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Abstract

This work considers the distortion created by an unmatched transmission line system at the re-

ceiver of a military data radio. The installation requirements for these types of systems are such

that manual tuning of the antenna is impracticable. The antenna impedance may not match that of

the cable and radio receiver, resulting in electrical reflections in the cable. These reflections cre-

ate intersymbol interference (ISI), which distorts the received signal and limits the performance

of the communication link.

It is shown that this distortion can be modelled using only four parameters: the transit time,

the amplitude and the angle of the reflection coefficient and the synchronization offset. A joint

maximum likelihood (ML) block estimator for the parameters is presented with the correspond-

ing Cramér-Rao bound. The performance of the estimator is evaluated using simulations and

compared to the bound. A more practical iterative estimator algorithm for the joint estimation of

the parameters is also suggested.

To compensate for the distortion at the receiver, a filter design technique based on the esti-

mated parameters is introduced. The method, obtained from the least squares procedure, produces

an approximate inverse filter for the channel, minimizing the distortion at the receiver. Results

comparing the proposed method to traditional adaptive equalizers are presented. They show that

the minimum mean squared error (MSE) achieved by the proposed method approaches the power

of the noise, the minimum value attainable.
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Sommaire

Ce mémoire examine les effets de la distorsion créée par une mauvaise adaptation de l’impédance

d’une antenne connectée par un câble à un récepteur radio de type militaire. L’ajustement manuel

de l’antenne est impraticable dû aux exigences d’installation. Ainsi, l’impédance de l’antenne

n’est pas nécessairement adaptée à celle du câble et du récepteur radio, résultant en des réflex-

ions électriques dans le câble. Ces réflexions créent du brouillage intersymbole qui limite la

performance du lien radio.

Il est démontré que cette distorsion peut être décrite entièrement avec l’utilisation de quatre

paramètres: le temps de propagation, l’amplitude et l’angle du coefficient de réflexion et le délai

de synchronisation. Un estimateur commun à maximum de vraisemblance (ML) en bloc est

présenté avec la borne de Cramér-Rao (CRB) correspondante. La variance de l’estimateur ML

est évaluée par simulations et les résultats sont comparés à la borne. Un algorithme d’estimateur

itératif plus pratique est également suggéré.

Afin de réduire les effets de la distorsion au récepteur, une méthode de synthèse de filtre de

compensation utilisant les paramètres estimés est présentée. Le filtre de compensation créé est

une approximation de l’inverse du canal (entre l’antenne et le récepteur), qui permet de minimiser

la distorsion au récepteur. Les résultats comparent le système de compensation proposé avec cer-

taines autres techniques d’égalisation de canal plus traditionnelles. Ils démontrent que l’écart

quadratique moyen obtenu avec la méthode proposée approche la puissance du bruit, valeur min-

imum à atteindre.
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Chapter 1

Introduction

In this Chapter, the problem under consideration in this thesis is introduced, followed by a sur-

vey of the relevant literature. Then, the research objectives and methodology are exposed, the

contributions are listed and finally, an outline of the thesis organization is given.

1.1 Problem Overview

In this work, a very specific radio unit designed for military communications is considered. This

radio system provides a capacity of up to 8Mbps over 40km links, with a reliability better than

10−8 residual bit error rates, compatible with ATM requirements. The radio unit’s reliability

combined with its ease of use and flexibility makes it a leader in today’s military communication

systems.

The radio unit of interest is used by the military for general data traffic like digital speech,

video and computer data transmission. The radio unit is usually located in a military communi-

cation truck, from which it is deployed. In a conflict situation, the location of the communication

vehicle may change on a daily basis. For these reasons, the military requires that the radio link

be installed in less that half an hour with the help of only three people. The work involved in

setting the radio system is minimized; it consists of mounting the antenna on top of an elevated

structure, connecting the cable between the antenna and radio, and selecting the radio operating

frequency and related parameters.

The general data transmission problem consists of sending information through a channel and

recovering the original data (see Fig 1.1). The digital information may originate from a variety

of sources such as digital speech, computer file, digital video etc. The channel usually distorts
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the transmitted signal and then noise is added to it. For this reason, the receiver, in general,

cannot perfectly recover the transmitted data. This imperfection may cause errors in the decoded

information which may have dramatic consequences in certain applications.

This work focuses on the distortion caused by the possible impedance mismatch of the

antenna-cable-radio connection in the previously described radio system. Normal installation

of a fixed wireless communication system involves tuning of the antenna-cable-radio connection.

If the impedance of the antenna is not matched to that of the cable and radio receiver, there will

be electrical reflections in the cable, as illustrated in Fig. 1.2. Therefore, in most commercial sys-

tems, the antenna is usually tuned manually as part of the installation process to minimize those

reflections. However, manual adjustments of the antenna is impractical in the particular applica-

PSfrag replacements

Antenna Cable Radio

Reflections

Fig. 1.2 Reflections from Impedance Mismatch

tion under study because it would most certainly violate the requirements of a limited installation

time. Therefore, reflections in the antenna cable are bound to occur. These reflections will create

distortion at the receiver.

Indeed, because the radio operates at a very high data rate (up to2 × 106 symbols/second)

and because the time delay between the incoming wave and its associated reflections is short due

to the limited length of the cable, significant distortion or intersymbol interference (ISI) will be

present at the receiver. Unfortunately, it is not possible to design an antenna that would only
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require tuning at the manufacture because the impedance of the antenna is highly dependent

on the operating frequency, which is subject to frequent changes. Furthermore, this radio unit

operates in two distinct bands, ranging from 225 to 400 MHz and 1.3 to 2.7 GHz for the first

and second band respectively. The frequency range is so large that it is very difficult, if not

impossible, to build an antenna that would have the same properties for the entire range in each

band.

Consequently, the particular application of this wireless radio system is such that distortion

of the received signal caused by impedance mismatch on the antenna-cable-radio connection is

inevitable. The characteristics of this distortion depend on the length of the cable or transmis-

sion line, the frequency of operation, the antenna type, the receiver structure, the temperature,

the cable type and other parameters. Not only this distortion is inevitable but also, since this

radio normaly operates with large signal-to-noise ratio, it is the major source of performance

degradation.

The problem under study therefore consists of designing a compensation filter or system that

minimizes or eliminates this performance limitation. The radio demodulator already has the

hardware necessary for digital filtering of the received signal. More specifically, the modem

possesses a quadrature 8–tap finite impulse response (FIR) equalizer located after the matched

filter. The FIR filters are used as part of a non-optimal proprietary equalization scheme for

impedance mismatch. The new compensating filter should preferably be designed to utilize the

hardware available.

It is shown in this thesis through mathematical analysis of the channel model that its properties

can be fully described by a finite number of parameters: the reflection coefficient, the time delay

between reflections and the synchronization offset. It is therefore proposed here to approach the

problem from a parameter estimation perspective. The channel parameters are to be estimated

from the received signal. Based on the estimates and knowledge of the channel structure, a

compensation filter will be designed on-line and loaded into the equalizer already present in the

radio receiver. The procedure is illustrated in Fig. 1.3.

1.2 Literature Survey

The problem introduced above is very specific; it is in fact so specific, that finding articles on

this exact topic in the literature is very difficult. Similar problems can be found in other fields

of engineering like the triple transit echo problem related to surface acoustic waves in semicon-
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ductors [1, 2]. Although these problems are related, they belong to different fields of study in

electrical engineering and have quite different solutions.

It could be said that the problem of interest here belongs to the class of general adaptive

channel equalization. However, the structure of the channel is well known a-priori. This infor-

mation should be used in the design of the compensation filter as opposed to the general problem,

where no information about the channel is available. Thus, general adaptive channel equalization

techniques will not take advantage of this information.

Nevertheless, some general adaptive equalization algorithms may be used to compensate for

the distortion. Many adaptive filter algorithms have been applied to digital transmission. In

particular, theleast mean squareor LMS algorithm can be applied to channel equalization [3] for

QAM systems.

The LMS adaptive filter algorithm is often considered as the “standard” algorithm to which

others algorithms are benchmarked to. Several algorithms based on LMS have been derived to

achieve certain objectives like complexity reduction and better convergence. Example of these

include the sign algorithm [4], the normalized LMS algorithm (NLMS), the affine projection al-

gorithm (APA) and its fast version [5], the frequency-domain LMS algorithm, etc. Beside the

LMS, another very popular adaptive filter algorithm is the recursive least square (RLS) algo-

rithm and related modified algorithms such as the fast RLS (FRLS) and the frequency-domain

approximate RLS algorithm [6].

More recently, a new category of blind adaptive filters designed specifically for data trans-

mission has been developed. TheConstant Modulus Algorithm(CMA) [7] has attracted much

interest [8]. Its low complexity and convergence properties without the need for training (hence

blind) are very attractive properties for high speed modems.
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The approach that is proposed here involves the use of parameter estimation techniques. Es-

timation theory is a well-developed topic (e.g. see [9]), which originates from basic probability

theory. One of the general objectives of parameter estimation is to obtain an estimate of a param-

eter, based on a set of many observations and a probability model. Estimation theory defines a

mathematical base to obtain estimation functions from the probability model and to analyze the

performance of the estimate. Standard procedures to obtain and analyze an estimator are straight-

forward and covered in many writings [9,10,11]. Additionally, the general procedure for this part

of our work is based on relatively recent articles with similar objectives: [12,13].

1.3 Objectives Approaches and Contributions

The main objective of this research is to incorporate channel information into the design of the

equalizer or compensation filter and analyze its performance. In addition, the proposed method

should be compared to other more general channel equalization techniques. The objective is then

to determine if the proposed method is advantageous compared to general approaches.

The work may be divided in smaller parts so that specific objectives can be identified sep-

arately. This includes channel modelling, parameter estimation, compensation filter design and

performance evaluation.

For the channel model, it is required to develop a complete accurate mathematical model for

the distortion. The model must be accurate enough to closely represent the channel in the system

and must be simple enough to be meaningful. Ideally, the channel should be parameterized so

that its characteristics can be fully determined by a small set of parameters.

Then, an estimation procedure for the channel parameters needs to be developed and evalu-

ated. It is desirable to have a estimator function that gives accurate estimates of the parameters

because the estimates will be used to create a compensation filter for the channel. Bad estimates

will inevitably result in a poor compensation filter. Therefore, the maximum likelihood (ML)

estimator is developed along with the corresponding Cramér-Rao bound (CRB) on the estima-

tor variance. The variance of the estimates obtained using the ML estimator will be measured

through simulations and compared to the CRB.

The compensation filter needs to be designed such that the channel distortion effects are

minimized or eliminated. Since the filter is limited in length to a small number of coefficients in

the present application, it will be necessary to use a filter design technique that approximates the

desired frequency response of the filter. The design method must be simple enough so that it can
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be performed on-line.

Finally, it is required to evaluate the performance of this compensation system. The evaluation

will be performed through a comparison with other channel equalization techniques such as the

aforementioned NLMS. The evaluation should be performed over a large number of different

channels and operating conditions to obtain a realistic measure of performance.

To achieve the objectives, the problem will first be analyzed mathematically. Then, simula-

tions will be performed throughout the work to validate the theoretical findings. The numerical

analysis computer toolMATLABand the programming language C will be used.

The results obtained in this thesis show that it is possible to derive a reliable set of parameter

estimates and design a compensation filter to equalize the channel distortion. The proposed com-

pensation system is shown to perform better than some suboptimal adaptive channel equalizers.

As such, the contributions of this work to the body of research in the telecommunications and

signal processing areas can be summarized as follow. First, the ML estimator for the unmatched

transmission line system parameters, i.e. the reflection coefficient, the time-delay between reflec-

tions and the synchronization offset is derived. Then, a more practical ML iterative estimator is

developed. The Cramér-Rao bound for the ML estimator is derived and finally, a compensation

filter design technique that utilizes the estimated parameters for the equalization of the unmatched

system is described.

1.4 Thesis Organization

A detailed description of the problem is presented in Chapter 2. Basic transmission line theory

is introduced to assist the modelling of the reflections in the cable. Mathematical models for the

channel and the communication system are developed. The communication system under study

is detailed and simplified to an equivalent lowpass model. The statistics of the received symbols

are discussed.

The concepts of parameter estimation are then introduced in Chapter 3. A parameter estima-

tion technique for the channel parameters is developed and analyzed. The probability model for

the parameters based on the received samples is derived. Practical considerations are discussed

including a proposed iterative implementation of the ML estimation procedure. The block joint

ML estimator is also discussed and the Cramér-Rao lower bound is derived.

Compensation filter design is discussed in Chapter 4, which begins with a discussion of the

ideal channel equalizer. Design issues are then discussed, in particular the implementation of
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fractional delays in discrete-time systems is considered. The procedure to obtain the coefficients

of the compensation filter is then examined.

The results comparing the standard channel equalization techniques to the proposed algorithm

solution are presented in Chapter 5 as well as some results on the parameter estimation procedure.

Finally, Chapter 6 summarizes and concludes this work.
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Chapter 2

Background and Problem Definition

In this Chapter, necessary background material is introduced along with a definition of the specific

problem under consideration. The chapter starts with a brief introduction to transmission line

theory. This is followed by a description of the channel under consideration and its properties.

Then, the communication model that will be used throughout this work is studied. Finally, the

problem of interest in this thesis is defined in formal terms.

2.1 Introduction to Transmission Line Theory

In Chapter 1, the source of the distortion at the receiver is introduced as an impedance mismatch

in the receiver-cable-antenna system (see Fig. 1.2). To model and analyze this source of dis-

tortion, understanding electric transmission line properties, and more specifically reflections, is

essential.

An electric transmission line is a passive physical device, consisting of two parallel con-

ductors, that carries an electromagnetic signal from one end to the other, usually attenuating its

amplitude and modifying its phase. Not all pairs of parallel conductors are transmission lines;

conductors that are much smaller in length than the shortest wavelength of the signal they carry

are not considered transmission lines.

Since the signals propagating over transmission lines are often modulated, as is the case

here, at some carrier frequency, sayωc, they are typically modelled using phasor to simplify

the notation. Consider the semi-infinite transmission line illustrated in Fig. 2.1. Using phasor

notation, the voltagev(z, t), referenced to cosine, measured at locationz and timet on the semi-
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infinite transmission line is expressed as

v(z, t) = Re[V (z)ejωct], (2.1)

whereV (z) is the voltage at distancez on the line, now independent of time. This representation

allows us to make abstraction of the carrier in the time domain.

