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Abstract

Diffusion least-mean squares (DLMS) algorithms can serve as efficient and powerful learn-

ing mechanisms for solving distributed estimation and optimization problems over networks

in response to streaming data originating from different locations in real-time. Owing to

their decentralized processing structures, simplicity of implementation and adaptive learn-

ing capabilities, they are particularly well-suited for applications to multi-agent networks

where the network energy and radio resources are limited. In this dissertation, we propose

new DLMS algorithms with application to sensor networks and examine their performance

under realistic environmental conditions. Within this framework, the contributions of the

dissertation can be divided into three main parts.

In the first part of the dissertation, we propose novel DLMS strategies to estimate pa-

rameters of a physical phenomenon that vary over spatial domain. In sensor networks,

there are various applications that involve physical phenomena featuring space-varying pa-

rameters in their mathematical models, e.g., localization of distributed sources in dynamic

systems or the modeling of diffusion phenomena in inhomogeneous media. One notable

complication that arises in the context of space-varying parameters estimation is that the

covariance matrices of the regression data over the network can become rank-deficient. This

condition influences the learning behavior of the network and causes the estimates to be-

come biased. In our analysis, we elaborate on how the judicious use of network combination

matrices can help alleviate this difficulty.

In the second part, we examine the performance of DLMS algorithms when the input

regression data at each node over the network are noisy. Under this condition, we show that

the estimates obtained by DLMS strategies will be biased. We address this issue by relying

on a bias-elimination technique and formulating an optimization problem that utilizes the

noise variance information of the regression data. By solving this optimization problem,

we arrive at novel DLMS algorithms called bias-compensated DLMS strategies that are

capable of obtaining unbiased estimates of the unknown parameters over the network.

We also derive a recursive adaptive approach by which each node, besides the standard

adaptation layer to solve the desired distributed estimation, runs a second layer estimation

to locally find their regression noise variances over time.

Within the last part of the dissertation, we analyze the performance of DLMS strate-

gies over wireless sensor networks under fading conditions. Wireless channel impairments,
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including path loss and fading, can distort the exchanged data between nodes and, sub-

sequently, degrade the performance of DLMS algorithms and cause instability. To resolve

this issue, we propose an extended version of these algorithms that incorporate equalization

coefficients in their combination update to reverse the effects of fading and path loss. We

also analyze the impact of channel estimation error on the performance of the proposed

algorithms and obtain conditions that guarantee the network stability in the mean and

mean-square error sense. To further improve the performance of the proposed algorithms,

we formulate a convex optimization problem from an upper-bound approximation of the

network mean-square deviation (MSD) in order to find the optimal combination weights of

the network that lead to lower estimation errors.

Throughout the thesis, all the new algorithms have been fully evaluated under con-

trolled and realistic simulation environment and demonstrated superior performance when

compared to benchmark algorithms and approaches from the existing literature.
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Sommaire

Les algorithmes de diffusion à erreur quadratique moyenne minimale (DLMS) peuvent

servir de mécanismes d’apprentissage efficaces et puissants pour la solution en temps réel de

problèmes destimation et d’optimisation distribuée dans les réseaux de capteurs, en réponse

aux données en continu émanant d’une pluralité d’endroits. En raison de leur structure

de traitement décentralisée, leur facilité de mise en æuvre et leur capacité d’apprentissage

adaptif, ils sont particulièrement bien adaptés pour les applications réseaux dans lesquelles

de multiples agents échangent des informations par liaisons sans fil, et où l’énergie et les

ressources radio des agents sont limitées. Dans cette thèse, nous présentons de nouveaux

algorithmes DLMS qui s’appliquent aux réseaux de capteurs et examinons leurs efficacités

dans des conditions d’utilisation pratiques avec variabilité temporelle de l’environnement

radio. Nos contributions se divisent en trois parties.

Dans la première partie, nous proposons de nouvelles stratégies DLMS pour l’estimation

des paramètres d’un phénomène physique, lorsque ceux-ci varient dans le domaine spatial.

Dans les réseaux de capteurs, il existe plusieurs applications dans lesquelles les phénomènes

physiques en cause font intervenir des paramètres variant dans leur modélisation, comme

par exemple la localisation des sources distribuées dans les systèmes dynamiques, ou la

modélisation des phénomènes de diffusion dans les médias inhomogènes. Une complication

notable se pose toutefois dans le cadre de l’estimation de tels paramètres: en effet, les ma-

trices de covariance de données de régression sur le réseau peuvent présenter une déficience

de rang. Cette condition influe sur le comportement d’apprentissage et fait en sorte que

les estimateurs peuvent devenir biaisés. Dans notre analyse, nous nous intéresserons à

l’utilisation judicieuse des matrices de combinaison de réseau afin de palier à cette diffi-

culté.

Dans la deuxième partie de cette dissertation, nous examinons la performance des al-

gorithmes DLMS lorsque les données de régression á chacun des nœuds du réseau sont

bruitées. Nous démontrons qu’en présence de telles erreurs, les estimateurs obtenues par

stratégies DLMS seront biaisés et donc peu fiables. Afin d’aborder cette question, nous pro-

posons une technique d’élimination de biais et formulons un problème d’optimisation qui

utilise les informations sur la variance du bruit des données de régression de tous les agents.

Par la solution de ce problème d’optimisation, nous arrivons á de nouveaux algorithmes

DLMS, appelés algorithmes DLMS á compensation de biais, qui permettent d’obtenir une
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estimation non biaisée des paramètres inconnus dans le réseau. Notre analyse montre que

sous certaines conditions, les algorithmes proposés sont stables au sens de la moyenne et

de l’erreur quadratique moyenne sens, et que les estimateurs convergent asymptotiquement

vers leurs vraies valeurs.

Dans la dernière partie, nous analysons la performance des stratégies DLMS dans les

réseaux de capteurs sans fil sous des conditions d’évanouissement. Les imperfections du

canal, telles l’affaiblissement de trajet et les évanouissements, peuvent fausser les données

échangées entre les nœuds et, conséquemment, dégrader la performance des algorithmes

DLMS et causer leur instabilité. Afin de pallier aux imperfections du canal sans fil et ainsi

résoudre ce problème, nous proposons une extension des algorithmes DLMS qui intègre des

coefficients d’égalisation dans le processus de mise á jour par diffusion. Nous analysons

l’impact des erreurs d’estimation sur la performance des algorithmes proposés et obtenons

des conditions qui garantissent la stabilité du réseau au sens de la moyenne et de l’erreur

quadratique moyenne. Afin d’améliorer la performance des nouveaux algorithmes, nous

formulons un problème d’optimisation convexe, á partir d’une approximation par borne

supérieure sur la déviation quadratique moyenne (MSD), dans le but de déterminer les

matrices de combinaison de réseau optimales, permettant ainsi de minimiser les erreurs

d’estimation des nouveaux algorithmes.
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1

Chapter 1

Introduction

A wireless sensor network (WSN) consists of an array of sensor nodes distributed over a

geographical area to cooperatively monitor physical phenomena through noisy observation

processes. The nodes, which we also interchangeably call agents, consist of at least three

main components : processing units, sensing devices and a wireless transceiver. In more

advance sensor networks, nodes are also equipped with actuators to take action according

to the command issued from a control unit. Initially, WSN were developed for military ap-

plications, including localization and battlefield surveillance. Nowadays they are becoming

ubiquitous in several areas in industrial monitoring and consumer applications, including

intelligent transportation, health care, precision agriculture, and smart spaces [1, 2].

By design, inexpensive sensor nodes are assumed to have limited computational capa-

bilities, low battery power, and a low-cost radio transceiver. These constraints entail a

number of practical challenges in the realization of sensor networks: a) design of computa-

tionally simple algorithms that consume low amount of energy and require a small number

of data transmissions to perform a processing task, b) scalability of the algorithms must

be considered when the size of the network is intrinsically large due to the nature of an

application, c) robustness against frequent node failures, changes in link connectivity status

and variation in the network topology, d) efficient data aggregation techniques to cope with

traffic congestion in the event when the network is flooded with large number of messages

from nodes, and e) robust communication mechanisms to deal with the increased possibil-

ity of packet collisions and congestions for nodes operating in closely spaced transmission

ranges.
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In this dissertation, we address some of these challenges that fall within the context

of distributed adaptive signal processing and parameter estimation in sensor networks. In

what follows, we first provide an introduction to the two well-known signal processing

approaches for parameter estimation and optimization in sensor networks and discuss their

positions with respect to the above issues. We then review the prior studies in the field,

and state the detail objectives and contributions of the dissertation. Finally, we present

the organization of the dissertation and introduce notations used in the mathematical

development.

1.1 Distributed Algorithms

From data traffic point of view, there are two different approaches that can be imple-

mented to perform a signal processing task over sensor networks, namely, centralized and

distributed techniques. In the former, nodes send their measurements to a central unit

known as a fusion center for further processing and storage, whereas in the latter, the

measured data are locally exchanged and processed within the network. In a centralized

approach, transmitting the measured data to the fusion center may cause network conges-

tion and results in a waste of communication resources and power. In this approach, any

malfunction in the fusion center can lead to a drastic network breakdown. In addition,

the fusion center requires relatively high computation power to process the large volume

of collected data. In comparison, in a distributed signal processing approach, the network

computational load is divided between nodes and no centralized infrastructure is required.

In addition, since in distributed approaches, data are exchanged locally (e.g., through sin-

gle or multi-hop hop data transmission technique), a communication bottleneck may not

be created over the network [3]. The single or multi-hop data transmission also reduces

the network energy consumption because the power loss of wireless transmissions increases

super-linearly with respect to the propagation distance. These advantages encourage the

use of distributed signal processing approaches for various applications in sensor networks.

Over the past few years, there has been extensive research on distributed signal pro-

cessing, as it holds the promise of overcoming the issues of bandwidth scarcity and limited

energy budget in dense sensor networks. Within this framework, in-network distributed

adaptive signal processing is emerging as a key enabling technology to support the im-

plementation of flexible cooperative learning and information processing schemes across a
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set of geographically distributed nodes, with sensing, computing and communications ca-

pabilities. Distributed adaptive algorithms (DAA) are particularly useful for the solution

of optimization problems and parameter estimation over networks, where the underlying

signal statistics are unknown or time-varying [4]. Clearly, adaptivity helps the network to

track variations of the desired signal parameters as new measurements become available.

More importantly, as a result of distributed adaptive processing, a sensor network becomes

robust against changes in the environment conditions and network topology. In this thesis,

we study and develop distributed adaptive strategies, of diffusion type, for monitoring time-

varying physical phenomena in sensor networks under real-world constraints and changes

in environmental conditions.

1.2 Related Works

DAA can be classified as the stochastic version of decentralized optimization that are

well-investigated in mathematics and computer science [5]. These algorithms are useful for

solving estimation problems in real-time over multi-agent networks where the measurement

data are random and keep streaming over time. In communication and signal processing

fields, the topic of distributed adaptation is a growing research area and a promising tech-

nique to handle network scalability and sensor limited energy issues. Recently, DAA have

been used to model several instances of organized and complex behavior encountered in

nature, such as bird flight formations [6], fish schooling [7], bee swarming, and bacteria

motility [8]. In addition, studies have revealed that these algorithms are useful in solving

various optimization problems in communication, including, data detection and estimation,

localization, and link rate control [9–14].

There are several classes of DAA algorithms for optimization and parameter estimation

over networks, including incremental methods [5,15–17], consensus methods [18–23,23–26],

and diffusion methods [27–33]. Initially, the incremental methods have been proposed to

solve distributed least squares problems [5]. Later, a general class of these algorithms has

been investigated for in-network processing to reduce the required energy and bandwidth

by the nodes over networks [16]. Recently, incremental adaptive algorithms based on least

mean square (LMS) and recursive least squares (RLS) techniques have been reported for

real-time parameter estimation and tracking over networks [17, 34, 35]. Although the in-

cremental adaptive algorithms function well for low-energy profile networks, they require
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setting a cyclic path over the nodes, which is generally an NP-hard problem; these tech-

niques are also sensitive to link failure.

Diffusion adaptive strategies have been introduced in [27,36,37] to reduce the risk of net-

work break-down due to link failure and to improve the scalability of the algorithms in large

size networks. In diffusion strategies, nodes communicate with their immediate neighbors

within a single hop distance, which relaxes the requirement of setting a Hamiltonian loop

over the network. Consensus techniques disseminate the data through the network similar

to diffusion strategies. However, they require doubly-stochastic combination matrices and,

when used in the context of adaptation with constant step-sizes, can lead to unstable be-

havior at the network level even if all individual nodes are able to solve the inference task

in a stable manner [30]. In this dissertation, we will focus on diffusion strategies because

they have been shown to be more robust and lead to a stable behavior regardless of the

underlying topology, even when some of the underlying nodes are unstable [30]. Moreover,

diffusion strategies have a stabilizing effect and endow networks with real-time adaptation

and learning abilities.

In previous studies, diffusion strategies were concerned with estimating a parameter vec-

tor that is assumed to be invariant over the spatial domain. For this type of applications, it

is assumed that the nodes sense physical phenomena featuring parameters that are identical

over the network. There are, however, various important applications in sensor networks

where the underlying system parameters vary over space, such as in monitoring fluid flow

in underground porous media [38], tracking population dispersal in ecology [39], and in

the modeling of diffusion phenomena in inhomogeneous media [40]. In these applications,

the space-variant parameters being estimated correspond to spatially discretized versions

of the space-dependent coefficients of partial differential equations (PDEs) describing the

phenomena of interest. The estimation of spatially-varying parameters in PDEs has been

addressed in many previous studies, including [41–43]. However, in these works and sim-

ilar references on the topic, the solutions typically rely on the use of a central processing

unit and less attention is paid to distributed solutions over a network of interconnected

processing nodes. Within the first part of this thesis, we consider this problem and propose

diffusion LMS (DLMS) for the estimation of space-variant parameter vectors in an adaptive

and distributed manner.

The second issue that arises in parameter estimation applications over sensor networks

is that the system input data, called regression data in this context, are contaminated with
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measurements noise. Under this condition, if a distributed estimation algorithm is imple-

mented to estimate the underlying system parameter vector without considering the effect

of the measurement noise, the estimate will be biased and unreliable. Bias removal and

compensation have been extensively investigated for the stand-alone LMS filter in earlier

studies [44–50]. For networking applications, a consensus-based total least squares (TLS)

algorithm based on convex semidefinite programming has been developed that requires

costly eigendecompostion process at each node in every iteration [51]. A distributed recur-

sive total least squares (RTLS) algorithm has also been developed which relies on the bias

compensation principle and requires knowledge about regressor noise variances over the

network [52]. For this problem, the RLS class of distributed adaptive algorithms may seem

attractive because of their distributed structure and fast convergence speed in network-

ing applications. However, the high computational complexity, numerical instability, and

slower tracking ability may be hinderance for distributed dynamic systems and low-energy

budget network applications.

In this dissertation, motivated by low computational complexity, and satisfactory track-

ing ability of the LMS, we propose bias-compensated DLMS algorithms that exploits the

spatial diversity of the data and attains an unbiased optimal estimate of the underlying sys-

tem parameters over the network. It is worth noting that the problem we considered here

is different from the one investigated in [53], where the authors studied DLMS algorithms

for distributed parameter estimation over network with imperfect information exchange.

This is because, they assumed that at each node only the received regression data from

neighbors are corrupted with communication noise, and the regression data of the node

itself are error-free. They have also provided no mechanism for removing the bias from

the estimate. We, in this thesis, assume that all regression data are noisy and propose a

solution to remove the bias from the network estimates.

Diffusion strategies have been developed based on the existence of ideal communica-

tion channels between sensors, meaning each node over the network will receive error-free

information from all its neighbors [27–30, 33]. This assumption, however, may not hold

in practice where communications between nodes are prone to communication noise and

fading. Several works have examined the effect of noisy communication links on the per-

formance of these strategies [53–58]. In these works, it was assumed that the links between

nodes are always active, regardless of the instantaneous link noise value, and hence the

network topology remains invariant over time (i.e., the network topology will be static).
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This assumption will be also restrictive in many existing and emerging applications in wire-

less communication systems and sensor networks. For example, in mobile networks where

agents are allowed to change their position over time, the signal-to-noise ratio (SNR) of

the communication links between nodes will vary due to the various channel impairments,

including path loss, multi-path fading and shadowing. Consequently, the set of nodes with

which each agent can communicate (called neighborhood set), which is a function of the

link SNR, will also change as the agents move, and the network topology is therefore intrin-

sically dynamic. A time-varying network topology can also be created as a consequence of

energy drain in nodes, leading to a sudden link-failure, or due to deployment or activation

of substitute nodes over the network, i.e., creation of new links. It is therefore essential

to investigate the performance of diffusion strategies over networks with time-varying (dy-

namic) topology and characterize the effects of link activity (especially link failure) and

fading on their convergence and stability. This is the third issue that will be investigated

in this dissertation.

The performance of DLMS strategies is significantly affected by the network combina-

tion matrices, which are used to combine the exchanged information between nodes [59].

There are several well-known combination rules in the literature, especially in the con-

text of consensus-based iterations such as the maximum-degree rule and the Metropolis

rule [60–62]. While these schemes focus on improving the convergence behavior of the

algorithms, they ignore the variations in noise profile and link status across the network,

which can result in substantial performance degradation [63]. Some earlier works consider

the variation in measurement noise profile over the network to obtain the optimal combi-

nation weights [33]. In their development, they have relied on the formulation and solution

of a nonlinear and non-convex optimization problem that is pursued numerically. In [64],

the authors have formulated this problem as a convex optimization and incorporated the

measurement noise profile into the design of the combination weights. Authors in [53] have

studied a more general scenario, where in addition to measurement noise, they also con-

sider communication noise, in the exchange of information between nodes, in their problem

formation. In particular, they have formulated an optimization problem that take into

the account the node energy profile and the communication noise to obtain the optimal

combination weights over the network. In the design of optimal combination weights in

the aforementioned works, it was assumed that the links between nodes are always active,

regardless of the nodes mobility, communication noise and the fading coefficients values.
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In this dissertation, we consider a more general case to design the optimal combination

weights. In particular, in our problem formulation, we consider a wireless sensor network,

where the links are affected by fading and path loss in addition to communication noise,

and as a consequence the link connectivity status and the network topology vary over time.

1.3 Objectives and Contributions

The main objective of this research is the development and investigation of new DLMS

algorithms for the monitoring of physical phenomena over sensor networks under practical

constraints. We consider limiting aspects or constraints, including, variations of physical

parameters over space, distortion of data with measurement noise as well as communication

constraints such as fading, path loss and link noise. Ultimately, at the end of this research,

we will be able to answer questions regarding the feasibility of implementation of DLMS

strategies over practical sensor networks, and comment on the convergence behavior and

steady-state performance of the newly proposed algorithms, where both the network topol-

ogy and wireless channels vary over time. The research work presented in this dissertation

consists of three main parts, as detailed below.

In the first part, we propose novel DLMS strategies to enable the estimation and tracking

of parameters that may vary over both space and time. Our approach starts by introducing

a linear regression model to characterize space-time varying phenomena over networks. This

model is derived by discretizing a representative second-order partial PDE, which can be

useful in characterizing many dynamic systems with spatially-varying properties. We then

introduce a set of basis functions, e.g., shifted Chebyshev polynomials, to represent the

space-varying parameters of the underlying phenomena in terms of a finite set of space-

invariant expansion coefficients. Building on this representation, we develop a diffusion

LMS strategy that cooperatively estimates, interpolates, and tracks the model parameters

over the network. We analyze the convergence and stability of the developed algorithm,

and derive closed-form expressions to characterize the learning and convergence behavior

of the nodes in the mean-square-error (MSE) sense. In our analysis, we find that in the

context of space-time varying models, the covariance matrices of the regression data at the

various nodes can become rank deficient. This property influences the learning behavior of

the network and causes the estimates to become biased. We elaborate on how the judicious

use of stochastic combination matrices can help alleviate this difficulty. The analysis of
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DLMS algorithms in space-invariant parameter scenarios with rank-deficient covariance

matrices is treated as a special case in our analysis.

In the second part of the dissertation, we examine the ability of DLMS strategies over

sensor networks to correct for the measurement noise through cooperation. In particular,

we first show that the parameter estimates produced by conventional DLMS strategies are

biased when the regression data are contaminated with additive noise. We then formulate

bias-compensated DLMS strategies that exploit both the spatial diversity of the data and

the regressor noise variance information to attain an unbiased estimate via an adaptive

diffusion process. The development of the proposed algorithms rely on a bias-elimination

technique that assumes prior knowledge about the regression noise variances over the net-

work. We then relax the known variance assumption by incorporating a recursive approach

into the algorithm to estimate the variances in real-time. The analysis results show that

if the step-sizes are within a given range, the algorithms will be stable in the mean and

mean-square sense and the estimated parameters will converge to their true values.

The third part of this dissertation has two contributions. The first contribution is

to extend the application of DLMS strategies to wireless sensor networks, where nodes

exchange information over fading channels. To this end, we first examine the performance

of DLMS algorithms under the effects of wireless channel impairments, including, fading

and path-loss in addition to link noise. To counter the effect of channel impairments, we

incorporate the equalization coefficients into the diffusion update of DLMS algorithms.

Our analysis shows that if each node knows the channel state information (CSI) of its

neighboring nodes, the effects of fading and path-loss can be mitigated. We observe that as

a consequence of fading, despite using equalization coefficients, the links connectivity status

may change due to variation in instantaneous signal-to-noise ratio (SNR), and therefore, the

network topology will also vary over time. In networks with dynamic topology, the static

combination rules [27, 33] fail to provide satisfactory results and may cause instability.

To resolve this issue, we introduce a combination strategy that initializes the network

weighting matrices using well-known combination rules and update their values according

to link connectivity over time. In the modified algorithms, it is assumed that the nodes do

not have access to CSI of their neighbors and thus equalization coefficients are computed

from pilot-assisted estimated channel coefficients. This, in turn, introduces estimation error

that adversely affects the performance of the algorithms. We comment on the performance

limit of the DLMS algorithms with estimated channel coefficients and show how the mean
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and mean-square stability of the network are affected by channel estimation error and link

communication noise. Our analysis reveals that under certain conditions, the modified

DLMS algorithms are asymptotically unbiased and converge in the mean and mean-square

error sense providing that each node over the network knows CSI of its neighbors. Moreover,

we find that when the CSI are estimated through pilot-assisted techniques, the algorithms

still converge in the mean and mean-square error sense. while the parameter estimates

become biased in this case, we show that if the wireless channels are slowly-varying such

that more pilot data can be used for the estimation of fading coefficients, the bias can made

sufficiently small.

The second contribution in this part is to find the optimal combination weights that

minimize the network MSD. To find the optimal combination weights, we introduce an

approximation for the upper-bound of the network MSD and then use it to formulate a

convex optimization problem that can be solved in closed-form. The obtained solution pro-

vides the desired performance improvement. Nevertheless, it requires knowledge of second

order statistics of the network data (e.g., input signal correlation matrix, measurement

noise variance and communication noise variances), which may not be available in practice.

To overcome this limitation, we introduce an adaptive recursive relation to seek the opti-

mal combination weights by relying on instantaneous approximations of the second order

statistics of the network data. In this way, besides the standard adaptation layer to solve

the desired distributed estimation problem, each node also runs a second adaptation layer

to adjust its combination weights in real-time. Since the proposed adaptive scheme does

not require second order signal statistics of the nodes data, it will be particularly useful

in sensor network applications with time-varying wireless channel and changing network

topologies, where such information are normally unavailable.

1.4 Thesis Organization and Notations

The dissertation is organized as follows:

In Chapter 2, we review two well-known classes of distributed adaptation strategies,

namely, consensus and diffusion, and show how these strategies can be derived as special

cases of the same formalism. We then carry out a mean-square performance analysis in a

unified manner to compare their convergence and stability performance.

In Chapter 3, we introduce a space-varying linear regression model which is motivated
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from a physical phenomenon characterized by a PDE, and formulate an optimization prob-

lem to find the unknown parameters of the introduced model. We then derive a DLMS

algorithm that solves this problem in a distributed and adaptive manner. Lastly, we an-

alyze the performance of the proposed algorithm, and present the results of computer

experiments.

We begin Chapter 4 by explaining the effects of input measurement noise on the per-

formance of DLMS strategies in parameter estimation over networks, where it is shown

that the estimates of DLMS estimates are biased under this condition. Next, we develop

the proposed bias-compensated DLMS algorithms by relying on a bias-elimination tech-

nique, and present a recursive estimation strategy that locally estimates the regressor noise

variances of the nodes. We then analyze the stability and convergence behavior of the

developed algorithms, and present the results of our computer experiments to support the

analytical findings.

In Chapter 5, we develop the received signal model for the data exchange over wireless

sensor networks and explain how links between nodes fail as a consequence of deep fading

or low SNR values. Next, we review the standard DLMS algorithms and introduce an

extension of DLMS strategies for distributed estimation over wireless networks. The ex-

tended method uses equalization coefficients to alleviate the adverse effects of the channel

impairments. To obtain the fading coefficients, we use a pilot-assisted LS channel estima-

tion technique. We then show how to compute the weighting matrix when the network

topology changes over time to avoid network instability. We analyze the converge behavior

of the proposed algorithms, and find conditions under which the network is stable in the

mean and mean-square error sense.

In Chapter 6, we briefly review the MSE analysis of DLMS strategies over wireless

networks. We then study the effects of combination weights on the performance of DLMS

strategies in this type of networks. To find the optimal values of the left-stochastic combi-

nation matrix over time, we formulate a convex optimization problem using an upper bound

of network MSD. We finally present the simulation of computer experiments to support

the theoretical findings.

Finally, in Chapter 7, we conclude the thesis and suggest some future research directions

in the field of DAA.
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Notations: The following notations are used throughout this dissertation. Matrices are

represented by upper-case and vectors by lower-case letters. Boldface fonts are reserved

for random variables and normal fonts are used for deterministic quantities. Superscript

(·)T denotes transposition for real-valued vectors and matrices while (·)∗ denotes conjugate

transposition for complex-valued vectors and matrices. The symbol E[·] is the expectation

operator, Tr(·) represents the trace of its matrix argument and diag{·} extracts the diagonal

entries of a matrix, or constructs a diagonal matrix from a vector. IM represents the identity

matrix of order M (subscript M is omitted when the order can be understood from the

context). A set of vectors are stacked into a column vector by col{·}. The vec(·) operator

vectorizes a matrix by stacking its columns on top of each other and bvec(·) is the block-

vectorization operator [27]. The operator rank(·) computes the rank of its matrix argument.

The bvec(·) operator vectorizes a block matrix by first vectorizing each of its blocks and

then stacking the resulting vectors on top of each other into a column. The symbol det(·)
denotes the determinant operator. The symbol ⊗ denotes the standard Kronecker product,

and the symbol ⊗b represents the block Kronecker product [65].
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Chapter 2

Background Study

In this chapter, we review two classes of distributed adaptive strategies, namely, consensus

and diffusion algorithms and provide a systematic way for their derivations and analysis.

The presented material in this chapter serves as a basis for understanding the context and

development of subsequent chapters. The flow of the presentation is as follows. We first

demonstrate how consensus and diffusion algorithms can be derived by following a similar

procedure in minimization of a mean-square error function. We then briefly review the

mean and mean-square convergence analysis of these algorithms in a unified manner and

compare their performance and stability. At the end of this chapter, we give reasons as to

why the focus of this dissertation is mainly on diffusion (DLMS) strategies.

2.1 Introduction

The consensus strategy has been developed to enforce agreement among cooperating agents

that are distributed over a spatial domain [66]. In recent years, average consensus strate-

gies, including gossip algorithms, have been studied in many areas, such as control sys-

tems [23,62,67–70], formation and schooling over multi-agent networks [71–73], distributed

optimization [18,25], and also distributed estimation [20,21,24,26,57,74–76]. Initially, the

development of consensus strategy relied on the use of two time-scales process [19,77]: one

time-scale for data collection across the agents and another time-scale for averaging process

over the collected data. The two time-scale implementations hinder the ability to perform

real-time recursive estimation and adaptation when measurement data keep streaming in.

In this work, we study the consensus implementations that operate in a single time-scale
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and is therefore suitable for real-time data processing. Such implementations appear in

several recent works, including [24, 26, 57, 78], and are largely motivated by the procedure

developed earlier in [18,79] for the solution of distributed optimization problems.

DLMS strategies, the second class of distributed adaptive algorithms, were introduced

for the solution of estimation problems in multi-agent networks [4, 9, 27, 33, 35, 37, 80, 81].

These algorithms were developed as single time-scale distributed adaptive schemes that

can respond in real-time to the continuous streaming of data at the agents [82]. Since their

introduction, diffusion strategies were applied to model various forms of complex behaviors

encountered in nature [6,8,83,84]. They were also adopted to solve distributed optimization

problems in [29, 85, 86] and their performance have been studied under varied conditions

in [28, 87, 88] as well. Diffusion strategies inherently rely on a single time-scale processing

structure and are therefore naturally amenable to real-time and recursive implementations.

