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Abstract

This thesis addresses the design of multiuser multiple-input multiple-output (MIMO) amplify-

and-forward (AF) relaying within a cloud radio access network (C-RAN) from an energy-

efficient perspective. The aim is to jointly select remote radio heads (RRH) and optimize

their transceiver, each represented by an AF matrix, in order to assist the communication

between multiple source-destination pairs. We formulate the design problem as an interfer-

ence leakage minimization subject to per-relay power constraints, while imposing a set of

linear constraints to preserve the desired signals at the destinations. To obtain an energy-

efficient relaying solution, the objective function is penalized with a regularization term

which promotes group-sparsity among the resultant relaying weights. A low-complexity

iterative algorithm based on the alternating direction method of multipliers (ADMM) is

then proposed to solve the regularized problem, which yields closed-form solutions at each

iteration. The closed-form solution leads to a thresholding operation that enables the se-

lection of a relay subset, thus yielding solutions for the set of AF matrices that are exactly

group-sparse. Simulation results demonstrate the explicit benefits of the proposed algo-

rithm, which results in notably lower power consumption and computational complexity

than conventional relaying design methods.
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Sommaire

Cette thèse porte sur la conception de relais type amplification-et-transfert (AF) à plusieurs

entrées et plusieurs sorties (MIMO) dans un réseau d’accès radio “cloud” (C-RAN), du point

de vue de l’efficacité énergétique. L’objectif est de sélectionner conjointement des têtes-

radio-distantes (RRH) et d’optimiser leur émetteur-récepteur, chacune représentée par une

matrice AF, afin de faciliter la communication entre plusieurs paires source-destination.

Nous formulons le problème de conception sous la forme d’une minimisation de fuite

d’interférences soumise à des contraintes de puissance par relais, tout en imposant un

ensemble de contraintes linéaires pour préserver les signaux souhaités chez les destinations.

Pour obtenir une solution de relais économe en énergie, la fonction d’objectif est pénalisée

par un terme de régularisation qui favorise la parcimonie de groupe parmi les poids de relais

résultants. Un algorithme itératif de faible complexité basé sur la méthode des multiplica-

teurs de direction alternée (ADMM) est alors proposé pour résoudre le problème régularisé,

ce qui donne des solutions explicites à chaque itération. Cela conduit à une opération de

seuillage qui permet de sélectionner un sous-ensemble de relais, et par suite à un ensemble

de matrices AF qui obéissent strictement à la parcimonie de groupe. Les résultats de sim-

ulation démontrent les avantages explicites de l’algorithme proposé, ce qui se traduit par

une consommation d’énergie et une complexité de calcul nettement inférieures à celles des

méthodes de conception de relais classiques.
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Chapter 1

Introduction

In this chapter, we expose some important challenges facing the development of future mo-

bile wireless communication systems and discuss the emergence of relay-assisted networks

and small cell networks as potential solutions to several important problems arising in this

context. We then review the pertinent literature on system optimization under these setups

and summarize the main contributions of the thesis.

1.1 Network densification: addressing challenges in future

mobile networks

The performance of wireless networks has dramatically improved in the past 30 years, as

transmission rates have risen by a thousand-fold from the first generation (1G) of wireless

networks to the fourth generation (4G) [1]. Despite this feat, current networks are fac-

ing a great challenge as they will not be able to supply the projected data volumes [2].

In fact, the proliferation of wireless devices with advanced capabilities has resulted in an

unprecedented increase in both cell density and, more importantly, throughput per user.
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Likewise, the emergence of new communication paradigms, such as vehicle-to-vehicle (V2V)

and device-to-device (D2D), poses significant challenges on the design and eventual imple-

mentation of the next, fifth generation (5G) networks. In addition, to reduce end-to-end

latency, power consumption, processing complexity and cost, 5G is required to enable novel

(and potentially conflicting) applications, making disruptive technologies and architectures

indispensable for its genesis [3].

In general, wireless networks must be designed to combat scarcity of radio resources

and channel impairments, as these two factors are the main drawbacks of such networks.

For a given radio resource, channel coding/modulation is one way to increase throughput,

thereby achieving higher spectral efficiency. However, the gain achieved by these techniques

is upper-bounded by the theoretical link capacity, so new ways of increasing throughput

are desirable. Multiple-input multiple-output (MIMO) architectures are one solution: de-

ploying multiple antennas at the transmitter and/or receiver nodes to exploit the spatial

dimension enhances a network’s capacity by alleviating the detrimental channel effects, such

as multipath fading [4]. MIMO improves the reliability of a communication link through

spatial diversity and is considered a major breakthrough in radio transceiver design.

On the network level, small cell networks complementing traditional radio access net-

works (RAN) have been recognized as a potential solution to increase spectral efficiency

and energy efficiency [5]. Specifically, centralized cloud-processing coupled with a dense

deployment of low-complexity access points has been the discussion of many works. In

this new architecture, termed as cloud-RAN (C-RAN), the traditional base station (BS)

functionalities are apportioned between the centralized data center and the access points.

The former handles baseband signal processing functions and is thus termed the baseband

unit (BBU) pool. The latter are responsible for data transmission/reception and analog-

to-digital conversion and are termed remote radio heads (RRH) due to their distributed
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nature. The BBU and RRHs typically exchange channel state information (CSI) and user

equipment (UE) traffic data via low-latency and high-bandwidth optical transport links.

C-RAN offers various benefits as discussed in many recent papers. For instance, [6]

argues for its economic gains versus current architectures by noting that macro cell BS

deployments carry significant operational and capital expenditures. Another example is

[7], wherein the authors discuss the benefits of cloud-based centralization (e.g., flexibility,

resource pooling, load management, and interference mitigation) while addressing the as-

sociated signal processing challenges imposed by the 3GPP Long Term Evolution (LTE)

standard. For the above reasons, and in view that multi-cell joint signal processing is con-

sidered a key technique for interference coordination in future wireless networks [8], C-RAN

has gained considerable attention. Nonetheless, it raises issues from a network energy per-

spective since the power consumption associated with the deployment of a large number of

RRHs can become excessive when considering both local power consumption at the RRHs

(power amplifier, signal processing, etc.) and the optical transport link consumption [9].

An equally important aspect to be considered in C-RAN is the limited capacity for the op-

tical links between the BBU and RRHs, as the performance gains of centralized processing

come at the cost of significant signaling overhead [10].

In addition to MIMO and small cells, wireless relaying is considered as a cost-effective

technique for capacity enhancement and coverage extension in current cellular standards,

e.g., 3GPP LTE and LTE-Advanced [11]. Among the relaying transmission techniques,

amplify-and-forward (AF) relaying – also known as non-regenerative relaying – is particu-

larly promising. In addition to its low complexity, it can attain significant gains over direct

transmission when coupled with MIMO along with adequate CSI knowledge [12]. Wireless

relaying under the umbrella of a centralized network (such as C-RAN) will be the focus of

this thesis, where we aim to improve the signal quality at the destination UEs using the
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AF-relaying strategy. Moreover, we will consider energy efficiency by tackling the problem

of relay-selection and optimizing the transmission under relay-power constraints.

1.2 Literature Survey

The optimization of the C-RAN archictecture has been investigated under different per-

formance metrics, with the network power minimization being a prominent approach [13,

14, 15]. In the case of a downlink (DL) C-RAN multicast scenario, the authors in [13] de-

velop a greedy RRH selection algorithm under worst-case signal-to-interference-plus-noise

(SINR) constraints for each UE and design beamformers for the active RRH set. To limit

computational cost, two efficient algorithms are derived based on a convex relaxation of the

original formulation. For the purpose of group selection, both algorithms assign priorities

to each RRH via a heuristic metric that utilizes prior information about the system. Under

the same network setup, the effects of imperfect CSI are subsequently taken into account

in [14]. In [15], where a densely deployed network of RRHs under C-RAN control is used

to cooperatively support multiple UEs, a unified framework is proposed for the joint DL

and uplink (UL) UE-RRH association and beamforming design based on energy minimiza-

tion. In particular, a virtual DL problem is constructed for the UL, making the problem

formulation amenable to group-sparse optimization as in [13, 14] and to relaxed-integer

programming [16].

In contrast to the above works, [17, 18, 19, 20, 21] address the problem of UE-RRH

association and beamforming design from the perspective of finite channel capacity. In

[17], the problem of minimizing user data transmission required for DL coordinated multi-

point is considered, subject to SINR and per-BS power constraints. To solve the resultant

combinatorial optimization problem, two algorithms are proposed, although the capacity
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constraints are only handled implicitly. The works in [18, 19, 20, 21] explicity incorpo-

rate the capacity constraints in the optimization, where [18] adopts a utility maximization

approach in a DL C-RAN with user-centric clustering and [19] opts for maximizing the

minimum SINR for all UEs subject to per-RRH fronthaul capacity constraints. While

these two works ignore the case when the optimization is infeasible, [20, 21] take it into

consideration by studying the problem of joint UE admission control and network power

minimization subject to fronthaul constraints and SINR requirements.

In contrast to previously cited works which assume wired fronthaul links of infinite

or fixed capacities, the authors in [22, 23, 24] consider wireless fronthaul links and study

the weighted sum-rate maximization problem under different C-RAN setups. For the DL

C-RAN [22], iterative algorithms are proposed under the assumptions of, firstly, single-

cell processing where the RRHs operate as decode-and-forward (DF) relays and, secondly,

cooperative processing where the RRHs operate as decompress-and-forward (DCF) relays.

In particular, it is shown in this work that the cooperative processing outperforms single-cell

processing. Likewise, the work in [23] shows that, in an UL C-RAN setup, a compress-

and-forward (CF) cooperative scheme outperforms the DF-based per-cell reception. In

order to satisfy the low latency requirement between the BBU and the RRHs, [24] adopts

the multicast beamforming strategy over fronthaul links to deliver each user’s message to a

cluster of RRHs selected according to the user-centric clustering scheme, which then adopts

the joint beamforming technique to cooperatively transmit the signal to the target users.