The properties of a transmission line are modelled using only a few parameters, which have

an implicit dependence on the carrier frequencyωc. The propagation constant, denoted byγ,

determines how the transmission line attenuates and changes the phase of a sinusoidal wave with

distance:

γ = α + jβ, (2.2)

whereα is theattenuation constant(Np1/m), which characterizes attenuation per meter, andβ

is thephase constant(rad/m), a measure of phase shift per meter [14]. Specifically, if a source

voltageVS is applied at the input of a semi-infinite transmission line, the voltage on the line at

distancez from the source becomes:

V (z) = VSe
−γz. (2.3)

The ratio of voltage to current at any point on a transmission line is called thecharacteristic

impedanceand is denoted byZ0:

Z0 =
V (z)

I(z)
. (2.4)

Note that it is called “characteristic” because for a semi-infinite transmission line (with no reflec-

1An attenuation of 1 Neper (Np) applied to a wave corresponds to its amplitude being decreased toe−1
≈ 0.368

of its original value.
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tions), this ratio is constant and consequently independent ofz. Also, note thatZ0 andγ both

characterize the physics of the transmission line structure as they are independent of the position

on the line.

For a semi-infinite transmission line, it is true that the ratio of voltage to current is constant and

equals the characteristic impedance. However, when the transmission line is terminated by some

load, it is not generally the case anymore. Specifically, when a transmission line is terminated by

a load impedance (ZL) different from the characteristic impedance of that line (Z0), a reflection

occurs. Two travelling waves then exist on the line; an incident wave, going from the source to

the load and a reflected wave, going from the load back to the source.

The ratio of reflected to incident voltage wave is given in phasor notation by thevoltage

reflection coefficient[14]:

ΓL =
ZL − Z0

ZL + Z0

= |ΓL|ejθΓ . (2.5)

In general,ΓL is complex and|ΓL| < 1. From (2.5), it is obvious that if the impedances match

(i.e.ZL = Z0), ΓL is zero and no reflection occurs.

Figure 2.2 illustrates a simple transmission line system with finite lengthLc, characteristic

impedanceZ0, voltage sourceVS, source impedanceZS and load impedanceZL. If the source

Z

PSfrag replacements
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Fig. 2.2 Transmission Line Model

and load impedances are not assumed to be matched to the characteristic impedance of the trans-

mission line, reflection occurs on both ends of the transmission line.

When the source is turned on, the voltageV0 that first appears at the source end of the trans-

mission line is given by simple voltage division:

V0 = VS
Z0

Z0 + ZS
. (2.6)
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This voltage travels on the transmission line until it hits the load. Then, it gets reflected and two

waves now coexist on the transmission line; a forward and backward travelling wave. The total

voltage at any point is given by the sum of the two wave voltages.

LetV n+(z) andV n−(z) denote thenth reflected forward (z increases with time) and backward

(z decreases with time) travelling wave voltages respectively, measured at distancez from the

source.V 0+(z) becomes the first forward travelling incident wave voltage andV 0−(z) the first

backward travelling wave voltage. LetΓS represent the source reflection coefficient such that

ΓS =
ZS − Z0

ZS + Z0

. (2.7)

Then, from the discussion above and the definitions ofΓL, ΓS andV0, V n+(z) andV n−(z) can

be expressed as

V n+(z) = V0(ΓLΓS)ne−γ(2nLc+z) (2.8)

V n−(z) = V0(ΓLΓS)nΓLe
−γ(2n+1)Lce−γ(Lc−z) (2.9)

The voltage measured at the load in steady-state is given by the sum of the forward and backward

travelling wave voltages at positionz = Lc, summed over all reflections i.e:

VL =
∞∑
n=0

(1 + ΓL)V0(ΓLΓS)ne−γ(2n+1)Lc . (2.10)

Using a well known property of the geometric series, this last equation simplifies to

VL = V0e
−γLc 1 + ΓL

1− ΓLΓSe−γ2Lc
, (2.11)

which holds provided that|ΓLΓSe
−γ2Lc| < 1 which is always the case since|ΓL| < 1, |ΓS| < 1

and|e−γ2Lc | = 1 by definition.

2.2 Channel Description

In the previous section, the voltage relation between the source and the load for the particular

transmission line system of Fig. 2.2 was developed. This system may be regarded as the one

illustrated in Fig. 1.2. The source would corresponds to the antenna, the transmission line to the
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physical cable and the load to the radio receiver. The antenna-cable-receiver connection is then

considered as a channel that distorts the signal at the receiver. A mathematical description of this

channel is required to devise a mechanism to recover the data more efficiently.

To obtain such description, it is first noted that the bandwidth used by radio transceiver is

very small compared to the carrier frequency. In fact, the radio unit considered operates in two

bands, from 225 to 400 MHz for the first band and 1.3 to 2.7 GHz for the second band, and

has a transmission bandwidth of at most 5MHz at the maximum rate. Therefore, it is reasonable

to assume that the frequency-dependent parameters are fixed for a small bandwidth around the

carrier (e.g. see for example the specifications for a commercial microwave cable [15]).

Then, it is observed that the length of the lineLc may be expressed in terms of time delays.

Letµ denote the wave propagation velocity in the transmission line. Ifτ denotes the time required

for the wave to propagate from one end of the line to the other, i.e. a distanceLc, then

τ =
Lc
µ
. (2.12)

Let us introduce the phase constant [14],

β =
ω

µ
, (2.13)

whereω = 2πf is the wave angular frequency. Using (2.2), (2.12) and (2.13), the factorγLc

appearing in (2.11) can be expressed as follows

γLc = αLc + jωτ. (2.14)

With the help of (2.14), (2.11) may be written in the form of a frequency dependent transfer

function as follows:

H(ω) ,
VL
V0

= e−αLce−jωτ
1 + ΓL

1− ΓLΓSe−α2Lce−jω2τ
. (2.15)

Introducing the complex-valued constants

ψ = ΓLΓSe
−α2Lc (2.16)

φ = e−αLc(1 + ΓL), (2.17)
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thenH(ω) may be expressed more compactly as

H(ω) =
φe−jωτ

1− ψe−jω2τ
, (2.18)

whereψ andφ are assumed to be independent ofω in the carrier neighborhood. It can be observed

fromH(ω) that its magnitude response is periodic in frequency, with a period of∆f = 1
2τ

= µ
2Lc

.

Example

Figure 2.3 shows the magnitude and phase responses for a hypothetical system, with cable length

Lc = 25m, reflection coefficientsΓS = −6dB andΓL = −10dB, attenuationα = −5dB/m

and wave propagation velocityµ = 2.5 × 108m/s (typical for the cable types used). The carrier

frequency is2GHz, corresponding to the middle of the second band and the system bandwidth

is 5MHz. As seen in Figure 2.3 the frequency responseH(ω) is periodic inω with a period of
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5MHz, which is equal to µ
2Lc

.
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Note that this is an over-simplified example; indeed the reflection coefficients were taken as

real and positive while in practice, they can be anywhere inside the unit circle of the complex

plane. The response can thus vary greatly from what is shown in Fig. 2.3. Nevertheless, it gives

a good idea of the general shape of the channel’s frequency response.

2.3 Communication System Model

In this section, the mathematical model for the communication system under investigation is

developed and its baseband representation is discussed. To begin, the characteristics of the com-

munication system are described and then the lowpass equivalent representation is derived.

2.3.1 Communication System Characteristics

The system under consideration2 consists of a wireless radio system capable of transmitting at

a rate up to 8Mb/s. It uses trellis-coded modulation (TCM) with 32 quadrature amplitude mod-

ulation (QAM) symbols. TCM is a coding technique [16] that is outside of the scope of this

work and will not be considered. Figure 2.4 illustrates the system’s block diagram. The different

components present in the block diagram are described below, starting from the binary source up

to the binary sink at the receiver output.

• Binary source: Source of binary digits to be transmitted. It is assumed that the two binary

symbols have the same probability of occurrence. The bits are generated at a rate of 8Mb/s.

• MAP: This block groups binary digits together and maps them into a corresponding QAM

symbolAk, with k denoting a time index. This symbol is composed of “real” and “imag-

inary” parts corresponding to the in-phase (top) and quadrature (bottom) branches in the

block diagram. The symbols are forwarded to the pulse shaping function periodically, ev-

ery T = 0.5 × 10−6 second. Notice that an extra bit is added for the TCM, which is not

considered in this work. The output symbol rate is therefore2 × 106 symbols per second

or 2Ms/s.

• p(t): The pulse shaping function. It has the spectrum characteristics of the square root of a

2The following description of the radio system was obtained from: P. Perodeau, Private Communication, CMC
Electronics Inc., July 2000.
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raised cosine. Thus,P (ω) =
√
G(ω), whereG(ω) is given by

G(ω) =


T, |ω| < 1−β

T
π

T
2

{
1 + cos( T

2β
(|ω| − 1−β

T
π))
}
, 1−β

T
π ≤ |ω| ≤ 1+β

T
π

0, |ω| > 1+β
T
π,

(2.19)

whereβ is called therolloff factor,0 ≤ β ≤ 1 andT is the symbol period, defined above.

In the time-domain, the expressions forp(t) andg(t) are given respectively by

p(t) =
(4βt/T ) cos (π(1 + β)t/T ) + sin (π(1− β)t/T )

(πt/T )[1− (4βt/T )2]
, (2.20)

g(t) = sinc(
πt

T
)

cos(πβt
T

)

1− 4β2t2

T 2

. (2.21)

It can be noted from (2.19) that the raised cosine frequency response is limited to|ω| < W ,

whereW is the system’s bandwidth3 defined as

W =
(1 + β)π

T
. (2.22)

Notice that according to the given definition of bandwidth, the modulated (bandpass) raised

cosine has bandwidth2W .

• Modulation: The following step consists of modulating the signal. The in-phase component

(top branch) is modulated at frequencyωc directly via multiplication withcos(ωct). The

quadrature component (bottom branch) is also modulated atωc but is phase shifted by

−π/2 with respect to the in-phase component. The two signals are then added together (no

information is lost since the two signals are in phase-quadrature).

• Line-of-sight (LOS) Delay: This is the physical channel between the two antennas. Since

a line-of-sight (LOS) is assumed with no multipath components, it consists of a pure de-

lay, with no distortion. This assumption holds in the present context where the installation

procedure requires that the antenna be installed in such a way as to minimize the multipath

3In this thesis, the bandwidth is defined as the extent of significant spectral content of the signal for positive
frequencies [17].
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reflections (e.g. the antenna is placed behind a blocking structure like a truck or small build-

ing in such a way as to prevent as much multipath components as possible from reaching

the antenna while leaving the direct path unaffected).

• H(ω): The channel impulse response created by reflections in the antenna-cable-radio

connection. The corresponding frequency response is defined in (2.18).

• n(t): Narrowband noise, centered around the carrier frequencyωc with bandwidth2W =
2(1+β)π

T
and flat power spectral density (PSD) of amplitudeNo/2 (see section 2.4).

• Demodulation: Coherent demodulation with perfect phase synchronization is assumed. In

practice, aphase locked loopis in place to ensure carrier tracking. The demodulation step

separates the signal from the cable back into its in-phase (top) and quadrature (bottom)

components. The factors of2 normalize the input signal so that the quadrature components

are scaled correctly. In practice, this is implemented usingautomatic gain controllers

(AGC).

• pMF(t): These blocks represents the matched filters, selected to ensure a maximum peak

signal-to-noise ratio (SNR) at the receiver.

• Sampler: Sampling and analog to digital conversion (A/D) allow the signal to be processed

numerically. The analog signals are sampled at twice the baud rate i.e.T/2, synchronized

with the middle of the symbol and then converted to a digital form. In this work, the

following assumptions are made:

i. the synchronization is not perfect and creates a time offset in the received signal,

denoted byε. This synchronization offset is to be incorporated in the channel model

as a pure delay.

ii. theA/D devices have high numerical precision, although in practice, theA/D con-

verters would be limited to a fixed number of bits, depending on the implementation.

iii. there is no aliasing caused by the sampling operation. Since the system’s bandwidth

is limited to the raised cosine bandwidth, it can be easily shown that a sampling rate

of twice the baud rate guarantees no aliasing.
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After theA/D conversion, the top and bottom branches are merged into a single complex

entity, the in-phase and quadrature component corresponding respectively to its real and

imaginary part.

• Equalizer (c[m]): this is the filter that compensates for the distortion caused by the channel

H(ω). At the equalizer output, the signal is sampled at the baud rate, i.e.1/T .

• Decision device: this device decides which symbol was the most probably sent, given what

has been received (using a shortest distance algorithm). The result is an approximation to

the symbol sent which is denoted bŷAk.

• Symbol un-map: this device un-maps the symbol received into a sequence of binary digits.

• Binary Sink: this is the binary information’s final destination.

2.3.2 Equivalent Lowpass Representation

Most communication systems use some sort of modulation to transfer information through a

bandlimited channel. When the channel bandwidth is much smaller than the modulation carrier

frequency, the system is said to be a narrowband bandpass system. The same definition applies to

signals and in general, narrowband bandpass signals and systems can be represented by a lowpass

equivalent form, which allows abstraction of the carrier modulation. Indeed, this form is more

convenient and efficient to manipulate.

To obtain the lowpass equivalent of a narrowband bandpass signal, the pre-envelope must

be computed, followed by its complex envelope (another name for lowpass equivalent). The

procedure is illustrated in Fig. 2.5 and is explained below.

Consider a real narrowband bandpass signals(t), with frequency content concentrated in a

finite window around a center frequencyωc, as shown in Fig. 2.5(a). The pre-envelope ofs+(t)

is defined as

s+(t) = s(t) + jŝ(t) (2.23)

whereŝ(t) is the Hilbert transform [17] ofs(t). The pre-envelope consists of the original positive

frequency signal spectrum scaled by two with its negative frequencies eliminated as illustrated in

Fig. 2.5(b). The complex envelopẽs(t) of s(t) is given by

s̃(t) = s+(t)e−jωct (2.24)
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and consists of a translation of the pre-envelope spectrum to baseband, as illustrated in Fig. 2.5(c).

In general,̃s(t) is complex valued and it can be expressed as:

s̃(t) = sI(t) + jsQ(t), (2.25)

wheresI(t) andsQ(t) are the so-called in-phase and quadrature components, respectively. The

original bandpass signal can be recovered from its complex envelope using

s(t) = Re
[
s̃(t)ejωct

]
(2.26)

or equivalently from the in-phase and quadrature components:

s(t) = sI(t) cos(ωct)− sQ(t) sin(ωct). (2.27)

Bandpass systems can also be represented in lowpass equivalent form using a similar pro-

cedure [17]. It can be shown that when a narrowband bandpass signals(t) passes through a

bandpass systemh(t), the equivalent lowpass response of the output, sayỹ(t), is obtained using

a normalized convolution (i.e. scaled by1/2):

ỹ(t) =
1

2

∫ ∞
−∞

s̃(τ)h̃(t− τ)dτ (2.28)

=
1

2
(s̃ ∗ h̃)(t) (2.29)

2.3.3 Communication System Lowpass Equivalent

A complete lowpass equivalent for the communication system illustrated in Fig. 2.4 can be de-

veloped, using the concepts introduced in the previous section which allow abstraction of the

modulation. Figure 2.6 illustrates the resulting lowpass equivalent communication system model,

which consists of the following blocks, from the source to the sink: serial binary source (input),

complex symbol mapping, pulse shaping filter, channel, noise source, matched filter, half sym-

bol sampler, equalizer, symbol sampler, non-linear decision device, symbol to binary mapping,

binary sink (output). The details of the derivation of the low-pass equivalent model are discussed

in Appendix A. Only the essential equations and concepts are discussed below.

