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Abstract

This work considers the distortion created by an unmatched transmission line system at the re-
ceiver of a military data radio. The installation requirements for these types of systems are such
that manual tuning of the antenna is impracticable. The antenna impedance may not match that of
the cable and radio receiver, resulting in electrical reflections in the cable. These reflections cre-
ate intersymbol interference (ISl), which distorts the received signal and limits the performance
of the communication link.

It is shown that this distortion can be modelled using only four parameters: the transit time,
the amplitude and the angle of the reflection coefficient and the synchronization offset. A joint
maximum likelihood (ML) block estimator for the parameters is presented with the correspond-
ing Cramér-Rao bound. The performance of the estimator is evaluated using simulations and
compared to the bound. A more practical iterative estimator algorithm for the joint estimation of
the parameters is also suggested.

To compensate for the distortion at the receiver, a filter design technique based on the esti-
mated parameters is introduced. The method, obtained from the least squares procedure, produces
an approximate inverse filter for the channel, minimizing the distortion at the receiver. Results
comparing the proposed method to traditional adaptive equalizers are presented. They show that
the minimum mean squared error (MSE) achieved by the proposed method approaches the power
of the noise, the minimum value attainable.



Sommaire

Ce mémoire examine les effets de la distorsion créée par une mauvaise adaptation de I'impédance
d’'une antenne connectée par un cable a un récepteur radio de type militaire. L'ajustement manuel
de I'antenne est impraticable d aux exigences d’installation. Ainsi, 'impédance de I'antenne
n'est pas nécessairement adaptée a celle du céable et du récepteur radio, résultant en des réflex-
ions électriques dans le cable. Ces réflexions créent du brouillage intersymbole qui limite la
performance du lien radio.

Il est démontré que cette distorsion peut étre décrite entierement avec l'utilisation de quatre
parametres: le temps de propagation, 'amplitude et I'angle du coefficient de réflexion et le délai
de synchronisation. Un estimateur commun a maximum de vraisemblance (ML) en bloc est
présenté avec la borne de Cramér-Rao (CRB) correspondante. La variance de I'estimateur ML
est évaluée par simulations et les résultats sont comparés a la borne. Un algorithme d’estimateur
itératif plus pratique est également suggeéré.

Afin de réduire les effets de la distorsion au récepteur, une méthode de synthése de filtre de
compensation utilisant les paramétres estimés est présentée. Le filtre de compensation créé est
une approximation de I'inverse du canal (entre I'antenne et le récepteur), qui permet de minimiser
la distorsion au récepteur. Les résultats comparent le systéeme de compensation proposé avec cer-
taines autres techniques d’égalisation de canal plus traditionnelles. lls démontrent que I'écart
guadratique moyen obtenu avec la méthode proposée approche la puissance du bruit, valeur min-
imum a atteindre.
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Chapter 1
Introduction

In this Chapter, the problem under consideration in this thesis is introduced, followed by a sur-
vey of the relevant literature. Then, the research objectives and methodology are exposed, the
contributions are listed and finally, an outline of the thesis organization is given.

1.1 Problem Overview

In this work, a very specific radio unit designed for military communications is considered. This
radio system provides a capacity of up to 8Mbps over 40km links, with a reliability better than
10~® residual bit error rates, compatible with ATM requirements. The radio unit's reliability
combined with its ease of use and flexibility makes it a leader in today’s military communication
systems.

The radio unit of interest is used by the military for general data traffic like digital speech,
video and computer data transmission. The radio unit is usually located in a military communi-
cation truck, from which it is deployed. In a conflict situation, the location of the communication
vehicle may change on a daily basis. For these reasons, the military requires that the radio link
be installed in less that half an hour with the help of only three people. The work involved in
setting the radio system is minimized; it consists of mounting the antenna on top of an elevated
structure, connecting the cable between the antenna and radio, and selecting the radio operating
frequency and related parameters.

The general data transmission problem consists of sending information through a channel and
recovering the original data (see Fig]1.1). The digital information may originate from a variety
of sources such as digital speech, computer file, digital video etc. The channel usually distorts
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Fig. 1.1 General Data Transmission System

the transmitted signal and then noise is added to it. For this reason, the receiver, in general,
cannot perfectly recover the transmitted data. This imperfection may cause errors in the decoded
information which may have dramatic consequences in certain applications.

This work focuses on the distortion caused by the possible impedance mismatch of the
antenna-cable-radio connection in the previously described radio system. Normal installation
of a fixed wireless communication system involves tuning of the antenna-cable-radio connection.
If the impedance of the antenna is not matched to that of the cable and radio receiver, there will
be electrical reflections in the cable, as illustrated in Fig. 1.2. Therefore, in most commercial sys-
tems, the antenna is usually tuned manually as part of the installation process to minimize those
reflections. However, manual adjustments of the antenna is impractical in the particular applica-

«(\ N

Reflections
& T
< <
Antenna Cable Radio

Fig. 1.2 Reflections from Impedance Mismatch

tion under study because it would most certainly violate the requirements of a limited installation
time. Therefore, reflections in the antenna cable are bound to occur. These reflections will create
distortion at the receiver.

Indeed, because the radio operates at a very high data rate fup 10° symbols/second)
and because the time delay between the incoming wave and its associated reflections is short due
to the limited length of the cable, significant distortion or intersymbol interference (ISI) will be
present at the receiver. Unfortunately, it is not possible to design an antenna that would only
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require tuning at the manufacture because the impedance of the antenna is highly dependent
on the operating frequency, which is subject to frequent changes. Furthermore, this radio unit
operates in two distinct bands, ranging from 225 to 400 MHz and 1.3 to 2.7 GHz for the first
and second band respectively. The frequency range is so large that it is very difficult, if not
impossible, to build an antenna that would have the same properties for the entire range in each
band.

Consequently, the particular application of this wireless radio system is such that distortion
of the received signal caused by impedance mismatch on the antenna-cable-radio connection is
inevitable. The characteristics of this distortion depend on the length of the cable or transmis-
sion line, the frequency of operation, the antenna type, the receiver structure, the temperature,
the cable type and other parameters. Not only this distortion is inevitable but also, since this
radio normaly operates with large signal-to-noise ratio, it is the major source of performance
degradation.

The problem under study therefore consists of designing a compensation filter or system that
minimizes or eliminates this performance limitation. The radio demodulator already has the
hardware necessary for digital filtering of the received signal. More specifically, the modem
possesses a quadrature 8—tap finite impulse response (FIR) equalizer located after the matched
filter. The FIR filters are used as part of a non-optimal proprietary equalization scheme for
impedance mismatch. The new compensating filter should preferably be designed to utilize the
hardware available.

Itis shown in this thesis through mathematical analysis of the channel model that its properties
can be fully described by a finite number of parameters: the reflection coefficient, the time delay
between reflections and the synchronization offset. It is therefore proposed here to approach the
problem from a parameter estimation perspective. The channel parameters are to be estimated
from the received signal. Based on the estimates and knowledge of the channel structure, a
compensation filter will be designed on-line and loaded into the equalizer already present in the
radio receiver. The procedure is illustrated in Fig] 1.3.

1.2 Literature Survey

The problem introduced above is very specific; it is in fact so specific, that finding articles on
this exact topic in the literature is very difficult. Similar problems can be found in other fields
of engineering like the triple transit echo problem related to surface acoustic waves in semicon-
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ductors [1[R]. Although these problems are related, they belong to different fields of study in
electrical engineering and have quite different solutions.

It could be said that the problem of interest here belongs to the class of general adaptive
channel equalization. However, the structure of the channel is well known a-priori. This infor-
mation should be used in the design of the compensation filter as opposed to the general problem,
where no information about the channel is available. Thus, general adaptive channel equalization
techniques will not take advantage of this information.

Nevertheless, some general adaptive equalization algorithms may be used to compensate for
the distortion. Many adaptive filter algorithms have been applied to digital transmission. In
particular, thdeast mean squarer LMS algorithm can be applied to channel equalization [3] for
QAM systems.

The LMS adaptive filter algorithm is often considered as the “standard” algorithm to which
others algorithms are benchmarked to. Several algorithms based on LMS have been derived to
achieve certain objectives like complexity reduction and better convergence. Example of these
include the sign algorithni[4], the normalized LMS algorithm (NLMS), the affine projection al-
gorithm (APA) and its fast versiori|[5], the frequency-domain LMS algorithm, etc. Beside the
LMS, another very popular adaptive filter algorithm is the recursive least square (RLS) algo-
rithm and related modified algorithms such as the fast RLS (FRLS) and the frequency-domain
approximate RLS algorithm][6].

More recently, a new category of blind adaptive filters designed specifically for data trans-
mission has been developed. T@enstant Modulus AlgorithiiICMA) [7] has attracted much
interest [8]. Its low complexity and convergence properties without the need for training (hence
blind) are very attractive properties for high speed modems.
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The approach that is proposed here involves the use of parameter estimation techniques. Es-
timation theory is a well-developed topic (e.g. sge [9]), which originates from basic probability
theory. One of the general objectives of parameter estimation is to obtain an estimate of a param-
eter, based on a set of many observations and a probability model. Estimation theory defines a
mathematical base to obtain estimation functions from the probability model and to analyze the
performance of the estimate. Standard procedures to obtain and analyze an estimator are straight-
forward and covered in many writings [9] 10|, 11]. Additionally, the general procedure for this part
of our work is based on relatively recent articles with similar objectives{j12, 13].

1.3 Objectives Approaches and Contributions

The main objective of this research is to incorporate channel information into the design of the
equalizer or compensation filter and analyze its performance. In addition, the proposed method
should be compared to other more general channel equalization techniques. The objective is then
to determine if the proposed method is advantageous compared to general approaches.

The work may be divided in smaller parts so that specific objectives can be identified sep-
arately. This includes channel modelling, parameter estimation, compensation filter design and
performance evaluation.

For the channel model, it is required to develop a complete accurate mathematical model for
the distortion. The model must be accurate enough to closely represent the channel in the system
and must be simple enough to be meaningful. Ideally, the channel should be parameterized so
that its characteristics can be fully determined by a small set of parameters.

Then, an estimation procedure for the channel parameters needs to be developed and evalu-
ated. It is desirable to have a estimator function that gives accurate estimates of the parameters
because the estimates will be used to create a compensation filter for the channel. Bad estimates
will inevitably result in a poor compensation filter. Therefore, the maximum likelihood (ML)
estimator is developed along with the corresponding Cramér-Rao bound (CRB) on the estima-
tor variance. The variance of the estimates obtained using the ML estimator will be measured
through simulations and compared to the CRB.

The compensation filter needs to be designed such that the channel distortion effects are
minimized or eliminated. Since the filter is limited in length to a small number of coefficients in
the present application, it will be necessary to use a filter design technique that approximates the
desired frequency response of the filter. The design method must be simple enough so that it can



1 Introduction 6

be performed on-line.

Finally, itis required to evaluate the performance of this compensation system. The evaluation
will be performed through a comparison with other channel equalization techniques such as the
aforementioned NLMS. The evaluation should be performed over a large number of different
channels and operating conditions to obtain a realistic measure of performance.

To achieve the objectives, the problem will first be analyzed mathematically. Then, simula-
tions will be performed throughout the work to validate the theoretical findings. The numerical
analysis computer to®ATLABand the programming language C will be used.

The results obtained in this thesis show that it is possible to derive a reliable set of parameter
estimates and design a compensation filter to equalize the channel distortion. The proposed com-
pensation system is shown to perform better than some suboptimal adaptive channel equalizers.

As such, the contributions of this work to the body of research in the telecommunications and
signal processing areas can be summarized as follow. First, the ML estimator for the unmatched
transmission line system parameters, i.e. the reflection coefficient, the time-delay between reflec-
tions and the synchronization offset is derived. Then, a more practical ML iterative estimator is
developed. The Cramér-Rao bound for the ML estimator is derived and finally, a compensation
filter design technique that utilizes the estimated parameters for the equalization of the unmatched
system is described.

1.4 Thesis Organization

A detailed description of the problem is presented in Chgpter 2. Basic transmission line theory
is introduced to assist the modelling of the reflections in the cable. Mathematical models for the
channel and the communication system are developed. The communication system under study
is detailed and simplified to an equivalent lowpass model. The statistics of the received symbols
are discussed.

The concepts of parameter estimation are then introduced in Chiapter 3. A parameter estima-
tion technique for the channel parameters is developed and analyzed. The probability model for
the parameters based on the received samples is derived. Practical considerations are discussed
including a proposed iterative implementation of the ML estimation procedure. The block joint
ML estimator is also discussed and the Cramér-Rao lower bound is derived.

Compensation filter design is discussed in Chalpter 4, which begins with a discussion of the
ideal channel equalizer. Design issues are then discussed, in particular the implementation of



1 Introduction 7

fractional delays in discrete-time systems is considered. The procedure to obtain the coefficients

of the compensation filter is then examined.

The results comparing the standard channel equalization techniques to the proposed algorithm
solution are presented in Chapfer 5 as well as some results on the parameter estimation procedure.
Finally, Chaptef]6 summarizes and concludes this work.



Chapter 2
Background and Problem Definition

In this Chapter, necessary background material is introduced along with a definition of the specific
problem under consideration. The chapter starts with a brief introduction to transmission line
theory. This is followed by a description of the channel under consideration and its properties.
Then, the communication model that will be used throughout this work is studied. Finally, the

problem of interest in this thesis is defined in formal terms.

2.1 Introduction to Transmission Line Theory

In Chaptel]L, the source of the distortion at the receiver is introduced as an impedance mismatch
in the receiver-cable-antenna system (see [Fig. 1.2). To model and analyze this source of dis-
tortion, understanding electric transmission line properties, and more specifically reflections, is
essential.

An electric transmission line is a passive physical device, consisting of two parallel con-
ductors, that carries an electromagnetic signal from one end to the other, usually attenuating its
amplitude and modifying its phase. Not all pairs of parallel conductors are transmission lines;
conductors that are much smaller in length than the shortest wavelength of the signal they carry
are not considered transmission lines.

