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Abstract

Massive multiple-input multiple-output (MIMO) is one of the main technologies proposed to
meet the stringent requirements of the upcoming fifth generation (5G) standard for wireless
communications. However, the cost and the energy consumption of the radio-frequency (RF)
chains in massive MIMO systems precludes the use of a traditional scheme where each an-
tenna is equipped with one RF chain. This has lead to the introduction of hybrid ana-
log/digital systems, where an analog module between the antennas and the digital baseband
processor allows a reduced number of RF chains.

This thesis addresses the problem of pilot-based channel estimation in hybrid analog/digital
massive MIMO systems for future millimetre wave (mmWave) communications. To further
reduce system cost and implementation complexity of the analog module, we consider an
alternative architecture derived from RF switches as opposed to the phase shifters in the con-
ventional literature. The estimation problem is modelled as a combinatorial optimization
problem where the aim is to minimize the mean square error (MSE) between the real chan-
nel and the estimated channel over a finite set of allowed values for the switches. To solve
the estimation problem, a genetic algorithm (GA) is developed for the novel switch-based
hybrid analog/digital massive MIMO architecture. Simulations of MIMO transmission over
realistic mmWave channel models show that the proposed GA is able to estimate channels

as accurately as, if not more than, an existing solution using phase shifters.
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Sommaire

Les systémes a entrées-multiples-sorties-multiples (MIMO) massifs sont une des principales
technologies mises de 'avant pour atteindre les demandes exigeantes de I'imminent stan-
dard de communication sans fil de cinquiéme génération (5G). Cependant, le cotit et la
consommation d’énergie des chaines de fréquence radio (RF) rendent irréalisable la struc-
ture traditionnelle oli chaque antenne est équipée d’une chaine RF. C’est ce qui a poussé
a lintroduction des systémes hybrides analogues/digitaux, ot un module analogue ajouté
entre les antennes et le processeur digital de bande de base permet un nombre réduit de
chaines RF.

Ce mémoire aborde le probléme d’estimation de canal utilisant des pilotes dans les sys-
témes hybrides analogues/digitaux MIMO massifs pour les futures communications a ondes
millimétriques (mmWave). Pour réduire davantage les cotits de systéme et la complex-
ité d’implémentation du module analogue, nous considérons une architecture alternative
dérivée des commutateurs RF, par opposition aux déphaseurs retrouvés dans la littérature
conventionnelle. Le probléme d’estimation est modelé comme un probléme d’optimisation
combinatoire dont le but est de minimiser ’erreur quadratique moyenne (MSE) entre le vrai
canal et le canal estimé par rapport a un ensemble fini de valeurs admises pour les commuta-
teurs. Pour résoudre le probléme d’estimation, un algorithme génétique (GA) est développé
pour la nouvelle architecture de systéme MIMO hybride analogue/digital & commutateurs.
Des simulations de transmission MIMO sur des modéles réalistes de canaux mmWave dé-
montrent que le GA proposé est capable d’estimer les canaux aussi précisément, sinon plus,

qu’une solution existante utilisant des déphaseurs.
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Chapter 1
Introduction

This chapter begins with an overview of the 5G standard with an emphasis on massive MIMO,
mmWave communications, and hybrid analog/digital architecture. Then, a survey of the
literature on channel estimation within the context of these technologies follows. A summary
of the objectives and contributions of this thesis comes after. Finally, the organization of the

thesis is presented.

1.1 Adapting MIMO for 5G

Some reports have predicted that the global mobile traffic will increase sevenfold between
2017 and 2022 [1]. The load on the cellular network will thus build up tremendously. This
tendency is mainly due to the growing popularity of video calls and high definition stream-
ing services on smartphones. Added to these trends is the emergence of the internet of
things (IoT) and machine-to-machine (M2M) communications. All-in-all, statistics indi-
cate that there will be roughly 1.5 mobile-connected devices for each person on Earth by
2022 [2]. These numbers tell us that tomorrow’s telecommunication networks will need to be
rethought and redesigned, with the requirement that their entry points be able to manage
more connections with higher data rates than it is currently possible.

Increasing data rates is one of the objectives of the 5G standard for wireless telecommu-
nication, which defines the upcoming fifth generation of mobile networks. Its requirements
specify, among other things, increased target values for the aggregate data rate, or area

capacity, as well as for the edge rate:
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e The area capacity is the total amount of data the network can support and is measured
in bits per unit time and unit area. This capacity will need to be 1000 times higher in
the fifth generation (5G) than it was in the fourth generation (4G) [3].

e The edge rate is the worst data rate a user can expect when in range of a base station
(BS). The goal of 5G for this metric is between 100 Mbps and 1 Gbps, which represents
an increase by a factor of 100 from 4G [3].

Massive multiple-input multiple-output (MIMO) and millimetre wave (mmWave) signals
are two technologies proposed to reach these exacting objectives. Massive MIMO, as opposed
to traditional MIMO, is a regime where each BS is equipped with a number of antennas on
the order of hundreds or more [4]. This allows spatial multiplexing to be fully used and
therefore a higher information capacity and thus higher data rates to be reached. Because of
the very large number of antennas, however, the fundamental properties of massive MIMO
are different than those of MIMO and more research must be done to better understand its
operation and design.

Different antenna array configurations can be used for different massive MIMO applica-
tions: linear, rectangular, cylindrical, and distributed, for example [5]. Even arrays with
a full three-dimensional (3D) structure can be considered. However, according to Gauss’s
laws of electromagnetism, the electric and magnetic fields in a volume are fully described
by the fields at the surface of the volume. This limits the usefulness of 3D arrays, because
the antennas inside the structure are superfluous and do not contribute to the information
capacity of the array. Only the antennas at the surface do [6].

With the use of mmWave signals, i.e. signals with wavelengths on the order of millime-
tres!, the new antenna arrays will be smaller and include more antennas than they would
if they used signals with larger wavelengths, as it is the case today with operation in the
microwave band. This will allow tens of antennas to fit in a single smartphone and hundreds
or thousands in a BS [7]. Also, almost all current commercial radio communications, which
include mobile phones, AM/FM radio, and Wi-Fi, use frequencies between 300 MHz and 3
GHz, leaving the frequencies above 3 GHz unexploited. If the oxygen and the water vapour
absorption bands are excluded, a span of approximately 250 GHz is available between 3 GHz
and 300 GHz [7]. Exploiting these frequencies would allow a much larger volume of data

to be exchanged. This possibility, however, comes along with a few drawbacks: mmWave

IThat is, with frequencies in the range from approximately 30 GHz to 300 GHz.



1 Introduction 3

signals do not travel very well through most solid materials and undergo significant attenua-
tions in heavy rain [7]. Nevertheless, mmWave frequencies open the door for high-throughput
small-range communications.

A serious concern that comes with providing a significantly enhanced performance with
5G is that the energy consumption of many components and sub-systems in the network
will likely increase. Along with plans to extend the mobile coverage to less populated areas
in various regions of the world, the total energy consumption of the global network could
increase unacceptably if no special measures are taken. Thus, another important objective
for future networks is to improve the energy efficiency of their components in order to keep
the total energy consumption of the network at least constant, if not to reduce it.

To achieve this goal while allowing increased data usage, the energy per bit would need
to be reduced by a factor of at least 100. Different technologies and schemes developed for

5G could potentially help reach this goal, including the following:

e The cloud radio access network (C-RAN) architecture, which allows a more fluid man-

agement of computing resources [8].

e The use of smaller and heterogeneous cells, which are far more efficient than the cur-

rently used larger cells [9].

e The use of hybrid analog/digital architecture for massive MIMO, which allows fewer

radio-frequency (RF) chains to be employed in transceivers [7].

e The use of high-resolution beamforming with large-scale antenna arrays, which allows

to focus the transmitted signals and to receive weaker signals [4].