The output of the complex symbol mapping block is modelled as a sequence of complex

numbersAk(k ∈ Z), wherek denotes the discrete time index. It is convenient to express symbol
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Ak in term of its real and imaginary parts as

Ak = AIk + jAQk (2.30)

The symbolsAk are chosen from a finite alphabet. The set of values they can assume depends

on theconstellationbeing used. The constellation for a particular system is obtained by plotting

all the possible symbols complex amplitudes on the complex plane. The radio system of interest

uses the QAM-32 constellation illustrated in Fig. 2.7. The lowpass equivalent transmitted signal,

s̃(t), consists therefore of a sum of pulsed shaped symbols:

s̃(t) =
∞∑

k=−∞

Akp(t− kT ) (2.31)

whereT is the symbol duration andp(t) is the pulse shaping function. The received signalr̃(t)

at the sampler input may therefore be expressed as

r̃(t) =
1

2
(s̃ ∗ h̃ ∗ pMF)(t) + (ñ ∗ pMF)(t), (2.32)

whereh̃(t) is the channel impulse response,ñ(t) is the noise term,pMF(t) is the matched filter,

i.e. a filter with impulse responsep(T−t), and “∗” denotes convolution. The factor1
2

comes from

the convolution of the two lowpass equivalent signalss̃(t) andh̃(t) (see eq. (2.28). It is shown in
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Appendix A that the received signal after matched filter may be expressed as

r̃(t) =
∞∑

k=−∞

∞∑
l=0

ψlAkg(t− kT − 2lτ) + v(t), (2.33)

whereg(t) is given in (2.21) andv(t) is defined by

v(t) = (ñ ∗ pMF)(t) =

∫ ∞
−∞

ñ(ξ)pMF(t− ξ)dξ. (2.34)

Before equalization, the received signal is sampled at twice the baud rate. The symbol syn-

chronization is not perfect due to the signal distortion. Hence, a synchronization offsetε is

included in the model. Thus, after sampling at twice the baud rate, the discrete-time received

signal is

r[m] =
∞∑

k=−∞

∞∑
l=0

ψlAkg(m
T

2
− kT − 2lτ − ε) + v[m], (2.35)

where the noise termv[m] is given by

v[m] = v(
mT

2
− ε) (2.36)
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andm ∈ Z represents the discrete time index. The synchronization offsetε has no effects on the

noise because it is assumed stationary (see next section).

2.4 Statistical Properties

In this section, the statistical properties of the transmitted symbols and of the noise are discussed.

The symbols transmitted are selected from a discrete set of values, determined by the con-

stellation. The sequence ofAk represents the realization of a random process, consisting of a

sequence of independent and identically distributed (iid) random variables. The individual ran-

dom variables have zero mean and are assumed to be uniformly distributed over the set of points

defined by the constellation (see Fig 2.7). It is further assumed that the random process isergodic

in the mean and in the autocorrelation so that its statistical properties can be approximated from

a finite set of observations [18], i.e.

lim
K→∞

1

K

K−1∑
k=0

Ak = E[Ak] = 0 (2.37a)

lim
K→∞

1

K

K−1∑
k=0

AkA
∗
k+l = E[AkA

∗
k+l] = PAδ[l], (2.37b)

wherePA represents the average power of the constellation,A∗k the complex conjugate ofAk and

δ[l] =

1, l = 0

0, otherwise.
(2.38)

The non-linear detector at the receiver makes decision on the received symbols and selects the

symbol from the set that is the closest to the corresponding received sample. The radio system

considered in this work has a very low probability of bit error (≈ 10−8), which is partly due to

trellis-coded modulation (TCM).

In this thesis, the symbolsAk shall be assumed to be detected without error. This assumption

allows to focus on the parameter estimation and ignore the symbol detection problem. Therefore,

Ak will represent a deterministic sequence, to which the ergodic properties in (2.37a) and (2.37b)

apply. The effects of detection error inAk will be considered in Chapter 5.

The noisen(t) at the input of the receiver in Fig. 2.4 is assumed to be zero mean, narrowband
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Gaussian with flat power spectral density of amplitudeNo/2 (bandpass white noise):

Sn(ω) =

No
2
, ωc −W ≤ |ω| ≤ ωc +W

0, otherwise,
(2.39)

where2W represents the bandpass system bandwidth. It can be shown [17] that the lowpass

equivalent noise is stationary and has mean and power spectral density

E[ñ(t)] = 0 (2.40)

Sñ(ω) =

No, |ω| < W

0, elsewhere.
(2.41)

SinceSn(ω) is symmetric aboutωc, the in-phase and quadrature components ofñ(t) are sta-

tistically independent [17]. Note that̃n(t) is a complex circular Gaussian process as described

in [19].

The correlated noise termv(t) at the output of the matched filter, as given by eq. (2.34), is

therefore also zero-mean complex circular Gaussian. Since the magnitude squared of the pulse

shape frequency responseP (ω) is exactly the raised cosine frequency response given in (2.19),

the power spectral density ofv(t) is therefore

Sv(ω) = NoG(ω). (2.42)

with autocorrelation function

Rv(t) = Nog(t). (2.43)

Finally, the autocorrelation function for the sampled noise termv[m] is given by

Rv[q] = E[v[m]v∗[m+ q]] = Nog(
qT

2
), q ∈ Z. (2.44)

2.5 Research Problem

The received signal at the input of the equalizer contains information not only on the transmitted

symbols, but also on the channel properties. In fact, observing the expression forr[m] in (2.35),

it can be seen that the channel parameters,ψ, τ andε, are embedded in the equation.
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The first part of the problem therefore consists of estimating the channel’s parametersψ, τ

andε, from a set of many observations,r[m],m ∈ {0, 1, . . . ,M}. Then, using those estimates,

the second part of the problem is to design a discrete-time compensation filter for the channel.

In this thesis, the estimation problem is approached using statistical parameter estimation

techniques. In particular, Chapter 3 discusses the maximum likelihood estimation technique,

which is suitable to solve this problem. The difficulty is to find a simple estimator function

that gives good, i.e. statistically reliable, estimates. The quality of the estimates will affect the

compensation filter performance since it is designed using those parameter estimates.

The discrete-time compensation filter design is based on a least squares procedure. The diffi-

culty in this problem is to have a good frequency response that cancels or reduces the intersymbol

interference created by the channel, with a limited-length filter. The issues related to the filter

design are discussed in details in Chapter 4.
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Chapter 3

Maximum Likelihood Parameter

Estimation

In this Chapter, the use of parameter estimation techniques for obtaining the characteristics of

the channel described in Chapter 2 is discussed. The ultimate objective is to use the channel

parameter estimates to create a compensating filter to reduce channel distortion. To begin, basic

elements of parameter estimation theory are introduced. Then, the joint block maximum like-

lihood estimator for the channel parameters is developed. Practical considerations related to its

implementation, including an iterative solution for the joint estimator are then discussed. Finally,

the Cramér-Rao lower bound for the variance of the estimates is derived.

3.1 Parameter Estimation

Broadly stated, the parameter estimation problem consists of estimating the value of an unknown

parameterθ, given a set ofN observations or measurements represented by the vector

r = [r[0], r[1], . . . , r[N − 1]]T . (3.1)

This is possible if givenθ, a model for the probability density function (pdf) of the observation

vectorr is available.

Parameter estimation problems fall into two categories:point estimationandBayesian es-

timation. In the case of point estimation,θ is not a random variable. The probability density

functionp(r; θ) represents afamily of pdf, specified by the parameter. The semi-colon “;” indi-
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cates that the density is parameterized byθ. In point estimation, the parameter is estimated by

choosing among the available family of pdf, the one that fits the “best” to the data. In the case

of Bayesian estimation,θ is random and characterized by ana-priori probability density func-

tion pθ(θ) assumed to be known. The probability model for the received vector then becomes

the conditional probability density function ofr given the parameterθ, denotedpr|θ(r|θ), also

assumed to be known. A Bayes estimate can be obtained as an estimate that minimizes the mean

of a user-defined cost function [9]. Point estimation can be viewed as a special case of Bayesian

estimation under the assumption of a uniform a-priori probability density functionpθ(θ).

In this work, only non-random parameters are considered. Accordingly, the attention is fo-

cused to point estimation. Specifically, maximum likelihood (ML) estimation is examined next.

3.1.1 Maximum Likelihood Estimation

Maximum likelihood estimation may be used in cases where the parameter to be estimated is

either non-random or has no known pdf. The following introduces basic theory of ML estimation.

To begin, the concepts of bias and variance of an estimate are introduced. Then, the maximum

likelihood estimator is defined for single and multiple parameters. Finally, the Cramér-Rao lower

bound is presented.

Performance Measures

In order to evaluate and compare the properties of an estimate, its desirable characteristics must

first be defined. In general, it is desired that the expected value of the parameter estimate be equal

to the true value of the parameter and have small statistical variations of the estimate. Therefore,

the objective performance measures are defined to be the estimate mean and variance.

Let θ̂(·) denote theestimatorfunction andθ̂(r) represent the estimate ofθ at the observation

point r. ThebiasB(θ) of an estimate, as a function of the parameter, is then defined to be the

difference between the expected value of the estimate and the true value of the parameter i.e:

B(θ) , E[θ̂(r)]− θ, (3.2)

An estimate is said to beunbiasedif B(θ) = 0 for all values ofθ of interest. Otherwise it is said

to bebiased. If a biased estimate gives a constant known bias independent of the parameter, then

this bias can be subtracted from the estimate, and the latter becomes unbiased.
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Even if an estimator gives unbiased estimates, it may still give a bad result on a single trial;

it is only on average that the estimate is unbiased. To account for this possibility, the other

performance metric, the estimate’s variance, gives a measure of how much the estimate varies on

average between trials. The variance of an unbiased estimate is given by:

V ar[θ̂(r)] = E{|θ̂(r)− θ|2}. (3.3)

Usually, it is advantageous to have an unbiased estimate with small variance. However a biased

estimate with small statistical variations may in some circumstances be more advantageous than

an unbiased estimated with large statistical variations. Another convenient performance measure

then is the mean square error (MSE) between the estimate and its true value. The lower the MSE,

the better the estimate. In the case of unbiased estimates, the MSE becomes the variance of the

estimate.

ML Estimator

To introduce theML estimator, the log likelihood function (LLF) is first defined as the natural

logarithm of the probability density functionp(r; θ), taken as a function ofθ. Since the logarithm

is a monotonically increasing function, the maximum of the LLF will occur at the same location

as the maximum of its logarithm. Note thatp(r; θ) is not a conditional pdf since the parameterθ

is non-random. The log likelihood̀(r; θ) is thus given by

`(r; θ) ≡ ln p(r; θ). (3.4)

By definition, the maximum likelihood estimate, denoted byθ̂ML (r), is the value ofθ that max-

imizes (3.4). In other words,̂θML (r) is chosen such that it maximizes the likelihood of having

observedr:

θ̂ML (r) ≡ arg max
θ
`(r; θ). (3.5)

A necessary condition for this equation to hold is that the first partial derivative of the log likeli-

hood function with respect to the parameter is null atθ̂ML (r), i.e.:

∂`(r; θ)

∂θ

∣∣∣∣
θ=θ̂ML (r)

= 0. (3.6)
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Unfortunately, local minima may exist in (3.4) such that the above condition is not sufficient.

Note that it may be impossible to obtain a closed form expression forθ̂ML (r) and numerical

optimization techniques [20] may be needed to solve (3.5).

ML Multiple Parameter Estimation

The problem of estimatingM > 1 parameters from the same set ofN observations is now

addressed. Letθ = [θ1, θ2, . . . , θM ]T be the vector of unknown parameters to be estimated and

let the partial derivative vector operator be defined as

∇θ =

[
∂

∂θ1
,
∂

∂θ2
, . . . ,

∂

∂θM

]T
. (3.7)

The ML estimate is then the value ofθ that maximizes the LLF, denoted by`(r;θ). The ML

estimate may be obtained by solving the likelihood equation:

∇θ [`(r;θ)]|θ=θ̂ML (r) = 0, (3.8)

whereθ̂ML (r) is the vector containing theM parameter estimateŝθmML (r):

θ̂ML (r) =
[
θ̂1

ML (r), θ̂2
ML (r), . . . , θ̂MML (r)

]T
. (3.9)

As it can be seen, the approach is essentially the same for single and multiple parameters estima-

tion.

Cramér-Rao Bound

The Cramér-Rao inequality gives a lower bound on the variance of any unbiased estimate, based

on the problem definition. It is a general lower bound that applies to the problem itself and not on

a particular estimator function. To verify the performance of an unbiased estimate, its variance

is measured or computed and compared to the Cramér-Rao bound (CRB). It is usually desired

to have an estimate with a variance as close as possible to the CRB. Any unbiased estimate that

achieves the lower bound is called anefficientestimate.

First consider the case of a single parameterθ. If θ̂(r) is any unbiased estimate ofθ, then if

the first and second partial derivatives of the pdfp(r; θ) with respect toθ exist and are absolutely
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integrable [9], the variance of the estimate is limited by the Cramér-Rao lower bound:

V ar[θ̂(r)] ≥ −E
{[

∂2`(r; θ)

∂2θ

]}−1

. (3.10)

According to this equation, any (unbiased) estimatemusthave a variance greater than the Cramér-

Rao lower limit as given by the right hand side of (3.10).

It can be shown that if an efficient estimate exists, it is given by the maximum likelihood

estimateθ̂ML (r). Furthermore, it can be proven that the ML estimate is asymptotically efficient

[9], that is: as the numberN of observation samples increases, the variance of the ML estimate

approaches the Cramér-Rao bound. This property provides a strong justification for using the

ML estimator in practice.