Most of the prior contributions focus on coordinated beamforming in both DL or UL C-

RAN setups, although the exploitation of RRHs as relays to improve network capacity and

coverage has remained hitherto largely undisclosed.1 The authors in [27] address the design

1See, e.g., [25, 26], and references therein for a comprehensive review of system optimization for con-
ventional relaying networks.
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of a multiuser AF relaying subnetwork within a C-RAN network from an energy-efficient

perspective, where the problem is cast as one of network energy minimization via joint RRH-

selection and relaying matrix optimization, subject to a set of mean-square error-based

quality-of-service (QoS) constraints. An iterative solution is proposed based on the concept

of the re-weighted l1-norm, along with a block-coordinate descent type algorithm. However,

the resultant iterative algorithm exhibits relatively high computational complexity. Other

works involving relays under C-RAN deal with capacity derivations. In [28], upper and

lower bounds on the capacity of a DL symmetric C-RAN with multiple relays and a single

receiver are obtained. Reference [29] consider a distributed massive MIMO system with

multiple relays serving multiple sources jointly via a constrained fronthaul. The relays

employ uniform quantization to meet the bandwidth constraints on the fronthaul, and

numerical results reveal the outer bound of this scheme and the inevitable gap compared

to the ideal C-RAN with infinite bandwidth.

1.3 Thesis contribution

In this work, inspired by [27], we investigate the problem of joint relay selection and

transceiver optimization in a multiuser AF relaying subnetwork within C-RAN, but with the

additional goal of reducing computational complexity. Specifically, we consider a subnet-

work where multiple source-destination pairs communicate concurrently with the assistance

of multiple cooperative RRHs connected to the BBU. In contrast to the more traditional

network power minimization, we formulate the design problem as a regularized sparsity-

induced interference leakage constrained minimization. To this end, we seek an efficient

algorithm for the design of AF matrices which abide, firstly, by norm-based constraints

dictating the per-relay antenna power budgets and, secondly, by linear constraints capable
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of preserving the desired signals at each destination.

The problem is then converted into a form that is suitable for the application of the

alternating direction method of multipliers (ADMM) [30]. Interestingly, a simple closed-

form solution can be derived for each one of the main ADMM steps, leading to a very

low-complexity iterative algorithm for relay selection and transceiver optimization. The

closed-form solution leads to a thresholding operation that enables the selection of an

energy efficient subset of RRHs, thus yielding solutions for the set of AF matrices that

are exactly group-sparse. Simulation results show that the proposed algorithm can yield a

satisfactory QoS level at all destinations with only a subset of active RRHs. In addition,

the processing time of the proposed algorithm is significantly reduced as compared to

benchmark algorithms relying on external optimization solvers such as SeDuMi and SDPT3.

The rest of the thesis is organized as follows. Chapter 2 presents background material

on convex optimization, MIMO processing, and relaying principles. Chapters 3 specifies

the system model and problem statement. In Chapter 4 the constrained and regularized in-

terference leakage minimization problem is formulated, followed by the development of the

low-complexity ADMM-based algorithm. Simulation results are presented and discussed in

Chapter 5. Finally, we conclude the thesis in Chapter 6.

Notation: Vectors and matrices are represented by bold lower case and upper case

letters, respectively. The transpose, Hermitian transpose, conjugate, and trace operators

are respectively denoted by (·)T , (·)H , (·)∗, and Tr(·). The lp-norm is denoted by ‖.‖p. The

identity matrix of order N is denoted by IN . R and C represent the set of real numbers

and complex numbers, respectively.

http://sedumi.ie.lehigh.edu
http://www.math.nus.edu.sg/%7Emattohkc/sdpt3.html
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Chapter 2

Background

In this chapter, the necessary mathematical background on convex optimization is first pre-

sented in Section 2.1 based on material taken from references [31, 32]. Convex optimization

is of particular interest for applications since finding a local optimum is sufficient for global

optimality. Thereafter, Sections 2.2 and 2.3 review MIMO processing and relaying princi-

ples, respectively. The material for these sections have been adopted from the references

[4, 33, 34].

2.1 Convex Optimization

2.1.1 Convex problems, duality and the KKT conditions

A set C ⊆ Rn is convex if the line segment between any two points in C lies in C. Formally,

for two points x,y ∈ C and any α where 0 ≤ α ≤ 1 we have αx + (1−α)y ∈ C. A function

f(x) is convex if its domain dom(f) is convex and f(αx + (1 − α)y) ≤ αf(x) + (1 −

α)f(y), ∀x,y ∈ dom(f) and α ∈ [0, 1]. When f(x) is differentiable, then the following
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inequality holds:

f(y) ≥ f(x) +∇f(x)T (y − x) ∀x,y ∈ dom(f) (2.1)

where ∇f(x) denotes the gradient of f(.) at the point x. More generally, and by definition,

a subgradient g of a convex function f at x ∈ dom(f) satisfies

f(y) ≥ f(x) + gT (y − x), ∀y ∈ dom(f) (2.2)

The subdifferential ∂f(x) of f(.) at x is the set of all subgradients:

∂f(x) = {g|gT (y − x) ≤ f(y)− f(x), ∀y ∈ dom(f)} (2.3)

Consider the optimization problem in the variable x ∈ Rn:

min
x

f0(x) (2.4a)

s.t. fi(x) ≤ 0, i = 1, 2, . . . ,m (2.4b)

hj(x) = 0, j = 1, 2, . . . , p (2.4c)

If fi(x) are convex ∀i and hj(x) are affine1 ∀j, then the above is said to be a convex opti-

mization problem, with a domain given by D =
⋂m
i=0 dom(fi)∩

⋂p
j=1 dom(hj). The feasible

(or constraint) set of the problem is F = {x ∈ D|fi(x) ≤ 0, i = 1, . . . ,m and hj(x) =

0, j = 1, . . . , p}. A problem is said to be feasible if F is a non-empty set; in this case

x? is said to be an optimal point if f(x?) = inf{f0(x)|x ∈ F}. Conversely, the problem is

infeasible if F is empty; in this case, inf{f0(x)|F} = inf{f0(x)|x ∈ ∅} = +∞, by convention

of infimum over the empty set ∅.
1We say a function A : Rn → R is affine if there exists a linear function L : Rn → R and a scalar b ∈ R

such that A(x) = L(x) + b, for all x ∈ Rn.
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At each feasible point x̃ in F , the constraints in (2.4b)-(2.4c) are satisfied and we thus

have
∑m

i=1 uifi(x̃) ≤ 0 and
∑p

j=1 vjhj(x̃) = 0 where u = [u1, . . . , um] ∈ Rm, ui ≥ 0, i =

1, . . . ,m and v = [v1, . . . , vp] ∈ Rp. By constructing the so-called Lagrange function as

L(x,u,v) = f0(x) +
m∑
i=1

uifi(x) +

p∑
j=1

vjhj(x), (2.5)

it follows from the previous observation that

L(x̃,u,v) ≤ f0(x̃) (2.6)

=⇒ min
x∈C
L(x,u,v) ≤ min

x∈C
f0(x) = f(x?) (2.7)

=⇒ min
x
L(x,u,v) ≤ min

x∈C
L(x,u,v) ≤ f(x?) (2.8)

The dual function defined as g(u,v) , minx L(x,u,v) forms a lower bound on the opti-

mal solution f(x?) for any feasible dual variables (u,v). Consequently, an alternative way of

finding the solution of (2.4) is the maximization of g(u,v) subject to ui ≥ 0, i = 1, . . . ,m.

This leads to the construction of the dual problem, which is a concave maximization prob-

lem regardless of the convexity of the primal problem. The optimal solution to the dual

problem is denoted as g(u?,v?).

Ideally, one would like to obtain strong duality, that is, the dual optimal solution

g(u?,v?) = f(x?). With no a priori assumption about the convexity of the problem, if

strong duality holds the following Karush-Kuhn-Tucker (KKT) conditions are necessarily

satisfied at the optimal point (x?,u?,v?):

• Primal feasibility: fi(x
?) ≤ 0, for i = 1, . . . ,m and hj(x

?) = 0, j = 1, . . . , p

• Dual feasibility: u?i ≥ 0, for i = 1, . . . ,m
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• Complementary slackness: u?i fi(x
?) = 0, for i = 1, . . . ,m

• Stationarity: 0 ∈ ∂L(x?,u?,v?)

where ∂L(x?,u?,v?) is the subdifferential of L at (x?,u?,v?).

Slater’s condition states that strong duality holds when the primal problem is convex

and strictly feasible, i.e., there exists x in the relative interior of D such that fi(x) < 0, i =

1, . . . ,m and hj(x) = 0, j = 1, . . . , p. For convex problems, hence, satisfying the KKT

conditions is sufficient for optimality for any triplet (x̃, ũ, ṽ).

2.1.2 Final Remarks

While the presentation of convex optimization was given for real variables, it can be readily

extended into the complex domain by considering the real and imaginary parts as forming

a large vector. That way, optimziation over Cn becomes optimization over R2n.

2.1.3 An overview of the ADMM

Consider the convex optimization problem in the variables x ∈ Cm and z ∈ Cn:

min
x,z

F (x) +G(z) (2.9a)

s.t. x ∈ C1, z ∈ C2 (2.9b)

z = Ax (2.9c)

where F (·) : Cm → R and G(·) : Cn → R are convex functions, A is an n × m matrix,

and C1 ⊆ Cm and C2 ⊆ Cn are non-empty convex sets. The solution to the above problem

may be achieved by considering an equivalent problem obtained by adding to the objective

function (2.9a) a penalty term ρ
2
‖Ax− z‖2

2 where ρ > 0 is a penalty parameter [35]. The



2 Background 12

ADMM is an iterative procedure for solving this equivalent problem. Assigning a Lagrange

multiplier y to the equality constraint (2.9c) and letting x(j), z(j), and y(j) denote the

values of x, z, and y at the jth iteration, the ADMM consists of the following steps:

x(j+1) = arg min
x∈C1
Lρ(x, z(j),y(j)) (2.10)

z(j+1) = arg min
z∈C2
Lρ(x(j+1), z,y(j)) (2.11)

y(j+1) = y(j) +
ρ

2
(Ax(j+1) − z(j+1)) (2.12)

where the augmented Lagrangian function is given by

Lρ(x, z,y) = F (x) +G(z) +
ρ

2
‖Ax− z‖2

2 + yH(Ax− z) + (Ax− z)Hy. (2.13)

The ADMM performs a dual subgradient ascent in (2.12) where the first two steps (2.10)-

(2.11) are necessary to compute the subgradient. Since (2.10) and (2.11) are single-variable

problems in x and z respectively, it is readily observed that the algorithm decouples the

minimization problem. In some cases, this decoupling enables us to leverage the structures

of (2.10) and (2.11) to obtain closed-form solutions, as we shall illustrate in Chapter 4. In

the case of real variables, the step size in the subgradient ascent (2.12) would be set to ρ,

this choice being motivated by the fact that it allows for a partial satisfaction of the KKT

optimality conditions [30]. However, in the case of complex variables, which is the situation

of interest in this thesis, the step size must be set to ρ
2
, as further discussed below.
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Step-size selection and convergence of ADMM