2.2 Network Signal Model

Consider a network consisting of N nodes that are distributed over a spatial domain. Node

` is said to be a neighbor of node k if it can communicate with node k. We denote the set

of all such neighbors, i.e., the neighborhood of node k, by Nk. The objective of the nodes

in the network is to estimate an unknown parameter vector wo ∈ CM×1 in a distributed

manner through an on-line learning process. At every time instant, i, each node k observes

a scalar random process dk(i) and a vector random process uk,i ∈ C1×M , which are related

to wo via the following linear regression model [89]:

dk(i) = uk,iw
o + vk(i) (2.1)

where vk(i) is the measurement noise.

Assumption 2.1. The random variables in model (2.1) are assumed to satisfy the following

conditions1:

a) The regression data {uk,i} are zero-mean, i.i.d. in time and independent over space

with covariance matrices Ru,k = E[u∗k,iuk,i] > 0.

1These are the standard assumptions that normally are used in distributed adaptive literature for
mathematical tractability. We also adopt these assumptions in the subsequent chapters in this dissertation.
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b) The noise {vk(i)} are zero-mean, i.i.d. in time and independent over space with

variances σ2
v,k.

c) The regression data uk,i and the noise vm(n) are mutually independent for all k, m,

i and n.

�

The models of the form (2.1) are useful in capturing many situations of interest in practice,

such as in estimating the parameters of some underlying physical phenomenon, estimating

or equalizing a communications channel, tracking a moving target by a collection of nodes,

or estimating the location of a nutrient source or predator in biological networks [6,84,89,

90].

The nodes estimate wo by seeking to minimize the following global cost function:

Jglob(w) =
N∑
k=1

E|dk(i)− uk,iw|2 (2.2)

In what follows, we show that how the global objective function (2.2) can be written in

terms of N local objective functions whose minimization in parallel over the network are

equivalent to minimizing (2.2).

2.3 Distributed Estimation

In this section, we review the derivation of the most frequent special case of DLMS al-

gorithms, i.e., the adapt-then-combine (ATC) diffusion, in multi-agent adaptive networks.

The derivation is based on the completion-of-squares argument, followed by a stochastic

approximation step and an incremental approximation step [29, 33]. For comparison pur-

poses, we also explain how the single time-scale consensus strategy can be obtained using

the same procedure.

To begin with, we express the global cost (2.2) as:

Jglob(w) =
N∑
k=1

Jk(w) (2.3)
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where

Jk(w) = E|dk(i) + uk,iw|2 (2.4)

The derivation of ATC diffusion strategies, to optimize Jglob(w) in a distributed manner,

is based on two steps optimization procedure [29,33]. First, using a completion-of-squares

argument, we approximate the global cost function (2.4) by an alternative cost that is

amenable to distributed optimization. Then, each node will optimize the alternative cost

via a combination of a steepest-descents and an incremental approximation step.

We note that each individual cost Jk(w) given by (2.4) can be factored via a completion-

of-squares argument and written in the form [33]:

Jk(w) = ‖w − wo‖2
Ru,k

+ mmsek (2.5)

where the notation ‖x‖2
Σ denotes the weighted square quantity x∗Σx for any semidefinite

matrix Σ ≥ 0, Ru,k = E[u∗k,iuk,i] is the covariance matrix of the regression data at node

k, and mmsek is an additional MMSE term that is independent of w. Using (2.5), we

can replace the cost function (2.3) by the following equivalent global cost function that is

amenable to a distributed minimization form:

Jglob′(w) = Jk(w) +
∑
`6=k

(
‖w − wo‖2

Ru,`
+ mmse`

)
(2.6)

The second term on the right-hand side of (2.6), implies that how by incorporating the

quadratic parts, the individual cost Jk(w) can be corrected to the global cost Jglob(w).

However, the minimizer wo that appears in the quadratic parts is not known since the

nodes wish to determine its value. Likewise, not all weighting matrices Ru,` are available

to node k; only those from its neighbors can be assumed to be available. In spite of

this missing information, expression (2.6) motivates us to introduce a new localized cost

function at node k that is close enough to the desired Jglob(w) and which can be minimized

through local cooperation. We denote this localized cost function at node k by Jdist
k (w);

it is obtained from (2.6) by limiting the summation on the right-hand side of (2.6) to the

neighbors of node k, namely,

Jdist
k (w) = Jk(w) +

∑
`∈Nk\{k}

‖w − wo‖2
Ru,`

(2.7)
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We note that the terms mmse` are ignored in obtaining (2.7), since they are independent of

w and have no effects in finding the minimizer wo. The cost functions Jk(w) and Jdist
k (w)

are both associated with node k. The difference between them is that the expression for the

latter is closer to the global cost function (2.6) that we want to optimize. The covariance

matrices Ru,` that appear in (2.7) may not be available in practice. Usually, nodes can

only observe realizations u`,i of regression data arising from distributions whose covariance

matrices are the unknown Ru,`. One way to address this issue is to replace each of the

weighted norms ‖w − wo‖2
Ru,`

by a scaled multiple of the form

‖w − wo‖2
Ru,`
≈ b`,k‖w − wo‖2 (2.8)

where b`,k is some nonnegative coefficient. This substitution amounts to having each node

k approximates the moment Ru,` from its neighbors by multiples of the identity matrix,

i.e.,

Ru,` = b`,k IM (2.9)

Approximation (2.8) is reasonable because using the Rayleigh-Ritz characterization of

eigenvalues [91], it holds that

λmin(Ru,`) ‖w − wo‖2 ≤ ‖w − wo‖2
Ru,`
≤ λmax(Ru,`) ‖w − wo‖2 (2.10)

As the derivation will show, the scalars b`,k in (2.8) will end up being embedded into another

set of coefficients a`,k that will be selected by the designer. Later, we will explain how to

select these new coefficients to achieve the desired objective. In this way, we replace (2.7)

by:

Jdist′

k (w) = Jk(w) +
∑

`∈Nk\{k}

b`,k‖w − wo‖2 (2.11)

With the exception of the minimizer wo, this alternative cost at node k relies solely on

information that is available from its neighborhood. Now, each node k can apply a steepest-

descent iteration to minimize its localized cost Jdist′

k (w), i.e.,

wk,i = wk,i−1 − µk[∇wJ
dist′

k (w)]∗ (2.12)

= wk,i−1 + µk(rdu,k −Ru,kwk,i−1)− µk
∑

`∈Nk\{k}

b`,k(wk,i−1 − wo) (2.13)
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where ∇w denotes the gradient vector of its argument. The step-size parameters µk can

be constant or time-variant. Constant step-sizes allow the resulting strategies to learn and

adapt continuously, while time-variant step-sizes that decay to zero turn off the learning

abilities of the networks with time. An adaptive implementation of (2.13) can be obtained

by replacing {rdu,k, Ru,k} by instantaneous approximations:

rdu,k ≈ dk(i)u∗k,i, Ru,k ≈ u∗k,iuk,i (2.14)

Doing so leads to the following recursion:

wk,i = wk,i−1 + µku
∗
k,i(dk(i)− uk,iwk,i−1)− µk

∑
`∈Nk\{k}

b`,k(wk,i−1 − wo) (2.15)

According to (2.15), the update from wk,i−1 to wk,i now involves adding two correction

terms to wk,i−1. However, the last correction term still depends on the unknown mini-

mizer wo. We can now use incremental-type arguments to replace wo in (2.15) by suitable

approximations for it. As it will be shown different replacements for wo lead to different

learning strategies (such as consensus and diffusion strategies) and these replacements will

affect the operation of the network in a fundamental way [30].

2.3.1 Consensus Strategy

We note that each of the nodes in the network performs steps similar to (2.15). As such,

each node ` will have a readily available approximation for wo, i.e., the local estimatew`,i−1.

Therefore, the first possible substitution for wo in (2.15) is w`,i−1. In that case, recursion

(2.15) becomes

wk,i = wk,i−1 − µk
∑

`∈Nk\{k}

b`,k(wk,i−1 −w`,i−1) + µku
∗
k,i(dk(i)− uk,iwk,i−1) (2.16)

Recursion (2.16) is in the form of the well-known consensus strategy [24,26].

It should be noted that in most other works on consensus implementations, especially

in the context of distributed optimization problems [24, 26, 79, 92], the step-sizes µk that
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are used in (2.16) depend on the time-index i and are required to satisfy

∞∑
i=1

µk(i) =∞,
∞∑
i=1

µ2
k(i) <∞ (2.17)

In other words, for each node k, the step-size sequence µk(i) is required to vanish as

i→∞. Under such conditions, the consensus strategies allow the nodes to reach agreement.

Here, instead, in the representations (2.16), we consider constant step-sizes because we are

interested to examine the adaptation and tracking abilities of the adaptive networks. We

can rewrite the recursion (2.16) in a more compact form by combining the first two terms

on the right-hand side of (2.16) and introducing:

a`,k =


1−

∑
j∈Nk\{k} µkbj,k, ` = k

µkb`,k, ` ∈ Nk\{k}

0, otherwise

(2.18)

In this way, recursion (2.16) can be rewritten equivalently as Algorithm 2.1, presented

below [78,79].

Algorithm 2.1 : Consensus Strategy

wk,i =
∑
`∈Nk

a`,kw`,i−1 + µku
∗
k,i(dk(i)− uk,iwk,i−1) (2.19)

The coefficient a`,k denotes the weight that node k assigns to the estimate w`,i−1 received

from its neighbor `. From (2.18), it is clear that the weights a`,k are nonnegative for ` 6= k

and that ak,k is nonnegative for sufficiently small step-sizes. If we collect the assumed

nonnegative weights a`,k into an N × N matrix A = [a`,k], which we call the network

combination matrix, then it follows from (2.18) that this matrix satisfies the following

properties:

a`,k ≥ 0, AT1N = 1N and a`,k = 0 if ` /∈ Nk (2.20)

where 1N is a vector of size N with all entries equal to one. That is, the weights on the

links arriving at node k add up to one, which is equivalent to saying that the matrix A is

left-stochastic [93]. Moreover, if node ` is not a neighbor of node k, then the corresponding

weight a`,k is zero.
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2.3.2 Diffusion Strategies

The second possible substitution for wo in (2.15) will lead to two forms of DLMS strategies,

namely, adapt-then-combine (ATC) and combine-then-adapt (CTA) diffusion strategies.

We begin by noting that there are two correction terms on the right-hand side of (2.15)

and these terms can be added one at a time. To derive the ATC diffusion, we rewrite

(2.15) in a mathematical form that consists of two steps and use an intermediate auxiliary

variable to connect these steps, i.e.:

ψk,i =wk,i−1 + µku
∗
k,i(dk(i)− uk,iwk,i−1) (2.21)

wk,i =ψk,i − µk
∑

`∈Nk\{k}

b`,k(wk,i−1 − wo) (2.22)

The first update (2.21) can be carried out by all nodes independent of the knowledge of wo.

However, the unknown minimizer wo still appears in (2.22). Now, rather than replacing

wo by w`,i−1, as was the case with the consensus strategy, it would appear to be more

advantageous to replace wo by the improved estimate ψ`,i obtained via the update (2.22).

Indeed, for each node `, the intermediate value ψ`,i is generally a better estimate for wo than

w`,i−1 since it is obtained by incorporating information from its recent data {d`(i),u`,i}
as per (2.21). In the same vein, we can also replace wk,i−1 in (2.22) by ψk,i. This second

substitution is similar to incremental-type approaches of optimization, which have been

widely studied in the literature [5]. With these replacements, recursion (2.22) becomes

wk,i =ψk,i − µk
∑

`∈Nk\{k}

b`,k(ψk,i −ψ`,i) (2.23)

If we again introduce the same coefficients a`,k from (2.18), we arrive at the following

alternative compact form, known as the adapt-then-combine (ATC) diffusion strategy [33],

presented below as Algorithm 2.2.

In Algorithm 2.2, the first step (2.24) involves local adaptation, where node k uses its own

data {dk(i),uk,i} to update its weight estimate from wk,i−1 to an intermediate value ψk,i.

The second step (2.25) is a combination step where the intermediate estimates ψ`,i from

the neighborhood of node k are combined through the weights a`,k to obtain the updated

weight estimate wk,i.

By reversing the order of (2.21)-(2.22), and following a similar procedure as in the ATC
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Algorithm 2.2 : ATC Diffusion Algorithm

ψk,i =wk,i−1 + µku
∗
k,i(dk(i)− uk,iwk,i−1) (2.24)

wk,i =
∑
`∈Nk

a`,kψ`,i−1 (2.25)

diffusion [33], we arrive at the other variant of DLMS algorithms, known as CTA diffusion

strategy, presented below as Algorithm 2.3.

Algorithm 2.3 : CTA Diffusion Algorithm

ψk,i−1 =
∑
`∈Nk

a`,kw`,i−1 (2.26)

wk,i =ψk,i−1 + µku
∗
k,i(dk(i)− uk,iψk,i−1) (2.27)

In this algorithm, the first step is a combination step, by which the existing estimates

{w`,i−1} from the neighbors of node k are combined through the weights {a`,k}. The

second step (2.27) is a local adaptation step, where node k uses its own data {dk(i),uk,i}
to update its weight estimate from the intermediate value ψk,i−1 to wk,i. Thus, comparing

the ATC and CTA strategies, we note that the order of the combination and adaptation

steps are reversed.

More general diffusion strategies can be derived if each agent k, in addition to the

estimators ψ`,i in ATC or w`,i−1 in CTA, receives the data {d`(i),u`,i} from its neighbors

` ∈ Nk\k. These generalizations, in addition to the matrix A, require a second combination

matrix C with nonnegative entries which is right-stochastic. The generalized ATC strategy

is presented in Algorithm 2.4 for comparison.

where c`,k are the entries of the right-stochastic matrix C, satisfying:

c`,k ≥ 0, C1N = 1N and c`,k = 0 if ` /∈ Nk (2.30)

We now note that the ATC diffusion Algorithm 2.2 can be obtained from Algorithm 2.4 by

choosing C = I.
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Algorithm 2.4 : Generalized ATC Diffusion Algorithm

ψk,i =wk,i−1 + µk
∑
`∈Nk

c`,ku
∗
`,i(d`(i)− u`,iwk,i−1) (2.28)

wk,i =
∑
`∈Nk

a`,kψ`,i−1 (2.29)

2.3.3 Diffusion versus Consensus

In this part and in the following section, we only compare the ATC variant of DLMS

strategies, Algorithm 2.2, with the consensus strategy, Algorithm 2.1, to highlight the

main differences in operation and learning behavior1.

Considering the actual implementation of ATC diffusion, i.e., Algorithm 2.2, we first

note that the combination step (2.25) is able to incorporate additional information into

their processing steps without being more complex than the consensus strategy. Second,

it can be also seen that these two strategies require sharing the same amount of data, as

can be ascertained by comparing the actual implementations. The key fact to note is that

the diffusion implementations first generate an intermediate state, which is subsequently

used in the final update. As it will be shown, this ordering of the calculations has a critical

influence on the performance of the algorithms.

For comparison purposes and performance evaluation of these algorithms , it is of in-

terest to rewrite the ATC diffusion and consensus strategies in a single update as given

below:

Diffusion, wk,i =
∑
`∈Nk

a`,kw`,i−1 +
∑
`∈Nk

µ`a`,ku
∗
`,i(d`(i)− u`,iw`,i−1) (2.31)

Consensus, wk,i =
∑
`∈Nk

a`,kw`,i−1 + µku
∗
k,i(dk(i)− uk,iwk,i−1) (2.32)

Note that the first terms on the right hand side of these recursions are the same. For

the second terms, only variable wk,i−1 appears in the consensus strategy (2.32), while the

diffusion strategies incorporate the estimates w`,i−1 from the neighborhood of node k into

1For the sake of fairness, we use the special version of ATC with C = I. The ATC with a non-diagonal
right stochastic matrix C outperforms the one with C = I [33].
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the update of wk,i. Moreover, in contrast to the consensus, the ATC diffusion strategy

further incorporates the influence of the data {d`(i),u`,i} from the neighborhood of node

k into the update of wk,i. These facts have important implications on the evolution of the

weight-error vectors in the consensus and diffusion networks.

2.4 Performance Analysis

The mean and mean-square performance of DLMS algorithms have been extensively studied

in detail in [29,33,82]. In this section, we briefly review the performance analysis of diffusion

algorithms and make comparison with that of the consensus algorithm to highlight their

differences.

We define the local weight-error vectors as

w̃k,i = wo −wk,i (2.33)

and form the global weight-error vector by staking up the local error vectors on top of each

other, as expressed by

w̃i = col{w̃1,i, w̃2,i, . . . , w̃N,i} (2.34)

We also define the block vector and matrices:

gi , col
{
u∗1,iv1(i),u∗2,iv2(i), · · · ,u∗N,ivN(i)

}
(2.35)

Ri , diag
{
u∗1,iu1,i,u

∗
2,iu2,i, · · · ,u∗N,iuN,i

}
(2.36)

M , diag
{
µ1IM , µ2IM , · · · , µNIM

}
(2.37)

Starting from (2.32), and (2.31) and using model (2.1), the global error vector wi for the

diffusion and consensus strategies can be found to evolve in the following way:

Diffusion, w̃i = AT (I −MRi)w̃i−1 −ATMgi (2.38)

Consensus, w̃i = (AT −MRi)w̃i−1 −Mgi (2.39)

where A = A ⊗ IM . Recursions (2.39) and (2.38) can be described by a more general
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recursion of the form:

w̃i = Biw̃i−1 −Myi (2.40)

where the quantities Bi and yi for the diffusing strategy are

Bi = AT (I −MRi) (2.41)

yi = ATMgi (2.42)

whereas for the consensus strategy, these quantities take the form

Bi = AT −MRi (2.43)

yi =Mgi (2.44)

The matrix Bi controls the evolution dynamics of the network error vector w̃i as per

(2.38). As it will be shown the differences in Bi in (2.41) and (2.43) substantially, impact

the performance of diffusion and consensus strategies.

2.4.1 Mean Convergence and Stability

Below, we review the mean convergence and stability analysis of diffusion and consensus

strategies and briefly compare their performance. To obtain a recursion for the evolution

of the network mean error vector, we take the expectation of both sides of (2.40) under

Assumption 2.1, which leads to

E[w̃i] = BE[wi−1] (2.45)

For the diffusion strategy, we have

B , E[Bi] = AT (I −MR) (2.46)

To obtain (2.45), we used the fact that E[A2
TMgi] = 0; because vk,i is independent of uk,i

and E[vk(i)] = 0. According to (2.45), limi→∞ E[w̃i]→ 0 if B is stable, i.e.,

ρ(B) < 1 (2.47)
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where ρ(B) denotes the spectral radius of its matrix argument. Because ρ(A) = 1, for

diffusion algorithms, we have:

ρ(B) ≤ ρ(I −MR) (2.48)

Since R > 0, it follows from here that choosing the step-sizes according to

0 < µk <
2

λmax(Ru,k)
, for k = 1, 2, · · · , N (2.49)

will guarantee ρ(B) < 1 [63, 82]. This condition also guarantees the mean-stability of the

non-cooperative network when each node operates individually to estimate wo (see the

analysis of the stand-alone LMS filter [89]).

For consensus strategy, we have

B , E[Bi] = AT −MR (2.50)

If matrix A is symetric, the necessary and sufficient condition for mean convergence and

stability is [30]:

0 < µk <
1 + λmin(A)

λmax(Ru,k)
, for k = 1, 2, · · · , N (2.51)

Since A is a left-stochastic matrix, its spectral radius is equal to one [93]. In addition,

because A is assumed to be symmetric, all its eigenvalues are real and hence its maximum

eigenvalue is equal to one, i.e., λmax(A) = ρ(A) = 1. This implies that the upper bound

in (2.51) is less than the upper bound in (2.49) so that diffusion networks are stable over

a wider range of step-sizes. The upper bound in (2.51) can even be zero because λmin(A)

can be equal to −1.

An other interesting observation that follow from (2.51) is that if we connect a collection

of nodes, that are behaving in a stable manner on their own, through a topology and

then apply consensus to solve the same estimation problem through cooperation, then the

network may end up being unstable and the estimation task may fail [30]. However, this

scenario cannot happen for diffusion strategy as the stability range of diffusion, i.e, step-size

range (2.49), does not depend on the choice of matrix A.
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2.4.2 Mean-Square Stability

To study the mean-square performance of consensus and diffusion strategies, we need to

compute a variance relation, which shows the evolution of mean-square error over the

network [33, 89]. To determine this relation, we compute the weighted squared norm of

both sides of equation (2.40) and take expectations under Assumption 2.1:

E‖w̃i‖2
Σ =E

[
‖w̃i−1‖2

Σ′

]
+ E[y∗iΣyi]

(2.52)

where Σ ≥ 0 is a weighting matrix that we are free to choose, and

Σ′ = Bi
∗ΣBi (2.53)

It follows from Assumption 2.1 that w̃i−1 and Ri are statistically independent so that

E
[
‖w̃i−1‖2

Σ′

]
= E‖w̃i−1‖2

E[Σ′] (2.54)

Substituting this expression into (2.52), we arrive at:

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ′ + Tr[ΣY ] (2.55)

where we define Σ′ = E[B∗i ΣBi] and Y , E[yiy
∗
i ]. For diffusion strategy, matrix Y is given

by:

Y = ATMGMA (2.56)

with

G = diag
{
σ2
v,1Ru,1, σ

2
v,2Ru,2, · · · , σ2

v,NRu,N

}
(2.57)

For consensus strategy matrix Y takes the form:

Y =MGM (2.58)

Now, let U , V and X denote arbitrary matrices with size NM × NM . The following



2.4 Performance Analysis 27

relations hold [93,94]:

vec(UΣV ) = (V T ⊗ U)vec(Σ) (2.59)

Tr(ΣX) = [vec(XT )]Tvec(Σ) (2.60)

Introducing σ = vec(Σ) and σ′ = vec(Σ′) and using (2.59), we can write

σ′ = Fσ (2.61)

for some matrix F to be determined (see below). Using properties (2.59) and (2.60), the

variance relation in (2.55) can be rewritten more compactly as:

E‖w̃i‖2
σ =E‖w̃i−1‖2

Fσ + γTσ (2.62)

where we are using the notation ‖x‖2
σ as a short form for ‖x‖2

Σ, and

γ = vec(YT ) (2.63)

F = E[BT
i ⊗B∗i ] (2.64)

From relation (2.62), we then arrive at:

E‖w̃i‖2
σ = E‖w̃−1‖2

Fi+1σ + γT
i∑

j=0

F jσ (2.65)

From this expression, it can be verified that the mean-square stability1 of diffusion and

consensus strategies depends on the stability of matrix F , i.e., limi→∞ E‖w̃i‖2
σ converges

if ρ(F) < 1. A simpler condition for mean-square stability can be obtained by assuming

sufficiently small step-sizes since in this case we can verify that the matrix F in (2.65) can

be approximated as follows [82]:

F ≈ BT ⊗ B∗ (2.66)

1We say that an adaptive algorithm is mean-square stable if limi→∞ E‖w̃i‖2σ → ao, where ao is a positive
real number.
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Now noting that [93]

ρ(F) ≈ ρ(BT )ρ(B∗) = [ρ(B)]2 (2.67)

we deduce that ρ(F) < 1 if ρ(B) < 1. For the ATC diffusion strategy, the stability of

B is guaranteed if condition (2.49) on the step-sizes holds, and this does not depend on

the choice of coefficient matrix A. Therefore, the condition (2.49) is sufficient to guarantee

stability in the mean and mean-square sense for the ATC diffusion algorithm. In contrast, in

consensus strategies, the stability of B depends on matrix A. For the case of a symmetric

matrix A, it has been shown in (2.51) that the stability range of B is affected by the

minimum eigenvalue of A. Therefore, for some choices of A, the consensus strategies may

become unstable in the mean-square error sense.

2.4.3 Mean-Square Convergence Rate

Let us assume that both diffusion and consensus strategies are stable in the mean and mean-

square sense, i.e., matrix B is stable in both cases. Under this condition, as time-index i

progresses, the mean-square error (2.65), in average, will decay toward its steady-state at

a rate r that is governed by ρ(F) or equivalently by (ρ(B))2 according to (2.67). We note

that the smaller the value of ρ(B) is, the faster the rate of convergence of limi→∞ E‖w̃i‖2

will be. Under certain simplifying assumptions, it can be shown that the spectral radius of

B in diffusion strategies is smaller than the consensus one. Therefore, diffusion strategies

not only stabilize the network learning, but also converge with faster rate compared with

their consensus counterparts [95].

2.4.4 Mean-Square Transient Behavior

We use (2.65) to obtain an expression for the mean-square behavior of the algorithm in

transient-state. In this expression, if for some i > 0, we substitute wk,−1 = 0, ∀k ∈
{1, · · · , N}, we obtain:

‖w̃i‖2
σ = ‖wo‖2

Fi+1σ + γT
i∑

j=0

F jσ (2.68)
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Writing this recursion for i− 1, and subtract it from (2.68) leads to:

‖w̃i‖2
σ = ‖w̃i−1‖2

σ − ‖wo‖2
F i(I−F)σ + γTF iσ (2.69)

By definition, the instantaneous MSD and excess mean-square error (EMSE) at each node

k are respectively defined as:

ηk(i) = E‖w̃k,i‖2
I , ζk(i) = E‖w̃k,i‖2

Ru,k
(2.70)

These metrics can be also retrieved from the network error vector w̃i by writing:

ηk(i) = E‖w̃i‖2

{diag(ek)⊗I} (2.71)

ζk(i) = E‖w̃i‖2

{diag(ek)⊗Ru,k}
(2.72)

where ek is a basis vector in RN with entry one at position k. Therefore, in relation (2.69),

if we replace σ with

σmsdk = vec
(

diag{ek} ⊗ IM
)

(2.73)

σemsek = vec
(

diag{ek} ⊗Ru,k

)
(2.74)

and use wk,−1 = 0, we will arrive at the following two recursions for the evolution of MSD

and EMSE over time:

ηk(i) = ηk(i− 1)− ‖wo‖F i(I−F)σmsdk
+ γTF iσmsdk (2.75)

ζk(i) = ζk(i− 1)− ‖wo‖Fi−1(I−F)σemsek
+ γTF i−1σemsek (2.76)

The MSD and EMSE learning behavior of the network can be characterized either by

averaging the nodes transient behavior, or equivalently by substituting

σmsd =
1

N
vec(IMN) (2.77)

σemse =
1

N
vec
(

diag{Ru,1, · · · , Ru,N}
)

(2.78)

in recursion (2.69), respectively.
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2.4.5 Steady-State Mean-Square Performance

To obtain the steady-state MSE over the network, we let i goes to infinity and use expression

(2.62) to write:

lim
i→∞

E‖w̃i‖2
(I−F)σ = [vec(YT )]Tσ (2.79)

By definition, the steady-state MSD and EMSE at each node k are respectively computed

as:

ηk = lim
i→∞

ηk(i), ζk = lim
i→∞

ζk(i) (2.80)

Alternatively these performance metrics can be obtained from relation (2.71) and (2.72)

by letting i→∞. Now by equating relations (2.79) and (2.71) for i→∞, we arrive at:

ηk = [vec(YT )]T (I −F)−1vec(diag(ek)⊗ IM) (2.81)

which requires (I − F) to be invertible. This condition is satisfied if F is stable (i.e.,

ρ(F) < 1).

In the same manner, from (2.79) and (2.72), we compute the steady-state EMSE of

node k:

ζk = [vec(YT )]T (I −F)−1vec(diag(ek)⊗Ru,k) (2.82)

The network steady-state MSD and EMSE are defined as the average of the steady-state

MSD and EMSE over all nodes, i.e.,

η =
1

N

N∑
k=1

ηk, ζ =
1

N

N∑
k=1

ζk (2.83)

Note that expressions (2.75), (2.76), (2.81), (2.82), and (2.83) can be used to charac-

terize the mean-square performance of both diffusion and consensus strategies by properly

choosing the corresponding matrices B and Y . In general, expressions (2.81), and (2.82)

may not provide an explicit way to show that the diffusion networks outperform the con-

sensus ones in the mean-square error sense. However, when matrix A is symmetric, using
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(2.65), it can be established analytically that the diffusion networks achieve smaller MSD

than the consensus networks [95].

2.5 Summary

In this chapter, we presented the derivation procedure of both diffusion and consensus

strategies of distributed adaptation in multi-agent networks. We explained the differences

between these two strategies in terms of their operations and compared their stability in

the mean and mean-square error sense. It was shown that if step-sizes are sufficiently small

so that conditions (2.49) and (2.51) hold, then the diffusion and consensus networks will be

stable in the mean and mean-square sense. Under these conditions, the networks achieves

steady-state operation as i→∞. We also presented a systematic way to derive expressions

for characterizing the MSD and EMSE of individual nodes over the network in transient

and steady-state regimes.