For multiple parameters estimation, i.e.θ = [θ1, θ2, . . . , θM ]T , the Cramér-Rao bound is

obtained through the inversion of the so-called Fisher information matrixJ , which is defined as

theM ×M matrix with element(i, j) such that

Ji,j = E

[
∂`(r;θ)

∂θi
· ∂`(r;θ)

∂θj

]
(3.11a)

= −E
[
∂2`(r;θ)

∂θi∂θj

]
, (3.11b)

where the second equality, follows from the properties of the integral of the pdfp(r; θ) [9]. The

lower bound on the variance of individual estimates is then given by

V ar[θ̂mML (r)] ≥ [J−1]m,m (3.12)

where[J−1]i,j denotes the element(i, j) of the inverse ofJ andm denotes the parameter index.

3.2 Joint Parameters Estimator

The joint ML estimator for the channel parameters introduced in Chapter 2 is now derived. In

particular, it is required to estimate|ψ|, ]ψ, τ andε, as defined in sections 2.2 and 2.3, given

the observation ofN received samples. Recall thatψ represents the complex reflection coeffi-

cient, |ψ| and]ψ are its magnitude and angle respectively,τ represents a time delay andε the

synchronization offset.
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First, the probability model for the system needs to be derived. Once the probability density

function is known, the log likelihood function can be directly obtained and it becomes possible

to derive the joint ML estimator. Then, having the joint ML estimator, its performance can be

investigated. The mean and variance of the ML estimate are discussed in this section, while the

study of the CRB is postponed until section 3.4.

3.2.1 Probability Model

In this section, the probability model of the communication system under study is derived. More

specifically, the joint probability density functionp(x;θ) is derived, where

θ = [|ψ|,]ψ, τ, ε]T (3.13)

is the vector of unknown parameters to be estimated andx is the vector of data observations,

defined later. The information available at the receiver for the estimation is the received signal in

(2.33), with the tilde “̃ ” removed for clarity, over an observation period of durationTo that may

span several symbol durations (i.e.To� T ):

r(t) = u(t) + v(t), 0 ≤ t ≤ To, (3.14)

wherev(t) is defined in (2.34) with power spectral density (2.42) andu(t) is the mean ofr(t),

given by

u(t) =
∞∑

k=−∞

∞∑
l=0

ψlAkg(t− kT − 2lτ − ε). (3.15)

Notice that the synchronization offsetε is now integrated inu(t), even if the offset does not occur

until sampling. This is a modelling convenience which allows the parameter to be estimated

using the continuous-time signal. This has no effects on the implementation since it is performed

in discrete-time, where the synchronization offset is necessarily present.

To simplify the development of the ML estimates,r(t) is represented using a discrete set (and

ideally finite) of related observations. A common approach in the literature is to use the Fourier

series coefficients [13, 12]. As such, the Fourier series representation ofr(t) in (3.14) is given

by:

R(ωq) ,
1

To

∫ To

0

r(t)e−jωqtdt, ωq =
2πq

To
, q ∈ Z. (3.16)
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The Fourier series representation is a one-to-one transformation; it is possible to recover the

original observation signalr(t) from the set ofR(ωq). Thus,R(ωq) contains all the information

contained inr(t). In this application, the signalr(t) is bandlimited toW = ± (1+β)π
T

so that

R(ωq) ' 0 for |q| > Q, Q =

⌈
WTo

2π

⌉
, (3.17)

wheredt0e is the largest integer less than or equal tot0.

Recall from Chapter 2 thatr(t) is Gaussian. Accordingly,R(ωq) are complex Gaussian ran-

dom variables. Let the mean of the Fourier series coefficients be

U(ωq) , E[R(ωq)], (3.18)

then if the observation time bandwidth product is large, i.e. the observation time is much longer

than the symbol period or equivalentlyWTo� 2π, it can be shown (e.g. [13,21]) that the Fourier

coefficients corresponding to different frequencies are uncorrelated, specifically

E[(R(ωq)− U(ωq))(R(ωp)− U(ωp))
∗] ' Pqδ[q − p] (3.19)

E[(R(ωq)− U(ωq))(R(ωp)− U(ωp))] = 0, (3.20)

wherePq = Sv(ωq)/To andSv(ω) is the noise power spectral density defined in (2.42). Therefore,

the coefficients inR(ωq) in (3.16) are complex circular Gaussian [19] and the probability density

function of the data can be obtained by first defining the data and mean vectors, respectively:

x = [R(ω−Q), . . . , R(ωQ)]T (3.21)

y = [U(ω−Q), . . . , U(ωQ)]T . (3.22)

The probability density functionp(x;θ) is finally expressed as

p(x;θ) =
1

πQ|K|
exp

{
−(x− y)HK−1(x− y)

}
, (3.23)
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whereK is defined as the diagonal matrix with elementsPq, i.e.:

K = diag[P−Q, . . . , PQ] =


P−Q · · · 0

...
.. .

...

0 · · · PQ

 (3.24)

and|K| is its determinant.

3.2.2 ML Estimator

To get the ML estimator, the logarithm of (3.23) is taken to obtain the log likelihood function

`(x;θ):

`(x;θ) , − log(πQ|K|)− (x− y)HK−1(x− y). (3.25)

Notice thatK is independent of the parameters so that the term containing its determinant in

(3.25) may be ignored since it will be nulled later by the maximization procedure. Therefore, the

log likelihood equation becomes:

`(x;θ) = −
Q∑

m=−Q

(R(ωq)− U(ωq))
∗ 1

Pq
(R(ωq)− U(ωq))

= −To

Q∑
m=−Q

|R(ωq)− U(ωq)|2

Sv(ωq)

(3.26)

To obtain the ML estimator, (3.26) must be maximized with respect to the parameterθ, or equiv-

alently ˜̀(x;θ) = −`(x;θ) must be minimized. Note that here, the dependence on the parameter

vector is through the frequency coefficientsU(ωq), that is

U(ωq) ≡ U(ωq;θ). (3.27)

Two interpretations of (3.26), which lead to different ML estimator structures, are now proposed

followed by an approximate solution, based on the discrete-time domain received signal in (2.35).
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First Interpretation

Recall from Chapter 2 that the raised cosine spectrumG(ω) in (2.19) is real and symmetric and

thatG(ω) = P (ω)P ∗(ω), whereP (ω), the square root of the raised cosine spectrum, is also real

and symmetric. Then, the noise power spectral density in (2.42) may be expressed as

Sv(ωq) = NoP (ωq)P
∗(ωq). (3.28)

Then, the negative of the log likelihood function can be expressed as follows

˜̀(x;θ) =
To

No

Q∑
q=−Q

|V (ωq)|2, (3.29)

whereV (ωq) is given by

V (ωq) =
1

P (ωq)
[R(ωq)− U(ωq;θ)] . (3.30)

The ML estimate is then the parameterθ that minimizes the power of the signalV (ωq).

Figure 3.1 illustrates the ML processor in the time domain. The filter with frequency response
1

P (ω)
corresponds to a pre-whitening filter. The parametersψ, τ andε are selected to minimize the

output of the illustrated system, by making the weighted difference betweenu(t) andr(t) small.

Notice that the constant multiplicative factorTo/No is independent of the parameter and does not

require to be considered in the minimization.

PSfrag replacements

r(t)

u(t;θ)

1
P(ω)

∫ To
0 | · |2dt

Find
Minimum

+

−

Pre-Whitening Power

Adjust θ

Fig. 3.1 ML Estimator Structure I (Power minimization)
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Second Interpretation

The second interpretation of (3.26) is obtained by expanding its magnitude squared term. Equiv-

alently, the magnitude squared term of˜̀(x;θ) can be expanded resulting in four terms:

˜̀(x;θ) = `11 + `12 + `21 + `22. (3.31)

The first term,̀ 11, corresponds to the weighted sum of the data magnitude squared, i.e.:

`11 = To

Q∑
q=−Q

|R(ωq)|2

Sv(ωq)
. (3.32)

This term is independent of the parameterθ. Consequently, it has no effects in the minimization

of ˜̀(r;θ) and can be ignored.

The two middle terms in (3.31) are complex conjugates of each other. Their sum corresponds

exactly to twice the real part of`12. The term`12 is given by

`12 = − To

No

Q∑
q=−Q

R(ωq)

P (ωq)

U∗(ωq)

P ∗(ωq)

= − 1

No

∫ To

0

rw(t)u∗w(t)dt,

(3.33)

whererw(t) anduw(t) are the “whitened” version of the received and the mean signal, respec-

tively. The received whitened signalrw(t) is obtained through convolution ofr(t) with a whiten-

ing filter that has frequency response1/P (ω). To getuw(t), filtering is not necessary; the same

result may be obtained by usingp(t) instead ofg(t) when reconstructing the mean in (3.15), i.e.:

uw(t) ≡ uw(t;θ) =
∞∑

k=−∞

∞∑
l=0

ψlAkp(t− kT − 2lτ − ε), (3.34)

where once again the dependence on the parameterθ is clearly indicated.

The last term in (3.31),̀22, corresponds to the energy of the mean signalu(t) scaled by the
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inverse noise power spectral density, and it is given by

`22 = To

Q∑
q=−Q

|U(ωq)|2

Sv(ωq)

= `22(θ).

(3.35)

This term is independent of the data but depends on the parameters and will affect the minimiza-

tion.

Figure 3.2 shows the implementation of this interpretation of the ML estimator. The objective

of the ML estimator is then to find the value ofθ that minimizes the output of the system illus-

trated. This structure can be interpreted as a generalized correlator where the parameterθ that

gives the highest correlation betweenuw(t;θ) andr(t) corresponds to the maximum likelihood

estimate.

PSfrag replacements
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Fig. 3.2 ML Estimator Structure II (Generalized correlator)

Approximate ML

The previous interpretations of the ML estimator are based on a continuous-time domain model.

In practice, the estimation would be performed numerically, using a set of discrete-time obser-

vations. Some approximations are therefore necessary to develop a practical discrete-time ML

estimator.

It is first noted from the structure of the radio unit in Fig. 2.4 that no pre-whitening filter is
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available at the receiver. Consequently, the higher frequencies, attenuated by the spectral shape

of the raised cosine, will not be enhanced. Therefore, it is assumed here that the portion of the

signal energy located in the excess bandwidth, i.e.π/T < |ω| < W , is negligible.

This assumption allows to use the symbol-spaced samples, available at the receiver, to com-

pletely represent the continuous-time signal,r(t). Let r[n] represent the set of symbol-spaced

samples such that (2.35) becomes

r[n] = u[n] + v[n], (3.36)

whereu[n] is given by

u[n] ≡ u[n;θ] =
∞∑

k=−∞

∞∑
l=0

ψlAkg((n− k)T − 2lτ − ε) (3.37)

and the change of index (fromm to n) indicates the change of sampling rate. The noise term

v[n] = v(nT ) is zero-mean circular Gaussian and has autocorrelation functionRv[n] defined as

Rv[n] = Nog(n) = Noδ[n]. (3.38)

Since it is assumed that the set ofr[n], n = {0, 1, . . . , N−1}, forms a complete representation

for r(t), 0 ≤ t ≤ To = NT , the integral in Fig. 3.1 and Fig. 3.2 for the computation of power

may be replaced by a sum over the discrete-time samples. The attention will be focused on the

equivalent of Structure I for the approximate ML estimator. The consequences for Structure II

are similar and will not be considered here.
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Figure 3.3 illustrates the proposed approximate ML estimator. The estimation is performed in

the time-domain, using the symbol-spaced samples. Notice that the radio unit under consideration

uses half-spaced samples. So half the samples are not considered in this approximation for the

reasons mentioned above. The approximate ML estimator minimizes the power of the difference

between the re-created signalu[n] based on the parametersθ and the received samplesr[n]. The

maximization algorithm must find the value ofθ that maximizes the following log likelihood

function, obtained in the same way as (3.26):

`(r;θ) = − 1

No

(r − u)H(r − u), (3.39)

wherer andu are the data and mean vectors defined respectively as

r = [r[0], r[1], . . . , r[N − 1]]T (3.40)

u = [u[0], u[1], . . . , u[N − 1]]T . (3.41)

The ML estimateθML (r) is therefore given by the following expression,

θ̂ML (r) = arg min
θ
|r − u|2, (3.42)

which may be solved by using a multi-dimensional search for the parameterθ. Practical solution

of this equation is treated later in section 3.3.

Estimator Performance

Comments will now be given on the performance of the ML estimator. In particular, the mean

and variance of the estimate obtained through the use of the estimator function are discussed.

There is no explicit expression for̂θML (r) so the mean cannot be computed in closed form.

However, from (3.42) it can be seen that the closer the vectoru is from the actual received vector

r, the better the estimation is. In fact, the estimation procedure tries to “recreate” the signal that

would have been received given a certain set of parametersθ. Therefore, if the model foru is

accurate enough and if the noise is zero-mean, the estimates will be unbiased.

Unfortunately, the vectoru is obtained through a double summation over an infinite number

of terms, impossible to perform in practice. Consequently, the model for the received signal can

only be approximated by limiting those sums in (3.37). If the limits for the indicesk and l in
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(3.37) are chosen judiciously, it can be assumed that the effects of the finite sums are negligible

and that the model accurately represents the system. Under this condition, the argument in (3.42)

on average would go to zero, leading to the conclusion the estimates obtained are unbiased. The

results on the iterative estimator in Chapter 5 clearly confirm the validity of these assumptions.

Again, there is no explicit expression forθ̂ML (r) so the variance cannot be computed in closed

form. The estimates’ variance are therefore obtained through simulations. A theoretical lower

bound on the variances is available through the Cramér-Rao bound, which is developed in section

3.4.

3.3 Practical Considerations

The core of the parameter estimation approach resides in the solution of (3.42). Practical ways

of solving the joint parameter ML estimator are therefore presented in this section. Since the

joint ML estimator involves finding the minimum of a non-linear function, it cannot be solved

directly through simple substitution. Consequently, optimization theory is used to find the ML

estimates. First, a block optimization procedure will be considered, whereN samples are used to

compute the ML estimates. Then, an iterative approach will be introduced, where an estimate of

the parameters is available after every sample.

3.3.1 Block Estimator

The routine for block estimation consists of gatheringN samples in an observation vectorr, and

use it in the optimization procedure, as illustrated in Fig 3.4. Since the optimization requires
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Fig. 3.4 Block Estimation

N samples at a time, there is a delay of at leastN samples before the first set of estimates is

made available. In practice, the delay is even longer since the procedure itself takes some time to

produce the estimates.
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It is possible to obtained a numerical solution of (3.42) by using a multi-dimensional opti-

mization algorithm [20]. In this respect, the parameter space for the search may be bounded,

according to the parameters’ physical meaning, i.e.:

• |ψ| represents the magnitude of the reflection coefficient. Since a negative value of the

magnitude does not have a physical meaning and a value larger than1 would mean that

there is amplification on the transmission line, necessarily0 ≤ |ψ| < 1.

