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Abstract

Wireless communications is the fastest growing segment of communication technologies. In

a wireless communication system, the inter-symbol interference (ISI) is a linear distortion

which causes decision errors at the receiver. The equalizer is required to remove the ISI.

In the past decade, the blind channel equalization has been a popular research topic in

the area of wireless communication. A particular class of blind equalization approaches is

based on the second order statistics (SOS) of the received signals. Within this framework,

subspace methods exploit the orthogonality between the signal and noise subspaces in order

to identify the channel characteristics so that the equalizer can be constructed.

This thesis investigates a new equalization algorithm for the time-varying (TV) channel

under the single-input multiple-output (SIMO) framework. The TV channel is decomposed

using arbitrary basis functions associated with time variable properties of the channels, and

with expansion coefficients associated with multi-path delays. An equivalent time-invariant

(TI) multiple-input multiple-output (MIMO) system is built for the TV SIMO system. The

equivalent TI MIMO system is assumed to match the necessary and sufficient conditions

of the SOS identification framework. The blind subspace method is exploited to identify

the expansion coefficients when considered as channel characteristics of the MIMO system.

The associated ambiguity matrix is identified by using the least square (LS) method. The

zero forcing equalizer is realized based on the result of the subspace channel equalization

and the ambiguity matrix. The simulation results indicate that the proposed equalizer can

effectively recover the source signal in TV SIMO channel applications.
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Résumé

La communication sans fil est le segment de croissance le plus dynamique parmi les tech-

niques de la communication. Dans un système de communication sans fil, l’interférence

inter-symboles (ISI) est une distorsion linéaire qui provoque des erreurs de décisions au

niveau du récepteur. L’égaliseur est nécessaire pour éliminer l’ISI. Récemment, l’égalisation

aveugle du canal est devenue un sujet de recherche populaire dans les domaines de la com-

munication sans fil. Un des jalons de la technologie aveugle est fondé sur le cadre des

statistiques du second ordre (SOS) du signal reçu. Tout particulièrement, la méthode du

sous-espace exploite l’orthogonalité entre le sous-espace signal et le sous-espace bruit afin

d’identifier les caractéristiques du canal de telle sorte que l’égaliseur puisse être construit.

Dans cette thèse, j’ai proposé un algorithme de péréquation pour le canal à variation

temporelle (TV) des systèmes à entrée unique et sorties multiples (SIMO). Le canal TV

est décomposé en fonctions arbitraires associées aux propriétés de TV du cacal, et avec les

coefficients d’expansion associés à chacun des retards multi-trajet. Un système équivalent

invariant dans le temps (TI), à entrée multiples et sorties multiples (MIMO) est conçu pour

le TV SIMO. Le système équivalent TI MIMO est supposé correspondre aux conditions

nécessaires et suffisantes dans le cadre de la théorie SOS. La méthode sous-espace aveugle

est exploitée pour identifier les coefficients d’expansion quand ils sont considérés comme

caractéristiques du canal du système MIMO. La matrice d’ambigüıté est déterminée par la

méthode des moindres carrés (LS). La remise à zéro forcée de l’égaliseur est réalisée sur la

base des résultats de l’égalisation des canaux de sous-espace et de la matrice d’ambigüıté.

Des expériences de simulations numériques sont utilisées afin de démontrer le potential

d’application de la nouvelle méthode.
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Chapter 1

Introduction

As more and more multimedia services are being offered to the end users, service provider

must adapt to the upcoming fourth generation (4G) of wireless communication systems in

order to keep up with the demand for high data rates. However, there is a conflict be-

tween these increasing data rates and the limited radio spectrum currently available. The

multiple-input multiple-output (MIMO) communication systems offer a significant perfor-

mance gain in terms of capacity and coverage range. Through research studies on MIMO

systems, it has been proven that improvements can be made on the spectral efficiency and

against the distortion and interference incurred during transmission. In particular, the

sensitivity to channel fading is reduced by the spatial diversity provided by multiple spatial

channels. The power requirements of a high spectral efficiency transmission can also be

significantly reduced by avoiding the compressive region of the information-theoretic capac-

ity bound, if certain conditions are satisfied. Hence, the research associated with MIMO

systems has become an exciting topic.

2012/02/02
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1.1 Time-Varying Channel Estimation and Equalization in

Wireless Communications

In an ideal wireless communication system, the received signal x(n) is identical with the

transmitted signal s(n), except for a transmission delay. In reality, signal distortion and

noise are involved in the transmission of data over the wireless channel. Therefore, the

channel state information (CSI) has to be obtained to adapt the transmission parameters

to current channel conditions and hence optimize the transmission performance. The CSI

indicates how a signal propagates from the transmitter to the receiver and represents the

combined effect of, e.g. scattering, fading, and power decay with distance. It comprises

both instantaneous and statistical information about the wireless channel. Instantaneous

information characterizes short-term channel conditions such as the impulse response of a

digital filter representation of the channel at a given time. Statistical information usually

characterizes long-term channel conditions such as the average delay spread on the power

delay profile.

The line-of-sight transmission paths between transmitters and receivers are usually ob-

structed, so that the propagation is via reflection, diffraction and scattering by hills, build-

ing and vehicles. These multiple transmission paths suffer different delays, which inevitably

cause amplitude fading and unpredictable carrier phase shifts. Even worse, the transmit-

ters and receivers could move relative to each other. If the scatterers separation increase,

the spread between the channel multi-path delays increases. In addition to its instanta-

neous delay, phase and amplitude parameters, each multi-path component is characterized

by a Doppler shift, which depends on the mobility (speed) of devices and scatterers. The

Doppler effect manifests itself in the time variations for the above parameters. For low

transmission rates, the normalized delay spread is relatively small so that the wireless

channel may usually experience significant time variability but small frequency selectivity.

Under this situation, the channel can be idealized as a time-varying (TV) channel, i.e. with

TV impulse response representation.
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Channel estimation is a procedure used to approximate the CSI of a communication

link, since the channel conditions vary. The most popular approach is based on the use of

a training sequence. In this method, a training sequence or pilot, which is already known

by the receiver, is transmitted before the information sequence in order to estimate the

channel impulse response in real-time. The received training sequence is analyzed and the

unknown channel is estimated by minimizing the decoding error after the transmission.

However, the use of training sequences at regular time intervals decreases the effective data

rate. Accordingly, the so-called blind channel estimation algorithms have been a popular

topic during the last two decades. The blind channel estimation is a process, which enables

the determination of channel characteristics from the received signal, without using the

training sequence.

Generally, an equalizer is a device used to compensate the distortion caused by propa-

gation through the radio channel. The distortion occurs when a signal bandwidth exceeds

the allowed passband, since physical transmission is band limited. In addition, the chan-

nel incurs additional effects due a non-flat frequency response and additive noise. An

adaptive equalizer is an equalizer that automatically adapts to the TV properties of the

communication channel based on constant monitoring of the training sequence. Hence, the

adaptive equalizer is difficult to apply in real-time to high data rate wireless communication

systems, because of the disadvantages of continually using training data over the communi-

cation link. For this reason, blind equalization algorithms have been developed where the

training sequence is not needed in order to track variations of the radio channel. In this

type of approach, the transmitted sequence is equalized from the received signal, while it

only exploits the transmitted sequence statistics. Moreover, the equalization algorithm can

take advantage from the results of a blind channel estimation algorithm, for example, the

so-called subspace algorithm, to create an appropriate equalizer. This is the main topic

under study in this thesis.



1 Introduction 4

1.2 Literature Review

In wireless communications, the CSI needs to be estimated at the receiver and finely quan-

tized so that the received signal can be recovered with reasonably low probability of error.

Estimation theory is a part of statistical signal processing that attempts to determine

the value of one or more unknown parameters, from a set of measurements that usually

take the form of a random signal. Different methods for designing estimators have been

proposed, according to assumptions employed to model the measured signal. One of the

classical estimation methods is the maximum likelihood (ML) for the estimation of one or

more deterministic unknown parameters. It is used to find the estimator that maximizes

the likelihood function describing the relation between the observed data and unknown

parameters. With ML estimation, we search for the parameter values that maximize the

conditional probability of observing the deterministic unknown parameters.

The maximum a posteriori probability (MAP) estimator is based on posterior distribu-

tion of Bayesian statistics. It can be used to obtain an estimator of an unobserved quantity,

modelled as a random variable, on the basis of empirical data related to that quantity. ML

and MAP achieve the same result if the unknown parameter follows a uniform distribution.

Within the Bayesian framework, we also mention the minimum mean square error (MMSE)

approach, which attempts to minimize the mean square error (MSE) of the estimator, a

common measure of estimator quality.

The least squares (LS) estimation can be developed, whether the unknown parameter is

deterministic or random. Unlike other estimation methods based on the use of probability

models for the observed data or the parameters, the LS estimation simply attempts to

minimizing the sum of squared errors between the measurements and a linear model con-

taining the unknown parameters. In the present context, the LS estimation can be applied

to construct blind linear estimators.

Practical algorithms for the estimation of wireless channels are based on the above the-

oretical framework. Generally, there exist three types of channel estimation techniques:
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training based channel estimation, blind channel estimation, and semi-blind channel esti-

mation [1]. Training based estimation, in which a known data sequence is transmitted for

the purpose of channel estimation, is the most mature technology and has been used for

several decades. However, since blind techniques can supply higher transmission efficiency,

they have become a very attractive and promising research topic. Semi-blind techniques

combine blind estimation and training sequences to achieve higher performance. Depending

on the underlying statistical estimation approach, the blind channel estimation methods

can be classified as higher order statistics (HOS)1 [2] and second order statistics [1] based.

The blind channel estimation techniques are very important for the blind channel equal-

ization algorithms, since channel information can be obtained without the use of training

sequences.

In digital communication systems, inter-symbol interference (ISI) is caused by a se-

quence of symbols interfering with itself during transmission, as a result of channel spread-

ing. Digital symbols are mapped into a given constellation scheme. Hence, one symbol

interfering with subsequent symbols can cause an erroneous decision at the receiver. Math-

ematically, both channel and equalizer can be considered as a discrete-time filter, and the

signal is a numerical sequence. Therefore, the problem is to create an equalizer filter to fix

and compensate ISI, so that the signal sequence is recovered as accurately, and efficiently as

possible at the receiver. High performance equalization approaches are studied to provide

techniques to minimize the error rate during the process of symbol recovery. If the signal

sequence and noise are considered as random sequences, the mathematical procedure thus

concerns itself with reducing the probability of error.

