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Abstract

Cognitive radio (CR) is an important technology that allows to deal with spectrum con-
gestion, where secondary applications (users) attempt to access a frequency band that is
reserved for a primary application. A challenging function for a CR is to sense a frequency
band and detect the absence or presence of a licensed user, a task referred to as spectrum
sensing. Moreover, another challenging task in CR networks is to perform spectrum sensing
in environments characterized by non-Gaussian noise distributions. While existing litera-
ture focuses mainly on the Gaussian noise model assumption, the latter does not properly
characterize all the various noise types found in practical CR systems.

In this thesis, we investigate the performance of the recently proposed Rao-test based
detector under non-Gaussian noise for wideband spectrum sensing in a multi-carrier trans-
mission framework. Specifically, we incorporate this detector into the universal filtered
multicarrier (UFMC) modulation scheme envisaged for high data rate 5G wireless systems.
Through numerical simulations, we show that the Rao-test based detector combined with
UFMC outperforms the traditional OFDM based system in a realistic non-Gaussian noise
environment.
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Sommaire

La radio cognitive (CR) est une technologie importante qui permet de traiter la congestion
du spectre, où les applications (utilisateurs) secondaires tentent d’accéder à une bande
de fréquence réservée à une application primaire. Une tâche difficile pour une CR est de
détecter l’absence ou la présence d’un utilisateur autorisé dans une bande de fréquence
determinée, une tâche appelée détection de spectre. De plus, une autre tâche difficile
dans les réseaux CR consiste à effectuer une détection de spectre dans des environnements
caractérisés par des distributions de bruit non-Gaussien. Bien que la littérature existante
se concentre principalement sur l’hypothèse du modèle de bruit Gaussien, ce dernier ne
caractérise pas correctement tous les différents types de bruit qui surviennent en pratique.

Dans ce mémoire, nous étudions la performance du détecteur Rao dans des environ-
nements de bruit pratique non-Gaussien pour la détection du spectre à large bande dans
une structure à porteuses multiples. Plus précisément, nous incorporons ce détecteur dans
le système Universal Filtered Mulitcarrier (UFMC). Grâce à des simulations, nous mon-
trons que le détecteur à base de test Rao combiné avec UFMC surpasse le système OFDM
traditionnel dans un environnement de bruit pratique non-Gaussien.
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Chapter 1

Introduction

In this chapter, we first give a concise overview on the problem of wideband spectrum sens-
ing for CR systems in non-Gaussian noise environments. Then, a literature survey on more
specific topics pertinent to the research conducted in this work, including prominent spec-
trum sensing techniques and multicarrier modulation (MCM) frameworks. This is followed
by a summary of the main objective and technical contributions of the thesis. Finally, the
organization of the thesis is outlined.

1.1 Spectrum Allocation and Cognitive Radios

The need for higher data rates and wider signal bandwidth emerges from the growing
demand of wireless applications and the transition from voice-only to multimedia applica-
tions, such as video streaming, internet browsing, etc. [1]. Traditionally, a Fixed Spectrum
Access (FSA) policy has been adopted to support various wireless applications on a non-
interfering basis. FSA assigns a piece of spectrum to one or more licensed users and only
those users have the right to access that spectrum [1]. Nowadays, the majority of spectral
resources available for wireless communications below 6GHz have been licensed and new
applications will not have access to the radio spectrum with a static frequency allocation.
However, studies have shown that even though the regulated radio spectrum has been fully
occupied, vast portions of the licensed spectra are rarely used [2, 3]. For example, actual
measurements of the spectrum utilization taken in downtown Berkley (California, USA),
measured in average power measurements at a given time of day, as seen in Fig. 1.1, show
a spectrum utilization of around 0.5% in the frequency band of 3-4GHz and only 0.3% in
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the 4-5GHz frequency band [3]. This reveals that we have in fact spectrum abundance and
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Fig. 1.1 Spectrum usage measurements in downtown Berkley [3]

that spectrum shortage is only an effect of the regulatory and licensing process. Therefore,
new ways of exploiting the available spectrum are needed.

Cognitive radio (CR) has emerged as an innovative solution to the spectrum congestion
problem by enabling opportunistic usage of the frequency bands that are not heavily used
by licensed users [1]. According to the FCC CR can be defined as follows: "A radio or
system that senses its operational electromagnetic environment and can dynamically and
autonomously adjust its radio operating parameters to modify system operation, such as
maximize throughput, mitigate interference, facilitate interoperability, access secondary
markets." [2]. In the context of CR, primary users (PU) are defined as licensed users who
have a higher priority on the usage of a specific part of the spectrum. Secondary users
(SU) are defined as unlicensed CR users who can exploit the spectrum in a non-interfering
manner to PUs. We refer to spectrum opportunity as chuncks of the available frequency
band that are not being used simultaneously by the PU of that band.



1 Introduction 3

Dynamic Spectrum Access (DSA) is an alternative spectrum allocation policy that can
exploit spectrum opportunity, where SUs equipped with CRs can also access the allocated
spectrum as long as the licensed band is unoccupied [1]. Withing the DSA framework,
wireless networks equipped with CR capabilities must fulfill four main functions:

• Spectrum sensing is the task of determining spectrum availability and detect the
presence of PUs. The detection problem is formulated as a binary hypothesis test
where one compares a test statistic, dependent on the signal at the receiver-end, to
a noise threshold.

• Spectrum management is to predict how long the spectrum holes are likely to
remain available for SUs.

• Spectrum sharing has the objective to distribute unused spectrum among the un-
licensed SUs.

• Spectrum mobility aims to perform seamless channel switchover, when a PU arrives
in the licensed channel, while sustaining the performance of ongoing SU communica-
tions.

1.2 Spectrum Sensing in Non-Gaussian Noise

The focus of this thesis is on spectrum sensing since it is the first and most crucial compo-
nent for the establishment of a CR link. Many modern spectrum sensing techniques have
been developed, exploiting various properties of PUs and noise signals, in order to allow
CRs to detect the presence of PU signal transmissions. A matched filter (MF) detection
approach, where the received signal is demodulated by convolving it with a filter that is
a mirror and time shifted version of the PU signal, is considered in [4–7]. This scheme
achieves good detection under low signal-to-noise ratio (SNR) and is optimal when the
primary signal is known. This approach however requires perfect knowledge of the PU’s
signal features such as bandwidth, operating frequency, modulation type, and so on which
are most often not available in practice. Cyclostationary methods, where PU transmissions
are detected by exploiting the cyclostationarity and periodicity features of PU signals, are
considered in [8–14]. These methods enable to differentiate PU’s signals from the wide
sense stationary background noise by exploiting cyclostationary properties, i.e. specific
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periodicity properties in the signal statistics such as the mean and autocorrelation func-
tion. However, the computational cost of such an approach is relatively high due to the
requirement of calculating a two dimensional autocorrelation function depending on cyclic
frequency and time lag. In spite of these developments, spectrum sensing based on en-
ergy detection remains the most recurrent technique because of its low computational and
implementation complexity [15–20]. Furthermore, it is considered as a convenient blind
detection approach since the receiver does not need a priori knowledge on the primary
user’s signal. The basic idea behind energy detection is that the PU signal is detected by
comparing its energy measured at the receiver end with a threshold depending on the noise
floor.

Over the years, many investigations have been conducted on the characteristics of noise
in urban environments, such as man-made radio frequency (RF) noise and low frequency
atmospheric noise [21]. Results have shown that these impairments tend to exhibit prob-
ability density functions (PDF) with tails decaying at lower rates than the traditional
Gaussian PDF tails. This implies that they are more likely to produce observations with
larger magnitudes than the Gaussian model would predict [21]. The energy detector is op-
timized with respect to a Gaussian noise environment. Consequently, when non-Gaussian
noise impairments are present, the detector’s performance is reduced considerably. A Rao-
test based detector, which employs non-linear characteristics to reduce the influence of
large-magnitude observations on the test statistic, has been recently proposed in [22] to
overcome such limitations. In particular, the use of this detector in non-Gaussian noise
shows to significantly enhance the detection performance, as compared to the energy de-
tector.

1.3 Wideband Spectrum Sensing and Multicarrier

Communications for Cognitive Radios

All the sensing techniques mentioned above are referred to as narrowband sensing tech-
niques, since they focus on exploiting spectral opportunities over a narrow frequency range.
However, CR networks will eventually be required to exploit spectral opportunities over
a wider frequency range exceeding several hundreds of MHz in order to achieve consid-
erable opportunistic throughput. Wideband spectrum sensing aims to sense a frequency
band that exceeds the coherence bandwidth of the wireless channel [23]. In this case,
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narrowband sensing techniques cannot be employed directly as they make a binary deci-
sion on the whole spectrum, thereby preventing the identification of individual spectral
opportunities that manifest within the wider spectrum. A simple approach is to divide the
wideband spectrum into a series of contiguous narrower subbands, through the application
of Fourier transform or filter bank techniques on the received signal. Subsequently, narrow-
band sensing is applied in each subband to identify individual spectral opportunities. A
more sophisticated approach consists in combining test statistics from multiple subbands
and performing an (optimal) joint detection of the PU signals over the larger frequency
spectrum, as presented in [24,25]. Within this context, the use of a proper filtering scheme
for separating the PU and SU signals in the frequency domain is of paramount importance.