Since the signals propagating over transmission lines are often modulated, as is the case
here, at some carrier frequency, say they are typically modelled using phasor to simplify
the notation. Consider the semi-infinite transmission line illustrated in[Fig. 2.1. Using phasor
notation, the voltage(z, t), referenced to cosine, measured at locatiamd timet on the semi-
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infinite transmission line is expressed as
v(z,t) = Re[V(2)e’"], (2.1)

whereV/(z) is the voltage at distanceon the line, now independent of time. This representation
allows us to make abstraction of the carrier in the time domain.

The properties of a transmission line are modelled using only a few parameters, which have
an implicit dependence on the carrier frequengy The propagation constant, denoted-y
determines how the transmission line attenuates and changes the phase of a sinusoidal wave with
distance:

v =a+ b, (2.2)

whereq is theattenuation constantNpfi/m), which characterizes attenuation per meter, and

is thephase constantrad/m), a measure of phase shift per mefer [14]. Specifically, if a source
voltageVs is applied at the input of a semi-infinite transmission line, the voltage on the line at
distance: from the source becomes:

V(z) = Vge 7%, (2.3)

The ratio of voltage to current at any point on a transmission line is callechidi@cteristic

impedancend is denoted by:
V(z)
I(z)

Note that it is called “characteristic” because for a semi-infinite transmission line (with no reflec-

LAn attenuation of 1 Neper (Np) applied to a wave corresponds to its amplitude being decreasee:t0.368
of its original value.
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tions), this ratio is constant and consequently independent éflso, note thatZ, and~ both
characterize the physics of the transmission line structure as they are independent of the position
on the line.

For a semi-infinite transmission line, it is true that the ratio of voltage to current is constant and
equals the characteristic impedance. However, when the transmission line is terminated by some
load, it is not generally the case anymore. Specifically, when a transmission line is terminated by
a load impedance/;) different from the characteristic impedance of that liag)( areflection
occurs. Two travelling waves then exist on the line; an incident wave, going from the source to
the load and a reflected wave, going from the load back to the source.

The ratio of reflected to incident voltage wave is given in phasor notation bydlage

reflection coefficientL4]:
Z1, — Zy

T 7+ 2,
In generalI'; is complex andl';| < 1. From (2.b), it is obvious that if the impedances match
(i.,e. Z, = Zy), 'y, is zero and no reflection occurs.

Figure[Z.R illustrates a simple transmission line system with finite lehgtltharacteristic
impedanceZ,, voltage sourcé’s, source impedancg&s and load impedancg;. If the source

I, = T |e?r. (2.5)

Fig. 2.2 Transmission Line Model

and load impedances are not assumed to be matched to the characteristic impedance of the trans-
mission line, reflection occurs on both ends of the transmission line.

When the source is turned on, the voltagehat first appears at the source end of the trans-
mission line is given by simple voltage division:

Zo

Vo=Vg—"0
0 SZO"’ZS

(2.6)
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This voltage travels on the transmission line until it hits the load. Then, it gets reflected and two
waves now coexist on the transmission line; a forward and backward travelling wave. The total
voltage at any point is given by the sum of the two wave voltages.

Let V"t (z) andV"~(z) denote the:'” reflected forward{ increases with time) and backward
(= decreases with time) travelling wave voltages respectively, measured at distooe the
source.V'*(z) becomes the first forward travelling incident wave voltage ®Ad(z) the first
backward travelling wave voltage. LBt represent the source reflection coefficient such that

 Zs—Zy

== 2.7
Zs + Zy (2.7)

S

Then, from the discussion above and the definitions 9fl"s and Vg, V" (z) andV"~(z) can
be expressed as

Vi (2) = Vp(TpTs) e nEet?) (2.8)
V™ (2) = V(P D) T pe 13 Dbeethe2) (2.9)

The voltage measured at the load in steady-state is given by the sum of the forward and backward
travelling wave voltages at positian= L., summed over all reflections i.e:

o0

V=) (1 +T ) V(I Tg) e 7Erle, (2.10)

n=0

Using a well known property of the geometric series, this last equation simplifies to

_ 141
Vi, = Voe e 2.11
L 0€ 1 — T, Dge2ke’ ( )
which holds provided thaf';I'se=7?%<| < 1 which is always the case singe;| < 1, [I's| < 1

and|e=72Le

= 1 by definition.

2.2 Channel Description

In the previous section, the voltage relation between the source and the load for the particular
transmission line system of Fifg. .2 was developed. This system may be regarded as the one
illustrated in Fig[I]2. The source would corresponds to the antenna, the transmission line to the
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physical cable and the load to the radio receiver. The antenna-cable-receiver connection is then
considered as a channel that distorts the signal at the receiver. A mathematical description of this
channel is required to devise a mechanism to recover the data more efficiently.

To obtain such description, it is first noted that the bandwidth used by radio transceiver is
very small compared to the carrier frequency. In fact, the radio unit considered operates in two
bands, from 225 to 400 MHz for the first band and 1.3 to 2.7 GHz for the second band, and
has a transmission bandwidth of at most 5SMHz at the maximum rate. Therefore, it is reasonable
to assume that the frequency-dependent parameters are fixed for a small bandwidth around the
carrier (e.g. see for example the specifications for a commercial microwave [cable [15]).

Then, it is observed that the length of the lihemay be expressed in terms of time delays.
Let 1 denote the wave propagation velocity in the transmission linedénotes the time required
for the wave to propagate from one end of the line to the other, i.e. a distantieen

T= & (2.12)
7]
Let us introduce the phase constént [14],
=2 (2.13)
7]

wherew = 2xf is the wave angular frequency. Usifg {2.Z), (R.12) dnd|2.13), the factor
appearing in[(Z.11) can be expressed as follows

vL. = aL.+ jwT. (2.14)

With the help of [Z.14),[(Z2.11) may be written in the form of a frequency dependent transfer
function as follows:

VL — _i 1 + PL
H(w) & & = e “heemdvr — 2.15
(w) ‘/0 € € 1 — FLrse—QQLce—]WQT ( )
Introducing the complex-valued constants
Y =T Dge @2 (2.16)

¢ =e (1 +Ty), (2.17)
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then H (w) may be expressed more compactly as

¢€—jw7'

HW) = 7

(2.18)
wherey and¢ are assumed to be independentaf the carrier neighborhood. It can be observed
from H (w) that its magnitude response is periodic in frequency, with a periddfof % = 5

Example

Figure[Z.B shows the magnitude and phase responses for a hypothetical system, with cable length
L. = 25m, reflection coefficient$'s = —6dB andI';, = —10dB, attenuatiorn = —5dB/m

and wave propagation velocity = 2.5 x 10®m/s (typical for the cable types used). The carrier
frequency iI2GHz, corresponding to the middle of the second band and the system bandwidth
is 5MHz. As seen in Figuré 2.3 the frequency respofge) is periodic inw with a period of

Magnitude Response (dB)

Magnitude(dB)
N w
N (62} w ()]

=
&

1 L L L L L L I
19975 1.998 1.9985 1.999 1.9995 2 2.,0005 2.001 2.0015 2.002 2.0025

Il Il

Frequency % 10°

Phase Response (rad)
0.5 T T T

Phase (rad)
o

<
|

-0.5 1 1 1 1 1 1 1 1 1
19975 1.998 1.9985 1999  1.9995 2 2.0005 2.001 2.0015 2.002 2.0025
Frequency x10°

Fig. 2.3 Channel Frequency Response

5MHz, which is equal ta)-.
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Note that this is an over-simplified example; indeed the reflection coefficients were taken as
real and positive while in practice, they can be anywhere inside the unit circle of the complex
plane. The response can thus vary greatly from what is shown i Hig. 2.3. Nevertheless, it gives
a good idea of the general shape of the channel’s frequency response.

2.3 Communication System Model

In this section, the mathematical model for the communication system under investigation is
developed and its baseband representation is discussed. To begin, the characteristics of the com-
munication system are described and then the lowpass equivalent representation is derived.

2.3.1 Communication System Characteristics

The system under considerafforonsists of a wireless radio system capable of transmitting at

a rate up to 8Mb/s. It uses trellis-coded modulation (TCM) with 32 quadrature amplitude mod-
ulation (QAM) symbols. TCM is a coding technique][16] that is outside of the scope of this
work and will not be considered. Figure2.4 illustrates the system’s block diagram. The different
components present in the block diagram are described below, starting from the binary source up
to the binary sink at the receiver output.

e Binary source: Source of binary digits to be transmitted. It is assumed that the two binary
symbols have the same probability of occurrence. The bits are generated at a rate of 8Mb/s.

e MAP: This block groups binary digits together and maps them into a corresponding QAM
symbol A, with £ denoting a time index. This symbol is composed of “real” and “imag-
inary” parts corresponding to the in-phase (top) and quadrature (bottom) branches in the
block diagram. The symbols are forwarded to the pulse shaping function periodically, ev-
eryT = 0.5 x 107% second. Notice that an extra bit is added for the TCM, which is not
considered in this work. The output symbol rate is therefoxe10° symbols per second
or 2Ms/s.

e p(t): The pulse shaping function. It has the spectrum characteristics of the square root of a

2The following description of the radio system was obtained from: P. Perodeau, Private Communication, CMC
Electronics Inc., July 2000.
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raised cosine. Thuf(w) = /G (w), whereG(w) is given by

T, lw| < %TF
G =S5 {1+ cos(Blul - )}, Hrslkl<iEn  @19)
0, lw| > #W,

whereg is called theolloff factor,0 < g < 1 and7 is the symbol period, defined above.
In the time-domain, the expressions fgr) andg(t) are given respectively by

(45t/T) cos (w(1 + B)t/T) + sin (r(1 — B)t/T)

= (<100~ (50T S
e, COS Bt
g(t) = sinc(%) _(4§2t)2 (2.21)

It can be noted fron (2.19) that the raised cosine frequency response is limiggdtd/,
wherelV is the system’s bandwidifdefined as

(1+ﬁ)7r'

W="—"7

(2.22)

Notice that according to the given definition of bandwidth, the modulated (bandpass) raised
cosine has bandwidtil.

Modulation: The following step consists of modulating the signal. The in-phase component
(top branch) is modulated at frequengy directly via multiplication withcos(w.t). The
guadrature component (bottom branch) is also modulated. aut is phase shifted by
—m /2 with respect to the in-phase component. The two signals are then added together (no
information is lost since the two signals are in phase-quadrature).

Line-of-sight (LOS) Delay: This is the physical channel between the two antennas. Since
a line-of-sight (LOS) is assumed with no multipath components, it consists of a pure de-
lay, with no distortion. This assumption holds in the present context where the installation
procedure requires that the antenna be installed in such a way as to minimize the multipath

3In this thesis, the bandwidth is defined as the extent of significant spectral content of the signal for positive
frequencies[[17].
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reflections (e.g. the antenna is placed behind a blocking structure like a truck or small build-
ing in such a way as to prevent as much multipath components as possible from reaching
the antenna while leaving the direct path unaffected).

e H(w): The channel impulse response created by reflections in the antenna-cable-radio
connection. The corresponding frequency response is defingdin (2.18).

e n(t): Narrowband noise, centered around the carrier frequepeyith bandwidth2i" =
W and flat power spectral density (PSD) of amplitudg’2 (see sectio@A).

e Demodulation: Coherent demodulation with perfect phase synchronization is assumed. In
practice, gohase locked loos in place to ensure carrier tracking. The demodulation step
separates the signal from the cable back into its in-phase (top) and quadrature (bottom)
components. The factors Binormalize the input signal so that the quadrature components
are scaled correctly. In practice, this is implemented usiagpmatic gain controllers
(AGC).

e pur(t): These blocks represents the matched filters, selected to ensure a maximum peak
signal-to-noise ratio (SNR) at the receiver.

e Sampler: Sampling and analog to digital conversiénip) allow the signal to be processed
numerically. The analog signals are sampled at twice the baud raf&/2esynchronized
with the middle of the symbol and then converted to a digital form. In this work, the
following assumptions are made:

I. the synchronization is not perfect and creates a time offset in the received signal,
denoted by. This synchronization offset is to be incorporated in the channel model
as a pure delay.

ii. the A/D devices have high numerical precision, although in practiceAthle con-
verters would be limited to a fixed number of bits, depending on the implementation.

iii. there is no aliasing caused by the sampling operation. Since the system’s bandwidth
Is limited to the raised cosine bandwidth, it can be easily shown that a sampling rate
of twice the baud rate guarantees no aliasing.
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After the A/ D conversion, the top and bottom branches are merged into a single complex
entity, the in-phase and quadrature component corresponding respectively to its real and
imaginary part.

e Equalizer ¢[m)): this is the filter that compensates for the distortion caused by the channel
H(w). At the equalizer output, the signal is sampled at the baud rate/ie.

¢ Decision device: this device decides which symbol was the most probably sent, given what
has been received (using a shortest distance algorithm). The result is an approximation to
the symbol sent which is denoted Hy,.

e Symbol un-map: this device un-maps the symbol received into a sequence of binary digits.

e Binary Sink: this is the binary information’s final destination.

2.3.2 Equivalent Lowpass Representation

Most communication systems use some sort of modulation to transfer information through a
bandlimited channel. When the channel bandwidth is much smaller than the modulation carrier
frequency, the system is said to be a narrowband bandpass system. The same definition applies to
signals and in general, narrowband bandpass signals and systems can be represented by a lowpass
equivalent form, which allows abstraction of the carrier modulation. Indeed, this form is more
convenient and efficient to manipulate.

To obtain the lowpass equivalent of a narrowband bandpass signal, the pre-envelope must
be computed, followed by its complex envelope (another name for lowpass equivalent). The
procedure is illustrated in Fif. 2.5 and is explained below.