The principal conclusion from this chapter is that the stability of diffusion networks

is independent of the choice of combination matrix A, whereas the stability of consensus

networks highly depends on the choice of this matrix. This indicates that if we connect a

collection of nodes that are behaving in a stable manner in their individual estimation task,

through a certain network topology and then apply the consensus algorithm to solve the

same estimation problem through cooperation, the network may end up being unstable. We

observe that, unlike the consensus strategies, the stability of the individual nodes ensures

the stability of diffusion networks irrespective of the network topology. Moreover, if both

strategies are assumed to be stable in the mean and mean-square error sense, the diffusion

networks generally converge faster and reach lower MSD value. For these reasons, in the

reminder of this thesis, we solely focus on DLMS to solve estimation tasks over sensor

networks.
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Chapter 3

Space-Varying Parameter Estimation

Using DLMS Algorithms

In this chapter, we study the problem of distributed adaptive estimation over sensor net-

works where nodes cooperate to estimate physical parameters that vary over spatial do-

main1. Systems with space-varying parameters are prevalent in many applications in sensor

networks, such as process monitoring and the study of diffusion phenomena in inhomoge-

neous media. We begin our derivation by introducing a generic regression model that char-

acterizes the behavior of systems with spatially-varying parameters over sampled space and

time. To enable the implementation of distributed optimization strategies for the intro-

duced model, we use a set of basis functions to represent the space-varying parameters with

global (i.e. space-invariant) parameters. Under this representation, we propose a DLMS

algorithm that estimates and tracks the global parameters, and retrieves the underlying

space-varying parameters over the network from successive time measurements. We ana-

lyze the stability and convergence of the proposed algorithm as well as its learning behavior

and steady-state performance.

1Part of the work presented in this chapter was published in:

• R. Abdolee, B. Champagne and A. H. Sayed, “Estimation of space-time varying parameters using
a diffusion LMS algorithm”, IEEE Trans. on Signal Processing, vol 62, no. 2, pp. 403–418, Jan.
2014.

• R. Abdolee, B. Champagne and A. H. Sayed, “Diffusion LMS for source and process estimation in
sensor Networks”, in Proc. IEEE Statistical Signal Processing (SSP) Workshop, Ann Arbor, MI,
Aug. 2012. pp. 165–168 .
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3.1 Introduction

In previous studies on diffusion algorithms for adaptation over networks, including least-

mean-squares (LMS) or recursive least squares (RLS) types, the parameters being esti-

mated are often assumed to be space-invariant [28–30,33,37,82]. In other words, all agents

are assumed to sense and measure data that arise from an underlying physical model

that is represented by fixed parameters over the spatial domain. Some studies considered

particular applications of diffusion strategies to data that arise from potentially different

models [95, 96]. However, the proposed techniques in these works are not immediately ap-

plicable to scenarios where the estimation parameters vary over space across the network.

This situation is encountered in many applications, including the monitoring of fluid flow

in underground porous media [38], the tracking of population dispersal in ecology [39], the

localization of distributed sources in dynamic systems [97] and the modeling of diffusion

phenomena in inhomogeneous media [40]. In these applications, the space-variant param-

eters being estimated usually result from discretization of the coefficients of an underlying

partial differential equation through spatial sampling.

The estimation of spatially-varying parameters has been addressed in several previous

studies, including [41–43, 98, 99]. In these works and other similar references on the topic,

the solutions typically rely on the use of a central processing (fusion) unit and less attention

is paid to distributed solutions. In this chapter, we develop a DLMS algorithm of the

diffusion type to enable the estimation and tracking of parameters that may vary over both

space and time. Our approach starts by introducing a linear regression model to characterize

space-time varying phenomena over networks. This model is derived by discretizing a

representative second-order partial differential equation (PDE), which can be useful in

characterizing many dynamic systems with spatially-varying properties. We then introduce

a set of basis functions, e.g., shifted Chebyshev polynomials, to represent the space-varying

parameters of the underlying phenomena in terms of a finite set of space-invariant expansion

coefficients. Building on this representation, we develop a diffusion LMS strategy that

cooperatively estimates, interpolates, and tracks the model parameters over the network.

We analyze the convergence and stability of the developed algorithm, and derive closed-

form expressions to characterize the learning and convergence behavior of the nodes in the

mean-square-error sense.

We find that in the estimation of the space-varying parameters using distributed ap-
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proaches, the covariance matrix of the regression data at each node becomes rank-deficient,

which entails complications and hinders the ability of distributed approaches to find op-

timal estimates of the unknown parameters over the network. Our analysis reveals that

the proposed algorithm can overcome this difficulty to a large extent by benefiting from

the network stochastic matrices that are used to combine exchanged information between

nodes. We provide computer experiments to illustrate and support the theoretical findings.

3.2 Modeling and Problem Formulation

In this section, we motivate a linear regression model that can be used to describe dynamic

systems with spatially varying properties. We derive the model from a representative

second-order one-dimensional PDE that is used to characterize the evolution of the pres-

sure distribution in inhomogeneous media and features a diffusion coefficient as well as an

input source, both of which vary over space. Extension and generalization of the proposed

approach, in modeling space-varying phenomena, to PDEs of higher order or defined over

two-dimensional space are generally straightforward (see, Section 3.5.3).

The PDE under consideration is expressed as [40,100]:

∂f(x, t)

∂t
=

∂

∂x

θ(x)
∂f(x, t)

∂x

+ q(x, t) (3.1)

where (x, t) ∈ [0, L]× [0, T ] denote the space and time variables with upper limits L ∈ R+

and T ∈ R+, respectively, f(x, t) : R2 → R, represents the system distribution (e.g.,

pressure or temperature) under study, θ(x):R→ R is the space-varying diffusion coefficient

and q(x, t):R2 → R is the input distribution that includes sources and sinks. PDE (3.1)

is assumed to satisfy the Dirichlet boundary conditions1, f(0, t) = f(L, t) = 0 for all

t ∈ [0, T ]. The distribution of the system at t = 0 is given by f(x, 0) = y(x) for x ∈ [0, L].

It is convenient to rewrite (3.1) as:

∂f(x, t)

∂t
= θ(x)

∂2f(x, t)

∂x2 +
∂θ(x)

∂x

∂f(x, t)

∂x
+ q(x, t) (3.2)

and employ the finite difference method (FDM) to discretize the PDE over the time and

1Generalization of the boundary conditions to nonzero values is possible as well.
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space domains [101]. For N and P given positive integers, let ∆x = L/(N + 1) and

xk = k∆x for k ∈ {0, 1, 2, . . . , N + 1}, and similarly, let ∆t = T/P and ti = i∆t for

i ∈ {0, 1, 2, . . . , P}. We further introduce the sampled values of the pressure distribution

fk(i) , f(xk, ti), input qk(i) , q(xk, ti), and space-varying coefficient θk , θ(xk). It can be

verified that applying FDM to (3.2), yields the following recursion:

fk(i) = uk,ih
o
k + ∆t qk(i− 1), k ∈ {1, 2, . . . , N} (3.3)

where the vectors hok ∈ R3×1 and uk,i ∈ R1×3 are defined as

hok , [ho1,k, h
o
2,k, h

o
3,k]

T (3.4)

uk,i , [fk−1(i− 1), fk(i− 1), fk+1(i− 1)] (3.5)

the entries hom,k ∈ R are:

ho1,k =
ν

4
(θk−1 + 4θk − θk+1) (3.6)

ho2,k = 1− 2ν θk (3.7)

ho3,k =
ν

4
(−θk−1 + 4θk + θk+1) (3.8)

and ν = ∆t/∆x2. Note that relation (3.3) is defined for k ∈ {1, 2, · · · , N}, i.e., no data

sampling is required to be taken at x = {0, L} because f0(i) and fN+1(i) respectively

correspond to the known boundary conditions f(0, t) and f(L, t).

For monitoring purposes (e.g., estimation of θ(x)), sensor nodes collect noisy measure-

ment samples of f(x, t) across the network. We denote these scalar measurement samples

by

zk(i) = fk(i) + nk(i) (3.9)

where nk(i) ∈ R is random noise term. Substituting (3.3) into (3.9) leads to

dk(i) = uk,ih
o
k + nk(i) (3.10)

where

dk(i) , zk(i)−∆t qk(i− 1) (3.11)
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The space-dependent model (3.10) can be generalized to accommodate higher order PDE’s,

or to describe systems with more than one spatial dimension. In the generalized form, we

assume that uk,i is random due to the possibility of sampling errors, and therefore represent

it using boldface notation uk,i. We also let hok and uk,i be M -dimensional vectors. In

addition, we denote the noise more generally by the symbol vk(i) to account for different

sources of errors, including the measurement noise shown in (3.9) and modeling errors.

Considering this generalization, the space-varying regression model that we shall consider

is of the form:

dk(i) = uk,ih
o
k + vk(i) (3.12)

where dk(i) ∈ R,uk,i ∈ R1×M , hok ∈ RM×1 and vk(i) ∈ R. In this work, we study networks

that monitor phenomena characterized by regression models of the form (3.12), where the

objective is to estimate the space-varying parameter vectors hok for k ∈ {1, 2, · · · , N}. In

particular, we seek a distributed solution in the form of an adaptive algorithm with a

diffusion mode of cooperation to enable the nodes to estimate and track these parameters

over both space and time. The available information for estimation of the {hok} are the

measurement samples, {dk(i),uk,i}, collected at the N spatial position xk, which we take

to represent N nodes.

Several studies, e.g., [41–43], solved space-varying parameter estimation problems using

non-adaptive centralized techniques. In centralized optimization, the space-varying param-

eters {hok} are found by minimizing the following global cost function over the variables

{hk}:
J(h1, . . . , hN) ,

N∑
k=1

Jk(hk) (3.13)

where

Jk(hk) , E|dk(i)− uk,ihk|2 (3.14)

To find hok using distributed mechanisms, however, preliminary steps are required to trans-

form the global cost (3.13) into a suitable form convenient for decentralized optimiza-

tion [33]. Observe from (3.6)-(3.8) that collaborative processing is beneficial in this case

because the vectors hok of neighboring nodes are related to each other through the space-

dependent function θ(x).

Remark 3.1. Note that if nodes individually estimate their own space-varying parameters

by minimizing Jk(hk), then at each time instant, they will need to transmit their estimates
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to a fusion center for interpolation, in order to determine the value of the model parameters

over regions of space where no measurements were collected. Using the proposed distributed

algorithm in Section 3.3.2, it will be possible to update the estimates and interpolate the

results in a fully distributed manner. Cooperation also helps the nodes refine their estimates

and perform more accurate interpolation. �

3.3 Adaptive Distributed Optimization

In distributed optimization over networked systems, nodes achieve their common objective

through collaboration. Such an objective may be defined as finding a global parameter

vector that minimizes a given cost function that encompasses the entire set of nodes. For

the problem stated in this study, the unknown parameters in (3.13) are node-dependent.

However, as we explained in Section 3.2, these space-varying parameters are related through

a well-defined function, e.g., θ(x) over the spatial domain. In the continuous space domain,

the entries of each hok, i.e., {ho1,k, · · · , hoM,k} can be interpreted as samples of M unknown

space-varying parameter functions {ho1(x), · · · , hoM(x)} at location x = xk, as illustrated in

Fig. 3.1.

∆x

   N

x

0=x L=x

∆ x ∆N x∆ x

1 ( )oh x

2 ( )oh x

( )o
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o
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Fig. 3.1 An example of the space-varying parameter estimation problem
over a one-dimensional network topology. The larger circles on the x-axis rep-
resent the node locations at x = xk. These nodes collect samples {dk(i),uk,i}
to estimate the space-varying parameters {hok}. For simplicity in defining the
vectors bk in (3.20), for this example, we assume that the node positions xk are
uniformly spaced, however, generalization to non-uniform spacing is straight-
forward.
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We can now use the well-established theory of interpolation to find a set of linear

expansion coefficients, common to all the nodes, in order to estimate space-varying pa-

rameters using distributed optimization. Specifically, we assume that the m-th unknown

space-varying parameter function, hom(x) can be expressed as a unique linear combination

of some Nb space basis functions, i.e.,

hom(x) = Wm,1b1(x) +Wm,2b2(x) + · · ·+Wm,NbbNb(x) (3.15)

where {Wm,n} are the unique expansion coefficients and {bn(x)} are the basis functions. In

the application examples treated in Section 3.5, we adopt shifted Chebyshev polynomials

as basis functions, which are generated using the following expressions [102]:

b1(x) = 1, b2(x) = 2x− 1 (3.16)

bn+1(x) = 2(2x− 1)bn(x)− bn−1(x), 2 < n < Nb (3.17)

The choice of a suitable set of basis functions {bn(x)}Nbn=1 is application-specific and guided

by multiple considerations such as representation efficiency, low computational complex-

ity, interpolation capability, and other desirable properties, such as orthogonality. Using

Chebyshev polynomials as basis functions yields good results in terms of the above criteria

and helps avoid the Runge’s phenomenon at the endpoints of the space interval [102].

The sampled version of the m-th space-varying parameter hom(x) in (3.15), at x = xk =

k∆x, can be written as:

hom,k = W T
mbk (3.18)

where

Wm , [Wm,1,Wm,2, · · · ,Wm,Nb ]
T (3.19)

bk , [b1,k, · · · , bNb,k]T (3.20)

and each entry bn,k is obtained by sampling the corresponding basis function at the same

location, i.e.,

bn,k , bn(xk) = bn(k∆x) (3.21)

Collecting the sampled version of all M functions hom(x) for m ∈ {1, · · · ,M} into a column
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vector as

hok = [ho1,k, h
o
2,k, · · · , hoM,k]

T (3.22)

and using (3.18), we arrive at:

hok = W obk (3.23)

where

W o ,


W o

1,1 W o
1,2 . . . W o

1,Nb

W o
2,1 W o

2,2 . . . W o
2,Nb

...
... . . .

...

W o
M,1 W o

M,2 . . . W o
M,Nb

 (3.24)

Remark 3.2. Several other interpolation techniques can be used to obtain the basis func-

tions bn(x), such as the so-called kriging method [103]. The latter is a data-based weighting

approach, rather than a distance-based interpolation. It is applicable in scenarios where the

unknown random field to be interpolated, in our case hok, is wide-sense stationary; accord-

ingly, it requires knowledge about the means and covariances of the random field over space,

as employed in [104]. If these covariances are not available, then the variogram models, de-

scribing the degree of spatial dependence of the random field, are used to generate substitutes

for these covariances [105]. However, a-priori knowledge about the parameters of variogram

models, including nugget, sill, and range, are required to obtain the spatial covariances. In

this work, since neither the means and covariances nor the parameters of the variogram

models of the random fields are available, we focus on interpolation techniques that rely on

distance information rather than the statistics of the random field to be interpolated. �

Returning to equation (3.23), it is convenient to rearrange W o into an MNb×1 column

vector wo by stacking up the columns of W oT , i.e., wo = vec(W oT ), and defining the block

diagonal matrix Bk ∈ RM×MNb as:

Bk , IM ⊗ bTk (3.25)
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Then, relation (3.23) can be rewritten in terms of the unique parameter vector wo as:

hok = Bkw
o (3.26)

so that substituting hok from (3.26) into (3.12) yields:

dk(i) = uk,iBkw
o + vk(i) (3.27)

Subsequently, the global cost function (3.13) becomes:

J(w) =
N∑
k=1

E|dk(i)− uk,iBkw|2 (3.28)

In the following, we elaborate on how the parameter vector wo and, hence, the {hok} can be

estimated from the data {dk(i),uk,i} using centralized and distributed adaptive optimiza-

tion.

3.3.1 Centralized Adaptive Solution

We begin by stating the assumed statistical conditions on the data (3.27) over the network.

Assumption 3.1. Statistical assumption of the network data model (3.27)

a) dk(i) and uk,i are zero-mean, jointly wide-sense stationary random processes with

second-order moments:

rdu,k = E[dk(i)u
T
k,i] ∈ RM×1 (3.29)

Ru,k = E[uTk,iuk,i] ∈ RM×M (3.30)

b) The regression data {uk,i} are i.i.d. over time, independent over space, and their

covariance matrices, Ru,k, are positive definite for all k.

c) The noise processes {vk(i)} are zero-mean, i.i.d. over time, and independent over

space with variances {σ2
v,k}.
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d) The regression data uk,i and the noise vm(n) are mutually independent for all k, m,

i and n.

�

The optimal parameter wo that minimizes (3.28) can be found by setting the gradient

vector of J(w) to zero. This yields the following normal equations:

( N∑
k=1

R̄u,k

)
wo =

N∑
k=1

r̄du,k (3.31)

where {R̄u,k, r̄du,k} denote the second-order moments of uk,iBk and dk(i):

R̄u,k , BT
k Ru,kBk, r̄du,k , BT

k rdu,k (3.32)

It is clear from (3.31) that when
∑N

k=1 R̄u,k > 0, then wo can be determined uniquely. If,

on the other hand,
∑N

k=1 R̄u,k is singular, then we can use its pseudo-inverse to recover the

minimum-norm solution of (3.31). Once the global solution is estimated, we can retrieve

the space-varying parameter vectors hok by substituting wo into (3.26).

Alternatively the solution wo of (3.31) can be sought iteratively by using the following

steepest descent recursion:

w
(c)
i = w

(c)
i−1 + µ

N∑
k=1

(
r̄du,k − R̄u,kw

(c)
i−1

)
(3.33)

where µ > 0 is a step-size parameter and w
(c)
i is the estimate of wo at the i-th iteration.

Recursion (3.33) requires the centralized processor to have knowledge of the covariance

matrices, R̄u,k, and cross covariance vectors, r̄du,k, across all nodes. In practice, these

moments are unknown in advance, and we therefore use their instantaneous approximations

in (3.33). This substitution leads to the centralized LMS strategy (3.34)–(3.35) for space-

varying parameter estimation over networks.

In this algorithm, at any given time instant i, each node transmits its data {uk,i,dk(i)}
to the central processing unit to update w

(c)
i−1. Subsequently, the algorithm obtains an

estimate for the space-varying parameters, hk,i, by using the updated estimate w
(c)
i , and

the basis function matrix at location k, (i.e., Bk). This latter step can also be used as

an interpolation mechanism to estimate the space-varying parameters at locations other
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Algorithm 3.1 : Centralized LMS for space-varying parameter estimation

w
(c)
i = w

(c)
i−1 + µ

N∑
k=1

BT
k u

T
k,i

(
dk(i)− uk,iBkw

(c)
i−1

)
(3.34)

hk,i = Bkw
(c)
i , k ∈ {1, 2, · · · , N} (3.35)

than the pre-determined locations {xk}, by using the corresponding matrix B(x) for some

desired location x.

3.3.2 Adaptive Diffusion Strategy

There are different distributed optimization techniques that can be applied to (3.28) in

order to estimate wo and consequently obtain the optimal space-varying parameters hok.

Let Nk denote the index set of the neighbors of node k, i.e., the nodes with which node k

can share information (including k itself). One possible optimization strategy is to decouple

the global cost (3.28) and write it as a set of constrained optimization problems with local

variables wk, [106], i.e.,

min
wk

∑
`∈Nk

c`,kE|d`(i)− u`,iBkwk|2

subject to wk = w (3.36)

where c`,k are nonnegative entries of a right-stochastic matrix C ∈ RN×N satisfying:

c`,k = 0 if ` /∈ Nk and C1 = 1 (3.37)

The optimization problem (3.36) can be solved using, for example, the alternating directions

method of multipliers (ADMM) [79, 106]. In the algorithm derived using this method, the

Lagrangian multipliers associated with the constraints need to be updated at every iteration

during the optimization process. To this end, information about the network topology is

required to establish a hierarchial communication structure between nodes. In addition,

the constraints imposed by (3.36) require all agents to agree on an exact solution; this

requirement degrades the learning and tracking abilities of the nodes over the network.
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When some nodes observe relevant data, it is advantageous for them to be able to respond

quickly to the data without being critically constrained by perfect agreement at that stage.

Doing so, would enable information to diffuse more rapidly across the network.

A technique that does not suffer from these difficulties and endows networks with adap-

tation and learning abilities in real-time is the diffusion strategy [27,29,33,82,107]. In this

technique, minimizing the global cost (3.28) motivates solving the following unconstrained

local optimization problem for k ∈ {1, · · · , N} [33]:

min
w

(∑
`∈Nk

c`,kE|d`(i)− u`,iBkw|2 +
∑

`∈Nk\{k}

p`,k‖w − wo‖2

)
(3.38)

where {p`,k} are nonnegative scaling parameters. Following the arguments in [29, 33, 82],

the minimization of (3.38) leads to a general form of the diffusion strategy described by

(3.39)–(3.42), which can be specialized to several simpler yet useful forms.

Algorithm 3.2 : Diffusion LMS for space-varying parameter estimation

φk,i−1 =
∑
`∈Nk

a
(1)
`,kw`,i−1 (3.39)

ψk,i = φk,i−1 + µk
∑
`∈Nk

c`,kB
T
` u

T
`,i

(
d`(i)− u`,iB`φk,i−1

)
(3.40)

wk,i =
∑
`∈Nk

a
(2)
`,kψ`,i (3.41)

hk,i = Bkwk,i (3.42)

In this algorithm, µk > 0 is the step-size at node k, {wk,i,ψk,i,φk,i−1} are intermediate

estimates of wo, hk,i is an intermediate estimate of hok, and {a(1)
`,k , a

(2)
`,k} are nonnegative

entries of left-stochastic matrices A1, A2 ∈ RN×N that satisfy:

a
(1)
`,k = a

(2)
`,k = 0 if ` /∈ Nk (3.43)

AT1 1 = 1 AT2 1 = 1 (3.44)

Each node k in the first combination step fuses {w`,i−1}`∈Nk in a convex manner to generate

φk,i−1. In the following step, named adaptation, each node k uses its own data and that

of neighboring nodes, i.e.,
{
u`,i,d`(i)

}
`∈Nk

to adaptively update φk,i−1 to an intermediate
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estimate ψk,i. In the third step, which is also a combination, the intermediate estimates

{ψ`,i}`∈Nk are fused to further align the global parameter estimate at node k to that of its

neighbors. Subsequently, the desired space-varying parameter hk,i is obtained from wk,i.

Note that each step in the algorithm runs concurrently over the network.

Remark 3.3. The main difference between Algorithm 3.2 and the previously developed dif-

fusion LMS strategies in, e.g., [27, 33, 82] is in the transformed domain regression data

u`,iB` in (3.40) which now have singular covariance matrices. Moreover, there is an addi-

tional interpolation step (3.42). �

Remark 3.4. The proposed diffusion LMS algorithm estimates NM spatially dependent

variables {hok} using NbM global invariant coefficients in wo. From the computational

complexity and energy efficiency point of view, it seems this is advantageous when the

number of nodes, N , is greater than the number of basis functions Nb. However, even if

this is not the case, using the estimated NbM global invariant coefficients, the algorithm not

only can estimate the space-varying parameters at the locations of the N nodes, but can also

estimate the space-varying parameters at locations where no measurements are available.

Therefore, even when N < Nb, the algorithm is still useful as it can perform interpolation.

�

There are different choices for the combination matrices {A1, A2, C}. For example, the

choice A1 = A2 = C = I reduces the above diffusion algorithm to the non-cooperative case

where each node runs an individual LMS filter without coordination with its neighbors.

Selecting C = I simplifies the adaptation step (3.40) to the case where node k uses only

its own data {dk(i),uk,i} to perform local adaptation. Choosing A1 = I and A2 = A, for

some left-stochastic matrix A, removes the first combination step and the algorithm re-

duces to an adaptation step followed by combination (this variant of the algorithm has the

Adapt-then-Combine or ATC diffusion structure) [33, 82]. Likewise, choosing A1 = A and

A2 = I removes the second combination step and the algorithm reduces to a combination

step followed by adaptation (this variant has the Combine-then-Adapt (CTA) structure of

diffusion [33, 82]). Often in practice, either the ATC or CTA version of the algorithm is

used with C set to C = I. Nevertheless for generality, we shall study the performance of

Algorithm 3.2 for arbitrary matrices {A1, A2, C} with C right-stochastic and {A1, A2} left-

stochastic. The results can then be specialized to various situations of interest, including
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ATC, CTA, and the non-cooperative case. The combination matrices {A1, A2, C} are nor-

mally obtained using some well-known available combination rules such as the Metropolis

or uniform combination rules [19,27,33]. These matrices can also be treated as free variables

in the optimization procedure and used to further enhance the performance of the diffusion

strategies. Depending on the network topology and the quality of the communication links

between nodes, the optimized values of the combination matrices differ from one case to

another [53,54,63,82].

3.4 Performance Analysis

In this section, we analyze the performance of the diffusion strategy (3.39)-(3.42) in the

mean and mean-square sense and derive expressions to characterize the network mean-

square deviation (MSD) and excess mean-square error (EMSE). In the analysis, we need

to consider the fact that the covariance matrices {R̄u,k}Nk=1 defined in (3.32) are now rank-

deficient since we have Nb > 1. We explain in the sequel the ramifications that follow from

this rank-deficiency.

3.4.1 Mean Convergence

We introduce the local weight-error vectors

w̃k,i , wo −wk,i (3.45)

ψ̃k,i , wo −ψk,i (3.46)

φ̃k,i , wo − φk,i (3.47)

and define the network error vectors:

φ̃i , col{φ̃1,i, . . . , φ̃N,i} (3.48)

ψ̃i , col{ψ̃1,i, . . . , ψ̃N,i} (3.49)

w̃i , col{w̃1,i, . . . , w̃N,i} (3.50)
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We collect the estimates from across the network into the block vector:

wi , col{w1,i, . . . ,wN,i} (3.51)

and introduce the following extended combination matrices:

A1 , A1 ⊗ IMNb (3.52)

A2 , A2 ⊗ IMNb (3.53)

C , C ⊗ IMNb (3.54)

We further define the block diagonal matrices and vectors:

Ri , diag

{∑
`∈Nk

c`,kB
T
` u

T
`,iu`,iB` : k = 1, · · · , N

}
(3.55)

M , diag
{
µ1IMNb , . . . , µNIMNb

}
(3.56)

ti , col

{∑
`∈Nk

c`,kB
T
` u

T
`,id`(i) : k = 1, · · · , N

}
(3.57)

gi , CT col
{
BT

1 u
T
1,iv1(i), · · · , BT

Nu
T
N,ivN(i)

}
(3.58)

and introduce the expected values of Ri and ti:

R , E[Ri] = diag
{
R1, · · · , RN

}
(3.59)

r , E[ti] = col
{
r1, · · · , rN

}
(3.60)

where

Rk ,
∑
`∈Nk

c`,k R̄u,` (3.61)

rk ,
∑
`∈Nk

c`,k r̄du,` (3.62)
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We also introduce an indicator matrix operator, denoted by Ind(·), such that for any real-

valued matrix X with (k, j)-th entry Xk,j, the corresponding entry of Y = Ind(X) is:

Yk,j =

{
1, if Xk,j > 0

0, otherwise
(3.63)

Now from (3.39)–(3.41), we obtain:

wi = Biwi−1 +AT2Mti (3.64)

where

Bi , AT2 (I −MRi)AT1 (3.65)

In turn, making use of (3.27) in (3.64), we can verify that the network error vector follows

the recursion

w̃i = Biw̃i−1 −AT2Mgi (3.66)

By taking the expectation of both sides of (3.66) and using Assumption 3.1, we arrive at:

E[w̃i] = BE[w̃i−1] (3.67)

where in this relation:

B , E[Bi] = AT2 (I −MR)AT1 (3.68)

To obtain (3.67), we used the fact that the expectation of the second term in (3.66), i.e.,

E[AT2Mgi], is zero because vk(i) is independent of uk,i and E[vk(i)] = 0. The rank-deficient

matrices {R̄u,k} appear insideR in (3.68). We now verify that despite having rank-deficient

matrix R, recursion (3.67) still guarantees a bounded mean error vector in steady-state.

To proceed, we introduce the eigendecomposition of each diagonal block Rk and write:

Rk = QkΛkQ
T
k (3.69)

where Qk = [qk,1, · · · , qk,MNb ] is a unitary matrix with column eigenvectors qk,j and Λk =
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diag{λk(1), · · · , λk(MNb)} is a diagonal matrix with eigenvalues λk(j) ≥ 0. For this de-

composition, we assume that the eigenvalues of Rk are arranged in descending order, i.e,

λmax(Rk) , λk(1) ≥ λk(2) ≥ · · · ≥ λk(MNb), and the rank of Rk is Lk ≤MNb. If we define

Q , diag{Q1, . . . , QN} and Λ , diag{Λ1, · · · ,ΛN}, then the network covariance matrix,

R, given by (3.59) can be expressed as:

R = QΛQT (3.70)

We now note that the mean estimate vector, E[w̃i], expressed by (3.67) will be asymp-

totically unbiased if the spectral radius of B, denoted by ρ(B), is strictly less than one.