Beamforming is achieved through interaction between electromagnetic waves. On one
hand, when the waves emanating from the antennas during the transmission of a signal
are in phase with each other, they interact constructively and more power is transmitted.
The angular region where this happens is referred to as a beam. Conversely, outside of the
beam, the transmitted waves are out of phase and interact destructively. Hence only a small
amount of power, if any, is emitted in these directions. Adjusting the phase of the signals
sent by each antenna allows the direction of the beam to be chosen. When the number of
antennas employed is larger, the beam is easier to direct and can be made sharper. From the
perspective of energy efficiency in 5G, beamforming allows signals to be focused in smaller

areas and hence wasteful spills of power to be reduced.
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On the other hand, during the reception of a signal, the waves received from a particular
direction at the antennas can be delayed, or phase-shifted, electronically so that they be in
phase with each other and interact constructively when summed. Also, because the electrical
noise picked up by antennas tends to be spatially uncorrelated, adding together phase-aligned
signals from many antennas increases the signal-to-noise ratio (SNR). This SNR gain, which

is higher when there are more antennas, allows a reduction of the source transmit power.

—
RF Chain 1
Baseband .
B E— L4 : °
Processor . TR N .
RF Chain L ' ] N
ik Y
N _‘l

Analog Combiner
with Phase Shifters

Fig. 1.1 Block diagram of a massive MIMO transceiver built with a hybrid
analog/digital architecture. The analog unit acts as an interface between a large
number N of antennas and a small number L of RF chains. The arrows indicate
the travel direction of signals during a reception.

As previously mentioned, the hybrid analog/digital architecture is also proposed to help
reduce material and energy costs of future massive MIMO systems. Using more antennas
requires more RF chains, which in turn consume more power. RF chains are units that
convert the analog signals received by the antennas into digital signals that are suitable for
their treatment by the baseband processor during the reception, and vice versa during the
transmission. Their large number, as anticipated for massive MIMO, is problematic because
they are expensive and not power-efficient [5,7]. One approach to cope with this limitation
is to use an analog processor (called analog combiner, or decoder, for the reception and
analog beamformer, or precoder, for the transmission) to convert the signal between a large
number N of antennas and a much smaller number . << N of RF chains, resulting in what

is called a hybrid analog/digital architecture, as depicted in Fig. 1.1. This solution, however,
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introduces a new layer of difficulty, since the baseband processing unit no longer has direct
access to the antennas, which usually leads to decreased performance. The minimum number
of RF chains required to achieve an analog precoder with the same performance as a fully

digital one is investigated in [10-12].

1.2 Literature Review

The focus of this thesis is on channel estimation in the context of hybrid analog/digital
mmWave massive MIMO. As exposed in the previous section, these combined technologies
hold the potential to significantly boost the performance of future wireless networks, but
need to be better understood before they can be most efficiently used in practice. Differ-
ent approaches have been explored in recent works in order to develop channel estimation
algorithms that are specifically designed for this architecture. Typically, these approaches
consider either a point-to-point setup, where only two transceivers communicate with each
other, or a multi-user (MU) setup, where one BS communicates with many mobile sta-
tions (MSs). The former situation is common in the backhaul, for example when two BSs
are in a chain of relays between two users of the network, whereas the latter situation usually
happens at an entry point of the network. Furthermore, some methods are designed to work
specifically with frequency-division duplexing (FDD), whereas others are designed to work
with time-division duplexing (TDD). One advantage of TDD over FDD is that in TDD,
under slowly time-varying conditions, the uplink (MS to BS) and the downlink (BS to MS)
channel matrices are transposes of one another, which means that the channels estimated in
one direction can be used as well in the other direction. In contrast, in FDD, both channels
must be individually estimated due to the loss of coherence across different frequency bands.

A method exploiting the angular sparsity of the channel is presented in [13|, where the
focus is on the estimation of a point-to-point narrow-band flat-fading mmWave channel with
both transceivers having a hybrid architecture. Both the single-path case and the multiple-
path case are considered, and the estimation is performed by going through a hierarchical
multi-resolution codebook. At the first iteration of the algorithm in the single-path case,
the entire angular domain around the receiver is separated into K equally sized sectors. For
each sector, a beamformer is designed to extract the received signal power and the sector
with the highest received power is kept. At the next iteration, this sector is separated into

K smaller sectors and again, the one with the highest received power is kept. The process
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is repeated until the desired resolution is attained. The multi-path scenario is handled by
means of a similar iterative procedure, but with the contribution of each path subtracted
from the received power pattern prior to the next iteration.

Various extensions of the above beam search approach to the broad-band frequency-
selective fading channel model, which is more representative of the conditions of operation
of mmWave massive MIMO systems, have been proposed in the literature. In particular,
the works in [14,15] exploit sparse formulation and compressed sensing concepts to solve the
wideband channel estimation problem for the hybrid MIMO architecture. In [16], the channel
estimation problem for MIMO orthogonal frequency-division multiplexing (OFDM) systems
after beam searching is formulated as an harmonic retrieval problem, where the channel
paths are associated to a discrete set of frequencies and gains. Two different methods are
then proposed for the estimation of these parameters.

In [17], the problem of uplink channel estimation of a massive MU MIMO system is
investigated. The BS is equipped with a hybrid analog/digital architecture and each MS is
equipped with a single antenna. In contrast to the above works based on the concept of beam
search, [17] proposes an efficient pilot-based estimation approach that exploits the spatial
correlation matrix of the massive MIMO channel. Both the single and the multiple-pilot cases
are visited, leading to different algorithms with varying complexity and performance levels.
Moreover, the channel correlation matrix is also used in [18|, where an efficient least-squares
approach based on subspace tracking is presented to estimate its dominant eigenvectors.

All of the aforementioned works use pilot sequences to estimate channels. Pilot sequences
are signals that are known beforehand by the BS and the MS. The knowledge of the pilot
sequence behorehand along with the received signal is what allows the channel to be esti-
mated. In order for the BS to distinguish between the different users, their attributed pilot
sequences need to be orthogonal to each other. However, the number of orthogonal pilot se-
quences is limited, where the limit is estimated to be about 200 in a typical scenario [5]. For
this reason, neighbouring cells usually have to reuse the same set of pilot sequences, which
leads to the problem of pilot contamination. This problem arises when the transmission of a
pilot sequence in a cell interferes with the transmission the same sequence in another cell, as
illustrated in Fig. 1.2a. A beamformer designed with pilot contamination will tend to leak
power towards a user in another cell, as shown in Fig. 1.2b, thus increasing the amount of
interference power for this user.

To lessen this detrimental effect, [19] develops a channel estimation algorithm that
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works under the assumption of pilot contamination. Other approaches explore pilot allo-
cations [20-22] and pilot designs [23,24] that aim to minimize the interference. In [25], two
methods are presented where adjacent BSs cooperate to reduce the contamination. Alter-
natively, other works develop ways of estimating channels without using pilot sequences or
using them to a lesser extent, leading to so-called blind and semi-blind channel estimation
methods. Both [26] and [27] present blind estimation techniques, the former being based
on the maximum likelihood principle and the latter being based on adaptive independent
component analysis. In [28], a blind technique and a semi-blind technique are presented for
time-invariant channels, but both perform well even in the time-varying scenario. Finally, a
low-complexity semi-blind estimation approach is proposed in [29] for massive MU MIMO

systems.

Base
Station

Base

Station Interferer

Interferer

Cell
Boundary

Cell

Boundary

D Desired User D Desired User

(a) Pilot contamination by an interfering user out-
side the cell. Because the two users use the same
pilot, the BS cannot distinguish them.

(b) Erroneous beamforming caused by pilot con-
tamination. Here, most of the energy is sent to the
desired user, but a non-negligible part is leaking to

the user with the same pilot in the adjacent cell,
causing inter-cell interference.

Fig. 1.2 Illustration of the effects of pilot contamination on beamforming.
The green arrow represents the pilot sequence sent by the user inside the cell,
whereas the red arrow represents the interfering pilot of the user with the same
pilot sequence in an adjacent cell.

In recent years, attention has turned towards artificial intelligence, opening a new realm
of possibilities for mmWave channel estimation. Several approaches based on deep neural
networks (DNNs) have been investigated. For instance, [30] investigates the use of deep
convolutional neural networks (CNNs) for channel estimation in mmWave massive MIMO
systems with hybrid architecture. Three different CNN configurations are proposed for this
purpose: one exploiting the spatial and frequency correlation of time-invariant channels; one
exploiting the spatial, frequency, and time correlation of time-varying channels; and a last one
designed to reduce the pilot overhead. DNNs have also been proposed for super-resolution

channel and angle of arrival (AoA) estimation in massive MIMO systems [31], as well as
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for channel estimation in such systems when implemented with mixed resolution analog-to-
digital converters (ADCs) [32]. Deep learning along with pilot contamination is considered
in [33] for a convolutional blind denoising network and in [34] to develop a new pilot allocation
scheme. Bayesian learning has also been explored as an alternative solution to DNNs for
mmWave channel estimation under various scenarios, including two-dimensional (2D) arrays
of arbitrary geometry [35], off-grid models that characterize spatial sample mismatching [36],
and again super-resolution channel estimation [37].

