
Speech Enhancement Using a Reduced
Complexity MFCC-based Deep Neural

Network

Ryan Razani

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

November 2017

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master.

© 2017 Ryan Razani

2017/11/30

i

Abstract

In contrast to classical noise reduction methods introduced over the past decades, this work
focuses on a regression-based single-channel speech enhancement framework using DNN, as
recently introduced by Liu et al.. While the latter framework can lead to improved speech
quality compared to classical approaches, it is afflicted by high computational complexity
in the training stage. The main contribution of this work is to reduce the DNN complexity
by introducing a spectral feature mapping from noisy mel frequency cepstral coefficients
(MFCC) to enhanced short time Fourier transform (STFT) spectrum. Leveraging MFCC
not only has the advantage of mimicking the logarithmic perception of human audito-
ry system, but this approach requires much fewer input features and consequently lead
to reduced DNN complexity. Exploiting the frequency domain speech features obtained
from the results of such a mapping also avoids the information loss in reconstructing the
time-domain speech signal from its MFCC. While the proposed method aims to predict
clean speech spectra from corrupted speech inputs, its performance is further improved
by incorporating information about the noise environment into the training phase. We
implemented the proposed DNN method with different numbers of MFCC and used it to
enhance several different types of noisy speech files. Experimental results of perceptual
evaluation of speech quality (PESQ) show that the proposed approach can outperform
the benchmark algorithms including a recently proposed non-negative matrix factorization
(NMF) approach, and this for various speakers and noise types, and different SNR levels.
More importantly, the proposed approach with MFCC leads to a significant reduction in
complexity, where the runtime is reduced by a factor of approximately five.

ii

Sommaire

Contrairement aux méthodes classiques de réduction du bruit introduites au cours des
dernières décennies, ce travail se concentre sur un cadre d’application de réhaussement
de la parole monocanal basé sur la régression au moyen d’un réseau de neurones profond
(DNN), proposé par Liu et al.. Alors que ce nouveau cadre d’application peut conduire à
une meilleure qualité de la parole par rapport aux approches classiques, il est caractérisé par
une complexité de calcul élevée dans la tâche d’apprentissage. La principale contribution
de ce travail est de réduire la complexité du DNN par modélisation de la transformation
entre les coefficients cepstraux à fréquence mel (MFCC) du signal bruité et la transformée
de Fourier à court terme du signal parole rehaussé. Le fait de tirer parti des MFCC a
non seulement l’avantage d’imiter la perception logarithmique du système auditif humain,
mais cette approche nécessite beaucoup moins de variables d’entrée, ce qui en retour réduit
la complexité du DNN. Exploiter les caractéristiques spectrales de la parole obtenues au
moyen de cette transformation évite également la perte d’information inhérente lors de
la reconstruction du signal parole dans le domaine temporel à partir des MFCC. Alors
que la méthode proposée vise à prédire des spectres de parole propres à partir d’entrées
corrompues, ses performances sont encore améliorées en intégrant des informations sur
l’environnement de bruit dans la phase d’entraînement. Nous avons mis en oeuvre la méth-
ode DNN proposée avec différents nombres de MFCC et l’avons appliquée au rehaussement
de signaux de parole contaminés par différents types de bruit. Les résultats expérimentaux
de l’évaluation perceptuelle de la qualité de la parole (PESQ) montrent que l’approche pro-
posée surpasse les algorithmes de référence incluant un algorithme récent de factorisation
matricielle non-negative (NMF), et ceci pour différents locuteurs, types de bruit, et niveaux
de rapport signal-sur-bruit De manière plus importante, la nouvelle approche conduit à une
réduction significative de la complexité de calcul et du temps d’éxécution, par un facteur
d’environ cinq.

iii

Acknowledgments

First and foremost, I wish to express my deepest appreciation to my supervisor, Prof.
Benoit Champagne for the patient guidance, encouragement and advice he has provid-
ed throughout my time as his student. I would also like to thank Mr. Hanwook Chung
(Ph.D. student) and Dr. Yazid Attabi (post-doctoral fellow) for their help and constructive
comments over the course of my thesis work.

I am also grateful for the financial support provided by Prof. Champagne via his research
grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada,
and Microsemi Canada Ltd, without which the realization of this thesis would not have
been possible.

I must express my gratitude to my family for their continued support and encouragement
throughout the years. I will be forever indebted to them, without whose unconditional
support, love, encouragement, I would have never made it this far.

Special appreciation goes out to my friends and fellows in the Telecommunications and
Signal Processing (TSP) laboratory for their moral support and inspiring discussions.

iv

Contents

1 Introduction 1
1.1 Overview of Speech Enhancement . 1
1.2 Literature Review . 2
1.3 Thesis Objective and Contributions . 4
1.4 Thesis Organization . 5

2 Background on DNN 7
2.1 Deep Learning . 7
2.2 Overview of Artificial Neural Network . 9
2.3 Network Training . 14

2.3.1 Backpropagation Algorithm . 15
2.4 Regularization . 18

3 Neural Network for Speech Denoising 21
3.1 Feature Extraction and Speech Reconstruction 21
3.2 DNN Structure . 23
3.3 Training Procedure . 25

3.3.1 Rprop Algorithms . 25

4 Proposed Framework 30
4.1 Proposed Structure and Motivation . 30
4.2 MFCC Features . 32
4.3 Incorporation of MFCC within DNN . 34

4.3.1 Training . 34
4.3.2 Enhancement . 35

Contents v

4.4 Non-negative Matrix Factorization Approach 36
4.5 Complexity Analysis . 38

5 Simulation Results and Discussion 41
5.1 Methodology . 41

5.1.1 The noisy speech data . 41
5.1.2 Systems Under Comparison . 42
5.1.3 Performance Measures . 43

5.2 Performance Evaluation and Discussion . 45
5.2.1 Parameter Selection and Run Times 45
5.2.2 Enhancement Performance . 47

6 Conclusion and Future Work 54
6.1 Thesis Overview and Contributions . 54
6.2 Future Research Directions . 55

References 57

vi

List of Figures

2.1 Structure of a biological neuron (taken from [1]) 10
2.2 Block diagram of an artificial neuron . 11
2.3 Example of a feed-forward neural network 12
2.4 Underfitting and Overfitting . 19
2.5 Illustration of the most common activation functions: (a) linear; (b) rectified

linear unit (ReLU); (c) sign; (d) step; (e) sigmoid and (f) tanh 20

3.1 Noise environment structure . 22
3.2 Feed forward DNN . 24

4.1 Block diagram of the MFCC-based DNN system for speech enhancement . 31
4.2 MFCC feature extraction flowchart . 32
4.3 The proposed MFCC-based DNN model 35

5.1 Average PESQ results for different numbers of MFCCs 46

List of Figures vii

5.2 Time domain representations of: a) clean speech signal; b) noisy speech sig-
nal (5 dB SNR pink) and c) enhanced speech signal; and frequency domain
(spectrogram) representations of d) clean speech signal; e) noisy speech sig-
nal and f) enhanced speech signal. The corresponding speech utterances
are selected from [2]: “The rarest spice comes from the far East. The roof
should be tilted at a sharp slant. A smatter of French is worse than none.
The mule trod the treadmill day and night. The aim of the contest is to
raise a great fund. To send it now in large amounts is bad. There is a fine
hard tang in salty air. Cod is the main business of the north shore. The slab
was hewn from heavy blocks of slate. Dunk the stale biscuits into strong
drink.” . 53

viii

List of Tables

4.1 Computational complexity of the MFCC-based DNN for speech enhancement 39

5.1 Comparing the average PESQ values of different DNN structures for pink
noise at 5dB . 46

5.2 Running time including the training and the enhancement stages 47
5.3 Average PESQ values for pink noise . 49
5.4 Average PESQ values for babble noise . 49
5.5 Average PESQ values for buccaneer2 noise 49
5.6 Average PESQ values for factory1 noise . 49
5.7 Average PESQ values for hfchannel noise 50
5.8 Average segSNR values for pink noise . 50
5.9 Average segSNR values for babble noise . 50
5.10 Average segSNR values for buccaneer2 noise 50
5.11 Average segSNR values for factory1 noise 51
5.12 Average segSNR values for hfchannel noise 51
5.13 Average SDR values for pink noise . 51
5.14 Average SDR values for babble noise . 51
5.15 Average SDR values for buccaneer2 noise 52
5.16 Average SDR values for factory1 noise . 52
5.17 Average SDR values for hfchannel noise . 52

ix

List of Acronyms

AFB Analysis Filter Bank
AI Artificial Intelligence
ANN Artificial Neural Network
BM Boltzmann Machine
BNN Biological Neural Network
CNN Convolutional Neural Network
DBN Deep Belief Network
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DNN Deep Neural Network
FFNN Feed-forward Neural Network
FFT Fast Fourier Transform
HMM Hidden Markov Model
KLD Kullback-Leibler Divergence
LMS Least Mean Squares
MLP Multilayer Perceptron
MMSE Minimum Mean-square Error
MU Multiplicative Update
NMF Non-negative Matrix Factorization
NN Neural Network
PDF Probability Density Function
PESQ Perceptual Evaluation of Speech Quality
PSD Power Spectral Density
RBM Restricted Boltzmann Machine

List of Terms x

RL Reinforcement Learning
RNN Recurrent Neural Network
SDR Source-to-Distortion Ratio
SegSNR Segmental SNR
SFB Synthesis Filter Bank
SNR Signal-to-Noise Ratio
STFT Short-time Fourier Transform
STSA Short-time Spectral Amplitude
VAD Voice Activity Detection
WF Wiener Filter
WWF Weighted Wiener Filter

xi

Notations

Bold lower case letter Vector
Bold upper case letter Matrice
Lower case letter Scalar
Upper case letter Sscalar (in frequency domain)
Superscript T Transposition
Subscript m or k Frequency index
Subscript n or l Time instance
ℜ Real Part of a Complex Value
ℑ Imaginary Part of a Complex Value
E(.) Expectation Operator
z∗ Complex Conjugate of z
R Real Numbers
R+ Non-negative Real Numbers
ln(.) Natural Logarithm
log(.) Logarithm
⊗ Element-wise Multiplication

1

Chapter 1

Introduction

This chapter provides a general introduction to the thesis. An incisive overview of the
single channel speech enhancement problem to be studied is given. Then existing literature
aimed at solving the denoising problem is surveyed. Next, we summarize the technical
contributions made by this thesis. Finally, the thesis organization is explained and key
notations are defined for reference.

1.1 Overview of Speech Enhancement

Humans possess different ways to communicate to one another and retrieve information
from the outside world. However, speech as opposed to images and written text, stands
out as the most efficient and convenient source of information to communicate. Speech
conveys linguistic contents as well as other useful information about the speaker. Speech
communication is the dominant mode of human social bonding and information exchange.
In real-world application of speech processing, when a desired speech signal propagates
through an acoustic channel and is received at a microphone, it is distorted by unwanted
noise and other sources of interference that results in degradation of its quality and intelligi-
bility. Thus, in order for a speech processing system to operate satisfactorily, sophisticated
noise reduction techniques are needed to extract the desired speech signal content from its
corrupted received version.

The purpose of speech enhancement is to improve the perceived quality or intelligibility
of speech signals that have been degraded due to different types of acoustic background
noise and interference. Nowadays, the increasing demand for high quality speech signals

1 Introduction 2

motivates the search of improved signal processing techniques that can remove such unwant-
ed noise from the observed speech signal. Speech enhancement finds various applications
such as hearing aids, cellular phones, multiparty conferencing, robust speech or speaker
recognition, voice over internet protocol (VoIP), security monitoring and intelligence, etc.
On the basis of the number of microphones being employed, speech enhancement tech-
niques can be broadly classified as single versus multiple channels [3]. In contrast to the
single channel approaches, multichannel techniques [4] take advantage of the availability of
multiple input signals. Theoretically, these techniques can exploit additional information
about the acoustic environment and possibly lead to improved performance. However, the
advantages of such systems come at cost of an increased computational complexity in pro-
cessing, especially when the microphone geometry is unknown. In this work, however, the
focus is on single channel techniques due to convenience in implementation as well as cost
considerations.

Speech enhancement has been an arduous task to tackle for many years due to the
complex nature of the noise signals whose characteristics can change abruptly in time.
Accordingly, developing speech enhancement systems that perform well in different envi-
ronment is challenging. In addition, performance characterization of such systems depend
to some extent on the specific application being considered. Two commonly used percep-
tual criteria to measure the performance are intelligibility and quality. While the former
is objective as it indicates how comprehensive is the speech, the latter remains subjective
for human listeners as different persons will judge in different ways the level of noise re-
duction versus the amount of distortion introduced in the processed speech signal. It has
been shown that these criteria are rarely satisfied simultaneously. For this reasons, several
objective (i.e., computational) measures of speech quality have been considered in the liter-
ature [3]. In effect, the majority of speech enhancement algorithms obtain improvement in
noise reduction at the expense of some speech distortion. It is therefore essential to ensure
that resulting speech distortion lies within a certain threshold in an attempt to perform
noise reduction.

1.2 Literature Review

Several single channel speech enhancement techniques have been proposed during the past
decades, including spectral subtraction [5,6], Wiener filtering [7,8], minimum mean square

1 Introduction 3

error short-time spectral amplitude estimation (MMSE-STSA) [9, 10], MMSE log spec-
tral amplitude (MMSE-LSA) [11], Weighted- Euclidean STSA (WE STSA) estimator [12],
Kalman filtering [13, 14], subspace methods [15–17], etc. These techniques rely on a sim-
plified signal model where the background noise is assumed to be additive with statistical
characteristics that change slowly over time [18]. While such modeling leads to tractable
signal processing operations, the enhancement performance of these traditional methods
suffers from limited noise reduction, musical noise, and non-linear distortion.