Let us examine under what conditions this requirement is satisfied. Since A1 and A2 are

left-stochastic matrices and R is block-diagonal, we have from [82] that:

ρ(B) = ρ

(
AT2 (I −MR)AT1

)
≤ ρ
(
I −MR

)
(3.71)

Therefore, if R is positive-definite, then choosing µk < 2/λmax(Rk) ensures convergence of

the algorithm in the mean so that E[w̃i] → 0 as i → ∞. However, when R is singular,

it may hold that ρ(B) = 1, in which case choosing the step-sizes according to the above

bound guarantees the boundedness of the mean error, E[w̃i], but not necessarily that it

converges to zero. The following result clarifies these observations.

Theorem 3.1. If the step-sizes are chosen to satisfy

0 < µk <
2

λmax(Rk)
(3.72)

then, under Assumption 3.1, the diffusion algorithm is stable in the mean in the following

sense: (a) If ρ(B) < 1, then E[w̃i] converges to zero and (b) if ρ(B) = 1 then

lim
i→∞

∥∥∥E[w̃i]
∥∥∥
b,∞
≤ ‖I − Ind(Λ)‖b,∞

∥∥∥E[w̃−1]
∥∥∥
b,∞

(3.73)

where ‖ · ‖b,∞ stands for the block-maximum norm, as defined in [63, 82].

Proof. See Appendix A.1.

In what follows, we examine recursion (3.64) and derive an expression for the asymptotic
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value of E[wi]—see (3.88) further ahead. Before do so, we first comment on a special case

of interest, namely, result (3.75) below.

Special case: Consider a network with A1 = A2 = I and an arbitrary right stochastic

matrix C satisfying (3.37). Using (3.27) and (3.61)-(3.62), it can be verified that the

following linear system of equations holds at each node k:

Rkw
o = rk (3.74)

We show in Appendix A.2 that under condition (3.72) the mean estimate of the diffusion

LMS algorithm at each node k will converge to:

lim
i→∞

E[wk,i] = R†krk +

MNb∑
n=Lk+1

qk,nq
T
k,nE[wk,−1] (3.75)

where R†k represents the pseudo-inverse of Rk, and wk,−1 is the node initial value. This

result is consistent with the mean estimate of the stand-alone LMS filter with rank-deficient

input data (which corresponds to the situation A1 = A2 = C = I) [108]. Note that R†krk in

(3.75) corresponds to the minimum-norm solution of Rkw = rk. Therefore, the second term

on the right hand side of (3.75) is the deviation of the node estimate from this minimum-

norm solution. The presence of this term after convergence is due to the zero eigenvalues

of Rk. If Rk were full-rank so that Lk = MNb, then this term would disappear and the

node estimate will converge, in the mean, to its optimal value, wo. We point out that even

though the matrices R̄u,` are rank deficient since Nb > 1, it is still possible for the matrices

Rk to be full rank owing to the linear combination operation in (3.61). This illustrates

one of the benefits of employing the right-stochastic matrix C. However, if despite using

C, Rk still remains rank-deficient, the second term on the right-hand side of (3.75) can be

annihilated by proper node initialization (e.g., by setting E[wk,−1] = 0). By doing so, the

mean estimate of each node will then approach the unique minimum-norm solution, R†krk.

General case: Let us now find the mean estimate of the network for arbitrary left-

stochastic matrices A1 and A2. Considering definitions (3.59)-(3.60) and relation (3.74)

and noting that AT1 (1 ⊗ wo) = AT2 (1 ⊗ wo) = (1 ⊗ wo), it can be verified that (1 ⊗ wo)
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satisfies the following linear system of equations:

(I − B)(1⊗ wo) = AT2Mr (3.76)

This is a useful intermediate result that will be applied in our argument.

Next, if we iterate recursion (3.64) and apply the expectation operator, we then obtain

E[wi] = Bi+1E[w−1] +
i∑

j=0

BjAT2Mr (3.77)

The mean estimate of the network can be found by computing the limit of this expression

for i→∞. To find the limit of the first term on the right hand side of (3.77), we evaluate

limi→∞ Bi and find conditions under which it converges. For this purpose, we introduce the

Jordan decomposition of matrix B as [93]:

B = ZΓZ−1 (3.78)

where Z is an invertible matrix, and Γ is a block diagonal matrix of the form

Γ = diag

{
Γ1,Γ2, · · · ,Γs

}
(3.79)

where the l-th Jordan block, Γl ∈ Cml×ml , can be expressed as:

Γl = γlIml +Nml (3.80)

In this relation, Nml is some nilpotent matrix of size ml×ml. Using decomposition (3.78),

we can express Bi as

Bi = ZΓiZ−1 (3.81)

Since Γ is block diagonal, we have

Γi = diag

{
Γi1,Γ

i
2, · · · ,Γis

}
(3.82)

From this relation, it is deduced that limi→∞ Bi exists if limi→∞ Γil exists for all l ∈
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{1, · · · , s}. Using (3.80), we can write [93]:

lim
i→∞

Γil = lim
i→∞

γi−mll

γmll Iml +

ml−1∑
p=1

(
i

p

)
γml−pl Np

ml

 (3.83)

When i→∞, γi−mll becomes the dominant factor in this expression. Note that under

condition (3.72), we have ρ(B) ≤ 1 which in turn implies that the magnitude of the eigen-

values of B are bounded as 0 ≤ |γn| ≤ 1. Without loss of generality, we assume that the

eigenvalues of B are arranged as |γ1| ≤ · · · ≤ |γL| < |γL+1| = · · · = |γs| = 1. Now we

examine the limit (3.83) for every |γl| in this range. Clearly for |γl| < 1, the limit is zero

(an obvious conclusion since in this case Γl is a stable matrix). For |γl| = 1, the limit is the

identity matrix if γl = 1 and ml = 1. However, the limit does not exist for unit magnitude

complex eigenvalues and eigenvalues with value -1, even when ml = 1. Motivated by these

observations, we introduce the following definition.

Definition: We refer to matrix B as power convergent if (a) its eigenvalues γn satisfy

0 ≤ |γn| ≤ 1, (b) its unit magnitude eigenvalues are all equal to one, and (c) its Jordan

blocks associated with γn = 1 are all of size 1× 1. �

Example 1: Assume Nb = 1, Bk = IM , and uniform step-sizes and covariance matrices

across the agents, i.e., µk ≡ µ, Ru,k ≡ Ru for all k. Assume further that C is doubly-

stochastic (i.e., CT1 = 1 = C1). Then, in this case, the matrix B can be written as the

Kronecker product B = AT2A
T
1 ⊗ (IM −µRu). For strongly-connected networks where A1A2

is a primitive matrix, it follows from the Perron-Frobenius Theorem [91] that A1A2 has a

single unit-magnitude eigenvalue at one, while all other eigenvalues have magnitude less

than one. We conclude in this case, from the properties of Kronecker products and under

condition (3.72), that B is a power-convergent matrix. �

Example 2: Assume M = 2, N = 3, Nb = 1, Bk = IM , and uniform step-sizes and

covariance matrices across the agents again. Let A2 = I = C and select

A1 = A =


1/2 0 0

1/2 0 1

0 1 0

 (3.84)
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which is not primitive. Let further Ru = diag{β, 0} denoe a singular covariance matrix.

Then, it can be verified in this case the corresponding matrix B will have an eigenvalue

with value −1 and is not power convergent. �

Returning to the above definition and assuming B is power convergent, then this means

that the Jordan decomposition (3.78) can be rewritten as:

B = [Z1 Z2︸ ︷︷ ︸
Z

]

 J 0

0 I


︸ ︷︷ ︸

Γ

 Z̄1

Z̄2


︸ ︷︷ ︸
Z−1

(3.85)

where J is a Jordan matrix with all eigenvalues strictly inside the unit circle, and the

identity matrix inside Γ accounts for the eigenvalues with value one. In (3.85) we are further

partitioning Z and Z−1 in accordance with the size of J . Using (3.85), it is straightforward

to verify that

lim
i→∞
Bi+1 = Z2Z̄2 (3.86)

and if we multiply both sides of (3.76) from the left by Z̄2, it also follows that

Z̄2AT2Mr = 0 (3.87)

Using these relations, we can now establish the following result, which describes the limiting

behavior of the weight vector estimate.

Theorem 3.2. If the step-sizes {µ1, · · · , µN} satisfy (3.72) and matrix B is power con-

vergent, then the mean estimate of the network given by (3.77) asymptotically converges

to:

lim
i→∞

E[wi] = (Z2Z̄2)E[w−1] + (I − B)−AT2Mr (3.88)

where the notation X− denotes a (reflexive) generalized inverse for the matrix X. In this

case, the generalized inverse for I − B is given by

(I − B)− = Z1(I − J)−1Z̄1 (3.89)
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in terms of the factors {Z1, Z̄1, J} defined in (3.85).

Proof. See Appendix A.3.

We also argue in Appendix A.3 that the quantity on the right-hand side of (3.88) is

invariant under basis transformations for the Jordan factors {Z1, Z̄1,Z2, Z̄2}. It can be

verified that if A1 = A2 = I then B will be symmetric and the result (3.88) will reduce

to (3.75). Now note that the first term on the right hand side of (3.88) is due to the

zero eigenvalues of I − B. From this expression, we observe that different initialization

values generally lead to different estimates. However, if we set E[w−1] = 0, the algorithm

converges to:

lim
i→∞

E[wi] = (I − B)−AT2Mr (3.90)

In other words, the diffusion LMS algorithm will converge on average to a generalized

inverse solution of the linear system of equations defined by (3.76).

When matrix B is stable so that ρ(B) < 1 then the factorization (3.85) reduces to the

form B = Z1JZ̄1 and I −B will be full-rank. In that case, the first term on the right hand

side of (3.88) will be zero and the generalized inverse will coincide with the actual matrix

inverse so that (3.88) becomes

lim
i→∞

E[wi] = (I − B)−1AT2Mr (3.91)

Comparing (3.91) with (3.76), we conclude that:

lim
i→∞

E[wi] = 1⊗ wo (3.92)

which implies that the mean estimate of each node will be wo. This result is in agree-

ment with the previously developed mean-convergence analysis of diffusion LMS when the

regression data have full rank covariance matrices [82].

3.4.2 Mean-Square Error Convergence

We now examine the mean-square stability of the error recursion (3.66) in the rank-deficient

scenario. We begin by deriving an error variance relation as in [89,109]. To find this relation,
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we form the weighted square “norm” of (3.66), and compute its expectation to obtain:

E‖w̃i‖2
Σ = E

(
‖w̃i−1‖2

Σ′

)
+ E[gTiMA2ΣAT2Mgi] (3.93)

where ‖x‖2
Σ = xTΣx and Σ ≥ 0 is an arbitrary weighting matrix of compatible dimension

that we are free to choose. In this expression,

Σ′ = A1(I −MRi)
TA2ΣAT2 (I −MRi)AT1 (3.94)

Under the temporal and spatial independence conditions on the regression data from As-

sumption 3.1, we can write:

E
(
‖w̃i−1‖2

Σ′

)
= E‖w̃i−1‖2

E[Σ′] (3.95)

so that (3.93) becomes:

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ′ + Tr[ΣAT2MGMA2] (3.96)

where G , E[gig
T
i ] is given by

G = CTdiag
{
σ2
v,1R̄u,1, . . . , σ

2
v,N R̄u,N

}
C (3.97)

and

Σ′ , E[Σ′] = BTΣB +O(M2) ≈ BTΣB (3.98)

We shall employ (3.98) under the assumption of sufficiently small step-sizes where terms

that depend on higher-order powers of the step-sizes are ignored. We next introduce

Y , AT2MGMA2 (3.99)

and use (6.11) to write:

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ′ + Tr(ΣY) (3.100)
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From (3.100), we arrive at

E‖w̃i‖2Σ =E‖w̃−1‖2(BT )i+1ΣBi+1 +
i∑

j=0

Tr

(
(BT )jΣBjY

)
(3.101)

To prove the convergence and stability of the algorithm in the mean-square sense, we

examine the convergence of the terms on the right hand side of (3.101).

In a manner similar to (3.87), it is shown in Appendix A.4 that the following property

holds:

Z̄2Y = 0, YZ̄T2 = 0 (3.102)

Exploiting this result, we can arrive at the following statement, which establishes that

relation (3.101) converges as i→∞ and determines its limiting value.

Theorem 3.3. Assume the step-sizes are sufficiently small and satisfy (3.72). Assume

also that B is power convergent. Under these conditions, relation (3.101) converges to

lim
i→∞

E‖w̃i‖2
Σ = E‖w̃−1‖2

(Z2Z̄2)TΣZ2Z̄2
+
(

vec(Y)
)T

(I −F)−1vec(Σ) (3.103)

where

F ,
(

(Z1 ⊗Z1)(J ⊗ J)(Z̄1 ⊗ Z̄1)
)T

(3.104)

and factors {Z1, Z̄1, J} are defined in (3.85).

Proof. See Appendix A.4.

In a manner similar to the proof at the end of Appendix A.3, the term on the right

hand side of (3.103) is invariant under basis transformations on the factors {Z1, Z̄1,Z2, Z̄2}.
Note that the first term on the right hand side of (3.103) is the network penalty due to

rank-deficiency. When the node covariance matrices are full rank, then choosing step-sizes

according to (3.72) leads to ρ(B) < 1. When this holds, then B = Z1JZ̄1. In this case, the

first term on the right hand side of (3.103) will be zero, and F = (B ⊗ B)T . In this case,

we obtain:

lim
i→∞

E‖w̃i‖2
Σ =

(
vec(Y)

)T
(I −F)−1vec(Σ) (3.105)
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which is in agreement with the mean-square analysis of diffusion LMS strategies for regres-

sion data with full rank covariance matrices given in [33,82].

3.4.3 Learning Curves

For each k, the MSD and EMSE measures are defined as:

ηk = lim
i→∞

E‖h̃k,i‖2 = lim
i→∞

E‖w̃k,i‖2
BTk Bk

(3.106)

ζk = lim
i→∞

E‖uk,ih̃k,i−1‖2 = lim
i→∞

E‖w̃k,i−1‖2
R̄u,k

(3.107)

where h̃k,i = hok − hk,i. These parameters can be computed from the network error vector

(3.103) through proper selection of the weighting matrix Σ as follows:

ηk = lim
i→∞

E‖w̃i‖2
Σmsdk

, ζk = lim
i→∞

E‖w̃i−1‖2
Σemsek

, (3.108)

where

Σmsdk = diag(ek)⊗ (BT
k Bk), Σemsek = diag(ek)⊗ R̄u,k (3.109)

and {ek}Nk=1 denote the vectors of a canonical basis set in N dimensional space. The network

MSD and EMSE measures are defined as

ηnet =
1

N

N∑
k=1

ηk, ζnet =
1

N

N∑
k=1

ζk (3.110)

We can also define MSD and EMSE measures over time as

ηk(i) = E‖h̃k,i‖2 = E‖w̃i‖2
Σmsdk

(3.111)

ζk(i) = E‖uk,ih̃k,i−1‖2 = E‖w̃i−1‖2
Σemsek

(3.112)

Using (3.101), it can be verified that these measures evolve according to the following

dynamics:

ηk(i) = ηk(i− 1)− ‖wo‖Hi(I−H)σmsdk
+ αTHiσmsdk (3.113)
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ζk(i) = ζk(i− 1)− ‖wo‖Hi−1(I−H)σemsek
+ αTHiσemsek (3.114)

where

H = (B ⊗ B)T (3.115)

α = vec(Y) (3.116)

σmsdk = vec(Σmsdk) (3.117)

σemsek = vec(Σemsek) (3.118)

To obtain (3.113) and (3.114), we set E[wk,−1] = 0 for all k.

3.5 Computer Experiments

In this section, we examine the performance of the diffusion strategy (3.39)-(3.42) and

compare the simulation results with the analytical findings. In addition, we present a

simulation example that shows the application of the proposed algorithm in the estimation

of space-varying parameters for a physical phenomenon modeled by a PDE system over

two spatial dimensions.

3.5.1 Performance of the Distributed Solution

We consider a one-dimensional network topology, illustrated by Fig. 3.1, with L = 1

and equally spaced nodes along the x direction. We choose A1 as the identity matrix,

and compute A2 and C based on the uniform combination and Metropolis rules [33, 82],

respectively. We choose M = 2 and Nb = 5 and generate the unknown global parameter

wo randomly for each experiment. We obtain Bk using the shifted Chebyshev polynomials

given by (3.17) and compute the space varying parameters hok according to (3.26). The

measurement data dk(i), k ∈ {1, 2, · · · , N} are generated using the regression model (3.12).

The SNR for each node k is computed as SNRk = E‖uk,ihok‖2/σ2
v,k. The noise and the entries

of the regression data are white Gaussian and satisfy Assumption 3.1. The noise variances,

{σ2
v,k}, and the trace of the covariance matrices, {Tr(Ru,k)}, are uniformly distributed

between [0.05, 0.1] and [1, 5], respectively.

Figure 3.2 illustrates the simulation results for a network with N = 4 nodes. For this

experiment, we set µk = 0.01 for all k and initialize each node at zero. In the legend of the
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Fig. 3.2 The network MSD learning curve for N = 4.
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figure, we use the subscript h to denote the MSD for h̃k,i and the subscript w to refer to the

MSD of w̃k,i. The simulation curves are obtained by averaging over 300 independent runs.

It can be seen that the simulated and theoretical results match well in all cases. In the

figure, we use expression (3.103) to assess the steady-state values and expression (3.113)

to generate the theoretical learning curves.

Two important points in Fig. 3.2 need to be highlighted. First, note from Fig. 3.2(a)

that the network MSD for w̃k,i is larger than that for h̃k,i. This is because

E‖h̃k,i‖2 = E‖w̃k,i‖2
BTk Bk

(3.119)

so that the MSD of h̃k,i is a weighted version of the MSD of w̃k,i. In this experiment,

the weighting leads to a lower estimation error. Second, note from Fig. 3.2(b) that while

the MSD values of w̃k,i are largely independent of the node index, the same is not true

for the MSD values of h̃k,i. In previous studies on diffusion LMS strategies, it has been

shown that, for strongly-connected networks, the network nodes approach a uniform MSD

performance level [107]. The result in Fig. 3.2(b) supports this conclusion where it is seen

that the MSD of w̃k,i for nodes 2 and 4 converge to the same MSD level. However, note

that the MSD of h̃k,i is different for nodes 2 and 4. This difference in behavior is due to

the difference in weighting across nodes from (3.119).

3.5.2 Comparison with Centralized Solution

We next compare the performance of the diffusion strategy (3.39)-(3.42) with the centralized

solution (3.34)–(3.35). We consider a network with N = 10 nodes with the topology

illustrated by Fig. 3.1. In this experiment, we set µk = 0.02 for all k, while the other

network parameters are obtained following the same construction described for Fig. 3.2.

As the results in Fig. 3.3 indicate, the diffusion and centralized LMS solutions tend to

the same MSD performance level in the w domain. This conclusion is consistent with

prior studies on the performance of diffusion strategies in the full-rank case over strongly-

connected networks [107]. However, discrepancies in performance are seen between the

distributed and centralized implementations in the h domain, and the discrepancy tends

to become larger for larger values of N . This is because, in moving from the w domain to

the h domain, the inherent aggregation of information that is performed by the centralized

solution leads to enhanced estimates for the hok variables. For example, if the estimates
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Fig. 3.3 The network MSD learning curve for N = 10.
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wk,i which are generated by the distributed solution are averaged prior to computing the

hk,i, then it can be observed that the MSD values of h̃k,i for both the centralized and the

distributed solution will be similar.

In these experiments, we also observe that if we increase the number of basis functions,

Nb, then both the centralized and diffusion algorithms will converge faster but their steady-

state MSD performance will degrade. Therefore, in choosing the number of basis functions,

Nb, there is a trade off between convergence speed and MSD performance.

3.5.3 Example: Two-Dimensional Process Estimation

In this example, we consider a two-dimensional network with 13×13 nodes that are equally

spaced over the unit square (x, y) ∈ [0, 1] × [0, 1] with ∆x = ∆y = 1/12 (see Fig. 3.4(a)).

This network monitors a physical process f(x, y) described by the Poisson PDE:

∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2
= h(x, y) (3.120)

where h(x, y) : [0, 1]2 → R is an unknown input function. The PDE satisfies the following

boundary conditions:

f(x, 0) = f(0, y) = f(x, 1) = f(1, y) = 0

For this problem, the objective is to estimate h(x, y), given noisy measurements collected

by N = Nx ×Ny = 11× 11 nodes corresponding to the interior points of the network. To

discretize the PDE, we employ the finite difference method (FDM) with uniform spacing

of ∆x and ∆y. We define xk1 , k1∆x, yk2 , k2∆y and introduce the sampled values

fk1,k2 , f(xk1 , yk2) and hok1,k2 , h(xk1 , yk2). We use the central difference scheme [101] to

approximate the second order partial derivatives:

∂2f(x, y, t)

∂x2
≈ 1

∆x2
[fk1+1,k2 − 2fk1,k2 + fk1−1,k2 ] (3.121)

∂2f(x, y, t)

∂y2
≈ 1

∆y2
[fk1,k2+1 − 2fk1,k2 + fk1,k2−1] (3.122)
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This leads to the following discretized input function:

hok1,k2 =
1

∆x2

(
fk1+1,k2 + fk1,k2+1 + fk1−1,k2

+ fk1,k2−1 − 4fk1,k2

)
(3.123)

For this example, the unknown input process is

hok1,k2 = e
−κ
(

(k1−4)2+(k2−4)2

)
− 5e

−κ
(

(k1−8)2+(k2−8)2

)
+ 1 (3.124)

where κ = (Nx − 1)2/4.

Sensor nodes

Boundary points

y

x

( )0∆x,

( )12 0∆x,

( )0 ∆, y

( )0 ∆, y

( )0 0,

(a) Network topology.

0

0.5

1

0

0.5

1
-0.05

0

0.05

 

 

f
k
1
,k

2

x

y -0.04

-0.03

-0.02

-0.01

0

0.01

0.02

(b) fk1,k2 over the space.

Fig. 3.4 Spatial distribution of f(x, y) over the network grid {(xk1 , yk2)}.

To obtain fk1,k2 , we solve (3.120) using the Jaccobi over-relaxation method [79]. Figure

3.4(b) illustrates the values of fk1,k2 over the spatial domain. For the estimation of hk1,k2 ,

the given information are the noisy measurement samples zk1,k2(i) = fk1,k2 + nk1,k2(i). In

this relation, the noise process nk1,k2(i) is zero mean, temporally white and independent

over space. For this network, the two dimensional reference signal is the distorted version

of hok1,k2 which is represented by dk1,k2(i). The reference signal is obtained from (3.123)

with {fk1,k2} replaced by their noisy measured samples zk1,k2(i), i.e.,

dk1,k2(i) =
1

∆x2

(
zk1+1,k2(i) + zk1,k2+1(i) + zk1−1,k2(i) + zk1,k2−1(i)− 4zk1,k2(i)

)
(3.125)
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According to (3.125), the linear regression model for this problem takes the following form:

dk1,k2(i) =uk1,k2(i)h
o
k1,k2

+ vk1,k2(i) (3.126)

where uk1,k2(i) = 1. Therefore, in this example, we are led to a linear model (3.126) with

deterministic as opposed to random regression data. Although we only studied the case of

random regression data, this example is meant to illustrate that the diffusion strategy can

still be applied to models involving deterministic data in a manner similar to [9, 37].
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To represent hok1,k2 as a space-invariant parameter vector, we use two-dimensional shifted

Chebyshev basis functions [110]. Using this representation, hok1,k2 can be expressed as:

hok1,k2 =

Nb∑
n=1

won pn,k1,k2 (3.127)

where each element of the two-dimensional basis set is given by:

pn,k1,k2 = bn1,k1bn2,k2 (3.128)
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where {bn1,k1} and {bn2,k2} are the one-dimensional shifted Chebyshev polynomials in the

x and y directions, respectively–recall (3.21).
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Fig. 3.6 True and estimated hok1,k2 by diffusion LMS.

In the network, each interior node communicates with its four immediate neighbors.

We use A1 = I and compute C and A2 by using the Metropolis and relative degree rules

[27, 33, 82]. All nodes are initialized at zero and µk = 0.01 for all k. The signal-to-noise

ratio (SNR) of the network is uniformly distributed in the range [20, 30]dB and is shown

in Fig. 3.5.

Figures 3.6(a) and 3.6(b) show three dimensional views of the true and estimated in-

put process using the proposed diffusion LMS algorithm after 3000 iterations. Figure 3.7

illustrates the MSD of the estimated source, i.e., limi→∞ E‖hok1,k2 − hk1,k2(i)‖
2.

3.6 Summary

By combining interpolation and distributed adaptive optimization, we proposed a diffusion

LMS strategy for estimation and tracking of space-time varying parameters over networks.

The proposed algorithm can find the space-varying parameters not only at the node loca-

tions but also at spaces where no measurement is collected. We showed that if the network

experiences data with rank-deficient covariance matrices, the non-cooperative LMS algo-

rithm will converge to different solutions at different nodes. In contrast, the diffusion LMS

algorithm is able to alleviate the rank-deficiency problem through its use of combination
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matrices especially since, as shown by (3.71), ρ(B) ≤ ρ(I −MR), where I −MR is the

coefficient matrix that governs the dynamics of the non-cooperative solution. Nevertheless,

if these mechanisms fail to mitigate the deleterious effect of the rank-deficient data, then

the algorithm converges to a solution space where the error is bounded. We analyzed the

performance of the algorithm in transient and steady-state regimes, and gave conditions

under which the algorithm is stable in the mean and mean-square sense.

In the next chapter, we study the performance of DLMS algorithms in sensor networks

where the input regression data of the underlying physical phenomenon is unavailable be-

forehand and each agent use its noisy measured version to retrieve the unknown parameter

of interest.
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Chapter 4

Bias-Compensated DLMS Algorithms

In this chapter, we investigate the performance of DLMS algorithms for parameter estima-

tion over sensor networks where the measured regression data at each node are corrupted

by additive noise1. We show that the estimates produced by standard DLMS algorithms

will be biased if the regression noises over the network are overlooked in the estimation

process. To resolve this problem, we propose a bias-elimination technique, in which we add

a correction term to the mean-square error function of the network to be optimized, and

develop new DLMS algorithms that can mitigate the effect of regression noise and obtain an

unbiased estimates of the unknown parameters over the network. In our development, we

first assume that the variances of the regression noises are known a-priori. Later, we relax

this assumption by estimating these variances in real-time. We analyze the stability and

convergence of the proposed algorithms and derive closed-form expressions to characterize

their mean-square error performance in transient and steady-state regimes. We further

provide computer experiment results that show the efficiency of the proposed algorithms

and verify the analytical findings.

1Part of the work presented in this chapter has led to the following manuscript and conference paper:

• R. Abdolee, B. Champagne, “Diffusion LMS strategies in sensor networks with noisy input data
applications”, submitted to IEEE/ACM Trans. on Networking”, Feb. 2014.

• R. Abdolee, B. Champagne and A. H. Sayed, “A diffusion LMS Strategy for parameter estimation in
noisy regressor applications”, in Proc. of the 20th European Signal Processing Conf. (EUSIPCO),
Bucharest, Romania, Aug. 2012, pp. 749–753.
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4.1 Introduction

One of the critical issues encountered in distributed parameter estimation over sensor net-

works is the distortion of the collected regression data by noise, which occurs when the local

copy of the underlying system input signal at each node is corrupted by various sources of

impairments such as measurement or quantization noise. This problem has been extensively

investigated for the case of single-node processing devices [44–50, 111–117]. These studies

have shown that if the deleterious effect of the input noise is not taken into account, the

parameter estimates so obtained will be inaccurate and biased. Various practical solutions

have been suggested to mitigate the effect of the input measurement noise or to remove

the bias from the resulting estimates [44–50, 114–117]. These solutions, however, may no

longer leads to optimal results in sensor networks with decentralized processing structure

where the data measurement and parameter estimation are performed at multiple process-

ing nodes in parallel and with cooperation.

For networking applications, a distributed total-least-squares (DTLS) algorithm has

been proposed that is developed using semidefinite relaxation and convex semidefinite pro-

gramming [51]. This algorithm mitigates the effect of white input noise by running a

local TLS algorithm at each sensor node and exchanging the locally estimated parameters

between the nodes for further refinement. The DTLS algorithm computes the eigende-

composition of an augmented covariance matrix at every iteration for all nodes in the

network, and is therefore mainly suitable for applications involving nodes with powerful

processing abilities. In a follow up paper, the authors proposed a low-complexity DTLS

algorithm [118] that uses an inverse power iteration technique to reduce the computational

complexity of the DTLS while demanding lower communication power. In the class of dis-

tributed adaptive algorithms, a bias-compensated diffusion-based recursive least-squares

(RLS) algorithm has been developed in [52] that can obtain unbiased estimates of the un-

known system parameters over sensor networks, where the regression data are distorted by

colored noise. While this algorithm offers fast convergence speed, its high computational

complexity and numerical instability may be a hindrance in some applications.