In anticipation of our development in Chapter 3, let us assume that the convex problem

we’re attempting to solve may be expressed as

min
x,z

f(x) +G(z) (2.14)

s.t. ΦHx = c, (2.15)

x = z, (2.16)

zi
Hzi ≤ Pi, i = 1, . . . , L (2.17)

where we consider that G(z) =
∑L

i=1 g(zi) where z is partitioned as z = [zT1 . . . z
T
L]T with

zi ∈ CN2
i . The Lagrangian associated with this problem is given as

L(x, z,y,ν,µ) =f(x) +
L∑
i=1

g(zi)− yH(z− x)− (z− x)Hy − νH(ΦHx− c)− (xHΦ− cH)ν

+
L∑
i=1

µi(z
H
i zi − Pi)

with y, ν, and µi being the Lagrange dual variables associated with the constraints x = z,

ΦHx = c, and zi
Hzi ≤ Pi, respectively. The optimal point (x?, z?,y?,ν?,µ?) must satisfy

the KKT conditions:

Primal feasiblity:

ΦHx? = c (2.18)

‖z?i ‖
2
2 ≤ Pi, for i = 1, . . . , L (2.19)

x? = z? (2.20)
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Dual feasibility:

µ?i ≥ 0, for i = 1, . . . , L (2.21)

Complementary slackness:

µ?i (‖z?i ‖
2
2 − Pi) = 0, for i = 1, . . . , L (2.22)

Stationary w.r.t the Lagrangian:

0 ∈ ∂f(x?) + y? −Φν? (2.23)

0 ∈ ∂g(z?i )− y?i + µ?i z
?
i , for i = 1, . . . , L (2.24)

Our solution methodology consists of augmenting the problem and using the ADMM.

At iteration k + 1, the first step of ADMM involves finding

x(k+1) = arg min
ΦHx=c

f(x) +
ρ

2
‖z(k) − x‖2

2 + y(k)Hx + xHy(k)

We solve this problem by finding the values x(k+1) and ν(k+1) which satisfy its KKT con-

ditions:

ΦHx(k+1) = c (2.25)

0 = ∇f(x(k+1)) + y(k) +
ρ

2
(x(k+1) − z(k))−Φν(k+1) (2.26)

Consequently, the optimality condition given by (2.18) is satisfied at iteration k + 1 from

(2.25).

In the second step of ADMM, the algorithm solves L parallel subproblems. At iteration
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k + 1, we have for the ith subproblem that the solution point satisfies:

‖z(k+1)
i ‖

2

2 ≤ Pi, for i = 1, . . . , L

µ
(k+1)
i ≥ 0, for i = 1, . . . , L

µ
(k+1)
i (‖z(k+1)

i ‖
2

2 − Pi) = 0, for i = 1, . . . , L

As a result, we can see that the optimality conditions (2.19), (2.21), and (2.22) are satisfied.

In addition, the solution point at the second step satisfies:

0 ∈ ∂g(z
(k+1)
i )− y

(k)
i −

ρ

2
(x

(k+1)
i − z

(k+1)
i ) + µ

(k+1)
i z

(k+1)
i (2.27)

Now by setting y(k+1) = y(k) + ρ
2
(x(k+1) − z(k+1)) in the third step of ADMM, we find

from (2.27) that

0 ∈ ∂g(z
(k+1)
i )− y

(k+1)
i + µ

(k+1)
i z

(k+1)
i , for i = 1, . . . , L (2.28)

That is, by choosing ρ
2

as the step-size, we achieve the optimality condition (2.24). Addi-

tionally, we note that as a result of the step-size selection, (2.26) can be expressed as

0 = ∇f(x(k+1)) + y(k) +
ρ

2
(x(k+1) − z(k+1)) +

ρ

2
(z(k+1) − z(k))−Φν(k+1)

(2.29)

0 = ∇f(x(k+1)) + y(k+1) +
ρ

2
(z(k+1) − z(k))−Φν(k+1) (2.30)

−ρ
2

(z(k+1) − z(k)) = ∇f(x(k+1)) + y(k+1) −Φν(k+1) (2.31)
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Termination Criterion

The conditions given by (2.20) and (2.23) still need to be satisfied for optimality. To achieve

(2.20), we must have r(k+1) , x(k+1) − z(k+1) −→ 0 as k −→ ∞, where r(k+1) is called the

primal residual. Similarly, the dual residual given by s(k+1) , −ρ
2
(z(k+1)− z(k)) from (2.31)

must go to 0 as k −→ ∞ to achieve (2.23). Accordingly, a stopping criterion for ADMM

which has been often adopted in the literature [30] can be given in terms of these residuals.

Specifically, the algorithm is assumed to have converged when

‖r(j+1)‖2 ≤ εpri (2.32)

‖s(j+1)‖2 ≤ εdual (2.33)

where εpri and εdual are non-negative (yet relatively small) feasibility tolerances for the

primal and dual residuals, respectively. This is why the step-size selection is crucial for

convergence.

2.2 MIMO Processing

A multiple-input multiple-output (MIMO) system can be generally defined as a communi-

cation system consisting of a transmitter equipped with Nt antennas, a radio propagation

channel, and a receiver equipped with Nr antennas, as illustrated in Figure 2.1. For a

narrowband (flat-fading) time-invariant MIMO wireless channel, the received signal vector

can be represented as follows:

y = Hx + n (2.34)

where x ∈ CNt is the transmitted signal, y ∈ CNr is the received signal, H ∈ CNr×Nt is the

channel matrix and n ∈ CNr is a complex noise vector. The input signal x is modeled as a
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random vector2 with zero mean and covariance matrix Rx = E[xxH ]. The (i, j)-th element

of matrix H, denoted as hij is the complex channel gain from transmit antenna j to receive

antenna i. We shall assume that the noise vector n abides by a complex circular Gaussian

multi-variate distribution with zero mean and covariance matrix σ2INr . For simplicity,

given a transmit power P , we consider an equivalent model with a noise power σ2 of unity

and transmit power P/σ2 = ρ, where ρ can be interpreted as the average SNR per receive

antenna under channel unity gain. This power constraint implies that the input symbols

satisfy
Nr∑
i=1

E[|xi|2] = ρ, (2.35)

or equivalently that Tr(Rx) = ρ.

Source Destination... ...

h11

h12

h1Nr

...

H

1

2

Nt

1

2

Nr

Fig. 2.1: MIMO system model with Nt transmit antennas and Nr receive antennas.

Depending on the scenario being examined, the knowledge of the channel matrix H at

the transmitter and receiver may or may not be available. We refer to the former as channel

state information at the transmitter (CSIT) and to the latter as channel state information

at the receiver (CSIR).

When a destination is equipped with multiple antennas, processing of the received sig-

nals results in so-called spatial diversity. Spatial diversity allows the improvement of the

2In practice, the entries of x are taken from a discrete constellation, such as BPSK or M-QAM [36].
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total quality of the received signals from different antennas, depending on the signal pro-

cessing approach implemented at the receiver. In general, there are two ways of processing

signals from multiple diversity branches: selection diversity and combining diversity.

1. Selection diversity is the method whereby the “best” signal copy is selected and

processed (demodulated and decoded), while all other copies are discarded. Different

criteria are available for what constitutes the “best” signal.

2. Combining diversity is the method whereby all copies of the signal are combined

(before or after demoluation), and the combined signal is decoded. Again, different

approaches are available for the combination of the signals.

In both cases, the processing algorithms assume that the different signal copies undergo

statistically independent fading. The performance gain resulting from the use of multiple

antennas is due to two effects: diversity gain and beamforming gain. Diversity gain reflects

the fact that it is improbable that several antenna elements are in a fading dip simulta-

neously; thus the probabiliy of very low signal levels is decreased by the use of multiple

antennas. Beamforming gain reflects the fact that (for combining diversity) the combiner

performs an averaging over the noise at different antennas. Indeed, due to the assumed

uncorrelated nature of the noise signals at the different antennas, even if the signal levels

at all antenna elements are identical, the combiner ouput SNR is larger than the SNR at

a single-antenna element. Below, we discuss in further details the processing approaches

that are typically employed for selection and combining diversity.

2.2.1 Selection Diversity

In selection diversity, the receiver monitors the SNR of the received signal from each di-

versity branch, and selects only the received signal corresponding to the highest SNR for
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detection. If the bit-error-rate (BER) is predominantly determined by the noise power

level, selection based on the received-signal is the best among all selection diversity meth-

ods, since this maximimizes the SNR. However, if the BER is determined by the level of

co-channel interference, this method may fail. For example, the branch with the highest

signal-strength may be due to a high level of interference on the corresponding radio link,

and thus resulting in a low SINR level and poor BER performance.

Other selection diversity approaches are BER-driven. In these approaches, a training

sequence (known at the receiver) is transmitted and demodulated at the receiver, which

selects the antenna whose associated BER is lowest, by comparing the demodulated signal

with the known training sequence.

2.2.2 Combining Diversity

Combining diversity leads to better performance than selection diveristy, as all available

information is exploited. However, the receiver is more complex than spatial diversity (i.e.,

antenna selection) receivers. In combining-type receivers, each signal copy is multiplied

by a complex weight and then added up. Each complex weight w∗n can be thought of as

consisting of a phase correction, plus a weight for the amplitude:

• Phase correction causes the signal amplitudes to add up, while on the other hand,

noise is added incoherently so that noise powers add up (as opposed to amplitudes).

• For amplitude weighting, two methods are widely used: Maximum ratio combining

(MRC) and Equal gain combining (EGC).
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Maximum Ratio Combining (MRC)

Maximum ratio combining removes the phase distortion introduced by each branch (or

antenna) so that signals can be combined coherently and selects the weighting factor am-

plitude proportionally to the branch channel gain. Indeed, since a larger branch amplitude

yields higher SNR, more weight should be put on the corresponding received signal (with

better quality).

Assuming a time-invariant and flat-fading propagation channel, the only disturbance

in the received signal is additive white gaussian noise (AWGN). Under these assumptions,

each channel realization may be viewed as a time-invariant filter with impulse response

hn(τ) = αnδ(τ)

where αn ∈ C is the instantaneous gain of diversity branch n and δ(τ) represents an ideal

impulse or Dirac delta function at time τ . The received signals at the different branches are

multiplied with corresponding weight w∗n and added up, so that the SNR after processing

is equal to

SNRout =

∣∣∣∑N
n=1w

∗
nαn

∣∣∣2
P
∑N

n=1 |wn|
2

(2.36)

where P is the noise power per branch, assumed to be the same for all branches. According

to the Cauchy-Schwartz inequality, we find that

∣∣∣∣∣
N∑
n=1

w∗nαn

∣∣∣∣∣
2

≤
N∑
n=1

|wn|2
N∑
n=1

|αn|2 (2.37)

with equality if and only if wn = αn. Thus, the SNR is maximized in MRC by choosing

the weights as wMRC = αn.
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MRC achieves the best transmission performance at the cost of receiver complexity,

i.e., the receiver needs to know (or estimate by some appropriate means) both the branch

amplitude and phase.