Recently, there has been much interest towards the application of machine learning
techniques to the speech enhancement problem, including non-negative matrix factoriza-
tion (NMF) [19,20] and deep neural networks (DNN) [21,22]. In particular, neural network
models with non-linear activation functions are believed to be suitable for representing the
complex mapping relationship between the noisy and clean speech signals. Early work on
the use of shallow neural networks (SNN) as non-linear filters in speech enhancement has
been presented in [23, 24]. Yet, the performance of the SNN model with limited network
size and small training set is not satisfactory. With the advancement of machine learning
algorithms and improvement in digital hardware performance, the DNN structure has been
drawing considerable attention lately within the research community, as it can achieve sig-
nificantly better performance compared to SNN, at the cost of increased computational
complexity. DNN with multiple hidden layers are now preferred for many applications as
they can more efficiently learn and represent statistical information [21].

An alternative approach to tackle speech enhancement is provided by NMF, a popular
dictionary learning technique which has found successful applications in numerous fields
such as source separation [25], speech enhancement [19], and speech recognition [26]. In
this approach, a given non negative matrix of signal descriptors is decomposed into the
product of a nonnegative basis matrix (also known as dictionary) and activation matrix.
NMF is a dimensionality reduction tool which, as apposed to principal components analysis
(PCA) and vector quantization (VQ), only allows additive (and not subtractive) combi-
nations of the basis vectors. In the context of speech enhancement, either the short-term
power or magnitude spectrum of the speech signal is expressed through NMF as a linear
combination of the basis vectors. Particularly, in the case of the supervised NMF method,
the basis vectors are derived for each source during the training phase and later used in the
enhancement phase. However due to the mismatch between the training and test signals,
the quality of the processed speech is limited. To compensate for this type of limitations,

1 Introduction 4

one can incorporate regularization terms into the NMF cost function [27, 28].
In recent works on speech enhancement, DNN-based models have been presented that

employ multi-condition training procedures to initialize the network parameters, such as
the restricted Boltzmann machine (RBM) [29] and deep denoising autoencoder (DAE) [30].
However, the use of these pre-training approaches is computationally expensive and does
not seem to notably affect the final enhancement performance of the DNN with ReLU
activation function, given sufficiently large and varied training data sets [31]. In [22], Liu
et al. presented a simpler speech enhancement approach using DNN with no pre-training,
which can achieve better performance when compared to NMF techniques with compa-
rable complexity. In [32], a DNN-based speech separation technique was proposed using
time-frequency masking, as obtained from a second DNN. The SVD (singular value decom-
position) reduction techniques with DNN training for noisy reverberant speech recognition
was investigated in [33]. The NMF-based target speech enhancement using DNN was pro-
posed in [34]. In [35], a signal pre-processing front-end based on DNN was presented to
enhance the speech signal for robust speech recognition; however, the learning-based noise
model was not considered. Besides, the deep recurrent neural network (DRNN) [36] was
introduced to exploit temporal information in the source separation problem. Although
DRNN is capable of modeling sequential data for speech processing tasks, its performance
is weak when trained on limited noise types [37]. Subsequently, the long short-term memo-
ry (LSTM) [38,39] model was used to tackle the gradient vanishing and exploding problem
with DRNN and to learn long-term dependencies. While the use of LSTM with DRNN
leads to improved performance, it requires increased complexity in implementation.

1.3 Thesis Objective and Contributions

The main goal of this work is to overcome some of the limitations pointed above by in-
troducing a low-complexity DNN for the purpose of regression-based single channel speech
enhancement, based on the framework introduced by Liu et al. [22]. While the latter frame-
work can lead to improved speech quality compared to classical approaches, it is afflicted
by high computational complexity in the training stage. The main contribution of this
work is to reduce the DNN complexity by introducing a spectral feature mapping from
noisy mel frequency cepstral coefficients (MFCC) to enhanced short time Fourier trans-

1 Introduction 5

form (STFT) spectrum. The use of MFCC not only has the advantage of mimicking the
logarithmic perception of human auditory system [40], but this approach requires much
fewer input features and consequently lead to reduced DNN complexity. Consequently,
the DNN is characterized by a simpler training and denoising procedure and indeed does
not necessitate any pre-training or complex recurrent scheme. In addition, we leverage one
of the best performing first-order learning algorithm for training our DNN model, name-
ly iRprop− introduced in [41]. The latter allows faster convergence than standard Rprop
without increasing algorithmic complexity. The enhanced speech is obtained by applying
Wiener filtering to the DNN output followed by time domain reconstruction. The noise
reduction performance is further improved by incorporating information about the noise
environment into the training phase.

We implemented the proposed DNN method with different numbers of MFCC and used
it to enhance several different types of noisy speech files. Experimental results of perceptual
evaluation of speech quality (PESQ) show that the proposed approach can outperform
the benchmark algorithms including a recently proposed non-negative matrix factorization
(NMF) approach, and this for various speakers and noise types, and different SNR levels.
More importantly, the proposed DNN structure using MFCC as inputs, leads to a significant
reduction in complexity, where the runtime is reduced by a factor of approximately five in
our experiments.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 outlines the motivation behind
deep learning and brief overview on how artificial neural network have inspired researchers
to derive successful algorithms to solve many problems. The chapter then further discusses
the basic principles of neural networks and provides a mathematical description of the DNN
structure and associated training approaches. On the basis of the system model equations
presented in Chapter 2, the application of DNN to speech enhancement using STFT coef-
ficients is introduced in Chapter 3, as well as several derivatives of the RPROP training
algorithm. In Chapter 4, we turn over our attention to the proposed method which includes
the incorporation of MFCC-based spectral feature mapping into the DNN architecture and
the associated training procedure. The experimental evaluation and performance results
for the proposed method for various noise types are presented in Chapter 5. Finally, we

1 Introduction 6

summarize the findings of our work in Chapter 6, where we also briefly discuss potential
research directions in the future.

7

Chapter 2

Background on DNN

In this chapter, we start with a brief introduction providing motivation behind deep learning.
Next, an overview of artificial neural network (ANN), a class of machine learning techniques
which is being used for solving regression and classification problems, is presented. ANN
models are motivated by research on the human brain and have inspired researchers for
decades to develop learning models to solve complex problems in many fields of research.
Subsequently, the structure of the most fundamental neural network, namely the feed forward
network along with its mathematical representation are exposed.

2.1 Deep Learning

Recently, machine learning has been the driver of a big wave of technological innovations.
According to T. Mitchel, “The field of machine learning is concerned with the question
of how to construct computer programs that automatically improve with experience and
seeking to find out the fundamental laws that govern all learning processes” [42]. Machine
learning algorithms are powerful artificial intelligence tools that are being used in many
aspect of modern society, including but not limited to: healthcare, trading, fraud detection,
loan or insurance underwriting, and human-machine interfaces.

Conventional machine learning algorithms have limited ability to process natural data
and abstract suitable features. Furthermore, a careful engineering and domain expertise is
required for constructing a machine learning system to discover the suitable representation
patterns from raw data. However, with the advancement of machine learning algorithms
and improvement in digital hardware performance, and especially parallel computing which

2 Background on DNN 8

allows the processing of massive amount of data, so called deep learning techniques have
achieved much success and drawn researcher’s attention recently. Deep learning strives
to learn a mathematical representation of data with multiple levels of abstraction using
complex models which are composed of an intricate structure. More specifically, this is
achieved through the use of a high-dimensional neural network architecture whose param-
eters are adjusted with the help of sophisticated training algorithms. The meaning of deep
learning varies among researchers. In the literature, the qualifier“deep” in deep learning
refers to a neural network with more than two layers. Some researchers however have their
own interpretation of the word “deep” as being associated to models which make use of
unlabeled data. Deep learning models, such as the deep recurrent neural networks (RNN)
and convolutional neural networks (CNN), have brought amelioration in the processing
of speech, audio, image, and video data as applied to different fields of research, such as
recognition, enhancement and detection problems. It is believed that deep learning will
continue to accumulate successes in the near future, due to further increase in processing
power and its advantage of built-in automated engineering ability. In brief, deep learning
offers the key advantage of efficient learning through processing of large amount of data.

In general, machine learning approaches are classified into three categories, namely:
unsupervised, supervised, and reinforcement learning. In the unsupervised learning task,
the given training data does not include any corresponding target values. This corresponds
to a process whereby a system tends to infer or discover a function automatically in order
to represent and characterize patterns or regularities from its input data. This task is
distinguishable from the other learning types due to the fact that the given data is unlabeled
and therefore there is no evaluation of the accuracy of the model. Several approaches have
been developed for unsupervised learning such as clustering, anomaly detection, and neural
networks. In particular, among the unsupervised neural network algorithms, the adaptive
resonance theory (ART) [43] and self-organizing map (SOM) are commonly used. The SOM
learner is a topographic organization which produces a low dimensional representation, a
so-called map, of input features which share similar properties. The ART network has its
motivation in how the brain processes data. The ART model takes its input data and
maps them into one of several permissible classes depending upon which pattern yields the
highest resonance. Besides, ART is also concerned about how such model can learn new
information while retaining the one that was previously learned.

Supervised learning is the most common form of machine learning and it is the focus

2 Background on DNN 9

of this thesis. The training data set in this class of problem comprises instances of input
vectors with their corresponding desired values. A supervised learning algorithm analyses
the labeled training data and designs a function that can process new input samples, e.g.
producing a desired output among a continuum of possible values or assigning a class
label from a finite number of possible categories. A well defined training algorithm can be
designed to optimize the correct prediction of the desired output or class label from unseen
examples.

Reinforcement learning (RL) on the other hand, tends to be motivated by behaviorist
psychology. This technique is concerned with how the software agent can find suitable
actions to take in a given environment, in order to maximize its performance by some
notion of rewards. In effect, RL is a data-driven approach towards learning behavior;
however, in contrast to supervised learning algorithm, RL is not given desired outputs.
Therefore, RL model is forced to identify the optimal output by a process of trial and
error. This problem is studied in many disciplines, such as information theory, genetic
algorithm, game theory, etc.

2.2 Overview of Artificial Neural Network

To fully grasp the motivation behind ANN, one should study how the brain actually works.
Under a microscope one can appreciate the intricate structure of a brain. In fact, the
human brain consists of approximately 1011 interconnected brain cells, also called neurons.
As illustrated in Fig. 2.1, a neuron consists of three parts, namely: the axon, the cell
body and the dendrites. Electrical or chemical signals travel along the axon from dendrites
to the other end of the axon called the axon terminal. Eventually, the axon connects to
thousands of other neurons via their dendrites, forming a biological neural network (BNN).
The juncture between the axon terminal and the dendrites is referred to as a synapse which
serves like a gate, regulating the flow of information within the brain.

The findings from the research on human brain indicates the capabilities of BNN to
learn and execute complex processes using a conceptually simple structure, yet comprising
billions of interconnected neurons. Therefore, ANN aim to mimic BNN representation and
problem solving abilities so that, in a similar way, they can be trained to solve engineering
problems.

As shown in Fig. 2.2, the artificial neuron consists of several components, namely: the

2 Background on DNN 10

Fig. 2.1 Structure of a biological neuron (taken from [1])

inputs, weights, accumulator, activation function, and output [44]. The input feature vector
is defined by x = [x1, x2, . . . , xI], where I denotes the size. The individual features xi can
take various forms: in the case of speech, they can be STFT or MFCC coefficients while
for images, they can be individual pixel values.

The weight vector is defined as w = [w1, w2, . . . , wI] where wi are the individual weights.
These are often referred to as synaptic weights since they mimic the sensitivity of synaptic
connections in a BNN. In the ANN they are used to scale the contributions from the
inputs. The accumulator then calculates the weighted sum of the inputs. A bias value w0

is added to attain an affine transformation prior to the application of the activation function
f(.). The latter will decide on weather or not the neuron should “fire”. A mathematical
representation of the artificial neuron is expressed as,

z =
I∑

i=1

wixi + w0 (2.1)

y = f(z) (2.2)

where z is the accumulator output and y is the output of the neuron after applying the

2 Background on DNN 11

Fig. 2.2 Block diagram of an artificial neuron

activation function.
A neural network is obtained through the interconnection of several neurons. There

are three main network structures, that is: feed-forward neural network (FFNN), recurrent
neural network (RNN) and conventional neural network (CNN) [44]. The simplest and
most commonly used neural network model is the FFNN, also known as the multilayer
perceptron (MLP). Fig. 2.3 shows a fully connected FFNN, where all the nodes in each
layer are connected to all the nodes in the successive layer, although there are no connections
between the nodes in the same layer.

In this structure, each hidden layer is labeled with index l ∈ {1, 2, . . . , L−1}, where L is
the total number of layers. The input and output layers are represented by h(0) = x ∈ RI0 ,
and h(L) = y(L) ∈ RIL , where I0 = I is the number of input features and IL = K is the
number of output values, respectively. Each hidden layer is represented h(l) = y(l) ∈ RIl ,
where index l ∈ {1, 2, . . . , L− 1}, y(l) = [y

(l)
1 , y(l)2 , . . . , y(l)Il

] and Il is the number of neurons
in the l-th layer.