Consider a real narrowband bandpass siggl with frequency content concentrated in a
finite window around a center frequengy, as shown in Fig. 2.5(a). The pre-envelopes oft)
is defined as

sy (t) = s(t) + js(t) (2.23)

wheres(t) is the Hilbert transform(]17] of(¢). The pre-envelope consists of the original positive
frequency signal spectrum scaled by two with its negative frequencies eliminated as illustrated in
Fig.[2.5(b). The complex envelogét) of s(t) is given by

5(t) = sy (t)e 7wt (2.24)
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and consists of a translation of the pre-envelope spectrum to baseband, as illustratdd in Fig. 2.5(c).
In general5(t) is complex valued and it can be expressed as:

(1) = s1(t) + jsqt), (2.25)

wheres; (t) andsq(t) are the so-called in-phase and quadrature components, respectively. The
original bandpass signal can be recovered from its complex envelope using

s(t) = Re[5(t)e’] (2.26)
or equivalently from the in-phase and quadrature components:
s(t) = sp(t) cos(wet) — so(t) sin(w.t). (2.27)

Bandpass systems can also be represented in lowpass equivalent form using a similar pro-
cedure [1]7]. It can be shown that when a narrowband bandpass sigh@asses through a
bandpass systef(t), the equivalent lowpass response of the outputyay is obtained using
a normalized convolution (i.e. scaled by):

gt) = % / b 5(T)h(t — 7)dr (2.28)
- %(5 « (1) (2.29)

2.3.3 Communication System Lowpass Equivalent

A complete lowpass equivalent for the communication system illustrated iff Fig. 2.4 can be de-
veloped, using the concepts introduced in the previous section which allow abstraction of the
modulation. Figur€ 26 illustrates the resulting lowpass equivalent communication system model,
which consists of the following blocks, from the source to the sink: serial binary source (input),
complex symbol mapping, pulse shaping filter, channel, noise source, matched filter, half sym-
bol sampler, equalizer, symbol sampler, non-linear decision device, symbol to binary mapping,
binary sink (output). The details of the derivation of the low-pass equivalent model are discussed
in Appendix[A. Only the essential equations and concepts are discussed below.

The output of the complex symbol mapping block is modelled as a sequence of complex
numbersA, (k € Z), wherek denotes the discrete time index. It is convenient to express symbol
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Ay in term of its real and imaginary parts as
Ay = A + jAgk (2.30)

The symbolsA, are chosen from a finite alphabet. The set of values they can assume depends
on theconstellationbeing used. The constellation for a particular system is obtained by plotting
all the possible symbols complex amplitudes on the complex plane. The radio system of interest
uses the QAM-32 constellation illustrated in Hig] 2.7. The lowpass equivalent transmitted signal,
5(t), consists therefore of a sum of pulsed shaped symbols:

5(t) = i Ayp(t — KT) (2.31)
k=—0c0

whereT is the symbol duration angl¢) is the pulse shaping function. The received sigra)
at the sampler input may therefore be expressed as

) = £ (5% e pue) (1) + (7 e ) 1), (2.32)

whereh(t) is the channel impulse responset) is the noise termpye(t) is the matched filter,
i.e. afilter with impulse responggT” —t), and “” denotes convolution. The factércomes from
the convolution of the two lowpass equivalent sigrigls andh(t) (see eq.[(2.28). Itis shown in
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Appendix[A that the received signal after matched filter may be expressed as

o0

7(t) = Z 3 Y Arg(t — kT — 2I7) 4+ v(t), (2.33)

k=—o0 [=0

whereg(t) is given in (Z.2]L) and(t) is defined by

oft) = (s pue)(t) = [ (€)purlt — ) (2.34
Before equalization, the received signal is sampled at twice the baud rate. The symbol syn-
chronization is not perfect due to the signal distortion. Hence, a synchronization offset
included in the model. Thus, after sampling at twice the baud rate, the discrete-time received
signal is
oo oo T
rim| = "Arg(m= — kT — 2l7 — €) + v[m], 2.35
[]k;w;zmg(Q )+ v[m] (2.35)

where the noise term[m] is given by

v[m] = v(—— —¢) (2.36)



2 Background and Problem Definition 23

andm € Z represents the discrete time index. The synchronization eftsas no effects on the
noise because it is assumed stationary (see next section).

2.4 Statistical Properties

In this section, the statistical properties of the transmitted symbols and of the noise are discussed.
The symbols transmitted are selected from a discrete set of values, determined by the con-
stellation. The sequence df, represents the realization of a random process, consisting of a
sequence of independent and identically distributed (iid) random variables. The individual ran-
dom variables have zero mean and are assumed to be uniformly distributed over the set of points
defined by the constellation (see [Fig|2.7). Itis further assumed that the random precgeslic
in the mean and in the autocorrelation so that its statistical properties can be approximated from
a finite set of observations 18], i.e.

K-1
1
dim kz_% Ay =E[A] =0 (2.37a)
1 K-1
Jim > ApAiy = E[AALL] = Padll), (2.37b)
k=0

whereP, represents the average power of the constellatigrihe complex conjugate of;, and

I, =0
Sl = (2.38)
0, otherwise

The non-linear detector at the receiver makes decision on the received symbols and selects the
symbol from the set that is the closest to the corresponding received sample. The radio system
considered in this work has a very low probability of bit errer {0~®), which is partly due to
trellis-coded modulation (TCM).

In this thesis, the symbold, shall be assumed to be detected without error. This assumption
allows to focus on the parameter estimation and ignore the symbol detection problem. Therefore,
Ay will represent a deterministic sequence, to which the ergodic propertiesin|(2.37a&) ang (2.37b)
apply. The effects of detection error #), will be considered in Chapté} 5.

The noisen(t) at the input of the receiver in Fif. 2.4 is assumed to be zero mean, narrowband
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Gaussian with flat power spectral density of amplitddg2 (bandpass white noise):

5.() Lo we—W < |w <we + W (2.39)
nlw) = .
0, otherwise

where 2V represents the bandpass system bandwidth. It can be shown [17] that the lowpass
equivalent noise is stationary and has mean and power spectral density

E[n(t)] =0 (2.40)

) Noy wl<W
Sa(w) = (2.41)
0, elsewhere

Since S, (w) is symmetric about., the in-phase and quadrature components (of are sta-
tistically independent [17]. Note that(t) is a complex circular Gaussian process as described
in [L9].

The correlated noise term(¢) at the output of the matched filter, as given by €q. (2.34), is
therefore also zero-mean complex circular Gaussian. Since the magnitude squared of the pulse
shape frequency respong¥w) is exactly the raised cosine frequency response given in (2.19),
the power spectral density oft) is therefore

Sy(w) = N,G(w). (2.42)
with autocorrelation function

R,(t) = Nog(t). (2.43)
Finally, the autocorrelation function for the sampled noise tefm is given by

Rla) = Bl lm + ]l = Noo(5), gz (2.44)

2.5 Research Problem

The received signal at the input of the equalizer contains information not only on the transmitted
symbols, but also on the channel properties. In fact, observing the expressiomfan (2.35%),
it can be seen that the channel parameters,ande, are embedded in the equation.
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The first part of the problem therefore consists of estimating the channel's parameters
ande, from a set of many observationgm|,m € {0,1,..., M}. Then, using those estimates,
the second part of the problem is to design a discrete-time compensation filter for the channel.

In this thesis, the estimation problem is approached using statistical parameter estimation
techniques. In particular, Chaptér 3 discusses the maximum likelihood estimation technique,
which is suitable to solve this problem. The difficulty is to find a simple estimator function
that gives good, i.e. statistically reliable, estimates. The quality of the estimates will affect the
compensation filter performance since it is designed using those parameter estimates.

The discrete-time compensation filter design is based on a least squares procedure. The diffi-
culty in this problem is to have a good frequency response that cancels or reduces the intersymbol
interference created by the channel, with a limited-length filter. The issues related to the filter
design are discussed in details in Chapter 4.
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Chapter 3

Maximum Likelihood Parameter
Estimation

In this Chapter, the use of parameter estimation techniques for obtaining the characteristics of
the channel described in Chapfér 2 is discussed. The ultimate objective is to use the channel
parameter estimates to create a compensating filter to reduce channel distortion. To begin, basic
elements of parameter estimation theory are introduced. Then, the joint block maximum like-
lihood estimator for the channel parameters is developed. Practical considerations related to its
implementation, including an iterative solution for the joint estimator are then discussed. Finally,
the Cramér-Rao lower bound for the variance of the estimates is derived.

3.1 Parameter Estimation

Broadly stated, the parameter estimation problem consists of estimating the value of an unknown
parametep, given a set ofV observations or measurements represented by the vector

r=[r0],r[1],....r[N —1]]". (3.1)

This is possible if giver#, a model for the probability density function (pdf) of the observation
vectorr is available.

Parameter estimation problems fall into two categorjgsint estimatiorand Bayesian es-
timation In the case of point estimatiof,is not a random variable. The probability density
functionp(r; 6) represents &mily of pdf, specified by the parameter. The semi-colon “;” indi-
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cates that the density is parameterized)byn point estimation, the parameter is estimated by
choosing among the available family of pdf, the one that fits the “best” to the data. In the case
of Bayesian estimatiorf) is random and characterized by aspriori probability density func-
tion py(#) assumed to be known. The probability model for the received vector then becomes
the conditional probability density function efgiven the parametet, denotedp,.s(r|0), also
assumed to be known. A Bayes estimate can be obtained as an estimate that minimizes the mean
of a user-defined cost function [9]. Point estimation can be viewed as a special case of Bayesian
estimation under the assumption of a uniform a-priori probability density fungti@t).

In this work, only non-random parameters are considered. Accordingly, the attention is fo-
cused to point estimation. Specifically, maximum likelihood (ML) estimation is examined next.

3.1.1 Maximum Likelihood Estimation

Maximum likelihood estimation may be used in cases where the parameter to be estimated is
either non-random or has no known pdf. The following introduces basic theory of ML estimation.
To begin, the concepts of bias and variance of an estimate are introduced. Then, the maximum
likelihood estimator is defined for single and multiple parameters. Finally, the Cramér-Rao lower
bound is presented.

Performance Measures

In order to evaluate and compare the properties of an estimate, its desirable characteristics must
first be defined. In general, itis desired that the expected value of the parameter estimate be equal
to the true value of the parameter and have small statistical variations of the estimate. Therefore,
the objective performance measures are defined to be the estimate mean and variance.

Let 4(-) denote theestimatorfunction andd(r) represent the estimate 6t the observation
pointr. Thebias B(f) of an estimate, as a function of the parameter, is then defined to be the
difference between the expected value of the estimate and the true value of the parameter i.e:

B(9) £ E[(r)] — 0, (3.2)

An estimate is said to benbiasedf B(#) = 0 for all values off of interest. Otherwise it is said
to bebiased If a biased estimate gives a constant known bias independent of the parameter, then
this bias can be subtracted from the estimate, and the latter becomes unbiased.
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Even if an estimator gives unbiased estimates, it may still give a bad result on a single trial,
it is only on average that the estimate is unbiased. To account for this possibility, the other
performance metric, the estimate’s variance, gives a measure of how much the estimate varies on
average between trials. The variance of an unbiased estimate is given by:

Var[d(r)] = E{|0(r) — 0)*}. (3.3)

Usually, it is advantageous to have an unbiased estimate with small variance. However a biased
estimate with small statistical variations may in some circumstances be more advantageous than
an unbiased estimated with large statistical variations. Another convenient performance measure
then is the mean square error (MSE) between the estimate and its true value. The lower the MSE,
the better the estimate. In the case of unbiased estimates, the MSE becomes the variance of the
estimate.

ML Estimator

To introduce theML estimator thelog likelihood function (LLF) is first defined as the natural
logarithm of the probability density functigi(r; 6), taken as a function @f. Since the logarithm

is a monotonically increasing function, the maximum of the LLF will occur at the same location
as the maximum of its logarithm. Note th&t-; 0) is not a conditional pdf since the parameter

is non-random. The log likelihoo€{r; #) is thus given by

0(r;0) =Inp(r;0). (3.4)

By definition, the maximum likelihood estimate, denoteddiy (r), is the value of) that max-
imizes (3.4). In other worddy, (r) is chosen such that it maximizes the likelihood of having
observedr:

Ow (r) = arg mgxxﬁ(r; 0). (3.5)

A necessary condition for this equation to hold is that the first partial derivative of the log likeli-
hood function with respect to the parameter is nuﬁ,@t(r), ie.

ol(r; 0)
80 QZéML (’I’)

= 0. (3.6)
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Unfortunately, local minima may exist iff (3.4) such that the above condition is not sufficient.
Note that it may be impossible to obtain a closed form expressioﬁ,\/fm'r) and numerical
optimization techniques$ [20] may be needed to sdlve (3.5).

ML Multiple Parameter Estimation

The problem of estimating/ > 1 parameters from the same set /8f observations is now
addressed. Led = [01,62,...,60M]T be the vector of unknown parameters to be estimated and
let the partial derivative vector operator be defined as

9 0 o 1"

Vo= |gg0 g2 gont

(3.7)
The ML estimate is then the value fthat maximizes the LLF, denoted ldyr; 8). The ML
estimate may be obtained by solving the likelihood equation:

Vo [((r; 0)]|9:(9ML(T) =0, (3.8)

wherefy, (r) is the vector containing th&/ parameter estimaté’, (r):

O (r) = B (). G (). ()] (3.9)

As it can be seen, the approach is essentially the same for single and multiple parameters estima-
tion.

Cramér-Rao Bound

The Cramér-Rao inequality gives a lower bound on the variance of any unbiased estimate, based
on the problem definition. Itis a general lower bound that applies to the problem itself and not on
a particular estimator function. To verify the performance of an unbiased estimate, its variance
is measured or computed and compared to the Cramér-Rao bound (CRB). It is usually desired
to have an estimate with a variance as close as possible to the CRB. Any unbiased estimate that
achieves the lower bound is called efficientestimate.