The exact implementation of the ML criterion and the MAP criterion for symbol re-

covery is so complicated in practice that these algorithms can not be afforded in realistic

communication systems, such as e.g. real-time communication at high bit rates. The

Viterbi algorithm is the first effective solution to recover symbols in the presence of ISI

[3]. It was originally proposed for decoding convolutionally encoded symbols based on the

1HOS indicates that statistics of order 3 or more are involved.
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ML criterion [4]. As a result, the probability of error in detecting a complete transmitted

sequence is (approximately) minimized. Subsequently, the BCJR algorithm, named after

its inventors, was proposed based on the MAP criterion [5]. Unlike the Viterbi algorithm

which aims to recover the best sequence, the signal is recovered on a symbol-by-symbol

basis in the BCJR algorithm. In turn, the probability of error for each individual symbol

is minimized.

In the presence of ISI, it is further necessary to apply an equalizer in order remove the

signal distortion incurred during transmission, prior to the application of a data decoding

technique. Several criteria are available for the design of the equalizing filter, such as

the MSE and LS criteria. In practice, two options are possible: accounting for all of

the transmitted symbols to obtain an optimized equalizer for the complete sequence, or

adjusting the equalizer in real-time so that it can adapt to the most recent data as quickly

as it is received. Finally, the use of a priori information is related to the possibility of

realizing practical mechanisms for training the equalizer with known data sequence. If such

a training mechanism is periodically implemented, we refer to the process as supervised

equalization, otherwise, only inherent properties of the received information sequence are

exploited and the process is called blind equalization.

Although the term “blind equalization” was first introduced in 1984 [6], many impor-

tant research achievements had already been published by that time. In 1975, the classical

blind equalization approach was proposed for pulse amplitude modulated signal under the

single-input single-output (SISO) framework [7]. Later, the fundamental conditions of blind

equalization were studied [8]. Also in 1984, researchers used the properties of complex sig-

nals in the design of blind equalization algorithm [9]. Indeed, structural properties of the

source signal (i.e. constellation) can be exploited to design so-called constant modulus algo-

rithms (CMA) [10]. These blind equalization algorithms are based on the idea of restoring

the constant modulus properties of the source modulation. The theoretical conditions for

blind equalization are further investigated in [11]. It is proved that if the 4th order cumulant

is maximal and the 2nd order cumulant are constant, then the signal can be recovered, up
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to a scaled and rotated version of the source signal.

A blind equalization algorithm for multiple antenna receivers was first proposed in

1991 [12]. This blind equalization algorithm is applicable to time-invariant (TI) channels

using only the second order statistics (SOS) of the received signal. Later, the subspace

method [13], the prediction error structure [14], and the fractionally spaced method [15]

were proposed which are also based on SOS. For TI MIMO systems, several different blind

equalization algorithms have been proposed based on HOS and SOS frameworks. It has

been proved in [14] that the MIMO finite impulse response (FIR) system can be identified

by the SOS of the received signal under some assumptions. Also, the subspace method [16]

and the matrix pencil decomposition method [17] were proposed. The subspace algorithm

takes advantage of reduced computational complexity. It is based on the decomposition of

the autocorrelation matrix of the received signal into orthogonal signal and noise subspaces

[12, 13].

Based on the subspace framework, different approaches have also been proposed to esti-

mate TV single-input multiple-output (SIMO) channels [18, 19]. First, the TV channels of

the SIMO system are projected onto selected basis functions, which enable their equivalent

representation as TI MIMO channel. Following this step, this latter channel can be esti-

mated using standard subspace methods developed for TI channels. Once the parameters

of the TV SIMO have been estimated, we can then proceed with the equalization. In [18],

a zero forcing (ZF) equalizer was derived according to the channel estimation from the

subspace approach.

The ZF equalizer is based on a worst case peak distortion criterion, that captures the

effect of ISI on the error rate. The ZF algorithm was the first proposed method to be

applied in FIR equalization in the 1960s [20]. It is proposed as an adaptive procedure to

adjust the coefficients of an FIR equalizer so that the ISI is forced to be zero. Since all

terms associated with the ISI are set to zero, the ZF equalizer tends to be the inverse of

the channel impulse response in a noise-free situation. In practice, due to the effect of

noise, only an approximate inverse can be found to design the ZF equalizer. As a result,
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ZF equalization tends to be sensitive to the measurement noise. A better approach is to

use an MSE criterion with regularization [21]. Nevertheless, ZF equalization is commonly

used in applications due to its simple structure. In [11], it has been proven that the ZF

equalizer can be implemented if only two statistics of the involved signal are equalized.

1.3 Problem Addressed and Contributions

Under the SOS framework, the subspace method is exploited to identify multichannel

impulse response [13]. It has been proven that the TV SIMO FIR channel can be identified

up to an ambiguity matrix, if the TV channel is decomposed as expansion coefficients of

complex exponential basis functions [18]. However, the blind equalization algorithm of the

TV SIMO system associated with arbitrary basis functions has never been studied.

In this thesis, a multi-channel ZF equalizer is proposed based on the blind subspace-

based identification of arbitrary TV SIMO FIR channel. The blind subspace channel iden-

tification associated with arbitrary basis functions was proposed and studied [19]. In this

approach, the TV SIMO channel is expressed as a combination of expansion coefficients

along arbitrary basis TV functions. The expansion coefficients are considered as channel

impulse responses of an equivalent TI MIMO system, so that it can be estimated by existing

bind subspace methods developed for the TI MIMO channel.

A ZF equalizer is suggested based on subspace channel estimation under the SOS frame-

work. First, an approximated ZF equalizer, in the form of a FIR filter, is designed for the

equivalent TI MIMO system based on the result of the blind subspace estimation. The

necessary and sufficient conditions are discussed and proven so that the FIR MIMO sys-

tem can be determined up to an ambiguity matrix under the SOS framework. Then, the

ambiguity matrix is estimated by the LS method. Finally, the ZF equalizer is obtained by

combining the approximated filter and the ambiguity matrix estimate.

Finally, the results of simulation experiments based on practical conditions show that

the proposed equalizer for the TI SIMO system can recover the source signal, whether the
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expansion basis functions of the TV SIMO channel are exponential, or more general in

nature.

1.4 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, a classical subspace approach

is introduced for the estimation of the TI FIR channels. Then, the basic ideas of linear

equalization under the SISO and MIMO frameworks are introduced. In Chapter 3, an

equivalent TI MIMO system is constructed for the TV SIMO system. The subspace method

is exploited to identify the equivalent TI MIMO channels. After that, the ZF equalizer is

designed. In Chapter 4, the necessary and sufficient conditions for the determination of the

ambiguity matrix under the SOS framework are discussed. Next, an LS method is proposed

to obtain it. In Chapter 5, the simulation results are presented for blind subspace-based TV

SIMO channel estimation and associated channel equalization with the proposed method.

Finally, Chapter 6 presents summary and conclusion.



10

Chapter 2

Background Material

The background material for the rest of thesis will be presented in this chapter. First,

the classical subspace blind channel estimation approach is introduced based on the basic

multichannel FIR model. In turn, the blind channel equalization is discussed for both the

SISO and MIMO systems. Finally, previous research works on which the thesis is based

are discussed.

2.1 Classical Subspace Approach for Blind TI SIMO Channel

Estimation

The orthogonality between the signal and noise subspaces of the received signal can be

used to identify the impulse response of a multiple-channel system [13]. Beginning with a

single channel, the received continuous time baseband signal is defined as

x(t) =
∞∑

m=−∞

s[m]h(t−mTs) + w(t), (2.1)

where s[m] is the emitted sequence of symbols, Ts is the symbol duration, and m is the

symbol index. The signal is transmitted through a channel, characterized by a system

impulse response h(t). The received signal x(t) is corrupted by the additive noise w(t),

2012/02/02
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which is modelled as a band-limited complex stationary process, independent from s[m].

2.1.1 System Model for Channel Estimation

The classical subspace algorithm in [13] is based on following two fundamental assumptions:

(i) the channel impulse response h(t) has finite support;

(ii) several measurements can be performed during the symbol period Ts.

In this algorithm, orthogonal bases of the received signal and noise subspaces are formed

so that the channel impulse response can be identified. While the following presentation

is for a single receiver system with oversampled received signal, it can also be applied to a

multi-receiver system.

The oversampled signal in one symbol duration can be represented as

xi[n] = x(t0 + i∆) (2.2)

=
M∑
m=0

s[n−m]h(t0 + i∆ +mTs) + wi[n], (2.3)

where: 0 ≤ i ≤ P −1 is the sampling index over one symbol duration; M +1 is the number

of the tap delays, i.e. duration of the channel in units of Ts; P is the oversampling factor

and satisfies the condition P = Ts/∆; t0 + i∆ represents the sampling epoch of the ith

sample; and wi[n] is the additive noise, defined as

wi[n] = w(t0 + i∆ + nTs). (2.4)

Hence, we can define the channel impulse response corresponding with xi[n] as

hi = [h(t0 + i∆), h(t0 + i∆ + Ts), · · · , h(t0 + i∆ +MTs)]
T , (2.5)

where [·]T denotes the matrix transpose. In other words, we may consider the oversampling

system as a multichannel system with L virtual channels, within this case, L = P .
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Alternatively, in a multi-receiver system, K receivers (antennas) detect signals that

have passed though the propagation channel. The signal received at the jth receiver can

expressed as

xj[n] =
M∑
m=0

s[n−m]hj(t0 +mTs) + wj[n], (2.6)

where hj(t) denotes the impulse response between the emitter and the jth receiver antenna,

and wj[n] is an additive noise at the jth antenna.

Each channel is characterized by its impulse response vector

hj = [hj(t0), hj(t0 + Ts), · · · , hj(t0 +MTs)]
T , (2.7)

where 0 ≤ j ≤ K − 1. In this case, L = K is defined as the number of virtual channels.

Generally, we can consider both of the above systems as a multichannel system with L

virtual channels, each one characterized by its impulse response vector hl, which can be

expressed as a (M + 1)× 1 vector

hl = [hl[0], hl[1], · · · , hl[M ]]T , (2.8)

where 1 ≤ l ≤ L, and hl[m] represents the sampled values of the lth continues-time im-

pulse response. In turn, the channel impulse responses of these L virtual channels can be

represented as a L× (M + 1) matrix

h[n] = [h1 · · ·hL]T . (2.9)

The output of the SIMO multichannel system can be expressed in vector form as

x[n] =
M∑
m=0

s[m]h[n−mTs] + w[n], (2.10)
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where the received signal vector x[n] = [x1[n], · · · , xL[n]]T and the noise signal vector

w[n] = [w1[n], · · · , wL[n]]T have size L× 1.

2.1.2 Subspace Approach for Channel Estimation

In the classical subspace-based approach for blind SIMO channel estimation, the aim is to

estimate the set of channel coefficients, which are represented as a L(M + 1)× 1 vector

H = [hT1 · · ·hTL]T , (2.11)

where hl, for 1 ≤ l ≤ L, is a (M + 1) × 1 vector representing the impulse response of the

lth channel.