MCM techniques are the main option for data transmission in the physical layer of
modern telecommunication systems, such as 4G networks; they are preferred over single
carrier modulation due to several benefits [26]. These techniques are also suitable for
dividing the wideband spectrum into a series of contiguous narrower subbands for spectral
estimation. The main advantage of employing MCM for CR systems is that these techniques
may be used for both transmission and spectral estimation or sensing. A multicarrier
transceiver, in a setting where SUs equipped with CR capabilities aim to dynamically fill
spectrum holes, must exhibit two major properties [27]. Firstly, the CR transmitter must be
able to confine the spectral content of the transmitted signal within the spectrum holes. In
other words, the attenuation applied to signals outside of the band should be maximized.
Secondly, the receiver should also be able to avoid the interference from other external
signals transmitted outside the chosen band.

Among the MCM techniques, orthogonal frequency division multiplexing (OFDM) has
been largely adopted in many 4G and pre-4G cellular networks, like mobile WiMAX and
LTE due to its simplicity of implementation. It has also received considerable attention
for CRs since the fast Fourier transform (FFT) can be used to demodulate an OFDM
signal and also for spectral analysis [26]. However, OFDM suffers from high sidelobe levels
resulting from the use of rectangular filtering shape in the time domain. This filtering is
characterized by a sinc magnitude response in frequency and does not therefore satisfy the
first requirement. Moreover, for spectrum sensing applications, these large sidelobes will
result in spectral leakage, leading to spectral estimates in bands with low energy levels to
be biased [28]. That is, the CR will have difficulty distinguishing bands with PU signals
having low energy from bands containing only noise. This will cause unwanted interference
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to the PU when the SU does not detect the PU signal and transmits over the band.
Filterbank multicarrier (FBMC) methods, where the rectangular window is replaced

by filters that decay smoothly and are characterized with a magnitude response having
lower sidelobes, have been studied by many researchers for upcoming 5G applications to
address the shortcomings of OFDM [28]. Filtered multitone (FMT) presented in [29],
where the filters are exponentially modulated and the subcarriers spectra do not overlap,
has guards bands added to achieve orthogonality between subcarriers. The authors in [30]
present a cosine modulated multitone scheme (CMT) where the filters are cosine modulated
instead. The analysis of an OFDM/OQAM system where the in-phase and quadrature
QAM components are separated in time by half a symbol period (OQAM) is presented
in [31]. Nonetheless, these filterbank techniques can be very complex and filters lengths
can be very large. An alternative and promising scheme, universal filtered multicarrier
(UFMC) combines the simplicity of OFDM with the advantages of FBMC to minimize
spectral leakage or maximize out-of-band rejection for future CR applications [32–38]. That
is, UFMC significantly reduces the effect of sidelobe interference compared to OFDM while
using shorter filter lengths reducing the cost of implementation compared to FBMC.

1.4 Thesis Objective and Contribution

Most of the current literature on wideband spectrum sensing for CR focuses on OFDM
based techniques to break the wideband spectrum into several narrower subbands. This is
followed by energy detection, once per subband, also known as the periodogram spectral
estimator. Some of the current literature also considers the use of FBMC replacing the
rectangular window by a window function leading to better spectral properties. Even
though the latter offers a better out-band-rejection compared to OFDM, it suffers from a
few drawbacks such as long filters and high complexity of implementation. As a result,
most recently, UFMC where filtering is applied over a group of consecutive subcarriers has
been proposed to alleviate the complexity issues of FBMC while benefiting from its spectral
advantages [32].

Moreover, most of the current literature on blind wideband spectrum sensing considers
the Gaussian noise model assumption and consequently adopt the traditional energy detec-
tor. Nevertheless, as mentioned previously, the simple Gaussian noise model may not be
appropriate to characterize impairments such as urban and man-made RF noise encoun-
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tered in practical environments. For this reason, the use of non-linear detectors has been
gaining much attention recently [22].

The objective of this thesis is to investigate the advantages of the Rao test based non-
linear detector presented in [22] over the traditional energy detector for wideband spectrum
sensing subject to non-Gaussian noise impairments in a multicarrier framework. Specifi-
cally, we incorporate the Rao detector into the UFMC modulation scheme in [32] which
aims to combine the benefits of FBMC and the simplicity of OFDM. We demonstrate that
the Rao-test based detector combined with UFMC outperforms the traditional OFDM sys-
tem in a realistic non-Gaussian noise environment through numerical simulations. Overall,
our results show that the Rao detector incorporated in UFMC offers a suitable scheme for
wideband spectrum sensing in CR applications for future 5G networks.

1.5 Thesis Organization

The rest of this thesis is organized as follows. In chapter II, we briefly cover wideband
spectrum sensing techniques from the recent literature. We present in more detail the Rao-
test based detector optimized for non-Gaussian noise. In chapter III, we begin by giving
a brief overview of MCM and then describe the UFMC system operation along with the
prototype filter design. In chapter IV, we explain how to incorporate the Rao detector
into the UFMC scheme. In chapter V, the detection performance of the Rao detector
integrated into the UFMC scheme for wideband spectrum sensing in non-Gaussian noise
is evaluated via simulations and compared to other benchmark approaches. Finally, the
thesis is summarized and conclusions are drawn in chapter VI.
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Chapter 2

General Wideband Spectrum Sensing
Techniques

In this Chapter, spectrum sensing techniques for a wideband channel are reviewed. The
chapter begins with a formulation of the wideband CR spectrum sensing problem and the
fundamentals of PU signal detection. Then, detection algorithms based on PU cyclosta-
tionary features and MF are briefly outlined. Finally, techniques optimized for Gaussian
and non-Gaussian noise with no a priori knowledge of PU signal characteristics, such as
the energy and Rao detector, are discussed in detail. The latest will serve as a basis for
the development of UFMC-based wideband spectrum sensing in non-Gaussian noise envi-
ronments, as presented in Chapter 4

2.1 Multiband PU Spectrum Sensing System

As discussed in Section 1.1, CR will be required to detect spectral opportunities over a wider
frequency range while narrowband sensing techniques may not be applied directly. For this
reason, we consider a general wideband system where the wideband spectrum is divided into
B non-overlapping narrow subbands and subsequently, narrowband spectrum techniques
are applied in each subband. Some of these subbands might not be used by PUs and are
therefore available for opportunistic SU access. Fig. 2.1 illustrates the spectrum availability
for a given multicarrier wideband communication channel. As we can see, at a given time,
some of these subbands (depicted as white rectangles) can be used opportunistically by
SUs. The decision of a particular SU on the presence or absence of a PU for subband
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Secondary UserSpectrum HolePrimary User

1 B

Fig. 2.1 Illustration of opportunistic spectrum access

j ∈ {1, ..., B} can be formulated as a binary hypothesis testing problem as follows [24]:

H0,j : Rj(n) = Wj(n) (2.1)

H1,j : Rj(n) = HjSj(n) +Wj(n) (2.2)

where n = 0, ..., N − 1 is the discrete-time index, N is the total number of samples in
the observation window, Rj(n) is the received signal sample at time n, Sj(n) is the PU
signal component, Wj(n) is the complex additive white Gaussian noise (AWGN) with zero
mean and variance σ2

w, and Hj is the flat fading channel gain between the PU and SU for
subband j. The SU has to decide between two hypotheses, that is: H0,j representing the
presence of only noise in the jth subband, implying that it is vacant and thus available
for opportunistic access; and H1,j representing the presence of a PU signal with noise,
implying that the jth subband is occupied. The decision task is accomplished by forming
a test statistic T{Rj(n)} from the received signal Rj(n) and comparing that statistic with
a predetermined threshold λj. This operation can be formulated as follows:

T{Rj(n)}
H1,j

≷
H0,j

λj (2.3)

The performance of the detection algorithm can be assessed in terms of its receiver operating
characteristic (ROC) curve. This curve plots the probability of detection (Pd) versus the
probability of false alarm (Pfa) as obtained by varying the detection threshold. Pfa is the
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probability that the test incorrectly decides that the considered frequency is occupied when
it is actually not. Pd is the probability of detecting a signal on the considered frequency
band when it truly is present. The operating point of a detector is chosen along its ROC
curve by adjusting the threshold λj. To achieve good detection performance in a given
setting, we therefore need to select an adequate test statistic for the system model under
consideration and correctly set the decision threshold.

2.2 Cyclostationarity Feature Detection

The information signal transmitted by a PU in practical communication systems always
contain specific features that can be exploited for detection. For instance, due to the
inherent periodicities such as modulation rate and carrier frequency, the statistics of the
transmitted PU signal in most cases are periodic. These features, most commonly referred
to as cyclostationary features, enable the SU to distinguish cyclostationary PU signals from
the wide-sense stationary (WSS) background noise signals [39].