• ]ψ is the phase of the reflection coefficient. By definition−π < ]ψ ≤ π.

• τ represents the time delay required for the wave to travel to the end of the transmission

line. Physically, this must be a positive value. It is further assumed thatτmin ≤ τ ≤ τmax

whereτmin represents the minimum time delay andτmax represents the maximum time

delay. The minimum time delay is related to the minimum cable length possible for proper

operation. The cable must connect the receiver to the antenna and since the latter is usually

located at some height above the ground on top of a tower structure, knowing the minimum

height of the tower, the minimum cable length can be found. The maximum time delay

τmax is related to the length of the transmission line; for very long cable, the attenuation

would make the reflection magnitude negligible compared to that of the noise level and it

would not distort the received signal significantly.

• ε represents the synchronization offset and may also be bounded; its value must be such

that−T/4 < ε ≤ T/4 for half-spaced sampling since otherwise the synchronizer would

lock on the adjacent half-symbol.

Closer bounds forε can be found by using the fact that it is a semi-predictable synchroniza-

tion offset dependent onψ andτ . For instance, using the limiting cases for|ψ|, ]ψ and

τ , i.e. 0 ≤ |ψ| < 1, −π < ]ψ ≤ π andτmin ≤ τ ≤ τmax, in a synchronization algorithm

(e.g. correlation), the range ofε could be found more precisely.

In general, a finite search space forθ can be determined. Since (3.42) is non-linear inθ, the opti-

mization algorithm to use in this case must be a non-linear constrained algorithm. The constraint

consists of the parameters’ bounds. Straightforward procedures exists for solving these types of

problems, including thedownhill simplex methodandPowell’s method[22]. More complex op-

timization software use a set of different steps to solve an optimization problem and are general

enough to be applicable to a number of different problems. The block optimization procedure
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used in this work is presented in the documentation of the numerical computation software used

in [23]. No more details will be given on optimization methods as they are beyond the scope

of this work. Nevertheless, a detailed discussion on the subject can be found in [20]. Note that

non-linear optimization procedures can be very computationally demanding.

3.3.2 Iterative Estimator

The previous section discussed a method that solves (3.42) using a block approach, which in-

volves a long delay and a computationally intensive optimization procedure. Alternatively, an

iterative approach based on the steepest descent algorithm can be used. This approach produces

a new estimate every sample and does not require a complex optimization procedure. It is also

advantageous for use in non-stationary environment. This joint iterative estimator is derived next,

starting from the steepest descent algorithm.

Steepest Descent Algorithm

The steepest descent algorithm is a general non-linear optimization technique [20] that originates

from the optimization of quadratic problems. It can be applied to general non-linear problems as

well, often with good results. Although it has a relatively slow convergence rate, it is guaranteed

to converge to at least a local minimum. The standard steepest descent algorithm for a vector of

parameterθ is defined as [20]:

θn+1 = θn + µn∇θ`(r;θn), (3.43)

whereθn represents the vector of parameters at time indexn andµn is a time-dependent step-size

chosen so that

µn = arg max
µ

` (r;θn + µ∇θ`(r;θn)) . (3.44)

The estimatêθ is obtained through iteration of (3.43) until convergence.

Joint Iterative Estimator

The steepest descent algorithm described above is a “block” technique in the sense that it operates

on a vector of observationsr and iterates until it converges for that block of observations. Here,

a different approach is proposed, where the iterative algorithm only uses one sample at a time.
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Specifically, the gradient of the log likelihood function in (3.43) is first applied to (3.39), which

leads to the following equation:

∇θ`(r;θ) =∇θ
(
− 1

No

(r − u)H(r − u)

)
. (3.45)

Recall thatr is independent ofθ thus the gradient with respect to parameterm of the log likeli-

hood at iterationn becomes:

∂

∂θm
`(r;θn) =

2

No

Re

[
∂uH

∂θm
(r − u)

]∣∣∣∣
θ=θn

. (3.46)

Since it would be difficult to solve (3.44) for the step sizeµ, we propose to use a fixed step size

µm, different for each parameter. The algorithm then becomes for each parameterm:

θmn+1 = θmn + µm
∂

∂θm
`(r;θn). (3.47)

For each iteration of the search algorithm, the entire vectorr ofN observations is required. Con-

sequently, (3.47) is further modified so that only one observation sample is used and one iteration

is performed at every time instant. The joint iterative parameter estimator is then expressed as

θmn+1 = θmn + µm
∂

∂θm
`(r[n];θn), (3.48)

where the gradient of the log likelihood now acts on a single received sample and is now defined

as
∂

∂θm
`(r[n];θn) = 2Re

[
∂

∂θm
(u∗[n])(r[n]− u[n])

]∣∣∣∣
θ=θn

, (3.49)

where the factorT/No is absorbed by the corresponding step-size in (3.48). The procedure is

illustrated in Fig 3.5, where the vectorµ is the step-size vector, i.e.:

µ = [µ1µ2µ3µ4]T , (3.50)

and the vector multiplication is performed element by element.

It has been observed through experimentation that some parameters have a better convergence

than others. In particular,|ψ| and]ψ showed good convergence properties even in the absence

of good estimates forτ andε. This can be exploited by updating the estimates of|ψ| and]ψ first
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and then use those new estimates to update the other two parameters estimates. It is possible to

do so by making use of the structure of (3.48). First, new notation is introduced foru[n]; it may

be separated in the following way:

u[n] =
∞∑
l=0

ψlυ[n; l] (3.51)

whereυ[n; l] is given by

υ[n; l] =
∞∑

k=−∞

Akg((n− k)T − 2lτ − ε). (3.52)

Note that the sums in (3.51) and (3.52) would have to be truncated so that numerical computation

may be possible. The computation of the gradient of the log likelihood in (3.49) also requires the
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first derivative ofu[n] with respect to each parameter, which are given below:

u1[n] =
∞∑
l=0

l
ψl

|ψ|
υ[n; l] (3.53a)

u2[n] =
∞∑
l=0

jlψlυ[n; l] (3.53b)

u3[n] = −
∞∑
l=0

2lψlυ′[n; l] (3.53c)

u4[n] = −
∞∑
l=0

ψlυ′[n; l], (3.53d)

whereui[n] represents the first derivative ofu[n] with respect to parameter at indexi in (3.13)

andυ′[n; l] is the first derivative ofυ[n; l] and is given by

υ′[n; l] =
∞∑

k=−∞

Akg
′(nT − kT − 2lτ − ε). (3.54)

By definition,υ[n; l] andυ′[n; l] depend on bothτ andε but are independent of|ψ| and]ψ.

As a result,υ[n; l] andυ′[n; l] can be computed first, forl = {0, 1, . . . , L} at each instantn.

The choice ofL depends on the expected|ψ|, the noise power and the desired precision of the

estimates. For example, it was found by experimentation thatL = 3 gives satisfactory estimates,

for a SNR of 20dB and|ψ| = 0.1.

Onceυ[n; l] andυ′[n; l] are available, the estimates for|ψ| and]ψ can then be updated using

(3.48). Using those new values, the estimates forτ andε are then computed. The procedure is

repeated for every new sample. Algorithm 3.1 exposes the full process.

The iterative algorithm presented here is an approximation to the joint ML parameter esti-

mator in (3.42). Nevertheless, this scheme is attractive for high speed modems where the com-

putational capacity is limited. For this type of application, the extra convergence time may not

be a problem and this algorithm may be adequate. Note also that the algorithm can be directly

extended to make use of the half samples as well in fractionally spaced digital modems.
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Algorithm 3.1 Iterative Parameter Estimation

Let θn ≡ [θ
|ψ|
n , θ]ψn , θτn, θ

ε
n]T = [θ1

n, θ
2
n, θ

3
n, θ

4
n]T .

n← 0
θ0 ← 0
Assign toµm a small positive constant form ∈ {1, 2, 3, 4}
loop

Computeu[n; l] usingθn and (3.52) forl ∈ {0, 1, . . . , L}
Computeu′[n; l] usingθn and (3.54) forl ∈ {0, 1, . . . , L}

Updateθ|ψ|n+1 usingθ|ψ|n , θ]ψn , (3.48) and (3.53a)

Updateθ]ψn+1 usingθ|ψ|n+1, θ
]ψ
n , (3.48) and (3.53b)

Updateθτn+1 usingθ|ψ|n+1, θ
]ψ
n+1, (3.48) and (3.53c)

Updateθεn+1 usingθ|ψ|n+1, θ
]ψ
n+1, (3.48) and (3.53d)

θn+1 ⇐ [θ
|ψ|
n+1, θ

]ψ
n+1, θ

τ
n+1, θ

ε
n+1]T

n⇐ n+ 1
end loop

3.4 Cramér-Rao Bound

Since the variance of the estimate cannot be computed explicitly, other ways of evaluating it must

be used. Using computer simulations, the estimate variances are determined and then compared

to the Cramér-Rao lower bound.

The CRB is obtained by inverting the Fisher information matrix with entries(i, j) as defined

in (3.11b). The first partial derivative of the log likelihood function in (3.26) with respect to

parameteri is given by

∂`(x;θ)

∂θi
=

2To

No

Q∑
q=−Q

1

G(ωq)
Re

[
∂U(ωq)

∂θi
(R(ωq)− U(ωq))

∗
]
, (3.55)

where the noise power spectral density has been replaced by its equivalent, i.e.:Sv(ω) = NoG(ω),and

the raised cosine spectrumG(ω) is defined in (2.19). The second partial derivative of the log like-
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lihood function with respect first to parameterθi and then to parameterθj is given by

∂2`(r;θ)

∂θj∂θi
=

2To

No

Q∑
q=−Q

1

G(ωq)
Re

[
∂2U(ωq)

∂θj∂θi
(R(ωq)− U(ωq))

∗

−
(
∂U(ω)

∂θi

)∗(
∂U(ω)

∂θj

)]
.

(3.56)

Substituting (3.56) in (3.11) and using the fact thatE[R(ω)] = U(ω) by definition, the element

(i, j) of Fisher information matrix becomes:

Ji,j =
2To

No

Q∑
q=−Q

1

G(ωq)
Re

[(
∂U(ωq)

∂θi

)∗(
∂U(ωq)

∂θj

)]
. (3.57)

In Appendix B, it is shown that the Fourier series coefficients ofu(t), 0 ≤ t ≤ To are approxi-

mately given by

U(ωq) '
1

To
F (ωq;θ)G(ωq)D(ωq), (3.58)

whereF (ωq;θ) ≡ F (ω) is the composite channel response, which includes the effects of the

channel in (A.7) and the synchronization offset, so that

F (ω) =
1

2
H̃(ω)e−jωε =

e−jωε

1− ψ−jω2τ
, (3.59)

andD(ωq) represents the contribution of the data and is given by

D(ωq) =
N−1∑
k=0

Ake
−jωqkT . (3.60)

Notice thatD(ωq) is the discrete Fourier transform (DFT) [25] ofAk, 0 ≤ k < N . Substituting

(3.58) in (3.57), using the fact thatG(ω) is real and observing that onlyF (ωq) is function of the

parameters,Ji,j may be expressed as

Ji,j =
2

ToNo

Q∑
q=−Q

G(ωq)|D(ωq)|2Re[F ∗i (ωq)Fj(ωq)] , (3.61)
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whereFi(ωq) represents the partial derivative ofF (ωq) with respect to parameterθi, i.e.:

Fi(ωq) ≡
∂F (ωq)

∂θi
. (3.62)

It can be easily shown using the definition ofF (ω) in (3.59) that the partial derivatives in (3.62)

are given by

F1(ωq) = ejωqεej]ψe−jωq2τF 2(ωq) (3.63a)

F2(ωq) = jψejωqεe−jωq2τF 2(ωq) (3.63b)

F3(ωq) = −2jψωqe
−jωq2τejωqεF 2(ωq) (3.63c)

F4(ωq) = −jωqF (ωq). (3.63d)

Equation (3.61) may be simplified further by using a matrix form. Let the vector of derivatives

in (3.63),∇F , be defined as

∇F = [F1(ωq), F2(ωq), F3(ωq), F4(ωq)]
H . (3.64)

Then, it can be seen that the Fisher information matrix can be expressed in matrix form as

J =
2

ToNo

Q∑
q=−Q

G(ωq)|D(ωq)|2Re
[
∇F∇FH

]
. (3.65)

Furthermore, the term|D(ωq)|2 may be simplified by using the ergodic assumptions of the sym-

bolsAk in (2.37). The data dependent term then becomes

|D(ωq)|2 =
N−1∑
n=0

N−1∑
l=0

AnA
∗
l e
−jωq(n−l)T (3.66)

' NPA, (3.67)

where the approximation comes from the ergodicity in the autocorrelation assumption in (2.37b)

and holds forN large enough. With this approximation, the Fisher information matrix finally

becomes

J ' 2NPA

ToNo

Q∑
q=−Q

G(ωq)Re
[
∇F∇FH

]
. (3.68)
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By inverting the matrix, the Cramér-Rao bound for a particular estimate can be directly found

using (3.12).

Unfortunately, the expression forJ is quite complex and it is difficult to draw conclusions for

the inter-parameter coupling. Nonetheless, it consists of an important piece of information for

evaluating the performance of the estimate.
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Chapter 4

Compensation Filter

In this Chapter, the design of the compensation filter is addressed. The continuous-time ideal

compensation filter is first developed. It is shown that it consists of a weighted sum of delayed

delta functions. Unfortunately, the delays are not necessarily multiples of the sampling period,

making the implementation in discrete-time difficult. The filter design technique based on the

channel parameters is presented followed by a detailed discussion on issues related to the realiza-

tion of fractional delays. To close this Chapter, we comment on the design choices associated to

the implementation of the compensation system, which consists of the parameter estimator, the

filter design algorithm and the filter itself.

4.1 Continuous-Time System and Discrete-Time Equivalent

The discrete-time equivalent ideal compensation filter based on the ideal continuous-time filter

is now derived. Recall from Chapter 3 in (3.59) that the composite channel frequency response

may be expressed as

F (ω) =
e−jωε

1− ψe−jω2τ
, (4.1)

whereψ is the complex reflection coefficient,τ is the time delay between reflections andε is a

small synchronization offset. Notice that the effects of the demodulation and symbol synchro-

nization have been incorporated in (4.1) as explained in Appendix A. The perfect or ideal inverse

channelF−1(ω) is easily obtained; by definitionF (ω)F−1(ω) = 1, thus

F−1(ω) = ejωε(1− ψe−jω2τ ), |ω| < π

T
. (4.2)
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The channel effects are bandlimited so that no aliasing occurs when sampling at half the symbol

rate is performed. In practice, bandpass filters would be present at the radio receiver, which would

limit the input bandwidth to make sure no aliasing occurs.