Other works consider realistic limitations that are often neglected in the usual models.
For example, carrier frequency offset, which provides a measure of the imperfection of the
time-frequency synchronization across devices, is taken into account in the angular sparsity
channel estimation algorithm proposed in [38]. Also, hardware and channel state information
(CSI) imperfections are dealt with in the beamforming schemes presented in [39] and [40].

Finally, a new type of hybrid architecture where switches are used instead of phase shifters
was recently proposed in [41]. Specifically, four different switching network configurations,
reproduced in Fig. 1.3 for reference, and two phase shifter configurations are presented
in [41], together with a compressed-sensing-based channel estimation method and a power
consumption model. According to this model, all of the switching network configurations
consume less power than a fully digital system, and most of them use less power than phase
shifter networks. The configuration in Fig. 1.3a is also used in [42], where a hybrid precoder
is designed for a mmWave MIMO system. In [43], the switching network in Fig. 1.3d is
used with a matrix completion algorithm to estimate mmWave massive MIMO channels.
Alternatively, it is possible to use switches in combination with phase shifters. This is
the case in [44], where switches are coupled with constant, non-tunable phase shifters. The
performance of this solution is almost as good as that of a system equipped with regular phase
shifters. However, this setup can only be pre-designed for a restricted range of frequencies

and is thus not suitable for broadband applications.

1.3 Thesis Objectives and Contributions

The channel estimation methods designed for massive MIMO systems with hybrid architec-
ture discussed in the previous sections almost all present analog units equipped with phase
shifters, as in Fig. 1.1. This framework enables the number of antennas to be increased

while keeping a reduced number of RF chains, which is desirable since these are costly and
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Fig. 1.3 Four hybrid-architecture configurations for massive MIMO
transceivers that use switches instead of phase shifters.
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not power-efficient. However, phase shifters exhibit some drawbacks, most notably their
relatively slow speed of operation. Other types of hardware are more attractive than phase
shifters in some aspects. This is the case with RF switches, like the ones presented in Fig. 1.3
and discussed in the previous section. In principle, hybrid architecture based on RF switches
are cheaper, faster, and more power-efficient than those based on phase shifters [41]. How-
ever, more research needs to be conducted in order to design and better understand practical
massive MIMO systems based on them.

The objective of this thesis is to develop and investigate a pilot-based channel estimation
technique for mmWave massive MIMO channels with a switch-based hybrid architecture.
Specifically, we consider the problem of uplink channel estimation of a massive MU MIMO
system where the BS is equipped with a switch-based hybrid architecture and each MS is
equipped with a single antenna. The main contributions can be listed in four points, as

follows:

e New switch architectures are introduced to offer more control and flexibility on the

signal computation while still retaining the advantages of switches described earlier.

e The uplink channel estimation problem for the switch-based MIMO system is formu-

lated by extending the mean-square estimation framework presented in [17].

e A genetic algorithm (GA) is developed to solve the discrete optimization problem for

the switch states and obtain the desired channel estimates.

e The performance of the proposed GA for channel estimation with switch-based hybrid
architecture is compared to that of selected algorithms presented in [17] for channel

estimation with phase shifter networks.

Our result show that in spite of their inherent simplicity, hybrid networks based on RF
switches can estimate channels as well as those based on phase shifters, if not better than
them in some conditions. Hence, considering their advantageous features, as mentioned
above, RF switches hold the potential for a future class of mmWave massive MIMO transceivers

with hybrid analog/digital architecture.
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1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 introduces the massive MIMO system
and mmWave channel model used in this thesis and formulates the channel estimation as an
optimization problem over a matrix space. Chapter 3 briefly reviews the solutions proposed
in [17] for this problem. Chapter 4 presents different switch configurations, introduces new
ones, reformulates the problem in terms of them, and presents the GA used to estimate
channels with switching networks. Chapter 5 present the simulation results along with
performance comparisons. Finally, Chapter 6 summarizes and concludes the thesis, and

proposes future research prospects.
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Chapter 2

System Model and Problem Formulation

In this chapter, the mathematical formalism used in this thesis and other related works to
model mmWave massive MIMO systems and channels is presented, together with a few of
their properties. Then, the pilot-based channel estimation problem for massive MIMO sys-

tems with hybrid architecture is formulated as a constrained optimization problem.

2.1 System Model

The present work investigates pilot-based channel estimation in a single-cell massive MIMO
system for the case of uplink transmission from single-antenna MSs to a multi-antenna BS.
In practice, provided the coherence time of the wireless channels is sufficiently large, TDD
is used because the knowledge of the uplink channel then allows the downlink channel to
be easily computed [4]. The presentation of the system model and the problem formulation
will remain general in this chapter. Particular aspects of the model and problem that are
specific to the use of switches will be presented in Chapter 4.

As shown in Fig. 2.1, the BS is equipped with N antennas and L RF chains. The
antenna outputs are fed to a hybrid analog/digital processing system, consisting of an analog
combiner, L individual RF chains, and a baseband processor, in that order. The analog
combiner can be implemented in different ways. If it is made of phase shifters, as in most of
the literature on hybrid massive MIMO, the narrow-band signals coming from the antennas
are time-delayed, or phase-shifted, by different amounts, added together, and fed to the
RF chains. If the analog combiner is built with switches instead, the signals can either go

through different paths or be blocked, as will be explained in further details in Section 4.1.

2020/04/11
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In both cases, the analog combiner is used to convert a signal vector with N components
to a lower-dimensional signal with L components, where L < N. In the context of massive
MIMO, N can be quite large, e.g. on the order of 100, while typical values of L range from
N/10 to N/2. The lower-dimensional signal vector at the analog combiner output is then
fed to the RF chains, where its components are down-converted to baseband and digitally
sampled by ADCs. The digital output signals from the RF chains are then fed to a baseband

processor, which in turn completes the channel estimation.

RF Chain 1

RF Chain 2 : / MS 2
Baseband Analog |,
|

Processor Combiner

RF Chain L

Base Station Mobile Stations

Fig. 2.1 Block diagram of the system model, consisting of a hybrid mmWave
massive MIMO base station and K single-antenna mobile stations.

For the sake of simplicity, the pilot sequences used in this work are simple time-orthogonal
sequences: when one MS sends a pilot, all the other MSs remain mute. This design greatly
simplifies the problem formulation and analysis, allowing a single MS to be considered at
any given symbol time, while still providing the same performance as other pilot designs [17].
Hence, the user indices are not used in the rest of this thesis.

The uplink training process is mathematically modelled as follows. The MS sends to the
BS T pilot symbols ¢, € C, t € {1,...,T}, known beforehand and all satisfying |¢;| = 1.

At time ¢, the BS receives a signal

r, = \/pgy: + Ny, (2.1)

where p € R, is the power of the pilot, g € CV¥*! represents the uplink channel vector
between the considered MS and the BS, and f; € CV*! is an additive white Gaussian noise

(AWGN) vector with zero mean, unit variance, and complex circular Gaussian distribution,
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i.e. iy ~ CN(0,Iy)!. After being processed by the analog combiner and multiplied by the

conjugate of the pilot symbol, the signal received at the baseband processor is

yi = Fi(\/pgp: + 1)@ = Fi(\/pg + ny), (2.2)

where F, € C¥*V represents the analog combiner at time ¢t and n, = @0, € CN*! is an
AWGN vector with the same statistics as 1y, i.e. n, ~ CN(0,Iy).
The T signals successively received at the BS can be combined together if the following

vectors and matrices are defined:

y1 n
y2 ny
yC = . 9 nC - ) (23)
yr nr
Fl F1 0 0
F, 0O F, --- 0
F.= . , Fa= . . . . ) (24>
Fr 0 0 --- Fryp

where y, € CIT*t n, € CNTX1 F, € CET*N and Fyq € CIT*NT| These quantities then

satisfy the following relation:
ye = VPF.g + Fan,. (2.5)

In practice, the channel vector g exhibits a random character. Here, a second order char-
acterization with zero mean, i.e. E[g] = 0, and covariance matrix R := E[ggH] are con-
sidered. Without loss of generality, the channel vector g is assumed to be normalized as
E[gHg} = tr(R) = N. We also assume that the channel vector g and the additive noise

terms n, are uncorrelated, i.c. E[gn{!] = 0 for all ¢.