First consider the case of a single paramétdf é(fr) is any unbiased estimate 6f then if
the first and second partial derivatives of the p@f; ) with respect t@ exist and are absolutely
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integrable [9], the variance of the estimate is limited by the Cramér-Rao lower bound:

Var[f(r)] > —E { [%} }_1 : (3.10)

According to this equation, any (unbiased) estinmatesthave a variance greater than the Cramér-
Rao lower limit as given by the right hand side pT(3.10).

It can be shown that if an efficient estimate exists, it is given by the maximum likelihood
estimatedy, (). Furthermore, it can be proven that the ML estimate is asymptotically efficient
[9], that is: as the numbe¥ of observation samples increases, the variance of the ML estimate
approaches the Cramér-Rao bound. This property provides a strong justification for using the
ML estimator in practice.

For multiple parameters estimation, i@.= [0,62,...,6M]T, the Cramér-Rao bound is
obtained through the inversion of the so-called Fisher information mdtrixhich is defined as
the M x M matrix with elements, j) such that

_|olr;8) ol(r;0)
Jz,] =F |: 90 907 (3118.)
9?((r; 0)
-5 s (8.415)

where the second equality, follows from the properties of the integral of the(pdf) [9]. The
lower bound on the variance of individual estimates is then given by

Varlfm (r)] > [T Ymm (3.12)

where[J '], ; denotes the elemefi, 5) of the inverse off andm denotes the parameter index.

3.2 Joint Parameters Estimator

The joint ML estimator for the channel parameters introduced in Chapter 2 is now derived. In
particular, it is required to estimate|, <, 7 ande, as defined in sectiorjs 2.2 ahd]|2.3, given
the observation ofV received samples. Recall thatrepresents the complex reflection coeffi-
cient, || and £+ are its magnitude and angle respectivelyepresents a time delay andhe
synchronization offset.
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First, the probability model for the system needs to be derived. Once the probability density
function is known, the log likelihood function can be directly obtained and it becomes possible
to derive the joint ML estimator. Then, having the joint ML estimator, its performance can be
investigated. The mean and variance of the ML estimate are discussed in this section, while the
study of the CRB is postponed until section| 3.4.

3.2.1 Probability Model

In this section, the probability model of the communication system under study is derived. More
specifically, the joint probability density functigriz; ) is derived, where

0 = [|v], L, 7, €e]" (3.13)

is the vector of unknown parameters to be estimatedaarglthe vector of data observations,
defined later. The information available at the receiver for the estimation is the received signal in
(2-33), with the tilde “ ” removed for clarity, over an observation period of duratigrthat may

span several symbol durations (ifg.>> T):

r(t) =u(t) +ov(t), 0<t<Ty, (3.14)

whereu(t) is defined in [[2.34) with power spectral density (2.42) agd is the mean of-(t),
given by

u(t)= > Y ¢l Apg(t — kT — 217 —e). (3.15)

k=—o0 [=0
Notice that the synchronization offseis now integrated in(¢), even if the offset does not occur
until sampling. This is a modelling convenience which allows the parameter to be estimated
using the continuous-time signal. This has no effects on the implementation since it is performed
in discrete-time, where the synchronization offset is necessarily present.
To simplify the development of the ML estimatest) is represented using a discrete set (and

ideally finite) of related observations. A common approach in the literature is to use the Fourier

series coefficients [13,12]. As such, the Fourier series representati@n) ofi (8.14) is given
by:

1 [T . 2
0 0

q € Z. (3.16)
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The Fourier series representation is a one-to-one transformation; it is possible to recover the
original observation signai(t) from the set ofR(w,). Thus,R(w,) contains all the information
contained inv(¢). In this application, the signal¢) is bandlimited tol = i% so that

(3.17)

WTs
R(wy) ~0 for |¢| > @, Q:[ —‘,

2T

where[t,] is the largest integer less than or equalito
Recall from Chapte]] 2 that(t) is Gaussian. Accordingly?(w,) are complex Gaussian ran-
dom variables. Let the mean of the Fourier series coefficients be

Ulw,) £ B[R(w,)], (3.18)

then if the observation time bandwidth product is large, i.e. the observation time is much longer
than the symbol period or equivalenily T, > 2, it can be shown (e.g. [13,21]) that the Fourier
coefficients corresponding to different frequencies are uncorrelated, specifically

E[(R(wg) — Ulwy)) (R(wp) — U(wp))*] = Pdlqg — p (3.19)
E[(R(wg) — Ulwg)) (R(wp) — U(wy))] =0, (3.20)

whereP, = S,(w,)/T, andS, (w) is the noise power spectral density defined in (2.42). Therefore,
the coefficients im?(w,) in (3.16) are complex circular Gaussian|[19] and the probability density
function of the data can be obtained by first defining the data and mean vectors, respectively:

x=[R(w_q),..., Rlwy)" (3.21)
y=[Uwq)....Uwo)". (3.22)
The probability density functiop(x; 8) is finally expressed as

p(@:0) = g esp {~(@ ~1)"K (@ -)}. (3:23)
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whereK is defined as the diagonal matrix with elemefjsi.e.:

P—Q 0
K =diag[P_q,...,.Pol=| : . (3.24)

and| K| is its determinant.

3.2.2 ML Estimator

To get the ML estimator, the logarithm di(3]23) is taken to obtain the log likelihood function
((x;0):
((a;0) £ ~log(r?|K]) — (z —y)" K '(z — y). (3.25)

Notice thatK is independent of the parameters so that the term containing its determinant in
(B:2%) may be ignored since it will be nulled later by the maximization procedure. Therefore, the
log likelihood equation becomes:

Q

m=—Q q

8 (3.26)

To obtain the ML estimator[(3:26) must be maximized with respect to the paratheteequiv-
alently/(x; ) = —((z; @) must be minimized. Note that here, the dependence on the parameter
vector is through the frequency coefficiebtéw, ), that is

Uwy) = U(wy; 9). (3.27)

Two interpretations of[(3:26), which lead to different ML estimator structures, are now proposed
followed by an approximate solution, based on the discrete-time domain received signallin (2.35).
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First Interpretation

Recall from Chaptelr| 2 that the raised cosine speciiim) in (2.19) is real and symmetric and
thatG(w) = P(w)P*(w), whereP(w), the square root of the raised cosine spectrum, is also real
and symmetric. Then, the noise power spectral density in](2.42) may be expressed as

Sv(wg) = NoP(wy)P*(wy). (3.28)

Then, the negative of the log likelihood function can be expressed as follows

Q

l@:0) =1 > Vel (3.29)
?¢=—Q
whereV (w,) is given by
V(wy) = ﬁ [R(wq) — Ul 0)]. (3.30)

The ML estimate is then the parametrthat minimizes the power of the signel(w,).

Figure[3:1 illustrates the ML processor in the time domain. The filter with frequency response

% corresponds to a pre-whitening filter. The parametersande are selected to minimize the

output of the illustrated system, by making the weighted difference betwggandr(¢) small.
Notice that the constant multiplicative facttiy/ N, is independent of the parameter and does not

require to be considered in the minimization.

N .
1 x Find
r(t) Pl [P fOT |- [t ; > Minimum
/" Pre-Whitening Power
UE;0)  [eomrmrmmsmsmsmmsmssnn e
/AdjustG

Fig. 3.1 ML Estimator Structure | (Power minimization)
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Second Interpretation
The second interpretation gf (3]26) is obtained by expanding its magnitude squared term. Equiv-
alently, the magnitude squared term€~(1ﬁ; 0) can be expanded resulting in four terms:

g(w; 0) = 611 + 612 + 621 + gQQ. (331)

The first term/;,, corresponds to the weighted sum of the data magnitude squared, i.e.:

~T, Z & “:j . (3.32)

=—Q ‘1

This term is independent of the parame&lelConsequently, it has no effects in the minimization
of /(; 8) and can be ignored.

The two middle terms in(3:81) are complex conjugates of each other. Their sum corresponds
exactly to twice the real part df,. The term¢, is given by

T, & U*(w,)
2T, Z (@)
- (3.33)

To

wherer,(t) andu,(t) are the “whitened” version of the received and the mean signal, respec-
tively. The received whitened signaj (¢) is obtained through convolution oft¢) with a whiten-

ing filter that has frequency responsgP(w). To getu,,(t), filtering is not necessary; the same
result may be obtained by usipgt) instead ofy(¢) when reconstructing the mean [n (3.15), i.e.:

Uy (1) = 1y (t;0) = i i Y App(t — kT — 2I7 — ¢), (3.34)

k=—o0 =0
where once again the dependence on the paraétasiearly indicated.
The last term in[(3:31),2,, corresponds to the energy of the mean sigial scaled by the
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inverse noise power spectral density, and it is given by
Ll v’ VA
So(wy) (3.35)

This term is independent of the data but depends on the parameters and will affect the minimiza-
tion.

Figure[3:2 shows the implementation of this interpretation of the ML estimator. The objective
of the ML estimator is then to find the value @fthat minimizes the output of the system illus-
trated. This structure can be interpreted as a generalized correlator where the pafiaiinater
gives the highest correlation betweep(t; @) andr(t) corresponds to the maximum likelihood
estimate.

[22(0)
rw(t) ;
1 To Find
(M) —»  #o) > Joodt Minimum
/Adjuste

Fig. 3.2 ML Estimator Structure Il (Generalized correlator)

Approximate ML

The previous interpretations of the ML estimator are based on a continuous-time domain model.
In practice, the estimation would be performed numerically, using a set of discrete-time obser-
vations. Some approximations are therefore necessary to develop a practical discrete-time ML
estimator.

It is first noted from the structure of the radio unit in Hig. 2.4 that no pre-whitening filter is
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available at the receiver. Consequently, the higher frequencies, attenuated by the spectral shape
of the raised cosine, will not be enhanced. Therefore, it is assumed here that the portion of the
signal energy located in the excess bandwidthz7i/g. < |w| < W, is negligible.

This assumption allows to use the symbol-spaced samples, available at the receiver, to com-
pletely represent the continuous-time signdt,). Let r[n] represent the set of symbol-spaced
samples such that (Z]35) becomes

r[n] = u[n] + v[n], (3.36)
whereu[n] is given by
uln] = uln; 0] = i i V' Arg((n — k)T — 201 — ¢) (3.37)
k=—00 1=0

and the change of index (from to n) indicates the change of sampling rate. The noise term
v[n] = v(nT) is zero-mean circular Gaussian and has autocorrelation fungtipt} defined as

Ry[n] = Nog(n) = Nod[n]. (3.38)

Since itis assumed that the set-¢f], n» = {0, 1,..., N—1}, forms a complete representation
forr(t), 0 <t < T, = NT, the integral in Fig[ 3]1 and Fif. 8.2 for the computation of power
may be replaced by a sum over the discrete-time samples. The attention will be focused on the
equivalent of Structure | for the approximate ML estimator. The consequences for Structure Il
are similar and will not be considered here.

+ )
- Find
rin Zr’\‘lzol|.|2 : Minimum
/ Power
T .
/Adjuste

Fig. 3.3 Approximate ML Estimator
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Figure[3:B illustrates the proposed approximate ML estimator. The estimation is performed in
the time-domain, using the symbol-spaced samples. Notice that the radio unit under consideration
uses half-spaced samples. So half the samples are not considered in this approximation for the
reasons mentioned above. The approximate ML estimator minimizes the power of the difference
between the re-created signeh| based on the parameté&tsand the received sampleB:|. The
maximization algorithm must find the value 8fthat maximizes the following log likelihood
function, obtained in the same way &s (8.26):

l(r;0) = —i(r —u)(r —u), (3.39)

r=[r0],r[1],...,7[N —1]]" (3.40)
w = [u[0],u[1],...,ulN —1)]T. (3.41)

The ML estimatédy_ () is therefore given by the following expression,
O (1) = arg mein I —ul?, (3.42)

which may be solved by using a multi-dimensional search for the parathelactical solution
of this equation is treated later in sectjon 3.3.

Estimator Performance

Comments will now be given on the performance of the ML estimator. In particular, the mean
and variance of the estimate obtained through the use of the estimator function are discussed.
There is no explicit expression fé, (r) so the mean cannot be computed in closed form.
However, from [3.4_2) it can be seen that the closer the vectsfrom the actual received vector
r, the better the estimation is. In fact, the estimation procedure tries to “recreate” the signal that
would have been received given a certain set of parame@teiherefore, if the model fou is
accurate enough and if the noise is zero-mean, the estimates will be unbiased.
Unfortunately, the vecton is obtained through a double summation over an infinite number
of terms, impossible to perform in practice. Consequently, the model for the received signal can
only be approximated by limiting those sums in (3.37). If the limits for the indicasd! in
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(B-37) are chosen judiciously, it can be assumed that the effects of the finite sums are negligible
and that the model accurately represents the system. Under this condition, the argumert in (3.42)
on average would go to zero, leading to the conclusion the estimates obtained are unbiased. The
results on the iterative estimator in Chagler 5 clearly confirm the validity of these assumptions.

Again, there is no explicit expression . (r) so the variance cannot be computed in closed
form. The estimates’ variance are therefore obtained through simulations. A theoretical lower
bound on the variances is available through the Cramér-Rao bound, which is developed in section
B4,

3.3 Practical Considerations

The core of the parameter estimation approach resides in the solutipn 6f (3.42). Practical ways
of solving the joint parameter ML estimator are therefore presented in this section. Since the
joint ML estimator involves finding the minimum of a non-linear function, it cannot be solved
directly through simple substitution. Consequently, optimization theory is used to find the ML
estimates. First, a block optimization procedure will be considered, whesamples are used to
compute the ML estimates. Then, an iterative approach will be introduced, where an estimate of
the parameters is available after every sample.