Equal Gain Combining (EGC)

In EGC, the signals from N diversity branches are weighted equally and coherently com-

bined. The receiver complexity is reduced in comparison with the MRC-type combining,

since only the phase distortion introduced by each branch needs to be known (or esti-

mated) so that signals can be combined coherently. The performances of EGC is better

than selection-diversity but worse than MRC.

Wireless communications are subject to non-line-of-sight (NLOS) propagation, pro-

ducing random fluctuations in the received signal level (also known as fading). MIMO

technology has been known to be a reliable tool against fading and has been very useful

in NLOS environments. In the next subsections, we will discuss the advantages of using

multiple antennas at the transmitter and/or the receiver; which mainly take the form of

array gain, diversity gain and spatial multiplexing gain.

2.2.3 Array gain

Array gain is defined as the increase in the average receive SNR due to coherent combining

of signals at the transmitter or receiver. For instance, consider the case of MRC at the

receiver, and assume for simplicity that the channel gains are identical, i.e., αn ≡ α for

all n. Hence, the corresponding input SNR on each branch is SNRin = |α|2/P while the

output SNR simplifies to SNRout = N |α|2/P . Consequently, the array gain is given by

AG =
SNRout

SNRin

= N (2.38)
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We note that to achieve an array gain, the CSI is generally required. CSIR is often available

through transmission of pilots symbols. The challenge lies in obtaining or estimating the

CSIT.

Array gain can be attained with transmitter space diversity through scaling the antenna

transmit powers relative to the channel gains. On the receiver side, the different signal

paths received by multiple antennas can be combined in different manners –differing in

complexity and achievable array gain – to obtain a signal which then is processed through

a demodulator. Under certain general modeling conditions, the combiner outputs the

original transmitted signal scaled by a random complex amplitude term, resulting in a

random SNR. The distribution of this SNR depends on the number of diversity paths, the

fading distribution of each path and the combining technique. MRC is often the most

favorable scheme since the SNR of the combiner output is the sum of the input SNRs on

each branch. Therefore, as exemplified above, the combiner output SNR and the array gain

increase linearly with the number of diversity branches.

2.2.4 Diversity gain

Sending the same data over independent paths provides diversity gain. The latter is for-

mally defined as the change in the slope of the error probability in the limit of high SNR,

resulting from diversity combining at the receiver. A scheme is said to achieve a diversity

gain d if the average error probability as a function of SNR, i.e. Pe(SNR), satisfies

lim
SNR→∞

logPe(SNR)

log SNR
= −d (2.39)

In a uniform scattering environment, the fading amplitudes corresponding to each an-

tenna become approximately independent when the antenna separation exceeds about half
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the wavelength [33]. This in turn makes it possible to achieve maximum diversity gain.

Similar to the SNR distribution in connection with the discussion of array gain, the prob-

ability of error in (2.39) generally depends on the number of diversity paths, the fading

distribution of each path and the combining technique. From the above mentioned com-

bining techniques, MRC was shown in [33] to produce full diversity order which is equal to

the number of antennas at the receiver.

2.2.5 Spatial Multiplexing gain

A MIMO system provides the benefit of increasing the capacity, almost linearly with the

number of antennas. This increase in capacity which is referred to as the spatial multi-

plexing gain, is obtained at no additional power or bandwidth. The basic approach to

achieve this gain is to transmit independent data symbols from individual antennas and

allow the receiver to separate the different streams through signal processing. Particularly,

Nt independent symbols are transmitted per symbol period; i.e. the spatial code rate is Nt.

Several encoding options at the transmitter can be employed to realize spatial multiplexing.

These include so-called horizontal encoding (HE), vertical encoding (VE) and combinations

thereof. These three schemes, described in [37], all achieve Nt as the spatial code rate and

a diversity gain of Nr. This allows us to view a MIMO channel as min{Nt, Nr} parallel

spatial channels with min{Nt, Nr} degrees of freedom. The channel capacity, therefore,

increases with the SNR as min{Nt, Nr} log SNR.

2.2.6 Diversity and multiplexing tradeoff

The tradeoff between complexity, data rate and probability of error has been examined

extensively in the literature. It has been deduced that multiple antennas can be used for

multiplexing and diversity gains at the same time. Assuming CSIT is not available, full
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diversity gain and full multiplexing gain can be achieved simultaneously by encoding diag-

onally across antennas in block fading channels, with asymptotically large block lengths.

One good example is the Diagonal Bell Labs Space Time (D-BLAST) where the data stream

is first parallel-encoded and the codewords are rotated across antennas so that they are

transmitted by all Nt antennas.

Transmission schemes based on D-BLAST can achieve full diversity under the condition

that stream rotated temporal coding is capacity achieving. Due to the fact that the receiver

decodes each diagonal code signal independently, the receiver complexity is linear in Nt.

Nonetheless, the wasted space-time dimensions with an incorrect choice of frame size results

in a loss of efficiency. However, if we ignore the wasted space-time dimensions along the

diagonals, the D-BLAST system can achieve maximum capacity with outage.

2.2.7 Capacity schemes

The channel capacity is the maximum data rate that can be transmitted over the channel

with arbitrarily small error probability. The capacity is very much dependent on the

knowledge of the channel gain matrix or its distribution at the transmitter or receiver.

Static Channels

For static channels, a good estimate of H can be obtained fairly easily at the receiver, so

we assume the availability of CSIR throughout this section. Under this assumption, the

capacity is given in terms of the mutual information I(x; y) between the channel input

vector x and output vector y as

C = max
p(x)

I(x; y) (2.40)
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where p(x) is the probability distribution of the input. It turns out that the optimal

distribution p(x) that maximizes the capacity is for x to be zero-mean, circularly symmetric

complex Gaussian, subject to a power constraint, i.e. Tr(Rx) = ρ.

C = max
Rx:Tr(Rx)=ρ

B log2 det[INr + HRxHH ]. (2.41)

where B is the channel bandwidth.

Channel known at the Transmitter

When the fixed channel is known at both the transmitter and receiver, using transmit

precoding and receiver shaping as obtained from the singular value decompositon of H,

allows a simple characterization of the MIMO channel capacity. Specifically, the capacity

equals the sum of capacities on each of the independent parallel channels with the transmit

power optimally allocated between the latter. The capacity in this case is given by

C = max∑
i ρi≤ρ

ν∑
i=1

B log2(1 + σ2
i ρi) (2.42)

where ν is the number of nonzero singular values σi of H. Since the MIMO channel

decomposes into ν parallel channels, we say that it has ν degrees of freedom. Considering

that ρ = P/σ2, the capacity can also be expressed in terms of the power allocation Pi to

the i-th parallel channel as

C = max∑
i Pi≤P

ν∑
i=1

B log2(1 +
Piγi
P

) (2.43)

where γi = σ2
i P/σ

2 is the SNR associated with the i-th channel at full power. The power-

allocation scheme which maximizes this capacity is the water-filling scheme, yielding a
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capacity

C =
∑
i:γi≥γ0

B log2(
γi
γ0

) (2.44)

for some cutoff value γ0.

Fading Channels

Suppose now that the channel gain matrix experiences flat fading, so the gains hij vary

with time. As in the case of the static channel, the capacity depends on what is known

about the channel matrix at the transmitter and receiver. With perfect CSIR and CSIT

the transmitter can adapt to the channel fading. In this case, the capacity equals the

average over all the channel matrix realizations with optimal power allocation. This average

capacity over the channel realization is also referred to as the ergodic channel capacity.

Channel Known at the transmitter

With CSIT and CSIR, the transmitter optimizes its transmission strategy for each fading

channel realization, as in the case of a static channel. Here, there are two possibilities for

allocating power from the perspective of ergodic capacity. A short-term power constraint

assumes that the power associated with each channel realization must be equal to the

average power constraint P̄ . In this case the ergodic capacity becomes

C = EH

[
max

Pi:
∑

i Pi≤P̄

∑
i

B log2(1 +
Piγi
P̄

)

]
(2.45)

where EH denotes expectation over the channel realizations. A less restrictive constraint is

a long-term power constraint, where we can use different powers PH for different channel

realizations H subject to a constraint on the average power over all channel realizations,
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i.e. EH[PH] ≤ P̄ . The ergodic capacity under this assumption is given by

C = max
PH:EH[PH]≤P̄

EH

[
max

Pi:
∑

i Pi≤PH

∑
i

B log2(1 +
Piγi
PH

)

]
(2.46)

for γi = σ2
i PH/σ

2. The short-term power constraint gives rise to a one-dimensional water-

filling in space across the antennas, whereas the long-term power constraint allows for a

two-dimensional water-filling across both space and time. The expectation with respect to

H in (2.45)-(2.46) can be evaluated based on the distribution of the singular values σi of

the matrix H.

2.3 Relaying principles

There are two key objectives associated with relay-assisted signaling in wireless communica-

tion systems such as cellular networks. First, relay-assisted communication should extend

user coverage, whereby more mobile users can achieve their minimum SINR requirements

over a larger area. Second, relay-assisted communication should increase system capacity,

whereby each mobile user that is being serviced can benefit from higher data rates.

The performance of a wireless relay network depends on two major factors: network

configuration and relaying strategy. Network configuration refers to the number of source,

destination and relay nodes, as well as their number of antennas. For a particular confiura-

tion, system performance depends on the method of information transmission at the relays.

Relaying strategies can be can be non-regenerative such as amplify-and-forward (AF), or

regenerative such as decode-and-forward (DF) [38].
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· · ·S DR1 RN−1

h1 hNh2 hN−1

Fig. 2.2: N -hop relay channel with N−1 single-antenna relay nodes (R) and single-antenna
source (S) and destination (D).

2.3.1 Amplify-and-forward (AF) Relaying

Amplify-and-forward is a strategy whereby the relay amplifies the signal from the source

and transmits it to the destination, subject to a power constraint. The linear processing

applied to the signal is usually represented by scalar multiplication for single-antenna relays,

or matrix multipliciation for multi-antenna relays.

