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Abstract

In a number of electrical engineering problems, so-called “crossing points” – the instants

at which two continuous-time signals cross each other – are of interest. Often, particularly

in applications using a Digital Signal Processor (DSP), only periodic samples along with

a partial statistical characterization of the signals are available. In this situation, we are

faced with the following problem: Given limited information about these signals, how can

we efficiently and accurately estimate their crossing points?

For example, an audio amplifier typically receives its input from a digital source decoded

into regular samples (e.g. from MP3, DVD, or CD audio), or obtained from a continuous-

time signal using an analog-to-digital converter (ADC). In a switching amplifier based

on Pulse-Width Modulation (PWM) or Click Modulation (CM), a signal derived from

the sampled audio is compared against a deterministic reference waveform; the crossing

points of these signals control a switching power stage. Crossing-point estimates must be

accurate in order to preserve audio quality. They must also be simple to calculate, in order

to minimize processing requirements and delays.

We consider estimating the crossing points of a known function and a Gaussian random

process, given uniformly-spaced, noisy samples of the random process for which the second-

order statistics are assumed to be known. We derive the Maximum A-Posteriori (MAP)

estimator, along with a Minimum Mean-Squared Error (MMSE) estimator which we show

to be a computationally efficient approximation to the MAP estimator.

We also derive the Cramér-Rao bound (CRB) on estimator variance for the problem,

which allows practical estimators to be evaluated against a best-case performance limit.

We investigate several comparison estimators chosen from the literature. The structure of

the MMSE estimator and comparison estimators is shown to be very similar, making the

difference in computational expense between each technique largely dependent on the cost

of evaluating various (generally non-linear) functions.

Simulations for both Pulse-Width and Click Modulation scenarios show the MMSE

estimator performs very near to the Cramér-Rao bound and outperforms the alternative

estimators selected from the literature.
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Sommaire

Dans bon nombre de problèmes d’ingénierie électrique, il est intéressant de noter les

points dits points de croisement, soit l’instant où deux signaux continus se croisent. Sou-

vent, surtout dans les applications utilisant un processeur de signal numérique (PSN),

seuls des échantillons périodiques avec une caractérisation statistique partielle des signaux

sont disponibles. Dans une telle situation, nous sommes face au problème suivant: vu

l’information limitée sur ces signaux, comment peut-on estimer de façon efficace et exacte

leurs points de croisement?

Par exemple, dans un amplificateur audio avec modulation d’impulsions en durée (MID)

ou en position (Click Modulation, ou CM), un signal inconnu est comparé à une onde

de référence déterministe; les points de croisement de ces signaux contrôlent un étage

de puissance commutatif. L’entrée d’un tel amplificateur est habituellement décodée en

échantillons réguliers (par exemple, l’audio d’un MP3, d’un DVD ou d’un CD) ou en-

core obtenue à partir d’un signal continu utilisant un convertisseur analogique-numérique

(CAN). Les estimations de points de croisement doivent être précises afin de conserver la

qualité audio. Elles doivent aussi être simples à calculer afin de minimiser les exigences et

les délais du traitement.

Nous voulons estimer les points de croisement d’une fonction connue et d’un processier

aléatoire gaussien, grâce à des échantillons, également espacés et brouillés par le bruit, du

processier aléatoire pour lesquels les statistiques du second ordre sont présumées être con-

nues. Nous dérivons l’estimateur du maximum a posteriori (MAP), ainsi qu’un estimateur

de type Erreur Quadratique Moyenne Minimale (EQMM); nous montrons que ce dernier

est une approximation numérique efficace de l’estimateur MAP.

Nous dérivons également la Borne de Cramér-Rao (BC) de la variance de l’estimateur

pour le problème, ce qui permet l’évaluation d’estimateurs pratiques par rapport à une

limite de performance dans la meilleure situation. Nous étudions plusieurs estimateurs de

comparaison choisis parmi la littérature. Nous prouvons que la structure de l’estimateur

EQMM et celle des estimateurs de comparaison sont très semblables, rendant la différence

d’utilisation de ressources informatiques entre chacune des techniques hautement dépendante

du coût relié à l’évaluation de diverses fonctions (habituellement non linéaires).

Les simulations à la fois des scénarios avec modulation d’impulsions en durée et avec

modulation d’impulsions en position (CM) montrent que l’estimateur EQMM s’approche
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très près de la CRB et est plus efficace que les autres estimateurs choisis dans la littérature.
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Chapter 1

Introduction

1.1 The Crossing-Point Estimation Problem

In many signal processing applications, the samples of an unknown, continuous signal

are used to estimate the times at which this signal crosses a known function. The known

function depends on the application, and is typically zero, a fixed level, or a periodic carrier.

Often, only noisy samples of the unknown signal are available, along with some information

about their statistical properties. This thesis concerns itself with three questions:

• Is there an optimal method to estimate the crossing points of the unknown signal and

the known function?

• If so, is there a computationally efficient approximation to the optimal method?

• How accurate can the resulting estimates be?

This crossing-point estimation problem arises in a number of applications. For exam-

ple, zero-crossings are of interest in pitch detection for speech signals [1], demodulation

of FM and FSK signals [2], and frequency estimation for power-quality monitoring [3].

Level-crossings have been extensively studied [4], and are of practical interest in non-linear

sampling applications [5]. Carrier crossings have also received substantial theoretical treat-

ment [6], and are of practical interest in Pulse-Width Modulation (PWM) [7, 8], Click

Modulation (CM) [9], and non-linear sampling applications [10].

The examples of PWM and CM are of particular interest due to the growing demand

for high-fidelity, inexpensive switching amplifiers. In these applications, crossing points of a
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bandlimited signal and a known carrier (which may be sawtooth, triangular, or sinusoidal)

must be accurately determined in order to preserve the fidelity of the input signal (e.g. 16

bits at a sampling rate of fs = 44.1 kHz, in typical audio applications.) In consumer-grade

equipment, this process must also be computationally efficient to avoid costs associated

with an expensive Digital Signal Processor (DSP) or a high gate count in custom silicon.

In this thesis, we investigate the crossing-point estimation problem from the perspec-

tive of statistical signal processing. Although we approach the problem in a general way,

we focus on the particular applications of PWM and CM due to the rapid progress and

continuing interest in switching amplifier research and design.

1.2 Previous Work

Several investigations of the discrete-time crossing-point estimation problem have been

conducted in order to design digitally controlled switching amplifiers using PWM. In all

such cases, estimating crossing points was cast as a two-step process: crossing points were

first rapidly and coarsely located by observing points at which samples of the random signal

and carrier cross each other. Then, nearby samples of the random signal and carrier were

used to generate a more accurate estimate of the crossing point.

The most common approach to refining crossing-point estimates is to approximate the

random signal between samples using a continuous interpolating function. It then remains

to estimate the crossing points of the interpolating and carrier functions, for which many

root-finding techniques (e.g. Brent’s algorithm or Newton’s method) are applicable.

The simplest choice for the interpolator is also the most frequently used: the unique

polynomial of order M − 1 passing through M sample points of the random signal. For ex-

ample, when M = 2, the polynomial interpolator corresponds to straight-line interpolation

between samples on either side of the crossing-point. In [11], straight-line interpolation

is abandoned in favour of higher-order polynomial interpolation. However, straight-line

interpolation is explored for a different parameter set and found to perform adequately in

[12]. Cubic and higher-order polynomial interpolators are explored in [8, 13, 14, 15, 16, 7].

These references, all of which focused on PWM audio amplifiers, suggest the estimation

accuracy of low-order polynomial interpolators varies strongly with design conditions.

An alternative scheme [14, 7] begins with an infinite-sum expression for the crossing

points assuming the unknown input is an analytic, nonrandom signal and given knowledge
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of all of its derivatives. This expression is truncated to an appropriate number of terms,

and the derivatives of the random signal are estimated using numerical techniques.

Several surveys [15, 13, 17, 18, 19, 7] describe, evaluate and compare the above tech-

niques. The impact of crossing-point estimation errors in PWM are considered in [20].

None of the approaches mentioned above take advantage of statistical knowledge of the

underlying signals. It is unclear if and when these techniques are optimal in any sense, as

they are designed on an ad-hoc basis. While they can perform adequately in an oversampled

regime when the random signal is low-pass in nature, these techniques do not generalize to

arbitrary signal models, and may not be as computationally efficient as alternatives.

1.3 Thesis Contributions

This thesis approaches the discrete-time crossing-point estimation problem from a sta-

tistical perspective under the Maximum A-Posteriori (MAP) framework. By adopting a

statistical framework, it is possible to inject and exploit information about the random sig-

nal, such as its autocorrelation function, which would not be feasible with a nonstatistical

approach. It is also possible to model and compensate for measurement noise.

We derive the MAP estimator for the problem, a methodological process yielding an

estimate that meets certain optimality criteria. We also derive the Cramér-Rao bound

(CRB) on estimator variance for the problem, which provides an absolute metric against

which estimators may be compared. We introduce an alternative crossing-point estimator

using the Minimum Mean-Squared Error (MMSE) estimator for the random signal, and

show it to be an approximation to the MAP estimator under oversampled, high-SNR con-

ditions. We consider the computational complexity of these and several estimators chosen

from the literature.

Finally, we present simulated results using both sinusoidal (for CM) and sawtooth (for

PWM) carrier crossings as a scenario. We compare the performance of the MAP and

MMSE estimators with the Cramér-Rao bound and a number of estimators chosen from

the literature. The MAP and MMSE estimators approach the CRB and outperform the

alternatives simulated.
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1.4 Organization

The remainder of this work is organized into five chapters.

In Chapter 2, we present an introduction to switching amplifiers, focusing on the tech-

niques of Pulse-Width Modulation and Click Modulation. This material motivates explo-

ration of the crossing-point estimation problem and provides some context for the simula-

tions presented later.

In Chapter 3, we formally define the discrete-time crossing-point estimation problem.

We also introduce several constraints on the general problem introduced by Pulse-Width

and Click Modulation. These constraints allow a number of simplifications to be used in

the derivations that follow.

In Chapter 4, we derive both MAP and MMSE estimators, as well as the Cramér-Rao

bound on estimator variance. We also formally develop some of the previously published

solutions to the crossing-point estimation problem in order to compare them with the

estimators proposed in this thesis. We consider the computational cost of these techniques.

In Chapter 5, we present some experimental results. These results are gathered from

simulations focusing on PWM and CM as representative test scenarios.

Finally, we conclude with Chapter 6. Mathematical proofs are provided in the appen-

dices for longer derivations.
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Chapter 2

Switching Amplification

2.1 A Basic Switching Amplifier

Consider an amplifier with gain K, which accepts the signal a(t) and produces Kâ(t).

Generally speaking, it is desirable that â(t) approximates a(t) as closely as possible; any

differences imply distortion.

A lack of distortion is not the only consideration facing amplifier designers. Particu-

larly in consumer electronics, two additional factors – efficiency and cost – are of growing

importance. A more efficient amplifier can substantially improve a device’s battery life,

size, weight, and reliability. These improvements, in turn, allow reductions in the cost of

a device, particularly as consumer trends demand smaller, more integrated, highly mobile

products.

The central difficulty in building an efficient amplifier surrounds the drivers, the transis-

tors that deliver bulk power to the load. While these can be coaxed into doing an excellent

job of reproducing signals with high fidelity, they generally do so with very poor efficiency

— in a traditional, class-AB audio amplifier, typical performance estimates are between

50% and 72.5% [21]. Switching amplifiers confront this efficiency deficit by transforming the

audio signal into a form that can be efficiently amplified, but from which the undistorted

audio can easily be recovered.

Switching amplifier designs may be represented using the basic structure of Figure 2.1.

This block accepts an input signal a(t), and outputs the signal â(t) amplified by the gain

K. Ideally, this amplifier reproduces â(t) = a(t). However, within the amplifier, the input

a(t) is transformed into a highly distorted signal. As we will see, switching amplifiers
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take advantage of the fact that some types of distortion can be permissible and, in fact,

advantageous.

Modulator Demodulator

a(t) Kâ(t)

Fig. 2.1 A Basic Switching Amplifier

The input signal a(t) is converted into a two-level control signal by the modulator. In

general, this modulator encodes the input signal into the pulse edges (or, equivalently, pulse

centers and widths) of the control signal.

Next, the output from the modulator is used to control a switch. This switch, typically

built out of Field Effect Transistors (FETs), converts the low-power control input into a

high-power signal capable of driving a load (e.g. a loudspeaker.) The control signal occupies

a small number of states; although multi-level switching converters exist, it suffices here to

consider only two-level designs.

The output from the switch passes through the demodulator before reaching the load.

Because the switch and demodulator both process the amplifier’s full output power, each

must be efficiently designed. Inexpensive FET power stages can switch states very rapidly

and can be highly efficient. However, to minimize the amplifier’s energy dissipation, ex-

pense, bulk, and sensitivity to component and operating condition variations, the demod-

ulator is generally restricted to a passive, low-order, low-pass filter.

By restricting the demodulator to a low-order, low-pass filter, the role of the modulator

is essentially fixed. This role is discussed in the following section.