For the estimation, N successive samples of the received signals for each of the channels

are represented by a N × 1 vector

Xi[n] = [xi[n], · · · , xi[n− (N − 1)]]T . (2.12)

From (2.6), we can express Xi[n] as

Xi[n] = HiS[n] +Wi[n], (2.13)

where the corresponding source symbol S[n] is defined as the (N +M)× 1 vector

S[n] = [s[n], · · · , s[n− (N +M − 1)]]T , (2.14)

and the noise term Wi[n] is defined as the N × 1 vector

Wi[n] = [wi[n], · · · , wi[n− (N − 1)]]T . (2.15)
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The N × (N +M) corresponding filter matrix Hi in (2.13) is defined as

Hi =


hi[0] · · · hi[M ] 0 · · · · · · 0

0 hi[0] · · · hi[M ] 0 · · · 0
...

...

0 · · · · · · 0 hi[0] · · · hi[M ]

 . (2.16)

Hence, the corresponding N successively received signal samples of the multichannel system

can be represented as an LN × 1 vector
X1[n]

...

XL[n]

 =


H1

...

HL

S[n] +


W1[n]

...

WL[n]

 , (2.17)

which can be expressed more compactly as

X[n] = HS[n] + W[n], (2.18)

where the unknown filter matrix H is restricted to be of a full column rank [13].

The subspace decomposition is based on the LN × LN correlation matrix RX of the

measurement vector X[n], defined as

RX = E[X[n]X[n]H ], (2.19)

where E[·] denotes expectation, and the superscript H denotes Hermitian transpose. We

assume that the additive noise is independent of the symbol sequence, so that, on the basis

of (2.18), RX can be expressed as

RX = HRsHH + Rw, (2.20)
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where Rs = E[S[n]S[n]H ] is the (N + M) × (N + M) correlation matrix of the symbol

sequence S[n] in (2.14), and Rw = E[W[n]W[n]H ] is the LN × LN correlation matrix of

the additive noise measurement W[n]. In this work, we assume that the noise is spatially

and temporally white, so that

Rw = σ2ILN , (2.21)

where ILN denotes an identity matrix of size LN × LN and σ2 is the noise variance.

We assume that both Rs and H are full rank matrixes, and condition LN > (M+N) is

true, so thatH is a tall matrix, i.e. with more rows than columns. Let λ1 ≥ λ2 ≥ · · · ≥ λLN

denote the eigenvalues of RX . Since the size of Rs and Rw are different, the eigenvalues

can be grouped into two classes:

λ1 ≥ · · · ≥ λM+N > σ2, (2.22)

associated with orthonormalized eigenvectors a1, · · · , aM+N ; and eigenvalues

λM+N+1 = · · · = λLN = σ2, (2.23)

associated with eigenvectors b1, · · · ,bLN−(M+N). For convenience, we use the LN×(M+N)

matrix A and the LN × (LN − (M + N)) matrix B to express the collections of above

eigenvectors, i.e.:

A = [a1 · · · aM+N ], (2.24)

B = [b1 · · ·bLN−(M+N)]. (2.25)

The columns of matrix A span the signal subspace, which is identical to the columns span

of channel matrix H, and the columns of matrix B span the noise subspace [13]. Also, we

express the LN × 1 column vector bi, for 1 ≤ i ≤ LN − (M +N), as

bi = [bTi (1) · · ·bTi (N)]T , (2.26)
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where each element bi(j), for 1 ≤ j ≤ N , is a L× 1 vector

bi(j) = [bi,1(j), · · · , bi,L(j)]T . (2.27)

Therefore, the covariance matrix RX can be rewriten as

RX = Adiag(λ1 · · ·λM+N)AH + σ2BBH . (2.28)

Because of the orthogonality between the signal and noise subspaces, the columns of H

are orthogonal to any vector in the noise subspace. That is:

bHi H = 0, 1 ≤ i ≤ LN − (M +N), (2.29)

where bi denotes a column of B.

In practice, only an estimated value of bi, denoted as b̂i, is available. The least squares

method is therefore suggested to solve the linear equation (2.29) in the presence of estima-

tion error. Hence, the associate problem becomes

min
H

LN−M−N∑
i=1

‖b̂Hi H‖2, (2.30)

where H is defined in terms of the coefficient matrix H (2.11) via the construction in

(2.16)-(2.18). Therefore, based on the Lemma 1 in [13], the expression in (2.30) can be

equivalently represented as

min
H

HHQH, (2.31)

where we define

Q =
LN−M−N∑

i=1

B̂iB̂Hi . (2.32)

In (2.32), the matrices B̂i, for 1 ≤ i ≤ LN − (M +N), have size L(M + 1)× (M +N) and
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are constructed as follow

B̂ = [B̂Ti,1 · · · B̂Ti,L]T , (2.33)

where

B̂i,1 =


b̂i,1(0) · · · b̂i,1(N) 0 · · · · · · 0

0 b̂i,1(0) · · · b̂i,1(N) 0 · · · 0
...

...

0 · · · · · · 0 b̂i,1(0) · · · b̂i,1(N)

 (2.34)

is a (M + 1) × (M + N) matrix, whose entries are the estimated entires of vector bi(j)

in (2.27). Finally, the estimated value of the channel impulse response matrix H can be

obtained by minimizing (2.31) with respect to H. In practice, to avoid the trivial solution

H = 0, the search needs to be restricted. This can be achieved by imposing a constraint

on the norm of H, i.e. ‖H‖ = 1 in [13].

2.2 Blind Channel Equalization

Blind equalization is a process of recovering an unknown input data sequence from an

observed noisy signal at the output of an unknown channel. The main advantage of blind

channel equalization is that it does not require a training sequence, which would usually

cause a reduction in the data rate. Generally speaking, blind equalization approaches can

be classified into direct and indirect approaches. Direct blind equalization can be performed

without channel identification. Indirect blind equalization requires the identification of the

channel impulse response, so that channel estimation algorithms have to be involved. This

thesis will focus on an indirect blind channel equalization algorithm for TV SIMO channels.

2.2.1 Blind SISO Equalization

Blind equalization is first applied to a single-input single-output (SISO) discrete linear

system, which is a simple single variable control system with one input and one output,

by Sato in 1975 [7]. Fig. 2.1 shows the block diagram of the discrete-time SISO system
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with a linear equalizer, which consists of an unknown complex linear time invariant (LTI)

channel, with impulse response h[n], and a linear equalizer g[n] to remove the ISI.

SISO LTI

System

h[n]

SISO 

Linear equalizer

g[n]

Noise w[n]

Source 

Signal

s[n]

Noise-free

Signal

v[n]

Received 

Signal

x[n]

Equalized 

Signal

e[n]

+

Fig. 2.1 Block diagram of a SISO system with linear equalization

The system output results from a quadrature amplitude modulation (QAM) symbol

sequence s[n], passing though a complex LTI channel h[n]. It can be expressed as

v[n] = s[n] ∗ h[n] =
∞∑

m=−∞

s[m]h[n−m]. (2.35)

The observed signal x[n] at the receiver is given by

x[n] = v[n] + w[n], (2.36)

where the additive noise w[n] is assumed to be a zero-mean random sequence, independent

from s[n]. The desired equalized signal e[n] can be expressed as

e[n] = x[n] ∗ g[n] =
∞∑

m=−∞

x[m]g[n−m], (2.37)

where g[n] represents the impulse response of the designed blind equalizer. Since the

received signal x[n] involves an additive noise, the equalized signal e[n] consists of a signal
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component eS[n] and a noise component eN [n], i.e.:

e[n] = eS[n] + sN [n] (2.38)

where

eS[n] = s[n] ∗ h[n] ∗ g[n], (2.39)

eN [n] = w[n] ∗ g[n]. (2.40)

From the above mathematical description of the overall system, the aim of direct blind

equalization approach is to design an equalizer g[n] directly from the received signal x[n],

so that the equalized signal component eS[n] approximates the original source signal s[n]

as accurately as possible within the limits imposed by the additive noise. In contrast,

indirect blind equalization takes advantage of available channel estimation: firstly, a blind

channel estimation algorithm is applied to estimate channel impulse response h[n]; then

the equalizer is designed based on the estimated response, say ĥ[n], or other estimated

parameters related to h[n].

2.2.2 Blind MIMO Equalization

A MIMO communication system consists of P transmitters and L receivers, where we

assume for simplicity that L ≥ P . Fig. 2.2 shows the block diagram of a MIMO system,

where the source signal vector s[n] and received signal vector x[n], at time n, are defined

as

s[n] = [s1[n], · · · , sP [n]]T , (2.41)

x[n] = [x1[n], · · · , xL[n]]T . (2.42)
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MIMO

LTI

Channel

H[n]

+

+

+

.

.

.

.

.

.

1w
s1[n]

s2[n]

sP[n]

v1[n]

v2[n]

vL[n]

 wL[n]

 w2[n]

x1[n]

x2[n]

xL[n]

 w1[n]

Fig. 2.2 Block diagram of a MIMO communication system.

The noise-free output of the MIMO system is represented by vector v[n]

v[n] = [v1[n], · · · , vL[n]]T = H[n] ∗ s[n]. (2.43)

At the receiver, additive noise is also included in the form of vector

w[n] = [w1[n], · · · , wL[n]]T . (2.44)

The noisy output of the MIMO LTI channel in Fig. 2.1 can be expressed as

x[n] = H[n] ∗ s[n] + w[n] =
∞∑

m=−∞

H[m]s[n−m] + w[n], (2.45)

where H[n] is the impulse response of the P inputs and L outputs LTI MIMO channel,

and can be represented as an L× P matrix

H[n] =


h11[n] h12[n] · · · h1P [n]

h21[n] h22[n] · · · h2P [n]
...

. . .

hL1[n] hL2[n] · · · hLP [n]

 . (2.46)
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That is, the number of columns of H[n] equals the number of inputs of the MIMO system,

and the number of rows of H[n] equals the number of outputs. Thus, the (l, p)th entry

hlp[n] in (2.46) represents the LTI channel impulse response between the lth output, for

1 ≤ l ≤ L, and the pth input, for 1 ≤ p ≤ P . For convenience, H[n] can be expressed as

H[n] = [h1[n] · · ·hL[n]]T , (2.47)

where

hl[n]T = [hl1[n], · · · , hlP [n]] (2.48)

is the lth row of matrix H[n]. Therefore, the noise-free signal at the lth receiver can be

represented as

vl[n] = hl[n] ∗ s[n] =
P∑
p=1

∞∑
m=−∞

hlp[m]sp[n−m], 1 ≤ l ≤ L (2.49)

and the corresponding noisy measurement can be represented as

xl[n] = vl[n] + wl[n]. (2.50)

In this work, the source signal vector s[n] and noise signal vector w[n] are modelled as

independent, stationary vector random processes. In turn, the noise-free signal vector v[n]

and received signal vector x[n] are also considered as vector random processes. Therefore,

the auto-correlation matrix function and power spectral matrix of the received signal vector

x[n] can be represented as

Rx[m] = E{x[n]xH [n−m]} = Rv[m] + Rw[m] (2.51)

Sx(ω) = F{Rx[m]} = Sv(ω) + Sw(ω). (2.52)
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where we define

Rv[m] = E{v[n]vH [n−m]}, (2.53)

Sv(ω) = F{Rv[m]}, (2.54)

Rw[m] = E{w[n]wH [n−m]}, (2.55)

Sw(ω) = F{Rw[m]}, (2.56)

and F{·} is the discrete-time Fourier transform (DTFT) operator. The signal-noise ratio

(SNR) at the output of the MIMO system in Fig. 2.2 can be represented as

SNR =
E{||v[n]||2}
E{||w[n]||2}

. (2.57)

In MIMO systems, the ISI can be removed by a linear equalizer. Fig. 2.3 shows the

block diagram of a MIMO linear equalizer, whose output can be defined as

 g1[n]

gL[n]

.