We consider the simplified configuration in Fig. 2.2 to describe the system model of the

AF relaying strategy, where a source exchanges information with a destination through N−

1 relays, where all the nodes are single-antenna. We also assume that useful communication

paths are only available between adjacent nodes. The signal received by the i-th relay is

yi = hixi−1 + ni, for i = 1, . . . , N − 1, where xi−1 is the signal (here, a complex scalar

symbol) transmitted by the (i − 1)-th relay, hi is the i-th hop channel and ni is the i-th

relay AWGN noise3. The signal transmitted by the i-th relay in the AF mode is xi =
√
Kiyi,

where Ki is its scalar power gain. Thus, the input-output relationship of the whole N -hop

AF relay channel can be expressed as

r =
N∏
k=1

hks+
N∑
k=1

(
N∏

l=k+1

hl)nk (2.47)

where s = x0 and r = yN are the transmitted (source) and received (destination) signal

vectors. We note that the channel gains in (2.47) are scalar for the simplified model in

3With obvious modifications for the S −R1 and RN−1 −D links
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Fig. 2.2; however, for multi-antennas or MIMO relays, similar relationships can be derived

where the channels are represented by matrices instead. The non-regenerative strategy is

the simplest one, but has the drawback of amplifying the noise at each relay station and

forwarding it to the destination as observed from the above equation.

2.3.2 Decode-and-forward (DF) Relaying

Decode-and-forward is a strategy whereby the relay has to first decode the source symbol

and then retransmit it to the destination. The complexity of the DF strategy is increased

in comparison with the AF strategy because of the additional message estimation process

involved. The performance of this method is thus constrained by the success of the decoding

phase. In this case, the input-output relationship for the N -hop DF relay channel can be

summarized by the following chain of equations:

yi = hixi−1 + ni, i = 1, . . . , N

xi = φ(xi−1)

(2.48)

where φ(.) denotes the decoding function and xN is the decoded signal at the destination.

We note from these equations that under high SNR conditions, perfect transmission of the

source signal to the destination is possible with the DF approach.

2.3.3 Comparison of AF and DF Relaying

Let CDF and CAF denote the capacities achieved by the DF and AF schemes, respectively.

As stated in [39], the capacity gain ∆C = CDF − CAF of DF relaying over AF relaying in

a N -hop relay channel as in Fig. 2.2, is bounded as:

0 ≤ ∆C ≤ log2N (2.49)
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for any channel realizations hi, i = 1, . . . , N . When CDF is finite, the lower bound is

achieved if and only if the destination and all the relays but one are noiseless. The upper

bound is achieved if and only if all the hops are equally strong and the SNR is sufficiently

high.

The advantage of the DF relaying over AF relaying can also be cast in terms of an SNR

gain. Define the SNR gain G of DF relaying from the following expression:

CAF (Gγ0) = CDF (γ0) (2.50)

where γ0 is the source SNR. Gain G represents that additional SNR (when measured in dB)

required for the AF relaying strategy to achieve the same capacity as DF relaying. Based

on (2.49), the SNR gain of DF relaying over AF relaying for the N -hop relay channel in

Fig. 2.2 is bounded as:

1 ≤ G ≤ N (2.51)

In practical applications with a few relay stations or with all the links being equally impaired

by noise, AF is often preferred to DF since the small SNR gain of DF is obtained at the

price of increased processing complexity.
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Chapter 3

System Model and Problem

Formulation

In this chapter we describe the system model under study, followed by the problem formu-

lation. We consider a multi-user relaying sub-network consisting of L RRHs and K pairs

of source and destination UEs, as depicted in Fig. 3.1. It is assumed that each source

UE is paired with a single destination UE, both modeled as single-antenna nodes due

to their limited processing capabilities and low power budgets. By contrast, RRH-l for

l ∈ L = {1, 2, . . . , L} is equipped with Nl ≥ 1 antennas. All RRHs are connected to a

central node, namely the BBU pool, whose role is to select and activate a proper subset of

RRHs and design AF relaying matrices for the active RRHs. Communication is performed

in a two-hop half-duplex mode, where a narrowband flat-fading model is assumed for the

radio channels between the UEs and RRHs. The CSI is assumed to be known and constant

in a given transmission block. In addition, the direct source-destination UE channel links

are severely attenuated, thus unavailable.
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Fig. 3.1: Multi-user sub-network where communication between the source-destination
UE pairs is assisted by cooperative MIMO relays via the BBU Pool.

3.1 First hop

During the first hop at the nth time instance, each UE-k for k ∈ K = {1, 2, . . . , K} transmits

its information symbol sk(n), modeled as a zero-mean complex random variable with a

power of E {|sk(n)|2} = pk. Before reaching the lth relay, all transmitted symbols sk(n) are

affected by fading, as represented by multiplication with hlk ∈ CNl×1, which is the channel

vector between the kth source UE and the lth RRH. The latter receives the sum of the

channel-processed information symbols corrupted by additive noise nl(n). The received

signal at the l-th relay is thus given by

rl(n) =
K∑
k=1

hlksk(n) + nl(n) (3.1)

where nl(n) is temporally and spatially white noise, with zero mean and a covariance matrix

of Σl = σ2
l INl

.1 To assist in transmission, RRH-l applies a linear transformation to rl(n)

1Naturally, noise and data are assumed to be statistically uncorrelated, i.e., E {sk(n)nl(n)} = 0 ∀k, l.
Further, information symbols between different source UEs are also uncorrelated.



3 System Model and Problem Formulation 33

represented by the matrix Bl ∈ CNl×Nl . The design of Bl is constrained by an average

antenna power budget Pl, expressed as E{‖Bl(n)rl(n)‖2
2} ≤ Pl which is equivalent to

Tr
(
Bl

( K∑
k=1

pkhlkh
H
lk + Σl

)
Bl

H
)
≤ Pl. (3.2)

3.2 Second hop

During the second transmission hop, the kth destination UE receives a signal with three

components: the desired signal Sk(n), the interference leakage Ik(n), and the temporally

white noise nk(n). We express this as

dk(n) =
L∑
l=1

gHklBlrl(n) + nk(n)

= Sk(n) + Ik(n) + nk(n), (3.3)

where gHkl ∈ C1×Nl denotes the channel vector between the kth destination UE with the lth

RRH, and the signal components are given by

Sk(n) =
L∑
l=1

gHklBlhlksk(n) (3.4)

Ik(n) =
K∑
j=1,
j 6=k

L∑
l=1

gkl
HBlhljsj(n) +

L∑
l=1

gkl
HBlnl(n). (3.5)

3.3 Problem Formulation

The objective of this work is to enhance the quality of the received signal dk(n) at each

destination UE while considering the power budget, as specified by (3.2). Motivated by

the interference alignment techniques [40], an effective means of achieving this objective is
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to minimize the total interference leakage at all destination UEs, that is E{
∑K

k=1 |Ik(n)|2},

while enforcing a set of linear constraints meant to preserve the integrity of the desired

symbols sk(n). Based on (3.4), these constraints are given by

L∑
l=1

gHklBlhlk = ck, ∀k ∈ K (3.6)

where the ck’s are predefined positive constants. Hence, we state the problem as

min
{Bl}l∈L

E

{
K∑
k=1

|Ik(n)|2
}

subject to (3.7a)

Tr
(
Bl

( K∑
k=1

pkhlkh
H
lk + Σl

)
Bl

H
)
≤ Pl, ∀l ∈ L (3.7b)

L∑
l=1

gHklBlhlk = ck, ∀k ∈ K (3.7c)

In the following two subsections, we first express the above into a more convenient

formulation, and then we incorporate a measure of group-sparsity into the formulation to

encourage the deactivation of a subset of RRHs and thus obtain an energy-efficient solution.

3.3.1 Interference leakage minimization

We begin by replacing each AF matrix by its vectorized version bl = vec{Bl} as obtained

by stacking the columns of Bl one on top of the other. The resulting vectors are collected

into a global vector b , [bT1 , · · · ,bTL]
T

. To obtain a more convenient form than (3.7), we

examine the closed-form expression for the total interference leakage. We first summarize

the assumptions made so far.
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Assumptions

A1. CSI gkl and hlk is known ∀(k, l) ∈ K × L

A2. Information symbols sk(n): 0-mean, power E {|sk(n)|2} = pk

A3. Noise nl(n): temporally and spatially white with 0-mean, σ2
l INl

cov. matrix

A4. Noise and data: statistically uncorrelated, E
{
sk(n)nHl (n)

}
= 0, ∀(k, l) ∈ K × L

A5. Information symbols between different UEs: statistically uncorrelated

A6. Noise at different UEs: statistically uncorrelated

The total interference leakage is equal to E{
∑K

k=1 |Ik(n)|2} =
∑K

k=1 E{|Ik(n)|2}. Now,

E{|Ik(n)|2} = E{Ik(n)Ik(n)∗}. Omitting the dependence on time n for clarity, the former

can be expressed as:

E

{(∑
j 6=k

L∑
l=1

gkl
HBlhljsj +

L∑
l=1

gkl
HBlnl

)
.

(∑
j′ 6=k

L∑
l′=1

gkl′
HBl′hl′j′sj′ +

L∑
l′=1

gkl′
HBl′nl′

)∗}

= E

{(
1 + 2

)
.

