(
∂f(e)

∂y∗
)(
∂f(e)

∂yH
)] (A.81)

It is known [11]

∂f(e)

∂y∗
=






∂f(e)
∂h∗

∂f(e)
∂b∗




 =

1

σ2






GH

WH




 e (A.82)

Therefore, the FIM is

J =
1

σ2






GH

WH






[

G W
]

(A.83)

Lemma 5 (Constrained CRB) [31] Let ŷ be an unbiased estimator of a parameter

vector y satisfying a constraint f(y) = 0. Define F(y) ,
∂f(y)
∂yT and hence there exists

a matrix U0 whose columns form an orthonormal basis for the null-space of F(y). If

UH
0 JU0 is nonsingular, then the constrained Cramer-Rao bound

CRBC = U0(U
H
0 JU0)

−1UH
0 (A.84)

Lemma 6 (Minimal Constrained CRB) [7] If Span[U0] = Span[J] and U0 has

full column rank, then UH
0 JU0 is nonsingular and the constrained CRB is

CRBC = J† (A.85)

This is a particular constrained CRB: among all sets of constraints, CRBC = J†

yields the lowest value for Tr[CRBC ].
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Corollary 1 [7] Suppose yT = [yT1 ,y
T
2 ] and the FIM is

J =






Jy1y1 Jy1y2

Jy2y1 Jy2y2




 (A.86)

Assume J is singular but Jy2y2 is nonsingular. Then the minimal constrained CRB

for y1 separately is

CRBC,y1 = [Jy1y1 − Jy1y2J
−1
y2y2

Jy2y1 ]
† (A.87)

Applying the above corollary in our problem, we have

CRBC,h = σ2[GHG − GHW(WHW)−1WHG]† (A.88)

Recall from our definitions of G in (A.77) and W in (A.78), we have

GHG =
T∑

j=1

GH
j Gj (A.89)

and

GHW(WHW)−1WHG =

T∑

j=1

GH
j (WΓ)[(WΓ)H(WΓ)]−1(WΓ)HGj (A.90)

And we know that (WΓ)[(WΓ)H(WΓ)]−1(WΓ)H is the orthogonal projector on the

subspace Span[WΓ], which is equal to the signal subspace. Thus

(WΓ)[(WΓ)H(WΓ)]−1(WΓ)H = UsU
H
s (A.91)
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Therefore

CRBC,h = σ2[

T∑

j=1

GH
j UnU

H
n Gj]

† (A.92)

Recall from the definition of Gj = [G1
j , . . . ,G

J
j ] in (2.44), we have

T∑

j=1

GH
j UnU

H
n Gj =









∑T
j=1(G

1
j)
HUnU

H
n G1

j · · · ∑T
j=1(G

1
j)
HUnU

H
n GJ

j

...
. . .

...
∑T

j=1(G
J
j )
HUnU

H
n G1

j · · · ∑T
j=1(G

J
j )
HUnU

H
n GJ

j









(A.93)

According to the definition of Gm
j =

∑Km

l=1 γ
m,lbm,lj Cm,l in (2.43) and the asymptotic

property in (3.27), we have, for any 1 ≤ m,n ≤ J ,

T∑

j=1

(Gm
j )HUnU

H
n Gn

j = γmγn
Km
∑

l=1

Kn
∑

k=1

(Cm,l)HUnU
H
n Cn,k

T∑

j=1

bm,lj bn,kj

= γmγn
Km
∑

l=1

Kn
∑

k=1

(Cm,l)HUnU
H
n Cn,kTδm,nδl,k

=







(γm)2T
∑Km

l=1 (Cm,l)HUnU
H
n Cm,l m = n

0 m 6= n
(A.94)

Considering the property
∑Km

l=1 (γm,l)2(Cm,l)HUnU
H
n Cm,l = Qm (see (3.36)), we ob-

tain the close form of the minimal constrained CRB as

CRBC,h =
σ2

T
diag[(Q1)†, . . . , (QJ)†] (A.95)

Consequently

CRBC,hm =
σ2

T
(Qm)† (A.96)
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