.

.

+

x1[n]

xL[n]

e[n]
 g2[n]

x2[n]

Fig. 2.3 Block diagram of MIMO linear equalization.

e[n] = G[n]T ∗ x[n] =
L∑
l=1

∞∑
m=−∞

gl[m]xl[n−m], (2.58)

where G[n]T denotes the P × L impulse response matrix of the linear equalizer. It can be

represented as

G[n]T = [g1[n] · · ·gL[n]], (2.59)
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where gl[n], for 1 ≤ l ≤ L, can be expressed as a P × 1 vector

gl[n] = [gl1[n], · · · , glP [n]]T . (2.60)

The equalized P × 1 signal vector e[n] consists of a signal component eS[n] and a noise

component eN [n], and can be expressed as

e[n] = eS[n] + eN [n], (2.61)

where eS[n] and eN [n] can be defined as

eS[n] = GT [n] ∗ v[n], (2.62)

eN [n] = GT [n] ∗w[n]. (2.63)

Finally, by combining (2.49) and (2.62) the equalized received signal can be expressed as

eS[n] = GT [n] ∗H[n] ∗ s[n] =
L∑
l=1

gTl [n] ∗ hl[n] ∗ s[n]. (2.64)

2.3 Related Works on TV Channel Estimation and Equalization

In indirect blind channel equalization, estimation of the channel characteristic, i.e. the

channel impulse response H[n], is the first problem that has to be considered. Several algo-

rithms have been proposed to estimate the LTI MIMO channel using a classical subspace

algorithms [13, 14, 16]. These algorithems can be used to obtain an estimate of H[n], i.e.

Ĥ[n], and use it to construct an equalizer matrix G[n] that inverts the effect of H[n] in

(2.64), i.e.

GT [n] ∗ Ĥ[n] = IP , (2.65)

where IP denotes a P × P identity matrix. For the case of TV channels, which are often

encountered in mobile radio applications, the basic principle of direct equalization is similar,
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that is:

• First estimate the parameters of the unknown L× P TV impulse response matrix;

• Use the estimated response to construct an equalizer that compensate the channel

effects.

For a TV MIMO channel, the basic convolution in the signal model (2.45) is replaced

by

x[n] =
∑
m

H[n,m]s[n−m] + w[n], (2.66)

where H[n,m] now represents the L×P impulse response matrix of the MIMO channel at

discrete-time n, with the second index m used to denote the lag. Clearly, because of the

dependence on current time n, the estimation (and equalization) of MIMO TV channels is

considerably more challenging.

An interesting approach to the problem of TV channel estimation is presented in [22].

First consider the case of a TV SISO FIR channel with impulse response h[n,m]. This

channels is then expended as a linear combination of a finite number of basis functions,

i.e.:

h[n,m] =
P∑
p=1

κp[m]fp[n], (2.67)

where P is the number of the basis functions, fp[n] is the pth basis function, and κp[m] is

the corresponding expansion coefficient. In [22], it is shown that the TV SISO FIR channel

with impulse response h[n,m] can be realized as a TI SIMO channel, with each sub-channel

characterized by the impulse response κp[m]. Therefore, classical blind subspace methods

developed for TI SIMO channels can be applied to estimate the parameter κp[m], which in

turn enables the estimation of the TV SISO h[n,m] via (2.67).

However, in this method, fp[n] has to obey several assumptions to ensure that the TI

SIMO channel can be identified by second order statistics [22]. An alternative algorithm

that links the TV SIMO system and the TI MIMO system by expanding the TV channel

characteristic as a linear combination of complex exponential basis functions, i.e. fp[n] =
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ejωpn, where ωp denotes an angular frequency, is investigated in [18]. Again, blind subspace

methods developed for the estimation of TI MIMO channels can be used to estimate the

expansion coefficients. In [18], the channel estimates obtained in this way are used to

indirectly build a channel equalizer.

In [19], it has been shown that to a first order of approximation (i.e. for slow channel

variations), the basis functions in [18] need not be restricted to the complex exponential

type. The TV SIMO FIR channel, with L×1 impulse response vector h[n,m], is represented

as the linear combination in terms of scalar basis functions, i.e.

h[n,m] =
P∑
p=1

κp[m]fp[n], (2.68)

where P is the numbers of basis function, fp[n] is the pth basis function and κp[m] denotes

the unknown L × 1 expansion coefficients vector. In [19], it is shown that the TV SIMO

FIR system is equivalent to a TI MIMO FIR system, represented by the set of coefficient

vectors {κp[m]}. Then, these expansion coefficients are estimated by applying existing

subspace methods for the estimation of TI MIMO FIR channels.

In this thesis, by proceeding as in [18], but using the more general estimation approach

in [19], our goal is to develop and study an indirect approach for the equalization of TV

SIMO channel represented in terms of arbitrary basis functions.
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Chapter 3

Indirect Equalization via Channel

Estimation

Blind equalization can be classified into indirect and direct approaches. The direct blind

equalization is achieved by using input statistics and the received signals through the

unknown channels to create the equalizer filters. The indirect blind equalization is achieved

by identifying the channel impulse response before building the appropriate equalizer filters,

that is, the equalizer is designed based on the knowledge of estimated channel impulse

responses. A blind method is proposed in [13] that exploits the orthogonality between

the noise and signal subspaces of the received signals in order to identify multiple FIR

channel. This classical subspace channel estimation algorithm has been applied to several

communication areas, including indirect blind channel equalization.

In particular, the classical algorithm in [13] is applied to the estimation of a TV channel

in [22]. In [18], this approach is further extended to the blind estimation of TV SIMO

channels. Indeed, by making use of an expansion in terms of Fourier basis functions, the

TV SIMO system is converted into an equivalent TI MIMO system which can be identified

with the help of the classical subspace technique in [14]. In [19], it is further proven that

the classical subspace channel estimation algorithm can be used in the same way to identify

TV SIMO channels expanded along arbitrary basis functions.

2012/02/02
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In this chapter, we first review the blind subspace method for TV SIMO channel esti-

mation based on SOS proposed in [19]. Then, a novel indirect ZF equalizer is developed

by combining this method with a peak distortion criterion.

3.1 Blind Estimation of Arbitrary Time-Varying SIMO Channels

In this section, we discuss a recently proposed blind estimation algorithm for TV SIMO

channels. We first describe the system model under consideration. We then present an

approach to convert the TV SIMO system into an equivalent TI MIMO system using

arbitrary basis expansion functions [19]. Finally, we consider the estimation of the resulting

TI MIMO channels using a classical subspace algorithm.

3.1.1 Time-Varying SIMO System Model

The TV SIMO system under consideration, with single input and L outputs, is described

as

x[n] =
M∑
m=0

h[n,m]s[n−m] + w[n], (3.1)

where:

• The received signal x[n] at discrete-time n is an L× 1 vector, defined as

x[n] = [x1[n], · · · , xL[n]]T . (3.2)

• s[n] represents the digital symbol transmitted by the source 1 at time n .

• The L × 1 vector h[n,m] represents TV SIMO channel impulse response at time n

and lag m, i.e.:

h[n,m] = [h1[n,m], · · · , hL[n,m]]T , (3.3)

1In this work, we shall focus mainly on a QAM constellation.
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where m ∈ {0, · · · ,M}, M+1 is the number of channel taps (or delays), and element

hl[n,m] represents the impulse response between the transmitter and the lth receiver

at time n and lag m.

• w[n] denotes the additive noise and is defined as an L× 1 vector

w[n] = [w1[n], · · · , wL[n]]T . (3.4)

To apply the classical subspace method to estimate the impulse response of the TV

SIMO channel, we stack N successively received signal vector x[n] to construct an LN × 1

vector X[n]

X[n] = [x[n]T · · ·x[n−N + 1]T ]T . (3.5)

It follows from (3.1) that X[n] can be described by

X[n] = H[n]S[n] +W [n], (3.6)

where the (N +M)× 1 vector S[n] is considered as the source and defined as

S[n] = [s[n], · · · , s[n− (N +M) + 1]]T , (3.7)

and W [n] is the LN × 1 additive noise vector

W [n] = [w[n]T · · ·w[n−N + 1]T ]T . (3.8)
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The filtering matrix H[n], of dimension LN × (N +M), can be expressed as

H[n] =


h[n, 0] · · · h[n,M ] 0 · · · · · · 0

0 h[n− 1, 0] · · · h[n− 1,M ] 0 · · · 0
... · · ·

0 · · · · · · 0 h[n−N + 1, 0] · · · h[n−N + 1,M ]

 .
(3.9)

The sequences S[n] and W [n] are modelled as statistically independent vector random

processes with zero mean, and correlation matrices denoted as

RS = E[S[n]SH [n]], (3.10)

RW = E[W [n]WH [n]]. (3.11)

We assume that both RS and RW are full rank matrices, and that the noise is spatially

white, that is:

RW = σ2
wILN , (3.12)

where σ2
w = E[|wl[n]|2] is the instantaneous noise power in each channel.

3.1.2 Equivalent Time Invariant MIMO System

In [19], it is proposed that the TV SIMO channel impulse response h[n,m] can be rep-

resented as a linear combination of arbitrary basis functions, as opposed to the complex

exponential basis functions in [18], which require the a priori estimation of frequency pa-

rameters.

We assume that the TV channel impulse response h[n,m] in (3.1) admits a linear

expansion in terms of a known set of P basis functions, that is

h[n,m] =
P∑
p=1

kp[m]φp[n], (3.13)
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where:

• kp[m] ∈ CL, for 1 ≤ p ≤ P , are the arbitrary expansion coefficient vectors of dimen-

sion L× 1

kp[m] = [k1,p[m], . . . , kL,p[m]]T (3.14)

and kl,p[m] is the lth entry of kp[m]. The latter can be interpreted as the channel

impulse response between pth virtual transmitters and the lth receiver of equivalent

TI MIMO system.