2.1.1 The Ideal Switching Modulator

The modulator in Figure 2.1 must convert a continuous-time signal to a switching represen-

tation by injecting high-frequency components which may either be neglected or removed

by the demodulator. In other words, the modulator’s output may be decomposed into dis-

joint low-pass and high-pass regions. The low-pass region reproduces the input signal a(t)

without distortion. Due to the demodulator filter, the high-pass region should not leave
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the switching amplifier and may be used arbitrarily by the modulator to shape the input

signal into a switching form. This role is illustrated in Figure 2.2, where Fa represents the

bandlimit of a(t). The Fourier transform of a(t) (which we presume to exist) is denoted

A(f).
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Fig. 2.2 Spectral Characteristics of the Ideal Switching Modulator (Magni-

tude |A(f)| versus frequency f in Hz)

Although the primary task of the modulator is to generate a switching signal that

faithfully reproduces the input signal in a low-pass region, there are a few additional traits

a well-designed modulator should exhibit. For instance, the FETs comprising the power

switch dissipate substantial amounts of energy during switching, reducing efficiency. In

addition, abruptly switching a load with inductive characteristics (such as a loudspeaker)

can stress components and introduce electromagnetic interference (EMI). Finally, switching

cannot occur instantaneously (as the designer typically assumes), since the switch produces

a voltage signal which is neccessarily continuous; this non-ideality also introduces distortion.

For these and other reasons, the modulator should be designed with as low an average

switching rate as is practical. In a digitally-controlled switching amplifier, the modulator

should also be computationally inexpensive, since computational requirements can directly

determine the cost of the modulator.

In the following sections we explore Pulse-Width Modulation and Click Modulation,

two of the modulation schemes applicable to switching amplifier designs. Although this

coverage is not exhaustive (we neglect, for example, delta-sigma modulation), our purpose

is to give a sense of the structure of these modulators and the role of a crossing-point

estimator within each of them.
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2.2 Pulse-Width Modulation

The dominant modulation scheme used in switching amplifier designs is Pulse-Width Modu-

lation (PWM).1 PWM is a well-known method, used for many decades [22] in (for example)

motor control and switching power supplies.

In this section, we present a brief description of several variants of PWM, in order to

provide a sense of how PWM signals are generated in continuous-time systems. We also

explore the spectral properties of a PWM signal, and discuss how these properties effect

the ability of a PWM-based switching amplifier to attain the ideal modulator spectrum

of Figure 2.2. For clarity, we present PWM in a continuous-time environment; additional

effort is required to build a PWM system in discrete time.

2.2.1 Variants of PWM

Pulse-Width Modulation schemes are generally classified in two ways. The first distinction

is the type of sampling: natural sampling (NS) or uniform sampling (US). The second

distinction is the form of the carrier signal, which yields Trailing Edge (TE), Leading Edge

(LE), or Double-Edge (DE) PWM. These classifications are illustrated with the schematic

of a simple pulse-width modulator in Figure 2.3. The block labelled “ZOH” corresponds

to a Zero-Order Hold or sample-and-hold device with sample period Ts = 1/fs [23].

+

−

+

−

ZOH

Double-Edge PWM

a(t)

Leading-Edge PWM

Trailing-Edge PWM

Natural Sampling (NS)

y(t) p(t; s)

s(t)

Uniform Sampling (US)

Fig. 2.3 Flavours of PWM

1The PWM scheme described here might more properly be called Intersective PWM or IPWM, to
distinguish it from other schemes (such as Click Modulation) that also generate a pulse train with varying
pulse widths. At the risk of confusion, we use the more conventional acronym PWM.
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The input to this pulse-width modulator is the arbitrary (but generally bounded in

amplitude) signal a(t). Depending on the sampling method (NS or US) and carrier y(t),

the output p(t; s) corresponds to a particular PWM scheme. The carrier, with period

Ts = 1/fs, adds a time-varying bias to the input signal. The comparator removes all

information from the biased input except for its sign.

PWM Sampling Schemes

The type of sampling – NSPWM or USPWM – has important repercussions in a digital

pulse-width modulator. USPWM generates crossing points which are trivial to calculate,

but which exhibit non-linear distortion of the input signal in the baseband region (see also

Figure 2.5.) Non-linear distortion in the baseband is a sufficiently negative feature that

most PWM schemes disregard USPWM except as a tool for the development of improved

schemes more closely mimicking Naturally-Sampled PWM [11, 24].

In the following section, we explore the variants of NSPWM illustrated in Figure 2.3.

PWM Carriers

Variants of NSPWM have the general structure shown in Figure 2.4. (We use the notation

introduced in [24].)
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pTE(t; a)

y(t)

y(t)

pDE(t; a)

y(t)

pLE(t; a)

a(t)

a(t)

a(t)

Leading-Edge (LE) PWM

Trailing-Edge (TE) PWM

Double-Edged (DE) PWM

Tc

t

t

t

wLE

wTE

wDE

Fig. 2.4 Generating Naturally-Sampled TE, LE, and DE Pulse-Width Mod-

ulation

In all three PWM variants, the output signal p(t; a) is defined by the crossing points of a

bounded input signal a(t) and a periodic carrier y(t). The output waveform p(t; a) exhibits

pulses of width w that encode the desired signal a(t). For TE and LE PWM, the carrier

is a sawtooth, and only half of the edges in p(t; a) are determined by the input a(t). For

DE PWM, the carrier signal is a triangle wave, and both edges of p(t; a) are determined by

a(t). In all three cases, the carriers shown have the same fundamental frequency fc = 1/Tc,

and the input a(t) is always bounded by extrema of y(t).

2.2.2 Spectral Characteristics of NSPWM Signals

The spectral characteristics of PWM have been studied in many papers [22, 25, 26, 27, 24].

Closed-form expressions for the PWM output spectra generated by an arbitrary (deter-

ministic) signal have only recently been published, first informally [27] and then more

rigorously [24]. We review these results in order to explore the spectral characteristics of

a PWM signal. Black’s analysis [22] may be used to demonstrate the same characteris-
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tics when a(t) is constrained to be sinusoidal; we focus on the more recent approaches to

promote generality.

Let the signals pTE(t; a), pLE(t; a), and pDE(t; a) represent (respectively) the output of a

trailing-edge, leading-edge, and double-edge Pulse-Width Modulator with input a(t), given

|a(t)| ≤ 1. The Fourier transform of a(t) (which we assume exists) is denoted A(f), and

that of [a(t)]n (for positive integer values of n) is denoted An(f). The following results are

taken from [24].

Trailing-Edge (TE) NSPWM

For trailing-edge PWM, we have:

pTE(t; a) = a(t) +
∞∑
k=1

2

kπ

[
sin (2πkfct)− (−1)k sin (2πkfct− kπa(t))

]
(2.1)

The corresponding spectrum PTE(f ; a) is given by the following:

PTE(f ; a) = A(f) +
∞∑
k=1

1

jkπ
[δ(f + 2πkfc)− δ(f − 2πkfc)]

+
∞∑
k=1

(−1)k
∞∑
n=1

(jkπ)n−1

n!
[An(f + kfc) + (−1)n−1An(f − kfc)] (2.2)

Leading-Edge (LE) NSPWM

For leading-edge PWM, we have:

pLE(t; a) = a(t) +
∞∑
k=1

2

kπ

[
(−1)k sin (2πkfct+ kπa(t))− sin (2πkfct)

]
(2.3)

The corresponding spectrum PLE(f ; a) is given by the following:

PLE(f ; a) = A(f)−
∞∑
k=1

1

jkπ
[δ(f + 2πkfc)− δ(f − 2πkfc)]

+
∞∑
k=1

(−1)k
∞∑
n=1

(jkπ)n−1

n!
[(−1)n−1An(f + kfc) + An(f − kfc)] (2.4)
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Double-Edge (DE) NSPWM

For double-edge PWM, we have:

pDE(t; a) = a(t) +
∞∑
k=1

2(−1)k

kπ

[
sin

(
2πkfct+ kπ

a(t) + 1

2

)
− sin

(
2πkfct− kπ

a(t) + 1

2

)]
(2.5)

The corresponding spectrum PDE(f ; a) is given by the following:

PDE(f ; a) = A(f) +
∞∑
k=1

(−1)k
∞∑
n=1

[
(j2kπ)2n−2

22n−2(2n− 1)!
(S2n−1(f + 2kfc) + S2n−1(f − 2kfc))

− (j(2k − 1)π)2n−1

j22n−1(2n)!
(S2n(f + (2k − 1)fc) + S2n(f − (2k − 1)fc))

]
(2.6)

Note that (2.3) may be derived from (2.1) using the identity pLE(t; a) = −pTE(t;−a).

In addition, (2.5) may be derived from (2.1) and (2.3) directly by noting that

pDE(t; a) = pTE

(
t;

1 + a

2

)
+ pLE

(
t;

1 + a

2

)
− 1. (2.7)

The magnitude spectra of PTE(f ; a), PLE(f ; a), and PDE(f ; a) are similar (except in the

case of DEPWM, which does not have impulse components at multiples of fc.) An illus-

tration for a bandlimited audio signal a(t) with a flat-top spectrum is shown in Figure 2.5.

|A(f)|
−2fc

−fc
2fc

fc

0
f (Hz)

Fig. 2.5 Magnitude Spectrum of a TEPWM or LEPWM Signal

The spectrum shown in Figure 2.5 has three salient features:

• The flat component at the centre corresponds to the input signal,

• There is an infinite sequence of delta terms at multiples of the carrier frequency, and

• Each of these carrier terms is accompanied by a phase-modulated term that produces

a “skirt” around it in the spectrum.
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In the following section, we explore the consequences that the structure of all three

PWM signals has on a PWM-based switching amplifier.

2.2.3 Disadvantages of NSPWM for Switching Amplification

The “skirts” around each carrier term in Figure 2.5 are generated by phase-modulation

terms An(f) in the corresponding PWM spectrum. In general, phase modulation of an

arbitrary signal a(t) generates a signal that is not bandlimited; thus, each phase-modulation

term in (2.1), (2.3) and (2.5) has infinite spectral support in general, and some energy from

each term in the infinite summation contributes to the baseband region in Figure 2.2.

In practice, the presence of unbounded phase-modulation terms in NSPWM motivates

designers to increase the switching frequency fc in order to decrease the amount of baseband

distortion. Although this strategy cannot completely remove the baseband distortion, a

suitably high switching frequency can render this type of distortion negligible compared to

other sources.

An increase in switching frequency comes at a cost. A higher switching frequency

generate more edges in the modulator output, which produces more distortion due to

imperfect switching, dissipates more energy within the switching FETs, and radiates more

electromagnetic interference (EMI) due to fast-slewing control signals and inductive kick-

back when the load has inductive characteristics. Digitally-controlled switching amplifiers

typically generate switching waveforms using a dedicated peripheral that is only able to

place edges with a clock-dependent accuracy; a higher switching frequency produces more

edges per unit time and correspondingly more instances in which the switching signal is

distorted due to the finite clock rate and other limitations of this peripheral.

The spectral characteristics of PWM therefore introduce a set of design trade-offs.

Switching frequencies cannot be too low, otherwise significant energy from phase-modulation

terms will leak into the baseband region of Figure 2.2. Once inside the baseband region,

energy from phase-modulation terms passes the demodulator filter in Figure 2.1. Once past

the demodulator filter, this unwanted energy is dissipated by the load, where it reduces the

efficiency and fidelity of the amplifier. On the other hand, overly high switching frequencies

exacerbate other imperfections and inefficiencies in the switch and modulator.

In the following section, we introduce Click Modulation. This alternative to PWM

schemes comes at a higher signal-processing cost, but avoids the fundamental trade-off

afflicting PWM in switching amplifiers.
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2.3 Click Modulation

In the previous section, we described the spectral characteristics of a PWM signal and

showed that it only approximated the ideal modulator spectrum of Figure 2.2. In a PWM

system operating on the input signal a(t), baseband distortion resulted from the spectrally

unbounded, phase-modulation terms accompanying each carrier harmonic.

Click Modulation (CM) [9] is an alternative to PWM that provides a distortion-free

baseband, allowing a lower carrier frequency. In a CM system, we seek to bandlimit each

of PWM’s phase-modulation terms. We do so directly by forming the phase modulation

φ(t) of a(t), and low-pass filtering it, producing φ̂(t). Under the right conditions, we can

reverse the phase-modulation process on the filtered signal φ̂(t) and obtain a signal â(t)

which may be pulse-width modulated without generating baseband distortion.

Figure 2.6 shows the block diagram of a click modulation system [9]. This system

first creates the pre-envelope a+(t) = a(t) + jâ(t) of its input a(t). The signal a+(t) has

no spectral content at frequencies f < 0, and encodes a(t) in R{a+(t)}.2 [28] The pre-

envelope a+(t) is supplied to an analytic exponential modulator (AEM), which generates

φ(t) = e−ia
+(t). The signal φ(t), which is complex in general, encodes a(t) uniquely in its

phase arg φ(t) if a(t) is appropriately bounded. Then, φ(t) is low-pass filtered to form φ̂(t).

In a properly designed CM system, the phase arg φ̂(t) no longer reproduces a(t) exactly,

but they are spectrally identical over a low-pass region determined by the designer.

The remainder of the CM system is equivalent to explicitly forming arg φ̂(t) and passing

it to a TEPWM system [9, 27]. Two ground-referenced comparators combine to form the

switching signal q(t). These comparators are replaced by crossing-point estimators in a

discrete-time click modulator; however, there are two important considerations concerning

crossing-point estimation in this system:

• Two comparators in Figure 2.6 suggest two crossing-point estimators in a discrete-

time implementation. In practice, only one crossing-point estimator is required in

this system because the crossing-points of − sin(ct+ θ) are known a-priori.