In contrast, the DLMS algorithms are characterized by low complexity and numerical

stability. Motivated by these features, in this chapter, we investigate the performance of

standard DLMS algorithms [27,33,37] over sensor networks where the input regression data

are corrupted by additive white noise. To overcome the limitations of these algorithms,
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as exposed by our analysis for this scenario, we then propose an alternative problem for-

mulation that leads to a novel class of DLMS algorithms, which we call bias-compensated

diffusion strategies.

More specifically, we first show that in the presence of noisy input data, the parameter

estimates produced by standard DLMS algorithms are biased. We then reformulate this

estimation problem in terms of an alternative cost function and develop bias-compensated

DLMS strategies that can produce unbiased estimates of the system parameters. The

development of these algorithms relies on a bias-elimination strategy that assumes prior

knowledge about the regression noise variances over the network. We then relax the known

variance assumption by incorporating a recursive approach into the algorithm to estimate

the variances in real-time. We analyze the stability and convergence of the proposed al-

gorithms and derive closed-form expressions to characterize their MSD and EMSE. The

analysis results show that if the step-sizes are within a given range, the algorithms will be

stable in the mean and mean-square sense and the estimated parameters will converge to

their true values.

It is worth noting that the problem addressed in this chapter is different from the one

investigated in [53] for which the authors have studied DLMS algorithms under the imper-

fect information exchange. In their work, it was assumed that the regression data as well

as the estimated parameters which are exchanged between nodes are corrupted with com-

munication noise. Under such conditions, the regression data of the nodes themselves were

assumed to be error-free. The authors have then proposed a recursive estimation approach

to minimize the noise impact by appropriately computing the entries of the left-stochastic

combination matrix of the network in real-time. Although this technique can reduce the

bias caused by the communication noise, it cannot remove the effect of measurement noise

in the regression data and therefore their estimates may still remain biased.

4.2 Problem Statement

We consider a collection of N nodes that are distributed over a geographical area to monitor

a physical phenomenon characterized by parameter vector wo ∈ CM×1. As illustrated in

Fig. 4.1, at discrete-time i, each node k collects noisy samples of the system input and

output, respectively, denoted by zk,i ∈ C1×M and dk(i) ∈ C. These measurement samples
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satisfy the following relations:

zk,i = uk,i + nk,i (4.1)

dk(i) = uk,iw
o + vk(i) (4.2)

where uk,i ∈ C1×M , nk,i ∈ C1×M , and vk(i) ∈ C, respectively, denote the regression data

vector, the input measurement noise vector, and the output measurement noise.

Assumption 4.1. The random variables in data model (4.1)-(4.2) are assumed to satisfy

the following conditions:

a) The regression data vectors are independent and identically distributed (i.i.d.) over

time and independent over space, with zero-mean and positive definite covariance

matrix Ru,k.

b) The regression noise vectors nk,i are Gaussian, i.i.d. over time and independent over

space, with zero-mean and covariance matrix Rn,k = E[n∗k,ink,i] = σ2
n,kI.

c) The output noise samples vk(i) are i.i.d. over time and independent over space, with

zero-mean and variance σ2
v,k.

d) The random processes uk,i, n`,j and vp(m) are independent for all k, `, p, i, j, and m.

+

( )ik
v

( )i
k
d

,k i
u

,k i
n

,k i
z

+

o
w

,k i
w

physical parameter

sensor node

Fig. 4.1 Measurement model for node k.

We use relation (4.1) to model the disturbance in the regressors at each node, and inves-

tigate the effect of the noise process nk,i on the distributed estimation of wo. To better
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understand the effect of this noise, we first evaluate the performance of a centralized esti-

mation solution under this condition and then explain how the resulting effect carries over

to distributed approaches.

In centralized estimation, nodes transmit their measurement data {zk,i,dk(i)}Nk=1 to

a central processing unit. In the absence of measurement noise, i.e. when nk,i = 0M , the

central processor estimates the unknown parameter vector wo by minimizing the following

mean-square error function [89]:

Ju(w) =
N∑
k=1

E|dk(i)− uk,iw|2 (4.3)

Let us introduce rdu,k , E[u∗k,idk(i)] and denote the sums of covariance matrices and cross-

covariance vectors over the set of nodes by:

Ru =
N∑
k=1

Ru,k, rdu =
N∑
k=1

rdu,k (4.4)

It can be verified that under Assumption 4.1 the solution of (4.3) will be:

wo = R−1
u rdu (4.5)

Let us now examine the recovery of wo for the noisy regression system described by (4.1)

and (4.2). Since the regression noise nk,i is independent of uk,i and dk(i), we have

Rz,k , E[z∗k,izk,i] = Ru,k + σ2
n,kI (4.6)

rdz,k , E[z∗k,idk(i)] = rdu,k (4.7)

Considering these relations and now minimizing the global mean-square error (MSE) func-

tion

Jz(w) =
N∑
k=1

E|dk(i)− zk,iw|2 (4.8)

with uk,i in (4.3) replaced by zk,i in (4.8), we arrive at the biased solution

wb =
(
Ru + σ2

nI
)−1

rdu (4.9)
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where

σ2
n =

N∑
k=1

σ2
n,k (4.10)

Let us define the bias implicit in solution (4.9) as b = wo − wb. To evaluate b, we may use

the following identity, which holds for square matrices X1 and X2 provided that X1 and

X1 +X2 are both invertible [119]:

(X1 +X2)−1 = X−1
1 − (I +X−1

1 X2)−1X−1
1 X2X

−1
1 (4.11)

Here Ru and (Ru + σ2
n I) are invertible, and therefore, we obtain:(
Ru + σ2

n I
)−1

= R−1
u − σ2

n(I + σ2
nR
−1
u )−1R−2

u (4.12)

Considering this expression and relation (4.9), the bias resulting from the MMSE estimation

at the fusion center can be expressed as:

b = σ2
n(I + σ2

nR
−1
u )−1R−1

u wo (4.13)

In noisy regression applications, the estimates generated by DLMS algorithms, which

are developed based on the global cost (4.8), will approach (4.9). As we showed in (4.13),

this solution is biased and deviates from the optimal estimate by b. Consequently, the effect

of measurement noise on the regression data will carry over to distributed algorithms. This

will become more explicit in the mean convergence analysis of DLMS algorithms in this

chapter.

In the next section, we explain how by forming a suitable objective function, the bias

can be compensated in both centralized and distributed LMS implementations.

4.3 Bias-Compensated Adaptive LMS Algorithms

In our development, we initially assume that the regression noise variances, {σ2
n,k}Nk=1, are

known a-priori. We later remove this assumption by estimating these variances in real-time.

In networks with centralized signal processing structure, one way to obtain the unbiased

optimal solution (4.5) is to search for a global cost function whose gradient vector is identical

to that of cost (4.3). It can be verified that the following global cost function satisfies this
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requirement:

J(w) =

( N∑
k=1

E|dk(i)− zk,iw|2
)
−
( N∑

k=1

σ2
n,k‖w‖2

)
(4.14)

The derivation of distributed algorithms will be made easier if we can decouple the

network global cost function and write it as sum of local cost functions that are formed

using the local data. The global cost (4.14) already has such a desired form. For this to

become more explicit, we express (4.14) as:

J(w) =
N∑
k=1

Jk(w) (4.15)

where Jk(w), the cost function associated with node k, is given by:

Jk(w) = E|dk(i)− zk,iw|2 − σ2
n,k‖w‖2 (4.16)

Remark 4.1. Under Assumption 4.1, the Hessian matrix of (4.16) is positive definite, i.e.,

∇2
wJk(w) > 0, hence, J(w) is strongly convex [120].

Below, we first comment on the centralized LMS algorithm that solves (4.14). We then

elaborate on how to develop unbiased distributed counterparts.

4.3.1 Bias-Compensated Centralized LMS Algorithm

To minimize (4.15) iteratively, a centralized steepest descent algorithm [89] can be imple-

mented as:

wi = wi−1 − µ
[ N∑
k=1

∇Jk(wi−1)

]∗
(4.17)

where µ > 0 is the step-size, and ∇Jk(w) is a row vector representing the gradient of Jk

with respect to the vector w. Computing the gradient vectors from (4.16) leads to:

wi = wi−1 + µ

N∑
k=1

(
rdz,k −Rz,kwi−1 + σ2

n,kwi−1

)
(4.18)
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In practice, the moments Rz,k and rdz,k are usually unavailable. We therefore replace these

moments by their instantaneous approximations z∗k,izk,i and z∗k,idk(i), respectively, and

obtain the bias-compensated centralized LMS algorithm:

wi = wi−1 + µ

N∑
k=1

(
z∗k,i[dk(i)− zk,iwi−1 + σ2

n,kwi−1]

)
(4.19)

It will be explained in Subsection 4.3.3 that the known variance assumption can be relaxed

by incorporating a real-time adaptive estimation approach within the algorithm.

4.3.2 Bias-Compensated Diffusion LMS Strategies

There are different distributed optimization techniques that can be applied on (4.14) to find

wo [27, 33, 79]. We concentrate on diffusion strategies [27, 33] because they endow the net-

work with real-time adaptation and learning abilities. In particular, diffusion optimization

strategies lead to distributed algorithms that can estimate the optimal parameter vector wo

and track its changes over time [27,29,33,82]. Here, we briefly explain how diffusion LMS

algorithms can be developed for parameter estimation in systems with noisy regression

data. One main step [27,29,33,82] in the development of these algorithms is to reformulate

the global cost (4.14) and represent it as a group of local optimization problems of the

form:

min
w

{∑
`∈Nk

c`,k

(
E|d`(i)− z`,iw|2 − σ2

n,`‖w‖2

)
+

∑
`∈Nk\{k}

b`,k‖w − wo‖2

}
(4.20)

The nonnegative scalars {c`,k} are the entries of a right-stochastic matrix C ∈ RN×N

which as before satisfy (2.30). The scalars {b`,k} are scaling coefficients that end up being

incorporated into the combination coefficients {a`,k} that appear in the final statement

(4.22) of the algorithm below. The first term in the objective function (4.20) is the modified

mean-squared function incorporating the noise variances of neighboring nodes ` ∈ Nk. This

part of the objective is based on the same strategy as in the above centralized objective

function for bias removal. The second term in (4.20) is in fact a constraint that forces

the estimate of the node k to be aligned with the true parameter vector wo. Since wo is

not known initially, it will be alternatively substituted by an appropriate vector during the

optimization process.
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One can use the cost function (4.20) and follow similar arguments to those used in

Chapter 2 to arrive at the bias-compensated ATC DLMS strategy (Algorithm 4.1) .

Algorithm 4.1 : ATC Bias-Compensated Diffusion LMS

ψk,i = wk,i−1 − µk
∑
`∈Nk

c`,k
[
∇̂J`(wk,i−1)

]∗
(4.21)

wk,i =
∑
`∈Nk

a`,kψ`,i (4.22)

In this algorithm, µk > 0 is the step-size at node k, the vectors ψk and wk,i are the

intermediate estimates of wo at node k, and the stochastic gradient vector is computed as:[
∇̂J`(wk,i−1)

]∗
= −

[
z∗`,i

(
d`(i)− z`,iwk,i−1

)
+ σ2

n,`wk,i−1

]
(4.23)

Moreover, the nonnegative coefficients a`,k are the elements of a left-stochastic matrix

A ∈ RN×N satisfying (2.20) as before. To run the algorithm, we only need to select the

coefficients {c`,k, a`,k}, which can be computed based on any combination rules that satisfy

(2.30) and (2.20). Some of these combination rules are presented in [33, 82]. For example,

one choice to compute the entries of matrix A is:

a`,k =
σ−2
n,`∑

`∈Nk σ
−2
n,`

and ak,k = 1−
∑

`∈Nk\k

a`,k (4.24)

This rule implies that the entry a`,k is inversely proportional to the regressor noise variance

of node `. Other left-stochastic choices for A are possible, including those that take into

account both the noise variances and the degree of connectivity of the nodes [31].

As explained in Chapter 2, by reversing the order of the adaptation and combination

steps in Algorithm 4.1, we can obtain the following CTA diffusion strategy. As we will

show in the analysis, the proposed ATC and CTA bias-compensated DLMS, in average,

will converge to the unbiased solution wo even when the regression data are corrupted by

noise. In comparison, the estimate of the previous DLMS strategies such as one proposed

in [33] will be biased under such condition.
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Algorithm 4.2 : CTA Bias-Compensated Diffusion LMS

ψk,i−1 =
∑
`∈Nk

a`,kw`,i−1 (4.25)

wk,i = ψk,i−1 − µk
∑
`∈Nk

c`,k
[
∇̂J`(ψk,i−1)

]∗
(4.26)

4.3.3 Regression Noise Variance Estimation

In the proposed algorithms, each node still needs to have the regression noise variances,

{σ2
n,`}

Nk
k=1, to evaluate the stochastic gradient vector, ∇̂J`. In practice, such information

is rarely available and normally obtained through estimation. A review of previous works

reveals that the regression noise variances can be either estimated off-line [52], or in real-

time when the unknown parameter vector, wo, is being estimated [121, 122]. For example,

in the context of speech analysis, they can be estimated off-line during silent periods in

between words and sentences [52]. In some other applications, these variances are estimated

during the operation of the algorithm using the second-order moments of the regression

data and the system output signal [121, 122]. In what follows we propose an adaptive

recursive approach to estimate the regression noise variances without using the second

order moments of the data.

The variance of the regression noise at each node is classified as local information and,

hence, it can be estimated from the node’s local data. When the regression data at node

k is not corrupted by measurement noise (i.e., zk,i = uk,i), and when the node operates

independent of all other nodes to estimate wo by minimizing E|dk(i)−uk,iw|2, the minimum

attainable MSE can be expressed as [89]:

Jmin , σ2
d,k − r∗du,kR−1

u,krdu,k. (4.27)

Under noisy regression scenarios where node k operates independently to minimize the

cost (4.16), the minimum achievable cost will still be (4.27). To verify this, we note from

Remark 4.1 that since Jk(w) is positive definite and, hence, strongly convex, its unique

minimizer under Assumption 2.1 will be wo. Therefore, substituting wo into (4.16) will
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give its minimum, i.e.:

min
w
Jk(w) = E|dk(i)− zk,iwo|2 − σ2

n,k‖wo‖2

= σ2
d,k − r∗du,kR−1

u,krdu,k (4.28)

= Jmin. (4.29)

We use this result to estimate the regression noise variance σ2
n,k at each node k.

Now, let us introduce

ek(i) , dk(i)− zk,iwk,i−1 (4.30)

where wk,i−1 is the weight estimate from ATC diffusion (which would be replaced by ψk,i−1

for CTA diffusion). Considering Jk(wk,i−1), for sufficiently small step-sizes and in the limit

when the weight estimate is close enough to wo, it holds that:

E|ek(i)|2 − σ2
n,k‖wo‖2 ≈ Jmin. (4.31)

From (4.2) and (4.27), it can be verified that Jmin = σ2
v,k, and hence from (4.31), we can

write:

E|ek(i)|2 ≈ σ2
v,k + σ2

n,k‖wo‖2. (4.32)

In this relation, σ2
v,k, can be ignored if σ2

n,k‖wo‖2 � σ2
v,k. Under such circumstances, if we

assume ‖wo‖2 6= 0, which is true for systems with at least one non-zero coefficient, then

the variance of the regression noise can be obtained by:

σ2
n,k ≈

E|ek(i)|2

‖wo‖2
. (4.33)

Since, in (4.33), E|ek(i)|2 and the unknown parameter, wo, are initially unavailable, we

can estimate σ2
n,k using the following relations as the latest estimates of these quantities

become available, i.e.,

fk(i) = αfk(i− 1) + (1− α)|ek(i)|2 (4.34)

σ2
n,k(i) =

fk(i)

‖wk,i‖2
(4.35)

where 0� α < 1 is a smoothing factor with nominal values in the range of [0.95, 0.99].
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Assumption 4.2. The regression noise variance, σ2
n,k, and the output measurement noise,

σ2
v,k, satisfy the following inequality

σ2
n,k‖wo‖2 � σ2

v,k (4.36)

Under this assumption, the regressor noise variance at each node k can be adaptively

estimated via (4.34) and (4.35) using the data samples ek(i) and wk,i−1 supplied from the

bias-compensated LMS iterations.

4.4 Performance Analysis

In this section, we analyze the convergence and stability performance of the ATC and CTA

bias-compensated diffusion LMS algorithms by viewing them as special cases of a more

general diffusion algorithm of the form:

φk,i−1 =
∑
`∈Nk

a
(1)
`,kw`,i−1 (4.37)

ψk,i = φk,i−1 − µk
∑
`∈Nk

c`,k

[
∇̂φJ`(φk,i−1)

]∗
(4.38)

wk,i =
∑
`∈Nk

a
(2)
`,kψ`,i (4.39)

where {a(1)
`,k} and {a(2)

`,k} are non-negative real coefficients corresponding to the (`, k)-th

entries of left-stochastic matrices A1 and A2, respectively, which have the same properties

as A. Different choices for A1 and A2 corresponds to different operation modes. For

instance, A1 = I and A2 = A correspond to ATC whereas A1 = A and A2 = I generate

CTA. For mathematical tractability, in our analysis, we assume that the variances of the

regression noises, i.e., σ2
n,k, over the network are known a-priori.

We define the local weight-error vectors {w̃k,i, ψ̃k,i, φ̃i}, and form the global weight-error

vectors {w̃i, ψ̃i, φ̃i} similar to previous chapter. Note that now the local error vectors are

of size M × 1 and the global error vectors are of size NM × 1. We also define the block
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variables:

gi = CT col{z∗`,iv1(i), . . . ,z∗N,ivN (i)} (4.40)

Ri = diag

{ ∑
`∈Nk

c`,k (z∗`,iz`,i − σ2
n,`I), k = 1, · · · , N

}
(4.41)

P i = diag

{ ∑
`∈Nk

c`,k (z∗`,in`,i − σ2
n,`I), k = 1, · · · , N

}
(4.42)

M = diag
{
µ1IM , · · · , µNIM

}
(4.43)

and introduce the following extended combination matrices:

A1 = A1 ⊗ IM , A2 = A2 ⊗ IM , C = C ⊗ IM (4.44)

Using these definitions and update equations (4.37)-(4.39), it can be verified that the fol-

lowing relations hold:

φ̃i−1 = AT1 w̃i−1

ψ̃i = φ̃i−1 −M(gi −P iω
o + Riφ̃i−1)

w̃i = AT2 ψ̃i (4.45)

where ωo = 1⊗wo. From the set of equations given in (4.45), it is deduced that the network

error vector w̃i evolves with time according to the recursion:

w̃i = Biw̃i−1 −AT2Mgi +AT2MP iω
o (4.46)

where the time-varying matrix Bi is defined as:

Bi = AT2 (I −MRi)AT1 (4.47)
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4.4.1 Mean Convergence and Stability

Tacking the expectation of both sides of (4.46) and considering Assumption 4.1, we arrive

at:

E[w̃i] = BE[wi−1] (4.48)

where in this relation:

B , E[Bi] = AT2 (I −MR)A1
T (4.49)

R , E[Ri] = diag

{ ∑
`∈Nk

c`,k Ru,`, k = 1, · · · , N
}

(4.50)

To obtain (4.48), we used the fact that E[A2
TMgi] = 0 because vk,i is independent of zk,i

and E[vk(i)] = 0. Moreover, we have E[P i] = 0 because E[z∗`,in`,i] = σ2
n,`I. According

to (4.48), limi→∞ E‖w̃i‖ → 0 if B is stable ( i.e., when ρ(B) < 1). In fact, because

ρ(A1) = ρ(A2) = 1 and R > 0 choosing the step-sizes according to:

0 < µk <
2

ρ
(∑

`∈Nk c`,kRu,`

) (4.51)

guarantees ρ(B) < 1. We omit the proof, because a similar argument is made in refer-

ences [82] and [63]. We summarize the mean-convergence results of the proposed bias-

compensated diffusion LMS in the following.

Theorem 4.1. Consider an adaptive network that operates using diffusion Algorithms 4.1

or 4.2 with the space-time data (4.1) and (4.2) under Assumption 4.1. In this network,

if we assume that the regressors noise variances are perfectly estimated, the mean error

vector evolves with time according to (4.48). Furthermore, Algorithms 4.1 and 4.2 will

be asymptotically unbiased and stable provided that the step-size at each node k satisfies

(4.51).

Remark 4.2. In networks with noisy regression data (4.1), the estimates generated by

the previous diffusion LMS strategies such as the ones proposed in [33, 82] are biased, i.e,

E[w̃i] 6= 0 as i→∞. This can be readily shown if we remove σ2
n,k from (4.41) and (4.42).
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In this scenario, the algorithm will be mean stable if

0 < µk <
2

ρ

(∑
`∈Nk c`,k

(
Ru,` + σ2

n,`IM

)) (4.52)

Then, for sufficiently small step-sizes, satisfying (4.52), it can be verified that the estimate

of the standard diffusion LMS deviates from the network optimal solution ωo by:

lim
i→∞

E[w̃i] = (INM − B′)−1AT2MP ′ωo (4.53)

where

B′ , AT2 (INM −MR′)AT1 (4.54)

R′ , diag

{∑
`∈Nk

c`,k

(
Ru,` + σ2

n,`IM

)
, k = 1, · · · , N

}
(4.55)

P ′ , diag

{∑
`∈Nk

c`,k σ
2
n,`IM , k = 1, · · · , N

}
(4.56)

As it is clear from (4.53), the bias is created by the regression noise {nk,i} only, whereas

the noise {vk(i)} has no effect on generating the bias.

4.4.2 Mean-Square Stability and Performance

To study the mean-square performance, we first follow the energy conservation arguments

of [33, 89] and determine a variance relation. The relation can be obtained by computing

the weighted squared norm of both sides of equation (4.46) and taking expectations under

Assumption 4.1:

E‖w̃i‖2
Σ =E

(
‖w̃i−1‖2

Σ′

)
+ E[g∗iMA2ΣAT2Mgi] + E[ωo∗P∗iMA2ΣAT2MP iω

o] (4.57)

where ‖x‖2
Σ = x∗Σx and Σ ≥ 0 is a weighting matrix that we are free to choose. For

relation (4.57), we have:

Σ′ = Bi
∗ΣBi (4.58)
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It follows from Assumption 4.1 that w̃i−1 and Ri are independent of each other so that

E
(
‖w̃i−1‖2

Σ′

)
= E‖w̃i−1‖2

E[Σ′] (4.59)

Substituting this expression into (4.57), we arrive at:

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ′ + Tr[ΣAT2MGMA2] + Tr[ΣAT2MΠMA2] (4.60)

where Σ′ = E[B∗i ΣBi]. In equation (4.60) G = E[gig
∗
i ], which using (4.40) is given by:

G = CTdiag

{
σ2
v,1(Ru,1 + σ2

n,1I), . . . , σ2
v,N (Ru,N + σ2

n,NI)

}
C (4.61)

In relation (4.60), Π = E[P iω
oωo∗P∗i ] and its (k, j)-th block is computed as (see Appendix

A.5):

Πk,j =
∑
`

c`,kc`,j

{
σ2
n,`‖wo‖2

(
Ru,` + σ2

n,`I
)

+ (β − 1)σ4
n,`w

owo∗
}

(4.62)

where β = 2 for real-valued data and β = 1 for complex-valued data.

If we introduce σ = bvec(Σ) and σ′ = bvec(Σ′) then we can write σ′ = Fσ for some

matrix F to be determined (see below) and the variance relation in (4.60) can be rewritten

more compactly as:

E‖w̃i‖2
σ =E‖w̃i−1‖2

Fσ + γTσ (4.63)

where we are using the notation ‖x‖2
σ as a short form for ‖x‖2

Σ, and where

γ = bvec(AT2MGTMA2 +AT2MΠTMA2) (4.64)

The operator bvec(·) operator vectorizes a block matrix by first vectorizing each of its

blocks and then stacking the resulting vectors on top of each other into a column [65]. To

compute F , we consider the two following cases:
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Small Step-Sizes: For this case, we multiply the terms in Σ′ to get:

Σ′ =A1

(
A2ΣAT2 −RMA2ΣAT2 −A2ΣAT2MR

)
A1

T + E[A1R∗iMA2ΣAT2MRiA1
T ]

(4.65)

Under the small step size condition, the last term which depends on {µ2
k} can be neglected.

As a result, we obtain bvec(Σ′) = Fσ where

F = (A1⊗bA1)(I − I⊗bRM−RTM⊗bI)(A2⊗bA2) (4.66)

Gaussian Regressor: If the regression data, {uk,i}, are zero mean circular complex-

valued Gaussian random vectors, then according to Appendix A.6, we obtain:

F = (A1⊗bA1)
{
I − I⊗bRM−RTM⊗bI

}
× (A2⊗bA2) + ∆F (4.67)

where ∆F is given by (A.69). Note that since ∆F depends on {µ2
k}, it can be neglected

under the small step size condition that reduces expression (4.67) to (4.66). It can be

verified that under the small step-size condition a good approximation of F that requires

no assumption on the distribution of the regression data is:

F ≈ BT⊗bB∗ (4.68)

Before proceed to characterize the network MSD and EMSE, we briefly examine the sta-

bility of the algorithms in the mean-square sense. Using (4.69), we can write:

lim
i→∞

E|w̃i‖2
σ = lim

i→∞
E‖w̃−1‖2

F i+1σ + γT
∞∑
j=0

F jσ (4.69)

As it is evident from this expression, the stability of the algorithm in the mean-square

sense depends on the stability of F . In the previous works on diffusion LMS algorithms,

including [82], it has been shown that F will be stable if B is stable. According to our

mean-convergence analysis, the stability of B is guaranteed if (4.51) holds. Therefore, the

step-size condition (4.51) is sufficient to guarantee stability in the mean and mean-square

sense.
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To obtain mean-square error (MSE) steady state expressions of the network, we let i

goes to infinity and use expression (4.63) to write:

lim
i→∞

E‖w̃i‖2
(I−F)σ = γTσ (4.70)

As shown in Chapter 2, from (4.70), we then arrive at the following relations to, respectively,

obtain MSD and EMSE of each agent k over the network:

ηk = γTσmsdk (4.71)

ζk = γTσemsek (4.72)

where

σmsdk = (I −F)−1bvec
(

diag(ek)⊗ IM
)

(4.73)

σemsek = (I −F)−1bvec
(

diag(ek)⊗Ru,k

)
(4.74)

The network MSD, and EMSE are defined as the average of MSD and EMSE over the

network.

4.4.3 Mean-Square Transient Behavior

We use (4.69) to obtain an expression for the mean-square behavior of the algorithm in

transient-state. In this expression, if we substitute wk,−1 = 0, ∀k ∈ {1, · · · , N}, we obtain:

‖w̃i‖2
σ = ‖wo‖2

F i+1σ + γT
i∑

j=0

F jσ (4.75)

Writing this recursion for i− 1, and subtract it from (4.75) leads to:

‖w̃i‖2
σ = ‖w̃i−1‖2

σ + ‖wo‖2
F i(I−F)σ + γTF iσ (4.76)

By replacing σ with σmsdk = bvec(diag{ek} ⊗ IM) and σemsek = bvec(diag{ek} ⊗ Ru,k) and

using wk,−1 = 0, we arrive at the following two recursions for the evolution of MSD and

EMSE over time:
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ηk(i) = ηk(i− 1)− ‖wo‖Fi(I−F)σmsdk
+ γTF iσmsdk (4.77)

ζk(i) = ζk(i− 1)− ‖wo‖Fi−1(I−F)σemsek
+ γTF i−1σemsek (4.78)

The MSD and EMSE of the network can be computed either by averaging the nodes

transient behavior, or by substituting

σmsd =
1

N
bvec(IMN) (4.79)

σemse =
1

N
bvec

(
diag{Ru,1, · · · , Ru,N}

)
(4.80)

in recursion (4.76). We summarize the mean-square analysis results of the algorithms in

the following:

Theorem 4.2. Consider an adaptive network operating under bias-compensated diffusion

Algorithm 4.1 or 4.2 with the space-time data (4.1) and (4.2) that satisfy Assumption 4.1.

In this network, if we assume that the regressors noise variances are known or perfectly

estimated and nodes initialize at zero, then the MSD and EMSE of each node k evolve with

time according to (4.77) and (4.78) and the network MSD and EMSE follow recursions:

η(i) = η(i− 1)− ‖wo‖Fi(I−F)σmsd
+ γTF iσmsd (4.81)

ζ(i) = ζ(i− 1)− ‖wo‖Fi−1(I−F)σemse
+ γTF i−1σemse (4.82)

where σmsd, and σemse are defined in (4.79) and (4.80). Moreover, if the step-sizes are

chosen to satisfy (4.51), the network will be stable and converges in the mean and mean-

square sense and the agents over the network reach the steady-state MSD and EMSE,

respectively, characterized by (4.71) and (4.72).