(
3 + 4

)∗}
= E

{
1 × 3

∗}
+ E

{
1 × 4

∗}
+ E

{
2 × 3

∗}
+ E

{
2 × 4

∗}

From assumptions A1 and A4, we have E

{
1 × 4

∗}
= 0 and E

{
2 × 3

∗}
=
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0. Therefore, we are left with two terms to compute, the first of which is equal to:

E

{
1 × 3

∗}
= E

{∑
j 6=k

L∑
l=1

gkl
HBlhljsj ×

(∑
j′ 6=k

L∑
l′=1

gkl′
HBl′hl′j′sj′

)∗}

= E

{∑
j 6=k

∑
j′ 6=k

L∑
l=1

L∑
l′=1

gkl
HBlhljh

H
l′j′B

H
l′ gkl′sjsj′

∗

}

From assumptions A1 and A5, we have

E

{
1 × 3

∗}
=
∑
j 6=k

∑
j′ 6=k

L∑
l=1

L∑
l′=1

gkl
HBlhljh

H
l′j′B

H
l′ gkl′ E {sjsj′∗}

=
∑
j 6=k

L∑
l=1

L∑
l′=1

gkl
HBlhljh

H
l′jB

H
l′ gkl′pj

=
∑
j 6=k

pj

∣∣∣∣∣
L∑
l=1

gkl
HBlhlj

∣∣∣∣∣
2

As for the second term, A1 and A6 give

E

{
2 × 4

∗}
= E

{
L∑
l=1

L∑
l′=1

gkl
HBlnln

H
l′ BH

l′ gkl′

}

=
L∑
l=1

L∑
l′=1

gkl
HBl E

{
nln

H
l′

}
BH
l′ gkl′

=
L∑
l=1

σ2
l gkl

HBlB
H
l gkl

=
L∑
l=1

σ2
l

∥∥BH
l gkl

∥∥2

2
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The total interference leakage may be thus given by

E{
K∑
k=1

|Ik(n)|2} =
K∑
k=1


∑
j 6=k

pj

∣∣∣∣∣
L∑
l=1

gkl
HBlhlj

∣∣∣∣∣
2

︸ ︷︷ ︸
power of jth interferer

+
L∑
l=1

σ2
l

∥∥BH
l gkl

∥∥2

2︸ ︷︷ ︸
power of lth relay’s forwarded noise

 (3.8)

From the Kronecker product property vec(ABC) = (CT ⊗ A)vec(B), the first term

inside the summation in (3.8) can be expressed as

∑
j 6=k

pj

∣∣∣∣∣
L∑
l=1

gkl
HBlhlj

∣∣∣∣∣
2

=
∑
j 6=k

pj

∣∣∣∣∣
L∑
l=1

vec(gkl
HBlhlj)

∣∣∣∣∣
2

=
∑
j 6=k

pj

∣∣∣∣∣
L∑
l=1

(h∗lj ⊗ gkl)
Hvec(Bl)

∣∣∣∣∣
2

.

Defining δδδ
(j)
k , [(h∗1j ⊗ gk1)T (h∗2j ⊗ gk2)T . . . (h∗Lj ⊗ gkL)T ]T ∈ C

∑
lN

2
l ×1, we find that the

above is equal to

∑
j 6=k

pj

∣∣∣δδδ(j)
k

H
b
∣∣∣2 =

∑
j 6=k

pj

∣∣∣bHδδδ(j)
k

∣∣∣2 = bH∆∆∆kb,

with ∆∆∆k ,
∑

j 6=k pjδδδ
(j)
k δδδ

(j)
k

H
. The second term inside the summation (3.8) can be written

as

L∑
l=1

σ2
l gkl

HBlINl
BH
l gkl =

L∑
l=1

σ2
l gkl

HBl

(
Nl∑
i=1

eie
H
i

)
BH
l gkl =

L∑
l=1

Nl∑
i=1

σ2
l gkl

HBleie
H
i BH

l gkl

where ei is the ‘basis’ vector of length Nl composed of 1 at index i and of 0’s elsewhere.
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Applying the same Kronecker product property as before, the above is expressed as

L∑
l=1

σ2
l gkl

HBlINl
BH
l gkl =

L∑
l=1

Nl∑
i=1

σ2
l

(
(ei ⊗ gkl)

H bl

)(
(ei ⊗ gkl)

H bl

)∗
=

L∑
l=1

Nl∑
i=1

σ2
l

∣∣∣(ei ⊗ gkl)
H bl

∣∣∣2
=

L∑
l=1

σ2
l b

H
l

Nl∑
i=1

(ei ⊗ gkl) (ei ⊗ gkl)
H bl

=
L∑
l=1

bHl Gklbl

=bHGkb

with Gkl , σ2
l

∑Nl

i=1 (ei ⊗ gkl) (ei ⊗ gkl)
H and Gk , blkdiag{Gk1,Gk2, . . . ,GkL}. Combin-

ing the two results, the total interference leakage reduces to a quadratic term in b:

K∑
k=1

E
{
|Ik(n)|2

}
=

K∑
k=1

(
bH∆∆∆kb + bHGkb

)
= bHΘΘΘb

where ΘΘΘ ,
∑K

k=1 ∆∆∆k + Gk.

Finally, we apply the Kronecker property Tr
(
ABAH

)
= vec(A)H(B ⊗ I) vec(A) to

(3.7b) to obtain the compact formulation

min
b

bHΘΘΘb (3.9a)

s.t. bl
HΨΨΨlbl ≤ Pl, ∀l ∈ L (3.9b)

ΦΦΦHb = c, (3.9c)
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where

ΨΨΨl ,
( K∑
k=1

pkhlkh
H
lk + Σl

)
⊗ INl

, (3.10)

c , [c1, c2, · · · , cK ]T , (3.11)

and the matrix

ΦΦΦ = [φφφl,k] ∈ C
∑L

l=1N
2
l ×K (3.12)

is partitioned into L×K blocks, each given by φφφl,k = h∗lk ⊗ gkl.

We emphasize that at this stage of the formulation, nothing prevents any of the RRHs

from participating in the relay-assisted transmission, potentially leading to a situation

where all RRHs are activated, i.e., ‖bl‖2
2 > 0 ∀l ∈ L. In the following subsection, we

modify (3.9) by adding a regularization term to reduce the number of active RRHs while

meeting an acceptable QoS level.

3.3.2 Relay Selection via Group-Sparsity

Whenever RRH-l is inactive, we have ‖bl‖2 = 0. Consequently, having a small set of

active RRHs implies that the solution vector b is group-sparse, or equivalently, the vector

B ,
[
‖b1‖2, · · · , ‖bL‖2

]T
containing the norms of the L RRHs consists of a small number of

non-zero elements. This property (sparsity) is captured by the cardinality operator denoted

by ‖·‖0.

Since our aim is to obtain an energy efficient solution, a group-sparse solution is desired.

A straightforward way to promote this property during optimization is to include in the

objective function (3.9a) a penalty term based on ‖B‖0. However, this renders the objective

function non-convex and non-smooth. To resolve this issue, the ‖·‖0 operator is replaced
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by its closest convex relaxation, namely the l1-norm, which in the case of B is

∥∥B∥∥
1

=
L∑
l=1

∥∥bl∥∥2
, (3.13)

and is termed as the mixed l1,2-norm. This approach is widely employed for enforcing

group-sparsity and was first introduced by [41]. Using (3.13), we may penalize the objective

function (3.9a) by the regularization term λ
∑L

l=1 ‖bl‖2 with λ > 0 being a tuning parameter

that controls the degree of group-sparisty. A different weight λl may also be used for each

RRH-l.

To simplify the subsequent analysis, we define ΨΨΨ , blkdiag{ΨΨΨ1, · · · ,ΨΨΨL} and x ,

ΨΨΨ1/2b = [xT1 , · · · ,xTL]T with xl = ΨΨΨ
1/2
l bl. The sample covariance matrix ΨΨΨl in (3.10) is

non-singular, which implies that whether ‖xl‖2 > 0 or ‖xl‖2 = 0 depends entirely on

whether ‖bl‖2 > 0 or ‖bl‖2 = 0. So both vectors x and b share the same group-sparsity

structure. Based on this observation, (3.9) may be replaced by the following regularized

problem

min
x

xHΘ̆x +
L∑
l=1

λl‖xl‖2

s.t. xHl xl ≤ Pl, ∀l ∈ L

Φ̆ΦΦ
H

x = c, (3.14)

where Θ̆ = ΨΨΨ−
1
2 ΘΨΨΨ−

1
2 and Φ̆ΦΦ = ΨΨΨ−

1
2ΦΦΦ.

The above may be transformed into a second-order cone program (SOCP) using the

techniques introduced in [42, Section 2.2] and can thus be solved to global optimality using

a standard optimization package via the interior point method [31].
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Chapter 4

Proposed Solution

In what follows, we exploit the structure of the norm-regularized relaying optimization

problem and develop an algorithm for solving it using the ADMM. We show that each

step of the algorithm admits a closed-form solution, which can significantly reduce its

computational complexity.

4.1 ADMM-based Low-Complexity Algorithm

The problem in (3.14) may be written in a form amenable to the ADMM. By first intro-

ducing a copy of x, namely z, via the linear constraint

x = z, (4.1)

and by constructing the constraint sets

C1 : Φ̆ΦΦ
H

x = c (4.2)

C2 : zHl zl ≤ Pl, ∀l ∈ L, (4.3)
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(3.14) may be re-expressed as

min
x,z

xHΘ̆x +
L∑
l=1

λl‖zl‖2 (4.4a)

s.t. x ∈ C1, z ∈ C2 (4.4b)

x = z (4.4c)

The ADMM algorithm aims to iteratively minimize the augmented Lagrangian Lρ (x, z,y)

given by

Lρ (x, z,y) = xHΘ̆x +
ρ

2
‖z− x‖2

2 +
L∑
l=1

λl‖zl‖2 −
(
z− x

)H
y − yH

(
z− x

)
, (4.5)

where y denotes the Lagrange multiplier associated with (4.1) and ρ > 0 which remains

constant during the ADMM iterations. We note that an optimal solution (x?, z?,y?) that

minimizes Lρ (x, z,y) must satisfy x? = z? since z is a synthesized copy of x. Therefore,

solving for (4.4) becomes equivalent to solving the following problem,

min
x,z
Lρ (x, z,y) (4.6a)

s.t. x ∈ C1, z ∈ C2 (4.6b)

x = z (4.6c)

The basic idea behind ADMM is to solve the above problem with respect to x and z

separately in an alternating manner, i.e., one variable at a time with the other fixed. After

each round of update of x and z, the dual variable y is updated to ensure that x and

z become closer to each other. In effect, the above optimization problem can now be
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decoupled into three separate steps, all of which, interestingly, admit a simple closed-form

solution, as detailed below. For notational simplicity, we temporarily drop the ADMM

iteration index for each variable.

4.1.1 x update

The subproblem solving for x can be expressed as minx∈C1 Lρ (x, z,y), with z and y fixed.

Using (4.5), solving for x can be expressed as the following linearly-constrained quadratic

program after neglecting all terms that are independent of x:

x? = arg min
x

xHΘ̆x +
ρ

2
‖z− x‖2

2 + yH x + xH y (4.7a)

s.t. Φ̆ΦΦ
H

x = c. (4.7b)

It is observed that the objective function (4.7a) is strictly convex in x and the Slater’s

constraint qualification holds, i.e., (4.7) is strictly feasible. Hence, the KKT sufficient

conditions hold for the optimal solution x? together with some optimal dual variable ννν?.