• The remaining comparator is ground-referenced, suggesting a zero-crossing problem.

However, the signal s(t) applied to the other terminal is the sum of an unknown

portion and a deterministic (sinusoidal) portion; as simulations demonstrate (see

2The R{ · } operator produces the real part of the argument. Similarly, the I{ · } operator denotes the
imaginary part of the argument.
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Chapter 5), better performance may be obtained by decomposing the zero-crossing

problem into a sinusoidal carrier-crossing problem.

The interpretation of CM as TEPWM with an additional predistortion stage is illus-

trated in Figure 2.7.

e−j[ · ] Low-pass arg{ · } TE PWM
a(t) Kâ(t)φ(t) φ̂(t) ap(t)a+(t)

Pre-Envelope Filter

Fig. 2.7 Block Diagram of CM as a Pre-Distorted PWM Scheme

Once again, the pre-envelope a+(t) is formed, phase-modulated and filtered. In this

formulation, the predistorted signal arg φ̂(t) is explicitly formed and pulse-width modu-

lated. We note that this formulation is primarily useful for explanatory purposes; there

are practical reasons not to construct a CM system in this manner. For example, although

φ̂(t) is low-pass in nature, arg{φ̂(t)} may be an extremely wideband signal, requiring a

prohibitively high oversampling rate in a digital system.

For the complete design details of a CM system, interested readers are referred to [9].

2.3.1 Design Considerations for CM in Switching Amplifiers

As described in [9], CM requires filters which are extremely difficult to realize. In Fig-

ure 2.6, the input audio signal is processed by a Hilbert transformer. In the alternate

formulation illustrated in Figure 2.7, an analytic filter removes negative-frequency compo-

nents of the input audio. An audio signal may have meaningful content as low as 20 Hz;

in either formulation, the resulting filter has a transition region as narrow as 20 or 40 Hz –

an extremely impractical requirement, particularly when ripple and stopband attenuation

requirements are stringent. This limitation has been noted [29, 30], although an alternative

scheme is neither completely nor rigorously described.

The remaining design challenges in a CM system are surmountable: other filters within

the system may be designed with reasonable tolerances using ordinary DSP techniques.

The nonlinearities involved are characterized by rapidly decaying harmonics, suggesting

that a low oversampling rate may not introduce too much distortion due to aliasing. The

comparators in Figure 2.6 are precisely the crossing-point estimation problem considered

in this thesis. However, the Hilbert filter at the beginning of a CM system cannot be



2.3 Click Modulation 17

economically realized, and it is not obvious from published research how to sidestep this

issue.

2.3.2 Required Developments for a Practical CM System

The “missing link” in a CM system is clearly a method to avoid extremely narrow transition

regions in the Hilbert filter of Figure 2.6. Another interesting avenue of research into a

CM system would be the introduction of a double-sided CM scheme; as the published CM

system is comparable to TE PWM, a double-edge equivalent could exhibit reduced carrier

power (relative to the power of the desirable audio signal) and improved rejection of some

distortion due to imperfections in the switching waveform.
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Chapter 3

Problem Formulation

The preceding chapters described the discrete-time crossing-point estimation problem in-

formally and provided some motivation and background for further investigation. In this

chapter, we present a formal definition of the problem.

First, we describe the problem in its general form. We then describe a simplified ap-

proach that is commonly adopted in practice, and which we will investigate in the sequel.

Following the formulation of the general crossing-point estimation problem, we focus

on the particular applications of PWM and CM. Properly-functioning PWM and CM sys-

tems place additional constraints on the signals involved; these constraints simplify the

developments in the following chapter.

3.1 Discrete-Time Crossing-Point Estimation

Let s(t) be a continuous, real-valued, wide-sense stationary (WSS) Gaussian random pro-

cess with zero mean, autocorrelation function rs(t − u) = E{s(t)s(u)}, and variance

σ2
s = rs(0). Let y(t) be a known, deterministic signal. We wish to determine the se-

quence of crossing-points τ1 < τ2 < . . . of s(t) and y(t), or equivalently, the zero-crossings

of z(t) defined as follows:

z(t) , s(t)− y(t). (3.1)

In a continuous-time system, these crossing points may be detected using the comparator

circuits shown in Figure 3.1. In these circuits, the crossing points are encoded in the edge

positions of the output signal. The floating-reference circuit in Figure 3.1(a) is clearly
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identical to the ground-referenced circuit in Figure 3.1(b); however, the equivalent forms

lead naturally into distinct estimators in the sequel.

−

+

+

−

Σ
z(t)

s(t)

y(t)

t

t

t

t

p(t)

(a) Ground-referenced comparator

+

−

+

−

t

y(t)y(t)
t

s(t)
t

p(t)

(b) Floating-reference comparator

Fig. 3.1 Comparator Circuits for Continuous-Time Detection of Crossing
Points

In the discrete-time problem, we are provided with a set of K consecutive uniformly-

spaced noisy samples from s(t), where k ∈ Z is an integer index. We define these noisy

samples as x[k], i.e.

x[k] , s(kTs + Td) + n[k] (3.2)

where Ts denotes the sampling period, Td is a sampling offset, and n[k] is an additive

measurement noise. This noise signal may be used to model, for example, quantization

effects. We model n[k] as a WSS discrete-time Gaussian random process with zero mean

and autocorrelation function rn[k − l] = σ2
nδ[k − l], where σ2

n denotes the variance and

δ is the Kronecker delta function.1 The relationship between s(t) and x[k] is depicted in

Figure 3.2.

+

+

Σ
s(t)

n[k]

x[k]s(kTs + Td)
kTs + Td

Fig. 3.2 Sampling and Noise Model

1That is, δ[k] = 1 for k = 0; δ[k] = 0 otherwise.
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The discrete-time crossing-point estimation problem may be stated as follows. Given

the known carrier y(t) and K samples of x[k], estimate the sequence of points τ0 < τ1 < · · ·
satisfying s(τi) = y(τi), or equivalently, z(τi) = 0.

Because K is arbitrary and the number of crossing points τi is not limited, the complex-

ity of this problem is unbounded. In the following section, we describe a two-step approach

to the discrete-time crossing-point estimation problem with a much simpler form.

3.2 Simplified Discrete-Time Crossing-Point Estimation

Following published approaches to discrete-time crossing-point estimation, [14, 7, 12] we

impose a two-step structure on our solution to the general problem as shown in Figure 3.3.

Each step may be viewed as a separate estimation process:

• first, coarsely locate crossing-points using the estimator E1;

• then, apply the more refined estimator E2 in the neighbourhood of each crossing point

to generate a more exact estimate.

E1

x[k]
E2

x1,x2, . . . τ̂1, τ̂2, . . .

Fig. 3.3 Two-Step Crossing-Point Estimation

In the coarse estimator E1, we define ξ[k] as follows:

ξ[k] = x[k]− y(kTs + Td) (3.3)

The coarse estimator monitors ξ[k] for changes in sign. When the noise term is sufficiently

small, ξ[k] ≈ z(kTs + Td). Thus, neglecting the possibility that multiple zero crossings of

z(t) occur within each sampling interval, sign changes in ξ[k] (i.e. when ξ[k − 1]ξ[k] < 0)

bound each zero crossing τi to a single sample interval Ti defined as follows:

τi ∈ Ti , ([k − 1]Ts + Td, kTs + Td) (3.4)

In (3.4) and throughout the remaining development, we neglect the vanishing probability

that the zero crossing occurs precisely on a sampling instant. The coarse estimator may



22 Problem Formulation

miss zero crossings when the sampling rate is not sufficiently large when compared to the

Nyquist rate, because multiple zero crossings may occur in a single sample interval. A

number of improvements to E1 are possible; however, this estimator is not the focus of our

investigation.

Once the coarse bound on τi has been generated, we restrict our investigation to samples

immediately surrounding Ti. We form the M -dimensional vectors xi and ξi using M1

consecutive samples of x[k] and ξ[k] preceeding τi and M2 = M −M1 consecutive samples

immediately following τi:

xi =



x[k −M1]

. . .

x[k − 1]

x[k]

. . .

x[k +M2 − 1]


ξi =



ξ[k −M1]

. . .

ξ[k − 1]

ξ[k]

. . .

ξ[k +M2 − 1]


(3.5)

The second estimator E2 must solve the simplified discrete-time crossing-point estima-

tion problem, which is defined as follows: Given y(t), the sample vector xi (equivalently,

ξi), and the bracketing interval Ti for the ith zero crossing of z(t), find an estimate τ̂i of

the true crossing-point τi.

Because the carrier signal y(t) is completely specified, we are able to consider E2 in

two equivalent forms. These forms are the discrete-time equivalents of the continuous-time

cases shown in Figure 3.1. In one form, we use the vector xi to determine crossing points

of s(t) and y(t). In the second form, we use the vector ξi to estimate zero crossings of z(t).

These two forms are shown in Figures 3.4 and 3.5.

s(t)

x[k]

Ti

τi

xi

y(t)

Ac

−Ac
Ti Ti+1

Fig. 3.4 Forming xi; M = 4
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ξi

ξ[k] = x[k]− y(kTs + Td)

z(t) = s(t)− y(t)

Ti

τi

Ti
Ti+1

Fig. 3.5 Forming ξi; M = 4

In the following chapter, we focus on E2 and attempt to develop good estimators for

τi by exploiting statistical knowledge about the input vector xi. Because henceforth we

consider only a single crossing point at a time, we may drop the subscript i on τi, Ti, xi,

and ξi without ambiguity.

We have now defined the discrete-time crossing-point estimation problem in its general

and simplified forms. When considering these problems as they apply to PWM and CM

systems, several additional constraints are imposed that greatly simplify the derivations

that follow. We consider these constraints in the following section.

3.3 Carrier Function Constraints

In the previous sections, we formally defined the crossing-point estimation problem under

the assumption the carrier function y(t) was completely specified. The actual form of the

carrier signal y(t) depends on the application. In this section, we explore the effects the

carrier signal has on the problem definition.

In both CM and PWM, the carrier function y(t) is a periodic function: a sinusoid in

the case of CM, and a triangle-wave or a sawtooth for different varieties of PWM. Figure

3.6 shows the permissible carrier waveform for each scheme. For these carriers, the phase is

arbitrary but known, the time average (DC) value is zero, and the peak amplitude is ±Ac.

For the discontinuous (upper) waveforms in Figure 3.6, the discontinuities in y(t) pro-

duce additional crossing-points whose locations are exactly known; we therefore neglect

these edges and focus on the unknown (variable) crossing points.

In order for our model to accurately match the application, we wish to guarantee that
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Cj+1
Tj+1 Tj+2

+Ac

−AcCj
Tj

+Ac

−Ac

+Ac

−Ac

Fig. 3.6 Typical Click and Pulse-Width Modulation Carrier Functions

exactly one crossing-point occurs in each interval Cj defined as follows:

Cj , (Tj, Tj+1) (3.6)

To do so, we begin by bounding s(t) such that −Ac < s(t) < Ac; this ensures at least one

crossing point occurs in Cj.
Avoiding multiple zero crossings within each interval Cj involves a more complicated

relationship between the carrier period and signal bandwidth [25]. The occurance of mul-

tiple, or no, crossing-points within each interval indicates an undesirable condition known

as modulator overload. In the sequel, we assume modulator overload does not occur.2

3.4 Motivating a Closer Look

In this chapter, we formally defined the crossing-point problem. We introduced statis-

tical characterizations of the signals involved, and introduced a model for the effects of

measurement noise.

To motivate the estimators developed in the following chapter, we note that none of the

published crossing-point estimators we reviewed in Section 1.2 allowed this statistical infor-

mation (such as the sample autocorrelation) to be exploited. In addition, these estimators

2We cannot, of course, guarantee that the Gaussian signal s(t) is absolutely bounded below a particular
amplitude with probability 1. Instead, we require the probability of an excursion beyond Ac to be negligible.
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were introduced on an ad hoc basis, prompting questions about their generality.

For example, consider a crossing-point estimator that approximates s(t) using ŝ(t),

defined as the unique polynomial of order N − 1 passing through the N points of x. This

estimator, which we will denote POLS in the sequel, generates crossing-point estimates

τi by determining the points at which y(t) = ŝ(t) using a root-finding method such as

Newton’s method.

How general is this estimator? Polynomial interpolation has been shown [31] to approx-

imate sinc-kernel interpolation when the sampling rate fs is high compared to the Nyquist

rate for the signal being interpolated. This suggests the POLS estimator may perform well

in the absence of noise, when s(t) is a lowpass signal and fs is high compared to the Nyquist

rate. However, when noise is substantial, or when s(t) is not suitably oversampled, POLS

may not perform adequately. As we will show, an estimator that intelligently makes use of

autocorrelation information is superior to polynomial curve fitting.

Various improvements to basic polynomial interpolation (e.g. PLS, or Penalized Least-

Squares curve fitting [32]) have been examined in the literature; few of them have been

evaluated in the specific contexts of PWM amplification or crossing-point problems. PLS,

for example, balances fidelity (how close the chosen approximating function comes to each

of the datapoints) with the smoothness of the fitted curve. In the case of polynomial

approximations, such a scheme might vary the order of the polynomial adaptively, balanc-

ing mean-squared error with a penalty that promotes smooth (low-order) solutions. This

approach raises several questions: How can known or predictable parameters (e.g. band-

width, noise, or variance) be used to adapt order? Is the additional complexity tolerable?