The realization of this inverse channel is illustrated in block diagram form in Fig. 4.1, where

the input is taken directly from the matched filter and the output goes to the sampler (see Fig 2.6).

It can be observed from this diagram that the two delays involved are not necessarily fraction of

the sampling interval. Furthermore, the compensation filter is non-causal because of the term

representing an advance in time,ejωε. This is not a major issue, as extra delay is added to the

system by the line-of-sight channel (see Fig. 2.4) and the equalizer.
PSfrag replacements
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Fig. 4.1 Continuous-Time Compensation Filter

The channel inverse filterF−1(ω) is to be implemented in digital hardware. As illustrated

in Fig. 2.6, the discrete-time digital compensation filterc[n], n ∈ {0, 1, . . . ,M − 1} whereM

represents the filter’s length, is located after sampling byT/2. Consequently, the ideal inverse

of Fig. 4.1 must be converted to the discrete-time domain to obtain the ideal inverse channel

frequency response. Figure 4.1 illustrates the discrete-time compensation filter system. The input

signalr̃(t) is coming from the matched filters and the equalized samples are to be decimated by

2 and sent to the decision device.

PSfrag replacements
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Samples

T
2

Fig. 4.2 Equivalent Digital Compensation Filter

To convert the ideal inverse channel frequency response to discrete-time form, it is assumed
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that the system is bandlimited to at least half the sampling frequency so that no aliasing occurs.

The main image of the equivalent discrete-time ideal channel inverse becomes, after sampling

(4.2) with a sampling frequency of2/T [26]:

Cid(Ω) ≡ F−1(
2Ω

T
) = ej

2Ω
T
ε(1− ψe−j

4Ωτ
T )

= ej
2Ω
T
ε − ψe−j

2Ω
T

(2τ−ε),
(4.3)

whereΩ represents the discrete-time frequency variable. Of course the discrete-time ideal inverse

is periodic in frequency, and only the main image is considered here.

The filter design procedure consists of finding a set of filter coefficientsc[n], so that the

discrete-time frequency responseC(Ω) of that filter is close or ideally equal to the filterCid(Ω),

i.e.:

C(Ω) =
M−1∑
n=0

c[n]e−jΩn = Cid(Ω). (4.4)

The major obstacle to direct implementation of (4.4) is the presence of fractional delays in

the system illustrated in Fig. 4.1. It can indeed be seen from (4.3) that two possibly noninteger

delays are presents: a delay of−2ε
T

and 2
T

(2τ−ε). In discrete-time signal processing, only delays

of a multiple of the sampling interval can be represented exactly. The problem therefore consists

of finding a set of filter coefficientsd[n; t0], wheret0 indicates the delay associated with the filter,

that implements the ideal delay response

Did(Ω; t0) = e−jΩt0 (4.5)

as closely as possible. Then by linearity, it can be seen from (4.3) that the compensation filter

becomes

c[n] = d[n;−2ε

T
]− ψd[n;

2

T
(2τ − ε)]. (4.6)

4.2 Implementation of Noninteger Delay

In this section, the implementation of a fractional delay (FD) using a discrete-time digital FIR

filter is discussed. Some general concepts are first introduced followed by a description of the

least squares (LS) procedure for general weight functions. Some particular weight functions that

are effective in the case of interest are then presented. Variable delay filters are finally discussed.
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The noninteger delay filter design procedure should be simple enough so that it can be im-

plemented on real-time hardware. It should ideally lead to short filters with good frequency

responses. In general, for these types of filters to have the best frequency response for a given

length, it is necessary to have the overall filter delay be half the filter’s length [27]. For this to be

the case, an extra integer-value delay must be added to the fractional delay, e.g.t0 + bM
2
c. For

the remaining of this Chapter, it will be assumed that this requirement is satisfied.

The general FD problem consists of designing a discrete-time filter that implements as closely

as possible the frequency response in (4.5). The difficulty is to have a constant magnitude and

delay for a large bandwidth, with a finite length filter. Several methods exists for designing such

filters [27], including the simple Lagrange interpolator, the general least squares approximation

and the Farrow structure for variable delay filters.

Lagrange interpolators can be used for FD finite impulse response filter design. While they

are very simple to implement, their bandwidth increases slowly with the number of coefficients

and for filters with more than four taps as in the case of interest, it may be better to use a least

squares approach. The least squares approach and the Farrow structure methods are discussed

below.

4.2.1 Least Squares Design of Fractional Delay Filters

The least squares approach minimizes a user defined weighted squared error function. The error

function is defined here as the difference between the frequency response of the designed filter

D(Ω) and its desired or ideal response,Did(Ω). The total squared errorJ can then be expressed

as

J =
1

2π

∫ π

−π
Q(Ω)|D(Ω)−Did(Ω)|2dΩ, (4.7)

whereQ(Ω) is the real-valued weighting function, chosen by the designer. It is used to put more

or less importance on the error at some specific frequencies.

It will be shown shortly that the optimal solution is obtained by solving a system of linear

equations. If the weighting function is independent of the delay, then the matrix involved in the

linear system solution will also be independent of the delay. It can therefore be inverted once

off-line and put in memory for later use.

The desired response in (4.7) consists of the ideal delay (4.5) denoted here byDid(Ω), where

the reference to the delayt0 is dropped for simplicity. The designed filter is denoted byD(Ω).

To derive the minimum of (4.7) for this particular problem, important notation is first introduced.
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Let d denote the vector of filter coefficients ande denote the vector of exponential functions of

the Fourier transform, i.e:

d = [d[0], d[1], . . . , d[M − 1]]T , (4.8)

e = [1, e−jΩ, . . . , e−jΩ(M−1)]T . (4.9)

Then the Fourier transform of the filter can now be expressed in a convenient vector product:

D(Ω) =
M−1∑
n=0

d[n]e−jΩn = dTe. (4.10)

This vector notation will allow the minimization of (4.7) to be expressed in a matrix form. Using

this new notation and expanding the magnitude squared error in (4.7), the expression for the error

J can be expressed as

J =
1

2π

∫ π

−π
Q(Ω)

[
dTeeHd∗ − 2Re(e−jΩt0dTe) + 1

]
dΩ, (4.11)

Noting thate is function of the integration variableΩ, the notation can be reduced further by

introducing the matrixP , the vectorp andξ0 defined respectively as

P =
1

2π

∫ π

−π
Q(Ω)eeHdΩ (4.12)

p =
1

2π

∫ π

−π
Q(Ω)e−jΩt0e dΩ (4.13)

ξ0 =
1

2π

∫ π

−π
Q(Ω)dΩ. (4.14)

Finally, the total squared error to be minimized is expressed in matrix form:

J = dTPd∗ − 2Re[dTp] + ξ0, (4.15)

whereξ0 is independent of the filter’s coefficients and will be nulled by the minimization.

To obtain filter coefficients that give the minimum least squared error, (4.15) is differentiated

with respect tod and then the result is set to zero. Since bothd andp are complex quantities,

a complex gradient operator must be used for the minimization of (4.15). Using the results
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from [28], the set of filter coefficientsd that minimizes the squared error is given by

d = P−1p∗. (4.16)

Provided thatQ(Ω) is independent of the delay,P will also be independent of the delay and can

be inverted off-line. The filter design then only involves computingp and applying (4.16).

The degree of complexity in the computation ofP andp is highly influenced by the choice of

weighting function. Here, three different possibilities forQ(Ω) are suggested and their respective

properties are discussed.

Flat Weight

The first choice forQ(Ω) is the obvious constant function where the weight of the error is dis-

tributed uniformly across the entire spectrum:

QF(Ω) = 1. (4.17)

The formulation forP andp for this case is very simple and it can be shown that element(k, l)

of the matrixP and elementk of the vectorp are given respectively by [27]

P (k, l) = sinc(k − l), (4.18)

p(k) = sinc(k − t0). (4.19)

Here it can be observed that matrixP is indeed independent from the delayt0. Furthermore,

since thesinc function is zero for all integer values of its argument except0, i.e.:

sinc(k) =

1, k = 0,

0, k 6= 0, k ∈ Z
(4.20)

the matrixP is in fact the identity matrix and the filter’s coefficients are identical to the elements

of p∗. The coefficient are then exactly that of the truncated ideal response:

d(n) = sinc(n− t0), n ∈ {0, . . . ,M − 1}. (4.21)
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Because of the sharp cut-off frequency (atΩ = ±π) and because the filter’s time response must

be truncated, it will suffer from Gibbs phenomenon. One way to minimize the effects of this is

to use windowing [29]. However this will make the transition region wider and the choice of

window does not follow any optimal criterion.

Bandlimited Weight

Sometimes, the signal to be delayed does not cover the entire bandwidth. In those situations, the

error that lies outside the signal bandwidth is irrelevant to the overall performance. Therefore, a

weight of zero for some “don’t care” regions and one otherwise can be used.

Consider the case where the signal of interest is lowpass and limited in frequency toαπ,

(0 < α ≤ π). Then, a better choice forQ(Ω) is

QBL(Ω) =

1, |Ω| < απ

0, otherwise.
(4.22)

It can be easily shown that element(k, l) of P and elementk of p for this particular case are

given respectively by

P (k, l) = α sinc(α(k − l)), (4.23)

p(k) = α sinc(α(k − t0)). (4.24)

Again,P is independent of the delay but unlike the previous case, matrixP does not correspond

to the identity matrix. This formulation of the error weight function should give better results

than the previous one but will also suffer from Gibbs phenomenon because of the sharp transition.

Once again, windowing can be used to attenuate this effect with consequences similar to those

mentioned above.

Signal Power Spectral Density Weight

In some other situations, more information on the signal may be available. In particular, in

situations where the power spectral density of the filter input signal is known, this information

may be used for the weighting function. Of course, the PSD is application specific and cannot be

generalized. Therefore, only the case of this particular application, where the filter input consists
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of a series of randomly weighted raised cosines, will be considered.

The signal power spectral density may be expressed in frequency as the magnitude squared

of the raised cosine frequency response in (2.19). Normalizing the result and converting it to

discrete-time frequency (sampled at rateT/2), the power spectral density weight can be expressed

as

QPSD(Ω) =


1, 0 ≤ |Ω| < 1−β

2
π

1
4

{
1 + cos( 1

β
(|Ω| − 1−β

2
π))
}2

, 1−β
2
π ≤ |Ω| ≤ 1−β

2
π

0, 1+β
2
π < |Ω| < π.

(4.25)

UsingQPSD(Ω) as weighting function in (4.12) and (4.13) leads to long and complex equations,

which however may be obtained easily through the use of a symbolic computations software

(e.g. Waterloo Maple). Because the transition between the two bands is smoothed by the raised

cosine in (4.25), the importance of the Gibbs phenomenon will depend on the roll-off factorβ.

In the radio unit under investigation,β = 1/3, which means that the transition band is relatively

large and Gibbs phenomenon effects will be practically inexistent. This results in a smoother

frequency response which follows closely the desired response in the signal’s bandwidth.

4.2.2 Example of Inverse Filter

Using the results of previous sections, a compensation filter for an hypothetical channel is now

designed using different weight functions. In particular, the differences in frequency responses

between a filter designed using a bandlimited weightQBL(Ω) in (4.22) and power spectral density

weightQPSD(Ω) in (4.25) will be compared.

Consider a channel as defined in eq. (4.1), with parameters|ψ| = 0.1,]ψ = π/6, τ = 0.25T

andε = 0.0249T . The pulse shape consists of a raised cosine with rolloff factorβ = 1/3; the

signal’s bandwidth thus extends in frequency up to±2π
3

.

The frequency response of the designed filters are illustrated in Fig. 4.3, where the ideal com-

pensation filter frequency response is denoted byCid(Ω) and the compensation filters designed

using the bandlimited (α = 2/3) and power spectral density weights are denoted byCBL(Ω) and

CPSD(Ω) respectively.

It can be observed from Fig. 4.3 that the filter designed using the power spectral density

weighting function follows the ideal frequency response very closely in the signal’s bandwidth,

as indicated by the vertical dashed lines, i.e. from−2π/3 to 2π/3. The filter designed using the

limited bandwidth weighting function on the other hand is close from the ideal response only in a
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close neighborhood of the origin and deviates from the ideal response with increasing frequency.

4.2.3 Variable Delay Filters

The problem with the previous delay filter design techniques is that each time the delay changes,

a new vectorpmust be obtained and then (4.16) must be applied to get the new filter coefficients.

This may be too computationally intensive for applications where the delay changes continuously.

In those situations, Farrow [30] structure may be used.

The basic concept of a Farrow structure is to obtain a set of coefficients for a variable-delay

filter from the interpolation of a set of fixed-delay filters. The fixed-delay filters are designed off-

line using some filter design method such as above. The structure uses polynomial interpolation

in the variable delayt0 that controls the weight on each set of filter coefficients. Unfortunately,

this adds a level of approximation to the filter and may not give optimal results. In any cases,

the implementation details of Farrow structures will not be discussed in more details here and the

interested reader is encouraged to consult [30,29].

In this work, the focus in put on the design of the compensation filter using the least squares

approach with the power spectral density weight function. This method is straightforward and

produces reliable filters. The compensation system introduces a first level of approximation when

estimating the parameters. For this reason, to minimize the number of approximation levels, the

least squares approach is chosen in preference of the Farrow structure.

4.3 Block versus Iterative

The design of a compensation filter using the least squares approach takes a certain amount of

computations. First, the vectorp needs to be computed and then multiplied by the invertedP

matrix. All of these operations must be performed on-line. Unless a Farrow structure is utilized,

updating the compensation filter at every sample is impracticable. In this section, the design

issues related to the implementation of the compensation system for this specific application are

discussed.

For the implementation of the parameter estimator discussed in Chapter 3, the designer has the

choice of using a block estimator as illustrated in Fig. 3.4 or an iterative estimator as in Fig. 3.5.

For the block estimator case, the estimated parameters are only available after the estimation

procedure is completed. The procedure requiresN samples to be buffered first and then requires
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a certain time to converge to the final solution. Most optimization algorithms are not guaranteed

to converge in a prescribed number of iterations. Unless the optimization algorithm is modified in

a way to limit the convergence time, which may limit the performance of the estimates, the time

required to obtain a set of estimate is unknown. Therefore, the time between filter coefficients

updates is also unknown.