4.5 Simulation Results

In this section, we present computer experiments to illustrate the efficiency of the proposed

algorithms and to verify the theoretical findings. We evaluate the algorithm performance for

known regressor noise variance and with adaptive noise variance estimation. We consider

a connected network with N = 20 nodes that are positioned on a unit square area with
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Fig. 4.2 Network topology used in the simulations.

maximum communication distance of 0.4 unit length. The network topology is shown in

Fig. 4.2. We choose A1 = I, compute A2 using the relative-variance rule (4.24) and choose

the matrix C according to the metropolis criterion [27,82]. In the plots, we use Arel and Cmet

to refer to this particular choice of A2 and C. The network data are generated according to

model (4.1) and (4.2). The aim is to estimate the system parameter vector wo = [1, 1]T/
√

2

over the network using the proposed bias-compensated diffusion algorithms. In all our

experiments, the curves from the simulation results are drawn from the average of 500

independent runs.

We choose the step-sizes as µk = 0.05, and set wk,−1 = [0, 0]T , for all k. We adopt Gaus-

sian distribution to generate vk(i), nk,i and uk,i. The covariance matrices of the regression

data and the regression noise are of the form Ru,k = σ2
u,kIM , and σ2

n,kIM , respectively. Figs.

4.3(a) and 4.3(b) illustrate the variances of the nodes’ regressor noise, σ2
n,k, and observa-

tion noise, σ2
v,k. The network signal power profile, given by Tr(Ru,k) versus node index k,

is shown in Fig. 4.4.

Transient MSE Results with Perfect Noise Variance Estimation:

In Fig. 4.5, we demonstrate the network transient behavior in terms of MSD and EMSE for

the proposed diffusion LMS algorithm, standard diffusion LMS algorithm [33] and the non-
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Fig. 4.3 Spatial distribution of noise energy profile over the network.
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cooperative mode of the proposed algorithm. Note that A2 = I and C = I correspond to

the non-cooperative network mode of the proposed algorithm, where each node runs a stand

alone bias-compensated LMS. As the results indicate, the performance of the cooperative

network with Cmet and Arel exceeds that of the non-cooperative case by 12 dB. We also

observe that the proposed algorithm outperform the standard diffusion LMS [33] by more

that 12dB. It is interesting to note that the non-cooperative algorithm outperforms the

standard diffusion LMS by about 1dB.

100 200 300 400 500 600 700 800 900 1000 1100
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

Time i

N
et
w
o
rk

M
S
D

a
n
d
E
M
S
E

(d
B
)

 

 

EMSE, Simulation, proposed diffusion LMS
EMSE, Theory, proposed diffusion LMS
MSD, Simulation, proposed diffusion LMS
MSD, Theory, proposed diffusion LMS
EMSE, Simulation, non−cooperative
EMSE, Simulation, standard diffusion LMS [33]
MSD, Simulation, non−cooperative
MSD, Simulation, standard diffusion LMS [33]

Fig. 4.5 Convergence behavior of the proposed bias-compensated diffusion
LMS, standard diffusion LMS and non-cooperative LMS algorithms.

We also present the EMSE and MSD of some randomly chosen nodes in Fig. 4.6. In

particular, we plot the EMSE learning curves of nodes 4 and 18 and the MSD learning curves

of nodes 5 and 15. We observe that the MSD curves of the chosen nodes are identical. Since

the algorithm is unbiased, this implies that these nodes have reached agreement about the

unknown network parameter, wo. As we will show in the steady-state results, all nodes

over the network almost reach agreement. We note that, in all scenarios, there is a good

agreement between simulations and the analysis results.

Steady-State MSE Results with Perfect Noise Variance Estimation:

The network steady-state MSD and EMSE are shown in Figs. 4.7(a) and 4.7(b). From
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these figures, we observe that there is a good agreement between simulations and analytical

findings. In addition, we consider the case when nodes only exchange their intermediate es-

timates (i.e., when C = I). It is seen that the MSD performance of the algorithm with Cmet

is 1dB superior than that with C = I. We also observe that the performance discrepancies

between nodes in terms of MSD is less than 0.5dB for cooperative scenarios, while in the

non-cooperative scenario it is more than 5dB. This shows agreement in the network in spite

of different noise and energy profiles at each node. Note that the fluctuations in EMSE over

the network are due to differences in energy level in the nodes’ input signals, but this does

not preclude the cooperating nodes from reaching a consensus in the estimated parameters.
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Fig. 4.6 MSD learning curves of nodes 5 and 15 and EMSE learning curves
of nodes 4 and 18.

MSE Results with Adaptive Noise Variance Estimation:

We compare the transient and steady-state behavior of the bias-compensated diffusion

LMS with known regressor noise variance and adaptive noise variance estimation. For this

experiment, we consider the same network topology and noise profile as above. However,

the unknown parameter vector to be estimated, in this case, is wo = 215 + 2j15, where
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Fig. 4.7 Steady-state MSD and EMSE of the network for different combi-
nation matrices.
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Fig. 4.8 Steady-state network EMSE with known and estimated regressor
noise variances.
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1M is a M × 1 column vector with unit entries. The network energy profile is chosen as

Tr(Ru,k) = 20Tr(σ2
n,kI). Using these choices, Assumption 4.2 will be satisfied. We set

α = 0.99 and µk = 0.01 for all k.

Figs. 4.8 and 4.9 show the steady-state EMSE and MSD of the network for these two

cases. The steady-state values are obtained by averaging over the last 200 samples after

initial convergence. We observe that the performance of the proposed bias-compensated

LMS algorithm with adaptive noise variance estimation is almost identical to that of the

ideal case with known noise variances.
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Fig. 4.10 EMSE Tracking performance with known and estimated regressor
noise variances.

Fig. 4.10 illustrates the tracking performance of the bias-compensated diffusion LMS

algorithm for these two cases for a sudden change in the unknown parameter wo and

compares the results with that of the standard diffusion LMS algorithm given in [33]. The

variation in the unknown parameter vector occurs at iteration i = 550 when wo changes to

2wo. Similar conclusion as in Fig. 4.8 and 4.9 can be made for the proposed algorithms

with known and estimated regression noise variances. We also observe that the proposed

algorithms outperform the standard diffusion LMS [33] by nearly 10dB in steady-state.

Fig. 4.11 illustrates the results of regression noise variance estimation in the steady
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state. In this experiment, we observe that for i ≥ 350, E[σ2
n,k(i)] → σ2

n,k. This indicates

that the proposed adaptive estimation strategy for computation of the nodes’ regression

noise variance over the network works well.
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Fig. 4.11 The estimated and true value of the regression noise variance,
σ2
n,k, over the network.

4.6 Summary

We developed bias-compensated DLMS strategies for parameter estimation for sensor net-

works where the regression data are corrupted with additive noise. The proposed algorithms

operate in distributed manner and exchange data with single-hop communication to save

energy and communication resources. In the analysis, it has been shown that these algo-

rithms are unbiased and converge in the mean and mean-square error sense for sufficiently

small adaptation step-sizes. We carried out computer experiments that confirmed the effec-

tiveness of the algorithms and verified our analytical findings. Further, in the experiments,

it was shown that the steady-state performances of the developed algorithms with known

and unknown noise variances are almost identical, under the assumed conditions. Nev-

ertheless, the competency of the algorithms with unknown noise variances comes at the
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expense of higher computational complexity.

In the following chapter, we examine the performance of DLMS algorithms under the

effects of wireless channel impairments, including, fading and path-loss in addition to link

noise, and propose solution as how to mitigate such impacts.
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Chapter 5

DLMS Algorithms over Wireless

Sensor Networks

In this chapter, we study the performance of DLMS algorithms for distributed parameter

estimation in sensor networks where nodes exchange information over wireless communi-

cation links1. Wireless channel impairments, such as fading and path-loss adversely affect

the exchanged data, and subsequently, can cause instability in these algorithms. For such

scenarios, we introduce an extended version of the DLMS algorithms by incorporating

equalization coefficients into their structure to reverse the effects of path loss and fading.

In the proposed algorithms, since nodes do not have access to the channel state informa-

tion (CSI) of their neighbors, the equalization coefficients are computed from pilot-aided

estimated channel coefficients. We also show that as a consequence of fading and path loss,

regardless of using equalization coefficients, the network experiences link failures which ren-

der the use of static combination matrices impractical for the data fusion between nodes.

The analysis reveals that by properly monitoring the CSI over the network and choosing

sufficiently small adaptation step-sizes, the diffusion strategies are able to deliver satisfac-

1Part of the work presented in this chapter was published in:

• R. Abdolee, B. Champagne and A. H. Sayed, “Diffusion LMS strategies for parameter estimation
over fading wireless channels”, in Proc. of IEEE International Conference on Communication (ICC),
Budapest, Hungary, June 2013, pp. 1926–1930.

• R. Abdolee and B. Champagne, “Diffusion LMS algorithms for sensor networks over non-ideal inter-
sensor wireless channel”, in Proc. of IEEE Int. Conf. Dist. Computer Sensor Systems (DCOSS),
Barcelona, Spain, June 2011, pp. 1–6.
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tory performance in the presence of fading and path loss.

5.1 Introduction

DLMS strategies have been widely investigated in networks with static topologies in which

the communication links between agents or nodes remain invariant with respect to time

[28, 33, 80, 123]. In particular, when the network topology is static, the diffusion strate-

gies have been shown to converge in the mean and mean-square error sense in the slow

adaptation regime [29, 33, 82, 124]. Previous studies have also examined the effect of noisy

communication links on their performance [53–56]. The main conclusion drawn from these

works is that performance degradations occur unless the combination weights used at each

node are adjusted to counter the effect of noise over the links.

In the aforementioned works, it has been assumed that the links between neighboring

nodes are always active (i.e., the network topology is static), regardless of the value of their

instantaneous SNR, which sometimes can be extremely low. This assumption is, however,

too restrictive in many existing and emerging applications in wireless communications and

sensor network systems. For example, in mobile networks where the agents are allowed to

change their position over time, the SNR over the communication links between nodes will

vary due to the various channel impairments, including path loss, multi-path fading and

shadowing. Consequently, the set of nodes with which each agent can communicate will

also change as the agents move, and the network topology is therefore intrinsically dynamic.

A time-varying network topology can also be created as a consequence of energy drain in

nodes, leading to a sudden link-failure, or due to deployment or activation of substitute

nodes over the network, i.e., creation of new links. It is therefore essential to investigate

the performance of diffusion strategies over networks with time-varying (dynamic) topology

and characterize the effects of link activity (especially link failure) on their convergence and

stability.

In this chapter, we extend the application of DLMS strategies from multi-agent net-

works with ideal communication links to sensor networks with fading wireless channels.

Under fading and path loss conditions over wireless links, the neighborhood sets become

dynamic, with nodes leaving or entering neighborhoods depending on the quality of the

links as defined by the instantaneous SNR conditions. Our analysis will show that if each

node knows the channel state information (CSI) of its neighbors, the effects of fading and
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path-loss can be mitigated by incorporating local equalization coefficients into the diffu-

sion updates. When CSI is not available to the nodes, we explain how the equalization

coefficients can be evaluated from a pilot-assisted estimation process along with the main

parameter estimation task of the network. We also examine the effect of channel esti-

mation errors on the performance and convergence of the modified algorithms in terms

of mean-square-error metric. We establish conditions under which the network is mean-

square stable for both known and unknown CSI cases. The analysis reveal that when CSI

is known, the modified diffusion algorithms are asymptotically unbiased and converge in

the slow adaptation regime. In contrast, the parameter estimates will become biased when

the CSI are obtained through pilot-aided channel estimation. Nevertheless, the size of the

bias can be made small by increasing the number of pilot symbols or increasing the link

SNR.

5.2 Network Signal Model

Consider a set of N sensor nodes that are distributed over a geographical area. At time

instant i ∈ {0, 1, · · · }, each node k ∈ {1, 2, · · · , N} collects measurement data {dk(i) and

uk,i} that are related to an unknown parameter vector wo ∈ CM×1 via the following relation:

dk(i) = uk,iw
o + vk(i) (5.1)

where dk(i) ∈ C, uk,i ∈ C1×M and vk(i) ∈ C are, respectively, the scalar measurement, the

node’s regression vector and the measurement noise. The variables in the linear regression

model (5.1) are assumed to satisfy Assumption 2.1.

In this chapter, node ` is said to be a neighbor of node k if its distance from node k is

less than a preset transmission range ro, which for simplicity is assumed to remain constant

over the given geographical area. The set of all the neighbors of node k, including node k

itself, is denoted as before by Nk. Nodes are allowed to communicate with their neighbors

only, but due to channel impairments, certain links may fail. Hence, at any given time i,

only a subset of the nodes in Nk can communicate with node k.

The objective of the network is to estimate the unknown parameter vector wo in a

distributed manner when the information exchange between the agents occurs over noisy

wireless links that are also subject to fading and path loss. In particular, we assume that
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the transmit signal ψ`,i ∈ CM×1 from node ` ∈ Nk\{k} to node k experiences channel

distortion of the following form (see Fig. 5.1):

ψ`k,i = h`,k(i)

√
Pt
rα`,k
ψ`,i + v

(ψ)
`k,i (5.2)

where ψ`k,i ∈ CM×1 is the distorted estimate received by node k, h`,k(i) ∈ C denotes the

fading channel coefficient over the wireless link between nodes k and `, Pt ∈ R+ is the

transmit signal power, r`,k = rk,` ∈ R+ is the distance between nodes k and `, α ∈ R+ is

the path loss exponent and v
(ψ)
`k,i ∈ CM×1 is the additive noise vector with covariance matrix

σ
(ψ)2
v,`k IM . We define ψkk,i , ψk,i to maintain consistency in the notation.
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Fig. 5.1 Node k receives distorted data from its nk = |Nk| neighbors at time
i. The data are affected by channel fading coefficients, h`,k(i), and commu-
nication noise v`k,i. As we will explain in sequel, if the SNR between node k
and some nodes `o ∈ Nk falls below a threshold level, the received data from
that node will be considered as noise and discarded.

Assumption 5.1. The fading channel coefficients and the link noise in (5.2) satisfy the

following conditions:

a) The time-varying channel coefficients h`,k(i) follow the Clark’s model [125], which

are modeled as independent circular Gaussian random variables with zero mean and

variance σ2
h,`k = 1.

b) {h`,k(i)} are independent over space and i.i.d. over time.
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c) The noise vectors {v(ψ)
`k,i} are zero-mean, i.i.d. in time and independent over space.

d) The channel coefficients, h`,k1(i1), the noise vectors, v
(ψ)
`k2,i2

, the regression vectors,

uk3,i3 and the measurement noise, vk4(i4), are all mutually independent for all kj and

ij with j ∈ {1, 2, 3, 4}.

We say a transmission from node ` to node k at time i is successful if the signal-to-noise

ratio (SNR) between nodes ` and k, denoted by ς`k(i), exceeds some threshold level ςo`k.

The threshold level is defined as the SNR in the non-fading link scenario and is computed

as:

ςo`k ,
Pt

σ
2(ψ)
v,`k r

α
o

(5.3)

In fading conditions, the instantaneous SNR is:

ς`k(i) =
|h`,k(i)|2Pt
σ

2(ψ)
v,`k r

α
`,k

(5.4)

When transmission is successful, we have ς`k(i) ≥ ςo`k which amounts to the condition:

|h`,k(i)|2 ≥ ν`,k (5.5)

where

ν`,k =

(
r`,k
ro

)α
(5.6)

Since h`,k(i) has a circular complex Gaussian distribution, the squared magnitude |h`,k(i)|2

is exponentially distributed with parameter λ = 1 [126]. Considering this, the probability

of successful transmission is then given by:

p`,k = Pr

(
|h`,k(i)|2 ≥ ν`,k

)
= e−ν`,k (5.7)

This expression shows that the probability of successful transmission decreases as the dis-

tance between two nodes increases. As such, the link between neighboring nodes is not guar-

anteed to be connected all the time, implying that the network topology is time-varying.

Under this condition, we redefine the neighborhood set of node k as a time-varying set
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that consists of nodes ` ∈ Nk for which at time i, ς`k(i) exceeds ςo`k. In this way, the

neighborhood set of each node k becomes random and we, therefore, denote it by N k,i.

This implies that N k,i ⊂ Nk for all i.

5.3 Distributed Estimation over Wireless Channels

When the exchange of information between neighboring nodes is subject to noise, some

degradation in performance occurs [53–56, 127, 128]; reference [53] shows how the combi-

nation weights a`,k can be adjusted to counter the effect of noisy links in the presence of

additive noise. In this work, we move beyond these earlier analyses and study the perfor-

mance of these algorithms over fading wireless channels. We also suggest modifications to

the update equations to counter the effect of fading.

5.3.1 Diffusion Strategies over Wireless Channels

We begin our derivation from the distributed cost function, given by (2.11). When the

communication channels between nodes are wireless, as shown in previous section, the

neighborhood set of each node k will be a function of instantaneous SNR and changes

over time. This means that each node k can only receive data from nodes ` ∈ Nk whose

instantaneous SNR, ς`k(i), exceeds the threshold ςo`k. Therefore, in the cost function (2.11),

we replace Nk and b`,k with N k,i, and b`,k(i) and arrive at:

Jglob
′

k (w) = Jk(w) + E
[ ∑
`∈N k,i\{k}

b`,k(i)‖w − wo‖2
]

(5.8)

With the exception of the variable wo, this alternative cost at node k relies solely on

information that is available to node k from its neighborhood. Now, each node k can apply

a steepest-descent iteration to minimize its localized cost Jglob
′

k (w) as follow:

wk,i = wk,i−1 + µk[∇wJ
glob′

k (w)]∗ (5.9)

= wk,i−1 + µk(rdu,k −Ru,kwk,i−1)− µkE
[ ∑
`∈N k,i\{k}

b`,k(i)(wk,i−1 − wo)
]

(5.10)

where µk is the step-size at node k. An adaptive implementation of (5.10) can be obtained

by removing the expectation operator and replacing {rdu,k, Ru,k} by their instantaneous
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approximations from (2.14). Doing so leads to the following recursion:

wk,i = wk,i−1 + µku
∗
k,i(dk(i)− uk,iwk,i−1)− µk

∑
`∈N k,i\{k}

b`,k(i)(wk,i−1 − wo) (5.11)

Recursion (5.11) indicates that the update from wk,i−1 to wk,i now involves adding two

correction terms to wk,i−1. We can split these two correction terms by writing (5.11) as

the following two steps involving an intermediate estimate:

ψk,i =wk,i−1 + µku
∗
k,i(dk(i)− uk,iwk,i−1) (5.12)

wk,i =ψk,i − µk
∑

`∈N k,i\{k}

b`,k(i)(wk,i−1 − wo) (5.13)

The first update (5.12) can be carried out by all nodes independent of knowledge of wo.

However, the unknown wo still appears in (5.13). In network, with ideal channels, wo is

replaced by ψ`,i. Under fading condition, since ψ`,i is not available at each node k, we,

alternatively, use the equalized value of its transmitted version, g`,k(i)ψ`k,i, where the scalar

gain g`,k(i) is an equalization coefficient to be chosen to counter the effect of fading. Recall

that ψ`k,i is related to ψ`,i via (5.2). We also replace wk,i−1 in (5.13) by ψk,i. With these

replacements, recursion (5.13) becomes

wk,i =ψk,i − µk
∑

`∈N k,i\{k}

b`,k(i)(ψk,i − g`,k(i)ψ`k,i) (5.14)

By noting that gk,k(i) = 1 for all k, and introducing the time-varying coefficients a`,k(i) as

a`,k(i) =


1−

∑
j∈N k\{k} µkbj,k, ` = k

µkb`,k(i), ` ∈N k,i\{k}

0, otherwise

(5.15)

Considering these coefficients, we then arrive at the ATC DLMS strategy, Algorithms 5.1

for parameter estimation over wireless sensor networks.

One way to compute the equalization coefficients, g`,k(i) is to employ the following zero-

forcing type construction:

g`,k(i) =
h∗`,k(i)

|h`,k(i)|2

√
rα`,k
Pt

(5.18)
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Algorithm 5.1 : Diffusion ATC over Wireless Channels

ψk,i = wk,i−1 + µku
∗
k,i

[
dk(i)− uk,iwk,i−1

]
(5.16)

wk,i =
∑
`∈N k,i

a`,k(i)g`,k(i)ψ`k,i (5.17)

Alternatively, if the noise variances σ
2(ψ)
v,`k are known, then one also could use a minimum

mean-square-error (MMSE) estimation scheme to obtain the equalization coefficients.

By switching the order of the adaption and combination steps in Algorithm 5.1, we

obtain the CTA DLMS strategy listed below. In (5.19), w`k,i is the estimate of the global

parameter at node ` that undergoes similar path loss, fading and noise as ψ`k,i described

by (5.2).

Algorithm 5.2 : Diffusion CTA over Wireless Channels

ψk,i =
∑
`∈N k,i

a`,k(i)g`,k(i)w`k,i−1 (5.19)

wk,i = ψk,i + µku
∗
k,i

[
dk(i)− uk,iψk,i

]
(5.20)

The combination coefficients a`,k(i) now are random and time-dependent because the neigh-

borhoods are also evolving with time. Moreover, from (5.15) can be verified that they need

to satisfy

a`,k(i) = 0 if ` /∈N k,i and
∑
`∈N k,i

a`,k(i) = 1 (5.21)

The randomness of a`,k(i) can be further clarified by (5.5). The communication between

nodes ` and k is successful if (5.5) is satisfied. Otherwise, the link between them fails.

When the link fails, the associated combination weight a`,k(i) must be set to zero, which in

turn implies that other combination coefficients of node k need to be adjusted to preserve

their sum to one, i.e., to satisfy (5.21). This suggests that the neighborhood set N k,i has

to be updated whenever the received SNR crosses the threshold in either direction:

N k,i =

{
` ∈ {1, · · · , N}

∣∣∣ ς`k(i) ≥ ςo`k

}
(5.22)
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Motivated by these considerations, we propose the following dynamic structure to obtain

combination weights over time:

a`,k(i) = γ`,kI`,k(i), ak,k(i) = 1−
∑

`∈N k,i\{k}

a`,k(i) (5.23)

where the γ`,k are positive fixed combination weights that node k assigns to its neighbors

` ∈N k,i. To assure ak,k(i) > 0, these weights need to satisfy:∑
`∈N k,i\{k}

γ`,k < 1 (5.24)

It can be verified that if each node k obtains the coefficients γ`,k for the time-invariant

neighborhood set Nk according to well-known left-stochastic matrix combination rules,

then the condition (5.24) will be always satisfied. In relation (5.23), I`,k(i) is defined as:

I`,k(i) =

{
1, if ` ∈N k,i

0, otherwise
(5.25)

When transmission from node ` to node k is successful I`,k(i) = 1, otherwise, I`,k(i) = 0.

In this way, the entries a`,k(i) satisfy condition (5.21). From (5.22) and (5.25), we see that

the indicator operator, I`,k(i), is a random variable with bernoulli distribution for which

the probability of success, p`,k, is given by the exponential function (5.7).

5.3.2 Modeling the Impact of Channel Estimation Errors

In Algorithms 5.1 and 5.2, it is assumed that each node k knows the channel fading co-

efficients h`,k(i), for ` ∈ N k,i needed in (5.18). In practice, this information is usually

recovered by means of an estimation step. Consequently, some additional estimation errors

will be introduced into the network operation.

There are many ways by which the fading coefficients can be estimated. For example,

we may assume that the transmitted data from node ` to node k carries two data types,

namely, pilot symbols (training data) denoted by s`(i), and data symbols ψ`,i or w`,i. The

training data are used for channel estimation and the data symbols are the intermediate

estimates of the unknown parameter vector, wo, which are used to update the network
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estimate at node k. According to (5.2), the received training data at node k and time i is

affected by fading and noise, i.e.,

y`,k(i) = h`,k(i)

√
Pt
rα`,k
s`(i) + v

(y)
`,k(i) (5.26)

where v
(y)
`,k(i) is a zero-mean additive white Gaussian noise with variance σ

(y)2
v,`k . It is rea-

sonable to assume that σ
(y)2
v,`k = σ

(ψ)2
v,`k .

The length of training symbols depends on the specific application requirements and the

time scale variations of the channel. If the channels are quickly time-varying, a transmission

block may include one training symbol for each data symbol. On the other hand, when

the channels are slowly time-varying, one training symbol might be sufficient for several

transmitted blocks. If we use a single training data, the least-squares estimation method

gives the following estimate1:

ĥ`,k(i) =

√
rα`,k
Pt

s∗`(i)

|s`(i)|2
y`,k(i) (5.27)

We assume that sensor k ∈ {1, 2, · · · , N} sends sk(i) = 1 as training symbols. Under this

condition, ĥ`,k(i) =
√

rα`,k
Pt
y`,k(i). From (5.26), it can be seen that y`,k(i) is composed of

the sum of two independent circular Gaussian random variables. It follows that y`,k(i) has

circular Gaussian distribution with zero mean and variance σ2
h,`k

Pt
rα`,k

+ σ
(ψ)2
v,`k . From (5.27),

we therefore conclude that ĥ`,k(i) has circular Gaussian distribution with zero mean and

variance σ2
h,`k +

rα`,k
Pt
σ

(ψ)2
v,`k , and |ĥ`,k(i)|2 has exponential distribution with parameter

λ`,k =
1

σ2
h,`k +

rα`,k
Pt
σ

(ψ)2
v,`k

(5.28)

From here the probability of successful transmission from node ` to node k will be

p`,k = Pr

(
|ĥ`,k(i)|2 ≥ ν`,k

)
= e−λ`,k ν`,k (5.29)

1The minimum number of training symbols to estimate one unknown is one. The estimation accuracy
can be enhanced for slowly varying channels by increasing the number of training symbols at the cost of
consuming more energy.
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Considering the assumed training data and from (5.26) and (5.27), the instantaneous chan-

nel estimation error will be

h̃`,k(i) =h`,k(i)− ĥ`,k(i) (5.30)

=−

√
rα`,k
Pt
v

(y)
`,k(i) (5.31)

Therefore, the variance of the estimation error can be given by:

σ2
h̃`,k

= E|h̃`,k(i)|2 =
rα`,k
Pt
σ

(ψ)2
v,`k (5.32)

This expression shows that the power of the channel estimation error, σ2
h̃`,k

, decreases if

the node transmit power increases or if the distance between node ` and k decreases. To

reduce the channel estimation error, the alternative solution is to use more pilot data. Since

the noise samples are i.i.d. in time, it can be shown that if the wireless channel remains

invariant over transmission of n number of pilot data, then the estimation error variance

will be scaled by a factor of 1/n [129].

We can now express (5.2) in terms of the estimated channels ĥ`,k(i) and the channel

estimation error as

ψ`k,i = ĥ`,k(i)

√
Pt
rα`,k
ψ`,i +

√
Pt
rα`,k
h̃`,k(i)ψ`,i + v

(ψ)
`k,i (5.33)

Under this condition, the equalization coefficients ĝ`,k(i) are computed using the estimated

channels ĥ`,k(i), according to (5.18). Using these coefficients, the equalized received data

at node k become:

ĝ`k(i)ψ`k,i =

(
1 + ĝ`,k(i)

√
Pt
rα`,k
h̃`k(i)

)
ψ`,i + ĝ`,k(i)v

(ψ)
`k,i (5.34)

Substituting the equalized data into (5.17), we obtain:

wk,i =
∑
`∈N k,i

a`,k(i)ψ`,i +
∑
`∈N k,i

e`,k(i)ψ`,i + v
(ψ)
k,i (5.35)
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where

e`,k(i) = a`,k(i)ĝ`,k(i)

√
Pt
rα`,k
h̃`k(i) = −a`,k(i)ĝ`,k(i)v

(y)
`k (i) (5.36)

v
(ψ)
k,i =

∑
`∈N k,i

a`,k(i)ĝ`,k(i)v
(ψ)
`k,i (5.37)

There are several important features in the combination step (5.35) that need to be high-

lighted. First, the combination coefficients used in this step are time varying. These

time-varying coefficients, in addition to combining the exchanged information, model the

link failure phenomena over the network. Second, {ĝ`,k(i)} account for the effects of the

fading channels. Using these variables and the control SNR mechanism introduced above,

we can reduce the effects of the link noise. Third, in (5.35), {e`k(i)} model the channel

estimation errors, which allows us to examine the impact of these errors on the diffusion

strategies.

5.4 Performance Analysis

In this section, we derive conditions under which the proposed diffusion strategy (5.16)–

(5.17) are stable in the mean and mean square sense. We further derive expressions to

characterize the MSD and EMSE of the algorithm during the transient phase and in steady-

state. We focus on the ATC variant (5.16)–(5.17), because the same conclusions hold for

the CTA strategy, represented by (5.19)-(5.20), with minor adjustments.