Finally, if we neglect noise (or assume it can be perfectly removed under such a scheme),

there is still no guarantee that the adapted curve suitably matches the underlying function.

However, the estimators we examine also have an order associated with them; dynamically

modifying this parameter is an interesting avenue for future research.

Finally, a statistical investigation of the crossing-point estimation problem can yield

results beyond the estimators themselves. For example, the Cramér-Rao bound for the

problem (which we derive in the following chapter) allows the performance of nonstatis-

tical and statistical estimators alike to be evaluated against an absolute limit. Without

knowledge of this limit, it is difficult to establish how good a crossing-point estimator can

get.
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Chapter 4

Algorithm Development

Having defined the crossing-point estimation problem in the preceding chapter, we now in-

vestigate several solutions. We first derive the Maximum A-Posteriori (MAP) estimator for

the problem, a methodical process that furnishes an estimator which is known to approach

optimality under certain criteria. The MAP estimator is, however, not always convenient

or efficient to calculate. Following the derivation of the MAP estimator, we introduce the

Minimum Mean-Squared Error (MMSE) estimator, a computationally straightforward es-

timator. We link the newly developed MAP and MMSE estimators by showing that the

MMSE estimator is an approximation to the MAP estimator under certain conditions.

We then derive the Cramér-Rao bound (CRB) for the problem. The CRB reflects the

best-case performance for any unbiased crossing-point estimator (which may not necessarily

be attainable); it allows practical estimators to be judged against an absolute metric.

We also introduce a number of reference estimators to the discrete-time crossing-point

estimation problem. These estimators have been selected from the literature and represent

the most common solutions currently adopted in practice.

4.1 Distribution of Sample Vectors

Consider the discrete-time random process x[k] given by (3.2), where s(t) and n[k] are

statistically independent Gaussian, wide-sense stationary (WSS) processes with zero mean

and respective autocorrelation functions rs(t−u) (continuous-time) and σ2
nδ[n−l] (discrete-

time). It follows that x[k] is Gaussian with zero mean, autocorrelation function r[k] =

rs(kTs) + σ2
nδ[k], and variance σ2 = r[0] = σ2

s + σ2
n, where σ2

s = rs(0).
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We now consider the joint distribution of the M -dimensional observation vector x de-

fined as follows, where M = M1 +M2:

x =



x[k −M1]

. . .

x[k − 1]

x[k]

. . .

x[k +M2 − 1]


=



s([k −M1]Ts + Td) + n[k −M1]

. . .

s([k − 1]Ts + Td) + n[k − 1]

s(kTs + Td) + n[k]

. . .

s([k +M2 − 1]Ts + Td) + n[k +M2 − 1]


(4.1)

We may also express the observation vector x as x = s+n, where s and n are, respectively,

the (unobservable) contributions from s(kTs + Td) and n[k]:

s =



s([k −M1]Ts + Td)

. . .

s([k − 1]Ts + Td)

s(kTs + Td)

. . .

s([k +M2 − 1]Ts + Td)


n =



n[k −M1]

. . .

n[k − 1]

n[k]

. . .

n[k +M2 − 1]


(4.2)

The probability density function (pdf) of x, f(x), takes the standard multivariate Gaus-

sian form:

f(x) =
1

(2π)M/2|Σ0|1/2
exp

(
−1

2
xTΣ−1

0 x

)
(4.3)

where Σ0 = E{xxT} is an M × M symmetric Toeplitz sample covariance matrix with

determinant |Σ0|. We have:

Σ0 = E{(s + n)(s + n)T}

= E{ssT}+ E{nnT} (4.4)

= Σs + σ2
nI

where we have defined Σs , E{ssT}, and where I is the M ×M identity matrix. For sub-

sequent analysis, it is convenient to introduce the correlation vector function ρ(τ) defined
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as follows:

ρ(τ) , E{s(τ)s} =


rs (τ − [k −M1]Ts − Td)

...

rs (τ − [k +M2 − 1]Ts − Td)

 .
Now, Σs may be expressed in terms of ρ(τ) as

Σs =


ρ ([k −M1]Ts + Td)

T

...

ρ ([k +M2 − 1]Ts + Td)
T

 . (4.5)

We assume Σs is positive definite. In this case, Σ0 is also positive definite (even in the

absence of noise, i.e. when σ2
n = 0.)

4.2 Maximum A-Posteriori (MAP) Estimation

Let f(τ |x) be the probability density function (pdf) of a zero crossing of z(t) at time t = τ

conditioned on the sample vector x and given τ ∈ T . (Because of the coarse estimator

E1, the search is limited to τ ∈ T ; please refer to Section 3.2 for details, noting that the

subscript i is implicit here. In the sequel, τ is implicitly limited to this range.) The MAP

estimate of τ maximizes this function, i.e.:

τ̂map = argmax
τ

f(τ |x) (4.6)

Let f(τ) and f(x) represent, respectively, the a-priori pdfs of a zero crossing at time τ and

the sample vector x. Further, let f(x|τ) be the pdf of the sample vector x conditioned on

a crossing point at τ . We expand the conditional distribution f(τ |x) using Bayes’ rule:

f(τ |x) =
f(x|τ)f(τ)

f(x)
(4.7)

The MAP estimate is the maximum (with respect to τ) of (4.7). We differentiate the

logarithm of the right-hand expression with respect to τ and set the result to 0. This
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process yields the canonical MAP equation [33]:

d

dτ
log f(x|τ)

∣∣∣∣
τ=τ̂map

= − d

dτ
log f(τ)

∣∣∣∣
τ=τ̂map

We define S(x|τ) and S(τ) (which are sometimes called the conditional and a-priori

score functions, respectively) as follows:

S(x|τ) ,
d

dτ
log f(x|τ) S(τ) ,

d

dτ
log f(τ) (4.8)

The MAP estimate now satisfies

S(x|τ)|τ=τ̂map
= − S(τ)|τ=τ̂map

(4.9)

In the sequel, we express componentwise derivatives of scalars, vectors, and matrices (which

are always with respect to τ) using a dot notation. For example, ẏ(τ) , dy(τ)/dτ .

In the following subsections, we derive expressions for S(τ) and S(x|τ).

4.2.1 A-Priori Crossing-Point Density

In this section, we consider the probability density fτ (t) of a crossing point at time t, i.e.

the probability that s(t) = y(t). To simplify the derivation of this distribution, we make

three crucial assumptions:

1. The probability that |s(t)| ≥ Ac (i.e. overload) is negligible,

2. The carrier waveform y(t) is invertible (i.e. one-to-one) in every interval Cj, and

3. One (and only one) crossing point occurs in every interval Cj.

As described in Chapter 2, each of these assumptions is satisfied in the applications of CM

and PWM. Consider a segment Cj of y(t). (It suffices to consider a rising segment of y(t),

as falling segments follow by symmetry.) We use the second and third assumptions to write

the following equivalence:

Fτ (t) , Pr{τ ≤ t} = Pr{s(t) ≤ y(t)} (4.10)
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That is, for rising carrier segments, a crossing point occurs in the interval (∞, t) ∩ Cj if

and only if s(t) < y(t). Thus, each segment of the carrier y(t) allows us to map the

known density fS(s) into the desired density fτ (t). This mapping process is illustrated in

Figure 4.1.

Ac

−Ac

Ci
s

f
S (s)

t

fτ (t)

t

y(t)

Fig. 4.1 Deriving the A-Priori Crossing Point Probability Density

We have, in the interval t ∈ Cj:

Fτ (t) ≈
∫ y(t)

−Ac
fS(s)ds =

∫ y(t)

−Ac

1√
2πσ2

s

e
− 1

2σ2
s
s2

ds

We differentiate under the integral sign, giving

f(τ) =
exp

(
− 1

2σ2
s
y(τ)2

)
√

2πσ2
s

ẏ(τ)

for τ ∈ Cj. This result may be extended to sections of y(t) with negative slope by symmetry:

f(τ) =
exp

(
− 1

2σ2
s
y(τ)2

)
√

2πσ2
s

|ẏ(τ)| (4.11)

for τ ∈ Cj. This expression will be used both for MAP estimation and in evaluating the

CRB.
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4.2.2 Deriving the A-Priori Score Function

Solving for S(τ) = d
dτ

log f(τ) is straightforward when f(τ) takes the form (4.11). For

τ ∈ Cj, y(τ) is one-to-one; therefore, ẏ(τ) 6= 0 for all points within it. We have:

S(τ) =
ÿ(τ)

ẏ(τ)
− ẏ(τ)y(τ)

σ2
s

. (4.12)

Alternately, in the absence of a-priori information about crossing points, we may model τ

as uniformly distributed on Cj. This approach is mathematically equivalent to Maximum-

Likelihood (ML) estimation. In simulation, the two approaches are essentially indistin-

guishable, indicating that the a-priori distribution f(τ) is uninformative under the operat-

ing conditions we evaluate. (This point will be discussed further in Chapter 5.)

4.2.3 Conditional Distribution of Sample Vectors

We now consider the distribution of the vector x conditioned on a crossing point at time τ ,

or equivalently from (3.1), given s(τ) = y(τ). We begin by forming the augmented sample

vector

xτ = [ xT , s(τ) ]T = [ (nT + sT ) , s(τ) ]T . (4.13)

As n and s(τ) are statistically independent and Gaussian, xτ is a Gaussian random vector

with zero mean and covariance matrix Στ which may be expressed in partitioned form as

follows:

Στ =

[
Σ0 ρ(τ)

ρ(τ)T σ2
s

]
(4.14)

The conditional distribution of x given τ is equivalent to the addition of a new random

variable with a known value, and can be expressed as

f(x|τ) = f (xτ |s(τ) = y(τ))

=
f(xτ )|s(τ)=y(τ)
fs(y(τ))

(4.15)
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The pdf f(x|τ) can be shown to be Gaussian with covariance matrix Σ(τ) and mean µ(τ)

defined as follows: [34]

Σ(τ) =Σ0 −
ρ(τ)ρT (τ)

σ2
s

(4.16)

µ(τ) =
ρ(τ)y(τ)

σ2
s

(4.17)

We will frequently require the derivatives of Σ(τ) and µ(τ). For convenience, we differen-

tiate these quantities here:

Σ̇(τ) =− ρ̇(τ)ρT (τ) + ρ(τ)ρ̇T (τ)

σ2
s

(4.18)

µ̇(τ) =
ρ̇(τ)y(τ) + ρ(τ)ẏ(τ)

σ2
s

(4.19)

In the following development, we suppress dependence of y, ρ, Σ, and µ on τ to simplify

notation. We have:

f(x|τ) =
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2π)M/2|Σ|1/2

(4.20)

These expressions completely characterize the conditional distribution. We now con-

tinue deriving the MAP estimator.

4.2.4 Deriving the Conditional Score Function

The MAP estimate of τ satisfies (4.9). In order to derive the MAP estimator, we require

an expression for S(x|τ). Combining (4.20) and (4.8), we have:1

S(x|τ) = −1

2

d

dτ

[
log |Σ|+ (x− µ)TΣ−1(x− µ)

]
(4.21)

To simplify this expression, we introduce the following definitions:

a = ρTΣ−1ρ/σ2
s c = xTΣ−1ρ

b = ρTΣ−1ρ̇/σ2
s d = xTΣ−1ρ̇ (4.22)

e = ρ̇TΣ−1ρ̇/σ2
s

1Full derivations of (4.21), (4.23) and (4.26) are provided in Appendix A
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Using some manipulations and elementary identities for differentiating matrix expressions,

(4.21) may be expressed as follows:

S(x|τ) = b− (ay − c)(by − d) + ẏ(ay − c) + y(by − d)

σ2
s

(4.23)

Due to the terms a, b, c, and d, this form for S(x|τ) still depends on the conditional

covariance matrix Σ, which in turn depends on τ . We may use the Sherman-Morrison-

Woodbury formula [35] to express Σ−1 in terms of Σ−1
0 :

Σ−1 = Σ−1
0 +

Σ−1
0 ρρ

TΣ−1
0

σ2
s − ρTΣ−1

0 ρ
(4.24)

This formula is valid provided that Σ0 is nonsingular (which is assumed a-priori) and

provided σ2
s 6= ρTΣ−1

0 ρ, which is satisfied in the presence of noise (See Appendix C for

proof.) We apply (4.24) to each of the definitions (4.22) in order to express S(x|τ) without

using the conditional covariance matrix. Let:

a0 = ρTΣ−1
0 ρ/σ

2
s c0 = xTΣ−1

0 ρ

b0 = ρTΣ−1
0 ρ̇/σ

2
s d0 = xTΣ−1

0 ρ̇ (4.25)

e0 = ρ̇TΣ−1
0 ρ̇/σ

2
s

After substitution, (4.23) may be expressed as:

S(x|τ) =
d0y

σ2
s

− b0(a0y − c0)(y − c0)
σ2
s(1− a0)2

+
b0σ

2
s + (d0 − ẏ)(a0y − c0)− yb0(y − c0)

σ2
s(1− a0)

(4.26)

Combining the above results, we may now state the fully simplified MAP estimator.

4.2.5 The MAP Estimator

Combining (4.26) and (4.9), and once again noting that the dependence on τ has been

omitted, the MAP estimate satisfies

−S(τ)|τ=τ̂map
=
d0y

σ2
s

− b0(a0y − c0)(y − c0)
σ2
s(1− a0)2

+
b0σ

2
s + (d0 − ẏ)(a0y − c0)− yb0(y − c0)

σ2
s(1− a0)

(4.27)
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where either (4.12) or 0 (when f(τ) is uninformative) may be used in place of S(τ).