Defining Q , Θ̆ + ρ
2
I∑N2

l
, the augmented Lagrangian associated with the equality con-

straint (4.7b) is

Lρ(x, ννν) = xH Q x + xH
(
y − ρ

2
z
)

+
(
y − ρ

2
z
)H

x−νννH(Φ̆ΦΦ
H

x−c)− (xH Φ̆ΦΦ− cH)ννν (4.8)

From the KKT conditions, the optimal points (x?, ννν?) are such that the constraint (4.7b)

is satisfied and the partial derivative of the Lagrangian (w.r.t. xH) is equal to zero, i.e.,

∇Lρ(x?, ννν?) = 0 (4.9)

Q x? +y − ρ

2
z− Φ̆ΦΦννν? = 0, (4.10)
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yielding

Q x? =
ρ

2
z− y + Φ̆ΦΦννν? (4.11)

Φ̆ΦΦ
H

x? = c (4.12)

Re-arranging (4.11), we obtain

x? = Q−1
(ρ

2
z− y + Φ̆ΦΦννν?

)
. (4.13)

To determine the value of the optimal Lagrange multiplier ννν?, we use (4.13) in equation

(4.12). After some matrix manipulations, ννν? is given by

ννν? = Q̆−1
(
c− Φ̆ΦΦ

H
Q−1(

ρ

2
z− y)

)
(4.14)

where Q̆ , Φ̆ΦΦ
H

Q−1Φ̆ΦΦ. Then, substituting (4.14) back into (4.13), the following closed-form

solution is obtained

x? = Q−1
((

I− Φ̆ΦΦQ̆−1Φ̆ΦΦ
H

Q−1
)(ρ

2
z− y

)
+ Φ̆ΦΦQ̆−1c

)
. (4.15)

4.1.2 z update

Similarly, the subproblem of solving for z can be written as minz∈C2 Lρ (x, z,y) with x and

y fixed. Observing that the first term in (4.5) is independent of z, we write

z? = arg min
z∈C2

L∑
l=1

λl‖zl‖2 +
ρ

2
‖z− x‖2

2 − yHz− zHy. (4.16)
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Decoupling (4.16) over each zl, we obtain L parallel subproblems each expressed by

z?l = arg min
‖zl‖22≤Pl

λl‖zl‖2 +
ρ

2
‖zl − xl‖2

2 − yHl zl − zHl yl, (4.17)

where the original Lagrange multiplier may be decomposed into L such multipliers, i.e., y =

[yT1 ,y
T
2 , . . . ,y

T
L ]
T

. Problem (4.17) is convex and hence solvable by a standard optimization

package but our objective is to find a closed-form solution. First, we derive the following

lemma:

Lemma 1. Consider the convex minimization problem in the variable x:

min
‖x‖22≤P

λ‖x‖2 +
ρ

2
xHx− xHa− aHx (4.18)

The global minimizer x? admits a closed-form solution and is given by

x? =
a

‖a‖2

(
ρ
2

+ η?
) [‖a‖2 − λ]+ (4.19)

where [c]+ , max{0, c} is the soft-thresholding operation and the optimal dual variable η?

associated with the quadratic constraint ‖x‖2
2 ≤ P is given by

η? =

[
‖a‖2 − λ√

P
− ρ

2

]
+

(4.20)

Proof: Consider the minimization problem in the variable x:

min
‖x‖22≤P

f(x) = λ‖x‖2 +
ρ

2
xHx− xHa− aHx (4.21)

where λ > 0, ρ > 0, and a 6= 0. The problem is convex and strictly feasible so by Slater’s



4 Proposed Solution 46

condition, strong duality holds. As a result, if x? and µ? are optimal primal and dual

solutions, they must satisfy the KKT conditions:

Primal and dual feasibility: ‖x?‖2
2 ≤ P, µ? ≥ 0 (4.22)

Complementary slacknesss: µ?(‖x?‖2
2 − P ) = 0 (4.23)

Stationarity: 0 ∈ ∂
(
f(x?) + µ?(‖x?‖2

2 − P )
)

⇐⇒ 0 ∈ ∂h(x?) +
ρ

2
x? − a + µ?x?

⇐⇒ ∂h(x?) = −ρ
2
x? + a− µ?x? (4.24)

where ∂h(x?) is the subdifferential of h(x) at x? and h(x) = λ‖x‖2. The l2-norm is convex

and λ > 0, so ∂h(x) = λ∂ (‖x‖2) with

∂(‖x‖2) =


{

x
‖x‖2

}
if x 6= 0,

{g | ‖g‖2 ≤ 1} if x = 0.
(4.25)

To find the optimal solutions we distinguish between two cases: (i) ‖a‖2 − λ > 0, and (ii)

‖a‖2 − λ ≤ 0.

If ‖a‖2− λ > 0, we show by contradiction that x? 6= 0. Assuming x? = 0, we find from

(4.24) that λg = a with ‖g‖2 ≤ 1. This implies that 1− ‖a‖2
λ
≥ 0 or ‖a‖2 − λ ≤ 0, which

is a contradiction. Since x? 6= 0, the stationarity condition yields

(
λ

‖x?‖2

+
ρ

2
+ µ?

)
x? = a. (4.26)

In order for (4.26) to hold, x? must take the form of x? = za for some z > 0. Using this
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observation in (4.26) and re-arranging, we find that

z =
‖a‖2 − λ

‖a‖2

(
ρ
2

+ µ?
) > 0. (4.27)

Thus, x? 6= 0 in turn implies that ‖a‖2 − λ > 0 and the two statements are equivalent

(since one implies the other and vice versa). The optimal dual variable µ? must satisfy the

remaining KKT conditions. Primal feasibility gives

µ? ≥ ‖a‖2 − λ√
P

− ρ

2
, (4.28)

dual feasibility and complementary slackness imply

µ? =


‖a‖2−λ√

P
− ρ

2
if ‖a‖2−λ√

P
− ρ

2
> 0

0 if ‖a‖2−λ√
P
− ρ

2
≤ 0

. (4.29)

Now if ‖a‖2 − λ ≤ 0, then x? = 0 and these conditions satisfy stationarity and pri-

mal feasibility, respectively. Taking µ? = 0 ensures complementary slackness and dual

feasibility.

In conclusion, the optimal variables can be succinctly expressed by

x? =
a

‖a‖2

(
ρ
2

+ µ?
) [‖a‖2 − λ]+ (4.30)

µ? =

[
‖a‖2 − λ√

P
− ρ

2

]
+

. (4.31)

where [c]+ , max{0, c}. This completes the proof. �
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As a direct result of Lemma 1, the optimal solution to (4.17) is given by

z?l =
al

‖al‖2

(
ρ
2

+ ηl
) [‖al‖2 − λl]+ (4.32)

where ηl is given by

ηl =

[
‖al‖2 − λl√

Pl
− ρ

2

]
+

(4.33)

and al = ρ
2

xl +yl.

In summary, both x and z are obtained in closed-form at each iteration with the aid

of (4.15) and (4.32). In addition, the z-minimization step can be carried out in a parallel

fashion. The ADMM-based algorithm is now summarized in Algorithm 1, where the primal

and dual residuals are defined as follows,

r(j+1) = x(j+1) − z(j+1) (4.34)

s(j+1) = −ρ
2

(z(j+1) − z(j)). (4.35)

4.2 An improved Two-Stage ADMM implementation

The ADMM-based algorithm is capable of selecting a subset of active RRHs. However,

similar to the LASSO problem in compressive sensing literature, the addition of the norm-

based regularization term in the objective function may lead to worse relaying performance,

which can be improved by solving for the optimal relaying AF matrices one more time for
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Algorithm 1 ADMM for solving (3.14)

1: Initialization: primal variable z(0) (arbitrary non-zero vector); dual variable
y(0) = 0; set ADMM iteration index j = 0;

2: repeat
3: Update x(j+1) using (4.15)

4: Update z
(j+1)
l for all l ∈ L using (4.32), where a

(j+1)
l = ρ

2
x

(j+1)
l +y

(j)
l

5: Update the Lagrange multiplier

y(j+1) = y(j) +
ρ

2

(
x(j+1)−z(j+1)

)
6: j ← j + 1;
7: until ‖r(j+1)‖2 ≤ εpri and ‖s(j+1)‖2 ≤ εdual

those active RRHs selected from the previous step. This problem can be formulated as

min
x̆

x̆HΘ̆Rx̆ (4.36a)

s.t. x̆l
H x̆l ≤ Pl, ∀l ∈ A (4.36b)

Φ̆ΦΦ
H

Rx̆ = c (4.36c)

where x̆ now only consists of weights from active RRHs and A denotes the subset of active

RRHs. The latter can be determined from the outputs zl of Algorithm 1, i.e.,

A = {l ∈ L : ‖zl‖2 > 0}. (4.37)

Note that Θ̆R and Φ̆ΦΦR are reduced versions of the original matrices given in (4.2) and

(4.4), where elements related to the inactive RRHs are deleted. The two-stage ADMM

implementation is now summarized as follows:

1. Solve (3.14) using Algorithm 1 and select the subset of active RRHs A based on

(4.37);
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2. Solve (4.36) for active RRHs using ADMM, as described in Algorithm 2.

We note that the development of Algorithm 2 parallels the development of Algorithm

1. Indeed, the former is obtained by setting λ = 0 in the substeps of ADMM.

Algorithm 2 ADMM for solving (4.36)

1: Initialization: primal variable z(0) initialized from the output of Algorithm 1; dual
variable y(0) = 0; set ADMM iteration index j = 0;

2: repeat
3: Update x(j+1)

x = Q−1
((

I− Φ̆ΦΦQ̆−1Φ̆ΦΦ
H

Q−1
)(ρ

2
z(j) − y(j)

)
+ Φ̆ΦΦQ̆−1c

)
4: Update z

(j+1)
l for all l ∈ A

a
(j+1)
l =

ρ

2
x

(j+1)
l +y

(j)
l

η
(j+1)
l = max(0,

‖a(j+1)
l ‖2√
P

− ρ

2
)

z
(j+1)
l =

a
(j+1)
l

ρ
2

+ ηl
, forl ∈ A

5: Update the Lagrange multiplier

y(j+1) = y(j) +
ρ

2

(
x(j+1)−z(j+1)

)
6: j ← j + 1;
7: until ‖r(j+1)‖2 ≤ εpri and ‖s(j+1)‖2 ≤ εdual
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Chapter 5

Simulation Results and Discussion

5.1 System and Model Parameters

In all our simulations, we consider a relaying sub-network consisting of K = 6 source-

destination pairs and L = 6 AF RRHs. For simplicity, we use the same number of antennas

and power budget for all RRHs. Specifically, we choose Nl = 6 antennas and Pl = 2W for

all l. The distortionless constraints are set to unity, i.e., ck = 1 ∀k ∈ K and the source

symbols sk are generated from a 4-QAM constellation with a power pk = 1, ∀k ∈ K.