By using the iterative estimation approach however, the designer has access to a new estimate

every sample, without risking estimate performance degradation. Since the compensation filter

design in itself takes some time, it may not be practical to obtain a new set of equalizer coefficients

every sample. Depending on the hardware available and the choice of filter design method, the

designer has to decide on how much time (in number of samples) there will be between each

coefficient update. The process is illustrated in Fig. 4.4, whereN represents the number of

samples between each coefficient update.
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Fig. 4.4 Iterative Compensation System

The designer has to decide, based on the hardware available and on the precision require-

ments, which method is more appropriate to use and how much delay is needed between each

coefficients update. In addition, the more samples are used in the estimation, the better the pre-

cision of the estimates is. However, it also means a longer delay between coefficients update for

the block structure. Similarly for the iterative approach, choosing a small step-size will lead to

better estimates, but will take longer to converge.

In this work, the iterative estimator is used in conjunction with the least squares filter design

method with the power spectral density weight. Every sample, an estimate of the parameters is

available. However, only every thousand samples(N = 1000) does a new filter is designed and

loaded into the channel equalizer. Results, showing the performance of this compensation system

compared to other adaptive equalization techniques, are illustrated in Chapter 5.
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Chapter 5

Results

This chapter exposes the results related to the different aspects of this work. In particular, the

iterative estimator, the block estimator and its associated Cramér-Rao bound, and the proposed

compensation system are considered.

To begin this Chapter, the methodological aspects are discussed, with a description of the sim-

ulation procedures. The results related to the parameter estimation Chapter are then presented.

The convergence plots of the joint iterative estimator algorithm are shown along with a compar-

ison of the variance of the joint block ML estimator with the corresponding Cramér-Rao lower

bound. Finally, the implementation of the proposed compensation system is compared with some

current adaptive channel equalization techniques.

5.1 Methodology

The results were all obtained through simulations of the communication system. The simulation

model is based on the theoretical lowpass model developed in Chapter 2. It was implemented in

software using the scripting capabilities of mathematical software toolMATLAB. Some functions

were implemented inC to improve the speed of the calculations.

The simulation model used is illustrated in Fig. 2.6. The “Binary Source” and “MAP” blocks

shown in the diagram are implemented in the simulator by using a uniform random generator

that generates the sequence of complex symbols from set of 32 possibilities (QAM-32) in the

constellation of Fig. 2.7. The sequence is then upsampled and convolved with the pulse shaping

function at a new sampling rate of ten times the symbol rate. This oversampling allows the sim-

ulator to have a wider range of possible reflection delays. The pulse shape consists of the raised
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cosine expressed in (2.21), oversampled and truncated to a length equivalent to twelve symbols

on each side of the main peak. Since the raised cosine decreases in magnitude proportionally to

1/t3, it is reasonable to assume that twelve symbols is long enough to accurately represent the

system. The channel is implemented using an ordinary IIR structure. After the channel, the signal

is decimated by five, to a rate of twice the symbol rate. This is the rate at which the equalizer

operates.

The noise is generated using a normally-distributed random number generator, independently

on each quadrature. It is then filtered by a half-spaced square root raised cosine, simulating the

effects of the matched filter in Fig. 2.6.

To objectively compare different algorithms, the equalizer’s length was fixed to eight complex

taps. After the equalizer, the signal is downsampled by two to match the symbol rate and the

decision device then simply selects the symbol that is the closest to the equalized sample.

5.2 Parameter Estimation Results

In this section, the results obtained for the parameter estimation part of the work are presented.

Two different experiments were performed for this part. First, the convergence properties of the

iterative estimator of section 3.3.2 at two different signal-to-noise ratios are shown. Second, the

variance of the joint block ML estimator is compared with the Cramér-Rao lower bound.

5.2.1 Iterative Estimator

The iterative estimator presented in Chapter 3 requires the computation of the gradient of the

log-likelihood function. To do so, it needs to compute (3.53), which consists of a double sum

over an infinite number of elements. The inner sum, i.e. the sum overk in (3.52) and (3.54), must

be limited to a number of symbols around the origin at timen.

Since the pulse function is limited in length by twelve times the symbol duration, only the

adjacent twelve symbols on each side of a given sample will affect it. Consequently, the sums

in (3.52) and (3.54) are also limited to twelve symbols on each side of the current time indexn.

The outer sum, i.e the sum overl in (3.53), is the sum over all reflections and it is limited to three

reflections (i.e.L = 3) for this particular experiment.

Computation of (3.52) and (3.54) requires the knowledge of the transmitted symbols. In this

experiment, it is assumed that the probability of error is small for high signal-to-noise ratio and
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that the exact values of the symbols are available.

The adaptation curves for the four parameters|ψ|, ]ψ, τ andε are shown in Fig. 5.1. The

parameters were chosen to have physically plausible values, with|ψ| = 0.1, ]ψ = 0.25(rad),

τ = 0.5T , andε = 0.0264T and their respective step-sizes wereµ1 = 0.0001, µ2 = 0.004, µ3 =

0.0005 andµ4 = 0.0001. The step-sizes were chosen heuristically to have good convergence

properties. Note that the parameters are inter-dependent and coupling exists in the step-sizes,

making the selection of step-size difficult.

The figure shows the values of the estimate for each parameter with respect to time, measured

in half-spaced symbols. For each parameter, two curves are shown; the first (solid) curve shows

the value of the estimate at a signal-to-noise ratio ofEb/No = 20dB and the other shows the

estimate at very high SNR, i.e.Eb/No = 120dB. The dotted line indicates the real value of the

parameter. All of the estimates converge to their respective parameter value, confirming that the

number of reflections (L = 3) is large enough to obtain a good approximation to the infinite sum

in (3.53). It can also be observed that the convergence rate at low SNR is similar to the high SNR

case but the fluctuations in the estimate are larger. Consequently, if for a given convergence rate

the level of the noise is such that the estimates are too noisy to be used, then the only way to

obtain better estimates is to have a smaller step-size, which ultimately increases the convergence

time.

The symbolsAk are assumed to be known at the receiver with a low probability of error.

It is nonetheless important to investigate the effects of a decision error on the algorithm as it

may occur once in a while. To do so, the same experiment as above is performed with an error

in one symbol decision artificially introduced. When doing this, no effects on the adaptation

curves could be perceived. The adaptation step-sizes chosen are too small for a single error to

cause disturbance. Note that the erroneous symbol was chosen such that it is adjacent in the

constellation to the real transmitted symbol. That way, it represents more closely what would be

observed in practice in a low probability of error environment.

5.2.2 Cramér-Rao Bound

The joint block ML estimator discussed in Chapter 3 was implemented inMATLAB. The opti-

mization routine for non-linear constrained minimization, based on a Sequential Quadratic Pro-

gramming (SQP) method [23], was used in this experiment to obtain the estimates. The experi-

ment was repeated one hundred times using the same parameters as those selected in the previous
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experiment and the variance of the estimates obtained was computed.

The objective is to compare the variance obtained to the Cramér-Rao bound, in (3.12) through

the inversion of the Fisher information matrix in (3.68).

The CRB requires non-biased estimates. This is a problem if an infinite number of channel

reflections must be considered. Therefore, to guarantee an exactly non-biased estimate even at

very high SNRs, the number of reflections was chosen to be limited to two in the channel. That

way, the channel becomes FIR andu[n] in (3.37) with the number of reflections also limited

to (two) exactly represents the received signal, without noise. Therefore the estimate obtained

using the procedure suggested is un-biased and the Cramér-Rao lower bound can be applied and

compared to the experimental data.

The results of this experiment for the four parameters are shown in Fig. 5.2 and 5.3 for a block

size ofN = 1000 andN = 200, respectively. For the larger block size in Fig. 5.2, the solid line

corresponds to the Cramér-Rao lower bound and the dotted lines represents the experimental data.

This experiment was performed using symbol-spaced samples, i.e. sampling intervalT , and half-

symbol spaced samples, i.e. sampling intervalT/2. The data points indicated by a circle “◦” and

by a diamond “�” represent the experiments with sampling interval ofT andT/2 respectively.

In Fig. 5.3, blocks ofN = 200 samples are used the experiment only considers symbol-

spaced samples. The experimental data points are indicated by a circle, while the theoretical

bound is indicated by the straight line with the squares as data markers.

First, consider the data set corresponding to the experiment which used a block size ofN =

1000 and symbol-spaced samples (T ). It can be observed from Fig. 5.2 that the experimental data

has the same slope than the CRB, for all parameters. Interestingly, it can also be observed that

the distance between the bound and the experimental data varies from parameter to parameter.

In particular, it can be seen that the distance between the variance ofε, a pure delay, and the

corresponding CRB is larger than for the other estimates. For pure delay estimation in white

noise, the CRB,σ2
D, may be given by [31]

σ2
D =

K

To(f 3
2 − f 3

1 )
, (5.1)

whereK is a constant that depends on the signal-to-noise ratio,To is observation time,f1 and

f2 are the lower and upper limit on the signal’s bandwidth respectively. Since sampling at the

symbol rate implies (using normalized frequencies)f1 = 0 andf2 = 1/2 and since the system’s

bandwidth corresponds tof ′2 = 2/3, then it is expected that the CRB when using symbol-spaced
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samples is approximately(1/2)3

(2/3)3 ≈ 2.4 times the CRB when using the full signal’s bandwidth.

Hence in this case, the CRB curve in Fig. 5.2(d) would be2.4 times higher than the current

one, bringing the CRB closer to the experimental data. The average distance between the CRB

and the variance of the estimate obtained using symbol-spaced samples is approximately2.9.

The difference may be explained by the modelling; the estimation performed in this experiment

is joint and the variance ofε also depends on the other parameters whereas (5.1) does not take

the joint estimation into account.

The variance of the estimate when using half-symbol spaced samples (T/2) is not signifi-

cantly closer to the bound than the other case (T ) and is even further for the variance of‖ψ|. This

may be explain from the lack of pre-whitening filter for theT/2 case; (5.1) only holds for white

Gaussian signals. Therefore, without the pre-whitening filter, the power of the signal’s higher

frequencies remains negligible and nothing is gained.

The variance of the estimate for smaller observation time tends to be further from the CRB

than for larger observation time as can be observed from Fig. 5.3. For instance, the ratio of the

average difference between the variance of the estimate and the CRB forN = 200 andN = 1000

is approximately6. So for an observation time five times larger, the average difference between

the variance and the bound decreases approximately by a factor of 6. This trend is expected

from a ML estimator; as the observation time increases, the variance of the estimate tends to the

Cramér-Rao lower bound [9].

5.3 Compensation System Comparison

In this section, the iterative estimation procedure of Chapter 3 is combined with the filter de-

sign techniques discussed in Chapter 4 to obtain a full compensation system and investigate its

performances. To do so, the mean squared error (MSE) between the symbols sent (Ak) and the

equalized samples at the input of the decision device is computed for each compensation system,

as illustrated in Fig. 5.4. Then the MSE from the different compensation systems are compared.

As shown in Fig. 5.4, the mean square error between the exact symbol and the equalized

samples is computed overN symbols. Smaller MSE at the input of the decision device indicates

a smaller symbol error rate. A better measure would be to compare the symbol error rate directly

(i.e the number ofÂk−d 6= Ak−d over the number of symbol sent), however this is not practi-

cal because of the extremely low probability of error (recall that the BER for this radio unit is

approximately10−8). Hence, the comparision of MSE is the preferred method in this work.
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Compared Systems

In this comparative study, three different compensation systems are considered. The first com-

pensation system, used in some existing data radio systems, consists of a bank of fixed FIR filters

from which a filter is selected to perform the equalization for each block of duration4096 sam-

ples. In this experiment, a set of seven FIR filters are considered. The first filter is the all-pass

filter and the other six are designed for a fixed|ψ|, τ andε, and six different values of]ψ, uni-

formly distributed between(−π, π]. For every block of4096 samples, one filter is selected as

being the “best” filter, and its output is routed to the decision device. It is chosen according to its

mean squared error (MSE), measured between the symbol sent (or its estimate) and the equalized

output, during the previous block.

The MSE for the best filter is computed along with the MSE for the other filters, one at a time,

alternating once per symbol duration during the entire block of data. At the end of a block, the

filter with the lowest mean squared error is selected as the best filter and is used for equalization

of the following block. This system will be referred to as “FBF” for fixed bank of filters.

The next system used in the comparison consists of an adaptive channel equalizer that uses the

normalized LMS (NLMS) algorithm [3]. For this experiment, a normalized step-size ofµ̃ = 0.3

was used for illustrative purposes. This specific value was chosen to have fast convergence and a

relatively small excess error.

The compensation system that is utilized here for the comparison is the iterative compensation

system illustrated in Fig. 4.4, whereN = 1000. The iterative parameter estimator had step-sizes

µ1 = 0.0001, µ2 = 0.01, µ3 = 0.002 andµ4 = 0.001 . The compensation system estimates the

parameters iteratively and once everyN = 1000 samples, the parameters are used to design a
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new compensation filter (equalizer). The filter is designed using a least squares approach with

the signal power spectral density as error weighting function, as described in Chapter 4.

MSE Comparison Results

The simulations were performed at a signal-to-noise ratio ofEb/No = 20dB and repeated over

one hundreds different channels. The channel parameters were uniformly distributed over the

range[0, 0.2] for |ψ|, (−π, π] for ]ψ, [0.25, 0.75] for τ and [−0.025, 0.025] for ε. Figure 5.5

shows the averaged MSE over the hundred channels for the different compensations algorithms.

The solid line at the top shows the MSE of the FBF system described above. The algorithm

is initialized to the all-pass filter and changes filter after4096 samples to the “best” filter for the

previous block. Since the filters in the bank were designed for a fixed channel, i.e. for|ψ| = 0.1,

τ = 0.25T andε = 0, it is expected that it does not perform well over the number of randomly

generated channels.

The dashed curve shows the performance of the proposed compensation system, labelled

“CS” for Compensation System. As the channel estimates converge to their respective values, the

channel equalizer designed on-line gets closer and closer to its ideal form. For all practical pur-

poses, it can be seen from Fig. 5.5 that after approximately six thousands samples, the estimates

are close enough to their actual values for the compensation filter to have converge to its ideal

response, lowering the MSE almost to the effective noise level,σ2, indicated by the dotted line

labeled “Noise” at the bottom.

The “dash-dot” line on the plot shows the MSE obtained using the NLMS algorithm. As it

can be observed, the NLMS converges extremely quickly to its minimum. However because of

the misadjustment in the LMS algorithm, it does not reach the minimum attainable MSE,σ2.

Note that a smaller step-size would results in a smaller excess mean square error and would get

close to the noise level.

The compensation system can therefore achieve a MSE in the order of what the NLMS al-

gorithm can achieve. However the new system has a level of complexity much higher than the

normalized LMS algorithm. A quick analysis of Algorithm 3.1 shows that for each sample, the

number of operation necessary to obtain a set of estimates is approximately4(L+ 1) + 2(2K +

1)(L+ 1), whereL is the number of reflections taken into account in (3.53) andK is the number

of symbols considered in (3.52) and (3.54). Thus, if we consider the filtering operation with a

filter length ofLf , the total complexity for every sample for the new compensation system be-
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comesLf +4(L+1)+2(2K+1)(L+1) plus some overhead, whereas the level of complexity of

the NLMS algorithm is in the order of2Lf plus overhead and for the FBF algorithm it is2Lf + 1

plus overhead.