Indeed, a PU signal is typically a modulated sinusoidal carrier and therefore can be
modeled as a wide-sense cyclostationary (WSC) stochastic process. This means that its
second order statistics, such as the mean and autocorrelation functions, are both periodic
with period T . That is, for the discrete time PU signal component Sj(n), we have the
following relations [39]:

E[Sj(n)] = E[Sj(n+ T )] (2.4)

Rss(n, τ) � E[Sj(n)S
∗
j (n+ τ)]

= Rss(n+ T, τ) (2.5)

where Rss(n, τ) is the autocorrelation function of Sj(n) and τ is a discrete time lag. For
modulated PU signals, T is a function of the symbol period and the carrier frequency of
the processed signal. Moreover, the autocorrelation function Rss(n, τ) of the WSC process
Sj(n) can also be represented by its Fourier series expansion expressed as follows:

Rss(n, τ) =
∑
l∈Z

R′
ss(α, τ)e

2πjαn (2.6)

where α ≡ l/T , for l ∈ Z, is the cyclic frequency represented as an integer multiple of the
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reciprocal of T . The Fourier coefficients R′
ss(α, τ), also known as the cyclic autocorrelation

at cyclic frequency α, are given by:

R′
ss(α, τ) =

1

N

N−1∑
n=0

Rss(n, τ)e
−2πjαn (2.7)

We can construct a spectrum sensing detector that exploits cyclostationarity, if we
know some of the cyclic characteristics of the PU signal, such as the symbol length and
carrier frequencies. One method is to exploit cyclostationarity based on an estimate of the
cyclic autocorrelation of the receiver signal Rj(n) corresponding to subband j obtained at
a specific cyclic frequency. The cyclic autocorrelation is estimated by [39]:

R̂rr(α, τ) =
1

N

N−1∑
n=0

Rj(n)R
∗
j (n+ τ)e−2πjαn (2.8)

The detector’s test statistic, which depends on the statistical properties of the PU signal
component, is derived from the following log-likelihood ratio test (LLRT) [12]:

T{Rj(n)} = ln
(f(R̂rr(α, τ)|H0,j)

f(R̂rr(α, τ)|H1,j)

)
(2.9)

where f(R̂rr(α, τ)|H0,j) and f(R̂rr(α, τ)|H1,j) denote the conditional PDFs of R̂rr(α, τ) un-
der H0,j and H1,j respectively. The decision rule is implemented as [12]:

T{Rj(n)}
H1,j

≷
H0,j

ln(λj) (2.10)

where ln(λj) is the threshold. Only one or a few cyclic frequencies are used for detection
in practice and this is most often sufficient to achieve good detection performance [39].
In particular, the cyclostationarity detector of [11] extends the above detector to multiple
cyclic frequencies achieving better detection. It is important to notice that the detection
scheme based on cyclic autocorrelation requires a priori knowledge of the cyclic frequency
α which is a function of PU signal’s symbol rate and carrier frequency. In practice, however,
the cyclic frequencies are not generally available.



2 General Wideband Spectrum Sensing Techniques 12

2.3 Matched Filter Detection

MF detection, also known as the coherent detection, is the optimal spectrum sensing scheme
when perfect knowledge of the PU signal Sj(n) is available a priori. Indeed, this approach
can match and correlate the already known PU signal with the received signal, thereby
achieving maximum SNR in presence of additive noise [6].

To show that MF detection achieves maximum SNR, we consider the filtering and
sampling at time n = N − 1 of Rj(n) as expressed by:

rj =
N−1∑
τ=0

Rj(τ)G(n− τ) (2.11)

where rj is the output of the filtering and sampling operation and Gj(n) is the linear, causal
time-invariant filter. Because Rj(n) = Sj(n) +Wj(n), it follows that:

rj = sj + wj (2.12)

where sj and wj are the signal and noise components at the output of the filter. We define
the SNR at time n = N − 1 as:

SNR =
|sj|2

E[|wj|2] (2.13)

By invoking the Cauchy-Schwarz inequality [40], it can be shown [7] that the maximum
value of SNR in obtained when the filter Gj(n) = S∗

j (N − 1−n), which corresponds to the
so-called MF solution. By substituting Gj(n) = S∗

j (N − 1− n) into (2.11), we can write:

rj =
N−1∑
τ=0

Rj(τ)Gj(N − 1− τ) (2.14)

=
N−1∑
τ=0

Rj(τ)S
∗
j (τ) (2.15)

Therefore, given N observations from the signal Rj(n), the test statistic for the MF ap-
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proach can be formulated as follows [6]:

TE,j � T{Rj(n)} =
N−1∑
n=0

Rj(n)S
∗
j (n) (2.16)

The decision rule is chosen as:

T{Rj(n)}
H1,j

≷
H0,j

λj (2.17)

where λj is the threshold.
Not only does this method requires complete knowledge of the PU signal, which is

usually not available in practice, it suffers from a high implementation complexity as it
requires multiple receive filters for all types of signal variations.

2.4 Non-Coherent Detection

2.4.1 Optimal Detector in Gaussian Noise Environment: Energy Detector

We first consider the spectrum sensing model within a Gaussian noise environment. The
non-coherent energy detector, optimized for Gaussian noise environments (in the Neyman-
Pearson sense), is one of the simplest approaches for deciding between hypotheses H0,j and
H1,j. It was first discussed by Urkowitz [15] as a binary hypothesis testing problem for the
detection of deterministic signals in Gaussian noise environments and then investigated by
Digham et al. in [16] for unknown signals. This detector is derived based on N observations
of Rj(n) and assuming a PU signal with unknown structure. The test statistic can be
expressed as [6]:

TE{Rj(n)} =
N−1∑
n=0

|Rj(n)|2 (2.18)

and the decision rule is chosen as:

TE{Rj(n)}
H1,j

≷
H0,j

λj (2.19)

where λj is the corresponding test threshold.
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To analyze the performance of the energy detector, we assume that the number of
samples N is sufficiently large such that the PDF of the test statistic will approach a
Gaussian distribution according to the central limit theorem. Therefore, we can model the
test statistic TE{Rj(n)} under H0,j and H1,j as [17]:

H0,j : TE,j ∼ CN (E(TE,j|H0,j), V ar(TE,j|H0,j)) (2.20)

H1,j : TE,j ∼ CN (E(TE,j|H1,j), V ar(TE,j|H1,j)) (2.21)

In order to obtain analytic expressions for the probabilities of detection and false alarm of
the energy detector, we need to derive expressions for the conditional mean and variance
of the test statistic introduced in (2.18). The derivation of these expressions, which is
presented in detail in appendix A, make use of the following formulas for the qth order
absolute moment of the complex Gaussian noise for subband j [41]:

E[|Wj(n)|q] =
⎧⎨
⎩(2)q/2 Γ((q+1)/2)√

π
σq
w, q = 2, 4, 6, ...

0, q = 1, 3, 5, ...
(2.22)

Under H0,j and H1,j, assuming complex Gaussian additive noise with zero mean and PU
signal with unitary energy, the expectations and variances of the test statistic can be
expressed with the help of (2.22) as:

E[TE,j] =

⎧⎨
⎩Nσ2

w, H0,j

N(|Hj|2 + σ2
w), H1,j

(2.23)

V ar[TE{Rj(n)}] =
⎧⎨
⎩2Nσ4

w, H0,j

N
(
2σ4

w + 2|Hj|2σ2
w − |Hj|4

)
, H1,j

(2.24)

Under the Gaussian assumption for TE,j, it follows that the probabilities of detection and
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false alarm associated with the energy detector can be respectively written as [17]

Pfa,j = Pr(TE,j > λj|H0,j) = Q
(λj − E(TE,j|H0,j)√

V ar(TE,j|H0,j)

)
(2.25)

Pd,j = Pr(TE,j > λj|H1,j) = Q
(λj − E(TE,j|H1,j)√

V ar(TE,j|H1,j)

)
(2.26)

where Q(x) is the tail probability of the normal random variable, define as:

Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt. (2.27)

2.4.2 Optimal Detector in General Gaussian Distributed (GGD) Noise
Environment: Rao Detector

If non-Gaussian noise impairments are present, as discussed in Section 1.2, the energy
detector’s performance is significantly reduced. Therefore, we must model the noise dif-
ferently such as to account for noise types characterized by PDFs with tails decaying at
lower rates than the Gaussian PDF. We also need to consider a new test statistic that can
account for the different tails. We first start by describing the new noise model.

Here, we assume that non-Gaussian noise occurring in practice can be modeled by
a complex generalized Gaussian distribution (GGD), thereby allowing to control the tail
characteristics by means of an adjustable parameter. Specifically, the PDF of a GGD with
mean μ and variance σ2

w is expressed as follows [22]:

fGGD(w; β) =
β

2A(β, σ2
w)Γ(1/β)

e
−
(
|w−μ|

A(β,σ2
w)

)β

(2.28)

where

A(β, σ2
w) =

√(
σ2
w

Γ(1/β)

Γ(3/β)

)
(2.29)

Γ(ν) is the standard gamma function, i.e.,

Γ(ν) =

∫ ∞

0

xν−1e−xdx (2.30)
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and β > 0 is a shaping factor that controls the exponential decay rate of the PDF tail,
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Fig. 2.2 PDF of GGD random variable for different β values and σ2
w = 1

allowing to model different noise behaviors. The PDF of the GGD is plotted in Fig. 2.2
showing the tail characteristics for different β values. The GGD reduces to the Gaussian
distribution when β = 2 and to the Laplacian distribution when β = 1. Several types of
noise sources found in practice tend to produce samples with higher magnitudes than what
the Gaussian noise model would predict, i.e. corresponding to the case β < 2.

We first discuss the performance of the energy detector in the presence of GGD noise.
To this end, we first develop expressions for the conditional mean and variance of the test
statistic TE,j under the GGD noise model;then from the mean and variance, we derive the
expressions of Pd and Pfa. We again assume that the number of samples N is large enough
such that the PDF of TE{Rj(n)} will approach a Gaussian distribution even if the noise is
GGD. The qth order absolute moment of GGD noise in subband j, that is used to derive
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the mean and variance of TE,j under non-Gaussian noise, is given by [22]:

E[|Wj(n)|q] =
⎧⎨
⎩
[
Γ(1/β)
Γ(3/β)

]q/2
Γ((q+1)/β)

Γ(1/β)
σq
w q = 2, 4, 6, ...