Tn this work, without loss of generality, we set the noise variance to 1. Any desired SNR level can be
achieved by adjusting the pilot power p accordingly.
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2.2 Channel Model

The model used in this thesis to represent the low-scattering mmWave channel between the

MS and the multi-antenna BS [13] is a linear combination of array response vectors:

VOLP =

where P is the number of propagation paths, o, ~ CN(0,02) and 6, ~ U(0,27) are respec-

g=——3 a,a(,). (2.6)

tively the complex gain, with variance o2, and the AoA of the p'" path, and the function
a: R — CV*!is the array response of the antenna array used at the BS, as further described
below. In (2.6), all the path gains «, and AoAs 0, are statistically independent from each
other.

While the channel estimation algorithm developed in this thesis works with antenna
arrays of arbitrary shape, for simplicity, only uniform linear arrays (ULAs) are considered

in our presentation. For ULAs, the array response returns a column vector expressed as

1

€j¥ sin 6

a(f) = | , (2.7)

eI(N=1)%5 sin6

where the AoA 6 is measured from a line that is perpendicular to the axis of the array, d is
the distance between the antennas, and A is the wavelength of the signal at the operating
frequency. The form of the array response vector in (2.7) can be derived from basic physical
principles by assuming plane wave propagation along with the ULA geometry, as represented
in Fig. 2.2. Specifically, the difference between the complex phases of two entries in the vector
a(f) is defined to be equal to the difference between the phases of the signals received at
the two antennas corresponding to the entries. If the phase difference between two adjacent

antennas is denoted by A¢, then from the problem geometry

Ad— Q%Z in 0. (2.8)

This yields expression (2.7), where by convention, the first entry of an array response vector

is set to 1.
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Antenna 7 + 1
d

Antenna 17

Planar Wavefront

Fig. 2.2 Geometrical representation of a plane wave signal impinging on a
ULA at an angle 6. The small circles represent the antennas and the blue lines
represent the signal propagation rays, which are approximated as parallel to
each other (i.e. forming a plane wave) because the distance between the BS and
the MS is much greater than the antenna aperture, given by (N — 1)d.

ULAs are simple antenna arrays that allow easy mathematical modelling. However, more
sophisticated array configurations can exhibit a better performance in some situations. One
important limitation of ULAs is that they cannot generate one-dimensional (1D), pencil-like
beam patterns. If the antennas are approximated as isotropic radio receivers, the rotational
symmetry around the axis of the array implies that the main beam in the beamforming
pattern has a conical shape. Two signals whose direction of arrival form the same angle with
the axis of the array are thus indistinguishable by a ULA.

An example of a simple array configuration that allows control over two degrees of freedom
is a uniform planar array (UPA). Since the antennas in a UPA are located on a planar grid
in two dimensions, the array can steer a pencil-shaped beam with adjustable elevation and
azimuth angles [3]. However, this kind of antenna array, when placed in free space, actually
steers two beams that are symmetric to each other with respect to the plane of the array.
In practice, this is avoided by blocking one of the two beams from one UPA and by having

different UPAs serving specific sectors around an antenna. Overall, the ability to tailor a
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narrow beam along elevation and azimuth has the clear advantage of increasing the received
power from the desired source and reducing the interference from the neighbouring users and
cells.

In practice however, antennas are not isotropic receivers and although their number and
density are quite large in the case of mmWave communications, the beamforming patterns
sometimes have defects. Other types of antenna arrays designed to perform within these
limitations include cylindrical and distributed arrays [5]. Cylindrical arrays can beamform
as well as UPAs, but have the added advantage of requiring less space for the same number
of antennas. Different kinds of sparse cylindrical arrays are studied and compared in [45].
In contrast, distributed arrays can be used to take advantage of the geometry of a specific
location.

Finally, the channel estimation techniques presented in this work make use of the spatial
channel covariance matrix, R = E [ggH} . It is shown in Appendix A that using the definition

g in (2.6), R can be expressed as

1
R =2 a@)a,)" (29)
p=1
and has rank at most P. In the special case of a ULA, with the array response vector given
by (2.7), the (m,n)™ entry of matrix R takes the form

P
1 nd
[R] (TTL,’/L) = F Z e(mfn)]¥ smep. (21())
p=1

It can further be noted that the diagonal entries [R|, ) are all 1, so that R admits the

normalization tr(R) = N, as desired.

2.3 Problem Formulation

The goal of this thesis is to estimate the channel g from the MS to the BS by producing
an estimated channel g that is as close as possible to the real channel in the minimum
mean square error (MSE) sense. In the context of the hybrid analog/digital massive MIMO

system model presented in Section 2.1, this can be formulated as the following minimization
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prOblem:
lll'll.lll.ZeE - 211

subject to § = Wy,

Ye = \/ﬁch'f_Fdnc
Foe Fvte{l,....,T}

where W € CV*IT represents the baseband processor matrix and % is the set of feasible
matrices for the analog component, which depends on the specific hardware architecture used
at the BS. For example, the entries of matrices representing phase shifters are restrained to
unit-modulus complex numbers and those of matrices representing switching networks are
taken from a finite set, as specified in Chapter 4.

As a first step in the constrained minimization of the MSE in (2.11), it is possible to find

an expression for the optimal W in terms of F;, which is given by
Wopt = /pRF! (pF.RFY + F FY) 7" (2.12)

The proof for the optimality of this expression is presented in detail in Appendix B. Using

this expression and defining

M(F) =E[llg - &ll’]

:E[Hg_WOPtYCHQ]v (2.13)
where F := (Fy,...,Fr), the objective function in (2.11) can be rewritten as
M(F) = tr (R — pRF! (,F RF! + F,FY) 7" FCR>. (2.14)

It is interesting to note that using the optimal baseband processor places an upper bound
on the objective function. As shown in Appendix C, for any F € #7T and any .% C CI*V,
the following inequality holds:

0 < M(F)<N. (2.15)

In the special case where only one pilot symbol is used, the cost function (2.14) can be
simplified. This special case is also explored in Section 3.2.1, but the approach there assumes

that R is invertible, which is not necessary here. If 7' = 1, it can be seen from (2.4) that the
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matrices F1 = F. = Fq =: F become one and the same. This implies that

M(F) = tr(R — pRFH (,FRF" 4 FFH) ™ FR) (2.16)

_ tr(R — pRF" (F ()R + ) F) ' FR). (2.17)

One of the requirements that appears from the above expression is that the L x N matrix
F (here, L < N) needs to be full-rank, otherwise the matrix F (pR + I) F! would not be
invertible. From this point, it is assumed that this condition is satisfied, i.e. that the rows

of F; are linearly independent for all ¢. Besides, we note that the term pR + I is Hermitian

positive-definite because for any deterministic z € C\ {0},

z" ()R +1)z = pz"E|gg"|z + 2"z

= pE [(gHz)H (gHz)} + 2tz

- E[HgHz\ﬂ 27 > 0. (2.18)
—_— 7

The matrix pR + I thus has a unique Hermitian positive-definite square root M, such that
M = M and pR+1I = M? = MM Next, using the fact that if A~! exists, then A=! = AT,
along with the general properties of the pseudo-inverse that if A" = B, then (AB)T = BfAT,
and that (AT)H = (AH)T, the term (F (pR + 1) FH)_1 can be rewritten as

(F(pR+TDFY) ™" = (FMMUF)'

(™) (FM)H)T

FM)™ (FM)'. (2.19)

The objective function is therefore
M(F) = tr (R — pRFIEM)™ (FM)' FR)
H
— tr(R) — ptr(((FM)T FR) (FM)' FR)

—N—p H(FM)T FR‘ (2.20)

2
9
F

where the last line follows from the definition of the Frobenius norm, ||A||; = /tr(A%A),
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and the normalization condition previously imposed on the covariance matrix R, i.e. tr(R) =
N.