• φp[n] represents the pth basis function. All P basis functions are assumed to be lin-

early independent [19]. The collection of these P basis functions can be conveniently

represented as the P × 1 vector

Φ[n] = [φ1[n], · · · , φP [n]]T . (3.15)

It follows from (3.13) that the TV filtering matrix (3.9) can be expressed as

H[n] =
P∑
p=1

Hp[n], (3.16)

where Hp[n] is a LN × (N +M) matrix

Hp[n] =


kp[0]φp[n] · · · kp[M ]φp[n] 0 · · · 0

0 kp[0]φp[n− 1] · · · kp[M ]φp[n− 1] · · · 0
... · · · ...

0 · · · 0 kp[0]φp[n−N + 1] · · · kp[M ]φp[n−N + 1]

 .
(3.17)

In [19], based on the assumption that the channel impulse response will not vary signifi-

cantly over the duration N of a stacked data vector X[n], it is proposed to approximated
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(3.17) as

Hp[n] = φp[n]Kp, (3.18)

where

Kp =


kp[0] · · · kp[M ] 0 · · · 0

0 kp[0] · · · kp[M ] · · · 0
... · · · ...

0 · · · 0 kp[0] · · · kp[M ]

 . (3.19)

Therefore, the system model (3.6) can be expressed as

X[n] =
P∑
p=1

Kpφp[n]S[n] +W [n]. (3.20)

According to this expression, the original TV SIMO system with L outputs, is converted to

a TI MIMO system with P inputs, L outputs, and corresponding source signals φp[n]S[n]

for p ∈ {1, · · · , P}. This equivalent TI MIMO system can also be approximately described

as

x[n] =
M∑
m=0

K[m]t[n−m] + w[n], (3.21)

where the equivalent source signal t[n] is defined as the P × 1 vector

t[n] = [φ1[n]s[n], · · · , φP [n]s[n]]T , (3.22)

and the L× P matrix K[m] represents the impulse responses of the equivalent TI MIMO

channels, that is

K[m] = [k1[m] · · ·kP [m]]. (3.23)

Note that K[m] = 0 and kp[m] = 0 for m /∈ {0, · · · ,M}. Finally, the set of channel impulse

responses of the TI MIMO system can be compactly represented by

K = [K[0]T · · ·K[M ]T ]T , (3.24)
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which is a L(M + 1)× P matrix.

We can also represent the N successively received signal vectors of the equivalent TI

MIMO system as

X[n] = KT [n] +W [n], (3.25)

where P (N + M)× 1 vector T [n] is formed from N + M successive source signal samples

of the TI MIMO system, and is defined as

T [n] = S[n]⊗ Φ[n], (3.26)

where ⊗ denotes the Kronecker product. The equivalent filtering matrix K is the LN ×

P (N +M) matrix

K =


K[0] · · · K[M ] 0 · · · 0

0 K[0] · · · K[M ] · · · 0
... · · ·

0 · · · 0 K[0] · · · K[M ]

 . (3.27)

3.1.3 Estimation of the Equivalent TI MIMO System

Instead of estimating the channel impulse responses of the TV SIMO system defined in

(3.1), we will estimate the channel impulse responses of the equivalent TI MIMO system

described in (3.21); to this end we will use a blind subspace-based estimation algorithm. Let

Na denote the integration time, i.e. the required time interval over which the received signal

vector x[n] in (3.1) is collected to approximate its correlation matrix. In the traditional

application of subspace method for the estimation of TI channel, the integration time Na is

required to be large enough to limit the effect of noise and statistical fluctuations, but also

small enough to ensure that the unknown channel can be considered as time invariant. For

the TV channel, this assumption will be violated in general. However, it has been shown

in [19] that the classical subspace algorithm is applicable for the blind channel estimation
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of the TI MIMO system in (3.20), even if x[n] is not stationary over the integration time,

which allows us to use Na � N .

In this work, to satisfy the relationship (3.18), it is assumed that, over the duration of

the stacked vector X[n], the variations of the basis functions can be neglected [19], that is:

Φ[n1] ≈ Φ[n2], (3.28)

where any n1, n2 must satisfy

|n1 − n2| ≤ N. (3.29)

To identify the channel impulse response of the TV SIMO system defined in (3.3), we

firstly estimate the channel coefficient matrix K[m] of the equivalent TI MIMO system

(3.21) based on the received signal X[n], 0 ≤ n < Na, over the integration time. Secondly,

the results can be used to construct the estimated value of the TV SIMO channel impulse

response defined by means of expansion (3.13).

We define the sample correlation of the successive received signal vector X[n] of the

equivalent TI MIMO system over the integration time, 0 ≤ n < Na, as

R̂X(Na) =
1

Na

Na−1∑
n=0

X[n]X[n]H , (3.30)

which is an LN × LN matrix. Similarly, let

R̂T (Na) =
1

Na

Na−1∑
n=0

T [n]T [n]H , (3.31)

where T [n] is defined in (3.26). It follows from (3.25) that

E[R̂X(Na)] = KE[R̂T (Na)]KH + σ2
wILN . (3.32)

Under fairly general conditions, it is shown in [19] that matrix E[R̂T (Na)] is full rank
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P (N +M), which motivates the application of a subspace method as explained below.

Let E[R̂X(Na)] be represented in terms of its eigenvalues decomposition (EVD):

E[R̂X(Na)] = UΛUH , (3.33)

where Λ = diag(λ1 · · ·λLN) and λ1 ≥ · · · ≥ λLN represent the eigenvalues, U = [U1 · · ·ULN ]

represents the corresponding orthonormalized eigenvectors Ui for 1 ≤ i ≤ LN , each of which

is a LN × 1 vector, such that UHU = UUH = I. Assuming that LN > P (N + M), we

may write U = [US UN ] where US denotes the collection of the first P (N + M) columns

of the matrix U , and UN denotes the submatrix [UP (N+M)+1 . . . ULN ], which contains the

remaining columns. The corresponding eigenvalues can be characterized via

λ1 ≥ · · · ≥ λP (N+M) > σ2
w, (3.34)

λP (N+M) = · · · = λLN = σ2
w. (3.35)

Note that the columns of US span the signal subspace, defined as the range space of matrix

K (3.27), and the columns of UN span its orthogonal complement, the noise subspace.

Since the columns of K are orthogonal to all the column vectors of the noise subspace

matrix UN , we obtain

UH
i K = 0, all i ∈ I, (3.36)

where we define I = {P (N + M) + 1, · · · , LN} and Ui denotes the ith column of noise

subspace matrix UN . Hence, the channel transformation matrix K of the TI MIMO system

in (3.25) can be obtained (up to some ambiguity) from the solution of (3.36). In turn, this

allows the identification of the channel matrix K in (3.24).

In practice, the channel estimation algorithm is realized based on the available obser-

vations, i.e. the stacked received signal vector X[n] for 0 ≤ n < Na. Therefore, the EVD
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of (3.33) is approximated from the sample covariance matrix R̂X(Na) in (3.30):

R̂X(Na) = Û Λ̂ÛH , (3.37)

where Λ̂ is the estimated eigenvalue matrix, and Û is the corresponding estimated eigen-

vector matrix. Due to estimation, (3.36) is no longer satisfied exactly. Therefore, we solve

the equation (3.36) by the least squares method. That is, we search the estimate K̂ which

minimizes

min
K

∑
i∈I

‖ÛH
i K‖2, (3.38)

where according to (3.27), matrixK is a function of the search variableK = [K[0]T · · ·K[M ]T ]T .

To avoid the trivial zero solution, we enforce the additional condition

KKH = I. (3.39)

However, other types of constraints can be used [13]. Hence, after certain mathematical

manipulations, the estimated value of K can be expressed as

K̂ = arg min
KKH=I

tr[KHPK], (3.40)

where

P =
∑
i∈I

ÛiÛHi (3.41)

and Ûi is a filtering matrix constructed from the estimated eigenvectors Ûi in the following

way. Let

Ûi = [ÛT
i,1 · · · ÛT

i,N ]T , (3.42)

where Ûi,l ∈ CL×1, for l ∈ {1, · · · , N}. Hence, Ûi is constructed as the L(M +1)× (N +M)
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matrix

Ûi =


Ûi,1 · · · Ûi,N 0 · · · · · · 0

0 Ûi,1 · · · Ûi,N 0 · · · 0
... · · ·

0 · · · · · · 0 Ûi,1 · · · Ûi,N

 . (3.43)

Let the eigenvectors of P in (3.41) be given as the column of the L(M + 1) × L(M + 1)

matrix

V = [V1 · · · VL(M+1)], (3.44)

where the Vi are arranged by the decreasing order of their eigenvalues. The solution to the

constrained optimization problem of function (3.40), i.e. the estimated channel impulse

response matrix K̂, is given by

K̂ = [VL(M+1)−P+1 · · · VL(M+1)], (3.45)

which is a L(M + 1)× P matrix. For more clarity, (3.45) can be represented as

K̂ =


k̂1[0] · · · k̂P [0]

k̂1[1] · · · k̂P [1]
... · · · ...

k̂1[M ] · · · k̂P [M ]

 , (3.46)

where each vector k̂p[m] has dimension L × 1. Finally, the estimated channel impulse

response of the TV SIMO system defined in (3.13) can be constructed with help of (3.46),

that is

ĥ[n,m] =
P∑
p=1

k̂p[m]φp[n]. (3.47)

In the next section, we present a novel indirect blind equalization algorithm which is

based on the above estimation approach.
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3.2 Indirect Blind Channel Equalization

Since we now have knowledge of the channel impulse response of the TI MIMO system by

mean of the subspace estimation algorithm presented above, we may now proceed with the

discussion of the indirect blind channel equalizer. A ZF equalization algorithm is considered

in this section, similar to the work in [18], but no longer restricted to the set of complex

exponential basis functions.

3.2.1 Peak Distortion Equalization Criterion

When combining the structures in Fig. 2.2 and Fig. 2.3, the result can be considered as a

MIMO system with a linear equalizer. In the absence of the noise, i.e. w[n] = 0, the P ×P

impulse response of the overall system can be written as

Y[n] = G[n]T ∗H[n], (3.48)

where H[n] is the L× P impulse response matrix of the LTI MIMO channel in (2.46) and

G[n] is the L× P impulse response matrix of the equalizer. Hence, the equalized signal in

(2.64) can be represented as

eS[n] = Y[n] ∗ s[n]

=
∞∑

m=−∞

Y[m]s[n−m]

= Y[no]s[n− no] +
∞∑

m=−∞
m 6=no

Y[m]s[n−m], (3.49)

where no is the desired delay index of the overall system, and the second term of the right

hand side is the ISI term which causes a distortion.

The goal of the MIMO equalization is to design a filter such that the equalized signal

eS[n] can approximate the source signal s[n − no]. Consider the two terms on the right-
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hand side in (3.49). The ‘optimal’ processing would keep the first term to track s[n − no]

as accurately as possible, while pushing the ISI term as small as possible at the same time.