3.3.1 Block Estimator

The routine for block estimation consists of gatherigamples in an observation vectgrand
use it in the optimization procedure, as illustrated in [Fig 3.4. Since the optimization requires

, r[0] Optimization
Serial Input _ . "
—>{ Buffer:r = : =3 Procedure fe=gp By (1)
Samples
r[N—1] Eq. (3.42)

Fig. 3.4 Block Estimation

N samples at a time, there is a delay of at lesssamples before the first set of estimates is
made available. In practice, the delay is even longer since the procedure itself takes some time to
produce the estimates.
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It is possible to obtained a numerical solution pf (8.42) by using a multi-dimensional opti-
mization algorithm [[20]. In this respect, the parameter space for the search may be bounded,
according to the parameters’ physical meaning, i.e.:

e || represents the magnitude of the reflection coefficient. Since a negative value of the
magnitude does not have a physical meaning and a value larget thanld mean that
there is amplification on the transmission line, necessariy|y| < 1.

e £1)is the phase of the reflection coefficient. By definition < £y < .

e 7 represents the time delay required for the wave to travel to the end of the transmission
line. Physically, this must be a positive value. It is further assumedrthat< 7 < 700
wherer,,;, represents the minimum time delay ang,. represents the maximum time
delay. The minimum time delay is related to the minimum cable length possible for proper
operation. The cable must connect the receiver to the antenna and since the latter is usually
located at some height above the ground on top of a tower structure, knowing the minimum
height of the tower, the minimum cable length can be found. The maximum time delay
Tmaz 1S related to the length of the transmission line; for very long cable, the attenuation
would make the reflection magnitude negligible compared to that of the noise level and it
would not distort the received signal significantly.

e c represents the synchronization offset and may also be bounded; its value must be such
that—7'/4 < ¢ < T'/4 for half-spaced sampling since otherwise the synchronizer would
lock on the adjacent half-symbol.

Closer bounds fof can be found by using the fact that it is a semi-predictable synchroniza-
tion offset dependent on andr. For instance, using the limiting cases fo1, <y and
7,1e.0 < Y] < 1, =7 < LY < mandmmin < 7 < Tmax IN @ Synchronization algorithm
(e.g. correlation), the range efttould be found more precisely.

In general, a finite search space fbcan be determined. Sinde (3.42) is non-linead ithe opti-
mization algorithm to use in this case must be a non-linear constrained algorithm. The constraint
consists of the parameters’ bounds. Straightforward procedures exists for solving these types of
problems, including thdownhill simplex methodndPowell's method22]. More complex op-
timization software use a set of different steps to solve an optimization problem and are general
enough to be applicable to a number of different problems. The block optimization procedure
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used in this work is presented in the documentation of the numerical computation software used
in [23]. No more details will be given on optimization methods as they are beyond the scope

of this work. Nevertheless, a detailed discussion on the subject can be found in [20]. Note that
non-linear optimization procedures can be very computationally demanding.

3.3.2 lterative Estimator

The previous section discussed a method that so|ves (3.42) using a block approach, which in-
volves a long delay and a computationally intensive optimization procedure. Alternatively, an
iterative approach based on the steepest descent algorithm can be used. This approach produces
a new estimate every sample and does not require a complex optimization procedure. It is also
advantageous for use in non-stationary environment. This joint iterative estimator is derived next,
starting from the steepest descent algorithm.

Steepest Descent Algorithm

The steepest descent algorithm is a general non-linear optimization technigque [20] that originates
from the optimization of quadratic problems. It can be applied to general non-linear problems as
well, often with good results. Although it has a relatively slow convergence rate, it is guaranteed
to converge to at least a local minimum. The standard steepest descent algorithm for a vector of
parametep is defined as[[20]:

0n+1 = on + ,U/nV0€<r; 011)7 (343)

wheref,, represents the vector of parameters at time inda®dy.,, is a time-dependent step-size
chosen so that
pn, = argmax/ (r; 0, + uVel(r;0,,)) . (3.44)
I

The estimatd is obtained through iteration df (3143) until convergence.

Joint Iterative Estimator

The steepest descent algorithm described above is a “block” technique in the sense that it operates
on a vector of observationsand iterates until it converges for that block of observations. Here,
a different approach is proposed, where the iterative algorithm only uses one sample at a time.
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Specifically, the gradient of the log likelihood function [n(3.43) is first applied 103.39), which
leads to the following equation:

Vol(r;0) = Vy (—Nio(r —u)f(r - u)) : (3.45)

Recall thatr is independent of thus the gradient with respect to parameteof the log likeli-
hood at iteratiom becomes:

(%%E(r 0,) = 3Re[5§9‘ (r u)}

(3.46)
06=0,
Since it would be difficult to solve(3.44) for the step sjzewe propose to use a fixed step size
u™, different for each parameter. The algorithm then becomes for each parameter

)
01 = O 4 1" 5 l(r:6,). (3.47)

For each iteration of the search algorithm, the entire vactir/V observations is required. Con-
sequently,[(3:47) is further modified so that only one observation sample is used and one iteration
is performed at every time instant. The joint iterative parameter estimator is then expressed as

0
O = O+ 1" (7] 6,), (3.48)

where the gradient of the log likelihood now acts on a single received sample and is now defined
as

, (3.49)
6=0,,

o o .
s 0101 02) = 2Re | L o] — )

where the factofl’/N, is absorbed by the corresponding step-siz€ in [3.48). The procedure is
illustrated in Fig_ 3.6, where the vectgris the step-size vector, i.e.:
po= [ttt (3.50)
and the vector multiplication is performed element by element.
It has been observed through experimentation that some parameters have a better convergence

than others. In particulafy| and £+ showed good convergence properties even in the absence
of good estimates for ande. This can be exploited by updating the estimateg/otind £ first
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r[n] — Dee(r[n];en) > en+1

1 ;
- Delay

Fig. 3.5 lterative Estimation Procedure

and then use those new estimates to update the other two parameters estimates. It is possible to
do so by making use of the structure pf(3.48). First, new notation is introducedrfiorit may
be separated in the following way:

uln] = Zwlv[n; ] (3.51)
1=0
whereuv[n; (] is given by
vln; 1] = Z Arg((n — k)T = 2l — ¢). (3.52)
k=—o00

Note that the sums in(3.51) arfd (3.52) would have to be truncated so that numerical computation
may be possible. The computation of the gradient of the log likelihoddin|(3.49) also requires the
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first derivative ofu[n| with respect to each parameter, which are given below:

szu n; ] (3.53a)
- Z]’hﬂlv[n; ] (3.53b)
=0
— i 20’ [n; ] (3.53c)
=0
— i Y [n; 1], (3.53d)
=0

whereu;[n| represents the first derivative afn| with respect to parameter at indéxn (8.13)
andu’[n; [] is the first derivative of)[n; ] and is given by

Uinil] = Y Apg/(nT — kT — 217 — ). (3.54)

k=—00

By definition,v[n; (] andv’[n; ] depend on both ande but are independent ¢of)| and <.

As a result,u[n; ] andv’[n;[] can be computed first, fdr= {0,1,..., L} at each instant.
The choice ofL. depends on the expectéd|, the noise power and the desired precision of the
estimates. For example, it was found by experimentation/that3 gives satisfactory estimates,
for a SNR of 20dB angk)| = 0.1.

Onceuv[n; (] andv’[n; (] are available, the estimates forf and<+) can then be updated using
(3-48). Using those new values, the estimatesrfande are then computed. The procedure is
repeated for every new sample. Algoritfim| 3.1 exposes the full process.

The iterative algorithm presented here is an approximation to the joint ML parameter esti-
mator in (3.:4R). Nevertheless, this scheme is attractive for high speed modems where the com-
putational capacity is limited. For this type of application, the extra convergence time may not
be a problem and this algorithm may be adequate. Note also that the algorithm can be directly
extended to make use of the half samples as well in fractionally spaced digital modems.
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Algorithm 3.1 Iterative Parameter Estimation
Let®, = [0, 0< 67 0<]T = [0, 62,03, 6%]7.

n s¥Yn »Ynrn n’’n’ n'n

n 0
00 —0
Assign top™ a small positive constant fon € {1,2, 3,4}
loop
Computeu[n; ] using®,, and (3.5R) forl € {0,1,...,L}
Computeu'[n; 1] using®,, and (3.54) for € {0,1,...,L}

Updated!”!, usingdly’', 0¥, (3.48) and|(3.53a)

Updated;,?, USingg'ﬂl’ 0:7, ) andb)
Updated; USing@'nﬂh O, ) and C)
Updatef; ., usingf)’),, 07, (8.48) and|(3.53d)

Yl gl pr e
0n+1 ~ [0L+|17 enfh 8n+17 9n+1]T
n<n+1

end loop

3.4 Cramér-Rao Bound

Since the variance of the estimate cannot be computed explicitly, other ways of evaluating it must
be used. Using computer simulations, the estimate variances are determined and then compared
to the Cramér-Rao lower bound.

The CRB is obtained by inverting the Fisher information matrix with entrief) as defined
in (B.IIh). The first partial derivative of the log likelihood function jn {8.26) with respect to
parametei is given by

] Q
ol(x;0) 2T, L Re[alf ) (R, — U] (3.55)

00 N, o G(wy) 00
where the noise power spectral density has been replaced by its equivalesit(iw.¢ ~ N,G(w),and
the raised cosine spectrufiiw) is defined in[(2.119). The second partial derivative of the log like-
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lihood function with respect first to parametgrand then to parametér is given by

06706 N, 06706

~ (9U(w) *OU (w)
06 06 '
Substituting [(3.56) in[(3.11) and using the fact thaf(w)] = U(w) by definition, the element
(1, 7) of Fisher information matrix becomes:

L Sl () e

In Appendix[B, it is shown that the Fourier series coefficients @§, 0 < ¢ < T, are approxi-
mately given by

20(p- Q 2U(w
Uri6) _ 2o 3~ G(iz )Re[a ) (R(wy) - Ul
£, Glw, (3.56)

Ulw,) = Tiop(wq; 6)G(w,)D(w,), (3.58)

where F'(w,;0) = F(w) is the composite channel response, which includes the effects of the
channel in [[AJ7) and the synchronization offset, so that
e—jws

H(w)e ¥ = — (3.59)

F(w) = - 1— wfijT’

N —

andD(w,) represents the contribution of the data and is given by

=

D(w,) = Ape Ikt (3.60)
0

e
Il

Notice thatD(w,) is the discrete Fourier transform (DFT) [25] df, 0 < k < N. Substituting
(B.58) in (3.5]), using the fact théat(w) is real and observing that onf(w,) is function of the
parameters/; ; may be expressed as

Q
> G(w))|D(wy)’Re[F} (wg) F(wy)] (3.61)
=—Q

2
ToN,

Jij =
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whereF;(w,) represents the partial derivative Bfw,) with respect to parameté, i.e.:

OF (wy)
00!

Fi(wg) = (3.62)

It can be easily shown using the definition©fw) in (8.59) that the partial derivatives in (3]62)
are given by

Fi(w,y) = eM@aced ©emiwam [2(.) (3.63a)
Fy(w,) = jibelace 4 B2 (w,) (3.63b)
Fy(w,) = —2jtbw,e 79 el e B2 (w,) (3.63c)
Fi(wg) = —jweF (w,). (3.63d)

Equation [3.61) may be simplified further by using a matrix form. Let the vector of derivatives
in (3:63), VF, be defined as

VF = [Fi(w,), Fa(wg), F3(wy), Fi(wy)]™. (3.64)

Then, it can be seen that the Fisher information matrix can be expressed in matrix form as

Q
> G(w,)|D(wy)|’Re[VFVF"] . (3.65)

Furthermore, the terD(w,)|* may be simplified by using the ergodic assumptions of the sym-
bols A in (Z.37). The data dependent term then becomes

N—-1N-1

[D(wg)|> =Y A Aje =0T (3.66)
n=0 [=0

~ NP, (3.67)

where the approximation comes from the ergodicity in the autocorrelation assumption in (2.37b)
and holds forN large enough. With this approximation, the Fisher information matrix finally
becomes

Q

~ 2N > G(w,)Re[VFVF"]. (3.68)

J ~
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By inverting the matrix, the Cramér-Rao bound for a particular estimate can be directly found
using (3.1R).

Unfortunately, the expression fdris quite complex and it is difficult to draw conclusions for
the inter-parameter coupling. Nonetheless, it consists of an important piece of information for
evaluating the performance of the estimate.
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Chapter 4
Compensation Filter

In this Chapter, the design of the compensation filter is addressed. The continuous-time ideal
compensation filter is first developed. It is shown that it consists of a weighted sum of delayed
delta functions. Unfortunately, the delays are not necessarily multiples of the sampling period,
making the implementation in discrete-time difficult. The filter design technique based on the
channel parameters is presented followed by a detailed discussion on issues related to the realiza-
tion of fractional delays. To close this Chapter, we comment on the design choices associated to
the implementation of the compensation system, which consists of the parameter estimator, the
filter design algorithm and the filter itself.

4.1 Continuous-Time System and Discrete-Time Equivalent

The discrete-time equivalent ideal compensation filter based on the ideal continuous-time filter
is now derived. Recall from Chaptgr 3 in (3.59) that the composite channel frequency response

may be expressed as
efjwe

1 — qpe—iw2r’
where is the complex reflection coefficient,is the time delay between reflections ang a
small synchronization offset. Notice that the effects of the demodulation and symbol synchro-
nization have been incorporated jn {4.1) as explained in Appéndix A. The perfect or ideal inverse
channelF’~!(w) is easily obtained; by definitiof'(w) F~!(w) = 1, thus

F(w) (4.1)

F(w) = e(1 — e 27),  |w| < ; (4.2)
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The channel effects are bandlimited so that no aliasing occurs when sampling at half the symbol
rate is performed. In practice, bandpass filters would be present at the radio receiver, which would
limit the input bandwidth to make sure no aliasing occurs.