Depending upon the objective of the prediction task, supervised learning can fall into
two categories of problems, i.e., classification or regression. In the classification, the ob-
jective is to take an input vector x and to assign it to one of C discrete classes tC , where

2 Background on DNN 12

Fig. 2.3 Example of a feed-forward neural network

c ∈ {1, 2, . . . , C}. It is often assumed that the classes are disjoint and that input vector
can only belong to a single class. Hence, in the case of classification task, K = 1 and the
output variable y

(L)
1 belongs to a finite discrete set. An example is provided by email spam

filtering, where the goal of prediction is to determine weather an email is a spam or not.
In contrast, the goal of the regression problem is to predict K continuous targets given
an I-dimensional input vector x. In other words, if the output variable y

(L)
k that we want

to predict is a real number, i.e., y(L)k ∈ R, the prediction problem is called regression. An
example of such a variable could be the speed control of a self-driving car, where the output
variable is continuous and positive.

In general, the activation function f(.) is the identity function in the case of regression
and a non-linear function for classification models. Each neuron in the hidden and output
layers of a FFNN computes a linear combination of its inputs, which can be expressed as,

z
(l)
i =

Il−1∑
j=0

w
(l)
ij y

(l−1)
j (2.3)

2 Background on DNN 13

where w
(l)
ij is the (i, j)-th entry of a linear transformation matrix W(l) ∈ RIl×Il−1 where

l ∈ {1, 2, . . . , L} is the layer index and Il denotes the number of neurons in the l-th layer.
In this notation, the bias values for each layers are absorbed in the weight matrix W(l),
i.e., W(l) = [w(l)

0 ,w(l)
1 , . . . ,w(l)

Il−1
], where w(l)

i = [w
(l)
1i , w(l)

2i . . . ,w(l)
Ili
]T and y

(l−1)
0 = 1.

The output values of each neuron in the l-th layer are then transformed using an acti-
vation function, as expressed by,

y
(l)
i = f(z

(l)
i) (2.4)

where f(.) is often (but not recursively taken)as a differentiable, non-linear function (see
below). Thus, combining these stages yields an overall network function that takes the
following form for the l-th layer:

y
(l)
i = f(

Il−1∑
j=0

w
(l)
ij y

(l−1)
j) (2.5)

The role of the activation functions is to map or compress the permissible amplitude
range of the output signal to some other more appropriate range. As such, the choice of
activation function depends upon the application. Among all types of activation functions
used in ANN systems, the following list provides a mathematical description of the most
commonly used ones [45, 46]:

• The output of the linear (identity) function is proportional to its input, i.e., the
weighted sum from the neurons. It is often used at the output of the network for
regression problems. This activation function is expressed as,

flin(x) = x (2.6)

• The rectified linear unit (ReLU) function applies a threshold to its input: it only
retains the positive values and outputs zero else. It is less computationally expen-
sive than some of the functions presented below as it involves simple mathematical
operations, expressed by,

fReLU(x) = max(0, x) =

x, for x > 0

0, for x < 0
(2.7)

• The sigmoid or logistic function is the most common activation function; it is con-
tinuous, nonlinear, and differentiable. The output of this function takes value in the

2 Background on DNN 14

range of 0 to 1 through the following definition,

fsig(x) =
1

1 + e−x
(2.8)

• The hyperbolic tangent function is defined as the ratio between the hyperbolic sine
and cosine. It shares similar characteristics with the sigmoid function: it is contin-
uous, non-linear and differentiable. However, its output takes values in the range of
-1 to 1, through the following definition,

ftanh(x) = tanh(x) =
ex − e−x

ex + e−x
(2.9)

• The unit step and sign (signum) functions change their output state from 0 to 1, and
-1 to 1, receptively, depending on the sign of the input. These kinds of step functions
are useful for binary classification problems. They are formally defined as,

fstep(x) =

1, for x > 0

0, for x < 0
(2.10)

fsign(x) =

1, for x > 0

−1, for x < 0
(2.11)

Fig. 2.5 shows the graph of the most common activation functions as discussed above.

2.3 Network Training

The goal of training the ANN is to adapt its weight parameters in order to achieve a
desired behavior. In the context of supervised learning, the network is presented with large
amount of data and attempts to correct its internal parameters so that its output values
can best match the desired values provided in the training data set. In general, to train
a FFNN model, one has to decide upon a performance measure or cost function. A cost
function provides a quantitative measure of the mismatch or error between the network
output values and the desired values; it is used to evaluate how well the model is trained
by its training data. Two typical cost functions are the mean-squared error (MSE) and the
cross-entropy (CE), which respectively take the form,

EMSE({W(l)}) =
K∑
i=1

∥ y(L)i − ti ∥2 (2.12)

2 Background on DNN 15

ECE({W(l)}) = −
K∑
i=1

{ti ln y(L)i + (1− ti) ln(1− y
(L)
i)} (2.13)

where y
(L)
i and ti denote the estimated and target values, respectively. The neural network

parameters, represented by {W(l) : l = 1, 2, . . . , L}, are estimated by minimizing the chosen
cost function E({W(l)}). On the basis of the problem being solved, the activation function
and cost function can be chosen accordingly. In the case of regression problems, the MSE
function is often used in combination with the linear activation function. However, in the
case of classification, the cross-entropy is often used with either the softmax or sigmoid
activation function [45].

2.3.1 Backpropagation Algorithm

It is essential for the learning algorithm of an ANN to find the weight parameters, as
represented by {W(l), l = 1, 2, . . . , L}, which minimize the chosen error function E({W(l)}).
Many algorithms exist for this purpose which take an iterative form, in which the weight
matrices are updated as W(l)(τ +1) = W(l)(τ)+∆W(l)(τ), where integer τ is the iteration
index, W(l)(τ) is the estimated value of W(l) at iteration τ , and ∆W(l)(τ) is the weight
update. While different algorithms make use of different weight updates ∆W(l)(τ) at each
iteration, most often the gradient information is involved in the derivation of training
algorithms. For instance, the gradient descent algorithm takes the general form,

W(l)(τ + 1) = W(l)(τ)− µ∇W(l)(τ) (2.14)

where the gradient of the cost function, denoted as ∇W(l)(τ), formally defined as,

∇W(l)(τ) =
∂E({W(l)})

∂W(l)

∣∣∣
W (l)=W (l)(τ)

(2.15)

and µ > 0 is a step size which controls the learning rate.
Some techniques require using the entire training dataset to be processed at each step in

order to update E({W(l)}) and the weight matrices W(l)(τ); these are referred to as batch
methods. On-line algorithms such as the gradient descent iteration, in contrast, update
the weight matrices by processing one data point at a time.

The learning rule for FFNN comprises two stages, namely: feed-forward propagation

2 Background on DNN 16

and feed-backward propagation. In the former stage, input data are supplied to the net-
work input and propagate forward to calculate the output of the hidden layers, ultimately
reaching the output layer. In the latter stage, the error propagates back through the net-
work and the weights of each layer are updated in the direction that reduces E({W(l)}).
Here, the backpropagation update is derived using the MSE error function and gradient
descent optimization as the learning rule.

For simplicity in notation, the error E({W(l)}) will be denoted as E, the iteration index
τ will be dropped and the update rule for the bias vectors will not be mentioned explicitly.
Let w

(l)
ij denote the weight connecting the j-th neuron from the (l − 1)-th layer to the i-th

neuron in the l-th layer, and y
(l)
i denote the output of the i-th neuron in the l-th layer as in

(2.5). Backpropagation provides information about the influence of the weights and biases
on the cost function in a network. It involves an iterative procedure for minimizing the
error function by updating its internal parameters. In this regard, the partial derivative of
the error function with respect to the weights in the output layer, ∂E

∂w
(L)
ij

, are first evaluated.
Following this step, the partial derivatives of the error function with respect to the weights
in the hidden layers, ∂E

∂w
(l)
ij

, are evaluated.

Beginning with the output layer (i.e. l = L), we define the quantity, δ(L)i , which will
represent the accumulated error at each neuron. Specifically, the quantity δ

(L)
i , provides a

measure of how much the network error varies with the input to neuron i [45, 47, 48]. It is
defined as,

δ
(L)
i =

∂E

∂z
(L)
i

=
∂E

∂y
(L)
i

∂y
(L)
i

∂z
(L)
i

=
∂E

∂y
(L)
i

f ′(z
(L)
i)

(2.16)

where (2.14) here has been invoked in (2.16), the first term ∂E

∂y
(L)
i

indicates the rate of
change of the cost function with respect to the i-th output, whereas, the second term
f ′(z

(L)
i), represents the rate of change of the activation function f(.) with respect to the

input z
(L)
i . In particular, in the case of the MSE cost function in (2.12), we have:

2 Background on DNN 17

∂E

∂y
(L)
i

= y
(L)
i − ti (2.17)

Thus, by inserting (2.16) and (2.17) in (2.15), ∂E

∂w
(L)
ij

takes the form,

∂E

∂w
(L)
ij

= y
(L−1)
j δ

(L)
i = y

(L−1)
j (y

(L)
i − ti)f

′(z
(L)
i) (2.18)

This results resonates with the physical meaning of the error signal: it defines the partial
derivative of the error function with respect to the weights in the output layer as a product
of the error term δ

(L)
i at neuron i in the L-th layer and the output y(L−1)

j of the j-th neuron
in the (L− 1)-th layer.

Next, the error δ(l) in any layer l in the network can be represented with respect to the
error in the next layer, δ(l+1), through the following expression,

δ
(l)
j =

∂E

∂z
(l)
j

=
∑
i∈Il+1

∂E

∂z
(l+1)
i

∂z
(l+1)
i

∂z
(l)
j

=
∑
i∈Il+1

∂z
(l+1)
i

∂z
(l)
j

δ
(l+1)
i

(2.19)

where
z
(l+1)
i =

∑
j∈Il

w
(l+1)
ij y

(l)
j =

∑
j∈Il

w
(l+1)
ij f(z

(l)
j) (2.20)

The first term in (2.19), the partial derivative ∂z
(l+1)
i

∂z
(l)
j

, can be expressed as,

∂z
(l+1)
i

∂z
(l)
j

= w
(l+1)
ij f ′(z

(l)
j) (2.21)

Furthermore, substituting (2.21) in (2.19), yields,

δ
(l)
j =

∑
i∈Il+1

w
(l+1)
ij f ′(z

(l)
j)δ

(l+1)
i (2.22)

2 Background on DNN 18

Thus, the rate of change of the error with respect to each weight in the hidden layer, w(l)
ij ,

in the network is given by,

∂E

∂w
(l)
ij

= y
(l−1)
j δ

(l)
j = y

(l−1)
j

∑
k∈Il+1

w
(l+1)
kj f ′(z

(l)
j)δ

(l+1)
k (2.23)

The above derivatives are then used to calculate the adjustments to be made on the weights
as in (2.14).

In conclusion, the backpropagation procedure is summarized as follows,

1. Apply the input data to the network and forward propagate through the network to
compute the output values for each layer l ∈ {2, , . . . , L}.

2. Evaluate the error δ
(L)
i for all output neurons as in (2.16).

3. Evaluate the error δ
(l)
i for each hidden neurons in layer l = L − 1, L − 2, . . . , 1 as in

(2.22).

4. Update each network bias and weight using the gradient descent algorithm in (2.14).

2.4 Regularization

The goal of machine learning is to properly train the system model from the given data,
in order to make a good prediction for the new unseen data. The ability to perform well
on the new unseen data, called generalization, depends on the size of the training data set,
the number of free parameters in the prediction model, and the actual physical property of
the data (or true model).

To better illustrate this point, Fig. 2.4 shows three polynomial models of degree 1, 4,
and 16, each attempting to approximate a sine function. The models (hypotheses) have
polynomial features of different degrees. The linear model, i.e. polynomial with degree
1, is not adequate to fit the samples of the true function. Consequently, it gives a poor
representation of the sine function. This is called underfitting. However, the 4-th order
polynomial model seems to be a good fit to the true function. For higher order polynomials,
i.e. polynomial with degree 16, we achieve perfect fit to the samples of the true function
with zero error. This is achieved by passing the polynomial curve through each of the

2 Background on DNN 19

samples. This causes the fitted curve to oscillate and to give a poor representation of the
sine function. This latter behavior is known as overfitting.

Fig. 2.4 Underfitting and Overfitting

In a DNN structure, the numbers of layers L and hidden neurons Il in each layer
l ∈ {1, 2, . . . , L−1} control the number of parameters, i.e. weights w(l)

ij and biases b(l)i , which
can be adjusted to provide the best predictive performance. It is vital to find optimum
values of {I1, . . . , IL} that give the best generalization performance, corresponding to the
optimum balance between underfitting and overfitting. When a model learns too well the
details and the noise from the training data, often it will not generalize well on different
data that were not seen in the training phase. This is known as overfitting and is one of the
problems afflicting neural network. In order to prevent overfiting, regularization techniques
can be used. They are achieved by penalizing the size of neural network weights. A weight
penalty allows a DNN to discard large unwanted values of the weight parameters. A general
representation of regularization as given in [45] can take the following form,

E({W(l)}) =
∑
i∈K

(y
(L)
i − ti)

2 + λ
L∑
l=1

|W(l)|q (2.24)

where λ > 0 denotes the regularization parameter. When q = 2, (2.24) refers to the
quadrature or the Ridge regularization function, often known as the weight decay [48],
while q = 1 corresponds to the Lasso regularization [48].

2 Background on DNN 20

Fig. 2.5 Illustration of the most common activation functions: (a) linear;
(b) rectified linear unit (ReLU); (c) sign; (d) step; (e) sigmoid and (f) tanh

21

Chapter 3

Neural Network for Speech Denoising

In this chapter, we first review the standard audio feature extraction and signal reconstruc-
tion used in speech processing. Then the basic features of a STFT-based DNN structure
for speech enhancement and associated training procedure are discussed. Following that,
different resilient backpropagation techniques are provided.