Because the norm of the ISI term satisfies the following inequality:

‖
∞∑

m=−∞
m 6=no

Y[m]s[n−m]‖ ≤
∞∑

m=−∞
m6=no

‖Y[m]‖F‖s[n−m]‖

≤
√
Pζ

∞∑
m=−∞
m6=no

‖Y[m]‖F (3.50)

where ‖ · ‖F denotes the Forbenius norm [23] and ζ ≥ 0 is an upper bound on the source

signal constellation values, that is |sp[n]| ≤ ζ far all p and n. Considering that Y[n] is

related to the equalizer matrix G[n] via (3.48), we may design the specific G[n] to force

Y[m] = 0; m 6= no,

Y[no] = α; otherwise, (3.51)

for some positive constant α > 0. This ZF approach is closely related to the peak distortion

equalization criterion for the MIMO system defined as [1]

ISI{G[n]} =

∑∞
n=−∞ ‖Y[n]‖2F −maxj,i,n{|yj,i[n]|2}

maxj,i,n{|yj,i[n]|2}
≥ 0, (3.52)

where yj,i[n] denotes the ijth entry of matrix Y[n] in (3.48). The solution to minimize the

peak distortion equalization criterion is discussed in [1], where it is shown that G[n] must

satisfy

G[n]T ∗H[n] = diag(α1δ[n− n1], · · · , αP δ[n− nP ]), (3.53)

where αp, for 1 ≤ p ≤ P , are constants, and np are integer delays. Equation (3.53)

generalizes (3.51) in that the desired delays for each source signal components, i.e. sj[n−nj],

are controlled separately. In this work, we use the solution of (3.53) to define the ZF
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equalizer.

Let H(z) denote the z-transform of the MIMO channel impulse response matrix H[n],

that is

H(z) =
∞∑
n=0

H[n]z−n, (3.54)

where H[n] is assumed to be causal. The following important result is proven in [24, pp.

295-296]:

“There exists a stable ZF equalizer G[n] for the MIMO system H[n], if and

only if matrix H(z) is full column rank for all |z| = 1.”

In general, the impulse response of the equalizer G[n] would be doubly infinite, i.e. extend-

ing from n = −∞ to +∞. However, it can be shown that a finite length equalizer exists if

H[n] is a finite impulse response, i.e. H[n] = 0 for n < 0 and n > L, where L > P .

In conclusion, there exist a FIR ZF equalizer, if the following conditions are satisfied:

A1: H[n] is MIMO FIR with L > P ;

A2: H(z) is full column rank for all |z| = 1.

3.2.2 Zero Forcing Equalizer of TI MIMO System

According to the equivalent TI MIMO system represented in (3.21), the coefficient matrix

K[m], for m ∈ {0, · · · ,M}, now provide a characterization of this MIMO FIR system.

Hence, we may design a ZF equalizer based on existing method for the TI MIMO system,

and through appropriate manipulations, obtain a corresponding equalizer for the original

TV SIMO system. This is the approach discussed below.

The TI MIMO system under consideration has P inputs, L outputs, with a channel

impulse response of length M + 1 or less for each sub-channel. In the z-domain, the

transfer function associated to the FIR matrix sequence K[m] can be expressed as

K(z) =
M∑
m=0

K[m]z−m. (3.55)
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We shall assume that K[m] satisfies the general assumption in A2. The impulse response

of the ZF equalizer can also be represented in terms of its transfer function in the z-domain

given by

G(z) =
D∑
d=0

G[d]z−d, (3.56)

where D + 1 is the length of the ZF equalizer, and G[d] denotes the dth matrix tap of the

impulse response in the time domain. It is convenient to express the L×P matrix G[d] in

terms of its columns as follows,

G[d] = [g1[d] · · ·gP [d]], (3.57)

where gp[d], for p ∈ {1, · · · , P}, is the L× 1 vector

gp[d] = [g1p[d], · · · , gLp[d]]T . (3.58)

In the z-domain, the system function of the TI MIMO system and corresponding ZF

equalizer satisfies

GT (z)K(z) = diag(α1z
−n1 , · · · , αP z−nP ). (3.59)

In this thesis, we focus on the special case where α1 = · · · = αP = 1 and n1 = · · · = nP = no.

The first condition accounts for a common scaling of the equalized signal, while the second

condition (identical delays) is possible if A2 is satisfied [18]. Therefore, we can have

GT (z)K(z) = z−noI. (3.60)

In the time domain, (3.59) can be expressed as

D∑
d=0

G[d]TK[n− d] = diag(δ(n− no), · · · , δ(n− no)), (3.61)
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where the domain of n can restricted to

n ∈ {0, · · · ,M +D}, (3.62)

since G[d] = 0 for d /∈ {0, · · · , D} and K[m] = 0 for m /∈ {0, · · · ,M}.

The right-hand side of (3.61) will be denoted by θn. The left-hand side of (3.61) can

be expanded as

D∑
d=0


gT1 [d]

...

gTP [d]

 [k1[n− d] · · ·kP [n− d]]

=


gT1 [D] · · · gT1 [0]

...
. . .

...

gTP [D] · · · gTP [0]




k1[n−D] · · · kP [n−D]
...

. . .
...

k1[n− 0] · · · kP [n− 0]

 . (3.63)

To simplify the presentation in the next chapter we shall use the following notations: the

first term of the right-hand side will be denoted by GD which is a P ×L(D+1) matrix; the

second term of the right-hand side will be denoted by Kn which is a L(D+ 1)×P matrix.

We know that the range of n in (3.63) is restricted by (3.62), so we may now formulate

the ZF equalization problem in the compact form

GDΓ = Θ, (3.64)

where we also define

Γ = [K0 · · ·KM+D], (3.65)

Θ = [θ0 · · · θM+D]. (3.66)

It should be noted that the delay of the equalizer, no, is usually chosen as the median of
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the value {0, · · · ,M +D}, which we denote as ξ. In practice, therefore, (3.66) reduces to

Θ = [0 · · · Iξ · · · 0], (3.67)

where the identity matrix is the median P × P block. Further, the desired ZF equalizer

can be expressed as

GD = ΘΓ†, (3.68)

where [·]† denotes the pseudo-inverse of a matrix argument [23] . It is important to point

out that for the equalization problem in (3.63) or equivalently (3.64), there are LP (D+ 1)

unknowns, i.e. the entries {glp[d]} of matrix G[d], and P 2(M+D+1) equations. In general,

to ensure that the non-homogeneous system (3.64) admits one (or more) solution, we must

ensure that it is underdetermined, i.e. that the number of equation does not exceed the

number of unknowns. That is, we require P 2(M + D + 1) ≤ LP (D + 1), which indicates

that

D + 1 ≥ PM

L− P
. (3.69)

Once the solution of the matrix GD has been obtained from (3.68), the impulse response

matrix G[d] of the ZF equalizer in (3.57) can be obtained by rearrangement of its elements.

In practice, the ZF equalizer can only be designed from the estimated value of the

channel impulse response of the equivalent TI MIMO system. First, the length of the

designed ZF equalizer has to satisfy (3.69). Second, Γ̂ is constructed based on (3.65), using

the estimated channel impulse responses K̂ defined in (3.46). Then, ĜD can be obtained

via

ĜD = ΘΓ̂†, (3.70)

which in turn leads to the impulse response Ĝ[d] of the designed equalizer via (3.63). It

will be convenient to express the latter in terms of its z-transform, i.e.

Ĝ(z) =
D∑
d=0

Ĝ[d]z−d, (3.71)
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where Ĝ[d] is the impulse response of the designed ZF equalizer. Hence, in the z-domain,

the equalized received signal is characterized by

ê(z) = Ĝ(z)T x̃(z), (3.72)

where x̃(z) is z-transform of x[n] defined in (3.21). Finally, the equalized noise free signal

of the equivalent TI MIMO system can be expressed as

êt(z) = Ĝ(z)TK(z)t̃(z), (3.73)

where t̃(z) =
∑

n t[n]z−n.
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Chapter 4

Determination of Ambiguity Matrix

As explained in [18, 19, 25], the equivalent TI MIMO FIR channel in (3.21) can be identified

up to an ambiguity matrix by using SOS. In the case of the TV SIMO system where the TV

channels can be expressed in terms of complex exponential (i.e. Fourier) basis functions,

an efficient technique has been developed in [18] to determine the ambiguity matrix up

to a scalar, and therefore construct the blind equalizer. In this chapter, we extend this

technique so that it can be applied to a TV SIMO system represented in terms of arbitrary

basis functions as in [19]. Finally, a complete ZF equalization algorithm is proposed for

this system model.

4.1 Reduction of the Ambiguity Matrix

It has been pointed out that not all of the TI MIMO FIR channels can be identified up

to an ambiguity unitary matrix [25]. Several necessary and sufficient conditions that must

be satisfied for this to be true are discussed in [18, 19, 25]. In this section, a set of three

necessary and sufficient conditions will be considered. We first recall the definition of the

transfer function K(z) associated to the FIR matrix K[m] from Section 3.2.2

K(z) =
M∑
m=0

K[m]z−m, (4.1)

2012/02/02
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where K[m] represents the impulse response of the equivalent TI MIMO channel, as defined

in (3.23). We also note that in the following discussion, we assume L > P .

Condition I: K(z) is irreducible [18, 19, 25].

Here, K(z), in (4.1), is an L × P polynomial matrix. The irreducibility condition for

K(z) indicates that there is no P × P polynomial matrix D(z) which has a non-constant

determinant, such that K(z) = K̂(z)D(z), where K̂(z) is an L × P polynomial matrix.

Also, it has been proven that K(z) is irreducible if and only if K(z) is full rank for any

z ∈ C [26]. In this case, the entries kl,p(z) of K(z) are coprime, where kl,p(z) denotes

the z-transfer functions of kl,p[m], and the rows of K(z) can be considered as coprime for

1 ≤ p ≤ P .

Condition II: K[M ] is full rank [19].

Here, K[M ] is an L × P matrix defined in (3.23) and rank(K[M ]) = P . Without loss

of generality, we can represent the full rank polynomial matrix K(z) as [27]

K(z) = N (z)M(z)−1, (4.2)

where M(z) is a full rank nonsingular minor of K(z) with size P × P , and N (z) is the

corresponding remainder. Because K(z) is irreducible, M(z) and N (z) have only right

common unimodular factors [27]. Also,M(z) represents the z-domain transfer function of

the P × P minor, denoted by M[m], of K[m] for m ∈ {0, · · · ,M}, and N (z) denotes the

transfer function of a corresponding remainder of K[m]. For later convenience, let J (z)

denotes

J (z) =
M∑
m=0

M[m]zm. (4.3)
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Note that J (z−1) =M(z). Therefore, the degree of det(J (z)) is expressed as

deg(det(J (z))) = MP. (4.4)

Based on a corollary from [27], the rank of the equivalent filtering matrix K in (3.27) can

be obtained as

rank(K) = NP + deg(det(J (z)))

= (N +M)P, (4.5)

where integer N has to satisfy N ≥ MP
L−P [27]. In short, if Condition II is true, K is a full

column rank matrix if N ≥ MP
L−P .