To derive a recursion for the mean error-vector of the network, we subtract wo from

both sides of (5.16) and (5.35) to obtain:

ψ̃k,i = (I − µku∗k,iuk,i)w̃k,i−1 − µku∗k,ivk(i) (5.38)

w̃k,i =
∑
`∈N k,i

a`,k(i)ψ̃`,i +
∑
`∈N k,i

e`,k(i)ψ̃`,i +
∑
`∈N k,i

e`,k(i)w
o − v(ψ)

k,i (5.39)

where ψ̃k,i and w̃k,i are the local error vector defined in the previous chapter. We collect

the {a`,k(i)} into a left-stochastic matrix Ai and stack the {e`,k(i)} into an error matrix

Ei. We, respectively, define the extended version of these matrices using Krocecker products
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as Ai , Ai ⊗ IM and E i , Ei ⊗ IM . We further introduce variables:

Ri , diag

{
u∗1,iu1,i, · · · ,u∗N,iuN,i

}
(5.40)

M , diag

{
µ1IM , · · · , µNIM

}
(5.41)

pi , col
{
u∗1,iv1(i), · · · ,u∗N,ivN(i)

}
(5.42)

v
(ψ)
i , col

{
v

(ψ)
1,i , · · · ,v

(ψ)
N,i

}
(5.43)

ωo , 1N ⊗ wo (5.44)

where 1N is a column vector with length N and unit entries. We can now use (5.38) and

(5.39) to verify that the following recursion holds for the network error vector:

w̃i = Biw̃i−1 − (Ai + E i)TMpi + E iTωo − v(ψ)
i (5.45)

where w̃i is the global weight error vector defined in (2.34) and

Bi = (Ai + E i)T (I −MRi) (5.46)

5.4.1 Mean Convergence

Taking the expectation of (5.45) under Assumptions 2.1 and 5.1, we arrive at

E[w̃i] = BE[w̃i−1] + ETωo (5.47)

where

B , E[Bi] = (A+ E)T (I −MR) (5.48)

A , E[Ai] = A⊗ IM (5.49)

E , E[E i] = E ⊗ IM (5.50)

R , E[Ri] = diag
{
Ru,1, . . . , Ru,N

}
(5.51)

To obtain (5.47), we use the fact that vk,i is independent of uk,i and E[vk,i] = 0. Moreover,

we have E[v
(ψ)
i ] = 0 because ĝ`,k(i) is independent of v

(ψ)
`k,i and E[v

(ψ)
`k,i] = 0. Considering
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the time-varying left-stochastic matrix Ai in (5.23), the (`, k)-th element of A is computed

as:

a`,k =

{
γ`,kp`,k, if ` ∈ Nk\{k}

1−
∑

`∈Nk\{k} γ`,kp`,k, if ` = k
(5.52)

Observe that AT1 = 1. The (`, k)-th entries of matrix E for ` = k is zero and for ` 6= k

can be computed as:

e`,k = −E
[
a`,k(i)ĝ`,k(i)v

(y)
`,k(i)

]
(i)
= −γ`,k E

[
I`,k(i)ĝ`,k(i)v

(y)
`,k(i)

]
(ii)
= −γ`,k E

[
ĝ`,k(i)v

(y)
`,k(i)

∣∣∣∣|ĥ`,k(i)|2 ≥ ν`,k

]
(iii)
= −γ`,k E

(
√

rα

Pt
h∗`,k(i)v

(y)
`,k(i) + rα

Pt
|v(y)
`,k(i)|2

|h`,k(i) +
√

rα

Pt
v

(y)
`,k(i)|2

)∣∣∣∣ (∣∣∣h`,k(i) +

√
rα

Pt
v

(y)
`,k(i)

∣∣∣2 ≥ ν`,k

)
(5.53)

The equality in step (ii) follows from the fact that ĝ`,k(i) is defined for ` ∈ Nk\{k} when

|ĥ`,k(i)|2 ≥ ν`,k for which I`,k(i) = 1. We obtain (iii) by expressing ĝ`,k(i) in terms of

h`,k(i) and v
(y)
`,k(i). Expression (5.53) indicates that e`,k is bounded.

Remark 5.1. From the right hand side of (5.53), it can be verified that the value of the

expectation is independent of time since the estimation error, v
(y)
`,k(i), and the channel coef-

ficients, h`,k(i), are assumed to be i.i.d. over time with fixed probability density functions.

According to (5.47), if B is stable, then the network mean error vector converges to

b , lim
i→∞

E[w̃i] = (I − B)−1ETωo (5.54)

If ĥ`,k(i) = h`,k(i) then E = 0 and limi→∞ E[w̃i] = 0, i.e., the algorithm will be asymptoti-

cally unbiased.

Let us now find conditions under which B is stable, i.e., conditions under which the

spectral radius of B, denoted by ρ(B), is strictly less than one. We use the properties of
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the block-infinity norm ‖x‖b,∞ [63] to establish the following relations:

ρ(B) ≤ ‖B‖b,∞
≤ ‖(A+ E)T‖b,∞ ‖(I −MR)‖b,∞

≤
(
‖AT‖b,∞ + ‖ET‖b,∞

)
‖(I −MR)‖b,∞

=
(

1 + ‖ET‖b,∞
)
‖(I −MR)‖b,∞ (5.55)

where in the last equality we used the fact that ‖AT‖b,∞ = 1 since A is left-stochastic.

According to (5.55), ρ(B) is bounded by one if

‖(I −MR)‖b,∞ <
1

1 + ‖E‖b,∞
(5.56)

Since I−MR is block diagonal and Hermitian, we have ‖(I−MR)‖b,∞ = ρ(I−MR) [82].

The spectral radius of I −MR will be less than 1/(1 + ‖E‖b,∞) if the absolute maximum

eigenvalue of each of its blocks is strictly less than 1/(1 + ‖E‖b,∞). This condition is satisfied

if at each node k the step-size µk is chosen as:

1− 1
1+‖E‖b,∞

λmax(Ru,k)
< µk <

1 + 1
1+‖E‖b,∞

λmax(Ru,k)
(5.57)

where λmax(·) denotes the maximum eigenvalue of its matrix argument. This relation

reveals that the mean-stability range of the algorithm reduces as the channel estimation

error over the network increases. If the channel estimation error approaches zero1, then

‖E‖b,∞ = 0 and the stability condition reduces to 0 < µk <
2

λmax(Ru,k)
, which is the mean

stability range of diffusion LMS over ideal communication links [82]. A similar analysis can

be carried out for the CTA diffusion strategy (5.19)-(5.20). We summarize the main result

of the mean-convergence analysis of the developed DLMS algorithm in the following:

Theorem 5.1. Consider diffusion strategies (5.16)–(5.17) or (5.19)–(5.20) with the space-

time data (5.1) and (5.2) satisfying Assumption 2.1 and 5.1, respectively. Furthermore,

assume that the channel coefficients are estimated using (5.27) with training symbols sk(i) =

1The channel estimation error can be reduced by transmitting more number of pilot symbols and
increasing the SNR during pilot transmission.
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1. Then this algorithms will be stable in the mean sense and its mean error vector converges

to (5.54) if the step-sizes are chosen according to (5.57).

5.4.2 Steady-State Mean-Square Performance

To study the mean-square performance of the algorithm, we need to determine the network

variance relation [27,53,89]. This relation can be obtained by equating the weighted squared

norms of both sides of (5.45), and taking expectations under Assumptions 2.1 and 5.1:

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σi
′ + E

[
ωo∗ E∗Ti ΣETi ωo

]
+ E

[
p∗iMT (Ai + E∗Ti )Σ(Ai + E i)TMpi

]
+ 2Re

{
E[ωo∗E∗Ti ΣBiw̃i−1]

}
+ E[v

(ψ)∗
i Σv

(ψ)
i ] (5.58)

where for a vector x and a weighting matrix Σ ≥ 0 with compatible dimensions ‖x‖2
Σ =

x∗Σx, and

Σ′i = Bi
∗ΣBi (5.59)

Under the independence assumption between w̃i−1 and Ri, it holds that

E
(
‖w̃i−1‖2

Σ′i

)
= E‖w̃i−1‖2

E[Σ′i]
(5.60)

Using this equality in (5.58), we arrive at:

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ′ + Tr(E
[
ETi ωo∗ ωoE∗Ti Σ]

)
+ Tr

(
E[(Ai + E i)TMpip

∗
iM(Ai + E∗Ti )Σ]

)
+ 2Re

{
Tr(E[Biw̃i−1ω

o∗E∗Ti Σ])

}
+ Tr

(
E[v

(ψ)
i v

(ψ)∗
i Σ]

)
(5.61)
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where Σ′ = E[Σ′i]. To compute (5.61), we introduce:

P , E[pip
∗
i ] = diag

{
σ2
v,1Ru,1, · · · , σ2

v,NRu,N

}
(5.62)

Rv , diag
{
Rv,1 · · · , Rv,N

}
(5.63)

Rv,k , E[v
(ψ)
k,i v

(ψ)∗
k,i ] =

∑
`∈Nk\k

E
[
a2
`,k(i) |ĝ`,k(i)|2

]
R

(ψ)
v,`k (5.64)

We show in Appendix A.7 how to compute the expectation term multiplying the R
(ψ)
v,`k in

(5.64).

To proceed, we assume Σ is partitioned into block entries of size M × M and let

σ = bvec(Σ) denote the vector that is obtained from the block vectorization of Σ. We shall

write ‖w̃i‖2
Σ and ‖w̃i‖2

σ interchangeably to denote the same weighted square norm [27].

We now consider block matrices U and V ∈ CMN×MN with block size M ×M . Then the

following relations hold [27]:

bvec(UΣV ) = (V T ⊗b U)bvec(Σ) (5.65)

Tr(ΣX) =

(
bvec

(
XT )

)T
bvec(Σ) (5.66)

Using properties (5.65) and (5.66), and considering real-valued Σ, the variance relation in

(5.61) leads in steady-state to:

lim
i→∞

E‖w̃i‖2
σ = lim

i→∞
E‖w̃i−1‖2

Fσ + γTσ (5.67)

where

F = E[BT
i ⊗b B∗i ] (5.68)

and

γ = lim
i→∞

{
E
[
ETi ⊗b E∗i

]
bvec

(
(ωoωo∗)T

)
+ E

[
(Ai + E i)T ⊗b (Ai + E∗Ti )T

]
bvec(MPTM)

+ 2Re{E
[
Bi ⊗b E∗i ] bvec((b ωo∗)T}

}
+ bvec(RT

v ) (5.69)
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Considering (5.46) and (5.68) matrix F can be written as:

F = E
{[

(I −MRi)
T (Ai + E i)

]
⊗b
[
(Ai + E∗Ti )(I −MRi)

]}
= E

{[
(I −MRi)

T ⊗b (I −MRi)
][

(Ai + E i)⊗b (Ai + E∗Ti )
]}

(5.70)

Since the entries of matrix Ri, i.e., the regression data uk,i, are independent of the entries

of matrices Ai and E i, i.e., a`,k(i) and e`,k(i), matrix F in (5.70) can be written more

compactly as:

F = F̄ D (5.71)

where

F̄ , E
[
(I −MRi)

T ⊗b (I −MRi)
]

(5.72)

D , E[Di] = E
[
(Ai + E i)⊗b (Ai + E∗Ti )

]
(5.73)

We can find an expression for F̄ if we assume that the regression data uk,i are circular

Gaussian–see equation (5.74) and Appendix A.8, where ek is a basis vector in RN with

entry one at position k, rk = vec(Ru,k), β = 2 for t real-valued data and β = 1 for

complex-valued data.

F̄ =(I −MR)T ⊗b (I −MR) +

{ N∑
k=1

[
diag

(
(vec(diag(ek))

)]
⊗
[
(β − 1)(RTk,u ⊗Rk,u) + rkr

∗
k

]}
× (M⊗bM) (5.74)

A simplified expression can be found to compute F̄ without using the Gaussian assumption

on the regression data provided that the following condition holds.

Assumption 5.2. The channel estimation errors over the network are small enough such

that the adaptation step-sizes in (5.57) can be chosen sufficiently small.

In cases where the distribution of the regression data is unknown, under Assumption 5.2, the

contributing terms depending on µ2
k can be neglected and as a result F̄ can approximated
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by

F̄ ≈
[
(I −MR)T ⊗b (I −MR)

]
(5.75)

In Appendix A.9, we show how to obtain the matrix D in (5.73) needed for computing F
in (5.71). To evaluate γ, we use the following relations:

E
[
ETi ⊗b E∗i

]
= E

[(
ET
i ⊗E∗i

)]
⊗ IM2 (5.76)

E
[
(Ai + E i)T ⊗b (AT

i + E∗i )
]

=

(
E
[
(Ai ⊗Ai)

T
]

+ E
[
(AT

i ⊗E∗i )
]

+ E
[
(Ei ⊗Ai)

T ] + E
[
ET
i ⊗E∗i

])
⊗ IM2 (5.77)

E
[
Bi ⊗b E∗i ] =

{(
E
[
(Ai ⊗Ei)

∗] + E
[
ET
i ⊗E∗i ]

)
⊗ IM2

}{
(IMN −MR)⊗b IMN

}
(5.78)

The detail computation of each term on the righthand sides of (5.76)-(5.78) can be found

in Appendix A.9.

To obtain mean-square error (MSE) steady state expressions for the network, we let i

go to infinity and use expression (5.67) to write:

lim
i→∞

E‖w̃i‖2
(I−F)σ = γTσ (5.79)

Since we are free to choose Σ and hence σ, we choose (I − F)σ = bvec(Ω), where Ω is

another arbitrary positive semidefinite matrix. Doing so, we arrive at:

lim
i→∞

E‖w̃i‖2
Ω = γT (I −F)−1bvec(Ω) (5.80)

Each sub-vector of w̃i corresponds to the estimation error at a particular node, e.g., w̃k,i

is the estimation error at node k. Using (5.80), the MSD at node k can be computed by

choosing Ω = {diag(ek) ⊗ I}, where ek is a basis vector in RN with entry one at position
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k. Therefore, the MSD at node k can be obtained as:

MSDk = lim
i→∞

E‖w̃k,i‖2 = lim
i→∞

E‖w̃i‖2

{diag(ek)⊗I}

= γT (I −F)−1bvec(diag(ek)⊗ IM) (5.81)

The network MSD is defined as:

MSD = lim
i→∞

1

N

N∑
k=1

E‖w̃k,i‖2 (5.82)

where it can be computed from (5.80) by using Ω = 1
N
IMN . This leads to:

MSD = lim
i→∞

1

N
E‖w̃i‖2

=
1

N
γT (I −F)−1bvec(IMN) (5.83)

In (5.81) and (5.83), it is assumed that (I − F) is invertible. In what follows, we find

conditions under which this assumption is satisfied. Using the properties of the Kronecker

product and the sub-multiplicative property of norms, we can write:

ρ(F) ≤ ‖F̄D‖b,∞ ≤ ‖F̄‖b,∞‖D‖b,∞ (5.84)

We next show that F̄ from (5.75) is a block diagonal Hermitian matrix with block size

NM2 × NM2. To this end, we note that I −MR is a block diagonal matrix with block

size M ×M and then use (5.75) to obtain:

F̄ = diag

{
(I − µ1Ru,1)T ⊗ (I −MR), · · · , (I − µNRu,N)T ⊗ (I −MR)

}
(5.85)

Moreover, F̄ is Hermitian because considering R = R∗, M = MT , RM = MR, we will

have

F̄∗ =
(

(I −MR)T
)∗
⊗b (I −MR)∗

= (I −MR)T ⊗b (I −MR) = F̄ (5.86)
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Now we can use the following lemma to bound the spectral radius of matrix F in (5.84).

Lemma 1. Consider an N×N block diagonal Hermitian matrix Y = diag{Y1, Y2, · · · , YN},
where each block Yk is of size M ×M and Hermitian. Then it holds that [82]:

‖Y ‖b,∞ = max
1≤k≤N

ρ(Yk) = ρ(Y ) (5.87)

According to this lemma, since F̄ is block diagonal Hermitian, we can substitute its block

maximum norm on the right hand side of relation (5.84) with its spectral radius and obtain:

ρ(F) ≤ ρ

(
(I −MR)T ⊗b (I −MR)

)
‖D‖b,∞

= ρ2(I −MR) ‖D‖b,∞ (5.88)

We then deduce that ρ(F) < 1 if:

0 < ρ(I −MR) <
1√
‖D‖b,∞

(5.89)

Since I−MR is a block-diagonal matrix, this condition will be satisfied for small step-sizes

that also satisfy:
1− 1√

‖D‖b,∞

λmax(Ru,k)
< µk <

1 + 1√
‖D‖b,∞

λmax(Ru,k)
(5.90)

If the channel estimation error is small, then ‖E‖b,∞ ≈ 0 and D ≈ A⊗b A. Subsequently,

‖D‖b,∞ ≈ 1 and this mean-square stability condition reduces to 0 < µk <
2

λmax(Ru,k)
which

is the mean-squares stability range of diffusion LMS over ideal communication links [82].

5.4.3 Mean-Square Transient Behavior

In this part, we derive expressions to characterize the mean-square convergence behavior

of the diffusion algorithms over wireless networks with fading channels and noisy com-

munication links. To derive these expressions, it is assumed that each node knows the

CSI of its neighbors, and hence Ei = 0 for all i. We then use (5.58) and consider
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wk,−1 = 0, ∀k ∈ {1, · · · , N} to arrive at:

‖w̃i‖2
σ = ‖wo‖2

F̂i+1σ
+ γ̄T

i∑
j=0

F̂ jσ (5.91)

where

γ̄ , E
[
AT
i ⊗b Ai

]
bvec(MPTM) + bvec(R̄T

v ) (5.92)

R̄v , diag
{
R̄v,1 · · · , R̄v,N

}
(5.93)

R̄v,k , E[v
(ψ)
k,i v

(ψ)∗
k,i ] =

∑
`∈Nk\k

E
[
a2
`,k(i) |g`,k(i)|2

]
R

(ψ)
v,`k (5.94)

Under this condition, and since Ei = 0, F̂ can be expressed as:

F̂ ≈
(

(I −MR)T ⊗b (I −MR)∗
)
E
[
AT
i ⊗b Ai

]
(5.95)

Writing this relation for i− 1 and computing ‖w̃i‖2
σ − ‖w̃i−1‖2

σ leads to:

‖w̃i‖2
σ = ‖w̃i−1‖2

σ + ‖wo‖2
F̂i(I−F̂)σ

+ γ̄T F̂ iσ (5.96)

By replacing σ with σmsdk = diag(ek)⊗ IM and σemsek = diag(ek)⊗ Ru,k, we arrive at two

recursions for the evolution of the MSD and EMSE over time:

ηk(i) = ηk(i− 1)− ‖wo‖F̂i(I−F̂)σmsdk
+ γ̄T F̂ iσmsdk (5.97)

ζk(i) = ζk(i− 1)− ‖wo‖F̂ i(I−F̂)σemsek
+ γ̄T F̂ iσemsek (5.98)

We can find the learning curves of the network MSD and EMSE by averaging the nodes

learning curves (5.97) and (5.98), respectively.

5.5 Simulation Results

In this section, we present computer experiments to illustrate the performance of the ATC

diffusion strategy (5.16)–(5.17) in the estimation of the unknown parameter vector wo =
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2[1+j1, −1+j1]T over time-varying wireless channels. We consider a network with N = 10

nodes, which are randomly spread over a unit square area (x, y) ∈ [0, 1]×[0, 1], as shown in

Fig. 5.2. We choose the transmit power of Pt = 1, nominal transmission range of ro = 0.4

and the path-loss exponents α = 3.2.
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Fig. 5.2 This graph shows the topology of the wireless network at the initial
phase. In this phase two nodes are connected if their distance is less than their
transmission range, ro = 0.4. In a fading scenario, this topology changes over
time, meaning that each node may not communicate with all its neighbors all
the time. A node may connect to or disconnect from its neighbors depending
on the value of the indicator function.

For each node k ∈ {1, 2, · · · , N}, we set µk = 0.01 and wk,−1 = 0. We adopt zero-mean

Gaussian random distributions to generate vk(i), v
(ψ)
`k,i and uk,i. The distribution of the

communication noise power over the spatial domain is illustrated in Fig. 6.3. The regression

data uk,i have covariance matrices of the form Ru,k = σ2
u,kIM . The trace of the regression

data, Tr(Ru,k), and the variances of measurement noise, σ2
v,k, are illustrated in Fig. 5.4.

The distribution of the communication noise power over the spatial domain is illustrated in

Fig. 5.3. The exchanged data between nodes experience distortion characterized by (5.2).

At time i, the link between nodes ` and k fails with probability 1 − p`,k. We obtain γ`,k

using the relative-degree combination rule [33,82], i.e.,

γ`,k =


|N`|∑

m∈Nk
|Nm| , if ` ∈ Nk

0, otherwise
(5.99)

and update Ai it at each time i according to the introduced combination rule (5.23).
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Fig. 5.3 Communication noise power over the network

Figures 5.5 and 5.6 show the network MSD in transient and steady-sate regimes, where

the simulation curves are obtained from the average of 500 independent runs. In these

figures, we compare the performance of the algorithm over wireless channels for different

CSI cases at the receiving nodes. In particular, we first examine the performance of the

algorithm with perfect CSI, where each node k knows the CSI of all its neighbors. We then

consider scenarios where nodes do not have access to the CSI of their neighbors and obtain

this information using one and two samples pilot data. For comparison purposes, we also

illustrate the performance of ATC diffusion over ideal communication links in which the

communication links between nodes are error-free, i.e., where for each node k, ψ`k,i = ψ`,i

for all i.

The best performance in these experiments belongs to the diffusion strategy that runs

over network with ideal communication links. As expected, the diffusion strategy with

perfect CSI knowledge outperforms diffusion strategy with channel estimation using one or

two samples pilot data, respectively, by 7dB and 5dB. In particular, the steady-sate mean-

square performance of the algorithm improves almost by 3dB for an additional sample

of pilot data used for channel estimation. Therefore, if the wireless channels are slowly-

varying, by using a larger number of pilot data, it is possible to approach the performance

of the diffusion strategy algorithm with perfect CSI.

In Fig. 5.7, we compare the performance of diffusion strategies for different ranges of
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SNR over the network. We also make some comparisons between the cooperative and non-

cooperative networks where in the latter case the network runs a stand-alone LMS filter at

each node, which is equivalent to running the diffusion strategy with Ai = I. In Fig. 5.7,

the SNR index n ∈ {1, 2, · · · , 7} over the x-axis refers to the n-th network SNR distribution,

as obtained by uniformly scaling up the initial SNR distribution over the network by 5dB

for each increment in the integer n, as represented by SNRn = SNRini + 5n (dB), where

SNRini are the SNR of the connected nodes illustrated in Fig. 5.2, and are obtained from

uniformly distributed random variables in the range between [5 10]dB.

As shown in Fig. 5.7, the performance of non-cooperative adaptation and DLMS with

ideal communication links remains invariant with changes in the SNR values. This is

expected since the performance of the DLMS in these cases is not affected by the com-

munication noise, v
(ψ)
`k,i and v

(y)
`k,i. In comparison, the performance of the modified diffusion

strategy over wireless links depends on the CSI. As the knowledge about the network CSI

increases, the performance improves. From this result, we observe that at low SNR the

performance discrepancies between diffusion with perfect CSI and diffusion with channel

estimation is larger compared to high SNR scenarios. This difference in performance can

be reduced by using more pilot data to estimate the channel coefficients in each time slot.

In addition, at very low SNR, we see that the non-cooperative case outperforms the mod-

ified diffusion strategy. This result suggests that in wireless networks with high levels of
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communication noise at all nodes (e.g., when the nodes transmit power is very low), to

maintain a satisfactory performance level the network must switch to the non-cooperative

mode. It also can be concluded that if the transmit power of some nodes is below some

threshold value, these nodes should go to a sleep mode in order to avoid error propagation

over the network.
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Fig. 5.5 Learning curves of the network in terms of MSD and EMSE.

5.6 Summary

We studied and examined the performance of DLMS algorithms over wireless networks,

where the communication links between nodes are impaired by fading, path-loss and noise.

We proposed new DLMS algorithms that are able to operate over time-varying wireless

channels and under link-failure conditions. We introduced a simple strategy to update

the network combination matrix over time when the network topology changes due to link

failure or due to creation of new links. Our analytical finding indicate that the modified

DLMS algorithms remain stable and converge in the mean and mean-square sense by proper

CSI monitoring over the network provided that the network optimization step-sizes are

sufficiently small. The analysis also reveals that the performance of the proposed DLMS
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algorithms significantly depends on the network CSI and communication noise power over

the network. We carried out computer experiments that show the effectiveness of the

modified DLMS algorithms and verify the analytical findings.

As we have shown in this chapter, the performance of DLMS algorithms over ideal

communication channel is far superior than that of DLMS over fading wireless channels. In

the following chapter, in order to improve to performance of the proposed DLMS algorithms

over fading channels and reduce the performance gap between these two scenarios, we will

find the optimal value of the network combination matrix and propose an adaptive scheme

to obtain their entries in real-time.
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Chapter 6

Optimal Combination Weights over

Wireless Sensor Networks

In this chapter, we study the performance of the DLMS algorithms developed in the pre-

vious chapter for different choices of left-stochastic combination matrices. In particular,

we consider sensor networks, where the exchanged data between nodes are distorted by

wireless channel impairments such as fading, path loss and noise. Under this condition,

the selection of the entries of left-stochastic matrix Ai can significantly impact the accu-

racy of the network estimates. Our computer experiments show that an improper choice

of combination weights can drastically deteriorate the performance of DLMS algorithms

such that their steady-state MSE will become larger than the non-cooperative counter-

parts. To address this issue, we formulate a convex optimization problem using an upper

bound of the mean-squares deviation (MSD) of network and obtain a closed form solution

for the problem that gives the optimal combination weights and leads to substantial per-

formance improvement. We also propose an adaptive scheme to obtain the optimal weights

in real-time along the main estimation task of the network.

6.1 Introduction

The performance of adaptive networks highly depends on a left-stochastic matrix of dif-

fusion strategies which dictates the flow of exchange information between nodes. From

the network stability standpoint, this matrix needs to satisfy only a few conditions,i.e., its

entries must be positive for neighboring nodes, all remaining entries must be set to zero
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and the entries on each column must add up to one [27]. Therefore, there are many choices

of left stochastic matrices over a network for data fusion [27,64,68,70]. However, not all of

these choices will lead to a desired performance result unless additional information such as

node’s energy and noise profile are taken into account for their construction. For instance,

if the measurement accuracy of a particular node over the network is low, the corresponding

combination weights assigned it should be small to avoid error prorogation [64]. Based on

this observation, we can view the entries of a left-stochastic combination matrix as variables

of an optimization problem, which its solution can lead to a desired performance result over

the network.

Over the past few years, several combination rules have been proposed for the fusion of

the exchanged data between agents, especially in the context of consensus-based iterations

[60–62], such as the maximum-degree rule and the Metropolis rule. While these schemes

focus on improving the convergence behavior of the algorithms, they ignore the variations in

noise profile and link status across the network, which can cause substantial performance

degradation [63]. Recently, some studies considered the variation in measurement noise

profile in obtaining the optimal weights over the network. For instance, the work in [33],

defined a nonlinear and non-convex optimization problem which incorporate the variances

of the measurement noise and its solution is pursued numerically. In [64], the authors

reformulated this problem as a convex optimization and arrived at a closed-form solution

to design the combination weights. Authors in [53] studied a more general scenario, where

in addition to measurement noise, they also consider link communication noise in their

design. In particular, they formulated an optimization problem that uses the node energy

profile as well as the communication noise to obtain the optimal weights over the network.

In these works, it was assumed that the links between nodes are always active, regardless

of the nodes mobility, communication noise power and the fading conditions.

In this chapter, we consider a more general scenario to design the optimal combination

weights. In our formulation, we consider a wireless sensor network where the links between

agents (sensor nodes) are affected by fading and path loss in addition to communication

noise, and as a consequence the link connectivity status and the network topology vary over

time. To find the optimal combination weights, we formulate an optimization problem using

an upper-bound approximation of the network MSD that can be solved in closed-form and

gives the desired performance improvement. The obtained solution, nevertheless, requires

the knowledge of the input correlation matrices, and the variances of the measurement and
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channel noise, which are often unknown in practice. We subsequently introduce an adaptive

computation scheme that relies on the instantaneous data approximations to alternatively

find the optimal combination weights over the network. In this way, each node besides

running the standard adaptation layer to solve the desired distributed estimation, also

runs a second adaptation layer to adjust its combination weights over time.

6.2 Mean-Square Performance

We consider the ATC diffusion algorithm given by (5.16)–(5.17) from the previous chapter.