0 q = 1, 3, 5, ...
(2.31)

Using (2.31), the conditional mean and variance of TE,j under Hj,0 and Hj,1 can be obtained
by following the steps in appendix B as:

E[TE,j] =

⎧⎨
⎩Nσ2

w, H0,j

N(|Hj|2 + σ2
w), H1,j

(2.32)

V ar[TE,j] =

⎧⎨
⎩
Nσ4

w

(
Γ(1/β)
Γ(3/β)2

Γ(5/β)− 1
)
, H0,j

N
[(

Γ(1/β)
Γ(3/β)2

Γ(5/β)− 1
)
σ4
w + 2|Hj|2σ2

w − |Hj|4
]
, H1,j

(2.33)

The probabilities of detection and false alarm for the energy detector under GGD noise
can then be obtained by substituting (2.32) and (2.33) into (2.25) and (2.26) respectively.
Moreover, the probabilities of detection and false alarm are given in (2.25) and (2.26)
respectively. Moreover, when Pfa,j is given, the decision threshold λj of the energy detector
can be expressed as [22]:

λj = σ2
w

(√
N
( Γ(1/β)

Γ(3/β)2
Γ(5/β)− 1

)
Q−1(Pfa,j) +N

)
(2.34)

and finally, by substituting (2.34) into (2.26), the Pd,j can also written as:

Pd,j = Q
(σ2

w

(√
N
(

Γ(1/β)
Γ(3/β)2

Γ(5/β)− 1
)
Q−1(Pfa,j) +N

)
−N(|Hj|2 + σ2

w)√
N
[(

Γ(1/β)
Γ(3/β)2

Γ(5/β)− 1
)
σ4
w + 2|Hj|2σ2

w − |Hj|4
] )

= Q
(
√(

Γ(1/β)
Γ(3/β)2

Γ(5/β)− 1
)
Q−1(Pfa,j)−

√
N

|Hj |2
σ2
w√(

Γ(1/β)
Γ(3/β)2

Γ(5/β)− 1
)
+ 2

|Hj |2
σ2
w

− |Hj |4
σ4
w

)
(2.35)
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As discussed in Section 1.2, the energy detector‘s performance is greatly reduced when
non-Gaussian noise impairments are present. This is because non-Gaussian noise is more
likely to produce large-magnitude observations than would be predicted by a Gaussian
model [21]. Therefore, we should expect the optimum detector in presence of non-Gaussian
noise characterized by the GGD to employ some nonlinear characteristics, aiming to reduce
the influence of large-magnitude observations on the test statistic [21].

The non-linear detector in [22], based on the Rao test, is optimized for GGD noise
environments. As such, it can reduce the influence of high magnitude samples on the test
statistic making it more reliable to indicate the presence or absence of a signal. Specifically,
the Rao test statistic can be formulated as:

TR,j � TR{Rj(n)} = φ(β)
N−1∑
n=0

(|RRe
j (n)|2(β−1) + |RIm

j (n)|2(β−1)) (2.36)

where RRe
j (n) and RIm

j (n) represent the real and imaginary parts of the receiver signal
respectively, i.e., Rj(n) = RRe

j (n) + jRIm
j (n), and φ(β) is defined as:

φ(β) =
βΓ( 3

β
)β−1

(β − 1)(σ
2
w

2
)β−1Γ( 1

β
)β−2βΓ(1− 1

β
)

(2.37)

Similar to (2.20), the decision rule is given by:

TR{Rj(n)}
H1,j

≷
H0,j

λj (2.38)

where λj is the decision threshold of the Rao detector for subband j. As we can see, similar
to the energy detector, the test statistic TR{Rj(n)} is only a function of the shaping factor
β, thereby requiring no a priori knowledge of the PU’s signal, channel gains, or noise
variance.

Next, we present formulas for the probabilities of detection and false alarm of the Rao
test detector. As the number of samples N becomes large, the PDF of the Rao test statisitic
approaches that of the generalized likelihood-ratio test (GLRT) statistic. Therefore, we
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have [22]

H0,j : TR,j ∼χ2
2N (2.39)

H1,j : TR,j ∼χ2
2N(ξj) (2.40)

where χ2
2N denotes a chi-squared PDF with 2N degrees of freedom while χ2

2N(ξj) denotes
a non-central chi-squared PDF with 2N degrees of freedom and non-centrality parameter
ξj. The parameter ξj can be approximated as:

ξj = N
2β(β − 1)Γ(1− 1β)Γ(3/β)

Γ(1/β)2
|Hj|2
σ2
w

(2.41)

Using the non-centrality parameter in (2.41) and the Rao detector’s PDFs in (2.42) and
(2.43) , we can also express the conditional PDF of TR,j as [22]:

H0,j : p(t|H0,j) =
1

2NΓ(N)
tN−1e−t/2 (2.42)

H1,j : p(t|H1,j) =
1

2

( t

ξj

)N−1/2

e−1/2(t+ξj)IN−1(
√
(tξj)) (2.43)

where

IN−1(x) =

∞∑
k=0

(x/2)2k+N−1

k!Γ(N − 1 + k + 1)
(2.44)

is the modified Bessel function of order N − 1 and of the first kind for x > 0.
Finally, with the expressions in (2.42) and (2.43), the probabilities of detection and false
alarm of the Rao-test based detector are given by

Pfa,j = Pr(TR,j > λj|H0,j) =

∫ ∞

λj

p(t|H0, j)dt =
Γ(N, λj/2)

Γ(N)
(2.45)

Pd,j = Pr(TR,j > λj|H1,j) =

∫ ∞

λj

p(t|H1, j)dt = QN(
√

ξj,
√

λj) (2.46)
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where

Γ(u, v) =

∫ ∞

v

xu−1e−xdx, u, v > 0 (2.47)

is the upper incomplete gamma function and

QN(u, v) =
1

uN−1

∫ ∞

v

xNe−(x2+u2)/2IN−1(ux)dx, u, v > 0 (2.48)

is the N th order generalized Marcum Q function.
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Chapter 3

Universal Filtered Multicarrier

As was discussed in Section 1.3, MCM can be used for both CR data transmission and
dividing the wideband spectrum into narrow subbands for PU detection. We first start
by giving an overview of MCM. Then, we briefly describe the traditional OFDM system
operation for the sake of comparing with UFMC. Following this, we describe the UFMC
system operation and present the associated prototype filter design. This will enable us to
develop, in Chapter 4, the wideband spectrum sensing models of non-coherent UFMC-based
detectors optimized for both Gaussian and GGD noise.

3.1 Overview of Multicarrier Modulation

The main idea behind MCM is to divide the transmitted stream of symbols into many dif-
ferent substreams and to send these in parallel over different orthogonal subchannels [42].
For a given system bandwidth, the number of subchannels is chosen such that their indi-
vidual bandwidth is less than the channel coherence bandwidth, thereby ensuring a smaller
intersymbol interference (ISI) on each subchannel. That is, consider a communication sys-
tem with incoming data rate R and total bandwidth B, transmitting over a channel having
a coherence bandwidth Bc. In this case, the transmitted signal will experience frequency
selective fading if B > Bc. The basic premise of MCM is to divide the modulated system
into K subchannels each having data rate Rs = R/K and bandwidth Bs = B/K. Assum-
ing that the number of channel K is large enough, the signal will now experience relatively
flat fading as Bs < Bc. This means that the spectral characteristics of the transmitted
signal will be preserved at the receiver with a variation only in the strength of the sig-
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nal (i.e. amplitude and phase). Fig. 3.1 illustrates a multicarrier transmitter, where the
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Fig. 3.1 Schematic representation of multicarrier transmitter

incoming bit stream is divided into K substreams via a serial-to-parallel converter. The
first step is to convert each binary sequence into a corresponding sequence of symbols skl
via a symbol mapper, typically by means of quadrature amplitude modulation (QAM) or
phase shift keying (PSK). Within each substream, each symbol is further multiplied by a
pulse shaping waveform g(t) which defines the signal’s spectrum, resulting in a baseband
waveform

sk(t) =
∑
l

skl g(t− lT ) (3.1)

where k = 0, 1, . . . , K − 1 is the subcarrier index and T is the symbol duration. The
waveforms sk(t) are up-converted to their proper frequency location in the passband, and
then summed, to yield the following modulated output [42]:

s(t) =
N−1∑
k=0

sk(t) cos(2πfkt). (3.2)

The latter signal in then sent to the antenna circuit for radio transmission over the air.
The modulation frequencies fk are typically set to fk = f0 + kBs.

During transmission, under the assumption Bs < Bc, the kth subchannel will be affected
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by flat fading with a corresponding gain H(fk), where H(f) denotes the frequency response
of the radio channel, as illustrated in Fig. 3.2. This is a fundamental property of MCM
which makes channel equalization very easy to implement.

Fig. 3.3 illustrates the multicarrier receiver where the signal is first decomposed into
subchannel components using a bank of filters. Channel equalization at the receiver is
then realized by multiplying the kth substream by 1/H(fk), where the channel gains are
assumed to be known. Subsequently, each substream is down-converted to passband and
fed to a matched filter detector. Finally, the detected bits on each stream are combined
via a parallel-to-serial converter, in order to reconstruct the transmitted binary sequence.
In the next section, we present a popular digital implementation of MCM where there is
no need for multiple modulator and demodulators.