In order to generate estimates using this expression, a zero-finding method such as

Brent’s algorithm [36] or Newton’s method may be applied. There is no a-priori guarantee

that an unique zero of (4.27) exists in T , and that it corresponds to the maximum of

(4.6) within T . We do not investigate uniqueness of the solution in this work. Although

(4.27) may exhibit multiple candidates in T , judicious selection of a starting point for the

zero-finding algorithm produces excellent results. (In simulations, we provide the MMSE

estimate described below as a starting point to the MAP estimator.) The experimental

results presented in the following chapter do not suggest any investigation of uniqueness is

necessary in practice.

Although (4.27) cannot be simplified further, it is both numerically sensitive and com-

putationally expensive. (One such numerical problem is briefly described in the following

section.) To design a more practical estimator, we will make a number of approximations

in order to simplify (4.27). In doing so, we will arrive at a MMSE formulation for the

problem.

4.3 Minimum Mean-Squared Error (MMSE) Estimation

Consider the minimum mean-squared error (MMSE) estimate ŝ(t) of s(t) at arbitrary t

given the vector x of nearby samples. This estimate is given by the Wiener-Hopf equa-

tion: [37]

ŝ(t) = ρ(t)TΣ−1
0 x = c0

The expected mean-squared error for this estimate is given by: [37]

ε = σ2
s − ρ(t)TΣ−1

0 ρ(t) = σ2
s(1− a0)

As ε is a variance and Σ0 is nonnegative definite, ε ∈ [0, σ2
s ]. We may consider ε to be a

measure of confidence in ŝ(t). When x consists of samples near t, we should expect this

error to be very small compared to σ2
s .

Due to the 2-step structure of our estimator, τ is bounded by (3.4). This bound allows

us to choose a vector x of nearby samples such that 1 − a0 is very small over the region

of possible zero crossings. When 1 − a0 is very small, the second term on the right-hand

side of (4.27) dominates. At the MAP estimate τ̂ (where, again, dependence on the time
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variable is suppressed), we have:

0 ≈ b0(a0y − c0)(y − c0)
σ2
s(1− a0)2

≈ b0(y − c0)2

σ2
s(1− a0)2

(4.28)

Thus, when 1−a0 is very small, and neglecting for a moment that a0 and c0 are themselves

functions of τ , the upper expression in (4.28) is approximately parabolic in y with two real

roots very near to each other. Our approximation replaces these two roots with a single

root of multiplicity 2. In both cases, these two nearby (or coalesced) roots can cause great

difficulty in locating MAP estimates using (4.27), since the numerically calculated curve

only gradually approaches (and, given computational errors, may not necessarily cross) the

origin. Some zero-finding algorithms tend to reject solutions with even multiplicities and

converge to nearby (but incorrect) solutions [36]. In practice, it is sometimes necessary to

minimize the square of (4.27) instead of using a zero-finding algorithm in order to avoid

this problem.

The MMSE (or approximated MAP) estimate corresponds to solutions of (4.28). The

two candidates are roots of b0 and y − c0. However, as b0 is a function of τ and Σ−1
0 only,

it does not involve the sample vector in any way. This term may contribute only static

solutions to the estimator equation, which we may disregard. Moreover, as we will see,

choosing the roots of the remaining term results in an estimator which performs very well

and is intuitively satisfying.

Defining the M -dimensional vector wmmse = Σ−1
0 x, the MMSE estimate must satisfy

the simple relation:

wTρ(τ) = y(τ) (4.29)

We denote this estimate as τ̂mmse:

τ̂mmse = argτ
[
wTρ(τ) = y(τ)

]
(4.30)

This result has an intuitive form, since it relates the MMSE estimate of s(t) to the known

carrier signal y(t) and solves for the points at which they are equal. In contrast to ordinary

MMSE estimation, the relationship between time and amplitude y(τ) is known; here, we

seek the unknown crossing-point time τ using this relationship.
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Since both the carrier signal and ρ(τ) are in general nonlinear functions, a root-finding

method must once again be adopted. The structure of the MMSE estimator is illustrated

in Algorithm 1.

Algorithm 1 Crossing-Point Estimation via the MMSE Algorithm

loop
if ξ[k − 1]ξ[k] < 0 then

x = [x[k −M1], . . . , x[k +M2 − 1]]T

w = Σ−1x (using, e.g. Cholesky factorization of Σ−1)
repeat

refine guess τ̂ via Newton’s or Brent’s algorithms
ε =

∣∣wTρ(τ̂)− y(τ̂)
∣∣

until ε < tol
end if

end loop

Similar to the MAP estimator above, we have assumed the existence and uniqueness of

solutions to (4.30) in T without providing any assurances of either property. In practice,

no such problems arise. In addition, the computational difficulties in the MAP estimator

do not occur in the MMSE formulation, and a simple zero-finding algorithm performs very

well. (Indeed, we use the MMSE estimate as an initial guess to the MAP estimator during

simulation.)

4.4 MMSEZ Estimator

We briefly digress and introduce the MMSEZ estimator, which is a further simplification of

the MMSE estimator. However, unlike the MMSE interpolator, the MMSEZ interpolator

performs measurably worse than the MAP estimator in simulations. We include the MM-

SEZ estimator chiefly because the relationship between MMSE and MMSEZ estimators is

analogous to the relationship between POLS and POLZ estimators (which are described

below in Sections 4.6.2 and 4.6.3), both in structure and performance.

Consider the two-step estimation process illustrated in Figure 3.3. During the estima-

tion step E1, periodic samples y(kTs + Td) of the carrier signal are required to coarsely

bound crossing points. From the computational perspective of E2, these samples of y(τ)

are “free.” Otherwise, particularly when y(t) is nonlinear, evaluations at arbitrary t may

be expensive enough to avoid.
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To take advantage of these known samples, we generate a MMSE estimator for ξ =

[ξ[k −M1], . . . , ξ[k +M2 − 1]]T and solve for its zero crossings. To do so, we define a new

vector correlation function ρz(τ) = E{z(τ)ξ} and covariance matrix Σz = E{ξξT} which

are analogous to ρ(τ) and Σ0, but which include statistical information about y(t) between

samples. (It is not always obvious what the best choice for ρz(τ) is, particularly when y(t)

is discontinuous. A detailed investigation of the MMSEZ estimator is not pursued here.)

Algorithm 2 Crossing-Point Estimation via the MMSEZ Algorithm

loop
if ξ[k − 1]ξ[k] < 0 then
ξ = [ξ[k −M1], . . . , ξ[k +M2 − 1]]T

w = Σ−1
z ξ (using, e.g. Cholesky factorization of Σ−1

z )
repeat

refine guess τ̂ via Newton’s or Brent’s algorithms
ε =

∣∣wTρz(τ̂)
∣∣

until ε < tol
end if

end loop

Compared to MMSE (see Algorithm 1), MMSEZ avoids computations of y(τ̂) in the

root-finding step. As we will see in the following chapter, this reduction in complexity

can be accompanied by reduced performance. Moreover, the evaluation of each element of

ρz(τ̂) is likely to incur a similar computational cost to each evaluation of y(τ̂); therefore,

the savings may not be meaningful.

4.5 Fundamental Performance Limits

In this section, we consider best-case and worst-case performance metrics for crossing-point

estimators. For the best-case limit, we derive the Cramér-Rao bound for the variance of

an unbiased crossing-point estimator. The worst-case metric is provided by considering the

variance of random crossing-point estimates.

4.5.1 Cramér-Rao Bound (CRB)

The Cramér-Rao bound for the random parameter τ bounds the variance σ2
τ̂ |τ∈T of any

unbiased estimator as follows: [33]

σ2
τ̂ ≥ I−1

τ (4.31)
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where Iτ is the Fisher information for the random parameter τ , which for the problem

under consideration takes the form:2 [38]

Iτ = µ̇TΣ−1µ̇+
1

2
tr
[
Σ−1Σ̇Σ−1Σ̇

]
(4.32)

This expression may readily be simplified using the notation introduced in (4.22):

Iτ =
ey2 + 2byẏ + aẏ2

σ2
s

+ b2 + ae (4.33)

As before, it is desirable to express Iτ without using the conditional covariance matrix Σ.

To this end, we use the expressions (4.24) and (4.25) to obtain:

Iτ =
b20y

2 + 2b0yẏ + a0ẏ
2

σ2
s(1− a0)

+
a0e0

1− a0

+
b20(1 + a0)

(1− a0)2
+
e0y

2

σ2
s

(4.34)

To remove the effect of the specific choice of τ on the bound (4.31), it is convenient to

further average this expression over permissible τ in (4.31). How this is done depends on

the application; for PWM and CM, although it is possible to consider only the case of E2

and to average over all possible intervals T provided by E1, it is much simpler and more

useful to average over the entire interval Cj and provide a Cramér-Rao bound for both E1

and E2. To do this, we use the expression (4.11) for f(τ); we also average over the sampling

delay Td, assuming an uniform distribution over [0, Ts]. We then have:

σ2
τ̂ ≥ Ts

[∫ Ts

0

∫
Cj
Iτ (τ, td, y)f(τ)dτdtd

]−1

. (4.35)

4.5.2 UUB (Uniform Upper Bound)

The UUB reflects a lower bound on estimator performance which is attained by simply

guessing a random location (in the permitted region T ) for the crossing. We generate τ̂uub

from an uniform distribution in T . The variance of this estimate is T 2
s /12.

2The derivation for this expression and the simplified version below may be found in the appendices.
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4.6 Comparison Estimators

We have now derived MAP and MMSE estimators for the discrete-time crossing-point

estimation problem, as well as upper and lower bounds on performance that provide a con-

venient metric against which to measure estimators’ performances in simulation. Because

a number of solutions to the crossing-point estimation problem have been developed in the

literature, we introduce several comparison estimators in the following sections.

We begin with two estimators based on Lagrange polynomial estimation. We assume

familiarity with polynomial interpolation and Lagrange polynomials; background infor-

mation can be found in [31, 39, 40]. Polynomial interpolation is widely used in com-

puting the crossing-points of a signal and a sawtooth or triangle wave in PWM applica-

tions [15, 12, 7, 14, 8, 41, 16].

Following introduction of the polynomial crossing-point estimators, we present a degen-

erate case (designated ILIN), which is identical to one of the polynomial estimators (POLZ)

when the number of samples is restricted to M = 2.

Each estimator introduced in this section is identified with a short, capitalized designa-

tion. These designators will be used in the sequel to compactly identify each estimator.

4.6.1 Lagrange Formulation

We adopt a vector formulation of Lagrange interpolation, which promotes the interpretation

as a time-varying FIR filter. We define the M -dimensional column vector function l(τ)

componentwise as follows:

lm(τ) =

k+M2−1∏
n=k−M1
n 6=m

τ − nTs − Td
(m− n)Ts

m = 0, . . . ,M − 1 (4.36)

Given a vector of samples x taken near the arbitrary time τ , an estimate of s(τ) can be

generated via the inner product xT l(τ). Likewise, ξT l(τ) provides an estimate of z(τ). In

both cases, noise is neglected, and no information about the structure of s(t) or y(t) is

exploited.

Many authors have noted that Lagrange polynomial interpolation is optimal in the sense

that it minimizes approximation error at the frequency 0 (i.e. at DC) [39]. This property

suggests that Lagrange interpolation of a sampled signal with substantial high-frequency
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content will produce good results provided the sampling rate is much greater than the

Nyquist rate for that signal. We will investigate the performance of Lagrange schemes

later in Chapter 5.

We next introduce two polynomial estimators, denoted POLZ and POLS. POLZ inter-

polates ξ to estimate z(τ), and POLS interpolates x to estimate s(τ).

4.6.2 POLZ (Polynomial-z ) Estimator

The POLZ estimate τ̂POLZ is defined as a solution (in T ) to

ξT l(τ)
∣∣
τ=τ̂POLZ

= 0 (4.37)

The POLZ estimator may be visualized with the help of Figure 3.5. In this figure, the

sample vector ξ is shown in a dashed box; this estimator fits a polynomial to these M

samples surrounding the crossing point τ .

The structure of the POLZ estimator is illustrated in Algorithm 3.

Algorithm 3 Crossing-Point Estimation via the POLZ Algorithm

loop
if ξ[k − 1]ξ[k] < 0 then
ξ = [ξ[k −M1], . . . , ξ[k +M2 − 1]]T

repeat
refine guess τ̂ via Newton’s or Brent’s algorithms
ε =

∣∣ξT l(τ̂)
∣∣

until ε < tol
end if

end loop

Because polynomial estimation performs poorly when the function being approximated

exhibits discontinuities, the performance of POLZ should degrade for PWM schemes when

ξ incorporates an edge of y(t). However, in the case of PWM, we will shortly argue that

POLZ and POLS may be made computationally identical with a little care.
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4.6.3 POLS (Polynomial-s) Estimator

The POLS estimate τ̂POLS is defined as a solution (in T ) to

xT l(τ)
∣∣
τ=τ̂POLS

= y(τ)
∣∣
τ=τ̂POLS

(4.38)

The POLS estimator may be visualized with the help of Figure 3.4. In this figure, the

sample vector x is shown in a dashed box; this estimator fits a polynomial to these M

samples surrounding the crossing point τ .