The above expression of the MSE objective function is useful because it greatly simplifies
(2.14) when only one pilot symbol is used. In addition to this use, its derivation allowed
to find important requirements for the analog combiner matrices, which are useful for the

practical implementation of the algorithm presented in Chapter 4.
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Chapter 3
Review of Existing Solutions

In this chapter, existing solutions for the channel estimation problem defined in the previous
chapter are presented. Following an overview of common preliminary steps, four methods are
described. The first one works only in the special case where one pilot symbol is used, whereas
the other three work with more pilot symbols. The idea behind each of these techniques is
to first find an unconstrained solution for the optimal analog combiners and then to project
the solution on the feasible set. The projection is detailed after the presentation of the four

methods along with a way to quantize the entries of the combiners.

3.1 Preliminary Steps

The optimization problem (2.11) is formulated in [17] for a hybrid system with phase shifters

as the analog components, that is, where the feasible set for the analog combiner matrices is
F={"0e0,2x]}"". (3.1)

The solution approach presented in [17] begins by temporarily discarding the constant-
magnitude constraint imposed on the entries of on the analog combiners F,;, which is equiva-
lent to replacing the constraint set .% by C**¥. Then, the optimal unconstrained combiners
are computed using one of the four methods reviewed in the following section. Finally, these
combiners are projected onto the original feasible set .%.

As a preliminary step before the development of any of these four methods, the Woodbury
matrix identity [46] is used under the assumption that R is full-rank to simplify the MSE

2020/04/11
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expression (2.14) to
H H\~1 -
M(F) = tr<<R1 + pF! (FaFy) F) ) (3.2)

In applying this identity, it is implicitly assumed that the matrices R and FqFY are non-
singular.

The singular value decomposition (SVD) of the matrix representing the analog combiner
is then computed as F, = UtEtV?, where U, € CF* is the left singular vector matrix,
¥, € RN s the singular value matrix, and V, € C¥*¥ is the right singular vector matrix,
and where U; and V, are unitary, i.e. UlU; = I} and V'V, = Iy, and ¥, is diagonal with
non-negative entries. Also denote by V, j the matrix composed of the L first columns of V.
Then, it is shown in [17] that replacing Fy by Vi', for every ¢ in (3.2) yields the same MSE.
It is thus possible to use F; and VEL interchangeably in terms of estimation performance.

This fact can be used to further simplify the MSE expression as
T -1
M(F) = tr (A‘l + pZVN?) : (3.3)
t=1

where V, = UMV, ., and A = diag(\;,..., \y) and U are respectively the eigenvalue
matrix and the unitary eigenvector matrix of R = UAU!. Accordingly, U#U = I while
A is defined to have its diagonal entries ordered non-increasingly: Ay > ... > Ay > 0.
Note that the entries of A are real and non-negative because R is Hermitian and positive
semi-definite.

It should be noted that the assumption that R be full-rank, i.e. invertible or positive-
definite in this case, is not always a valid approximation for mmWave channels, because
they are characterized by a small amount of scattering [13]. The poor scattering reduces
the number P of propagation paths between the wireless devices, and thus the rank of R.
However, diagonal loading techniques [47] can be employed to overcome this issue without

significantly affecting the proposed methods.
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3.2 Unconstrained Optimization Methods

Herein, four methods developed in [17] to find the optimal unconstrained combiners are
reviewed briefly: one that works only with one pilot symbol, and three more general ones that
work with an arbitrary number of pilot symbols. These last three methods are respectively

called Block Selection, Sequential Optimization (SO), and Alternating Optimization (AO).

3.2.1 Single-Pilot-Symbol Unconstrained Optimization

The first estimation method developed in [17] works only when one pilot symbol is used, i.e.
when 7' = 1. The MSE in (3.3) reduces in this case to

M(F) = tr<<A1 + p\?l\?{{)_l>. (3.4)

It is then possible to use the Woodbury identity again together with basic properties of the
trace operator and the fact that VIV, = I, to write the MSE as

M(F) =tr(A) — tr <\7{{A2\71 (\7{* (A +p'Iy) \71)_1) . (3.5)

The problem of minimizing the MSE is thus equivalent in this case to maximizing the second
term on the right hand side in (3.5) over Vi € CV*% under the constraint that VIV, =1I,.
However, the objective function of this new problem is simply the Block Generalized Rayleigh
Quotient of V; with respect to the pair of matrices, or pencil, (A2, A 4+ p~'Iy). As explained
in [17], the solution of this problem is a matrix composed of the eigenvectors corresponding
to the L greatest generalized eigenvalues of the pencil. This solution turns out to be the L
first columns of I: V‘fpt = Iyxz. Using the definition of V, = UMV, ; and the fact that U

is unitary, the associated analog combiner matrix is found to be

F = (Vo = (Up)". (3.6)

The corresponding minimum value of the MSE is given by
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3.2.2 Block Selection

The authors of [17] then proceed with three techniques that use multiple pilot symbols to
estimate the channel. Doing so allows better performances in general than the above single-
pilot-symbol method.

The first multiple-pilot-symbol method, called Block Selection, is inspired by the result
of the previous subsection and extends the idea of the method therein by taking the eigen-
vectors associated with the LT largest generalized eigenvalues of the pencil (A% A + p~'1y)
to produce T solutions VS, . .. ,VoTpt. The T analog combiner matrices Fy, ..., Fr can then
be computed from U for all t € {1,...,T} as

o H
Ftpt = (U[(tfl)LJrl:tL}) . (3.8)

This method has a very low complexity, but is less effective than the following ones due to

its heuristic nature.

3.2.3 Sequential Optimization

The second method to take advantage of more than one pilot symbol is called Sequential
Optimization (SO) and is the one used as a comparison benchmark in our simulation exper-
iments reported in Chapter 5. Like the previous methods, it aims at minimizing the MSE
in (3.3) under the constraint that VAV, =1, Vt € {1,...,T}.

For this method, the MSE is rewritten as M(F) = My (F), where for t € {1,...,T}, we
define

-~ o~ -1
M(F) = tr((l_‘t_1 —i—thVi{> ), (3.9)
and
L+ oV VE L >1
Iy U (3.10)
AL t=1.

It can be easily verified that the matrix I'; so defined remains positive definite (and hence
invertible) as long as R is also positive definite (i.e. \; > 0 for all i € {1,...,N}).

The basic idea behind the SO method is to minimize the intermediate MSE in (3.9)
sequentially, i.e. starting with ¢ = 1, finding the minimizer V' of M, (F), substituting this
minimizer in My(F), and then proceeding to ¢t = 2, and so on, up to t = T. For each of

these T steps, the same procedure as for the single-pilot-symbol optimization is followed to
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find prt, which is the matrix composed of the eigenvectors corresponding to the L largest
generalized eigenvalues of the pencil (T2, Ty + p~'Iy). Interestingly, it can be shown that
the matrices I'; at each iterations are diagonal matrices, although their diagonal entries are
not necessarily in decreasing order. Furthermore, the optimal \7? P' turns out to be a subset
of the columns of the identity matrix in a certain order. If {71,...,9x} are the eigenvalues
of the pencil and ji,...,jx € {1,..., N} are a set of indices such that 7, > ... > 7, then
VPt = (In)y,.. j,)- Using the definition of V., in (3.3), the analog combiner is found to be

FP = (U, ) (3.11)
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Fig. 3.1 Effect of diagonal loading on the normalized MSE of the channel
estimation performed by the SO method as a function of the parameter ¢ and
for different SNRs. The parameters L =8, N =64, T =1, and P = 6 are used.

While this method is not globally optimal, it tends to produce better channel estimates
than the previous one. Also, it is as effective as the following one, but it has a lower

complexity. The SO methods assume that matrix R is full-rank, and more precisely positive-
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definite. In the case where R is not full-rank, diagonal loading as discussed in [48] can be
used as a workaround solution, which in practice amounts to substitute R for R + Iy for
some small € > 0. To illustrate the effect of diagonal loading, simulation results for the SO
method with a rank-deficient covariance matrix! are shown in Fig. 3.1. These and other
similar results indicate that using values smaller than approximately 10~ for € works well,
while larger values worsen the results gradually as € increases, because the modified matrix

R + eIy gets further away from the true covariance matrix R when this is the case.