In conclusion, if the MIMO FIR channels satisfy the Conditions I and II, we consider

that they can be identified by using the SOS.

Condition III: R(K) = R(K̂) [13, 19].

Here, R(·) denotes the range space of its matrix argument [23], and the full rank ma-

trix K̂ is associated with the TI MIMO channel estimated value of K[m], i.e. K̂[m]. The

Condition III corresponds to a situation where the noise subspace has been estimated ex-

actly. In this case, R(K) = R(K̂), which indicates that

K = K̂Ψ, (4.6)

where Ψ is a non-singular (M + N)P × (M + N)P matrix. Since the filtering matrix K

and K̂ are full rank matrices based on the Condition II, Ψ can in turn be considered as a

full rank matrix. Ψ can be partitioned into (N +M)2 sub-matrices Ψi,j, each one being a

P × P square matrix, for i, j ∈ {1, · · · ,M +N}.

To obtain the relationship between K[m] and K̂[m] from the Condition III, first we will
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analyze (4.6) column-wise from the right to the left. The last P columns of K in (4.6) can

be expressed as 
0
...

0

K[M ]

 =


ς1

0
...

0

ς2 K̂[M ]




Ψ1,M+N

Ψ2,M+N

...

ΨM+N,M+N

 , (4.7)

where ςi, for i = 1, 2, are sub-matrices of K̂. Since K̂ is a full rank matrix, ς1 can be

considered as a full rank matrix. Therefore, comparing the left-hand side with the product

on the right-hand side of (4.7), we obtain

Ψi,M+N = 0 for i < M +N, (4.8)

K[M ] = K̂[M ]ΨM+N,M+N . (4.9)

Then, each subset of P adjacent columns sub-matrix of matrix K in (4.6) is analyzed by

using the above method from right to left, up to the first P columns of K. In this way we

show that

Ψi,j = 0 for all i < j, (4.10)

K[m] = K̂[m]Ψm+N,m+N . (4.11)

Next, we apply the same approach but beginning with the first P columns up to the

last P columns of matrix K, i.e. from the left to the right. Proceeding in this way, we

obtain

Ψi,j = 0 for all i > j. (4.12)

Therefore, from(4.10) and (4.12), we can conclude that

Ψi,j 6= 0 if and only if i = j. (4.13)
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Also, due to the special structure of matrix K̂, K, and Ψ, we can define a full rank matrix

A, such that

Ψi,i = A i ∈ {1, · · · ,M +N}. (4.14)

Now, we can express (4.6) as

K = K̂(A⊗ IM+N). (4.15)

where ⊗ denotes a Kronecker product [23].

If we further assume that K̂ satisfies the normalization condition for noise-free SOS

approach, that is

KKH = K̂K̂H , (4.16)

then, we can have

I(M+N)P = (A⊗ IM+N)(A⊗ IM+N)H , (4.17)

which in turn implies

AAH = IP . (4.18)

Therefore, the full rank matrixA, so-called the ambiguity matrix, is proven to be an unitary

matrix and we may write

K(z) = K̂(z)A, (4.19)

K̂(z) = K(z)A−1. (4.20)

In short, Condition III is true if and only if K[m] and K̂[m] are proportional [13, 19].

Consequently, if the MIMO FIR channel satisfies the above three conditions, it can be

identified up to an ambiguity unitary matrix. In this chapter, the TI MIMO system is

assumed to follow the Conditions I, II, and III.
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4.2 Approach for the Determination of the Ambiguity Matrix

Generally, if the ambiguity matrix A is known, the source signal t[n] in (3.21), for the

equivalent TI MIMO system, can be constructed without using higher order statistics.

Furthermore, the source signal s[n] of the TV SIMO system would be recovered by inverting

(3.22).

In the equivalent TI MIMO system, the “ambiguous” equalizer Ĝ[d] is obtained based

on the channel estimate K̂[m], so that Ĝ(z) and K̂(z) satisfy the relation (3.60). Therefore,

we can have

Ĝ(z)T K̂(z) = z−noIP . (4.21)

Since Condition III ensures that the ambiguity matrix A is unitary, we may further ma-

nipulate (3.73) as follows

êt(z) =ĜT (z)K(z)t̃(z)

=ĜT (z)K(z)A−1At̃(z)

=Ĝ(z)T K̂(z)At̃(z)

=z−noAt̃(z). (4.22)

Now, multiplying both sides of (4.22) by A−1, we obtain

A−1ĜT (z)K(z)t(z) = z−no t̃(z). (4.23)

Considering (3.60) and (4.22), we have the following relation between the ambiguous equal-

izer Ĝ[d] and the true, i.e. desired equalizer G[d]

G(z) = Ĝ(z)A−T . (4.24)

Based on the results of (4.22) and (3.22), and setting no = 0 for simplicity, we can express
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the equalized signal of the TI MIMO system as

êt[n] = AΦ[n]s[n], (4.25)

where s[n] is the desired source signal of the TV SIMO system. The P × P ambiguity

matrix A can be expressed as

A = [A1 · · · AP ], (4.26)

where Ap, for 1 ≤ p ≤ P , is a P × 1 vector defined as

Ap = [A1p · · · APp]T . (4.27)

To recover s[n], we may construct a linear system

s[n]−1êt[n]−AΦ[n] = 0. (4.28)

For more convenience, we expand (4.28) as

s[n]−1


êt1[n]

...

êtP [n]

−

A11φ1[n] + · · ·+A1PφP [n]

...

AP1φ1[n] + · · ·+APPφP [n]

 = 0, (4.29)

where there are P equations and P 2+1 unknown parameters, which are the entries of matrix

A and source signal symbol s[n]. At a specific discrete-time n, P < P 2 + 1 and (4.29)

lead to an underdetermined system, for which an unique solution can not be obtained.

However, a linear overdetermined system can be constructed by considering a group of

multiple equalized symbols, so that unique solution can be found. Specifically, we consider

Ne consecutive equalized symbols with time index {n, n + 1, · · · , n + (Ne − 1)}. We may
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then construct an overdetermined system, that is
φ1[n]Ip · · · φP [n]IP êt[n] 0 · · · 0

φ1[n+ 1]Ip · · · φP [n+ 1]IP 0 êt[n+ 1]
...

...
...

...
...

. . . 0

φ1[n+ (Ne − 1)]Ip · · · φP [n+ (Ne − 1)]IP 0 · · · 0 êt[n+ (Ne − 1)]

 ·


A1

...

AP
−s−1[n]

...

−s−1[n+ (Ne − 1)]


= 0,

(4.30)

where there are now PNe equations and P 2 + Ne unknown parameters. To keep (4.30) as

an overdetermined system, we restrict Ne ≥ P 2

P−1 . In practice, the least squares method

is introduced to approximate A. If the bases function are exponential, the ambiguity is

determined up to a scalar [18].

4.3 Summary of the Proposed Subspace-based Blind

Equalization Algorithm

Up to this point, we have studied the subspace-based blind channel identification for TV

SIMO system under the SOS framework, designed the corresponding direct ZF equalizer,

and proposed an approach for determining the remaining ambiguity matrix. In this section,

our proposed algorithm for subspace-based blind channel equalization of TV SIMO system

is summarized.

In Section 3.1, it has been proposed that the TV SIMO system can be described by
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an equivalent TI MIMO system in (3.21). To this end, TV channels were expanded as

linear combinations of a set of unknown coefficients and known basis functions in (3.13).

Furthermore, the subspace method was exploited to identify the channel impulse responses

of the equivalent TI MIMO system, under the assumptions that Conditions I and II are

satisfied. In the equivalent TI MIMO system, the vector X[n] consists of N successive

received signal vectors as in (3.5). The matrices that span the signal and noise subspaces

are obtained by using the eigenvalue decomposition of the autocorrelation matrix of X[n].

Then, the TI MIMO channels are identified in(3.40)-(3.45) by using the orthogonality

between the signal and noise subspaces. Finally, the TV SIMO channel impulse responses

can be identified with the help of (3.13). This subspace-based blind channel identification

algorithm for TV SIMO system is summarized in Table 4.1. In the model for the proposed

algorithm, L denotes the number of receivers, P denotes the the number of transmitters in

equivalent MIMO system, which is equal to the number of the basis functions in the SIMO

system, M denotes the number of delays, and i ∈ {P (N + M) + 1, · · · , LN}. The label

← means that the left-hand side expression is the result of deriving or manipulating the

right-hand side expression.

l
Table 4.1 Subspace-based blind channel identification algorithm

for TV SIMO FIR channels

Initialize the algorithm by setting

L > P

LN > (N +M)

Conditions I and II

X[n]← x[n] (3.5)

R̂X(Na) = 1
Na

∑Na−1
n=0 X[n]X[n]H (3.30)

Ûi ← EVD of R̂X(Na) (3.37)

Ûi ← Ûi (3.43)

P =
∑

i ÛiÛHi (3.41)

K̂[m]← EVD of P (3.45)

ĥ[n,m]← K̂[m] (3.47)

Based on the result of the subspace-based blind channel identification, a ZF equalizer
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is proposed for the TI MIMO system. To design this filter, the length of the equalizer

is decided first from (3.69). After that, matrix Γ̂ is constructed as (3.65) based on the

results of the channel estimation, i.e. using the estimation matrix K̂[m] resulting from the

application of the algorithm in Table 4.1, and then matrix Θ is constructed as in (3.67).

Finally, the impulse response of the ZF equalizer, an FIR filer, is obtained from (3.71). The

ZF equalization algorithm for the equivalent TI MIMO system is summarized in Table 4.2.