The POLZ estimator may be more convenient to compute than the POLS estimator,

since it does not require evaluations of y(τ) at arbitrary τ . However, as the polynomial

of order M − 1 passing through M points is unique, the POLZ and POLS estimators are

mathematically identical when y(τ) is a polynomial. When y(τ) is not a polynomial, as in

CM applications, the POLZ and POLS methods perform differently and it is important to

distinguish between the two methods.

In the case of PWM, y(τ) is piecewise linear. Assuming the interval T does not straddle

a discontinuity in y(t), it is possible to simply replace y(t) with a linear function that

matches it precisely within T . A POLZ estimator implemented in this fashion produces

results identical to a POLS estimator, which suggests why no distinction between POLZ

and POLS is present in the literature.

The structure of the POLS estimator is illustrated in Algorithm 4.

Algorithm 4 Crossing-Point Estimation via the POLS Algorithm

loop
if ξ[k − 1]ξ[k] < 0 then

x = [x[k −M1], . . . , x[k +M2 − 1]]T

repeat
refine guess τ̂ via Newton’s or Brent’s algorithms
ε =

∣∣xT l(τ̂)− y(τ̂)
∣∣

until ε < tol
end if

end loop
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4.6.4 ILIN Estimator

We introduce a final estimator which we will designate ILIN. This is not actually a “new”

estimator, since it is equivalent to POLZ when the number of samples M is equal to 2.

We consider this special case because it is generally treated separately from higher-order

polynomial methods, and since its solution need not be implicitly defined.

The computational structure of the ILIN estimator is shown in Algorithm 5.

Algorithm 5 Crossing-Point Estimation via the ILIN Algorithm

loop
if ξ[k − 1]ξ[k] < 0 then

τ̂ = (k − 1)Ts + Td + Tsξ[k−1]
ξ[k−1]−ξ[k]

end if
end loop

Note that this algorithm requires a division by a variable quantity ξ[k−1]−ξ[k]. In the

MMSE, POLZ, and POLS algorithms above, divisions could be pre-computed as reciprocal

multiplications; thus, in implementations (e.g. most DSPs) where divisions are expensive,

they could be avoided. This ILIN algorithm avoids iterative calculation of the solution, at

the expense of this unavoidable division.

4.7 Computational Complexity

We have now defined the MAP and MMSE estimators, the Cramér-Rao bound, and several

reference estimators. In practice, the computational expense of each method is often as vital

a consideration as its performance. For switching audio amplifiers in particular, crossing-

points must be calculated as many as several million times per second; for this reason,

before evaluating the performance of each, we consider their computational cost. (We may

disqualify the MAP estimator outright on this condition.)

Complete crossing-point estimators using the POLZ, POLS, MMSEZ, and MMSE sche-

mes share a very similar structure (see Algorithms 1, 2, 3, and 4.) First, each zero-crossing

τ is coarsely located in the region T using the estimator E1. Next, samples in the neigh-

bourhood of T are passed to the refined estimator E2 to generate a better estimate. The

structure of E2 is different for each scheme, but in each case, E2 generates estimates τ̂ using

an iterative root-finding process such as Newton’s method or Brent’s algorithm [36].
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For the POLZ and POLS cases when M = 1 or M = 2, the crossing point may be

calculated in closed form and the iterative step is not strictly necessary. However, M = 1

is a degenerate case in which E2 may be entirely neglected and M = 2, corresponding to

straight-line interpolation, requires division operations which may be costly and involve an

iterative computation anyway. We neglect these details in the following discussion.

We define the following quantities:

µ is the cost (in elementary operations) of evaluating a scalar nonlinear function. For

example, µ is the cost of evaluating y(τ), and Mµ is the cost of evaluating ρ(τ);

λ is the probability (per sample of x[k]) that E1 will detect a crossing point and

require an evaluation of E2;

k is the number of iterations of the root-finding algorithm (e.g. Brent’s method).

(For simplicity, we assume that each root-finding iteration k evaluates the relevant

functions only at a single time instant τ .)

Now, the computational cost for each scheme (in elementary floating-point operations per

second) may be evaluated as follows:

C = fs(µ+ 1) + fsλ(. . .) (4.39)

where fs is the sampling rate. The first term fs(µ + 1) is the cost of the coarse estimator

E1 and is shared by all the schemes we investigate. The second cost, which depends on the

estimator used, is more interesting and is the subject of the subsections that follow.

4.7.1 Cost of MMSE

Referring to Algorithm 1, we note that the Cholesky factorization L of Σ = LLT may

be precomputed. Therefore, we may compute the vector w = Σ−1x by foreward- and

back-substitution at a total cost of 2M2.

The cost CMMSE may be expressed as follows:

CMMSE = fs(µ+ 1) + fsλ(2M2 + k[Mµ+ 2M + µ]). (4.40)
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4.7.2 Cost of MMSEZ

The algorithm for MMSEZ (Algorithm 2) is nearly identical to the algorithm for MMSE.

The primary difference is the reduced number of evaluations of y(τ). We may write CMMSEZ

directly:

CMMSEZ = fs(µ+ 1) + fsλ(2M2 + k[Mµ+ 2M − 1]) (4.41)

reflecting a minor savings in computations with respect to the MMSE algorithm.

4.7.3 Cost of POLS

Both Lagrange estimators make use of the vector-valued function l(τ). Although we know

the form of this function, we regard it as an arbitrary non-linear function with evaluation

cost Mµ in keeping with the cost analysis of the MMSE and MMSEZ estimators.

The cost of the POLS scheme is therefore

CPOLS = fs(µ+ 1) + fsλk[Mµ+ 2M + µ]. (4.42)

4.7.4 Cost of POLZ

The cost of the POLZ scheme is

CPOLZ = fs(µ+ 1) + fsλk[Mµ+ 2M − 1]. (4.43)

The POLZ estimator enjoys a slightly lower computation cost compared with the POLS

estimator.

4.7.5 Remarks on Cost

Two factors determine the relative cost of each scheme: the number of samples M , and the

cost µ of evaluating a nonlinear function. Because the number of samples is likely to be

low (typically 4-8), the expense of functional evaluation dominates. Each of l(τ), ρ(τ), and

y(τ) have varying complexity depending on their form, the technology used to implement

them, and the approximations or computational shortcuts that are often used in practice.

As we have focused on the general crossing-point estimation problem, we do not consider

a particular implementation in sufficient detail to make a definitive statement concerning

complexity.



46 Algorithm Development

We may, however, draw the following conclusions:

• POLZ is only slightly simpler than POLS, and

• MMSEZ is only slightly simpler than MMSE; finally,

• MMSE and MMSEZ are more expensive than POLS and POLZ.

As we will see in Chapter 5, MMSE and POLS outperform MMSEZ and POLZ, suggesting

that MMSE and POLS are the chief methods of interest.
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Chapter 5

Performance Simulation

In the previous chapter, we derived the MAP and MMSE estimators and the associated

CRB. We have also reviewed the MMSEZ, POLZ, POLS, and ILIN crossing-point estima-

tors for the purpose of comparing their performance. In this chapter, we present simulations

in which the performance of these methods are evaluated and characterized as a function

of various system parameters.

5.1 Scenario

In the following subsections, we introduce the two scenarios of interest: one for Pulse-Width

Modulation, and one for Click Modulation. The chief difference between these scenarios is

the form of the carrier function y(t). The results for each scenario are comparable, though

they differ in some interesting ways.

5.1.1 Operating Point Parameters

We explore the effects of varying a number of parameters. In order to limit the number of

possible parameter variations, we hold each at the operating point in Table 5.1 and alter

one parameter at a time.

The parameters fs = 1/Ts, M , Ac, σ
2
n and σ2

s are described in the preceding chapters.

We have introduced the parameter ΩM which corresponds to the bandlimit of s(t), which

we assume is strictly low-pass in nature.

We have chosen a very high signal-to-noise ratio (SNR) σs/σn. In open-loop, switching

audio amplifiers using a high-quality digital audio source (such as CD or DVD audio), the
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Parameter Value Description
fs = 1/Ts 192 kHz sampling rate
ΩM/2π 24 kHz bandlimit of s(t)
M 4 number of samples (M1 = M2 = 2)
Ac 1 carrier amplitude

σ2
n (2−15)

2
/12 noise variance

σ2
s (1/8)2 signal variance

Table 5.1 Operating Point Parameters

sole source of noise is due to finite word length. A value of 16 bits is typical, corresponding to

the noise variance σ2
n = (2−15)2/12. In a PWM amplifier, the input samples x[k] correspond

directly to audio samples, and this choice for σ2
n is obvious. In a CM system, a substantial

amount of signal processing must occur to transform the audio signal into the x[k] applied

to a crossing-point estimator. We neglect the possibility that this signal-processing injects

significant additional noise, and use the same σ2
n for the CM scenario as well.

The signal variance is (1/8)2. This figure is chosen somewhat arbitrarily to maximize

the SNR without a substantial probability of modulator overload (i.e. |s(t)| ≥ Ac.)

5.1.2 Pulse-Width Modulation

For Pulse-Width Modulation (PWM), we adopt a triangle-wave carrier y(t) with amplitude

Ac and period Tc = 2π/ΩM . The signal s(t) is bandlimited to the same angular frequency

ΩM .

Energy in a typical audio signal ranges from 20Hz to 20kHz, though it is usually con-

centrated within the low end of the audible spectrum. There is additional structure in an

audio signal due to other factors; for example, psychoacoustic properties of human hearing

are often exploited to increase perceived quality (viz. noise shaping) or decrease storage

requirements (viz. MP3 audio). A flat, strictly bandlimited model neglects all of these

details, though it is not obvious how a richer model would be useful.

5.1.3 Click Modulation

For Click Modulation (CM), we adopt a sinusoidal carrier y(t) = A cos(Ωmt + θ). The

signal s(t) is bandlimited to the same (angular) frequency Ωm.

A spectrally flat, bandlimited signal model is an obvious choice for the CM scenario. The
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upper comparator in Figure 2.6 corresponds to a crossing-point estimator in a discrete-time

implementation. (The lower comparator processes the deterministic input − sin(ct+θ), and

therefore needs no estimator.) The input s(t) to the upper estimator may be expressed

as the sum of a deterministic, sinusoidal component cos ct and a bandlimited unknown

component g(t) with a maximum bandwidth b > c (see [9, Eq. 5].) The unknown component

g(t) has significant spectral content near b, particularly for audio signals with substantial

low-frequency content. However, the steps that transform audio into g(t) obscure much of

the structure in the original audio signal.

5.2 Methodology

In this section, we describe the synthesis models used for each of the signals required, and

explain the methodology used to conduct the simulations.

5.2.1 Signal Model

For both PWM and CM scenarios, s(t) is modeled as a wide-wense stationary Gaussian

random process with zero mean and flat, bandlimited spectral characteristics. That is, the

power spectral density (psd) of s(t) is given by

Ps(ω) =

{
σ2
s , |ω| < ΩM

0, otherwise.
(5.1)

Accordingly, the autocorrelation function of s(t) may be expressed as: [42]

rs(t) = σ2
s sinc(Ωmt/π). (5.2)

Note that this expression for rs(t) is used to evaluate ρ(τ) within the MAP, MMSE and

MMSEZ estimators.

During computation, in addition to the samples of s(t) required to form the vectors x

and ξ in (3.5), we require precise knowledge of each of the true crossing points of s(t) and

y(t) in order to determine the error for each estimator. To determine these crossing points

with high precision, it is necessary to generate s(t) in such a way that it may be evaluated

at arbitrary time instants with reasonable computational requirements.

We generate a continuous function s(t) which is parameterized by a collection of random
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variables in two ways: the Karhunen-Loève expansion (KLE) [42], and an ad-hoc approach

using a sum of sinusoidal signals. The KLE approach is more attractive from a theoretical

perspective for reasons that are explained below, but is slow during simulation. The sum-of-

sines approach is much more practical to simulate, and results generated by these methods

are indistinguishable.

Signal Generation using the Karhunen-Loève Expansion

We begin with the Karhunen-Loève expansion for the bandlimited signal s(t):

s(t) = l.i.m.
N→∞

∑N
n=1 snψn(t) t0 ≤ t ≤ tM−1 (5.3)

where l.i.m. represents the limit in the mean-squared sense and [t0, tM−1] is the observation

interval. For strictly bandlimited spectra, the functions ψn(t) are scaled Prolate Spheroidal

Wave Functions (PSWFs) [33]. The corresponding sn are uncorrelated, zero-mean Gaus-

sian random variables with variance λn, where λn are parameter-dependent eigenvalues

associated with each eigenfunction ψn(t). Theoretical background concerning the PSWFs

themselves may be found in [33, 43, 44].

In practice, the expected energy λn associated with each eigenfunction within the ob-

servation interval decreases rapidly as n increases, and the summation in (5.3) may be

truncated. We truncate the summation when additional terms contribute less than 10−6

of the total energy in s(t) over the observation interval. Depending on the scenario being

simulated, this requires between 6 and 10 summation terms.

Signal Generation using a Sum of Sinusoids

The KLE is an optimal representation for bandlimited functions in the sense that it maxi-

mizes the energy in the first N terms of (5.3); thus, an expansion with finite N using the

PSWFs as basis functions exhibits less distortion than any other choice of basis functions.

However, the PSWFs and corresponding eigenvalues are slow to calculate in practice. We

introduce an alternative approach which is not as theoretically pleasing, but which produces

indistinguishable results in simulation and is much faster to calculate.