3.2.4 Alternating Optimization

The fourth and final method, called Alternating Optimization (AO), is an iterative one.
During each iteration, each matrix \7]-, j€{1,...,T}, is optimized while the other matrices
{V,|t # j} are fixed. The iterative process stops when the MSE stabilizes within a given
tolerance.

To achieve this, the MSE in (3.3) is rewritten as

o -1
M(F) = tr((Qj_l + ijV]H) ) (3.12)
where for j € {1,...,T}, we define
T -~ -~
Q'=A"+p Y V, V] (3.13)
t=1,t#j

Note that the MSE as expressed in (3.12) does not actually depend on j, but its form
allows the same procedure as for the single-pilot-symbol optimization to be directly used?.
This procedure is therefore employed to optimize over the matrix \~/]~ during each iteration.
This AO approach is presented explicitly in Algorithm 1, where the relative decrease in
MSE is used as a stopping criterion. During our simulations, a value of £, = 1073 for
the algorithm provided good results. This methods exhibits the same performance as the

previous one, but has a higher complexity.

!The rank-deficient covariance matrix is obtained based on the model in (2.6) where the number of paths,
P =6, is chosen to be less than the number of antennas, NV = 64. The simulation methodology used in our
work will be presented in details in Section 5.1

2This remains true as long as the matrices V, are properly initialized in the AO algorithm, i.e. the product
\7}\7? must be diagonal.
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Algorithm 1: Alternating optimization to design optimal unconstrained combiners
for multiple trainings

1

© 00 N O Ot ok W N

—_
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13
14
15
16
17
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20

21

Input: L, N, T, R = UAU", p, g

forte {1,...,7} do

‘ \7,50) = Inyr // Initialization
end

My := M(F) // Using (3.12)

n+ 1

keepLooping <« True

while keepLooping is True do
for je{l,...,T} do

Compute Qj_1 as in (3.13)
Solve for the optimal \7;") in (3.12) using the same method as for the
single-pilot-symbol optimization, described in Section 3.2.1

end
M, == M(F) // Using (3.12)

if —‘Mj\;ff*” < g0 then

| keepLooping < False
else

| n<n-+1

end
end
forte{l,...,T} do

- H
P = (UV(Y)
end

Output: Optimal unconstrained RF combiners for multiple trainings,
{F' [te{1,....T}}
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3.3 Projection onto the Set of Constrained Combiners and

Quantization

All the above optimization methods disregard the phase-only constraint of the original prob-
lem. The solutions must therefore be adapted to be used in an RF combiner. To do so, [17]
simply projects the entries of F{** onto the unit circle in the complex plane C. That is, if

opt

the (I,n)"™ entry of the t*® optimal unconstrained combiner is [Ft = r,e%n where

} (L,n)
T € Ry and 6, € [0, 27[, then the projected combiner is

[FP] = € (3.14)

Furthermore, if the phase shifters are implemented to provide only a finite number of
possible phase delays, the entries of the RF combiners must be quantized. Quantization of
numbers on the complex unit circle amounts to selecting the closest element of a finite subset
of available points on the circle. The subset used in this work for the quantization is the one
with Ng := 2% points placed equidistantly along the circle, i.e. with angular separation of
Al = 21 /Ng, and including the point 1 € C, where Np is the number of quantization bits.

More precisely, this set is expressed as
{2 | ne{0,...,Ng —1}}. (3.15)

When quantized to Np bits, the entry [Ff’“’j} (n) becomes

L (.10

where |2] is z rounded to the nearest integer.
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Chapter 4

Proposed Switch-Based Architecture for

Channel Estimation

This chapter presents a novel solution to the channel estimation problem defined in Chapter
2. First, new types of switches conceived specifically for this problem to replace phase shifters
are introduced. A reformulation of the estimation problem in terms of these switches follows.
Then, a genetic algorithm is developed to solve the resulting combinatorial optimization prob-

lem. A detailed description of the algorithmic procedure is given.

4.1 Structural Elements

When massive MIMO became a popular research subject, its feasibility became a concern
because for transceivers with a hundred antennas or more, using as many RF chains as
antennas would result in very expensive and power-hungry systems. This is why the design
was adapted by adding phase shifters between the antennas and the RF chains, leading to the
hybrid analog/digital processing structure, as explained in Chapter 1. The hybrid structure
allows a smaller number of RF chains to be used with the same large number of antennas,
while preserving the capacity to take advantage of spatial multiplexing.

Phase shifters, however, are still relatively onerous and complex pieces of hardware. Be-
sides, another disadvantage of phase shifters is that they can delay signals by a precise phase
only over a limited range of frequencies. This is because they control the delay indirectly by
increasing or decreasing the length of the paths on which the signals travel [49]. To see this,
let Ax be the change in path length controlled by the phase shifter and A¢ be the resulting

2020/04/11
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change in phase. These two quantities are related through

Axr  A¢

~ = o (4.1)
where )\ is the wavelength of the travelling signal inside the conducting material. This
wavelength is determined by physical properties of the conductor and the frequency of the
signal. Hence, if the frequency changes, the phase delay will change even if the path length
remains constant. Since phase shifters are usually implemented with the ability to choose
among only a finite number of path lengths, they can hardly compensate for this effect.
Though this limitation is not of paramount importance when working with narrowband
channels, as it is the case here, it should be taken into account when considering applications
to broadband channels.

The solution proposed in this thesis to solve the channel estimation problem for massive
MIMO systems with hybrid analog/digital architecture uses analog combiners that are im-
plemented with switches instead of phase shifters. Switches can reduce the cost, the power
consumption, and the building complexity of the analog module in the hybrid architec-
ture [41]. Furthermore, the effect that the switches proposed here have on a signal is ideally
independent of its frequency. This makes them particularly interesting for application in
broadband communications. Specifically, referring to problem (2.11), the symbol S, will be
used instead of F, to represent the switch-based analog combiner network used for the ¢
pilot in our formulation.

While the entries of the matrices Fy take values in a continuous set {e?’ |6 € [0, 27[}, the
entries of the switching matrices S; can only take values in a discrete set, denoted as B, which
may contain 0 and selected points from the complex unit circle. The exact composition of
B depends on the type of switches used, as explained below.

Different types of switches are shown in Fig. 4.1. For simple on/off switches, the set
of allowed values for the entries of S; is B = {0, 1}, as in Fig. 4.1a. For switchable signal
inverters, the set of allowed values is B = {—1,1}, as in Fig. 4.1b. For a combination of
both, the set is B = {0,—1,1}, as in Fig. 4.1c. As described in Section 1.2, the antenna
selection scheme is the most widely used architecture for hybrid massive MIMO systems that
use switches [42,43]. It is equivalent to the first type of switches, i.e. B = {0, 1}, since signals
between the antennas and the RF' chains are either directly transmitted or blocked.

Here, to allow more possibilities in the design, we propose equipping the antennas with
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*x—0O
(a) Switch used for B = {0,1}. The top

branch corresponds to 1 and the bottom
branch corresponds to 0.

O
Out —+ In
-

(b) Switch used for B = {—1,1}. The top branch
corresponds to 1 and the bottom branch corre-
sponds to —1.

O

Out —= x—0O In

(¢) Switch used for B = {0,—1,1}. The top
branch corresponds to 1, the middle branch corre-
sponds to 0, and the bottom branch corresponds
to —1.

Fig. 4.1 Different types of switches that can be used in an analog combiner
to implement different sets B of allowed values in the matrices Sy.
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signal splitters that output the in-phase and the quadrature components separately. Using
these devices with signal inverters allows a new type of switches that makes possible the inclu-
sion of the imaginary unit and its inverse in the set of allowed values to be built. Two switches
based on this architecture are depicted in Fig. 4.2. Fig. 4.2a shows a switch implementing
B ={-1,1,—,7} while Fig. 4.2b shows a switch implementing B = {0, —1,1,—7,7}. It is
important to note that in these figures, the switching elements for the in-phase and quadra-
ture branches must be in the same respective position, as emphasized by the vertical dashed
line.