3.1 Feature Extraction and Speech Reconstruction

The vast majority of single-channel speech enhancement methods implement the analysis-
modification-synthesis (AMS) framework in the acoustic frequency domain [49]- [50] which
will be presented in this section. In general, a noisy speech signal can be expressed as a
combination of additive and convolution noise, or so-called mixed noise, as illustrated in
Fig. 3.1. However, in this work for simplicity, the noisy speech signal is assumed to result
from the combination of additive noise only with the clean signal, i.e.,

y[n] = x[n] + d[n] (3.1)

where y[n], x[n] and d[n] respectively denote the noisy speech, the clean speech and the
additive background noise, and n ∈ Z is the discrete-time index. The noisy speech spectrum,
obtained via short-time Fourier transform (STFT), can be expressed as,

Y (ν, k) = X(ν, k) +D(ν, k) (3.2)

3 Neural Network for Speech Denoising 22

Fig. 3.1 Noise environment structure

where Y (ν, k), X(ν, k) and D(ν, k) refer to the STFT coefficients of the noisy speech, clean
speech and noise at the (ν, k)-th time-frequency bin, respectively. Specifically, the STFT
is defined by the following relation,

Y (ν, k) =
∞∑

n=−∞

y[n]ϕ(n− νF) ej2πkn/K (3.3)

where ν ∈ Z refers to the frame index, positive integer F is the frame advance, k ∈
{0, 1, . . . , K−1} is the frequency index and ϕ(n) is a windowing function of length K, chosen
as a Hanning window [51] in this work. In effect, the input signal y[n] is first decomposed
into consecutive (overlapping) segments of length K. Then for each segment, the window
function is applied and a K-point discrete Fourier transform (DFT) is computed.

In this work, the enhanced speech spectrum denoted as X̂(ν, k), is estimated by means
of a DNN structure followed by Wiener filtering, where the detailed enhancement and
training procedures will be explained in the sequel. The enhanced speech signal in the
time-domain, x̂(n) is then obtained by first applying the inverse STFT to the estimated
clean speech spectrum X̂(ν, k), followed by the overlap-add method (OLA) [50], as given

3 Neural Network for Speech Denoising 23

by the following expressions,

x̂ν(n) =
1

K

K−1∑
k=0

X̂(ν, k)ej2πkn/K (3.4)

x̂(n) =
∞∑

ν=−∞

x̂ν(n− νF) ϕ(n− νF) (3.5)

An important condition for OLA to yield perfect synthesis is that the sum of all the shifted
copies of the analysis window adds up to a constant, c, i.e. [52],

∞∑
ν=−∞

ϕ(n− νF) = c, ∀n ∈ Z (3.6)

3.2 DNN Structure

The architecture adopted for the speech enhancement system developed in this thesis is
based on a feed-forward DNN consisting of multiple non-linear hidden layers. This archi-
tecture, shown in Fig. 3.2, allows to model a highly non-linear regression function, which
maps noisy speech features at the input into clean speech features at the output.
Referring to Fig. 3.2, each hidden layer, labeled with index l ∈ {1, .., L − 1}, where L is
the total number of layers, consists of Il neurons. The output values of the l-th layer are
represented by vector h(l) ∈ RIl and can be expressed as,

h(l) = f (W(l) h(l−1) + b(l)) (3.7)

where W(l) ∈ RIl×Il−1 is a linear transformation matrix with (i, j)-th entry w
(l)
ij , b(l) ∈ RIl

is a bias vector with i-th entry b
(l)
i , and f(.) represents a non-linear activation function

which operates element-wise. Depending on the application, the activation function can
be selected accordingly, such as a sigmoid or piecewise linear function [46]. However, the
rectified linear unit function, fReLU(.) as defined in (2.7) according to [31], turns out to be
more effective in our prediction problem.

In the DNN architecture of Fig. 1, the input (bottom) layer consists of the noisy spec-
trum magnitudes at the ν-th frame. Specifically h(0) = YYYν ≡ [Yν,0,Yν,1, . . . ,Yν,I0−1]

T

where Yν,k = |Y (ν, k)| and I0 = K. The output (top) layer in Fig. 1, represented by vector

3 Neural Network for Speech Denoising 24

Fig. 3.2 Feed forward DNN

h(L) ∈ RIL , is obtained through a linear regression as,

h(L) = W(L)h(L−1) + b(L) (3.8)

where W(L) ∈ RIL×IL−1 and b(L) ∈ RIL . For the output layer, we adopt a special con-
figuration where IL = 2K and h(L) = [X̂XX ν , D̂DDν] consists of two K-dimensional prediction
vectors. In this notation, X̂XX ν = [X̂ν,0, X̂ν,1, . . . , X̂ν,K−1]

T and D̂DDν = [D̂ν,0, D̂ν,1, . . . , D̂ν,K−1]
T .

The components X̂ν,k and D̂ν,k provide preliminary estimates of the clean speech and noise
spectrum magnitudes, that is Xν,k ≡ |X(ν, k)| and Dν,k ≡ |D(ν, k)|, respectively.

The predicted spectrum of the clean speech at the ν-th frame is finally obtained from
the DNN output by applying the Wiener filter [53] as given by,

X̂(ν, k) =
PX (ν, k)

PX (ν, k) + PD(ν, k)
Y (ν, k) (3.9)

In this expression, the quantities PX (ν, k) and PD(ν, k) represent the smoothed clean speech
and noise power spectral densities (PSDs) for the k-th frequency bin and ν-th frame. They

3 Neural Network for Speech Denoising 25

are computed recursively over the frame index as,

PX (ν, k) = τxPX (ν − 1, k) + (1− τx)X̂ 2
ν,k (3.10)

PD(ν, k) = τdPD(ν − 1, k) + (1− τd)D̂2
ν,k (3.11)

where τx and τd, taken within the interval of [0, 1], denote the temporal smoothing factors
for the clean speech and noise, respectively.

3.3 Training Procedure

In the training stage, we estimate the weight matrices W(l) and bias vectors b(l) for all
layer l ∈ {1, 2, . . . , L} by employing training data, represented by the triplet {YYY ,XXX ,DDD}.
The latter consists of the input noisy speech matrix YYY = [YYY1, . . . ,YYYN], clean speech target
XXX = [XXX 1, . . . ,XXXN], and clean noise target DDD = [DDD1, . . . ,DDDN], where N is the total number
of frames available for training.

The DNN parameters are estimated by minimizing a suitable cost function. Among
the different cost functions available for this task, such as the mean-squared error (MSE),
the cross-entropy, the Kullback Leibler divergence and the Itakura Staito divergence, the
minimum MSE (MMSE) seems to be an appropriate choice for the speech enhancement
problem [22]. The MSE function of the DNN output is calculated as,

E =
1

N

N∑
n=1

∥ [X̂XX n, D̂DDn]− [XXX n,DDDn] ∥22 +λ

L∑
l=1

∥W(l)∥22 (3.12)

where [X̂XX n, D̂DDn] and [XXX n,DDDn] denote the estimated and target spectral feature vectors of the
clean speech and noise pair, respectively. In order to avoid overfitting, as previously dis-
cussed in Section 2.4, Ridge regularization is considered through the term λ

∑L
l=1 ∥W

(l)∥22,
where λ > 0 is the regularization parameter.

3.3.1 Rprop Algorithms

One can use the error backpropagation technique to estimate the parameters that mini-
mize the cost function in (3.12), such as the common stochastic gradient descent algorithm,
or more complex methods such as the conjugate gradient or Levenberg-Marquardt algo-

3 Neural Network for Speech Denoising 26

rithms [44]. In addition, there is an interest towards using an additional greedy layer-wise
pre-training stage via the RBM [29, 54] or autoencoder techniques [30]. However, these
approaches are computationally expensive and do not seem to critically affect the final
enhancement performance of the DNN with ReLU activation function, given sufficiently
large and varied data set [31]. In this work therefore, we choose an improved version of the
resilient backpropagation (Rprop) [55] algorithm, called iRprop− which is presented in [41].
As an alternative to iRprop−, we have also implemented our proposed DNN approach us-
ing Adam optimization [56] in the training stage; however, no significant improvement was
obtained in the performance of our model.

Rprop is a first-order iterative learning algorithm, which has been shown to provide a
rapid and reliable convergence compared to the conjugate gradient algorithm, yet with much
less computations. It performs a local adaptation of the weight-update term according to
the behavior of the error function. In the standard backpropagation procedure, the network
is trained to minimize the discrepancy between the original clean speech and its estimate
at the DNN output. This is achieved by back propagating the MSE value from the output
to the input layer and adjusting the weights via gradient descent to reduce the error. In
contrast, Rprop uses only the sign of the gradient, as apposed to its magnitude value,
which leads to a more robust and faster converging weight update. In essence, it assumes
that different weights need different step sizes for their update, which vary throughout the
learning process [41, 55]. The main steps of Rprop algorithm are summarized below.

Let t ∈ {0, 1, . . . , T} denote the iteration index, T the maximum number of iterations,
E(t) the value of the cost function in (3.12) at iteration t and γ

(l)
ij (t) = ∂E(t)/∂w

(l)
ij the

partial derivative of E(t) with respect to w
(l)
ij . During the learning process, the value of

each weight w
(l)
ij at iteration t is updated based on the local information available about

the evolution of the error function, as represented by γ
(l)
ij (t). Specifically, a time-varying

step-size is first computed as follows,

∆
(l)
ij (t) =

η+ ∆

(l)
ij (t− 1), if γ(l)

ij (t− 1)γ
(l)
ij (t) > 0

η− ∆
(l)
ij (t− 1), if γ(l)

ij (t− 1)γ
(l)
ij (t) < 0

∆
(l)
ij (t− 1), else

(3.13)

where η+ and η− are predefined constants in the range of 0 < η− < 1 < η+. In effect, if
the error gradient for a given weight w

(l)
ij has the same sign in two consecutive iterations,

3 Neural Network for Speech Denoising 27

we increase its step-size ∆
(l)
ij by the scaling factor η+, since the weight’s optimal value may

be far away. However, if the derivative changes its sign, which confirms that the algorithm
jumped over a local minimum, the step size is decreased by the factor η−. Otherwise, it
remains unchanged.

In the literature, Rprop has been proposed with and without weight-backtracking.
Weight-backtracking refers to using a previous weight update for some or all weights. In
case of Rprop without weight-backtracking, we use a negative superscript to indicate the
weight-backtracking is omitted from the standard Rprop and denote it as Rprop−. In par-
ticular, using Rprop− algorithm, there is no need to store the previous weight updates since
for all cases they can be computed as,

∆w
(l)
ij (t) = −sgn(γ(l)

ij (t))∆
(l)
ij (t) (3.14)

where the function sgn(.) returns -1 when its argument is negative, +1 when its argument
is positive, and 0 otherwise. After adjusting the weight updates as in (3.14), then each
weight will be updated accordingly based on the following rule,

w
(l)
ij (t+ 1) = w

(l)
ij (t) + ∆w

(l)
ij (t) (3.15)

Algorithm 1 summarizes Rprop− in pseudo-code.
As opposed to Rprop−, in iRprop− algorithm, when a change of sign of the partial

derivative occurs, that derivative is set to zero [41], i.e.,

γ
(l)
ij (t)← 0 if γ

(l)
ij (t− 1)γ

(l)
ij (t) < 0 (3.16)

In other words, when the sign of a partial derivative changes, iRprop− reduces the cor-
responding step-size and does not modify the weight. Algorithm 2 shows the corresponding
pseudo-code.

In the same manner, the bias vector b(l) ∈ RIl with i-th entry b
(l)
i , is updated using

Rprop− and iRprop− algorithms for every layer, i.e. for all l ∈ {1, 2, . . . , L}. However,
for the sake of simplicity in notation, the bias vectors are not mentioned explicitly in our
further developments [41, 55, 57].

3 Neural Network for Speech Denoising 28

Algorithm 1 Rprop−

Initialization: η+, η−,∆max,∆min,∆
(l)
ij (0)

∆w
(l)
ij (0) =

∂E(0)

∂w
(l)
ij

+∆
(l)
ij (0)

while t < T do

for each w
(l)
ij do

if ∂E(t−1)

∂w
(l)
ij

∂E(t)

∂w
(l)
ij

> 0 then

∆
(l)
ij (t) = min (∆

(l)
ij (t− 1) η+,∆max)

else if ∂E(t−1)

∂w
(l)
ij

∂E(t)

∂w
(l)
ij

< 0 then

∆
(l)
ij (t) = max (∆

(l)
ij (t− 1) η−,∆min)

end if

∆w
(l)
ij (t) = −sgn(∂E(t)

∂w
(l)
ij

) ∆
(l)
ij (t)

w
(l)
ij (t+ 1) = w

(l)
ij (t) + ∆w

(l)
ij (t)

end for

3 Neural Network for Speech Denoising 29

Algorithm 2 iRprop−

Initialization: η+, η−,∆max,∆min,∆
(l)
ij (0)

∆w
(l)
ij (0) =

∂E(0)

∂w
(l)
ij

+∆
(l)
ij (0)

while t < T do

for each w
(l)
ij do

if ∂E(t−1)

∂w
(l)
ij

∂E(t)

∂w
(l)
ij

> 0 then

∆
(l)
ij (t) = min (∆

(l)
ij (t− 1) η+,∆max)

else if ∂E(t−1)

∂w
(l)
ij

∂E(t)

∂w
(l)
ij

< 0 then

∆
(l)
ij (t) = max (∆

(l)
ij (t− 1) η−,∆min)

∂E(t)

∂w
(l)
ij

= 0

end if

∆w
(l)
ij (t) = −sgn(∂E(t)

∂w
(l)
ij

) ∆
(l)
ij (t)

w
(l)
ij (t+ 1) = w

(l)
ij (t) + ∆w

(l)
ij (t)

end for

30

Chapter 4

Proposed Framework

In this section, we first introduce the proposed DNN framework for speech enhancement
in general terms. Speech feature extraction based upon MFCC is then briefly reviewed,
followed by the incorporation of MFCC features in the training and the enhancement stages
of the DNN model. In addition, the non-negative matrix factorization method is briefly
presented with its application in speech enhancement. Finally, we discuss the computational
complexity of the proposed DNN scheme in comparison to a STFT-based DNN approach.