Fig. 3.2 Spectrum of transmitted MCM signal

3.2 OFDM

The requirement for separate modulators and demodulators on each subchannel was too
complex for most systems implemented at the time MCM was conceived in the 1950’s [42].
However, with the development of cheap and simple implementations of the discrete Fourier
transform (DFT) and inverse discrete Fourier transform (IDFT), in the form of fast Fourier
transform (FFT) algorithms, the multicarrier technique could be efficiently implemented
digitally with these algorithms. Referred to as OFDM, this method is commonly employed
nowadays in most of the standards for wireless transmissions [26]. In this section, we briefly
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describe the OFDM implementation of MCM, as it will serve as a comparison benchmark
in our work.

3.2.1 OFDM Operation

The schematic representation of the OFDM implementation is shown in Fig. 3.4. The
incoming data bit stream is passed through a serial-to-parallel converter where, at a given
time instance, it is converted into a corresponding sequence of symbols denoted as Xk to
be transmitted over each of the subcarriers with index k = 0, 1, . . . , K − 1. Each symbol
belongs to a given constellation, e.g. M-QAM or PSK and in the case of adaptive mod-
ulation, different constellations can be used over different subcarriers [43]. The frequency
components of the OFDM modulator are converted into discrete-time domain samples x(l)
by applying a K-point IDFT on the symbols Xk. This operation yields what we refer to
as the OFDM symbol of length K which can be expressed as [42]:

x(l) =
1

K

K−1∑
k=0

Xke2πjlk/K (3.3)

where the index l = 0, ..., K−1. The sequence x(l), which is obtained by linearly modulating
the various subcarriers, provides the time-domain samples of the multicarrier signal. The
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OFDM signal can be described as a set of closely spaced frequency division multiplexing
subcarriers where, in the frequency domain, each transmitted subcarrier, i.e. e2πjlk/K for
l = 0, . . . , K − 1, results in a sinc function spectrum. Even though the carrier signals
overlap in frequency, they remain orthogonal in that at digital frequencies wk = 2πk/K,
the individual peaks of subcarriers all line up with the nulls of the other subcarriers. A
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Fig. 3.4 Schematic representation of OFDM transceiver

cyclic prefix (CP) is added at the beginning of the OFDM symbol, which is a copy of the
last LCP samples from x(l). Specifically, the resulting time samples after serial-to-parallel
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conversion with length K + LCP − 1, are given by [42]:

x̃(l) = [x(K − LCP ), ..., x(K − 2), x(K − 1), x(0), x(1), ..., x(K − 1)] (3.4)

where l = −LCP , . . . , K − 1. The CP serves as a guard band to minimize the ISI between
the different transmitted OFDM data symbols, as caused by the delay spread in the radio
channel. Finally, the discrete-time baseband signal x̃(l) is converted to an analog passband
signal for transmission, via analog pulse-shaping and RF up-conversion.

Let r(l) denote the baseband signal at the OFDM receiver front-end after RF down-
conversion and sampling. in the receiver side, the first step is to remove the CP prefix
consisting of the first LCP samples of r(l). The resulting K time samples are converted
to a parallel stream via a serial-to-parallel converter. The signal rj(l) is then mapped to
the frequency domain by applying a K-point DFT operation. Specifically, the resulting
symbols Rk, corresponding to carrier index k, is formulated as:

Rk =
K−1∑
l=0

r(l)e−2πjlk/K (3.5)

where the index k = 0, 1, ..., K− 1. Each output symbol is passed through a corresponding
subchannel equalizer and QAM detector (not shown), Subsequently, the final bit stream is
obtained after parallel-to-serial conversion.

3.3 UFMC

UFMC has recently attracted researcher’s attention due to its higher spectral efficiency and
reduced intercarrier interference (ICI). In UFMC, a filtering operation is applied, unlike
OFDM, to a group of consecutive subcarriers to minimize the potential interference from
subcarriers of adjacent subbands. In the recent literature, slightly different implementations
of the UFMC concept have been proposed [32–34]. The UFMC transceiver model that will
be used in our work follows that of [32].
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3.3.1 UFMC Operation

As seen from Fig. 3.5, at the transmitter, a group of K incoming complex data symbols
are mapped into B subbands with index j = 1, . . . , B, where each subband consists of
M = K/B tones with index k = 0, . . . ,M − 1. The symbol affected to the kth tone of the
jth subband is denoted as Xj,k. For each subband, the corresponding time domain symbols
xj(l) are obtained by applying a K-point IDFT spreader on Xj,k. More specifically, the
group of tones in the jth subband is offset by inserting θj zeros at the beginning; similarly,
zeros are inserted at the end to account for unallocated subcarriers. In effect, this operation
can be expressed as [32]:
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Fig. 3.5 Schematic representation of UFMC transceiver
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xj(l) =
1

K

M−1∑
k=0

Xj,ke2πjl(k+θj)/K (3.6)

where the index l = 0, ..., K − 1 and θj = (j − 1)M . Each subband sequence xj(l)

is passed through a corresponding finite impulse response (FIR) filter fj(l) of length
L to reduce out-of-band leakage. Filter fj(l) is modulated to the proper frequency by
multiplying a prototype impulse response f(l) with an exponential sequence, that is:
fj(l) = f(l)e2πjl(θj+(M−1)/2)/K . In this work, similar to [32], f(l) is obtained from a Dolph-
Chebyshev (DC) window with adjustable sidelobe attenuation, as explained in subsection
3.3.2. The output of the jth subband after FIR filtering is expressed as:

yj(l) = xj(l) ∗ fj(l) =
K−1∑
l′=0

xj(l
′)fj(l − l′) (3.7)

where ∗ denotes the discrete-time convolution and the index l = 0, . . . , K + L − 2. The
different subband signals yj(l) are then summed, resulting into

y(l) =
B∑
j=1

yj(l) (3.8)

Finally, the discrete-time baseband signal y(l) is converted to an analog passband signal
for transmission, via analog pulse-shaping and RF up-conversion.

Let r(l) denote the baseband signal at the UFMC receiver front-end after RF down-
conversion and sampling. For each one of the B subbands, the received signal r(l) is
convolved with the time reversal and complex conjugate of the corresponding subband
filter fj(l). The resulting time-domain signal, denoted as rj(l), can be expressed as:

rj(l) = r(l) ∗ f ∗
j (−l) =

K+L−2∑
l′=0

r(l′)f ∗
j (l

′ − l) (3.9)

where only the samples with index l = 0, ..., K− 1 are retained [14]. For each subband, the
signal rj(l) is mapped to the frequency domain by applying a K-point DFT despreading
operation. Specifically, the estimated symbol corresponding to the kth tone of the jth
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subband is expressed as:

Rj,k =
K−1∑
l=0

rj(l)e−2πjl(k+θj)/K (3.10)

where the index k = 0, . . . ,M − 1.

3.3.2 FIR Filter Design

The FIR prototype filter f(l) used in our work is a discrete-time FIR DC filter similar to [32].
These filters are parameterizable in their shape to maximize the side lobe attenuation
given a main lobe width. Unlike most windows, the DC window is defined in terms of its
frequency response and is designed using the frequency sampling method. That is, it is
constructed from the frequency domain by uniformly taking samples of the windows Fourier
transform [44, 45]. The DC window is defined in the frequency domain by the following
expression [45,46]:

F (ω) =
CL−1(x0 cos(ω/2)))

CL−1(x0)
, 0 ≤ ω < 2π (3.11)

where x0 > 1 is an adjustable parameter and Cm(x) are the well-known Chebyshev polyno-
mials of the first kind that were first used by Dolph in 1946 to solve the problem of designing
a radio antenna having optimal directional characteristics [47]. These polynomials can be
defined by the following equations [48]:

Cm(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
cos(m cos−1(x)), for |x| ≤ 1

cosh(m cosh−1(x)), for x ≥ 1

(−1)m cosh(m cosh−1(−x)), for x ≤ −1

(3.12)

We define ωs as the stop-band frequency such that:

x0 cos(ωs/2) = 1 (3.13)

and r is defined as the stop-band ripple such that, in the pass-band, as ω varies from 0 to
ws, F (ω) falls from 1 to r = 1/CL−1(x0). F (ω) oscillates from ±r in the stop-band (i.e. for
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ωs ≤ ω ≤ π) [46]. The form of F (ω) follows that of the magnitude response of a lowpass
filter. Following the sampling operation, at sampled frequencies ωk = 2πk/L, the Lth order
DC window in the frequency domain can be expressed as [46]:

F (wk) =
CL−1(x0 cos(πk/L)))

CL−1(x0)
(3.14)

where index k = −(L
2
− 1), . . . ,−1, 0, 1, . . . , L

2
− 1 assuming L is even. Following this, the

coefficients of the discrete-time DC filter’s impulse response f(l) are obtained by taking
the IDFT of Fk and scaling the result to have a peak value of 1. This can be formulated
as:

f(l) =

L
2
−1∑

k=−(L
2
−1)

Fke2πjlk/L (3.15)

where index l = −(L
2
− 1), . . . ,−1, 0, 1, . . . , L

2
− 1. Due to the symmetry in F (ω), we

assume that the window f(l) has real-valued coefficients. Consequently, we can also write
f(l) as [46]:

f(l) =
1

L

(
F0 + 2

L
2
−1∑

k=1

Re(Fke2πjlk/L)

)
(3.16)

=
1

L

(
1 + 2r

(L−1)/2∑
k=1

CL−1

(
x0 cos(

πk

L
)
)
cos(

2lπk

L
)