We adopt a narrowband flat-fading Rayleigh channel model with coefficients generated

as independent and identically distributed (i.i.d.) zero-mean complex circular Gaussian

variables with unit variance. The noise variances at the RRHs, σ2
l , are set according to the

desired input relay signal-to-noise ratios (SNR) defined as

γl =
Pl

σ2
l ×Nl

(5.1)

Finally, the noise variance at all the destination nodes is set to 10−1.

As for the ADMM termination criterion, we adopt the scheme in [30], where the primal
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and dual residual tolerances are given by

εpri =
√
N̄εabs + εrelmax{‖x(j+1)‖2, ‖z

(j+1)‖2} (5.2)

εdual =
√
N̄εabs + εrel{‖y(j+1)‖2} (5.3)

where εabs is an absolute tolerance and εrel is a relative tolerance and N̄ =
∑L

l=1N
2
l .

Finally, all the simulation results are averaged over 100 independent realizations.

5.2 Results and Discussions

5.2.1 Convergence behaviour of Algorithm 1

Figures 5.1, 5.2 demonstrate the convergence behaviour of Algorithm 1 for two specific

channel realizations. It can be observed from the top-left figures that in both cases the

algorithm converges within a small number of iterations with the adopted scheme for the

residual tolerances (above). The top-right graphs of Figure 5.1 and 5.2 display the norm

of the relaying weights, i.e., ‖zl‖2. In Figure 5.1, the norm for one RRH goes to zero

and in Figure 5.2, the norm for two RRHs goes to zero. In effect, this means that for

these specific realizations, the algorithm yields a subset of five active RRHs and four active

RRHs, respectively. In addition, we can observe from the bottom-left and bottom-right

graphs in both figures that the algorithm indeed converges, as the residual error between

x and z approaches zero and the obtained solution for x satisfies the linear distortionless

constraints in (4.2).
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Fig. 5.1: Convergence behavior of ADMM algorithm with γl = 15 dB, λ = 100, εabs = 0,
and εrel = 10−3.
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Fig. 5.2: Convergence behavior of ADMM algorithm with γl = 15 dB, λ = 100, εabs = 0,
and εrel = 10−3.

5.2.2 Two-step ADMM results

We shift our attention to the signal-to-interference ratio (SIR) performance at the destina-

tion nodes, which for destination k is defined as

SIRk =
E{|Sk(n)|2}
E{|Ik(n)2}

(5.4)

=
pk|
∑L

l=1 gHklBlhlk|2∑
j 6=k pj

∣∣∣∑L
l=1 gklHBlhlj

∣∣∣2 +
∑L

l=1 σ
2
l ‖BH

l gkl‖
2

2

(5.5)

=
pk|ck|2∑

j 6=k pj

∣∣∣∑L
l=1 gklHBlhlj

∣∣∣2 +
∑L

l=1 σ
2
l ‖BH

l gkl‖
2

2

. (5.6)
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The focus on SIR makes eliminates the dependence on the noise variance at the destination

nodes. In Figure 5.3, we evaluate the achieved average SIR defined as 1
K

∑K
k=1

E{|Sk(n)|2}
E{|Ik(n)2} as

a function of the relay input SNR. We vary the regularization parameter λ to examine the
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Fig. 5.3: Average SIR (in dB) versus SNR at the relays (in dB) at different sparsity levels

tradeoff between the achievable network performance and the energy efficiency in terms

of the number of active relays and the total network energy consumption. The red curve

(λ = 0) indicates the baseline performance obtained via leakage-minimization without any

relay selection. Since all RRHs are involved in the relay transmission, the non-sparse AF

relaying yields the highest SIR at the destinations, as expected. There’s a linear relationship

between the plotted variables where – by linear regression – we find that the relationship

satisfies

SIRdB = a× SNRdB + b (5.7)
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where

a = 0.9936

b = 6.6927.

The correlation coefficient is r = 0.9998. Since a ≈ 1, we can model the relationship

as SIRdB = SNRdB + 6.7. Accordingly, the curve demonstrates around 6.7 dB gain at

the destination UEs without relay selection. When relay selection is incorporated into

the problem, we observe that the associated curve shifts down from the baseline curve.

This tradeoff is expected, since turning off some relays will result in some loss in SIR. For

instance, for λ = 100, there’s approximately a loss of 4 dB in SIR.

An alternative way of presenting the results is demonstrated in Figure 5.4. Again, we
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Fig. 5.4: Average destination SIR (in dB) versus the regularization parameter λ at different
relay-SNR levels
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observe that the SIR decreases with the increase on the weight placed on group-sparsity,

i.e., λ. We also note that when λ = 0, there’s around 6 dB gain in SIR.

To gain more intuition behind the performance reduction observed in Figure 5.3, we

show the average number of active RRHs and their total transmission power with varying λ

in Figure 5.5. It is observed that for all the relay input SNR levels, on average less than 5.5

RRHs are active for the case of λ = 20 while less than 4.5 RRHs become active for the case

of λ = 100. The figure illustrates that the number of active relays is essentially controlled

by λ irrespective of the SNR level at the relay. Intuitively, the higher the λ (or the weight

placed on group-sparsity) the higher the number of inactive relays. The RRH individual

power is defined as Pl = 1
ηl
Pt,l +Pc,l, where ηl denotes the efficiency of the power amplifier,

e.g., ηl = 50%, Pt,l denotes the RRH transmission power and Pc,l denotes the frounthaul

link power consumption [43], which can be saved when the l-th RRH is switched off. The

proposed group-sparse algorithm yields a 17% reduction in the sum RRH power. Based on

the results, it becomes evident that the proposed solution can improve the network energy

efficiency while still providing a satisfactory level of QoS for all the end-users.

5.2.3 Penalty parameter variation

The algorithm’s speed of convergence is controlled by the choice of the penalty parameter

ρ. Accordingly, the complexity of the ADMM-based selection is measured by varying this

parameter, computing the CPU-time taken (in seconds) and making a comparison with the

CPU-time required by two optimization packages: SeDuMi and SDPT3.

From Table 5.1, we note that a value of ρ in the range of [2λ, 10λ] achieves the best

convergence speed. The table demonstrates that the ADMM-based selection converges

faster than both SeDuMi and SDPT3 when the proper value of the penalty parameter

ρ is selected. As a result, one may use the ADMM-based algorithm as a fast selection

http://sedumi.ie.lehigh.edu
http://www.math.nus.edu.sg/%7Emattohkc/sdpt3.html
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mechanism.

Regularization parameter λ
0.1 1 5 20 100 250 500

SeDuMi 0.2210 0.2366 0.2244 0.2116 0.2105 0.2081 0.2078
SDPT3 4.0 0.3943 0.3966 0.3633 0.3792 0.3926 0.4077 0.4178
ADMM, ρ = 0.1λ 0.5976 0.7979 0.9390 1.0278 1.1046 1.1724 1.2460
ADMM, ρ = 0.5λ 0.1250 0.1473 0.1809 0.2103 0.2300 0.2514 0.2468
ADMM, ρ = λ 0.0650 0.0850 0.0911 0.1128 0.1292 0.1281 0.1392
ADMM, ρ = 2λ 0.0344 0.0459 0.0489 0.0627 0.0685 0.0707 0.0772
ADMM, ρ = 10λ 0.0317 0.0370 0.0379 0.0486 0.0705 0.0788 0.0837
ADMM, ρ = 100λ 0.2282 0.2667 0.3108 0.4195 0.6743 0.7306 0.6826

Table 5.1: CPU time (seconds) for εabs = 0, εrel = 10−3

Fig. 5.5: Top figure: average number of active RRHs versus the regularization parameter
λ. Bottom figure: total RRH transmission power versus the regularization parameter λ.
The front-haul power is set to Pc,l = 5.6 for all RRHs.
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Chapter 6

Conclusions and Future Work

In this thesis, a low-complexity joint RRH selection and relay AF transceiver optimiza-

tion algorithm was proposed for a multiuser relaying network within a C-RAN. First, we

presented the necessary mathematical background on optimization, MIMO processing and

relaying in Chapter 2. We introduced convex problems, the subgradient and discussed du-

ality and the KKT optimality conditions. Additionally, we presented the ADMM algorithm

and its stopping critertion; an algorithm which has been essential in this thesis due to its

fast convergence property.

In Chapter 3, we outlined the system model along with the problem formulation. As-

suming known CSI at the BBU, the approach is based on choosing the AF matrices of the

relays that minimize the total interference leakage at the destinations while satisfying RRH

transmit power constraints along with a set of linear signal preservation constraints. Since

we seek an energy-efficient solution, a regularization term representing the group-sparsity

pattern associated with the relay AF matrices was added to the objective function. Finally,

we were able to cast our formulation as a convex optimization problem by vectorizing the

matrices and manipulating the expressions.
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In Chapter 4, the AF matrices of all the relays are jointly optimized via a two-stage

approach using the ADMM algorithm. Stage 1 – outlined in Algorithm 1 – serves as a

quick selection mechanism that yields a subset of active relays A, while stage 2 solves

for the AF relay matrices by minimizing the interference leakage based on the previous

results, as outlined in Algorithm 2. Specifically, the optimization in stage 2 includes explicit

constraints on the activity of the RRHs. It is worthwile to note that the ADMM yields

closed-form solutions at each iteration of Algorithm 1 and results in a solution vector which

is exactly group-sparse, thanks to a thresholding operation that appears in the derivation

of the closed-form solutions. In addition, we note that one of the steps of the ADMM-based

algorithm may be run in a parallel fashion, further reducing computational complexity.

Simulation results in Chapter 5 demonstrate the explicit benefits of the proposed algo-

rithm, which results in significantly lower power consumption and computational complex-

ity than conventional relaying design methods.

As future work, the robustness of our approach to imperfect CSI can be tested via an

appropriate statistical model. In practice, the CSI at the BBU pool will be imperfect,

which may originate from a variety of sources. For instance, in frequency-division duplex

(FDD) systems, the CSI imperfection may originate from downlink training based channel

estimation and uplink limited feedback. It could also be due to the hardware deficiencies,

partial CSI acquisition, and delays in CSI acquisition [14]. In addition, the limited fronthaul

capacity on the optical transport links may be incorportated into the problem formulation.

This would include including capacity constraints in the optimization formulation, and

since capacity is a function of the SNR, this would introduce non-linear constraints. The

challenge would be to ‘linearize’ the constraints in order to make the optimization amenable

to the application of the ADMM algorithm. Otherwise, it would be challenging to obtain

closed-form solutions, as derived in this thesis.
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