4.1 Proposed Structure and Motivation

Machine learning has received much attention in the field of speech enhancement and au-
tomatic speech recognition for a long time. The acoustic feature extraction plays a key
role as a pre-processing stage to these tasks. The MFCCs are among the most common-
ly used features in this context as they provide a spectral representation of speech that
incorporates some aspects of audition. The use of MFCC not only has the advantage of
mimicking the logarithmic perception of the human auditory system [40], but it also leads
to a reduction in the number of features as compared to the conventional STFT approach.
In turn, this leads to reduced complexity for the learning and processing tasks.

The process of calculating the MFCC vectors from the observed speech signal includes
some non invertible stages. It might be possible to make certain approximations about the
information that has been discarded during this process to allow estimating the magnitude
spectrum of the input speech as a result of the MFCC inversion process. Yet, it is still
a challenge to ensure that the MFCC inversion process will achieve perfect reconstruction

4 Proposed Framework 31

without additional computational complexity.
Therefore, in this thesis, a spectral feature mapping from noisy MFCC to the enhanced

STFT spectrum is introduced based on DNN modeling, in order to predict the clean speech
signal from a noise corrupted input signal. Mapping the MFCC features directly into the
frequency domain allows one to bypass the information loss caused by the inversion of the
MFCC process. In addition, implementation of the spectral feature mapping technique
using MFCC features has the advantage of reducing the length of the input feature vec-
tor. Hence, a smaller DNN model (i.e., with reduced number of nodes) can be employed.
Consequently, this leads to a faster convergence time in training and lower computation-
al complexity. These are the main motivations for the proposed approach, whose main
processing steps are summarized below.

Fig. 4.1 Block diagram of the MFCC-based DNN system for speech en-
hancement

A block diagram of the proposed DNN approach for speech enhancement is illustrated
in Fig. 4.1. The system operation consists of two stages, that is, training and enhancement.
In both stages, first the input signal is passed into a MFCC feature extraction module to
obtain the speech spectral features. In this module, following a pre-emphasis operation,
short-time Fourier analysis is applied to the input speech signal by computing the STFT of
overlapping windowed frames. Next, the MFCC feature vector of each frame is computed
by applying the mel-scale cepstral analysis to the STFT coefficients. As a result, the high-
dimensional input STFT data vector is transformed into a lower dimensional MFCC feature
vector.

In the training stage, a regression-based DNN model is trained using the available
training data which consists of the input noisy speech MFCC, the clean speech STFT
target, and clean noise target, as represented by the triplet {CCC,XXX ,DDD}. In the enhancement

4 Proposed Framework 32

stage, the clean speech magnitude spectrum is predicted from processing the noisy speech
frames by the well-trained DNN model. Next, in the Wiener filtering module, the phase of
the noisy speech is applied to the enhanced output, as explained in Section 3.3. In effect, as
in the majority of available methods for speech enhancement, it is assumed that the phase
information is not critical for the human auditory perception, so only an estimate of the
magnitude spectrum of the speech is required [24]. Finally, to reconstruct the enhanced
speech signal into the time domain, the inverse STFT is computed followed by the overlap-
add method.

4.2 MFCC Features

Fig. 4.2 MFCC feature extraction flowchart

This section describes the procedure for calculating the MFCC feature vectors of an audio
signal, as illustrated in Fig. 4.2. First, in the pre-emphasis stage, the speech signal is passed
through a first order FIR filter that boosts the highband formants. Specifically, the filter
output signal, y′

[n], is computed as,

y
′
[n] = y[n]− αy[n− 1] (4.1)

where α is a pre-emphasis coefficient, typically in the range 0.95 ≤ α ≤ 1. The boosted
speech signal y′

[n] is then segmented into consecutive overlapping frames of length K with
frame advance F , and each frame is multiplied with an analysis window, which in this work
is chosen as a Hanning window [51]. Then for each windowed frame, a DFT is computed as
explained in Subsection 3.1. The resulting STFT coefficients are denoted by Y ′

ν(k), where
ν ∈ Z refers to the frame index and k ∈ {0, 1, . . . , K − 1} is the frequency index. For
convenience, we define the STFT coefficient vector YYY ′

ν = [Y ′
ν(0), Y

′
ν(1), . . . , Y

′
ν(K − 1)],

which is shown in Fig. 4.2. The squared magnitude of the STFT coefficients, i.e., |Y ′
ν(k)|2,

4 Proposed Framework 33

are then passed through a mel-scale filterbank, consisting of M overlapping triangular
pass-band filters [58], indexed by m ∈ {0, 1, ..,M − 1}. Specifically, for the m-th pass-band
filter, the filter output denoted as Y ′′

ν (m), is calculated as a weighted sum of the squared
magnitude values within the corresponding pass-band [58], as expressed by,

Y ′′

ν (m) =
K−1∑
k=0

|Y ′

ν(k)|2Wkm (4.2)

where Wkm > 0 is the (k,m)-th entry of the filterbank matrix WWW ∈ RK×M . In this
formulation, Y ′′

ν (m) can be interpreted as the m-th passband mel-scale filter energy. Next,
a logarithmic operation is applied to the filter outputs. Finally, the outputs are further
processed by taking the Type III discrete cosine transform (DCT), as expressed by [40,59],

Cν(p) =
√

2

M

M−1∑
m=0

(log10 Y ′′
ν (m)) cos(

pπ

M
(m− 0.5)) (4.3)

where Cν(p) refers to the p-th MFCC, p ∈ {0, 1, . . . , P − 1}, and P is the number of mel-
scale cepstral coefficients. For convenience, we define the vector YYY ′′

ν = [Y ′′
ν (0), Y

′′
ν (1), . . . ,

Y ′′
ν (M − 1)] and CCCν = [Cν(0), Cν(1), . . . , Cν(P − 1)], also shown in Fig. 4.2.

Although MFCC have been successfully applied in speech processing, it has been shown
that the performance of the speech recognition can be improved by applying a liftering
operation to the cepstral coefficients [60]. In this operation, the liftered coefficients are
obtained as,

Lν(p) = w(p)Cν(p) (4.4)

where the weights w(p), for p ∈ {1, 2, . . . , P}, define the lifter. Several types of lifters have
been proposed in the literature [60], the most commonly used ones being briefly reviewed
below:

• The linear lifter which can be expressed as,

w(p) = p (4.5)

• The statistical lifter takes the form,

w(p) =
1

σ(p)
(4.6)

4 Proposed Framework 34

where σ denotes the standard deviation of the p-th cepstral coefficient.

• The sinusoidal lifter can be expressed as,

w(p) = 1 +
P

2
sin(

πp

P
) (4.7)

• The exponential lifter is given by,

w(p) = ps exp(− ps

2τ 2
) (4.8)

where s and τ are constants with typical values of 1.5 and 5, respectively.
In this thesis, we use the sinusoidal lifter, while the other key parameters are chosen

as follows:

• Number of mel-scale filterbank channels: M = 64

• Frame size for FFT calculation: K = 1024

• Number of MFCC coefficients: P = 22

• Sampling frequency: fs = 16 KHz

Further details will be provided in the following Chapter where we present the experimental
results.

4.3 Incorporation of MFCC within DNN

In the following subsections, we discuss the training and the enhancement procedures of
the proposed MFCC-based DNN system.

4.3.1 Training

The proposed low complexity DNN model is illustrated in Fig. 4.3. While the training pro-
cedure is the same as that explained in Subsection 3.3, the DNN structure is less complex.
Each hidden layer, labeled with index l ∈ {1, 2, . . . , L− 1} consists of I ′ neurons, where L

is the total number of layers. As we will show in Chapter 5, the use of MFCC will make
it possible to significantly reduce the number of neurons in each layer. That is, I ′

= I/β,

4 Proposed Framework 35

where I is the number of neurons per layer in an STFT-based DNN system with similar
performance, and β > 1 is a complexity reduction factor.

In the training phase, the network is presented with the sequence clean speech target
vectors XXX ν , the noise target vectors DDDν , and the mel scale cepstral coefficient vectors,
calculated from the input signal by proceeding as in Subsection 4.2. For convenience, we
define the input MFCC matrix CCC = [CCC1, . . . ,CCCN], the clean speech target matrix XXX =

[XXX 1, . . . ,XXXN], and the noise target matrix DDD = [DDD1, . . . ,DDDN], where N is the total number
of frames available for training.

Fig. 4.3 The proposed MFCC-based DNN model

4.3.2 Enhancement

In the enhancement stage, at the ν-th frame, the network is presented with the noisy
input MFCC vector CCCν , in order to predict the clean speech and the noise spectrum mag-
nitudes at the output, represented as X̂XX ν and D̂DDν , respectively. The output layer, h(L)

= [X̂XX ν , D̂DDν] consists of two K-dimensional prediction components. In this notation, X̂XX ν =

[X̂ν,0, X̂ν,1, . . . , X̂ν,K−1], and D̂DDν = [D̂ν,0, D̂vν,1, . . . , D̂ν,K−1], where the components X̂ν,k and
D̂ν,k provide preliminary estimates of the clean speech and noise spectrum magnitudes, that
is Xν,k ≡ |X(ν, k)| and Dν,k ≡ |D(ν, k)|, respectively. After DNN processing, the predicted

4 Proposed Framework 36

magnitude spectrum of the clean speech for the ν-th frame is derived by applying a Wiener
filter, as explained in Section 3.2.

4.4 Non-negative Matrix Factorization Approach

In addition to DNN, there has been much interest in the application of the non-negative
matrix factorization (NMF) techniques to many problems including, but not limited to,
speech enhancement [19], source separation [25], speech or object recognition [26] and image
processing [61]. The NMF algorithm can be considered as a dimensionality reduction tool,
which represents a given data matrix by a product of a basis and activation matrices with
non-negative elements.

Let us introduce a non-negative matrix 1 V = [Vpq] ∈ RP×Q
+ , where R+ refers to the set of

non-negative real numbers. Using the NMF technique, the matrix V can be approximated
as V ∼= WH, where W = [Wpr] ∈ RP×R

+ is a basis matrix (also known as dictionary or
codebook) and H = [Hrq] ∈ RR×Q

+ is an activation matrix (also known as encoding matrix),
and R is the number of basis vectors.

In order to achieve this approximation, a suitable cost function J (V,WH) needs to
be minimized, subject to the non-negative constraints W > 0, H > 0, according to the
procedures in [25, 62, 63]. To achieve a solution to this optimization problem, one can
express the gradient of J (V,WH) in terms of two non-negative terms ▽−J (V,WH)

and ▽+J (V,WH), such that J (V,WH) = ▽+J (V,WH) − ▽−J (V,WH), [25, 62, 63].
Using these terms, it is possible to express the multiplicative update rule as:

W←W⊗ ▽−
WJ (V,WH)

▽+
WJ (V,WH)

, H← H⊗ ▽−
HJ (V,WH)

▽+
HJ (V,WH)

(4.9)

where the operator ⊗ and the quotient line respectively denote element-wise multiplication
and division. Under appropriate conditions, the sequence of matrices W and H obtained
through repeated application of the update rule 4.9 usually converge to a local minimum
of the cost function J (V,WH).

The cost function, J (V,WH), can be obtained using some measure of distance between
two non-negative matrices. Several cost functions have been proposed in the literature, such

1We refer to a matrix V = [Vpq] as non-negative if all its entries satisfies Vpq > 0, and indicates this
through the notation V > 0.

4 Proposed Framework 37

as the Euclidean distance (FR), the Kullback-Leibler divergence (KL), and the Itakura-
Saito divergence (IS) shown in (4.10), (4.11), (4.12), respectively:

JFR(V,WH) =
P∑

p=1

Q∑
q=1

(Vpq − [WH]pq)
2 (4.10)

JKL(V,WH) =
P∑

p=1

Q∑
q=1

(Vpq ln
Vpq

[WH]pq
− Vpq + [WH]pq) (4.11)

JIS(V,WH) =
P∑

p=1

Q∑
q=1

(
Vpq

[WH]pq
+ ln

Vpq

[WH]pq
− 1) (4.12)

However, the KL-divergence is widely used and it has been shown that it improves the
performance compared to the other functions. Hence, by incorporating the KL-divergence
cost function into the NMF, the update rule becomes the following:

W←W⊗ (V/WH)H)T

1HT
, H← H⊗ WT (V/WH)

WT1
(4.13)

Here, T denotes the matrix transpose operation and 1 is a P ×Q dimensional matrix with
all entries equal to 1.

As previously mentioned, in single channel speech enhancement, the noisy speech spec-
trum can be expressed as the sum of clean and noise magnitude spectrum, i.e, Y (p, q) =

X(p, q) + D(p, q). Here, we define V = [Vpq] ∈ RP×Q
+ , where Vpq denotes the magnitude

of the STFT coefficient of the noisy speech, i.e. Vpq = |Y (p, q)|, for the p-th frequency
bin of the q-th time frame, Q is the number of time frames and P refers to the number of
frequency bins. In the following explanation, for convenience in notation, we use subscripts
or superscripts Y , X, and D referring to the noisy speech, the clean speech, and noise,
respectively.