)
(3.17)

For the UFMC receiver, we use the DC window directly as the prototype low pass filter.
In the design, the filter order L and maximum amplitude r in the stop-band are chosen.
From this, the width of the main-lobe 2ωs can be computed as:

ωs = 2 cos−1(
1

x0

) (3.18)

where

x0 = cosh(
1

L− 1
cosh−1(

1

r
)) (3.19)
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The main-lobe width of the resulting window is minimum for the given filter order L and
ripple ratio r. The magnitude response (in dB) of Fk is shown in Fig. 3.6 for L = 74 and
−120dB minimum attenuation in the stop-band (r = 10−6). Since the side-lobes are of
equal height, they are often called ripple in the stop-band. Given a window length L, the
larger the main-lobe width is, the smaller the stop-band ripple specification. The window
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Fig. 3.6 Magnitude response of Dolph-Chebyshev window for L = 74 and
−120dB side-lobe level

is made causal such that the index l = 0, . . . , L− 1 by time-shifting the window by half a
window length. The causal discrete-time window f(l) for L = 74 and −120dB (r = 10−6)
stop-band ripple is plotted in Fig. 3.7.
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Chapter 4

Multicarrier Wideband Spectrum
Sensing with UFMC

In this chapter, we incorporate the optimal non-coherent Rao detector for non-Gaussian
noise environments into the UFMC scheme. For the sake of comparison, we also discuss
the incorporation the Rao detector into OFDM. We first describe the model considered in
this work for wideband spectrum sensing. Then, we present the test statistics for the UFMC
and OFDM based receiver with Rao detection in non-Gaussian noise.

4.1 Wideband Spectrum Sensing Model

For the wideband spectrum sensing model, we consider a multipath fading environment
where h(l) represents the baseband equivalent discrete-time impulse response of the radio
channel between the PU and SU. That is, the signal at the receiver front-end of the SU
can be written as:

r(l) = h(l) ∗ y(l) + w(l) (4.1)

where y(l) is the PU signal component and w(l) is the additive complex white noise with
zero mean and variance σ2

w. We note that the specific transmission scheme for the PU signal
component y(l) need not be known by the SU; that is, the PU may not necessarily employ
UFMC or OFDM for transmission. We assume that the unknown PU signal component
y(l) and additive GGD noise w(l) are statistically independent of each other. We also
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assume that the complex channel h(l) between the PU and SU is slowly fading such that
it can be assumed to remain constant during each sensing operation period.

4.2 Integration into OFDM

Following Section 3.2, for a SU equipped with a OFDM-based receiver, the received signal
in the frequency domain, on the kth tone of the jth subband, is then given by Rj,k in (3.5).
On this basis, a schematic representation of OFDM-based wideband spectrum sensing is
shown in Fig. 4.1. For a matter of consistency and comparison with UFMC, we also
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Fig. 4.1 Schematic representation of OFDM-based wideband spectrum sens-
ing

assume, that the detection is made on a "per subband" basis, where a subband consists of
a group of M contiguous tones or subcarriers. We test the following binary hypotheses to
decide whether the jth subband, which consists of M tones with index k = 0, 1, . . . ,M − 1,
is accessible or not:

H0,j : Rj,k(n) = Wj,k(n) (4.2)

H1,j : Rj,k(n) = Hj,kYj,k(n) +Wj,k(n) (4.3)

where n = 0, 1, . . . , N − 1, and N is the total number of OFDM symbols in the given
observation window. Here, Rj,k(n) denotes the nth estimated symbol on the kth tone of
the jth subband, Hj,k is the corresponding complex channel gain between the PU and SU,
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Yj,k(n) is the unknown PU signal component, and Wj,k(n) is a GGD noise with zero mean
and variance σ2

w.
For each subband j, we compute the test statistic of the Rao detector over an interval

of N symbols. The test statistic of the Rao detector for the jth subband is obtained as the
sum of the contributions from each symbol affected to the various tones with index k in
that subband, assuming independent symbol sequences. Specifically, it is formulated as:

TR{Rj,k(n)} = φ(β)
M−1∑
k=0

N−1∑
n=0

(|RRe
j,k(n)|2(β−1)

+|RIm
j,k(n)|2(β−1)) (4.4)

where RRe
j,k(n) and RIm

j,k(n) represent the real and imaginary parts of Rj,k(n). The test
statistic for the energy detector is formulated as:

TE{Rj,k(n))} =
M−1∑
k=0

N−1∑
n=0

|Rj,k(n)|2 (4.5)

The decision rule is chosen as:

TR{Rj,k(n)}
H1,j

≷
H0,j

λj (4.6)

where λj is the decision threshold for the jth subband.

4.3 Integration into UFMC

A schematic representation of UFMC-based wideband spectrum sensing is shown in Fig.
4.2. Following Section 3.3, for a SU equipped with a UFMC-based receiver, the discrete-
time signal r(l) at the baseband front-end is filtered by subband filters f ∗

j (−l) for j =

1, . . . , B. In the frequency domain, following the despreading operation, the received signal
on the kth tone of the jth subband is then given by Rj,k in (3.10).

We test the following binary hypotheses to decide whether the jth subband, which
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Fig. 4.2 Schematic representation of UFMC-based wideband spectrum sens-
ing

consists of M tones with index k = 0, 1, . . . ,M − 1, is accessible or not:

H0,j : Rj,k(n) = Wj,k(n) (4.7)

H1,j : Rj,k(n) = Hj,kF
∗
j,k(n)Yj,k(n) +Wj,k(n) (4.8)

where n = 0, 1, . . . , N − 1, and N is the total number of UFMC symbols in the given
observation window. Here, Rj,k(n) denotes the nth estimated symbol on the kth tone of
the jth subband, Hj,k is the corresponding complex channel gain between the PU and SU,
F ∗
j,k(n) is the K-point DFT of f ∗

j (−n), Yj,k(n) is the unknown PU signal component, and
Wj,k(n) is a GGD noise with zero mean and variance σ2

w. In practice, the Rao detector
needs only to estimate the noise power σ2

w and square magnitude of the complex channel
gains Hj,k.

For each subband j, we compute the test statistic of the Rao detector over an interval
of N symbols. Since a subband in UFMC consists of multiple tones or subcarriers, the test
statistic for the jth subband is obtained as the sum of the contributions from each symbol
affected to the various tones with index k in that subband, assuming independent symbol
sequences, and is formulated as in (4.4) and the decision rule is chosen as in (4.6).

For CR systems, the channel sensing mechanism needs to have a high spectral dynamic
range in order to reliably detect available spectrum holes. That is, the receiver should
be able to avoid interference from other signals within the channel for the reason that
interference results in spectral estimates in the bands with low level energy to be greatly
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biased. While OFDM is mostly used as a wideband channel sensing method for its simplicity
of implementation, it suffers from a number of shortcomings that originate from the large
sidelobes of the frequency response of the rectangular window filters that characterize each
OFDM subband. The magnitude of the sidelobes determines the amount of leakage that
each subband will receive from other parts of the spectrum. Such leakage is undesirable for
CR applications. Hence, we propose using UFMC at the receiver with filtering, exhibiting
a magnitude response with lower sidelobe levels than OFDM, to improve on the precision
of the spectral estimates.

Indeed, by using a sensing system with subband filtering, the sidelobes of the filter
associated with each subband can be made arbitrarily small by adjusting the filter length
and stopband attenuation through the DC filter design presented in Section 3.3.2. There-
fore, this will significantly reduce the spectral leakage from other parts of the spectrum
improving the detection performance. Moreover, when transmitting data within the avail-
able subbands, the SU will be able to confine the spectral content winthin that subband
more effectively recuding interference to other SUs and PUs.



38

Chapter 5

Simulation Results and Discussion

In this section, we first describe the methodology used to simulate the UFMC-based wideband
system for PU detection. We then show the sidelobe behavior and symbol error rate for the
UFMC and OFDM schemes to motivate the assumption that subband filtering improves
spectral estimation and reduces interference with other SUs and PUs when transmitting
within a spectrum hole. We obtain the ROC curves for UFMC-based receiver with the Rao
detector and energy detector and compare them to that of the OFDM-based receiver with
both detectors. We also evaluate the effect of the non-Gaussianity level (shaping factor β),
SNR, and number of samples N in the observation window on the detection performance.

5.1 Methodology

We consider a wideband spectrum sensing system with a PU transmitting OFDM symbols
over 256 tones each carrying random QPSK data symbols. For simplicity, the transmitted
signal has unit power, that is E[|y(l)|2] = 1. We assume that the PU and SU cover the same
bandwidth, that is the SU is equipped with a UFMC-based receiver, also with K = 256

tones. The signal at the receiver front-end is filtered by B = 8 subband DC FIR filters of
length L = 74 and with 35dB sidelobe attenuation. The filter coefficients f(l) are chosen
such that

∑L−1
l=0 |f(l)|2 = 1. For the purpose of comparison, we also implement a system

where the SU is equipped with an OFDM receiver with K = 256 tones.
The wireless fading channel, accounting for shadowing, refractions and reflections of

the transmitted signal by surrounding obstacles is modeled as a tapped-delay line channel.
This can be seen as an FIR filter with impulse response samples following the Rayleigh
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distribution. More precisely, the Rayleigh fading channel impulse response is modeled as
the sum of two uncorrelated real Gaussian random variables, which can be expressed as:

h(l) = hI(l) + jhQ(l) (5.1)

where hI(l) and hQ(l) represent the uncorrelated zero mean Gaussian sequences forming
the real and imaginary parts of the channel taps. In our experiments, we assume a fading
channel consisting of 5 channel taps that does not vary over one observation window of
N multicarrier symbols. The channel impulse response is normalized such that its energy∑4

n=0 |h(l)|2 = 1.
The noise in (4.1) is modeled as GGD with zero mean, variance σ2

w, and parameter β.
The samples are generated using the following procedure [49]:

• simulating a Gamma random variable Z ∼ Gamma (a,b) with parameter a = β−1

and b = (A(β, σ2
w))

−β;

• applying the transformation Y = Z1/β;

• setting w(l) to ±Y with probability of 0.5.