The proposed compensation system can therefore be advantageous in situations where the

length of the filter is very long. In fact, the NLMS algorithm can be seen as a parameter estimator

where the parameters are the filter’s coefficients. For a complex filter of lengthLf , there are

2Lf parameters to estimate whereas in this application, the number of channel parameters is only

M = 4. Therefore for very long filters, i.e.Lf � M , it may be more appropriate to use the

proposed compensation system.
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Chapter 6

Conclusion

This work considered the estimation of transmission line parameters for digital equalization. It

focused on a specific military high capacity line-of-sight radio system. The particular application

of this radio is such that reflections on the cable between the antenna and radio receiver are

inevitable, creating ISI at the receiver. The equalization procedure proposed to compensate for

the ISI is performed in two steps. First, the transmission line parameters are estimated, using

a probability model derived from the physics of the problem. Then, a compensation filter is

designed (on-line) to equalize the distortion.

This Chapter will present a summary of the work followed by some suggestions on appropri-

ate future work.

6.1 Summary of Work

Aforementioned, this thesis considers a particular communication system, designed and manu-

factured for the military. It is a general data radio used by the military during deployment. It is

usually positioned in a communication vehicle, and requires a small installation time since it is

subject to frequent location changes.

This radio unit creates high reliability links, compatible withATM and can operate over a

very wide range of carrier frequencies over two distinct bands. Its main performance degradation

however, comes from the ISI caused by the reflections on the cable, between the antenna and the

radio receiver. Those reflections exists because the installation requirements are such that tuning

the antenna-cable-connection cannot be performed manually, causing an impedance mismatch.

The electrical properties of the transmission line system were analyzed in this work to obtain
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a model for the received signal. The model uses four parameters to completely determine the

effects of the transmission line reflections, or channel. The four parameters include the reflection

coefficientψ, a complex quantity with a magnitude|ψ| and a phase]ψ, the delay between

reflectionsτ and the synchronization offsetε. The latter is indirectly caused by the channel; the

received signal distortion will make the symbol synchronizer lock slightly offset with respect to

the middle of the symbol.

Point estimation was used to estimate the parameters, based on the received signal. The maxi-

mum likelihood (ML) estimator was first derived using a Fourier series expansion of the received

signal. Then, a more practicable approximate ML estimator that uses discrete-time samples has

been proposed. The approximate ML estimator uses non-linear optimization procedures to mini-

mize a cost function, closely related to its Fourier series ML estimator counterpart. To model the

radio unit under conisderation accurately, the pre-whitening filter is neglected in the approximate

ML estimator. In addition, an iterative estimator was presented. It is loosely based on the steepest

descent technique. The iterative estimator may be more practical to use in real-time applications.

Finally, the Cramér-Rao lower bound for the variance of the estimate was derived.

The estimated parameters are used to design a compensation filter. It was shown that the

compensation filter can be expressed in the time-domain as a sum of two weighted delayed delta

function. Unfortunately, the delays are not necessarily an integer number of sampling interval.

Therefore, only an approximate filter may be designed. A method for designing fractional delay

(FD) based on the least squares approach is suggested. The method weights the error in the fre-

quency domain with the power spectral density of the transmitted signal. This way, the weight on

the error is of lesser importance at the frequencies where the signal energy is low. The frequency

response of the designed compensation filter follows closely the ideal inverse channel frequency

response in the signal’s bandwidth.

Convergence curves for the iterative parameter estimator were shown. The parameter esti-

mates converge steadily to their actual values at the same rate for different SNRs, for a given

step-size. When the step-size is small enough, the effects of an error in the symbol decision does

not affect the estimates. The variance of the estimate obtained using a block ML estimator were

compared to their respective CRB. It is shown that the variances are close to the bound except

for the variance of the delay estimation, where it is slightly further from the bound than the other

cases. It is advanced that the absence of a pre-whitening filter and the bandwidth limitation of

the observation signal affect the reliability of the estimate. Finally, the full compensation system,

incorporating the iterative estimator and the filter design, is compared to other channel equaliza-
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tion techniques. The proposed method is shown to perform better than some sub-optimal channel

equalization techniques currently used in the industry. The mean squared error of the proposed

method approaches the power of the noise (minimum limit), as the estimates becomes closer to

their actual values.

6.2 Future Work

This thesis focused on a particular practical problem proposed by the industry. As such, the future

work suggested here involves both theoretical and practical aspects.

In terms of the theoretical future work, the issue of the automatic gain controllers should be

addressed. The model developed ignores the possible gain variations in the received signal caused

by the automatic gain controllers in reaction to the distortion and noise. A model for the gain

variation should be developed. It should not be too difficult to incorporate a gain compensation

system since the automatic gain can be predicted from the channel parameters and the noise

power.

The iterative algorithm proposed was developed using fixed step-sizes. The convergence and

stability of the algorithm could be improved by using an adaptive step-size mechanism. Ideally,

the step-sizes should first be larger so that the convergence is rapid at the beginning. Then, when

the estimates have converged, the step-sizes should be smaller to “fine tune” the estimates. A

search in the general adaptive filtering literature for similar step-size control algorithms should be

a good starting point. The iterative algorithm could also be modified to use the proposed bounds

on the parameters. Finally, another interesting future work direction is to study the relationship

between the Cramér-Rao bound and the iterative algorithm. In particular, it would be interesting

to find a relation between the convergence time, the step-size and the steady-state variance of the

estimate for the iterative algorithm.

The proposed compensation system relies heavily on the exactitude of the mathematical

model developed for the channel. An important aspect of future work would be to validate the

mathematical model using measured data. Ideally, those measurements should be made on a real

system, to represent as closely as possible the real operating conditions. The algorithm should

also be tested using real data.

The compensation system proposed is likely to be implemented in fixed point arithmetic.

Therefore, issues regarding fixed point implementation should be addressed. In particular, the

effects of limited numerical precision on the parameter estimation algorithm should be studied.
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Study of the fixed point implementation will also help to determine the necessary hardware for

the compensation system realization.
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Appendix A

Lowpass Equivalent Communication

Model Derivation

In this appendix, the lowpass equivalent communication system of Fig. 2.4 is fully derived. The

latter makes abstraction of the modulation and is therefore mathematically easier to work with.

First, the lowpass equivalent of the transmitted signal is developed, then the channel and noise

lowpass equivalent are derived. Finally, the matched filter and sampling are integrated to obtain

an expression for the fractionally sampled signal at the input of the equalizer.

Transmitted Signal

The QAM signal sent by the transmitter (after pulse shaping byp(t)) is defined by

s(t) =
∞∑

k=−∞

AIkp(t− kT ) cos(ωct)− AQkp(t− kT ) sin(ωct) (A.1)

whereAIk andAQk are the in-phase and quadrature components of the symbol at timek re-

spectively andT is the symbol duration. Since (A.1) is already in canonical form (see 2.27), its

lowpass equivalent can be directly obtained:

s̃(t) =
∞∑

k=−∞

Akp(t− kT ), (A.2)

whereAk = AIk + jAQk.
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Channel

The channel’s frequency response in equation (2.18) is not passband as it covers the entire fre-

quency range. It is therefore assumed that the radio-receiver has a bandpass filter at its input. The

latter is assumed to be

Π(ω) =

1, ωc −W < |ω| < ωc +W

0, elsewhere,
(A.3)

whereωc is the center frequency of the filter and2W is its total (bandpass) bandwidth. With this

filter in place, it is not difficult to show that the lowpass equivalent channel response becomes

H̃(ω) = 2e−j(ω+ωc)τ

(
φ

1− ψe−j(ω+ωc)2τ

)
, |ω| < W (A.4)

andH̃(ω) = 0 otherwise. If the lowpass excitationg(t) is band-limited to|ω| < W , it is possible

to make abstraction of the frequency limitation|ω| < W in (A.4) and express its time domain

equivalent as

h̃(t) = 2φ[δ(t− τ) + ψδ(t− 3τ) + ψ2δ(t− 5τ) + . . .]

= 2φ
∞∑
l=0

ψlδ(t− (2l + 1)τ),
(A.5)

wheree−jωcτ in the numerator has been absorbed byφ ande−jωc2τ in the denominator byψ in

(A.4). Note that the factor of2 will be absorbed later by the bandpass convolution operation.

Since the demodulation is performed coherently, it is assumed that the phase shift caused by

φ can be ignored. Furthermore, it is assumed that the automatic gain controllers in the receiver

makes|φ| = 1. Consequently,φ = 1 and is ignored in the model. In addition, it can be observed

that the channel has a pure delay ofτ , which we also ignore as it has no effect on the received

signal. Therefore, the channel lowpass equivalent becomes after these assumptions

h̃(t) = 2
∞∑
l=0

ψlδ(t− 2lτ) (A.6)

H̃(ω) =
2

1− ψe−jω2τ
, |ω| < W. (A.7)
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Received Signal

The baseband representation of the received signal at the input of the equalizer after matched fil-

tering consists of the baseband convolution of the transmitted signal with the equivalent channel,

convolved with the matched filter plus the equivalent noise term also convolved with the matched

filter, i.e.:

r̃(t) =
1

2
(s̃ ∗ h̃ ∗ pMF)(t) + (ñ ∗ pMF)(t). (A.8)

The factor1
2

comes from the equivalent lowpass convolution betweens̃(t) andh̃(t). The convo-

lution with pMF(t) does not require scaling since it is already lowpass.

Substituting (A.5) in (A.8) and using the sifting property of theδ(t) function, the received

signal after the matched filter, is finally expressed as

r̃(t) =
∞∑

k=−∞

∞∑
l=0

ψlAkg(t− kT − 2lτ) + v(t) (A.9)

where by definitiong(t) = (p∗pMF)(t) (the time delay introduced by the matched filter is ignored

because it has no consequences) andv(t) is given by

v(t) = (ñ ∗ pMF)(t) =

∫ ∞
−∞

ñ(ξ)pMF(t− ξ)dξ. (A.10)

The real and imaginary parts ofr̃(t) corresponds to the upper and lower branch respectively

in Fig. 2.4 after the matched filters. The factors of two in the demodulator scale the signals so

that the correspondences are exact.
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Appendix B

Fourier Series Coefficients for the Mean of

the Received Signal

In this Appendix, the Fourier series coefficients for the mean of the received signal,u(t), 0 ≤
t ≤ To are derived. By definition, the Fourier series coefficients are given by

U(ωq) =
1

To

∫ To

0

u(t)e−jωqtdt, ωq =
2πq

To
, q ∈ Z (B.1)

whereTo is the observation time. Recall from (3.15) thatu(t) is given by

u(t) =
∞∑

k=−∞

∞∑
l=0

ψlAkg(t− kT − 2lτ − ε)

=
1

2
(h̃ ∗ s̃ ∗ pMF)(t− ε),

(B.2)

whereh̃(t) ands̃(t) are the lowpass equivalent channel impulse response and transmitted signal

respectively, as defined in Appendix A andpMF(t) is the matched filter. Using the inverse Fourier

transform to replace the expressions forh̃(t), s̃(t) andpMF(t), (B.2) then becomes

u(t) =
∞∑

k=−∞

Ak
1

2π

∫ ∞
−∞

F (ω)G(ω)e−jωkT ejωtdω, (B.3)
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whereF (ω) ≡ F (ω;θ) is the composite channel response, which depends on the parameterθ

and includes the synchronization offset effects. It is defined by

F (ω;θ) =
1

2
H̃(ω)e−jωε, (B.4)

where the channel lowpass equivalent frequency responseH̃(ω) is defined in (A.7). Substituting

the equation (B.3) foru(t) in (B.1), the expression for the Fourier series coefficients now becomes

U(ωq) =
1

2π

∫ ∞
−∞

F (ω)G(ω)
∞∑

k=−∞

Ake
−jωkT 1

To

∫ To

0

ej(ω−ωq)tdt︸ ︷︷ ︸
Q(ω−ωq)

dω. (B.5)

Through simple integration, it can be shown thatQ(ω − ωq) is given by

Q(ω − ωq) = ej(ω−ωq)
To
2
sin(ω − ωq)To

2

(ω − ωq)To
2

. (B.6)

The main lobe ofQ(ω) (which has the form of asinc function) in this case is inversely propor-

tional toTo. Therefore, ifTo � T , i.e.N is large, then it can be assumed thatF (ω) andG(ω)

vary slowly within an interval of∆ω = 2π
To

. This assumption allows to extractF (ω) andG(ω)

from the integral in (B.5). The expression for the Fourier series coefficients ofu(t) then becomes

U(ωq) ' F (ωq)G(ωq)
∞∑

k=−∞

Ak
1

2π

∫ ∞
−∞

e−jωkT ej(ω−ωq)
To
2

sin((ω − ωq)To
2

)

(ω − ωq)To
2

dω. (B.7)

By using the change of variableω′ = ω − ωq, the previous equation simplifies to

U(ωq) ' F (ωq)G(ωq)
∞∑

k=−∞

Ake
−jωqkT 1

2π

∫ ∞
−∞

sin(ω
′To
2

)
ω′To

2

ej(
To
2
−kT )ω′dω′. (B.8)

The integral in (B.7) is simply the inverse Fourier transform of asin(x)/x type of function eval-

uated at timet = To/2− kT . It is given by

F−1

[
sin(ωTo/2)

ωTo/2

]
t=To/2−kT

=
1

To
rect(

To/2− kT
To

), (B.9)
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where therect function is defined as

rect(t) =

1, |t| ≤ 1
2

0, elsewhere.
(B.10)

Therefore, using (B.9), the expression for the Fourier series coefficients now becomes

U(ωq) ' F (ωq)G(ωq)
∞∑

k=−∞

Ake
−jωqkT 1

To
rect(

1

2
− kT

To
). (B.11)

If the observation interval corresponds to an integer number of symbol duration, i.e.To = NT ,

then the rectangular function in (B.11) eliminates the symbols in the summation outside of the

observation interval, reducing the sum overk to the range0 ≤ k < N . Let D(ω) denote the

contribution of the data, i.e.:

D(ω) =
N−1∑
k=0

Ake
−jωkT . (B.12)

Then, the expression for the Fourier series coefficients of the mean of the received signal finally

becomes

U(ωq) '
1

To
F (ωq;θ)G(ωq)D(ωq), (B.13)

where the reference to the parameterθ emphasizes the fact that only the composite channel

frequency responseF (ω;θ) depends on the parameters in this expression.
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