The realization of this inverse channel is illustrated in block diagram form inFig. 4.1, where
the input is taken directly from the matched filter and the output goes to the sampler (5e¢ Fig 2.6).
It can be observed from this diagram that the two delays involved are not necessarily fraction of
the sampling interval. Furthermore, the compensation filter is non-causal because of the term
representing an advance in timév<, This is not a major issue, as extra delay is added to the
system by the line-of-sight channel (see Fig] 2.4) and the equalizer.

Fig. 4.1 Continuous-Time Compensation Filter

The channel inverse filteF~!(w) is to be implemented in digital hardware. As illustrated
in Fig. 2.6, the discrete-time digital compensation filter], n € {0,1,..., M — 1} where M
represents the filter's length, is located after sampling'y. Consequently, the ideal inverse
of Fig. @1 must be converted to the discrete-time domain to obtain the ideal inverse channel
frequency response. Figyreld.1 illustrates the discrete-time compensation filter system. The input
signal7(t) is coming from the matched filters and the equalized samples are to be decimated by
2 and sent to the decision device.

T

Equalized
Samples

2
f(t) — —» ol

Fig. 4.2 Equivalent Digital Compensation Filter

To convert the ideal inverse channel frequency response to discrete-time form, it is assumed
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that the system is bandlimited to at least half the sampling frequency so that no aliasing occurs.
The main image of the equivalent discrete-time ideal channel inverse becomes, after sampling
(4.2) with a sampling frequency @f/T" [26]:
QQ =20 - 40T
CouD) =F () =edT(1 —ped T
A0) = F7(50) = (= e 7F) @)

— e _ 2/}67]'%(2776),
wheref2 represents the discrete-time frequency variable. Of course the discrete-time ideal inverse
is periodic in frequency, and only the main image is considered here.

The filter design procedure consists of finding a set of filter coefficiets so that the
discrete-time frequency responSé€S?) of that filter is close or ideally equal to the filt€k,(€2),

ie.:
M_

C(Q) = cnle ™" = Cia(). (4.4)
n=0
The major obstacle to direct implementation [07(4.4) is the presence of fractional delays in
the system illustrated in Fif. 4.1. It can indeed be seen fiom (4.3) that two possibly noninteger
delays are presents: a delayL0§§ and%(Qr —¢). In discrete-time signal processing, only delays
of a multiple of the sampling interval can be represented exactly. The problem therefore consists
of finding a set of filter coefficientd|n; ¢,], wheret, indicates the delay associated with the filter,

[y

that implements the ideal delay response
Dig(Q;tg) = e7H0 (4.5)

as closely as possible. Then by linearity, it can be seen ffom (4.3) that the compensation filter
becomes
2€

cln] = dln; 2] — vl (2 )] (4.6)

4.2 Implementation of Noninteger Delay

In this section, the implementation of a fractional delay (FD) using a discrete-time digital FIR
filter is discussed. Some general concepts are first introduced followed by a description of the
least squares (LS) procedure for general weight functions. Some particular weight functions that
are effective in the case of interest are then presented. Variable delay filters are finally discussed.
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The noninteger delay filter design procedure should be simple enough so that it can be im-
plemented on real-time hardware. It should ideally lead to short filters with good frequency
responses. In general, for these types of filters to have the best frequency response for a given
length, it is necessary to have the overall filter delay be half the filter’s lengdth [27]. For this to be
the case, an extra integer-value delay must be added to the fractional delw,%{dgj. For
the remaining of this Chapter, it will be assumed that this requirement is satisfied.

The general FD problem consists of designing a discrete-time filter that implements as closely
as possible the frequency responsefin| (4.5). The difficulty is to have a constant magnitude and
delay for a large bandwidth, with a finite length filter. Several methods exists for designing such
filters [27], including the simple Lagrange interpolator, the general least squares approximation
and the Farrow structure for variable delay filters.

Lagrange interpolators can be used for FD finite impulse response filter design. While they
are very simple to implement, their bandwidth increases slowly with the number of coefficients
and for filters with more than four taps as in the case of interest, it may be better to use a least
squares approach. The least squares approach and the Farrow structure methods are discussed
below.

4.2.1 Least Squares Design of Fractional Delay Filters

The least squares approach minimizes a user defined weighted squared error function. The error
function is defined here as the difference between the frequency response of the designed filter
D(€2) and its desired or ideal respongg,(2). The total squared erraf can then be expressed

as

T=o / QD) — Du(Q)Pd, @.7)

whereQ(2) is the real-valued weighting function, chosen by the designer. It is used to put more
or less importance on the error at some specific frequencies.

It will be shown shortly that the optimal solution is obtained by solving a system of linear
equations. If the weighting function is independent of the delay, then the matrix involved in the
linear system solution will also be independent of the delay. It can therefore be inverted once
off-line and put in memory for later use.

The desired response in (§.7) consists of the ideal dgldy (4.5) denoted hBrgQy, where
the reference to the delay is dropped for simplicity. The designed filter is denoted/bff?).

To derive the minimum of[{(4].7) for this particular problem, important notation is first introduced.
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Let d denote the vector of filter coefficients aadlenote the vector of exponential functions of
the Fourier transform, i.e:

d = [d[0],d[1],...,d[M —1]]%, (4.8)

e=[1,e 7 . . e dM-IT (4.9)

Then the Fourier transform of the filter can now be expressed in a convenient vector product:

M-1
D(Q) =Y dnle™ =d"e. (4.10)
n=0
This vector notation will allow the minimization of (4.7) to be expressed in a matrix form. Using
this new notation and expanding the magnitude squared ertoriin (4.7), the expression for the error
J can be expressed as

1 s

:% »

J () [d"ee” d* — 2Reg(e 70 d"e) + 1] d12, (4.11)

Noting thate is function of the integration variabl@, the notation can be reduced further by
introducing the matrixP, the vectorp and¢, defined respectively as

P = % /_ : Q(N)eed (4.12)

p= % /_ z Q(Q)e 7 Moe dQ) (4.13)
1 ™

=5 /_7r Q(N)dQ. (4.14)

Finally, the total squared error to be minimized is expressed in matrix form:
J=d"Pd* — 2Rdd" p] + &, (4.15)

where¢, is independent of the filter's coefficients and will be nulled by the minimization.

To obtain filter coefficients that give the minimum least squared efror] (4.15) is differentiated
with respect tad and then the result is set to zero. Since bdtandp are complex quantities,
a complex gradient operator must be used for the minimization 0f](4.15). Using the results
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from [28], the set of filter coefficientd that minimizes the squared error is given by
d=P'p. (4.16)

Provided that) () is independent of the delal? will also be independent of the delay and can
be inverted off-line. The filter design then only involves compuginand applying [(4.16).

The degree of complexity in the computationfandp is highly influenced by the choice of
weighting function. Here, three different possibilities {(2) are suggested and their respective
properties are discussed.

Flat Weight

The first choice forQ(2) is the obvious constant function where the weight of the error is dis-
tributed uniformly across the entire spectrum:

Qr(Q) = 1. (4.17)

The formulation forP andp for this case is very simple and it can be shown that elertierij
of the matrixP and elemenk of the vectorp are given respectively by [27]

P(k,1) = sinc(k — 1), (4.18)
p(k) = sinc(k — to). (4.19)

Here it can be observed that matd#X is indeed independent from the delgy Furthermore,
since thesinc function is zero for all integer values of its argument excgpie.:

Y k = 07
sinc(k) =
0, k40, keZ

the matrixP is in fact the identity matrix and the filter's coefficients are identical to the elements
of p*. The coefficient are then exactly that of the truncated ideal response:

(4.20)

d(n) =sinc(n —ty), ne{0,...,M —1}. (4.21)
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Because of the sharp cut-off frequency {at= +7) and because the filter’'s time response must
be truncated, it will suffer from Gibbs phenomenon. One way to minimize the effects of this is
to use windowing[[29]. However this will make the transition region wider and the choice of
window does not follow any optimal criterion.

Bandlimited Weight

Sometimes, the signal to be delayed does not cover the entire bandwidth. In those situations, the
error that lies outside the signal bandwidth is irrelevant to the overall performance. Therefore, a
weight of zero for some “don’t care” regions and one otherwise can be used.

Consider the case where the signal of interest is lowpass and limited in frequenay to
(0 < o < ). Then, a better choice f@p(<?) is

L, 19 <anr
QeL(Q) = (4.22)

0, otherwise

It can be easily shown that elemgfit [) of P and element of p for this particular case are
given respectively by

P(k,l) = asinc(a(k — 1)), (4.23)
p(k) = asinc(a(k —tp)). (4.24)

Again, P is independent of the delay but unlike the previous case, mRtdoes not correspond

to the identity matrix. This formulation of the error weight function should give better results
than the previous one but will also suffer from Gibbs phenomenon because of the sharp transition.
Once again, windowing can be used to attenuate this effect with consequences similar to those
mentioned above.

Signal Power Spectral Density Weight

In some other situations, more information on the signal may be available. In particular, in
situations where the power spectral density of the filter input signal is known, this information
may be used for the weighting function. Of course, the PSD is application specific and cannot be
generalized. Therefore, only the case of this particular application, where the filter input consists
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of a series of randomly weighted raised cosines, will be considered.

The signal power spectral density may be expressed in frequency as the magnitude squared
of the raised cosine frequency response[in (2.19). Normalizing the result and converting it to
discrete-time frequency (sampled at rai), the power spectral density weight can be expressed
as

17 0< |Q| < #TF
2
Qrso(Q) = { L {1 + cos(5(19f — %w))} . e <] < Hir (4.25)
07 %'ﬂ' < |Q| < Tr.

Using Qpsp(2) as weighting function in[(4.12) an@ (4]13) leads to long and complex equations,
which however may be obtained easily through the use of a symbolic computations software
(e.g. Waterloo Maple). Because the transition between the two bands is smoothed by the raised
cosine in [4.25), the importance of the Gibbs phenomenon will depend on the roll-off factor

In the radio unit under investigatiof,= 1/3, which means that the transition band is relatively
large and Gibbs phenomenon effects will be practically inexistent. This results in a smoother
frequency response which follows closely the desired response in the signal’'s bandwidth.

4.2.2 Example of Inverse Filter

Using the results of previous sections, a compensation filter for an hypothetical channel is now
designed using different weight functions. In particular, the differences in frequency responses
between a filter designed using a bandlimited weigkt(2) in (4.22) and power spectral density
weightQpsp(€2) in (4.25) will be compared.

Consider a channel as defined in dqg.](4.1), with param@térs 0.1,y = 7/6, 7 = 0.25T
ande = 0.02497". The pulse shape consists of a raised cosine with rolloff fagter 1/3; the
signal’s bandwidth thus extends in frequency uﬂ:@.

The frequency response of the designed filters are illustrated i Hig. 4.3, where the ideal com-
pensation filter frequency response is denoted’hy(?) and the compensation filters designed
using the bandlimitedo( = 2/3) and power spectral density weights are denoted'fy((2) and
Cpsp(€2) respectively.

It can be observed from Fi@. 4.3 that the filter designed using the power spectral density
weighting function follows the ideal frequency response very closely in the signal’'s bandwidth,
as indicated by the vertical dashed lines, i.e. frefir /3 to 27 /3. The filter designed using the
limited bandwidth weighting function on the other hand is close from the ideal response only in a
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close neighborhood of the origin and deviates from the ideal response with increasing frequency.

4.2.3 Variable Delay Filters

The problem with the previous delay filter design techniques is that each time the delay changes,
a new vectop must be obtained and then (4.16) must be applied to get the new filter coefficients.
This may be too computationally intensive for applications where the delay changes continuously.
In those situations, Farrow [30] structure may be used.

The basic concept of a Farrow structure is to obtain a set of coefficients for a variable-delay
filter from the interpolation of a set of fixed-delay filters. The fixed-delay filters are designed off-
line using some filter design method such as above. The structure uses polynomial interpolation
in the variable delay, that controls the weight on each set of filter coefficients. Unfortunately,
this adds a level of approximation to the filter and may not give optimal results. In any cases,
the implementation details of Farrow structures will not be discussed in more details here and the
interested reader is encouraged to consult |30, 29].

In this work, the focus in put on the design of the compensation filter using the least squares
approach with the power spectral density weight function. This method is straightforward and
produces reliable filters. The compensation system introduces a first level of approximation when
estimating the parameters. For this reason, to minimize the number of approximation levels, the
least squares approach is chosen in preference of the Farrow structure.

4.3 Block versus lterative

The design of a compensation filter using the least squares approach takes a certain amount of
computations. First, the vectgrneeds to be computed and then multiplied by the invefed
matrix. All of these operations must be performed on-line. Unless a Farrow structure is utilized,
updating the compensation filter at every sample is impracticable. In this section, the design
issues related to the implementation of the compensation system for this specific application are
discussed.

For the implementation of the parameter estimator discussed in Chiapter 3, the designer has the
choice of using a block estimator as illustrated in [Fig. 3.4 or an iterative estimator as jn Fig. 3.5.
For the block estimator case, the estimated parameters are only available after the estimation
procedure is completed. The procedure requifesamples to be buffered first and then requires
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a certain time to converge to the final solution. Most optimization algorithms are not guaranteed
to converge in a prescribed number of iterations. Unless the optimization algorithm is modified in
a way to limit the convergence time, which may limit the performance of the estimates, the time
required to obtain a set of estimate is unknown. Therefore, the time between filter coefficients
updates is also unknown.

By using the iterative estimation approach however, the designer has access to a new estimate
every sample, without risking estimate performance degradation. Since the compensation filter
design initself takes some time, it may not be practical to obtain a new set of equalizer coefficients
every sample. Depending on the hardware available and the choice of filter design method, the
designer has to decide on how much time (in number of samples) there will be between each
coefficient update. The process is illustrated in Fig] 4.4, whéreepresents the number of
samples between each coefficient update.

N .
Iterative | Filter
rin Estimation| 2] Design
Equalizer _>Eq0l:16':||cl)ited

Fig. 4.4 Iterative Compensation System

The designer has to decide, based on the hardware available and on the precision require-
ments, which method is more appropriate to use and how much delay is needed between each
coefficients update. In addition, the more samples are used in the estimation, the better the pre-
cision of the estimates is. However, it also means a longer delay between coefficients update for
the block structure. Similarly for the iterative approach, choosing a small step-size will lead to
better estimates, but will take longer to converge.