Under the previous normalization assumptions for the PU signal and channel, the SNR in
dB is given as:

SNR = −10 log10(σ
2
w) (5.2)

At the receiver of the system, unless otherwise indicated, data are collected over N = 25

vector symbols. Comparison of the detection performance is performed over the second
subband (i.e. j = 2) where interference from neighboring subbands is present. In this way,
we can compare UFMC and OFDM in terms of their robustness to out-of-band interference.
The performance of the various detection algorithms under comparison is evaluated in terms
of the probability of detection Pd and the probability of false alarm Pfa, as shown through
parametric ROC curves. The ROC curves are obtained through Monte-Carlo simulations
over 104 independent runs.
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5.2 SER Curves and Sidelobe Behavior for UFMC and OFDM

In this section we show SER curves and the sidelobe behavior for the UFMC and OFDM
system in presence of non-Gausian noise impairments. We can demonstrate, through the
sidelobe curves, that with the use of FIR filters in UFMC, we can potentially reduce the
interference from other secondary users and we can get a better detection at the receiver.
Moreover, we can show that SUs transmitting with UFMC over the spectrum holes will
maintain a better performance for high data rate in terms of symbol error rate.

We first show, in 5.1, the sidelobe behavior of the second subband for the UFMC and
OFDM receivers. As expected, with added subband filtering at the receiver, UFMC has
a better out-of-band rejection due its lower sidelobes. OFDM has high sidelobe levels
resulting from the rectangular window shape in the time domain. This would indicate that
a SU equipped with a UFMC receiver will be able to better avoid the in-band interference
from the other signals on the channel thereby increasing the PU detection performance.
Moreover, an SU equipped with a UFMC transmitter will be able to confine more effectively
its spectral content within the spectrum hole.

Fig. 5.2 shows the symbol error rate (SER) curves for a SU transmitting with UFMC
and OFDM schemes over and additive white GGD noise channel with factor β = 1.1. We
can see that a SU transmitting with UFMC will maintain a better SER performance than
transmitting with OFDM. Specifically, for an SER performance of 10−3, we observe an
improvement of 1.5dB in the SNR.

5.3 ROC Curves for Rao and Energy Detectors in UFMC and

OFDM

We now show the simulated ROC curves of the Rao and energy detectors when integrated
in the UFMC system and the OFDM system in presence of non-Gaussian noise, where the
Rayleigh fading channel model in (5.1) between the PU and SU is assumed.

It can be observed, from 5.3 that the Rao detector outperforms the energy detector
when the background noise is non-Gaussian with β = 1.1, and this for both UFMC and
OFDM receiver schemes. Indeed, given a Pfa of 0.1, there is a 55% increase of Pd for the
Rao detector over the energy detector in the OFDM system and 37% in the UFMC scheme.
Moreover, it can be seen that with the use of filters in the UFMC scheme, the SU detects
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Fig. 5.1 Sidelobe behavior of UFMC and OFDM

better the presence of a PU in a given band over the OFDM scheme. We can observe from
the figure that given a Pfa of 0.1, the Rao detector in the UFMC system surpasses the Rao
detector in the OFDM system by 14%.



5 Simulation Results and Discussion 42

2 4 6 8 10 12

10−5

10−4

10−3

10−2

10−1

SNR (dB)

S
ym

bo
l E

rr
or

 R
at

e 
(S

E
R

)

OFDM
UFMC
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Fig. 5.4 shows the effects of the noise shaping factor β on the ROC curves of the energy
and Rao detectors integrated in the UFMC system. We can see that, as β decreases or
the non-Gaussianity of the noise increases, the Pd rises. This is not the case for the energy
detector, where as β decreases or the non-Gaussianity of the noise increases, the Pd drops.
This means that SUs will be able to detect the PU signal more effectively, when using the
Rao detector over the energy detector, in practical non-Gaussian noise environments which
tend to exhibit probability density functions with tails decaying at lower rates than the
traditional Gaussian density tails (i.e. shaping factor β < 2). Note that in generating them
and other ROC curves, we assume that the value of the GGD noise shaping factor β is
known at the receiver.
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Fig. 5.3 ROC curves of the Energy and Rao detectors integrated in UFMC
and OFDM for β = 1.1 and SNR = -10dB

In Fig. 5.5, the ROC curves of the Rao and energy detectors incorporated in the
UFMC system for different SNRs are shown. As expected, the detection performance of
the Rao detector is reduced as the SNR is reduced but is much better than with the energy
detector for all values of SNR. This would indicate that the SU will be able to detect more
effectively the PU with the Rao detector over the energy detector when non-Gaussian noise
impairments are present and especially at low SNR.

In Fig. 5.6, the performances of the Rao and energy detectors integrated into UFMC
versus the number of samples N in the observation window are shown for β = 1.3, and
SNR = −10dB. It can be seen that, for the same probability of detection, the number of
samples required by the Rao detector is lower than that of the energy detector. Alterna-
tively, for the same number of observed samples N , the probability of detection for the
Rao detector is greater than for the energy detector. We can also see that the the perfor-
mance of the Rao detector increases as the number of samples in the observation window
increases. The results presented in this section demonstrate the advantage of using the Rao
detector integrated into UFMC when non-Gaussian noise is present. Compared to the en-
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ergy detector integrated into OFDM, UFMC achieves much better spectral dynamic range
for any given noise with factor β. Through numerical results, we were able to establish
the superior sensing performance of the Rao detector compared to the traditional energy
detector contemporarily being used for cognitive radio applications.
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Chapter 6

Conclusion and Future Work

This thesis addressed the problem of wideband spectrum sensing for cognitive radio appli-
cations. In particular, we considered the sensing task in a multicarrier framework and in
scenarios where non-Gaussian impairments are present. The goal was to investigate the per-
formance of the Rao-test based detector under non-Gaussian noise for wideband spectrum
sensing incorporated into the UFMC modulation scheme envisaged for 5G systems. In this
section, we present a summary of the work presented in this thesis followed by suggestions
of some directions that may be considered for further work in this area.

6.1 Thesis Summary

In Chapter 1, a concise summary on the background and issues of wideband spectrum
sensing for cognitive radios in non-Gaussian noise environments was initially presented.
A literature survey on the topics related to the research conducted in this work, such as
multicarrier modulation schemes and spectrum sensing techniques, was also presented.

In Chapter 2, selected spectrum sensing techniques for a wideband channel were covered.
The chapter started with a formulation of the wideband CR spectrum sensing problem and
the fundamentals of PU signal detection were presented. Then, detection algorithms based
on PU cyclostationary features and matched filter detection were briefly outlined. Finally,
techniques optimized for Gaussian and non-Gaussian noise, where no a priori knowledge
of PU signal characteristics is needed, such as the energy and Rao detector were discussed
in detail.

In Chapter 3, we delved on the topic of multicarrier modulation which serves as a basis
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for wideband spectrum sensing. An overview of MCM was briefly covered. Then, the
operation of the traditional OFDM system and recently introduced UFMC system were
discussed.

In Chapter 4, the wideband spectrum sensing model of the Rao detector optimized for
non-Gaussian noise environments intergated into the UFMC scheme was presented. For
the sake of comparison, we also incorporated the Rao detector into the OFDM scheme.
Specifically, we showed the test statistics for the UFMC and OFDM-based receiver with
Rao detection in non-Gaussian noise.

In Chapter 5, the experiments used to simulate the UFMC-based wideband system for
PU detection were described. It was shown, through ROC curves, that the Rao detector
integrated in the UFMC system outperforms the traditional energy detector incorporated
into OFDM in scenarios where non-Gaussian noise is present.

6.2 Future Work

This thesis showed ways to exploit multicarrier schemes with filtering in order to improve
wideband channel spectrum sensing performance. However, there is room for further im-
provement to channel sensing techniques in the CR context. Possible directions for future
work based on this thesis may include the following:

• It is possible to employ cooperative sensing as solution to overcome the effect of
channel fading [1]. That is, collaborative CRs exploit spatial diversity in that each
of them observes their received signal under independent fading, and then make a
collaborative decision thereby increasing the probability of detection considerably.
Specifically, a possible scenario is that CRs share information among each other and
make their own decisions as to which part of the spectrum they can use

• It is also possible to have CRs equipped with multiple antennas such that the effect
of fading in the channel between PU and SU can be reduced [50]. The cognitive
SU is equipped with multiple antennas that will sense the PU, where each antenna
experiences different fading, thereby offering several observations of the same signal
in a similar fashion to collaborative sensing.