We use the following signal model:

s(t) =
∑N

n=1

√
2σ2

s/N sin(ωnt+ φn) t0 ≤ t ≤ tM−1 (5.4)
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where ωn and φn are uniform random variables, all independent, over the (respective)

intervals [0,ΩM ] and [0, 2π]. We use N = 10 terms in the summation. The various RVs

{ωn}Nn=1, {φn}Nn=1 are independently generated.

5.2.2 Monte Carlo Simulations

For each simulation, short segments of s(t) are generated randomly using one of the above

approaches. In order to minimize the number of non-negligible components N required

for the Karhunen-Loève expansion (5.3), these segments are of minimum length, i.e. the

observation interval (M−1)Ts. This allows us to evaluate s(t) precisely at any point within

the observation interval.

Next, the carrier phase θ of y(t) is chosen randomly. Along with s(t), this completely

specifies y(t) and z(t) = s(t)− y(t) for each experiment. We sample s(t) and z(t) and add

noise, forming the sample vectors x and ξ.

Before passing these vectors to each estimator, two conditions must be met:

• z(t) must have a crossing point in T ∩ Cj (the sampling and carrier intervals defined

in (3.4) and (3.6) respectively);

• this crossing point must be observable by the coarse estimator E1 by looking at the

M1th and (M1 + 1)th samples of ξ.1

Candidate scenarios that do not meet these two conditions are discarded.

Finally, each estimator is evaluated in turn. Because each estimator takes an iterative

form, some starting estimate must be provided; except for the impractical MAP estimator,

we select the center of T .

Solving for the MAP estimate presents practical difficulties for the reasons explained

in Section 4.3. The MAP estimate is defined implicitly in (4.27). However, this expression

is ambiguous when multiple solutions exist in T , since one estimate must be chosen from

amongst several candidates. (This ambiguity also exists for the other estimators with

implicitly defined solutions. However, only the MAP estimator exhibits multiple candidates

in practice.) As the SNR and oversampling rate are increased, the same process that allowed

the MAP estimator to be approximated by the MMSE estimator renders the MAP estimate

difficult to locate: as the MMSE and MAP estimators converge, the two nearby solutions

1These samples correspond to ξ[k− 1] and ξ[k], which are used by E1 to determine where E2 is applied.
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to (4.27) corresponding to (y − c0) = 0 and (a0y − c0) = 0 approach a single solution

(y − c0)2 = 0, for which the simple root-finding algorithm we employ (MATLAB’s fzero

function) encounters difficulty.2 To avoid the problem, we obtain MAP estimates using the

following process:

• we use the MMSE estimate as an initial guess, and

• instead of applying a root-finding method to (4.9), we minimize |S(x|τ) + S(τ)|2.

Although more circuitous, this method of obtaining MAP estimates is more robust in

practice.

5.2.3 Removal of Outliers

There are two types of outliers produced in simulations:

• individual experiments which produce results outside T , and

• individual experiments with an estimation error that is disproportionately larger than

other experiments using the same parameters.

The first class of outliers is readily identifiable in situ, since the estimate τ̂ and the bounding

region T are known. When such an outlier occurs, the estimator may fall back on an

alternative estimator, or may choose to replace the invalid crossing-point estimate with

the nearest valid crossing point (i.e. an endpoint of T .) It should be noted that when

the SNR is low, crossing points may actually occur outside the region T identified by the

coarse estimator E1; in these situations, valid experimental results are incorrectly flagged

as outliers.

The second class of outliers must be identified by statistical analysis of an ensemble of

experimental results, given exact knowledge of where each crossing point actually occurred.

These outliers, which are typically due to numerical errors in pathological cases, cannot be

identified in situ and are not flagged or removed in simulation.

In most scenarios, no outliers were detected or removed. Where outliers occurred, the

number of experiments which produced them are listed along with the performance figures

below.
2The function whose roots we wish to obtain has two very closely spaced solutions, or in the limit, a

single root with multiplicity 2. Many numerical root-finding algorithms are known to perform poorly or
even fail with close or multiple roots. [36]
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5.2.4 Reference Estimators

In addition to the MAP and MMSE estimators corresponding to (4.27) and (4.30), and

the Cramér-Rao bound given in (4.31) and (4.34), we evaluate a number of alternative

estimators. These estimators are taken from the literature and are useful for comparison.

UUB Uniform Upper-Bound; see Section 4.5.2.

ILIN Linear interpolation between the nearest samples of ξ[k] using Algorithm 5. This

method is a degenerate case of POLZ when M = 2. See e.g. [7] and Section 4.6.1

above.

POLZ Solves ξ̂(t) = 0 using Algorithm 3.

POLS Solves x̂(t) = y(t) using Algorithm 4.

MMSEZ Approximation to the MMSE estimator using Algorithm 2.

MMSE Approximation to the MAP estimator using Algorithm 1.

MAP MAP estimator using (4.27) where f(τ) is given by (4.11).

CRB Cramér-Rao Bound; see Section 4.5.1.

5.3 Results

We present results for two scenarios: click modulation (using a sinusoidal carrier) and

pulse-width modulation (using a triangular carrier.) Each data point on the following

graphs represents a statistical analysis of approximately 20, 000 experiments.

5.3.1 Click Modulation

Figure 5.1 shows the estimator performance as the number of samples is varied over the

even numbers between 2 and 10. All estimators except ILIN (which uses 2 samples in all

cases), along with the CRB, rapidly approach a limit beyond which more samples do not

improve performance. This behaviour reflects the fact that additional samples are unable to

meaningfully improve performance because they are increasingly distant from the crossing-

point, and are not substantially correlated with s(τ). The percentage of outliers associated
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with the data in Figure 5.1 are shown in Table 5.2. Note that whenever the estimated bias

approaches 0, small variations (which could be due to genuine estimator bias or numerical

errors, for example) cause large visual differences in the log-scale bias graphs; this effect

should not be attributed to estimator behaviour.
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Table 5.2 Outliers associated with Fig. 5.1

Figure 5.2 shows the estimator performance as a function of the oversampling ratio. The

horizontal axis is normalized to the sampling rate so that 1 corresponds to sampling s(t)

at its Nyquist rate. Critical (Nyquist-rate) sampling is excluded; at such a low oversam-

pling ratio, crossing points are not suitably separated and the assumptions of our two-step

estimator are not valid. Each method improves as the oversampling ratio is increased,

although the ILIN estimator does not improve as rapidly as the other methods.

Where outliers associated with the data in Figure 5.2 occurred, they are tabulated in

Table 5.3.
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Fig. 5.2 Estimator Performance (CM); Oversampling Ratio Varies

OSR MMSE MMSEZ MAP POLS POLZ

4 – – � 0.1% – –

Table 5.3 Outliers associated with Fig. 5.2

Figure 5.3 shows the estimator performance as the signal-to-noise ratio (σs/σn, shown

in dB) is varied. For high-fidelity switching amplifiers, the SNR may be well over 96 dB. In

the high-SNR regime, when high accuracy is required, the MAP and MMSE estimators have

a distinct advantage over the MMSEZ, POLS, POLZ, and ILIN estimators. At low SNRs,

the MMSE and MAP estimators produced results flagged as outliers at a rate of several

percent; no other estimators produce outliers (see Table 5.4.) In addition, at low SNRs,

scenarios with crossing-points not detected by E1 are simply discarded. This “scenario

filtering” process removes predominantly difficult (noisy) scenarios.
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Fig. 5.3 Estimator Performance (CM); SNR Varies

SNR MMSE MMSEZ MAP POLS POLZ

5dB 4.0% 3.4% 3.9% � 0.1% � 0.1%

17dB 0.8% 3.1% 0.8% – –

29dB 0.1% 1.5% 0.1% – –

41dB � 0.1% 0.1% � 0.1% – –

53dB � 0.1% � 0.1% � 0.1% – –

Table 5.4 Outliers associated with Fig. 5.3

Figure 5.4 shows the estimator performance as the carrier amplitude (Ac) is varied.

A large carrier amplitude, combined with a sinusoidal carrier, decreases the ability of the

POLZ and MMSEZ estimators to approximate the carrier with a straight line. Corre-

spondingly, the performance of the POLZ and MMSEZ schemes diverge from the POLS

and MMSE schemes as Ac is increased. When the amplitude is low with respect to the

signal standard deviation, it is not guaranteed that zero crossings are adequately separated

and our model may not be accurate.
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Fig. 5.4 Estimator Performance (CM); Carrier Amplitude Varies

5.3.2 Pulse-Width Modulation

We now review the performance of each scheme in a PWM scenario. As these results are

often similar to the CM scenario described above, we focus on the differences between the

two scenarios.

Figure 5.5 shows the estimator performance as the number of samples M is varied. This

result shows the performance of the POLZ and MMSEZ schemes decreasing as additional

samples are supplied to the estimator. In both cases, this effect reflects the inability of

a continuous interpolator to accurately model a discontinuous y(t). As the length M of

the sample vector ξ is increased, the probability that it will contain a discontinuity in y(t)

increases. In the case of POLZ, the interpolator is polynomial, and therefore continuous.

With MMSEZ, the interpolator is strictly bandlimited, and is unable to model a discontin-

uous y(t) which has infinite spectral support. (The relationship between polynomial and

bandlimited interpolation is well documented in [31, 40].) Outliers associated with the data

in Figure 5.5 are tabulated in Table 5.5.
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Fig. 5.5 Estimator Performance (PWM); Number of Samples M Varies

M MMSE MMSEZ MAP POLS POLZ

10 � 0.1% 0.3% � 0.1% – –

8 – � 0.1% – – –

2 – – � 0.1% – –

Table 5.5 Outliers associated Fig. 5.5

Figure 5.6 shows the estimator performance as a function of the oversampling rate.

Once again, the horizontal axis is normalized to the sampling rate so that 1 corresponds to

critical sampling. As in Figure 5.5, the probability that ξ contains a nonlinearity strongly

affects the performance of the POLZ and MMSEZ estimators; when the oversampling ratio

is large, this probability is negligible and the performance of POLZ and MMSEZ approach

that of POLS and MMSE.

Figure 5.7 shows the estimator performance as the signal-to-noise ratio (σs/σn, shown

in dB) is varied. In contrast to the above scenario where M was varied, we can see the

performance of the POLZ estimator converges to that of POLS as the oversampling ratio

is increased. Likewise, the performance of MMSEZ converges to that of MMSE. As noted

above, the ability of any estimators to perform below the CRB is due to an unfair “scenario

filtering” that occurs when the coarse estimator E1 is not able to reliably detect crossing-
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Fig. 5.6 Estimator Performance (PWM); Oversampling Ratio Varies

points during simulations.

Where outliers associated with the data in Figure 5.7 occurred, they are tabulated in

Table 5.6.

SNR MMSE MMSEZ MAP POLS POLZ

5dB 7.0% 5.3% 7.0% 0.1% 0.1%

17dB 1.3% 0.8% 1.3% – –

29dB � 0.1% � 0.1% � 0.1% – –

41dB � 0.1% � 0.1% � 0.1% – –

53dB � 0.1% � 0.1% � 0.1% – –

Table 5.6 Outliers associated Fig. 5.7

Figure 5.8 shows the estimator performance as the carrier amplitude (Ac) is varied.

Compared to the results for a sinusoidal carrier (see Figure 5.4), the performance of the

ILIN estimator improves more rapidly when the carrier is triangular. This effect reflects

the fact that when the carrier amplitude is significantly larger than the signal amplitude,

the signal z(t) being linearly interpolated is predominantly linear.
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Fig. 5.7 Estimator Performance (PWM); SNR Varies
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Fig. 5.8 Estimator Performance (PWM); Carrier Amplitude Varies
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5.3.3 Discussion

We now draw some conclusions from the simulations presented in the previous subsections.

The performance of the MMSE estimator was, in all simulations conducted, indistin-

guishable from that of the MAP estimator. This result is critical, since the MAP estimator

is computationally expensive enough to render it useless in resource-constrained, real-time

applications. The ability of the MMSE estimator to accurately and efficiently approximate

the MAP estimate provides us with a practical and effective estimator.

In simulations, the polynomial estimators POLS and POLZ did not always approach the

CRB. In these cases, the MMSE estimator performed substantially better than the nearest

polynomial scheme. It is worth noting that the operating point described in Table 5.1,

chosen to model a practical scenario for switching audio amplification, is one such scenario.

Simulations also exposed the limitations of the POLZ and MMSEZ estimators. Not

only do these estimators perform poorly when they encounter discontinuities in y(t), their

performance when compared to POLS and MMSE (respectively) is often reduced. The

appeal of MMSEZ and POLZ is diminished considering that their estimates are only slightly

simpler to compute than POLS and MMSE estimates.
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Chapter 6

Conclusions

6.1 Thesis Review

In this thesis, we explored the discrete-time crossing-point estimation problem. This prob-

lem arises in a number of applications, including discrete-time modulator design for switch-

ing amplifiers. We reviewed the most common approach to the problem, based on a two-step

estimation process involving a coarse estimator E1 followed by a refined estimator E2.

We then reviewed two choices for the refined estimator E2 based on polynomial interpo-

lation. These estimators, denoted POLS and POLZ, were selected from the literature. Most

publications focus on an application (PWM) in which the distinction between POLS and

POLZ is not crucial; in our analysis, the differences between the schemes was emphasized.