Table 4.2 Summary of ZF equalizer

Initialize the algorithm by setting:

K̂[m] = estimated expansion coefficients

D + 1 ≥ PM
L−P

Γ̂ = [K̂0 · · · K̂M+D] (3.65)

Θ = [0 · · · Ip · · · 0] (3.67)

ĜD = ΘΓ̂† (3.70)

Ĝ[n]← ĜD (3.71)

Based on previous works, the MIMO FIR channel can be identified up to an ambiguity

matrix if Condition III is satisfied. To determine the ambiguity matrix for the TV SIMO

system, the equalized signal is obtained by filtering the received signal with the designed

FIR filter, which is the ZF equalizer obtained from Table 4.2. Then, we may construct the

overdetermined system in (4.30), so that the least squares method is exploited to solve for

the columns of ambiguity matrix A. This approach for the determination of the ambiguity

matrix is summarized in Table 4.3. Note that Ne is the numbers of equations in the

overdetermined system.
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Table 4.3 Summary of ambiguity matrix approach

Initialize the algorithm by setting:

Ĝ[n]

Ne ≥ P 2

P−1
Condition III

ê[n] = Ĝ[n] ∗ x[n] (3.72)

Using least squares technique to solve

s[n]−1ê[n]−AΦ[n] = 0, 0 ≤ n < Ne

for the ambiguity matrix A
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Chapter 5

Simulation Study

In the previous chapters, we have presented the overall approach and analysis for developing

a blind subspace-based channel equalization algorithm for a SIMO system with arbitrary

TV FIR channels. This includes building an equivalent TI MIMO system for the TV SIMO

system, applying a blind subspace-based channel estimation algorithm, developing a ZF

equalizer and determining ambiguity matrix of the whole system. In this chapter, the results

of numerical simulation experiments will be presented to illustrate the performance of the

TV SIMO channel estimation algorithm, as well as the proposed equalization algorithm

and ambiguity matrix determination approach.

5.1 Methodology

To measure the performance of the proposed algorithm, a testing platform is designed first

for the purpose of Monte Carlo simulation. The source signal s[n] is a sequence of 16 QAM

symbols which is created by constellating independent discrete complex random variables.

We shape s[n] to be zero mean and with variance σ2
s . The additive noise sequences for each

of the channels are obtained from independent complex Gaussian random variables with

zero mean and variance σ2
n.

The TV SIMO system is comprised of L = 4 receivers. The number of path delays for

2012/02/02
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the SIMO channel is 5, which means that M = 4. The impulse response of each channel is

represented as a linear combination of the two scalar basis functions φ1[n] and φ2[n] with

corresponding coefficients expansion vectors k1[m] and k2[m] ∈ C4. That is, with reference

to model equation (3.13), we have P = 2 and

h[n,m] = k1[m]φ1[n] + k2[m]φ2[n]. (5.1)

In our experiments, we consider linearly varying channel impulse responses and the basis

functions are therefore chosen as

φ1[n] = 1, (5.2)

φ2[n] = α(n− Na − 1

2
), (5.3)

for 0 ≤ n < Na, where real parameter α controls how fast the channel would change. For

each simulation run, the predetermined expansion coefficients vectors k1[m] and k2[m] are

generated as independent complex Gaussian random variables with zero mean, properly

sealed such that ‖K‖ = 1, where the definition of matrix K is given in (3.24). For a

predetermined TV SIMO system, the SNR with respect to the given choice of K is defined

to be the ratio of expected received signal power over expected noise power, further averaged

over the integration time Na. That is

SNR =
1

Na

Na−1∑
n=0

E[‖x[n]−w[n]‖]2

E‖w[n]‖2
=

σ2
s

Lσ2
n

tr[KΥKH ], (5.4)

where tr denotes the trace of a matrix, and

Υ =
1

Na

Na−1∑
n=0

Φ[n]Φ[n]H . (5.5)

In practice, we adjust the parameters σ2
s to control the SNR value in the simulation process.
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To measure the performance of the blind subspace channel estimation, the mean square

error (MSE) for the TV SIMO system is defined as

MSEdB = 10 log10

1

L(M + 1)
tr(‖ĥ[n,m]− h[n,m]‖Υ‖ĥ[n,m]− h[n,m]‖H), (5.6)

where ĥ[n,m] denotes the estimated channel impulse response of the TV SIMO system

based on the estimated coefficient matrix K̂.

To measure the performance of the ZF equalizer, we chose the length of the equalizer

based on equation (3.69) to be D + 1 ≥ PM
L−P = 4, i.e. we set D = 3. Mathematically, the

overall impulse response of the cascaded TI MIMO system and equalizer can be written as

y[n] =
D∑
d=0

G[d]TK[n− d]. (5.7)

Therefore, the ISI measure can be defined for the TV SIMO system as

ISI =

∑Na−1
n=0 ‖y[n]‖2F −maxi,j,n{|yi,j[n]|2}

maxi,j,n{|yi,j[n]|2}
, (5.8)

where where yi,j[n] denotes the ijth entry of matrix y[n]. Also, to measure the performance

of the overall algorithm, specially ambiguity matrix approach, the symbol error rate (SER)

is defined as the ratio of the number of error symbols with Na.

5.2 Results

5.2.1 Channel Estimation

In both theory and simulation works, the estimation of channel expansion coefficients of the

TV SIMO system plays a crucial role. These expansion coefficients, which are used to define

the impulse response matrix of the equivalent TI MIMO system (3.21), can be exploited

to construct the channel impulse response of the TV SIMO system via (3.13). Fig.5.1
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shows that the true and estimated values of expansion coefficients of the 2nd basis function

associated with the 3rd receiver, that is kl,p[m] with p = 2, l = 3 and m ∈ {0, · · · , 4}. The

main parameters values here are SNR=20dB Na = 1000, and α = 0.001. It can been seen

that the estimated values of the expansion coefficients remain very close to the true values.
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Fig. 5.1 True and estimated values of complex expansion coefficients for the
2nd basis function associated with the 3rd receiver (SNR=20dB).

In Fig.5.2, we show the MSE of blind subspace channel estimation as a function of

the SNR for different rate of change of the time varying channels, as specified by α ∈
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{0.001, 0.01, 0.1}. Again, the integration time is set to Na = 1000. The results show that

the blind subspace estimation algorithm has a better performance as value of α decreases.

That is, when the rate of change of TV SIMO is slow, a better performance can be expected

from the estimation algorithm.
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Fig. 5.2 Channel estimation MSE versus SNR for different channel rate of
change α=0.1, 0.01, and 0.001.

In Fig.5.3, we show the MSE as a function of the integration timeNa for given SNR=10dB,

20dB, and 30dB. Here, the results show that the use of longer integration time can lead to

a better performance for the blind subspace-based estimation algorithm.
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Fig. 5.3 Channel estimation MSE versus integration time Na for different
SNR=10dB, 20dB and 30dB.
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5.2.2 Equalization

In these experiments, the source signal is recovered by passing the received signal through

the designed FIR ZF equalizer. Fig. 5.4 displays the received signal samples before and

after equalization. The simulation parameters are set as follows: Na = 1000, SNR=20dB

and α = 0.01. We notes that despite the time-varying nature of the channel, the designed

ZF equalizer is quite efficient in restoring the original 16-QAM symbol constellation.
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Fig. 5.4 Distribution of the received and equalized signal samples (Na =
1000, α = 0.01, and SNR=20dB).

In Fig. 5.5, SER is plotted as the function of integration time Na for different SNR,
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i.e. 10dB, 20dB and 30dB and for α = 0.01. In Fig.5.6, the ISI measure is investigated
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Fig. 5.5 SER versus Na of the blind subspace equalization.

as a function of SNR for different integration times, i.e. Na= 500, 1000 and 2000, and for

α = 0.01. Here, we note SER and ISI of the equalized symbols can be improved by using

longer integration time, or choosing a strong signal strength, i.e. higher SNR.

Fig.5.7 shows distribution of equalized symbols with and without ambiguity matrix

determination. The system parameters are Na = 1000, SNR=20dB and α = 0.01. We

note the use of the ambiguity matrix obtained with the algorithm in Table 4.3 revises

the distribution of the equalized signal. In short, the performances of estimation and
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Fig. 5.6 ISI versus SRN of the blind subspace equalization.
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equalization are improved as well as the longer integration time.
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Fig. 5.7 Distribution of the equalized symbols with and without an ambi-
guity matrix.

Finally, the SER versus SNR is shown in Fig. 5.8. It is seen that the use of the properly

determined ambiguity matrix makes it possible to decode the transmitted source symbols.
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Fig. 5.8 SER versus SNR of the blind subspace equalization.
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Chapter 6

Summary and Conclusion

In this thesis, we have studied the blind subspace channel estimation of multiple TV SIMO

channels without a priori estimation of frequency parameters. This was made possible by

the use of a linear expansion in terms of arbitrary, albeit slowly-varying basis functions.

Based on its results, we have developed a ZF equalizer for the TV SIMO system, and a

novel approach was presented to determine the ambiguity matrix, the later being used to

control the phase shift and scaling distortion in the detected symbol constellation. Here, we

summarize the main ideas and results obtained in this thesis and present our conclusions.

6.1 Summary of Thesis

In Chapter 2, the classical subspace approach for the blind estimation of multi-path (FIR)

TI SIMO channel was reviewed. In this approach, the orthogonality between the signal and

noise spaces is exploited to identify the channel impulse response under the SOS framework.

The basic principles of blind channel equalization for both SISO and MIMO systems were

then exposed.

In Chapter 3, based on the work [19], an equivalent TI MIMO system was introduced as

a substitute to the TV SIMO system, by expanding the TV channels as linear combinations

of arbitrary basis functions with expansion coefficient vectors associated to the different

2012/02/02
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multi-path lags. The relationship between the TV SIMO system and the equivalent TI

MIMO system was investigated. The unknown expansion coefficient vectors were identified

by the application of a subspace method to the equivalent TI MIMO system. Then, a

indirect ZF equalization approach was proposed to recover the received signal symbols

based on the identified TV channel impulse responses.

In Chapter 4, the necessary and sufficient conditions were investigated so that the TI

MIMO FIR channel can be identified up to an ambiguity matrix under the SOS framework.

Following this, an approach for determining the ambiguity matrix was proposed by solving

an overdetermined system using the LS method.

In Chapter 5, the simulation methodology was introduced. Then, the simulation results

were presented and analyzed for three tasks of blind channel identification, ZF channel

equalization and ambiguity matrix determination. The results so obtained provided good

support for the theoretical algorithm derivation.

6.2 Conclusion

To deal with the time variability of impulse response in SIMO system, the TV vectors chan-

nel was represented as linear combination of known, but arbitrary basis functions associated

with time varying property of channels, with the corresponding unknown expansion coeffi-

cient vectors associated with different multi-path delays. The indirect ZF equalization was

developed from the SOS-based expansion coefficients identification. The difference between

the new algorithm and other proposed linear equalization algorithms is that in the latter,

the basis functions must be of the complex type exponential, while here this restriction

does not apply, and more general types of TV models for the channel impulse response can

be used.

The simulation results show that the proposed blind channel equalization ZF algorithm

can effectively recover the transmitted source signal symbols. In particular, the proposed

approach for the determination of the ambiguity matrix has been shown to be effective in
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removing phase shift and other distortion, and restoring the original signal constellation

in the equalized output. The use of the proposed blind ZF equalization with ambiguity

matrix determination helps to significantly improve the SER of the wireless system, so that

adequate link quality can be maintained over TV SIMO channels.

Future possible work includes the analytical characterization of the detection perfor-

mance of the equalized output and the extension of the proposed indirect equalization

approach into a direct one, i.e. in which the TV SIMO channel parameters need not to be

estimated explicitly.
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