• One possible approach to improve the performance of wideband sensing is to perform
a multiband joint detection of the PU signal, rather than processing one band at the
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time. The spectrum sensing problem can be formulate as an optimization problem
by combining test statistics from multiple subbands and performing an optimal joint
detection, where the goal is to chose the decision threshold for the various subbands
with the aim to maximize the aggregate opportunistic throughput of the CR system
[24].
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Appendix A

Derivation of Mean and Variance of TE
Under Gaussian Noise

In this appendix, we show the derivation of E[TE{Rj(n)}|H0,j], Var[TE{Rj(n)}|H0,j],
E[TE{Rj(n)}|H1,j] and Var[TE{Rj(n)}|H1,j] under Gaussian noise.

A.1 Derivation of E[TE{Rj(n)}|H0,j]

E[TE{Rj(n)}|H0,j] = E[
N−1∑
n=0

|Wj(n)|2]

=
N−1∑
n=0

E[|Wj(n)|2]

Using (2.22), we get that:

E[TE{Rj(n)}|H0,j] = Nσ2
w (A.1)
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A.2 Derivation of V ar[TE{Rj(n)}|H0,j]

Var[TE{Rj(n)}|H0,j] = E[TE{Wj(n)}2]− E[TE{Wj(n)}]2

=
N−1∑
n=0

N−1∑
m=0

E[|Wj(n)|2|Wj(m)|2]−N2σ4
w (A.2)

Assuming the noise samples Wj(n) are independent and identically distributed and using
(2.22), we get that:

N−1∑
n=0

N−1∑
m=0

E[|Wj(n)|2|Wj(m)|2] =
⎧⎨
⎩3Nσ4

w for n = m

N(N − 1)σ4
w for n 
= m

(A.3)

Following this, we obtain:

Var[TE{Rj(n)}|H0,j] = 3Nσ4
w +N(N − 1)σ4

w −N2σ4
w

= 2Nσ4
w (A.4)

A.3 Derivation of E[TE{Rj(n)}|H1,j]

E[TE{Rj(n)}|H1,j] = E[
N−1∑
n=0

|HjSj(n) +Wj(n)|2]

=
N−1∑
n=0

E[|HjSj(n) +Wj(n)|2]

= N
(
E[|HjSj(n)|2]

+ 2|Hj|E[|Sj(n)|]E[|Wj(n)|] + E[|Wj(n)|2]
)

(A.5)

Assuming the noise samples Wj(n) have zero mean and are independent from the PU signal
Sj(n), we get that:

E[TE{Rj(n)}|H1,j] = N(|Hj|2 + σ2
w) (A.6)
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A.4 Derivation of V ar[TE{Rj(n)}|H1,j]

Var[TE{Rj(n)}|H1,j] = E[TE{Rj(n)}2]− E[TE{Rj(n)}]2
= E[TE{HjSj(n) +Wj(n)}2]−N2(|Hj|2 + σ2

w)
2

=
N−1∑
n=0

N−1∑
m=0

E[|HjSj(n) +Wj(n)|2|HjSj(m) +Wj(m)|2]

−N2(|Hj|2 + σ2
w)

2 (A.7)

Using (A.6), we get that:

N−1∑
n=0

N−1∑
m=0

E[|HjSj(n) +Wj(n)|2|HjSj(m) +Wj(m)|2]

=

⎧⎪⎪⎨
⎪⎪⎩

N−1∑
n=0

E[|HjSj(n) +Wj(n)|4] for n = m

N(N − 1)(|Hj|2 + σ2
w)

2 for n 
= m

(A.8)

Following this, we obtain:

Var[TE{Rj(n)}|H1,j] =
N−1∑
n=0

E[|HjSj(n) +Wj(n)|4]

−N(|Hj|2 + σ2
w)

2 (A.9)

Following this, we obtain:

Var[TE{Rj(n)}|H1,j] =
N−1∑
n=0

E[|HjSj(n) +Wj(n)|4]

−N(|Hj|2 + σ2
w)

2 (A.10)

Under the low SNR assumption, we can assume that |Sj(n)| � |Wj(n)|. Hence, we can
approximate E[|HjSj(n)+Wj(n)|4] by using its Taylor series expansion around Wj(n) and
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ignoring higher-order terms [22]. Following this operation, we obtain:

E[|HjSj(n) +Wj(n)|4] ≈ E[|Wj(n)|4] + 4E[|HjSj(n)|2]E[|Wj(n)|2]
= 3σ4

w + 4|Hj|2σ2
w (A.11)

Finally, we have:

Var[TE{Rj(n)}|H1,j] = 3Nσ4
w + 4N |Hj|2σ2

w −N(|Hj|2 + σ2
w)

2

= N
[
2σ4

w + 2|Hj|2σ2
w − |Hj|4

]
(A.12)
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Appendix B

Derivation of Mean and Variance of TE
Under GGD Noise

In this appendix, we show the derivation of E[TE{Rj(n)}|H0,j], Var[TE{Rj(n)}|H0,j],
E[TE{Rj(n)}|H1,j], and Var[TE{Rj(n)}|H1,j] under GGD noise.

B.1 Derivation of E[TE{Rj(n)}|H0,j]

E[TE{Rj(n)}|H0,j] = E[
N−1∑
n=0

|Wj(n)|2]

=
N−1∑
n=0

E[|Wj(n)|2]

Using (2.31), we get that:

E[TE{Rj(n)}|H0,j] = Nσ2
w (B.1)
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B.2 Derivation of V ar[TE{Rj(n)}|H0,j]

Var[TE{Rj(n)}|H0,j] = E[TE{Wj(n)}2]− E[TE{Wj(n)}]2

=
N−1∑
n=0

N−1∑
m=0

E[|Wj(n)|2|Wj(m)|2]−N2σ4
w (B.2)

Assuming the noise samples Wj(n) are independent and identically distributed and using
(2.31), we get that:

N−1∑
n=0

N−1∑
m=0

E[|Wj(n)|2|Wj(m)|2] =
⎧⎨
⎩N Γ(1/β)

Γ(3/β)2
Γ(5/β)σ4

w for n = m

N(N − 1)σ4
w for n 
= m

(B.3)

Following this, we obtain:

Var[TE{Rj(n)}|H0,j] = N
Γ(1/β)

Γ(3/β)2
Γ(5/β)σ4

w +N(N − 1)σ4
w −N2σ4

w

= Nσ4
w

( Γ(1/β)

Γ(3/β)2
Γ(5/β)− 1

)
(B.4)

B.3 Derivation of E[TE{Rj(n)}|H1,j]

E[TE{Rj(n)}|H1,j] = E[
N−1∑
n=0

|HjSj(n) +Wj(n)|2]

=
N−1∑
n=0

E[|HjSj(n) +Wj(n)|2]

= N
(
E[|HjSj(n)|2]

+ 2|Hj|E[|Sj(n)|]E[|Wj(n)|] + E[|Wj(n)|2]
)

(B.5)

Assuming the noise samples Wj(n) have zero mean and are independent with PU signal
Sj(n), we get that:

E[TE{Rj(n)}|H1,j] = N(|Hj|2 + σ2
w) (B.6)
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B.4 Derivation of V ar[TE{Rj(n)}|H1,j]

Var[TE{Rj(n)}|H1,j] = E[TE{Rj(n)}2]− E[TE{Rj(n)}]2
= E[TE{HjSj(n) +Wj(n)}2]−N2(|Hj|2 + σ2

w)
2

=
N−1∑
n=0

N−1∑
m=0

E[|HjSj(n) +Wj(n)|2|HjSj(m) +Wj(m)|2]

−N2(|Hj|2 + σ2
w)

2 (B.7)

Using (B.6), we get that:

N−1∑
n=0

N−1∑
m=0

E[|HjSj(n) +Wj(n)|2|HjSj(m) +Wj(m)|2]

=

⎧⎪⎪⎨
⎪⎪⎩

N−1∑
n=0

E[|HjSj(n) +Wj(n)|4] for n = m

N(N − 1)(|Hj|2 + σ2
w)

2 for n 
= m

(B.8)

Following this, we obtain:

Var[TE{Rj(n)}|H1,j] =
N−1∑
n=0

E[|HjSj(n) +Wj(n)|4]

−N(|Hj|2 + σ2
w)

2 (B.9)

Following this, we obtain:

Var[TE{Rj(n)}|H1,j] =
N−1∑
n=0

E[|HjSj(n) +Wj(n)|4]

−N(|Hj|2 + σ2
w)

2 (B.10)

Under low SNR assumptions, we can assume that |Sj(n)| � |Wj(n)|. We can approximate
E[|HjSj(n) + Wj(n)|4] by using its Taylor series expansion around Wj(n) and ignoring
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higher-order terms [22]. Following this operation, we obtain:

E[|HjSj(n) +Wj(n)|4] ≈ E[|Wj(n)|4] + 4E[|HjSj(n)|2]E[|Wj(n)|2]

=
Γ(1/β)

Γ(3/β)2
Γ(5/β)σ4

w + 4|Hj|2σ2
w (B.11)

Finally, we have:

Var[TE{Rj(n)}|H1,j] = N
Γ(1/β)

Γ(3/β)2
Γ(5/β)σ4

w + 4N |Hj|2σ2
w −N(|Hj|2 + σ2

w)
2

= N
[( Γ(1/β)

Γ(3/β)2
Γ(5/β)− 1

)
σ4
w + 2|Hj|2σ2

w − |Hj|4
]

(B.12)

Furthermore, the the mean and variance of TE,j under H0,j and H1,j subject to AWGN, as
derived in appendix A, can also be obtained by setting the noise shaping factor β to 2 in
the above equations.
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