NMF consists of two stages of training and enhancement. In the training stage, the
basis matrix for both the clean and noise, respectively denoted as WX = [WX

pr] ∈ RP×RX
+

and WD = [WD
pr] ∈ RP×RD

+ are derived by applying the update rule to the training data,
VX ∈ RP×QX

+ , VD ∈ RP×QD
+ . In the enhancement stage, we first form the basis matrices

as WY = [WXWD] ∈ RP×(RX+RD)
+ . Then, the NMF activation function is applied to the

noisy speech magnitude spectrum VY ∈ RP×QY
+ to estimate the activation matrix of the

noisy speech, ĤY = [ĤT

XĤT

D]
T ∈ R(QX+QD)×R

+ .

4 Proposed Framework 38

In this regard, the activation function is first computed, then the estimated clean speech
spectrum is evaluated using Wiener filter as,

Ŝ =
P̂X

PX̂ + P̂D
⊗Y (4.14)

where matrices P̂X = [P̂X(p, q)] and PD̂ = [P̂D(p, q)] contain the estimated values of
speech and noise power spectra, with (p, q) being the time-frequency bin. These estimates
are computed recursively as,

P̂X(p, q) = τxP̂X(p, q − 1) + (1− τx)([WXĤX]pq)
2 (4.15)

P̂D(p, q) = τdP̂D(p, q − 1) + (1− τd)([WDĤD]pq)
2 (4.16)

In this expression, the parameters τx and τd, taken in the range [0, 1), denote the temporal
smoothing factors for the speech and noise signal, respectively. Finally, to reconstruct the
enhanced speech in the time domain, the inverse STFT is applied to Ŝ followed by the
overlap method as explained in Chapter 3.

4.5 Complexity Analysis

The computational complexity of an algorithm indirectly provides a measure of the time
taken by that algorithm to run on a given processing platform. It is often measured
in terms of the number of computer instructions or operation cycles (e.g., floating point
multiplications) needed to execute the algorithm [64]. Here, we measure the complexity in
terms of the required number of real multiplications per frame.

The overall computational complexity of the proposed MFCC-based DNN for speech
enhancement depends on the implementation of the individual sub-algorithms composing
the system. Let us first consider the MFCC acoustic feature extraction module represented
in Fig. 4.1. The pre-emphasis and windowing require two multiplications per sample, or
2K multiplications per frame, where K is the frame length. The STFT can be implemented
using FFT with K log2K complexity, as opposed to a direct realization of the DFT with
complexity K2. The required STFT magnitude coefficients for each frame are then comput-
ed at the cost of 2K. These values are used as input to the mel-scale triangular filterbank
with complexity upper bounded by MK, where M is the total number of overlapping tri-

4 Proposed Framework 39

angular pass-band filters. The DCT in the mel-scale cepstral analysis stage is implemented
using the fast cosine transform (FCT) algorithm with complexity M log2M . Hence, in the
acoustic feature extraction module, a total of K log2K+(M +4)K+M log2M multiplica-
tions per frame of speech signal are required, where the dominant term is K log2K (since
K ≫M in our application).

Now consider the MFCC-based DNN as shown in Fig. 4.3 with L hidden layers, each
containing I ′ neurons for simplicity and IL output neurons, and assume that the maximum
number of training iterations is T . Based on [65], the MFCC-based DNN requires 3(L −
2)I ′2T + 3I ′ILT + 2PI ′T + 2ILT multiplications per frame in the training stage, where
P is the number of computed MFCC. In the enhancement stage, the MFCC-based DNN
requires (L − 2)I ′2 + I ′IL + PI ′ multiplications to forward propagate the input frame to
the output.

Referring to Fig. 4.1, the signal reconstruction involves the following operations: up-
dating the speech and noise PSD based on (3.10)-(3.11) at the cost of 6K per frame;
implementing the Wiener filter in (3.9) at the cost 4K per frame (this includes incorpora-
tion of the noisy speech phase); and signal reconstruction via inverse STFT, which requires
K log2K multiplications per frame.

Based upon the above considerations, the overall computational complexity of the pro-
posed MFCC-based DNN system is summarized in Table 4.1.

Table 4.1 Computational complexity of the MFCC-based DNN for speech
enhancement

MFCC feature extraction K log2K + (M + 4)K +M log2M

DNN Training (3(L− 2)I ′2 + 3I ′ILT + 2PI ′ + 2IL)T

DNN Enhancement (L− 2)I ′2 + I ′IL + PI ′

Signal reconstruction 10K +K log2K

Now let us consider the STFT-based DNN which is shown in Fig. 3.2. In this case,
since the algorithm uses the STFT magnitude coefficients as inputs, the complexity of the
feature extraction reduces to K log2K+4K. Denoting by I the number of neurons in each
one of the L layers, the STFT-based DNN requires 3(L− 2)I2T + 3IILT + 2KIT + 2ILT

multiplications per frame in the training stage, including the forward and back propagation
needed to apply the gradient information to lower layers and update the weights accordingly.

4 Proposed Framework 40

In the enhancement stage, the algorithm requires (L− 2)I2 +KI + IIL multiplications to
forward propagate the input frame to the output. The signal reconstruction is identical to
the MFCC-based DNN algorithm. Subsequently, the reduced computational workload of
the low complexity DNN, that is I ′ < I and P < K, will allow for a faster enhancing and
testing running time, as illustrated in the next chapter.

Computational complexity is often used as a performance measure of an algorithm
along with its memory requirements. The number representation used for implementing
the DNN algorithms for speech enhancement developed and studied in this thesis is the
standard double precision floating point numbers in Python, which is based on IEEE 754
floating point representation [66]. A single number represented using this standard takes
up S = 8 bytes of memory. In the case of the STFT-based DNN with parameters K, L, I
and IL as defined before, the memory requirement to store the weights and biases needed
to perform a forward pass in the DNN is approximately S(KI + I2 + IIL). 2 In the same
way, the memory requirement of the proposed MFCC-based DNN for processing a single
frame of noisy speech is approximately S(PI ′ + I ′2 + I ′IL). Again, due to the fact that
I ′ < I and P < K, the memory needed by the MFCC-based DNN algorithm will be much
smaller than that needed by the STFT one.

2This excludes the additional memory needed to store temporary results from each hidden units.

41

Chapter 5

Simulation Results and Discussion

In this chapter, we first describe the methodology used to assess the performance of the
proposed MFCC-based DNN, as well as the standard STFT-based and NMF approaches for
speech enhancement. We then evaluate the run time of these algorithms for the training and
the enhancement phases. Finally, we compare their performance in the speech enhancement
task by presenting the PESQ, segSNR, and SDR results.

5.1 Methodology

In this section, we describe the speech data corpus used to carry out our experiments, the
parameter settings of the three algorithms under evaluation, and the performance measures
used for their comparative evaluation.

5.1.1 The noisy speech data

The clean speech signals used in our experiments were selected from the TSP-speech
database [67] and consisted of 1500 utterances from 25 different male and female speakers
(60 utterances per speaker). As for the noise signals, five different types were selected from
the NoiseX92 database [2], namely: babble, pink, buccaneer2, factory1, and hfchannel.
The noisy speech utterances were generated by adding noise sequences to the clean speech,
appropriately scaled to achieve input SNRs of 0, 5 and 10 dB. The sampling frequency of
all the signals was set to its original value of 16 KHz.

For each SNR level, the noisy speech utterances generated in this way were divided

5 Simulation Results and Discussion 42

into two sets. The first set, referred to as the training and validation set, includes 18750
utterances, corresponding to 11 hours of speech, while the second set referred to as the test
set, includes 3750 utterances, corresponding to 2 hours.

5.1.2 Systems Under Comparison

We implemented the proposed MFCC-based DNN for speech enhancement along with two
benchmark algorithms, namely the STFT-based DNN and NMF algorithms, to compare
the enhanced speech quality. The basic settings for the STFT analysis and synthesis were
kept identical for all the benchmark and proposed methods. Specifically, a value of α = 0.97

was used in the pre-emphasis filter while a Hanning window was employed in computing
the STFT. The length of the window was set to K = 1024 (64ms) with a 75% frame overlap
for both the analysis and the synthesis. Also the temporal smoothing factors for the speech
and noise spectrum estimation, as needed for the final Wiener filtering operation in all
three approaches, were set to τx = 0.4 and τd = 0.9, respectively. The same dataset as
mentioned in Subsection 5.1.1 was applied to train all three methods, and this for each
noise type and SNR level.

For the implementation of the MFCC-based DNN system, we used M = 64 ovelapping
filterbank channels spanning the frequency range from 300 to 3700Hz. The filter outputs
were used to compute P = 22 MFCC coefficients using an M-point DCT, after which a
sinusoidal lifter was applied. The first MFCC coefficient, Cν(0), provides a measure of the
energy content of each frame. The proposed MFCC-based DNN consists of L = 2 hidden
layers with I ′ = 1024 hidden neurons each. For each processed data frame, the DNN is
input with the corresponding vector of P = 22 MFCC, while the output consists of two
vectors containing the K/2 + 1 = 513 magnitude coefficients 1 of the clean speech and
noise signals, respectively. For each noise type and SNR value, the MFCC-based DNN was
trained by processing the data in the training/validation set, consisting more precisely of
the corresponding noisy speech, clean speech and noise sequences. The optimum number of
iterations for training of the DNN was obtained by observing the behavior of the training
and validation errors and selecting the value where the validation error starts to increase. In
this way, we empirically found that a number of 25 iterations was adequate. We considered
the iRprop− algorithm with parameters set as follows: η+ = 1.2, η− = 0.8, ∆max = 100,

1For real valued signal, only half of the STFT magnitude coefficients are needed to the even symmetry
property.

5 Simulation Results and Discussion 43

∆min = 0, ∆(l)
ij (0) = 0.5 and the Ridge regularization parameter λ = 0.01.

The STFT-based DNN consists of L = 2 hidden layers with I = 4096 hidden neurons
each. In our experiment, for each processed data frame, the STFT-based DNN is input
with the corresponding vector of K/2 + 1 = 513 STFT, while the output consists of two
vectors containing the K/2 + 1 = 513 magnitude coefficients of the clean speech and noise
signals, respectively. We used a regularization parameter of λ = 0.01.

Regarding the NMF algorithm, we consider a speaker-independent but noise-dependent
application, in which one basis matrix is trained for all the clean speech signals and one basis
matrix is trained for each type of noise signals. For implementing the NMF, we considered
the KL-divergence leading to the update rule (4.13). The number of basis vectors was set
to R = 80.

The NMF algorithm was implemented in Matlab [68] while both DNN methods were
implemented in Matlab and Python. The numerical experiments were run on a computer
featuring the Intel(R) Xeon(R) central processing unit (CPU), 2 additional parallel pro-
cessors operating at the speed of 2.3 GHz, and 64GB of RAM.

5.1.3 Performance Measures

To evaluate the enhanced speech, we use three objective measures, namely, the perceptual
evaluation of speech quality (PESQ) [69,70], the segmental signal-to-noise ratio (SegSNR)
[71] and the source-to-distortion ratio (SDR) [72]. A brief overview of these evaluation
measures is presented below.

Perceptual Evaluation of Speech Quality

In order to evaluate the quality of the enhanced signal, the perceptual evaluation of speech
quality (PESQ) [69, 70] was used. It is a popular measure with typical value in the range
from -0.5 to 4.5, used for automated assessment of speech quality as experienced by a
listener. PESQ attempts to emulate the results of a subjective listening experiment by
predicting the quality of the enhanced signal as it would be perceived by a listener. Larger
PESQ values correspond to better overall speech quality.

5 Simulation Results and Discussion 44

Segmental Signal-to-Noise Ratio

Segmental signal-to-noise ratio (SegSNR) is a common objective quality measure, and is
defined as the average of SNR (dB) values calculated over successive short-time segments
of speech (e.g., 16-64ms). The SNR helps to distinguish between the estimation errors that
are mostly inflicted by noise. Consider a sequence of speech frame, each of length N and
indexed by integer i. Let xi = [x(ni), . . . , x(ni +N − 1)] denotes the N -dimensional vector
of clean speech samples for the i-th frame, where ni denotes the index of the first sample.
Similarly, let x̂i = [x̂(ni), . . . , x̂(ni +N − 1)] denote the corresponding vector of processed
speech (e.g. as produce by the MFCC-based DNN) for the i-th frame. The SNR of the
processed speech signal for the i-th frame can be formulated as,

SNRi =
xT
i xi

(xi − x̂i)T (xi − x̂i)
(5.1)

Considering that SNR values tends to be influenced more significantly by intense frag-
ments of speech (i.e. frames with large power), it is preferable to compute the average
SNR in the log domain, by averaging the decibel values of SNRi over multiple frames. The
resulting measure, called segmental SNR (segSNR), averages the performance more equally
over the weak and strong segments of the speech. The average SegSNR over all the frames
is therefore calculated as,

SegSNR =
1

Ns

Ns−1∑
i=0

SNRi

∣∣∣
dB

(5.2)

=
1

Ns

Ns−1∑
i=0

10 log10
xT
i xi

(xi − x̂i)T (xi − x̂i)
(5.3)

where Ns refers to the number of available speech frames. Higher SegSNR values indicate
lesser background noise, hence a better performance of the enhancement method.

Source-to-Distortion Ratio

The source-to-distortion ratio (SDR) measures the amount of speech distortion in the
enhanced speech signal. It reflects the overall separation quality on a dB scale, considering
both the speech distortion and the noise reduction aspects [73]. In our work, the SDR value

5 Simulation Results and Discussion 45

is computed by employing the BSS-Eval toolbox [72].