In this work, the iterative estimator is used in conjunction with the least squares filter design
method with the power spectral density weight. Every sample, an estimate of the parameters is
available. However, only every thousand samplE¥s= 1000) does a new filter is designed and
loaded into the channel equalizer. Results, showing the performance of this compensation system
compared to other adaptive equalization techniques, are illustrated in CHapter 5.
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Chapter 5
Results

This chapter exposes the results related to the different aspects of this work. In particular, the
iterative estimator, the block estimator and its associated Cramér-Rao bound, and the proposed
compensation system are considered.

To begin this Chapter, the methodological aspects are discussed, with a description of the sim-
ulation procedures. The results related to the parameter estimation Chapter are then presented.
The convergence plots of the joint iterative estimator algorithm are shown along with a compar-
ison of the variance of the joint block ML estimator with the corresponding Cramér-Rao lower
bound. Finally, the implementation of the proposed compensation system is compared with some
current adaptive channel equalization techniques.

5.1 Methodology

The results were all obtained through simulations of the communication system. The simulation
model is based on the theoretical lowpass model developed in Chppter 2. It was implemented in
software using the scripting capabilities of mathematical softwareM@dlLAB Some functions

were implemented i€ to improve the speed of the calculations.

The simulation model used is illustrated in HigJ]2.6. The “Binary Source” and “MAP” blocks
shown in the diagram are implemented in the simulator by using a uniform random generator
that generates the sequence of complex symbols from set of 32 possibilities (QAM-32) in the
constellation of Fig[2]7. The sequence is then upsampled and convolved with the pulse shaping
function at a new sampling rate of ten times the symbol rate. This oversampling allows the sim-
ulator to have a wider range of possible reflection delays. The pulse shape consists of the raised
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cosine expressed iN (2]21), oversampled and truncated to a length equivalent to twelve symbols
on each side of the main peak. Since the raised cosine decreases in magnitude proportionally to
1/t3, it is reasonable to assume that twelve symbols is long enough to accurately represent the
system. The channel is implemented using an ordinary IIR structure. After the channel, the signal
is decimated by five, to a rate of twice the symbol rate. This is the rate at which the equalizer
operates.

The noise is generated using a normally-distributed random number generator, independently
on each quadrature. It is then filtered by a half-spaced square root raised cosine, simulating the
effects of the matched filter in Fif. 2.6.

To objectively compare different algorithms, the equalizer’s length was fixed to eight complex
taps. After the equalizer, the signal is downsampled by two to match the symbol rate and the
decision device then simply selects the symbol that is the closest to the equalized sample.

5.2 Parameter Estimation Results

In this section, the results obtained for the parameter estimation part of the work are presented.
Two different experiments were performed for this part. First, the convergence properties of the

iterative estimator of sectign 3.8.2 at two different signal-to-noise ratios are shown. Second, the
variance of the joint block ML estimator is compared with the Cramér-Rao lower bound.

5.2.1 lterative Estimator

The iterative estimator presented in Chapier 3 requires the computation of the gradient of the
log-likelihood function. To do so, it needs to compute (B.53), which consists of a double sum
over an infinite number of elements. The inner sum, i.e. the sumkavg3.52) and[[(3:34), must
be limited to a number of symbols around the origin at time

Since the pulse function is limited in length by twelve times the symbol duration, only the

adjacent twelve symbols on each side of a given sample will affect it. Consequently, the sums
in (8:52) and[(3.54) are also limited to twelve symbols on each side of the current timenindex
The outer sum, i.e the sum ovan (8.53), is the sum over all reflections and it is limited to three
reflections (i.e L = 3) for this particular experiment.

Computation of[(3.32) and (3]54) requires the knowledge of the transmitted symbols. In this
experiment, it is assumed that the probability of error is small for high signal-to-noise ratio and
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that the exact values of the symbols are available.

The adaptation curves for the four parameters <,  ande are shown in Fig[ 5l1. The

parameters were chosen to have physically plausible values|wite 0.1, £y = 0.25(rad),

7 = 0.5T, ande = 0.0264T and their respective step-sizes wate= 0.0001, p? = 0.004, p? =

0.0005 and z* = 0.0001. The step-sizes were chosen heuristically to have good convergence
properties. Note that the parameters are inter-dependent and coupling exists in the step-sizes,
making the selection of step-size difficult.

The figure shows the values of the estimate for each parameter with respect to time, measured
in half-spaced symbols. For each parameter, two curves are shown; the first (solid) curve shows
the value of the estimate at a signal-to-noise ratidzgfN, = 20dB and the other shows the
estimate at very high SNR, i.&;,/N, = 120dB. The dotted line indicates the real value of the
parameter. All of the estimates converge to their respective parameter value, confirming that the
number of reflections/{ = 3) is large enough to obtain a good approximation to the infinite sum
in (83:53). It can also be observed that the convergence rate at low SNR is similar to the high SNR
case but the fluctuations in the estimate are larger. Consequently, if for a given convergence rate
the level of the noise is such that the estimates are too noisy to be used, then the only way to
obtain better estimates is to have a smaller step-size, which ultimately increases the convergence
time.

The symbolsA, are assumed to be known at the receiver with a low probability of error.

It is nonetheless important to investigate the effects of a decision error on the algorithm as it
may occur once in a while. To do so, the same experiment as above is performed with an error
in one symbol decision artificially introduced. When doing this, no effects on the adaptation
curves could be perceived. The adaptation step-sizes chosen are too small for a single error to
cause disturbance. Note that the erroneous symbol was chosen such that it is adjacent in the
constellation to the real transmitted symbol. That way, it represents more closely what would be
observed in practice in a low probability of error environment.

5.2.2 Cramér-Rao Bound

The joint block ML estimator discussed in Chapier 3 was implement&dAmMLAB The opti-

mization routine for non-linear constrained minimization, based on a Sequential Quadratic Pro-
gramming (SQP) method 23], was used in this experiment to obtain the estimates. The experi-
ment was repeated one hundred times using the same parameters as those selected in the previous
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experiment and the variance of the estimates obtained was computed.

The objective is to compare the variance obtained to the Cramér-Rao bound,Jin (3.12) through
the inversion of the Fisher information matrix in (3.68).

The CRB requires non-biased estimates. This is a problem if an infinite number of channel
reflections must be considered. Therefore, to guarantee an exactly non-biased estimate even at
very high SNRs, the number of reflections was chosen to be limited to two in the channel. That
way, the channel becomes FIR aafh] in (8.37) with the number of reflections also limited
to (two) exactly represents the received signal, without noise. Therefore the estimate obtained
using the procedure suggested is un-biased and the Cramér-Rao lower bound can be applied and
compared to the experimental data.

The results of this experiment for the four parameters are shown iftHig. 5[Zand 5.3 for a block
size of N = 1000 and N = 200, respectively. For the larger block size in Hig]5.2, the solid line
corresponds to the Cramér-Rao lower bound and the dotted lines represents the experimental data.
This experiment was performed using symbol-spaced samples, i.e. sampling inteamdl half-
symbol spaced samples, i.e. sampling intefV&l. The data points indicated by a circle’“and
by a diamond &” represent the experiments with sampling interval'cdnd7’/2 respectively.

In Fig. B3, blocks ofN = 200 samples are used the experiment only considers symbol-
spaced samples. The experimental data points are indicated by a circle, while the theoretical
bound is indicated by the straight line with the squares as data markers.

First, consider the data set corresponding to the experiment which used a block Size of
1000 and symbol-spaced sampld9)( It can be observed from Fig- 5.2 that the experimental data
has the same slope than the CRB, for all parameters. Interestingly, it can also be observed that
the distance between the bound and the experimental data varies from parameter to parameter.

In particular, it can be seen that the distance between the variarca plire delay, and the
corresponding CRB is larger than for the other estimates. For pure delay estimation in white
noise, the CRBg3, may be given by{[31]

9 K
Gy =y ) &Y
where K is a constant that depends on the signal-to-noise ragits observation timef; and
f» are the lower and upper limit on the signal’s bandwidth respectively. Since sampling at the
symbol rate implies (using normalized frequencifés)- 0 and f, = 1/2 and since the system’s
bandwidth corresponds t§ = 2/3, then it is expected that the CRB when using symbol-spaced
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samples is approximate% ~ 2.4 times the CRB when using the full signal’s bandwidth.

Hence in this case, the CRB curve in Hig. 5.2(d) wouldbketimes higher than the current
one, bringing the CRB closer to the experimental data. The average distance between the CRB
and the variance of the estimate obtained using symbol-spaced samples is approxirfately
The difference may be explained by the modelling; the estimation performed in this experiment
is joint and the variance af also depends on the other parameters whefegs (5.1) does not take
the joint estimation into account.

The variance of the estimate when using half-symbol spaced sanplesié not signifi-
cantly closer to the bound than the other c&Seand is even further for the variance|pf|. This
may be explain from the lack of pre-whitening filter for th¢2 case; [5]1) only holds for white
Gaussian signals. Therefore, without the pre-whitening filter, the power of the signal’s higher
frequencies remains negligible and nothing is gained.

The variance of the estimate for smaller observation time tends to be further from the CRB
than for larger observation time as can be observed fromFig. 5.3. For instance, the ratio of the
average difference between the variance of the estimate and the CRB+$dz00 andN = 1000
is approximately6. So for an observation time five times larger, the average difference between
the variance and the bound decreases approximately by a factor of 6. This trend is expected
from a ML estimator; as the observation time increases, the variance of the estimate tends to the
Cramér-Rao lower bound|[9].

5.3 Compensation System Comparison

In this section, the iterative estimation procedure of Chapter 3 is combined with the filter de-
sign techniques discussed in Chapler 4 to obtain a full compensation system and investigate its
performances. To do so, the mean squared error (MSE) between the symbol4,3amd the
equalized samples at the input of the decision device is computed for each compensation system,
as illustrated in Fig. 5}4. Then the MSE from the different compensation systems are compared.
As shown in Fig[5]4, the mean square error between the exact symbol and the equalized
samples is computed ovéf symbols. Smaller MSE at the input of the decision device indicates
a smaller symbol error rate. A better measure would be to compare the symbol error rate directly
(i.e the number ofd, , #+ Aj,_4 over the number of symbol sent), however this is not practi-
cal because of the extremely low probability of error (recall that the BER for this radio unit is
approximatelyl0—®). Hence, the comparision of MSE is the preferred method in this work.
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Compared Systems

In this comparative study, three different compensation systems are considered. The first com-
pensation system, used in some existing data radio systems, consists of a bank of fixed FIR filters
from which a filter is selected to perform the equalization for each block of duratiothsam-

ples. In this experiment, a set of seven FIR filters are considered. The first filter is the all-pass
filter and the other six are designed for a fiXed, = ande, and six different values of ¢, uni-

formly distributed betweelt—r, w]. For every block of1096 samples, one filter is selected as
being the “best” filter, and its output is routed to the decision device. It is chosen according to its
mean squared error (MSE), measured between the symbol sent (or its estimate) and the equalized
output, during the previous block.

The MSE for the best filter is computed along with the MSE for the other filters, one at a time,
alternating once per symbol duration during the entire block of data. At the end of a block, the
filter with the lowest mean squared error is selected as the best filter and is used for equalization
of the following block. This system will be referred to as “FBF” for fixed bank of filters.

The next system used in the comparison consists of an adaptive channel equalizer that uses the
normalized LMS (NLMS) algorithm[[3]. For this experiment, a normalized step-size-610.3
was used for illustrative purposes. This specific value was chosen to have fast convergence and a
relatively small excess error.

The compensation system that is utilized here for the comparison is the iterative compensation
system illustrated in Fig. 4.4, wheré = 1000. The iterative parameter estimator had step-sizes
pt = 0.0001, 42 = 0.01, x* = 0.002 andp* = 0.001 . The compensation system estimates the
parameters iteratively and once eve¥y= 1000 samples, the parameters are used to design a
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new compensation filter (equalizer). The filter is designed using a least squares approach with
the signal power spectral density as error weighting function, as described in Jhapter 4.

MSE Comparison Results

The simulations were performed at a signal-to-noise ratié,gfV, = 20dB and repeated over

one hundreds different channels. The channel parameters were uniformly distributed over the
range|0, 0.2] for |¢|, (—m, x| for £, [0.25,0.75] for 7 and [-0.025,0.025] for e. Figure[5.b

shows the averaged MSE over the hundred channels for the different compensations algorithms.

The solid line at the top shows the MSE of the FBF system described above. The algorithm
is initialized to the all-pass filter and changes filter aft@é96 samples to the “best” filter for the
previous block. Since the filters in the bank were designed for a fixed channel, il¢| for0.1,

7 = 0.25T ande = 0, it is expected that it does not perform well over the number of randomly
generated channels.

The dashed curve shows the performance of the proposed compensation system, labelled
“CS” for Compensation SysterAs the channel estimates converge to their respective values, the
channel equalizer designed on-line gets closer and closer to its ideal form. For all practical pur-
poses, it can be seen from Fig.]5.5 that after approximately six thousands samples, the estimates
are close enough to their actual values for the compensation filter to have converge to its ideal
response, lowering the MSE almost to the effective noise levelindicated by the dotted line
labeled “Noise” at the bottom.

The “dash-dot” line on the plot shows the MSE obtained using the NLMS algorithm. As it
can be observed, the NLMS converges extremely quickly to its minimum. However because of
the misadjustment in the LMS algorithm, it does not reach the minimum attainable MSE,

Note that a smaller step-size would results in a smaller excess mean square error and would get
close to the noise level.