We introduced a statistical formulation for crossing-point estimation, which led to a

MAP estimator and the Cramér-Rao bound for the problem. Because the MAP estimator

was too complex to be useful in resource-constrained, real-time applications, we simplified

the MAP estimator, producing a computationally efficient MMSE estimator,

We presented simulations for both Pulse-Width Modulation and Click Modulation sce-

narios. In all cases, the MMSE estimator closely tracked the MAP estimator and outper-

formed the MMSEZ, POLS, POLZ and ILIN estimators.

This work is important for three primary reasons: firstly, it casts an outstanding prob-

lem in a rigorous statistical framework, and provides the means with which to fairly evaluate

competing estimators. Secondly, it introduces the MMSE estimator and shows it to per-

form very near the Cramér-Rao bound, suggesting there is not much room to improve on

the scheme from the perspective of estimation accuracy. Finally, the MMSE estimator
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substantially outperforms the alternative estimators in a scenario chosen to model high-

performance, switching audio amplification.

6.2 Future Work

The MMSE estimator has an algorithmic structure that is nearly identical to the POLZ

and POLS estimators, although it requires potentially expensive evaluation of the vector

correlation function. The task of implementing the MMSE algorithm is greatly dependent

on the computational resources that silicon can provide. However, there are only a few

broad classes of implementation device (e.g. FPGA, DSP, general-purpose CPU, or custom

silicon) available to designers, and it would be worthwhile to investigate balancing accuracy

with computational efficiency for one or several of these.
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Appendix A

Derivation of the Conditional Score

Function

In this appendix, we derive the conditional score function S(x|τ) defined as follows:

S(x|τ) ,
d

dτ
log f(x|τ) (A.1)

where

f(x|τ) =
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2π)M/2|Σ|1/2

. (A.2)

and the vector µ and matrix Σ are functions of the variable τ .

We begin by reviewing several basic properties that are used throughout the sequel.

Then, we derive the general expression for S(x|τ). Finally, we apply this result to our

problem to generate a simpler expression.

A.1 Basic Proofs

These basic results are commonly known. Where complete proofs are omitted, they may

be found in [45].

Property 1. The derivative Σ̇−1 of the inverse of a nonsingular, square matrix Σ may be

expressed as follows:

Σ̇−1 = −Σ−1Σ̇Σ−1 (A.3)
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Proof. As Σ is invertible, we may write

Σ−1Σ = I

where I is the M ×M identity matrix. We differentiate both sides, giving:

Σ̇−1Σ = −Σ−1Σ̇

Multiplying both sides by Σ−1 from the right yields the desired result.

Property 2. The derivative of a log-determinant is given by the following:

d

dτ
log |Σ| = tr

{
Σ−1Σ̇

}
(A.4)

Proof. This identity is a trivial extension of Jacobi’s theorem, for which a proof is given

in [46].

A.2 General Case

Combining (A.1) and (A.2), we have:

S(x|τ) = −1

2

d

dτ
log |Σ| − 1

2

d

dτ
(x− µ)TΣ−1(x− µ)

We may immediately differentiate the second term. Noting that Σ is symmetric, we may

simplify the result to the following expression:

S(x|τ) = −1

2

d

dτ
log |Σ|+ µ̇TΣ−1(x− µ)− 1

2
(x− µ)T Σ̇−1(x− µ)

We apply Property 2 to the first term:

S(x|τ) = −1

2
tr
{

Σ−1Σ̇
}

+ µ̇TΣ−1(x− µ)− 1

2
(x− µ)T Σ̇−1(x− µ) (A.5)

This is the most general expression for the conditional score, and is independent of the

problem we consider. In the following section, we use the identities defined in (4.22) to

simplify this result further.
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A.3 Specialization to Discrete-Time Crossing Point Estimation

Equation (A.5) provides a general expression for S(x|τ). In the following section, we apply

this result to the crossing-point estimation problem in order to obtain a simpler expression.

We begin with the first term of (A.5). From the definition of Σ in (4.16), we have:

Σ̇ = − ρ̇ρ
T + ρρ̇T

σ2
s

and

−1

2
tr
{

Σ−1Σ̇
}

=
1

2σ2
s

tr
{

Σ−1ρ̇ρT + Σ−1ρρ̇T
}

=
1

2σ2
s

[
tr
{

Σ−1ρ̇ρT
}

+ tr
{

Σ−1ρρ̇T
}]

=
1

2σ2
s

[
ρTΣ−1ρ̇+ ρ̇TΣ−1ρ

]
=
ρTΣ−1ρ̇

σ2
s

= b

For the second term of (A.5), the definitions of µ and Σ yeild

µ̇TΣ−1(x− µ) =

(
1

σ2
s

ρ̇y + ρẏ

)T
Σ−1

(
x− ρy

σ2
s

)
Thus, using the definitions of a, b, c and d,

µ̇TΣ−1(x− µ) = − ẏ(ay − c) + y(by − d)

σ2
s

To simplify the third and final term of (A.5), we begin by applying Property 1, the definition
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of µ, and the above expression for Σ̇:

−1

2
(x− µ)T Σ̇−1(x− µ) = − 1

2σ2
s

(x− µ)TΣ−1
(
ρ̇ρT + ρρ̇T

)
Σ−1(x− µ)

= − 1

σ2
s

(
x− ρy

σ2
s

)T
Σ−1ρ̇ρTΣ−1

(
x− ρy

σ2
s

)
= −(ay − c)(by − d)

σ2
s

Combining the above expressions yeilds the desired result:

S(x|τ) = b− (ay − c)(by − d) + ẏ(ay − c) + y(by − d)

σ2
s

(A.6)
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Appendix B

Derivation of Fisher Information for

Multivariate Normal Distributions

B.1 General Case

In this section, we derive the Fisher Information Matrix (FIM) for a multivariate, real

Gaussian distribution where the covariance matrix Σ and mean µ are functions of the

single parameter τ .

Theorem 1. The Fisher Information for a multivariate real Gaussian random variable x

with mean µ(τ) and covariance matrix Σ(τ) is given by the following:1

I = µ̇TΣ−1µ̇+
1

2
tr
[
Σ−1Σ̇Σ−1Σ̇

]
(B.1)

Proof. This derivation is similar to that found in [47], and the results are identical. Our

derivation is notationally consistent with the rest of this work and corrects a minor error

in their derivation.

We have:

I = E

{[
d

dτ
log f(x)

]2
}

(B.2)

where f(x) is given by (A.2). Although the squared quantity is identical to S(x|τ) for our

problem, it is straightforward and instructive to complete the derivation for the general

1As elsewhere, the overdot represents differentiation with respect to τ , and the dependence on τ has
been suppressed for convenience.
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case. We have:

d

dτ
log f(x) = −1

2
tr
{

Σ−1Σ̇
}

+ µ̇TΣ−1(x− µ)− 1

2
(x− µ)T Σ̇−1(x− µ) (B.3)

Squaring this expression, we get[
d

dτ
log f(x)

]2

=
1

4
tr
{

Σ−1Σ̇
}2

+
[
µ̇TΣ−1(x− µ)

]2
+

1

4

[
(x− µ)T Σ̇−1(x− µ)

]2
+

1

2
tr
{

Σ−1Σ̇
}

(x− µ)T Σ̇−1(x− µ)

− tr
{

Σ−1Σ̇
}
µ̇TΣ−1(x− µ)

− µ̇TΣ−1(x− µ)(x− µ)T Σ̇−1(x− µ) (B.4)

Thus,

E

{[
d

dτ
log f(x)

]2
}

=
1

4
tr
{

Σ−1Σ̇
}2

+ E
{[
µ̇TΣ−1(x− µ)

]2}
+

1

4
E

{[
(x− µ)T Σ̇−1(x− µ)

]2}
+

1

2
tr
{

Σ−1Σ̇
}
E
{

(x− µ)T Σ̇−1(x− µ)
}

− tr
{

Σ−1Σ̇
}
E
{
µ̇TΣ−1(x− µ)

}
− E

{
µ̇TΣ−1(x− µ)(x− µ)T Σ̇−1(x− µ)

}
(B.5)

We now evaluate each expectation term in sequence. The second term of (B.5) is the second

moment of µ̇TΣ−1(x− µ) ∼ N(0, µ̇TΣ−1ΣΣ−1µ̇), and thus equals µ̇TΣ−1µ̇. For the third
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term, we have [47]:

E

{[
(x− µ)T Σ̇−1(x− µ)

]2}
= E

{ ∑
i,j,m,n

xiΣ̇
−1
ij xjxmΣ̇−1

mnxn

}
=
∑
i,j,m,n

Σ̇−1
ij Σ̇−1

mnE {xixjxmxn}

=
∑
i,j,m,n

Σ̇−1
ij Σ̇−1

mn [ΣijΣmn + ΣimΣjn + ΣinΣjm]

= tr
{

Σ̇−1Σ
}2

+ 2 tr
{

Σ̇−1ΣΣ̇−1Σ
}

Applying Property 1, we get:

E

{[
(x− µ)T Σ̇−1(x− µ)

]2}
= tr

{
Σ−1Σ̇

}2

+ 2 tr
{

Σ−1Σ̇Σ−1Σ̇
}

(B.6)

For the fourth term of (B.5), we have:

E
{

(x− µ)T Σ̇−1(x− µ)
}

= E
{

tr
{

(x− µ)T Σ̇−1(x− µ)
}}

= tr
{

Σ̇−1E
{

(x− µ)(x− µ)T
}}

= tr
{

Σ̇−1Σ
}

Applying Property 1, we get:

E
{

(x− µ)T Σ̇−1(x− µ)
}

= − tr
{

Σ−1Σ̇
}

(B.7)

The fifth and sixth terms of (B.5) are zero, since they are odd-order moments of zero-mean

Gaussian distributions. Collecting the above results, we have:

E

{[
d

dτ
log f(x)

]2
}

= µ̇TΣ−1µ̇+
1

2
tr
{

Σ−1Σ̇Σ−1Σ̇
}

(B.8)

which is the desired result.
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B.2 Specialization to Discrete-Time Crossing Point Estimation

We wish to express (B.8) in a simplified form, using the definitions for Σ and µ defined in

(4.17) and (4.16). We have:

µ̇TΣ−1µ̇+
1

2
tr
{

Σ−1Σ̇Σ−1Σ̇
}

=
1

σ4
s

[
y2ρ̇TΣ−1ρ̇+ 2yẏρTΣ−1ρ̇+ ẏ2ρTΣ−1ρ

]
+

1

2σ4
s

[
tr
{

Σ−1(ρ̇ρT + ρρ̇T )Σ−1(ρ̇ρT + ρρ̇T )
}]

(B.9)

=
1

σ2
s

[
y2e+ 2yẏb+ ẏ2a

]
+

1

2σ2
s

tr
{

Σ−1
[
ρ̇bρT + ρ̇aρ̇T + ρeρT + ρbρ̇T

]}
(B.10)

Rearranging the tr { · } expressions yeilds the desired result (4.33):

µ̇TΣ−1µ̇+
1

2
tr
{

Σ−1Σ̇Σ−1Σ̇
}

=
1

σ2
s

[
y2e+ 2yẏb+ ẏ2a

]
+ b2 + ae (B.11)

The final step from (4.33) to (4.34) is a straightforward substitution of each of (4.22) into

(4.24). The resulting expression may be written using (4.25).
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Appendix C

Proof of (4.24)

We wish to prove that the equation

Σ−1 = Σ−1
0 +

Σ−1
0 ρρ

TΣ−1
0

σ2
s − ρTΣ−1

0 ρ
(C.1)

is a valid expression for Σ−1. As stated in Section 4.2.4, this statement is valid provided that

Σ0 is nonsingular (which is granted, since we assume Σ0 is positive definite) and provided

σ2
s − ρ(τ)TΣ−1

0 ρ(τ) 6= 0 (which we will establish here.)

We may express Σ−1
0 by expanding (4.4) with the Sherman-Morrison-Woodbury for-

mula [35]. The result is unconditionally valid for σ2
n 6= 0.

Σ−1
0 = Σ−1

s − Σ−1
s (σ−2

n I + Σ−1
s )−1Σ−1

s (C.2)

As the sum of positive definite matrices, the center term (σ−2
n I + Σ−1

s ) and its inverse are

positive definite. Likewise, the matrix quadratic Σ−1
s (σ−2

n I+Σ−1
s )−1Σ−1

s is positive definite.

Thus, the second term in the sum is necessarily positive, and for any ρ(τ) 6= 0 we have the

strict inequality

ρ(τ)TΣ−1
0 ρ(τ) < ρ(τ)TΣ−1

s ρ(τ) (C.3)

We may immediately disregard the case in which ρ(τ) = 0, since it corresponds to the

degenerate case in which the observation vector x is totally uncorrelated with s(τ) at a

particular τ .

To complete the proof, we now show that ρ(τ)TΣ−1
s ρ(τ) ≤ σ2

s . This is trivial, since ε =

σ2
s−ρ(τ)TΣ−1

s ρ(τ) is the variance of the MMSE estimator to s(τ) given the (unobservable)
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sample vector s [37]. The quadratic expression is nonnegative, and since variances are by

definition nonnegative, ρ(τ)TΣ−1
s ρ(τ) ≤ σ2

s .

Summarizing, we have shown:

ρ(τ)TΣ−1
0 ρ(τ) < ρ(τ)TΣ−1

s ρ(τ) ≤ σ2
s (C.4)

therefore,

ρ(τ)TΣ−1
0 ρ(τ) 6= σ2

s . (C.5)
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