5.2 Performance Evaluation and Discussion

As explained earlier, the PESQ, SegSNR and SDR measurements are used as the per-
formance metrics in our experiments. Five noise types, i.e., babble, pink, buccaneer2,
factory1, and hfchannel noise, are considered for the evaluation of the various algorithms
under study. The clean speech signal is corrupted by these background noise types at three
SNR levels: 0, 5 and 10dB. In addition to the proposed approach, two other benchmark
methods are considered in the experiments. For conciseness, we refer to these methods as
follows,

• DNN-MFCC: the proposed DNN approach using MFCC as inputs.

• DNN-STFT: a more conventional DNN approach using the STFT magnitude coeffi-
cients as input [22].

• NMF: the speaker independent NMF approach of Section 4.

5.2.1 Parameter Selection and Run Times

The first step in implementing the DNN approaches for speech enhancement was to deter-
mine the number and size of the hidden layers. Based upon several preliminary experiments,
we found that a number of L = 2 hidden layers was adequate to achieve good performance.
For this value of L, we have also compared the speech enhancement performance of both
MFCC and STFT-based DNN models trained with different sizes of hidden layers, i.e.,
1024, 2048, and 4096. In Table 5.1, we show average PESQ values for the two DNN meth-
ods versus the size of the hidden layers as obtained for pink noise at 5dB. Based on these
and other similar results, we found that the optimum number of hidden layers, resulting
in the best performance of the STFT and the MFCC-based DNN methods were I = 4096

and I ′ = 1024, thereby 4096 and 1024, respectively. Hence, according to our discussion in
Section 4.3, we have I ′ = I/β, where β = 4.

Fig. 5.1 gives the average PESQ results for different numbers P of the MFCC coefficients
for pink noise at 5 dB input SNR. Based on these and other similar results, the optimal
value of P = 22 is chosen for the proposed method.

5 Simulation Results and Discussion 46

Table 5.1 Comparing the average PESQ values of different DNN structures
for pink noise at 5dB

Hidden layers size 1024 2048 4096

DNN-STFT 2.17 2.18 2.21
DNN-MFCC 2.23 2.19 2.18

Fig. 5.1 Average PESQ results for different numbers of MFCCs

Table 5.2 demonstrates the running time comparison of different algorithms. In the
DNN-STFT approach, we trained a DNN model with 2 hidden layers of size I = 4096

neurons each and used the STFT magnitudes as input features. In the DNN-MFCC ap-
proach, the MFCC input features were applied to a DNN model with 2 hidden layers of size
I ′ = 1024 neurons each. For both STFT and MFCC-based DNN approaches, the training
and validation set includes 18750 utterances, corresponding to 11 hours of speech, while the
test set includes 3750 utterances, corresponding to approximately 2 hours. In the case of
the speaker independent but noise dependent NMF approach, the training and validation
set, includes 1250 utterances, corresponding to approximately 42 minutes of speech, while
the test set, includes 3750 utterances, corresponding to approximately 2 hours.

From the discussion in Section 4.3, since I ′ = I/β where β = 4, the proposed DNN
structure using the MFCC features as input can lead to a significant reduction in computa-

5 Simulation Results and Discussion 47

tional complexity when compared to the DNN model using conventional STFT features [22].
This is evidenced by the results in Table 5.2 where the runtime for the training phase of the
DNN-MCCC is reduced by a factor of approximately 5 (4.75) compared to DNN-STFT.
While NMF takes less time than both DNN models for training, mainly because in the later
case, longer training data sets obtained by adding various noise types at different SNR to
the clean speech are employed. Nevertheless, the enhancement phase for NMF takes much
longer time than for the DNN models, mainly due to the use of an iterative process in the
estimation of the activation matrix. The running time for the enhancement phase for both
DNN-STFT and DNN-MFCC are almost the same, as they forward propagate the same
data and compute the predicted signal in the same manner.

Table 5.2 Running time including the training and the enhancement stages

Time NMF DNN-STFT DNN-MFCC

Training 5min 38min 8min
Enhancement 15min 2min 2min

5.2.2 Enhancement Performance

The average perceptual evaluation results, as given by the PESQ values for the benchmark
and the proposed algorithms for each noise type and SNR levels are presented in Tables
5.3 to 5.7. It can be observed from these results that the proposed DNN-MFCC method
achieves the best performance for all the cases under study. Compared to NMF, the use of
the DNN-MFCC leads to significant gain in PESQ values, especially at lower SNR (i.e. 0
and 5dB).

Tables 5.8 to 5.12 present the values of the segSNR measurements while Tables 5.13-
5.17 present the SDR measurements for the same noise types and SNR levels as mentioned
above. It can be observed from these results that the proposed MFCC-based DNN method
performs better than the NMF and STFT-based DNN methods in most cases, for the
objective performance metrics under consideration.

Informal listening tests tend to concur with the above objective results. In particular,
the NMF method seem to suppress the stationary elements present in the background noise
but fail to reduce the non-stationary elements properly. This is evident when listening to

5 Simulation Results and Discussion 48

the enhanced signals processed by this method. The proposed DNN-MFCC method is able
to suppress the non-stationary elements in the background noise better than the NMF and
DNN-STFT methods in most cases. However, this seems to come at the expense of some
additional distortion in the resulting enhanced speech.

For illustrative purposes, Fig. 5.2 presents the time domain waveforms of the clean,
noisy and enhanced speech, as well as the corresponding spectrograms, for a representative
sentence from the TSP database [2]. In this case, the noisy is obtained by adding pink noise
with 5dB SNR, while the enhanced speech is that obtained with the proposed DNN-MFCC
method. It is seen from both the time domain waveforms and the spectrograms that a
significant portion of the noise has been removed, while most of the clean speech structure
has been preserved.

To summarize our experimental findings, the above objective results show that the
proposed DNN approach using MFCC coefficients can lead to a better enhancement per-
formance than the NMF and DNN-STFT. More importantly, when compared to the DNN-
STFT, the use of MFCC in the proposed method leads to a significant reduction of the
model complexity, which translates into a corresponding reduction of the algorithm run
time during the training phase.

5 Simulation Results and Discussion 49

Table 5.3 Average PESQ values for pink noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB PESQ 1.31 1.70 2.07 2.12
5dB PESQ 1.68 2.13 2.21 2.23
10dB PESQ 2.08 2.45 2.31 2.46

Table 5.4 Average PESQ values for babble noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB PESQ 1.45 1.52 1.81 1.92
5dB PESQ 1.83 1.92 2.20 2.22
10dB PESQ 2.01 2.24 2.33 2.39

Table 5.5 Average PESQ values for buccaneer2 noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB PESQ 1.13 1.67 1.90 2.03
5dB PESQ 1.52 2.07 2.08 2.26
10dB PESQ 1.90 2.30 2.21 2.42

Table 5.6 Average PESQ values for factory1 noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB PESQ 1.36 1.60 1.89 1.93
5dB PESQ 1.73 2.05 2.20 2.24
10dB PESQ 2.11 2.30 2.33 2.36

5 Simulation Results and Discussion 50

Table 5.7 Average PESQ values for hfchannel noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB PESQ 1.19 1.62 2.00 2.09
5dB PESQ 1.45 1.80 2.09 2.17
10dB PESQ 1.79 2.22 2.14 2.24

Table 5.8 Average segSNR values for pink noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB segSNR -3.98 0.03 0.05 0.08
5dB segSNR -1.5 3.05 3.03 3.06
10dB segSNR 2.38 6.23 6.13 6.25

Table 5.9 Average segSNR values for babble noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB segSNR -3.98 -0.66 -0.71 -0.68
5dB segSNR -1.06 2.22 2.25 2.26
10dB segSNR 3.3 4.54 4.48 4.53

Table 5.10 Average segSNR values for buccaneer2 noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB segSNR -4.2 -0.18 -0.12 -0.12
5dB segSNR -1.13 2.12 2.18 2.23
10dB segSNR 2.5 6.7 6.65 6.68

5 Simulation Results and Discussion 51

Table 5.11 Average segSNR values for factory1 noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB segSNR -4.35 -0.52 -0.55 -0.51
5dB segSNR -1.33 2.69 2.73 2.73
10dB segSNR 2.56 5.81 5.79 5.88

Table 5.12 Average segSNR values for hfchannel noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB segSNR -4.5 0.47 0.35 0.46
5dB segSNR -1.5 4.13 4.09 4.14
10dB segSNR 2.4 6.78 6.61 6.72

Table 5.13 Average SDR values for pink noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB SDR 0.02 5.16 5.23 5.36
5dB SDR 5.01 10.08 10.31 10.38
10dB SDR 10.00 14.30 14.57 14.77

Table 5.14 Average SDR values for babble noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB SDR 0.03 2.42 2.53 2.60
5dB SDR 5.02 7.28 7.43 7.44
10dB SDR 10.02 11.45 11.68 11.71

5 Simulation Results and Discussion 52

Table 5.15 Average SDR values for buccaneer2 noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB SDR 0.01 3.89 4.03 4.11
5dB SDR 5.01 8.64 8.32 8.39
10dB SDR 10.01 13.07 13.8 13.83

Table 5.16 Average SDR values for factory1 noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB SDR 0.01 4.05 4.23 4.24
5dB SDR 5.00 8.84 8.90 8.89
10dB SDR 10.00 13.26 13.29 13.32

Table 5.17 Average SDR values for hfchannel noise

SNR Eval. Noisy NMF DNN-STFT DNN-MFCC

0dB SDR 0.01 5.45 5.53 5.61
5dB SDR 5.00 10.01 11.30 11.41
10dB SDR 10.01 14.03 14.12 14.33

5 Simulation Results and Discussion 53

Fig. 5.2 Time domain representations of: a) clean speech signal; b) noisy
speech signal (5 dB SNR pink) and c) enhanced speech signal; and frequency
domain (spectrogram) representations of d) clean speech signal; e) noisy speech
signal and f) enhanced speech signal. The corresponding speech utterances are
selected from [2]: “The rarest spice comes from the far East. The roof should
be tilted at a sharp slant. A smatter of French is worse than none. The mule
trod the treadmill day and night. The aim of the contest is to raise a great
fund. To send it now in large amounts is bad. There is a fine hard tang in
salty air. Cod is the main business of the north shore. The slab was hewn
from heavy blocks of slate. Dunk the stale biscuits into strong drink.”

54

Chapter 6

Conclusion and Future Work

This chapter provides some concluding remarks about the research presented in this thesis.
Specifically, Section 6.1 presents a brief summary of the thesis work and contributions,
while Section 6.2 lists suggestions for possible future work in this active area.

6.1 Thesis Overview and Contributions

During the last decade, deep neural network (DNN) has been a subject of great interest in
many fields of study, such as image processing, speech processing and email classification.
While a recently proposed DNN technique based on STFT coefficients [22] offers many
advantages for the speech enhancement task, it is characterized by high system complexity
and implementation cost, especially with regards to the training phase. The main objec-
tive of this thesis was to reduce the DNN complexity by introducing a spectral feature
mapping from the noisy mel frequency cepstral coefficients (MFCC) to the enhanced short
time Fourier transform (STFT) spectrum. Consequently, by exploiting the lower dimen-
sionality of the MFCC input feature vector, as compared to the STFT feature vector, a
low-complexity DNN model is presented, in order to efficiently perform noise suppression
for the purpose of a single channel speech enhancement. Below, we present a chapter-wise
sequential overview of the main topics discussed in this work.

• In Chapter 1, a comprehensive summary of the speech enhancement problem was
presented. This was followed by a literature survey on the conventional and more
recent techniques of speech enhancement, including non-negative matrix factorization

6 Conclusion and Future Work 55

(NMF) and DNN methods.

• In Chapter 2, a brief review of deep learning was first presented. Then, motivated by
biological networks, artificial neural networks were reviewed. This was followed by
the presentation of DNN and backpropagation techniques.

• In Chapter 3, a detailed description of the STFT audio feature extraction and signal
reconstruction was given. The STFT based DNN structure presented in [22] along
with its training procedure were presented. Towards the end of the chapter, the
different Rprop techniques were reviewed.

• In Chapter 4, the proposed DNN algorithm for speech enhancement was presented.
This framework delves upon a special spectral feature mapping from MFCC to STFT
features. A brief review of the NMF approach was also provided for the purpose of
comparison.

• In Chapter 5, simulation results based on three well-accepted objective measures, that
is, SegSNR, PESQ and SDR, were presented and discussed. The results showed that
compared to STFT-based DNN model, the proposed MFCC-based DNN model offers
improved quality in the enhanced speech, while significantly reducing the processing
complexity, i.e. run time for the training phase reduced by a factor of ∼ 5.

In our work, we considered the regression based feed-forward DNN with MFCC as
input vector for the problem of single channel speech enhancement. The DNN model
was trained with the help of the improved resilient back propagation algorithm and the
MMSE cost function. We implemented the proposed DNN model with different numbers
of MFCC coefficients and sizes of network structure and were able to achieve a significant
reduction in runtime by a factor of 4.75 when compared to a recently proposed STFT-
based DNN approach. The system performance was evaluated using the PESQ, segSNR
and SDR scores, thereby showing that the proposed scheme can outperform the NMF and
DNN-STFT which were used as benchmark approaches.

6.2 Future Research Directions

In this section, we point out some possible directions for future research work.

6 Conclusion and Future Work 56

There are other families of deep learning algorithms which could be generally applied
to the problem of noise reduction or speech enhancement. In this work, we have introduced
a low-complexity feed forward DNN which was able to achieve a significant reduction in
the computational complexity and run time by exploiting vectors of MFCC features with
reduced dimensionality as inputs. It is possible to explore other families of deep learning
using the same low-complexity approach. Specifically, the proposed method can be extend-
ed to convolutional neural network (CNN) [44] or recurrent neural network (RNN), i.e.,
long short-term memory (LSTM) [38].