The compensation system can therefore achieve a MSE in the order of what the NLMS al-
gorithm can achieve. However the new system has a level of complexity much higher than the
normalized LMS algorithm. A quick analysis of Algorithm 3.1 shows that for each sample, the
number of operation necessary to obtain a set of estimates is approxid(dielyl) + 2(2K +
1)(L+ 1), whereL is the number of reflections taken into accoun{in (3.53) And the number
of symbols considered in (3]52) and (3.54). Thus, if we consider the filtering operation with a
filter length of L, the total complexity for every sample for the new compensation system be-
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Fig. 5.5 Mean Squared Error Comparison
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comesL;+4(L+1)+2(2K +1)(L+1) plus some overhead, whereas the level of complexity of
the NLMS algorithm is in the order &L, plus overhead and for the FBF algorithm iRi5; + 1
plus overhead.

The proposed compensation system can therefore be advantageous in situations where the
length of the filter is very long. In fact, the NLMS algorithm can be seen as a parameter estimator
where the parameters are the filter's coefficients. For a complex filter of lengtthere are
2L parameters to estimate whereas in this application, the number of channel parameters is only
M = 4. Therefore for very long filters, i.el.; > M, it may be more appropriate to use the
proposed compensation system.
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Chapter 6
Conclusion

This work considered the estimation of transmission line parameters for digital equalization. It
focused on a specific military high capacity line-of-sight radio system. The particular application
of this radio is such that reflections on the cable between the antenna and radio receiver are
inevitable, creating ISI at the receiver. The equalization procedure proposed to compensate for
the 1Sl is performed in two steps. First, the transmission line parameters are estimated, using
a probability model derived from the physics of the problem. Then, a compensation filter is
designed (on-line) to equalize the distortion.

This Chapter will present a summary of the work followed by some suggestions on appropri-
ate future work.

6.1 Summary of Work

Aforementioned, this thesis considers a particular communication system, designed and manu-
factured for the military. It is a general data radio used by the military during deployment. It is
usually positioned in a communication vehicle, and requires a small installation time since it is
subject to frequent location changes.
This radio unit creates high reliability links, compatible wATM and can operate over a
very wide range of carrier frequencies over two distinct bands. Its main performance degradation
however, comes from the ISI caused by the reflections on the cable, between the antenna and the
radio receiver. Those reflections exists because the installation requirements are such that tuning
the antenna-cable-connection cannot be performed manually, causing an impedance mismatch.
The electrical properties of the transmission line system were analyzed in this work to obtain
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a model for the received signal. The model uses four parameters to completely determine the
effects of the transmission line reflections, or channel. The four parameters include the reflection
coefficienty, a complex quantity with a magnitude| and a phase(t, the delay between
reflectionsr and the synchronization offset The latter is indirectly caused by the channel; the
received signal distortion will make the symbol synchronizer lock slightly offset with respect to
the middle of the symbol.

Point estimation was used to estimate the parameters, based on the received signal. The maxi-
mum likelihood (ML) estimator was first derived using a Fourier series expansion of the received
signal. Then, a more practicable approximate ML estimator that uses discrete-time samples has
been proposed. The approximate ML estimator uses non-linear optimization procedures to mini-
mize a cost function, closely related to its Fourier series ML estimator counterpart. To model the
radio unit under conisderation accurately, the pre-whitening filter is neglected in the approximate
ML estimator. In addition, an iterative estimator was presented. It is loosely based on the steepest
descent technique. The iterative estimator may be more practical to use in real-time applications.
Finally, the Cramér-Rao lower bound for the variance of the estimate was derived.

The estimated parameters are used to design a compensation filter. It was shown that the
compensation filter can be expressed in the time-domain as a sum of two weighted delayed delta
function. Unfortunately, the delays are not necessarily an integer number of sampling interval.
Therefore, only an approximate filter may be designed. A method for designing fractional delay
(FD) based on the least squares approach is suggested. The method weights the error in the fre-
guency domain with the power spectral density of the transmitted signal. This way, the weight on
the error is of lesser importance at the frequencies where the signal energy is low. The frequency
response of the designed compensation filter follows closely the ideal inverse channel frequency
response in the signal’s bandwidth.

Convergence curves for the iterative parameter estimator were shown. The parameter esti-
mates converge steadily to their actual values at the same rate for different SNRs, for a given
step-size. When the step-size is small enough, the effects of an error in the symbol decision does
not affect the estimates. The variance of the estimate obtained using a block ML estimator were
compared to their respective CRB. It is shown that the variances are close to the bound except
for the variance of the delay estimation, where it is slightly further from the bound than the other
cases. It is advanced that the absence of a pre-whitening filter and the bandwidth limitation of
the observation signal affect the reliability of the estimate. Finally, the full compensation system,
incorporating the iterative estimator and the filter design, is compared to other channel equaliza-
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tion techniques. The proposed method is shown to perform better than some sub-optimal channel
equalization techniques currently used in the industry. The mean squared error of the proposed
method approaches the power of the noise (minimum limit), as the estimates becomes closer to
their actual values.

6.2 Future Work

This thesis focused on a particular practical problem proposed by the industry. As such, the future
work suggested here involves both theoretical and practical aspects.

In terms of the theoretical future work, the issue of the automatic gain controllers should be
addressed. The model developed ignores the possible gain variations in the received signal caused
by the automatic gain controllers in reaction to the distortion and noise. A model for the gain
variation should be developed. It should not be too difficult to incorporate a gain compensation
system since the automatic gain can be predicted from the channel parameters and the noise
power.

The iterative algorithm proposed was developed using fixed step-sizes. The convergence and
stability of the algorithm could be improved by using an adaptive step-size mechanism. Ideally,
the step-sizes should first be larger so that the convergence is rapid at the beginning. Then, when
the estimates have converged, the step-sizes should be smaller to “fine tune” the estimates. A
search in the general adaptive filtering literature for similar step-size control algorithms should be
a good starting point. The iterative algorithm could also be modified to use the proposed bounds
on the parameters. Finally, another interesting future work direction is to study the relationship
between the Cramér-Rao bound and the iterative algorithm. In particular, it would be interesting
to find a relation between the convergence time, the step-size and the steady-state variance of the
estimate for the iterative algorithm.

The proposed compensation system relies heavily on the exactitude of the mathematical
model developed for the channel. An important aspect of future work would be to validate the
mathematical model using measured data. Ideally, those measurements should be made on a real
system, to represent as closely as possible the real operating conditions. The algorithm should
also be tested using real data.

The compensation system proposed is likely to be implemented in fixed point arithmetic.
Therefore, issues regarding fixed point implementation should be addressed. In particular, the
effects of limited numerical precision on the parameter estimation algorithm should be studied.
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Study of the fixed point implementation will also help to determine the necessary hardware for
the compensation system realization.
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Appendix A

Lowpass Equivalent Communication
Model Derivation

In this appendix, the lowpass equivalent communication system of Fig. 2.4 is fully derived. The
latter makes abstraction of the modulation and is therefore mathematically easier to work with.

First, the lowpass equivalent of the transmitted signal is developed, then the channel and noise
lowpass equivalent are derived. Finally, the matched filter and sampling are integrated to obtain
an expression for the fractionally sampled signal at the input of the equalizer.

Transmitted Signal
The QAM signal sent by the transmitter (after pulse shaping(b)) is defined by
s(t) = > App(t — kT) cos(wet) — Agep(t — kT sin(w,t) (A.1)
k=—00

where Ay, and Agy, are the in-phase and quadrature components of the symbol at:tiae
spectively and is the symbol duration. Sinc€ (A.1) is already in canonical form 2.27), its
lowpass equivalent can be directly obtained:

§(t) =Y Awp(t—kT), (A.2)

k=—0o0

WhereAk =An + ]AQk
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Channel

The channel’s frequency response in equatjon [2.18) is not passband as it covers the entire fre-
guency range. Itis therefore assumed that the radio-receiver has a bandpass filter at its input. The
latter is assumed to be

I, we—W<|wl<w.+W
I(w) = (A.3)
0, elsewhere

wherew, is the center frequency of the filter apd’ is its total (bandpass) bandwidth. With this
filter in place, it is not difficult to show that the lowpass equivalent channel response becomes

] — _](W"I‘WC)T ¢
H(w) = 2e (1 — wej(cwwc)%) , Jw| < W (A.4)
andH (w) = 0 otherwise. If the lowpass excitatiafit) is band-limited tdw| < W, it is possible
to make abstraction of the frequency limitatips] < W in (A.4) and express its time domain
equivalent as

h(t) = 20[6(t — 7) + Yo (t — 37) + V?0(t — 57) + .. ]

— 2¢§: Vot — (20 + 1)7), (A-5)
=0

wheree 7“7 in the numerator has been absorbed#gnde=7<-2" in the denominator by in
(A4). Note that the factor daf will be absorbed later by the bandpass convolution operation.

Since the demodulation is performed coherently, it is assumed that the phase shift caused by
¢ can be ignored. Furthermore, it is assumed that the automatic gain controllers in the receiver
makes|¢| = 1. Consequentlyy = 1 and is ignored in the model. In addition, it can be observed
that the channel has a pure delayrofwhich we also ignore as it has no effect on the received
signal. Therefore, the channel lowpass equivalent becomes after these assumptions

h(t) =2 i Vot — 217) (A.6)
=0
N 2



A Lowpass Equivalent Communication Model Derivation 78

Received Signal

The baseband representation of the received signal at the input of the equalizer after matched fil-
tering consists of the baseband convolution of the transmitted signal with the equivalent channel,
convolved with the matched filter plus the equivalent noise term also convolved with the matched
filter, i.e.:

(1) = 5(5 % b pue) (1) + (% pe) (). (A8)

The factor} comes from the equivalent lowpass convolution betw&enandh(t). The convo-
lution with pye(t) does not require scaling since it is already lowpass.

Substituting [[A.p) in [[AB) and using the sifting property of #) function, the received
signal after the matched filter, is finally expressed as

A= D ) W' Arg(t — kT = 217) 4 v(t) (A.9)

k=—o0 =0

where by definitiory(t) = (p*pwme)(t) (the time delay introduced by the matched filter is ignored
because it has no consequences)@mgis given by

oft) = (0 + pue)(t) = [ (€)purlt - ) (A10)

The real and imaginary parts 8ft) corresponds to the upper and lower branch respectively
in Fig. 2.4 after the matched filters. The factors of two in the demodulator scale the signals so
that the correspondences are exact.
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Appendix B

Fourier Series Coefficients for the Mean of
the Received Signal

In this Appendix, the Fourier series coefficients for the mean of the received sighgl) <
t < T, are derived. By definition, the Fourier series coefficients are given by

1

U(wy) = TO

Ty . 9
/ w(t)e tdt, w, =L ge7 (B.1)
0 To

whereT,, is the observation time. Recall frorn (3.15) thdt) is given by

u(t) = Z Zz/}lAkg(t — kT —2IT —¢)
k=—00 1=0 (B.2)

-
= §(h*8*pM|:)<t—€),

Whereﬁ(t) ands(t) are the lowpass equivalent channel impulse response and transmitted signal
respectively, as defined in Appendik A apgk(¢) is the matched filter. Using the inverse Fourier

transform to replace the expressions/it), 5(t) andpwe(t), (B.2) then becomes

u(t) = Z Ak%/ F(w)G(w)e F it dy, (B.3)
k=—o00 oo
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whereF'(w) = F(w;0) is the composite channel response, which depends on the par@meter
and includes the synchronization offset effects. It is defined by

F(w; ) = = H(w)e ¥, (B.4)

N —

where the channel lowpass equivalent frequency respEIr(lse is defined in[(A.Jr). Substituting
the equation[(B]3) for(t) in (B.1), the expression for the Fourier series coefficients now becomes

T o
—00 k=—00 0 J/

1 [ > ) 1 [T
U(wy) / F(w)Gw) Y Ake—wkTT /0 @t qt du, (B.5)

-~

Qw—wq)
Through simple integration, it can be shown thtv — w,) is given by

| .
Qo — wy) = oo HW — )y

(B.6)
(w— wq)%
The main lobe of)(w) (which has the form of ainc function) in this case is inversely propor-
tional to7,. Therefore, ifl; > T, i.e. N is large, then it can be assumed ti#&ty) and G (w)
vary slowly within an interval ofAw = %F—: This assumption allows to extragtw) andG(w)
from the integral in[(B]5). The expression for the Fourier series coefficientd pfhen becomes

- R . si Y 1
U(wg) = F(wy)G(wg) Z Ak%/ e IWRT pi(w—wq) P sin((w w‘%?)

oo (W —wg)2

dw. (B.7)

k=—o00

By using the change of variabl¢ = w — w,, the previous equation simplifies to

- Cjwgkr L[ Sin(w;To) (2 —kT)w g
U(wy) ~ F(wy)G(wy) Z Ape I gy e’ dw'. (B.8)
k=—o00 o

The integral in [B.7) is simply the inverse Fourier transform efidz) /= type of function eval-
uated at time = T,/2 — kT Itis given by

Ty/2 — kT

F1 [M = irect( T ), (B.9)

wlo/2 ] t=To/2—kT To
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where therect function is defined as

L <
rect(t) = (B.10)
0, elsewhere

Therefore, using[(B]9), the expression for the Fourier series coefficients now becomes

- ookt 1 1 kT
U(wy) =~ F(wy)G(wy) Z Ake_]“’qkTﬁ rect(§ - ?O) (B.11)

k=—o0

If the observation interval corresponds to an integer number of symbol duratiofy, Fe NT,

then the rectangular function in (B]11) eliminates the symbols in the summation outside of the
observation interval, reducing the sum oveto the range) < k£ < N. Let D(w) denote the
contribution of the data, i.e.:

N-1
D(w) =Y Age 7T, (B.12)
k=0

Then, the expression for the Fourier series coefficients of the mean of the received signal finally
becomes

Ulw,) ~ T%F(wq; 0)G(wy)D(w,), (8.13)

where the reference to the paramefieemphasizes the fact that only the composite channel
frequency responsié(w; 8) depends on the parameters in this expression.
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