Another type of switch allowing more flexibility than the simple on/off or inverting
switches shown in Fig. 4.1 was presented in [44]. However, since this design combines
selection switches with constant, non-tunable phase shifters, it exhibits the same drawback
as regular phase shifters, as described at the beginning of this section: In particular, it can
only delay signals correctly in a restricted range of frequencies and is thus not suitable for
broadband applications. This is not the case with the switches proposed in Fig. 4.1 and Fig.
4.2, which ideally perform the same function over a wide range of frequencies due to their
discrete nature.

In this work, it is assumed that the switches are not partitioned among antenna elements
and that each RF chain is equipped with a signal summer, that is, any group of antennas
can be connected to any RF chain. Hence, our proposed architecture offers a generalization
of the more flexible switching configuration in Fig. 1.3a. From a mathematical angle, this
means that S; is not constrained to have a maximum number of non-zero entries per row or

per column.

4.2 Problem Formulation with Switches

Using the hybrid analog/digital architecture with RF switches as introduced above, and
defining the tuple of discrete combiner matrices S := (Sy, ..., St), the optimization problem
(2.11) can be rewritten as the following combinatorial minimum mean square error (MMSE)

optimization problem:

minignize M(S)

subject to S € BF*N*T (4.2)
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(a) Switch used for B = {—1,1,—3,7}. The first branch from the
top corresponds to 1, the second branch corresponds to —1, the
third branch corresponds to 3, and the last branch at the bottom
corresponds to —j.
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(b) Switch used for B = {0,—1,1,—3,7}. The first branch from
the top corresponds to 1, the second branch corresponds to —1,
the third branch corresponds to 7, the fourth branch corresponds
to —3, and the last branch at the bottom corresponds to 0.

Fig. 4.2 Switches based on the in-phase and quadrature signal decomposi-
tion as described in Section 4.1. These switches allow more possibilities to be
implemented for the sets B of values allowed in the matrices S;.
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where the objective function is
M(S) = tr (R — pRSH (pS.RSH + 8,81)7! SCR> (4.3)

and S, and Sy are defined the same way as F. and Fgy, that is

Sq S, 0 --- 0
So 0O S, --- 0

SC = . ; Sd = . . . . . (44)
St 0O 0 --- Sr

This new problem is more challenging to solve than (2.11) because the feasible set is
discrete rather than continuous, and the search complexity increases exponentially with the
parameters L, N, and T. However, this complexity contrasts with the simplicity of the
hardware used for implementing the solution. Switches are indeed simpler than the phase
shifters used for the original problem, because they are faster, more affordable, and consume
less power [41].

Once the matrices Sq,...,Sr have been determined, they can be used to obtain the
channel estimate in the same way as in (2.11) and (2.12), but where Fy,..., Fr are now

replaced by Sy, ...,Sp. That is, g = Wy, where W is now given by

Wt = /pRSE (pS.RSH +8,8H) . (4.5)

4.3 Channel Estimation using Genetic Algorithm

The solution proposed here to solve problem (4.2) is a genetic algorithm (GA). GAs are part
of a larger class of algorithms called evolutionary algorithms. In general, an evolutionary
algorithm generates a set, called population, of feasible points, called individuals. At the
n'™® iteration, the population P, evolves into a new one, P, 1, in which the individuals are
ideally closer to an optimum of the objective function [50].

GAs are interesting tools for solving optimization problem because they do not require
any assumption to be made on the solutions and can be adapted to solve virtually any type
of problem. They have been used among other things to configure seismic dampers [51],
to reduce the risks of terrorism and piracy [52], to optimize transportation [53,54], and to

generate new meteorological models [55]. Sometimes, the solutions obtained from this type
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of algorithms, although effective, are unusual and different from what might be suggested
by intuition [56,57].
In GAs, a new population is produced from the previous one by means of selection,

crossover, and mutation, as explained below:

e Selection, or elitism, consists in taking individuals of the previous, or old, population
and inserting them directly into the new population. The individuals that are selected

are usually the best ones in terms of a selected cost function.

e Crossovers consist in selecting pairs of individuals from the old population, called
parents, and for each pair selecting and swapping parts of them to create two new

individuals.

e Mutations consist in choosing individuals from the old population, changing some
of their features, called genes, and inserting the modified individuals into the new

population.

Let us now consider the application of a GA to solve the combinatorial problem (4.2). In
the implementation presented here, the population consists in a collection of M individuals,
where in turn each individual is a T-tuple S = (Sy, ..., S7) of matrices and is taken from the
feasible set BL*N*T At each iteration, indexed by the integer n € N, the current population
P, is updated to P,41 by applying a combination of the mechanisms introduced above.
Specifically, when a new population is produced, the individuals from the old population
are first sorted according to their MSE, as defined in (4.3), and the best ones are used to

produce the next population as follows:

e The Mg individuals with the lowest MSE are selected without modification, where
Mg € {0,..., M} is an integer.

e The Mg individuals with the lowest MSE are used to perform the crossover, where
Mc €{0,..., M} is an even integer. In the algorithm presented here, the best individ-
uals are paired sequentially to form parents. For each pair, two new individuals, called
children, are created by random crossover. In the first child, each entry of the matrices
S, is taken from one of the parents with probability p = % Then for the second child,

the corresponding entry is selected from the other parent. If M is an odd integer
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instead, the M+ 1 individuals with the lowest MSE are used to form parents, but the
(Mg + 1) child produced is discarded.

e The My individuals with the lowest MSE are chosen for the mutation process, where
My € {0,..., M} is an integer. In the proposed solution, the mutation is carried on
for each entry of the matrices S; with probability u. If the mutation occurs, it consists
in replacing the corresponding entry by an equiprobable random element taken from

the set of allowed values, i.e. an element of B.

The iterative process continues until there is no improvement in the best or the average
MSE for a given number cp,,, of iterations. In our implementation of the GA, in order
to reduce the overall run time, we used a time-varying population size M, that decreases
monotonically as a function of the iteration number n. Specifically, we let M, := Mya",
where M, is the initial population size, a € ]0, 1] is a geometric factor that controls how
fast the population size decreases, and n € {0,1,...} is the iteration number. We also let
the subpopulation sizes MS(;”), Mén), and MIS/? ) for the three evolution mechanisms vary in
a similar way with fixed proportions. Note that following this definition, these three sizes
must be rounded to the closest integer values, i.e. MS(") = |msM,], Mén) = |mcM,], and
Mﬁl) = |muM, |, where mg, mc, and my are the respective proportion factors satisfying
mg + mc+my = 1.

The final GA, which is presented in Algorithm 2, takes as input the dimensions L and
N of the matrices S; and their number 7', and the set B of allowed values. It also depends
on execution parameters like the initial size M, of the population, the shrinking parameter
«, the proportions mg, mg, my € [0, 1] of the population respectively created by each of the
three evolution mechanisms, the probability x € [0, 1] of mutation for the matrix entries
of the mutated individuals, and the number c,,, of iterations without improvement of the
MSE before the algorithm stops.

The overall computational complexity of the GA can be obtained by evaluating the
number of operations of each of its steps. To simplify this analysis, the fact that LT and N
must be on the same order of magnitude in order to estimate all the parameters of the channel
is used to approximate LT ~ N. First, generating an initial random population requires
ki1 MyN? operations, where k; is the number of operations needed for the generation of a
discrete random variable taken from B. Sorting the population with respect to the MSE of
the individuals at the n'® iteration requires Mt +2M,, logy M, +O (M,,) operations, where
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tr is the complexity of the cost function (4.3) and is given by ¢y = 10.3N3 + O (N?) when
only the diagonal matrix entries used for the trace operation are computed and the sparsity
of Sy is exploited. The selection, crossover, and mutation procedures respectively have
complexities k:SMS(n)N 2 kCMén)N 2 and k‘MMIS?)N 2 where kg is the number of operations
required to copy an entry; k¢ is the average number of operations required to copy an entry,
to decide if it is swapped, and, if so, to swap it; and k) is the average number of operations
required to copy an entry, to decide if it is mutated, and, if so, to mutate it. All the other
steps have negligible complexities compared to the ones mentioned above. Assuming that the
algorithm stops at nj, iterations and that o™it < 1, and taking into account the geometric
expression for M,, given above, the total complexity of the algorithm is approximately given
by