In addition, as mentioned in Section 4.2, there are different types of lifter functions that
can be applied to the calculation of MFCC features. One interesting approach would be to
generate MFCC features using different types of lifters (or even without) and compare the
results to find the best candidate according to their performance.

In this work, we have proposed a MFCC-based DNN and compared its performance
with a STFT-based DNN. However, it is possible to combine these two networks with a
third, i.e. higher level neural network, to be trained based upon the output of the STFT-
based DNN and the MFCC-based DNN, with the aim to further enhance the speech quality.
Such a system is expected to improve the enhancement performance, since the third neural
network can further learn the complex relationship between the noisy input features and
the desired speech.

57

References

[1] M. Mobarhan, “Creating a 3d neuron scene in blender,” CINPLA , Uinoversity of Oslo,
Tech. Rep., Sep. 2015.

[2] P. Kabal, “Tsp speech database,” McGill University, Database Version, vol. 1, no. 0,
pp. 09–02, 2002.

[3] J. Benesty, M. M. Sondhi, and Y. Huang, Speech Enhancement. Berlin, Germany:
Springer Science and Business Media, 2005.

[4] R. Balan and J. Rosca, “Microphone array speech enhancement by Bayesian estimation
of spectral amplitude and phase,” in Proc. Sensor Array and Multichannel Signal
Process. Workshop, Aug. 2002, pp. 209–213.

[5] S. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE
Trans. Acoust., Speech, Signal Process., vol. 27, no. 2, pp. 113–120, Apr. 1979.

[6] N. Virag, “Single channel speech enhancement based on masking properties of the
human auditory system,” IEEE Trans. Speech Audio Process., vol. 7, no. 2, pp. 126–
137, Mar. 1999.

[7] J. S. Lim and A. V. Oppenheim, “Enhancement and bandwidth compression of noisy
speech,” vol. 67, no. 12, Dec. 1979, pp. 1586–1604.

[8] P. Scalart and J. V. Filho, “Speech enhancement based on a priori signal to noise
estimation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 2, May
1996, pp. 629–632.

[9] Y. Ephraim and D. Malah, “Speech enhancement using a minimum-mean square er-
ror short-time spectral amplitude estimator,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 32, no. 6, pp. 1109–1121, Dec. 1984.

[10] E. Plourde and B. Champagne, “Auditory-based spectral amplitude estimators for
speech enhancement,” IEEE Trans. Audio, Speech, Language Process., vol. 16, no. 8,
pp. 1614–1623, Nov. 2008.

References 58

[11] Y. Ephraim and D. Malah, “Speech enhancement using a minimum mean-square er-
ror log-spectral amplitude estimator,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 33, no. 2, pp. 443–445, Apr. 1985.

[12] P. C. Loizou, “Speech enhancement based on perceptually motivated bayesian estima-
tors of the magnitude spectrum,” IEEE Trans. Speech Audio Process., vol. 13, no. 5,
pp. 857–869, Sept 2005.

[13] K. Paliwal and A. Basu, “A speech enhancement method based on Kalman filtering,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 12, Apr. 1987, pp.
177–180.

[14] R. Ishaq, B. G. Zapirain, M. Shahid, and B. Lövström, “Subband modulator Kalman
filtering for single channel speech enhancement,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., May 2013, pp. 7442–7446.

[15] Y. Ephraim and H. L. V. Trees, “A signal subspace approach for speech enhancement,”
IEEE Trans. Speech Audio Process., vol. 3, no. 4, pp. 251–266, Jul. 1995.

[16] K. Hermus and P. Wambacq, “A review of signal subspace speech enhancement and
its application to noise robust speech recognition,” EURASIP J. Adv. Signal Process.,
vol. 2007, no. 1, pp. 1–15, 2006.

[17] J. F. and B. Champagne, “Incorporating the human hearing properties in the signal
subspace approach for speech enhancement,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 11, no. 6, pp. 700–708, Nov. 2003.

[18] A. Chaudhari and S. B. Dhonde, “A review on speech enhancement techniques,” in
Proc. Int. Conf. Pervasive Computing, Jan. 2015, pp. 1–3.

[19] N. Mohammadiha, P. Smaragdis, and L. Arne, “Supervised and unsupervised speech
enhancement using nmf,” IEEE Trans. Audio, Speech, Language Process., vol. 21,
no. 10, pp. 2140–2151, 2013.

[20] H. Chung, E. Plourde, and B. Champagne, “Discriminative training of NMF model
based on class probabilities for speech enhancement,” IEEE Signal Process. Lett.,
vol. 23, no. 4, pp. 502–506, Apr. 2016.

[21] G. Hinton, L. Deng, G. E. Dahl, A. r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups,” IEEE
Signal Processing Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[22] D. Liu, P. Smaragdis, and K. Minje, “Experiments on deep learning for speech denois-
ing,” in Interspeech, Singapore, 2014, pp. 2685–2689.

References 59

[23] S. Tamura, “An analysis of a noise reduction neural network,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., vol. 3, May 1989, pp. 2001–2004.

[24] J. Rigelsford, “Handbook of neural networks for speech processing,” Sensor Review,
vol. 23, no. 4, Dec. 2003.

[25] T. Virtanen, “Monaural sound source separation by nonnegative matrix factorization
with temporal continuity and sparseness criteria,” IEEE Trans. on Audio, Speech, and
Language Process., vol. 15, no. 3, pp. 1066–1074, Mar. 2007.

[26] B. Schuller, F. Weninger, M. Wöllmer, Y. Sun, and G. Rigoll, “Non-negative matrix
factorization as noise-robust feature extractor for speech recognition,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., Mar. 2010, pp. 4562–4565.

[27] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factorization
with the itakura-saito divergence: With application to music analysis,” Neu-
ral Comput., vol. 21, no. 3, pp. 793–830, Mar. 2009. [Online]. Available:
http://dx.doi.org/10.1162/neco.2008.04-08-771

[28] G. J. Mysore and P. Smaragdis, “A non-negative approach to semi-supervised sepa-
ration of speech from noise with the use of temporal dynamics,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., May 2011, pp. 17–20.

[29] Y. Xu, J. Du, L. R. Dai, and C. H. Lee, “A regression approach to speech enhancement
based on deep neural networks,” IEEE/ACM Trans. Audio, Speech, Language Process.,
vol. 23, no. 1, pp. 7–19, Jan. 2015.

[30] L. Ugang, T. Yu, M. Shigeki, and H. Chiori, “Speech enhancement based on deep
denoising autoencoder,” in Proc. INTERSPEECH Conf., 2013.

[31] W. Chan and I. Lane, “Deep recurrent neural networks for acoustic modelling,” arXiv
preprint arXiv:1504.01482, Apr. 2015.

[32] A. Narayanan and D. Wang, “Investigation of speech separation as a front-end for noise
robust speech recognition,” IEEE Trans. Audio, Speech, Language Process., vol. 22,
no. 4, pp. 826–835, Apr. 2014.

[33] Y. Tachioka, S. Watanabe et al., “Sequence discriminative training for low-rank deep
neural networks,” in Proc. IEEE Global Conf. Signal Info. Process., Dec. 2014, pp.
572–576.

[34] T. G. Kang, K. Kwon et al., “Nmf-based target source separation using deep neural
network,” IEEE Signal Process. Letters, vol. 22, no. 2, pp. 229–233, Feb. 2015.

References 60

[35] J. Du, Q. Wang, T. G., X. Yong, D. Li-Rong, and L. Chin-Hui, “Robust speech
recognition with speech enhanced deep neural networks.” in Proc. INTERSPEECH
Conf., 2014, pp. 616–620.

[36] P. S. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis, “Deep learning for
monaural speech separation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Pro-
cess., May 2014, pp. 1562–1566.

[37] A. Maas, Q. V. Le, M. Tyler, O. Vinyals, P. Nguyen, and A. Y. Ng, “Recurrent neural
networks for noise reduction in robust ASR,” in INTERSPEECH, 2012.

[38] F. Weninger, H. Erdogan, S. Watanabe, E. Vincent, J. Le Roux, J. R. Hershey, and
B. Schuller, “Speech enhancement with lstm recurrent neural networks and its ap-
plication to noise-robust asr,” in Proc. Int. Conf. Latent Variable Analysis Signal
Separation. Springer, Aug. 2015, pp. 91–99.

[39] S. Shin, K. Hwang, and W. Sung, “Fixed-point performance analysis of recurrent
neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Shanghai,
China, Mar. 2016, pp. 976–980.

[40] D. O’Shaughnessy, Speech Communications: Human and Machine. Wiley-IEEE Press,
1999.

[41] C. Igel and H. Michael, “Improving the Rprop learning algorithm,” in Proc. 2nd Int.
Symp. Neural Computation. Citeseer, 2000, pp. 115–121.

[42] T. M. Mitchell, The discipline of machine learning, 2006, vol. 9.

[43] G. A. Carpenter, S. Grossberg, and D. Rosen, “Art 2-a: an adaptive resonance algo-
rithm for rapid category learning and recognition,” in IJCNN-91-Seattle International
Joint Conference on Neural Networks, vol. ii, Jul. 1991, pp. 151–156.

[44] S. Haykin, Neural networks and learning machines. Pearson Upper Saddle River, NJ,
USA:, 2009, vol. 3.

[45] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[46] B. Karlik and A. V. Olgac, “Performance analysis of various activation functions in
generalized mlp architectures of neural networks,” Int. J. Artificial Intel. Expert Syst.,
vol. 1, no. 4, pp. 111–122, 2011.

[47] M. A. Nielsen, “Neural networks and deep learning,” 2015.

[48] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

References 61

[49] J. Allen, “Short term spectral analysis, synthesis, and modification by discrete fourier
transform,” IEEE Trans. Acoust., Speech, Signal Process., vol. 25, no. 3, pp. 235–238,
Jun. 1977.

[50] D. Griffin and J. Lim, “Signal estimation from modified short-time fourier transform,”
IEEE Trans. Acoust., Speech, Signal Process., vol. 32, no. 2, pp. 236–243, Apr. 1984.

[51] A. V. Oppenheim, Discrete-time signal processing. Pearson Education India, 1999.

[52] T. F. Quatieri, Discrete-time speech signal processing: principles and practice, pearson
ed. ed. Pearson Education India, Nov. 2006.

[53] E. M. Grais, M. U. Sen, , and H. Erdogan, “Deep neural networks for single channel
source separation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., May
2014, pp. 3734–3738.

[54] E. Dumitru, B. Yoshua, C. Aaron, M. Pierre-Antoine, V. Pascal, and S. Bengio, “Why
does unsupervised pre-training help deep learning?” J. Mach. Learning Research,
vol. 11, no. Feb., pp. 625–660, 2010.

[55] M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropagation
learning: the Rpop algorithm,” in Proc. IEEE Int. Conf. Neural Networks, vol. 1,
1993, pp. 586–591.

[56] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
2014. [Online]. Available: http://arxiv.org/abs/1412.6980

[57] C. Igel and M. Hüsken, “Empirical evaluation of the improved Rprop learning algo-
rithms,” Neurocomputing, vol. 50, pp. 105–123, 2003.

[58] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu, G. Moore, J. Odell,
D. Ollason, and D. Povey, “The htk book,” Cambridge university engineering depart-
ment, vol. 3, p. 175, 2002.

[59] X. Huang, A. Acero, and H. W. Hon, Spoken Language Processing: A Guide to Theory,
Algorithm, and System Development, 1st ed. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2001.

[60] K. K. Paliwal, “Decorrelated and liftered filter-bank energies for robust speech recog-
nition,” in Sixth European Conference on Speech Communication and Technology,
1999.

[61] S. Zafeiriou, A. Tefas, I. Buciu, and I. Pitas, “Exploiting discriminant information in
nonnegative matrix factorization with application to frontal face verification,” IEEE
Transactions on Neural Networks, vol. 17, no. 3, pp. 683–695, 2006.

References 62

[62] E. M. Grais and H. Erdogan, “Regularized nonnegative matrix factorization using
gaussian mixture priors for supervised single channel source separation,” Computer
Speech & Language, vol. 27, no. 3, pp. 746–762, 2013.

[63] N. Bertin, R. Badeau, and E. Vincent, “Enforcing harmonicity and smoothness in
bayesian non-negative matrix factorization applied to polyphonic music transcription,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 3, pp. 538–
549, 2010.

[64] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014.

[65] P. Vincent, A. de Brébisson, and X. Bouthillier, “Efficient exact gradient update for
training deep networks with very large sparse targets,” in Advances in Neural Infor-
mation Processing Systems, 2015, pp. 1108–1116.

[66] M. Lutz, Learning Python, 2nd ed. Sebastopol, CA, USA: O’Reilly & Associates,
Inc., 2003.

[67] R. University, “Signal processing information base: noise data,” Nov. 1993. [Online].
Available: Available online: http://spib.rice.edu/spib/select-noise.html

[68] T. P. Krauss, L. Shure, and J. N. Little, “Signal processing toolbox for use with
matlab,” 1994.

[69] A. Rix, J. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual evaluation of
speech quality (pesq), an objective method for end-to-end speech quality assessment
of narrowband telephone networks and speech codecs,” ITU-T Recommendation, p.
862, Feb. 2001.

[70] P. C. Loizou, Speech enhancement: theory and practice. Boca Raton, FL.: CRC press,
Feb. 2013.

[71] Voicebox, “Speech processing toolbox for MATLAB.” [Online]. Available: Available
online: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

[72] C. Févotte, R. Gribonval, and E. Vincent, “Bss eval, a toolbox for performance
measurement in (blind) source separation,” 2010. [Online]. Available: Available
online: http://bass- db.gforge.inria.fr/bss eval

[73] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement in blind audio
source separation,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 14, no. 4, pp. 1462–1469, Jul. 2006.