(10.3N® 4 2log, My + O (N?)) . (4.6)

0
toa = ——
GA 1— o

In the case where o™t cannot be neglected, for example when o = 1 and the population

size is constant, the complexity takes the form
taa = NigerMo (10.3N° + 21og, My + O (N?)) . (4.7)

For large numbers of antennas (e.g. N = 32) and typical sizes of initial population (e.g.
My = 500), both of these expressions are dominated by the first term in the parentheses, i.e.
N3 > logy, M.
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Algorithm 2: Genetic algorithm applied to finding analog combiners for switching
networks

Input: L, N, T, B

GA Parameters: My, a, ms, mac, My, [y Cmax

n <40

Generate initial population P, := {Sf")./ o 751(\2} with each entry in each individual
randomly picked from B with uniform probability

Sort in increasing MSE order, so that M(S\™) < ... < M(S](\ZZ)

1 Save Spes; ¢ S, Min M(S™), and Mo Min S Mn M(SI
5 c< 0
6 while ¢ < ¢ do
7 n<n-+1
8 M, = Mya™
9 // Selections:
10 Copy the |mgM,, | best individuals from P,_; to P,
11 // Crossovers:
12 Take the |mcM, | best individuals of P,,_; to form parents
13 For each consecutive pair, produce children following the method in Section 4.3,
and store them in P,
14 // Mutations:
15 Copy the |my M, | best individuals from P,,_; to P,, and randomly replace entries
as described in Section 4.3
16 // Evaluation of the new population:
17 | Sort in increasing MSE order, so that M(S\") < ... < M(S](CZ))
15 | Save Mmin = M(S™) and M,, := i S M(SE)
19 if Mglin < M{)nel:t or ./Vn < Mbest then // If a new best MSE or a new best
average MSE is found
20 c+ 0
21 if ./\/l;nin < ./\/lgg;lt then // If a new best MSE is found
22 Mpin ¢ Agmin
23 Shest Sf")
24 end
25 if Mn < Mbest then // If a new best average MSE is found
26 | Myest — My,
27 end
28 else
29 | cec+1
30 end
31 end

Output: Analog combiners for switching networks Spe
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Chapter 5
Simulation Results

In this chapter, we evaluate the performance of the proposed GA for channel estimation
in hybrid analog/digital massive MIMO systems with switch-based architecture. First, the
methodology details how the simulations were performed and lists the values used for the
different parameters. Then, the performance of this GA and that of the SO method presented
in Chapter 3 for the hybrid architecture with phase shifters is compared to an exhaustive
search for a small system setup. Comparisons between the GA and the SO method follow for
different sets of parameters, covering a wide range of configurations. Finally, the different

types of switches listed in 4.1 are compared in terms of their estimation performance.

5.1 Methodology

The massive MIMO system considered in the simulations is modelled after the one illus-
trated in Fig. 2.1. A ULA as shown in Fig. 2.2 is assumed, where the distance between the
antennas is chosen to be half the wavelength of the RF signals, i.e. d = A/2. Throughout
the simulations, the number NV of antennas at the BS ranges between 16 and 64, the number
L of RF chains ranges between 1 and 16, the number 7" of pilot symbols ranges between 1
and 4, and the number P of propagation paths from the MS to the BS ranges between 3
and 6. Smaller systems are also simulated to allow for an exhaustive search, in which the
parameters are set as N =6, L=2,T =1, and P = 2.

The three algorithms used in the simulations for channel estimation with hybrid ana-
log/digital architecture are the proposed switch-based solution using the GA as introduced

in Section 4.3 (from now on referred to as GA for conciseness), the SO method of [17] for

2020/04/11
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the phase-shifter solution with phase quantization as in Section 3.3, and the optimal switch-
based solution obtained with exhaustive search. The SO method minimizes the cost function
(2.14) over the feasible set #”, where F = {e |0 € [0, 27?[}LXN and the analog combiner
uses phase shifters, whereas the GA and the exhaustive search minimize the function (4.3)
over the set BEXNxT
bits used for the SO method and the elements of B used in the GA and the exhaustive

search are specified in each figure. More details on the three algorithms are given in the next

, where the analog combiner uses switches. The number of quantization

paragraphs.

The implementation of the GA in the simulations uses an initial population of My = 500
individuals and a shrinking parameter o = 0.98. The proportions of the population produced
by selection, crossover, and mutation are respectively mg = 0.1, mg = 0.5, and my; = 0.4.
The maximum number of strikes is cpax = 5 and the mutation probability is p = 2.5-1073.
The final values of these parameters were determined empirically based on a large number of
prior experiments in order to find the best results while maintaining a reasonable execution
time. In particular, it was observed that increasing M, or c.x beyond these values did not
significantly improve the performance, but increased the execution time.

The SO method from [17] was implemented as described in Section 3.2.3. The analog
combiners computed by the algorithm were normalized as described in Section 3.3 and quan-
tized to the required number of bits using (3.16). In every figure, the number of bits is chosen
so that the number of possibilities for the phase angles matches the number of allowed values
in the set B for the switches.

Finally, the exhaustive search algorithm computes the MSE of all the |B |LNT possible
switching networks using the cost function (4.3), where |B| is the cardinality of the set of
allowed values. The algorithm saves the minimum MSEs for each SNR and the combiners
that yield it.

For all the algorithms under comparison, the channel covariance matrix R is assumed
to be known beforehand at the BS. For a discussion on how to estimate this matrix in
practice, see [17]. In our simulations, R is computed using the closed-form expression (2.10)
using a fixed number P of paths and a fixed set © = {6;,...,0p} of P AoAs independently
generated from the uniform distribution ¢(0,27). The matrix R so generated is then used

by each one of the methods under study to estimate the combiner matrices, i.e.:

e For the SO method, the eigenvalue decomposition (EVD) of R = UAUY is com-
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puted and used in the cost function (3.9)-(3.10) for the sequential determination of the

combiner matrices F1, ..., Fy, which are based on phase shifters.

e For the proposed GA and the exhaustive search, R is used directly in (4.3) for the

determination of the combiner matrices Sy, ..., Sy, which are based on switches.

Once the combiner matrices are determined, they can be used for the purpose of channel
estimation. This amounts to applying the transformation g§ = Wy, to the received data y.,
where W is given by (2.12) for the SO method and by (4.5) for the GA and the exhaustive
search. The channel vectors used for the simulations are computed as g = RY?h, where h €
CN*1 is used to model the small-scale fading and is randomly distributed as h ~ CAN(0, Iy).
The signal y. received at the baseband processor is then computed using (2.5), where the
noise n, is random and distributed as n. ~ CN(0,Iy7). Since the noise power is normalized
to unity, the pilot power p in (2.1) actually corresponds to the desired SNR level.

The performance of the channel estimates computed by the different algorithms is evalu-
ated in terms the normalized mean square error (NMSE) between the real and the estimated
channel vectors. In the simulations, the NMSE obtained by averaging over a large number
of channel and noise realizations. More precisely, for each point in the figures presented in

the following sections, we proceed as follows:

e We generate N; = 20 different sets ©; = {9&”, o Qg)} of AoAs as explained above,
and for each set, we compute the corresponding covariance matrix R;, where i €

{1,..., N}

e For each R;, N, = 10,000 different channel realizations g; ; = Rl-1 / th are generated,
where h; ~ CN(0,1Iy) and j € {1,..., No}.

e Lor each g; ;, the estimated channel is computed as g; ; = Woptyg ) using the optimal
matrix W, for the baseband processor, i.e. (2.12) for the SO method and (4.5) for

the GA and exhaustive search.

e The NMSE is then computed as

NMSE =

N1N2 ZZ HgLJ g%]” ) (51>
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5.2 Algorithm Convergence

We begin by investigating the convergence behaviour of the proposed GA for the solution of
problem (4.2). Fig. 5.1 shows an example of the MSE performance of the population during
the optimization process as the GA finds better individuals at each iteration. This figure
was obtained at an SNR of 0 dB by considering the set B = {—1,1} of allowed values for
the switches along with the following choice of system parameters: N =64, L =8, T =1,
P = 6. In the figure, the blue dots represent the MSE values of each one of the individuals
in the GA population, while the red crosses represent the popu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>