Our objective is to design the optimal combination matrix Ai that minimizes the network

mean estimation errors. For mathematical tractability, in this chapter, we assume that the

channel coefficients are all known a-priori. Therefore, the channel estimation error, Ei, will

be zero. Under such conditions, the network error vector given by (5.45) takes the form:

w̃i = Biw̃i−1 −AT
iMpi − v

(ψ)
i (6.1)

where

Bi = AT
i (I −MRi) (6.2)

Ai , Ai ⊗ IM (6.3)

Ri , diag

{
u∗1,iu1,i, · · · ,u∗N,iuN,i

}
(6.4)

M , diag

{
µ1IM , · · · , µNIM

}
(6.5)

pi , col
{
u∗1,iv1(i), · · · ,u∗N,ivN(i)

}
(6.6)

v
(ψ)
i , col

{
v

(ψ)
1,i , · · · ,v

(ψ)
N,i

}
(6.7)

We now find the variance relation of the network by computing the weighted squared norm

of (6.1), and taking expectations of both sides under Assumptions 2.1 and 5.1:

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σi
′ + E

[
p∗iMTAiΣAT

iMpi

]
+ E[v

(ψ)∗
i Σv

(ψ)
i ] (6.8)
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where

Σ′i = Bi
∗ΣBi (6.9)

Under the independence assumption between wi−1 and Ri, it holds that

E
(
‖w̃i−1‖2

Σ′i

)
= E‖w̃i−1‖2

E[Σ′i]
(6.10)

Substituting this into (3.93), we arrive at:

E‖w̃i‖2
Σ = E‖w̃i−1‖2

Σ′ + Tr
(
E[AT

iMpip
∗
iM(Ai)Σ]

)
+ Tr

(
E[v

(ψ)
i v

(ψ)∗
i Σ]

)
(6.11)

where Σ′ = E[Σ′i]. Considering real-valued Σ the variance relation in (6.11) reads as:

E‖w̃i‖2
σ =E‖w̃i−1‖2

Fσ + γTσ (6.12)

where

σ , bvec(Σ) (6.13)

σ′ , bvec(Σ′) = Fσ (6.14)

F = E[BT
i ⊗b B∗i ] (6.15)

γ = E[(Ai ⊗b Ai)
T ]bvec(MPTM) + bvec(RT

v ) (6.16)

P , E[pip
∗
i ] = diag

{
σ2
v,1Ru,1, · · · , σ2

v,NRu,N

}
(6.17)

Rv , diag
{
Rv,1 · · · , Rv,N

}
(6.18)

Rv,k , E[v
(ψ)
k,i v

(ψ)∗
k,i ] =

N∑
`∈Nk

E
[
a2
`,k(i) |g`,k(i)|2

]
R

(ψ)
v,`k (6.19)

From (6.12), it can be deduced that:

E‖w̃i‖2
σ = E‖w̃−1‖2

Fi+1σ + γT
i∑

j=0

F jσ (6.20)
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Matrix F can be written as:

F = E
{(

(I −MRi)
T ⊗b (I −MRi)

∗
)
Di

}
(6.21)

where

Di = Ai ⊗b Ai (6.22)

For sufficiently small step-sizes, matrix F can be approximated by:

F ≈
[
(I −MR)T ⊗b (I −MR)∗

]
D (6.23)

where D = E[Di]. From this relation, it can be verified that the steady-state mean-squares

error of the network highly depends on matrix Di, which is constructed by Ai.

6.3 Combination Weights over Fading Channels

Since, according to (5.22), the neighborhood of each node k changes over time, the static

combination rules proposed in previous works [29,33,82,124] are not immediately applicable

for DLMS over wireless networks. In these networks, the entries of the time-varying left-

stochastic matrix Ai can be expressed as:

a`,k(i) = γ`,kI`,k(i) (6.24)

where γ`,k are positive fixed combination weights that node k assigns to neighbors ` ∈N k,i,

and I`,k(i) is defined in (5.25). To give an idea as how to choose the combination weights

over time, we rewrite the proposed combination rule (5.23) presented in Chapter 5:

a`,k(i) =


γ`,kI`,k(i), if ` ∈N k,i\{k}k

1−
∑

`∈N k,i\{k} a`,k(i), if ` = k

0, Otherwise

(6.25)

where γ`,k must satisfy: ∑
`∈N k,i\{k}

γ`,k < 1 (6.26)
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It can be verified that if each node k obtains the coefficients γ`,k according to well-known

left-stochastic combination rules for the fixed neighborhood set Nk, then condition (6.26)

will be always satisfied.

The stability of the DLMS Algorithms in the mean and mean-square error sense, does

not depend on the particular choice of combination matrix made in (6.25). Theoretically,

other choices are possible as long as E[Ai] yields a left-stochastic matrix. Intuitively,

E[Ai] will be a left-stochastic matrix if the instantaneous combination matrix Ai satisfies∑
`∈N k,i

a`,k(i) = 1 for all i. Mathematically the claim can be stated as follows. If ∀i ∈

{0, 1, . . .} and k ∈ {1, · · · , N},
∑

`∈N k,i
a`,k(i) = 1 then E

[∑
`∈N k,i

a`,k(i)
]

= 1. This can

be readily proven as follows:

E
[ ∑
`∈N k,i

a`,k(i)

]
= E

[ ∑
`∈N k,i

a`,k(i)I`,k(i)

]

= lim
i→∞

1

i

i∑
j=1

∑
`∈N k,i

a`,k(j)I`,k(j) (6.27)

= lim
i→∞

1

i

[ ∑
`∈N k,i

a`,k(1)I`,k(1) + · · ·+
∑
`∈N k,i

a`,k(i)I`,k(i)
]

(6.28)

= 1 (6.29)

Based on this result, the earlier combination rules proposed for DLMS can be used in

wireless networks with the link failure phenomenon if their value recalculated at each time i

for the new neighborhood N k,i and satisfy (5.21). For instance, the Metropolis combination

rule [130] in networks with time-varying topologies takes the form:

a`,k(i) =



1

max
{
|N k,i|, |N `,i|

} if ` ∈N k,i\{k}

1−
∑

`∈N k,i\{k} a`,k(i) if ` = k

0 otherwise

(6.30)
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and the Laplacian combination rule [70] will change to:

a`,k(i) =



1

max
{
|N k,i|, k ∈ {1, · · · , N}

} if ` ∈N k,i\{k}

1−
∑

`∈N k,i\{k} a`,k(i) if ` = k

0 otherwise

(6.31)

In [53], the authors has proposed a relative variance combination rule that is optimal over

network with fixed topologies and noisy communication links. Consequently, it cannot

immediately be employed for networks with wireless channels and time varying topologies.

According to the above results, the modified version of this combination rule that can be

used under such conditions will be:

a`,k(i) =


α−2
`,k(i)∑

m∈Nk,i
α−2
m,k(i)

, if ` ∈N k,i

0, otherwise
(6.32)

where α2
`,k(i) is given by:

α2
`,k(i) =

{
µ2
`σ

2
v,`Tr(Ru,`) +Mσ

2(ψ)
v,`k , if ` ∈N k,i\{k}

µ2
kσ

2
v,kTr(Ru,k), if ` = k

(6.33)

The variation of α2
`,k(i) over time is due to changes in the neighborhood set, N k,i, which

is caused by link failure over the network. This combination rule can be improved if we

exploit the channel state information (CSI) while optimizing the algorithm performance

over Ai.

6.3.1 Optimal Combination Weights

As explained above, the performance of DLMS algorithms can be severely affected by the

network left-stochastic combination matrices. Therefore, these matrices can be considered

as free variables of an optimization procedure to minimize the steady-state mean-square

estimation errors of the network. Motivated by this idea, in sequel, we formulate an op-

timization problem to find the optimal value of the left stochastic matrix Ai, for each i,

that minimizes the upper bound of the network steady-state MSD.
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To obtain an upper bound of the network MSD, we use (6.20) to write

η = lim
i→∞

1

N
E‖w̃i‖2

bvec(IMN )

= lim
i→∞

1

N
E‖w̃−1‖2

Fi+1bvec(IMN ) + lim
i→∞

1

N

i∑
j=0

Tr

(
Bj
(
E[AT

iMPMAi] +Rv

)
B∗j
)

(6.34)

Since matrix B is stable, F ≈ BT ⊗b B∗ will be stable and as a result:

lim
i→∞
‖w̃−1‖2

Fi+1bvec(IMN ) = 0 (6.35)

This holds irrespective to the choice of the left stochastic matrix Ai over time. Therefore,

(6.34) reduces to:

η = lim
i→∞

1

N

i∑
j=0

Tr

(
Bj
(
E[AT

iMPMAi] +Rv

)
B∗j
)

(6.36)

Let ‖X‖∗ denote the nuclear norm of a matrix X which is defined as the sum of its singular

values:

‖X‖∗ =
∑
j

σj(X) (6.37)

Using the properties of the nuclear norm, we can write:

Tr

(
Bj(E(AT

iMPMAi) +Rv)B∗j)
(i)
=
∥∥∥Bj(E(AT

iMPMAi) +Rv

)
B∗j
∥∥∥
∗

(ii)

≤ ‖Bj‖∗‖E(AT
iMPMAi) +Rv‖∗‖B∗j‖∗

(iii)

≤ ‖B‖2j
∗ Tr(E(AT

iMPMAi) +Rv)

(iv)
= c2‖B‖2j

b,∞Tr
(
E(AT

iMPMAi) +Rv

)
(v)

≤ c2‖I −MR‖2j
b,∞Tr

(
E(AT

iMPMAi) +Rv

)
(vi)
= c2

[
ρ(I −MR

)]2j

Tr
(
E(AT

iMPMAi) +Rv

)
(6.38)
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where (i) holds because for any Hermitian positive definite matrix X, we have

‖X‖∗ = Tr(X) (6.39)

Step (ii) is satisfied due to the sub-multiplicative property of nuclear norm, (iii) holds

according to (6.39) and since

‖X‖∗ = ‖X∗‖∗ (6.40)

Step (iv) is satisfied since ‖X‖∗ and ‖X‖b,∞ are submultiplicative nroms and all such

norms are equivalent ;therefore, ‖X‖∗ = c‖X‖b,∞, where c is a positive scaler. Inequality

(v) is satisfied because, for ant time instant i, for the left stochastic matrix Ai, we have

ρ(Ai) = ρ(Ai) = ‖Ai‖b,∞ = 1. Finally (vi) holds because for any block diagonal Hermitian

matrices X, we have [82]:

‖X‖b,∞ = ρ(X) (6.41)

Substituting (vi) in (6.36), we obtain:

η ≤ lim
i→∞

c2

N
Tr
(
E[AT

iMPMAi] +Rv

) i∑
j=0

[
ρ(I −MR

)]2j

=
c2

N

Tr
(
E[AT

iMPMAi] +Rv

)
1− [ρ(I −MR]2

(6.42)

Note that to arrive in (6.42), we used the geometric series formula [131] and considered the

fact that E[AT
iMPMAi] will be equal for all i. This upper bound will be minimized if

the numerator is minimized. Thus, we obtain the following optimization problem:

min
A

Tr(E[AT
iMPMAi] +Rv)

subject to: A1 = 1, a`,k ≥ 0

a`,k = 0 if ` /∈ Nk (6.43)
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Substituting the value of Rv from (6.18), we arrive at the identity:

Tr(E[AT
iMPMAi] +Rv) =

N∑
k=1

∑
`∈Nk

E[a2
`,k(i)]

{
µ2
`σ

2
v,`

Tr(Ru,`) + E[|g`,k(i)|2
∣∣∣|h`,k(i)|2 > ν`,k] Tr(R

(ψ)
v,`k)

}
(6.44)

Considering the left-stochastic combination matrix structure given by (6.24), and assuming

mutual independence between the entries of each column in Ai, we obtain:

E[a2
`,k(i)] = γ2

`,kE[I2
`,k(i)] = γ2

`,kp`,k (6.45)

Substituting (6.45) into (6.44) and replacing the resulting the expression into (6.43) and

decoupling the latter into N independent constraint minimization problems, we arrive at:

min
γ`,k

∑
`∈Nk

γ2
`,kp`,k

{
µ2
`σ

2
v,`Tr(Ru,`) + |g`,k|2Tr(R

(ψ)
v,`k)

}
subject to: γ`,k ≥ 0,

∑
`∈Nk

p`,kγ`,k = 1

γ`,k = 0 if ` /∈ Nk (6.46)

where

|g`,k|2 = E
[
|g`,k(i)|2

∣∣∣|h`,k(i)|2 > ν`,k

]
(6.47)

Note that the cost function (6.46) is convex. Therefore, forming the Lagrangian and ap-

plying the Karush-Kuhn-Tucker(KKT) conditions [120], we will obtain:

p`,kγ`,k =


p`,kα

−2
`,k∑

m∈Nk
pm,kα

−2
m,k

, if ` ∈ Nk

0, otherwise
(6.48)

where

α2
`,k =

{
µ2
`σ

2
v,`Tr(Ru,`) +M |g`,k|2]σ

2(ψ)
v,`k , if ` ∈ Nk\{k}

µ2
kσ

2
v,kTr(Ru,k), if ` = k

(6.49)
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The combination rule (6.48) gives the entries of A, which is the average value of Ai that

minimizes the network MSD. To achieve this minimum MSD using the DLMS algorithm,

we need to know the optimal value of Ai, not the optimal value of its average. We recall

that E[I`,k(i)] = p`,k. Therefore, the optimal entries of Ai can be derived from (6.48) as:

γ`,kI`,k(i) =


I`,k(i)α−2

`,k∑
m∈Nk

Im,k(i)α−2
m,k

, if ` ∈ Nk

0, otherwise
(6.50)

which is equivalent to:

a`,k(i) =


α−2
`,k∑

m∈Nk,i
α−2
m,k

, if ` ∈N k,i

0, otherwise
(6.51)

Note that the combination matrix obtained using this method is optimal at every time

instant i.

6.3.2 Adaptive Combination Weights

In computing (6.49), we assumed that at each node k, the second order moments, σ2
v,`, Ru,`,

|g`,k|2 and σ
2(ψ)
v,`k for ` ∈ Nk, are known a-priori. Such information, however, may not be

available in practice. To overcome this difficulty, we here propose an adaptive scheme to

compute Ai along with the iterations of DLMS in real-time.

Using the equalization coefficients g`,k(i) and the identity (5.2), we can write:

g`,k(i)ψ`k,i = ψ`,i + g`,k(i)v
(ψ)
`k,i (6.52)

From (5.1), (5.16) and (6.52), we then obtain the following relation:

E‖g`,k(i)ψ`k,i −w`,i−1‖2 ≈ µ2
`σ

2
v,`Tr(Ru,`) +ME|g`,k(i)|2σ

2(ψ)
v,`k (6.53)

where ` ∈ N k,i\{k}. For node ` = k, since the communication noise is zero (i.e., v
(ψ)
kk =

0M), we can write:

E‖ψk,i −wk,i−1‖2 ≈ µ2
kσ

2
v,kTr(Ru,k) (6.54)



134 Optimal Combination Weights over Wireless Sensor Networks

Comparing (6.53) and (6.54) with (6.49), we obtain:

α2
`,k(i) ≈ E‖g`,k(i)ψ`k,i −w`,i−1‖2 (6.55)

Under the slow adaptation regime, the ATC algorithm over wireless network converges in

the mean and mean-square sense [13], which implies that all the estimates wk,i tend close

to wo as i→∞. This allows us to estimate E‖g`,k(i)ψ`k,i−w`,i−1‖2 at node k by using its

instantaneous realizations of g`,k(i)ψ`k,i −w`,i−1. However, since in this relation, w`,i−1 is

not available at node k, we alternatively use the latest estimate of the global parameter at

this node, i.e., wk,i−1 to replace it. In addition, because some links ` ∈ Nk are found to be

disconnected from node k at time instant i, we store α2
`,k(i− 1) to be used at the following

iterations. Note that this storing strategy is useful in obtaining Ai for time-varying fading

wireless channels because in tracking α2
`,k(i) over time their previous values will be useful.

By taking these points into account, relation (6.55) will take the form:

α2
`,k(i) = E‖g`,k(i)ψ`k,i −wk,i−1‖2 (6.56)

and the adaptive combination rule for network over fading wireless channels becomes:

a`,k(i) =


α̂−2
`,k(i)∑

m∈Nk,i
α̂−2
m,k(i)

, if ` ∈N k,i

0, otherwise
(6.57)

where

α̂2
`,k(i) =

 (1− τ)α̂2
`,k(i− 1) + τ‖g`,k(i)ψ`k,i −wk,i−1‖2, if ` ∈N k,i

α̂2
`,k(i− 1), if ` /∈N k,i

(6.58)

where 0 < τ < 1 is the learning factor.

6.4 Simulation Results

In this section, we present computer experiments to illustrate the performance of the ATC

DLMS algorithm over wireless channels for different choice of combination matrix Ai. We

consider a network with N = 10 nodes which are randomly spread over a unit square area
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(x, y) ∈ [0, 1] × [0, 1], as shown in Fig. 6.1. Here, the unknown parameter vector to be

estimated is wo = [1 + j, −1 + j]T/2. We choose equal transmit power Pt = 1, nominal

transmission range ro = 0.4 and the path-loss exponents α = 2.5.
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0

0.2

0.4

0.6

0.8

1

1

2

3

4 5

6 7

8
9

10

x

y

Fig. 6.1 This graph shows the topology of the wireless network at start up
time i = 0. At this time any two nodes are considered connected if their
distance are less than their transmission range, ro = 0.4. In a fading scenario,
this topology changes over time, meaning that each node may not communicate
with all its neighbors all the time. A node may connect to or disconnect from
its neighbors depending on the value of the indicator function (5.25).

In these experiments, the wireless channels between nodes change according to the

Clark channel model in which the in-phase and quadrature components, respectively, given

by [132]:

hI`,k(i) =
1

Nl

Nl∑
n=1

cos

(
x`,k(n) iTs + φ`,k(n)

)

hQ`,k(i) =
1

Nl

Nl∑
n=1

sin

(
x`,k(n) iTs + β`,k(n)

)

where Nl is the number of multi-paths arriving at the receiving node, Ts is the sampling

period, φ`,k(n) and β`,k(n) are random communication phases between node ` and k uni-

formly distributed over [0, 2π), and

x`,k(n) = 2πfd`,k cos

{
(2n− 1)π + θ`,k

4Nl

}
(6.59)
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In this expression, fd`,k denotes the doppler frequency shift and θ`,k is a random variable

uniformly distributed over [0, 2π). For these experiments, we set Nl = 16, Ts = 0.0001, and

fd`,k = 100Hz, which corresponds to fast time-varying channels.

For each node k ∈ {1, 2, · · · , N}, we set the step-size to µk = 0.01 and the initial

weight vectors to wk,−1 = 0M . We adopt zero-mean complex circular Gaussian random

distribution to generate vk(i), v
(ψ)
`k,i and uk,i. The regression data uk,i have covariance ma-

trices of the form Ru,k = σ2
u,kIM . The exchanged data between nodes experience distortion

characterized by (5.2). The trace of the regression data, Tr(Ru,k), and the variance of

measurement noise, σ2
v,k are illustrated in Fig. 6.2. The distribution of the communication

noise power, σ
2(ψ)
v,`k , over the spatial domain is illustrated in Fig. 6.3.
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Fig. 6.2 Network energy profile

The combination rules used to compute Ai are: the modified Metropolis rule (6.30),

the modified Laplacian scheme (6.31), the modified relative variance, (6.33), the proposed

optimal method (6.49), and the proposed adaptive combination rule (6.57).

From Fig. 6.4, we observe that the DLMS Algorithm converges with almost the same

rate for all combination rules. As seen from Fig. 6.4 and 6.5, in the steady-state, the

performance of the Algorithm with Ai computed using (6.49) and proposed adaptive com-

bination rule (6.57) are superior to DLMS with combination matrices (6.30), (6.31) and

(6.33). As the results indicate, in the steady state, the MSD of DLMS with the proposed

adaptive combination rule (6.57) is identical to the proposed optimal method (6.49). We

note that in time-varying wireless channels, the DLMS algorithm with combination rules



6.5 Summary 137

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

 

Node index

 

N
od

e 
in

de
x

0

0.02

0.04

0.06

0.08

Fig. 6.3 Communication noise power over the network

(6.30), (6.31), (6.33) and (6.49) requires to compute Ai at each time i. In contrast, with

the adaptive combination rule (6.57), the algorithm only needs to updates its combination

weights along with the main estimation task at each iteration.

6.5 Summary

We showed that the performance of DLMS algorithms over wireless sensor networks mainly

depends on the network left-stochastic combination matrices. To improve the performance

of the DLMS algorithms over wireless channels, we formulated an optimization problem

and solved it to find the optimal combination weights that lead to a lower steady-state

MSD over the network. We further developed an adaptive scheme to obtain the optimal

combination weights in real-time. The developed adaptive scheme does not require nodes

signal statistics (e.g, input signal correlation matrix and measurement and communication

noise variances) and it is therefore useful in wireless networks with changing topology

and time-varying channel conditions. Moreover, this strategy significantly reduces the

computational processing load of each node over the network.
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Fig. 6.4 The network MSD learning behavior for different combination ma-
trices.
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Fig. 6.5 The network steady-states MSD for different nodes and combination
matrices.
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Chapter 7

Conclusion and Future Works

In this thesis, we have studied the performance of distributed adaptive strategies, mainly

DLMS algorithms, and examined their performance over sensor networks under several

practical constraints. We consider limiting aspects and practical conditions, including,

variations of physical parameters over space, distortion of the regression data with mea-

surement noise as well as communication constraints such as fading, path loss and link

noise. Since, these constraint directly impact the functionality of the DLMS algorithms,

we developed new form of DLMS strategies that can efficiently operate in such condi-

tions and achieve satisfactory performance results. For all the newly introduced DLMS

algorithms, we conducted a detailed performance analysis and validated our theoretical

findings through numerical experiments under controlled and realistic network conditions.

Below, we summarize the main contributions of the thesis while commenting on the effi-

ciency and performance limits of the newly proposed algorithms. We then present several

open problems and research directions in the field that can be pursued in the future.

7.1 Summary and Conclusions

In Chapter 2, we studied the differences between diffusion and consensus strategies in

terms of operation, convergence behavior and stability. The main conclusion obtained

from this chapter was that the DLMS strategies outperform the consensus ones in multi-

agent networks, where the learning and tracking are the main objectives. Motivated by this

result, in the reminder of the thesis, we focused on the DLMS strategies and investigated

their performance in parameter estimation under practical conditions of network operation
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and limiting constraints.

In Chapter 3, by combining interpolation and distributed adaptive optimization, we

proposed a DLMS strategy for estimation and tracking of space-time varying parameters

over sensor networks. The proposed algorithm can estimate the space-varying parameters

not only at the sensor nodes but also at locations where no measurement is collected. We

showed that if the network experiences data with rank-deficient covariance matrices, the

non-cooperative DLMS algorithm will converge to different solutions at different nodes

whereas the proposed DLMS algorithm is able to alleviate the rank-deficiency problem in

most cases through its use of combination matrices. Nevertheless, if the algorithm fails to

mitigate the deleterious effect of the rank-deficient data, then the estimates converges to

a solution space where the resulting estimation errors are smaller than that of the non-

cooperative DLMS. We analyzed the performance of the proposed algorithm in transient

and steady-state regimes, and provided the mean and mean-square error stability condi-

tions.

In Chapter 4, we developed new DLMS strategies for parameter estimation in sensor

networks where the regression data are corrupted with additive noise. Under this condi-

tion, we first showed that if a DLMS algorithm is implemented to estimate the underlying

system parameters without considering the effect of the measurement noise, the estimate

will be biased and unreliable. We then resolved this issue by introducing a bias-elimination

technique and formulating an optimization problem that utilizes the noise variance infor-

mation of the regression data. By solving this optimization problem, we arrived at novel

DLMS algorithms, called bias-compensated DLMS strategies, that are capable of obtain-

ing unbiased estimates of the unknown parameters over the network. We also derived a

recursive adaptive approach by which each node, besides the standard adaptation layer

to solve the desired distributed estimation, runs a second layer estimation to locally find

their regression noise variances over time. Our analysis showed that in slow adaptation

regime, the developed algorithms are stable in the mean and mean-square error sense and

the estimates asymptotically converge to their true values. The proposed bias-compensated

DLMS algorithms, which operate in a distributed manner and exchange data via single-hop

communication, can also help network to save energy and radio resources.

In Chapter 5, we examined the performance of DLMS algorithms over wireless sensor

networks, where the communication links between nodes are adversely affected by fading,

path-loss and noise. Wireless channel impairments, including path loss and fading, can dis-
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tort the exchanged data between nodes subsequently, degrade the performance of DLMS

algorithms and cause instability. To resolve this issue, we proposed an extended version

of these algorithms that incorporate equalization coefficients in their combination update

to reverse the effects of fading and path loss. We also introduced a dynamic combination

rule to obtain the network weighting matrix, as the network topology varies following the

changes in the instantaneous signal-to-noise ratio (SNR) of the links. In cases where chan-

nels coefficients are found using least-squares estimation, we analyzed the impact of channel

estimation error on the performance of the proposed algorithms and obtained conditions

that guarantee the stability of the network in the mean and mean-square error sense. Our

analytical finding indicated that the modified DLMS algorithms remain stable and converge

in the mean and mean-square sense by proper CSI monitoring over the network, provided

that the network optimization step-sizes are sufficiently small.

Our analysis also revealed that the performance of the DLMS algorithms significantly

depend on the network CSI and the links SNR, while the performance of the DLMS algo-

rithms generally improve as the knowledge about the network CSI increases. We observed

that, the performance discrepancies in DLMS algorithms with perfect and estimated CSI

is larger at low SNR. This difference in performance can be reduced by using more pilot

data in the estimation of the channel coefficients in each time slot. In addition, at very

low SNR, we observed that the non-cooperative DLMS outperform the diffusion strategies.

This result suggested that in wireless networks where the radio links experience large noise

power, or equivalently when the nodes transmit power are very low, the network must

switch to the non-cooperative mode to maintain a satisfactory performance level. This also

implies that if the transmit power of some nodes is below a threshold value, they should

go to sleep mode to avoid error propagation over the network.

Finally, in Chapter 6, we showed that the performance of DLMS algorithms over multi-

agent wireless networks mainly depends on the network left-stochastic combination matri-

ces. To improve the performance of the DLMS algorithms over wireless channels, we formu-

lated a convex optimization problem from an upper-bound approximation of the network

MSD in order to find the optimal combination weights, which lead to smaller estimation er-

rors. We further developed an adaptive scheme to obtain the optimal combination weights

in real-time. The latter does not require the second order statistics of the nodes’ data

(e.g; the correlation matrices of the input signals and the variances of the measurement

and links noise) and it is, therefore, useful in sensor networks with time-varying wireless
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channels and changing topology.

7.2 Future Works

There are several potential research topics that can be pursued based on the results obtained

in this thesis; they are briefly summarized below:

(1) In Chapter 3, we considered distributed estimation of the parameters of physical phe-

nomena whose discretized PDE can be expressed as a linear regression model. There

are, however, other classes of physical phenomena for which the discretized PDE’s

lead to non-linear regression models. Therefore, the generalization of DLMS strate-

gies to estimate parameters of non-linear regression models is important specially

where the corresponding objective function over the network are non-convex. Note

that reference [85] has investigated distributed optimization problems over networks

where the local cost functions are convex.

(2) In Chapter 4, we assumed that the input regression data at each node over the

network are corrupted with zero-mean white Gaussian noise. In our development,

to relax the known variance assumption of the regression noise, we exploited the

whiteness assumption of the regression noise to estimate their variances over time.

Generalization of the proposed adaptive scheme with colored regression noise and

unknown covariance matrices is an open problem that needs to be investigated. The

analysis of the bias-compensated DLMS algorithms under such conditions can also

be considered a significant contribution.

(3) In Chapter 5, we extended the application of DLMS strategies for parameter estima-

tion and optimization wireless sensor networks. We assumed that all agents measure

a phenomenon arising from a linear regression model that features an identical param-

eter vector over spatial domain, or equivalently all agents share a similar minimizer

wo. We showed that under such conditions, the DLMS strategies are useful when the

variances of the communication noise over the network is below some threshold level.

The important result was that at low SNR, it will be advantageous for agents to

work independently on their own to find the global parameter vector. However, there

are some applications that nodes may not share the global minimizer and therefore,
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require cooperation in order to achieve the network objective. One of this application

is Pareto optimization where each node k has its own specific local minimizer wok.

Consequently, if each node operate independently, the network global minimizer may

not be found. Therefore, the problem can be defined as the performance investigation

of DLMS algorithms in solving Pareto optimization problems over WSN at low SNR.

(4) Time-variant estimation problems arise in many applications in sensor networks where

the phenomena under the study change over time. One of the effective solution strate-

gies for this class of problems is the DLMS algorithms. The future research direction,

in this scenario, can be defined as the search for the optimal adaptation step-sizes

of the DLMS algorithms over the network in a distributed manner, concurrently,

with the estimation of global parameters over the network. Ideally, these optimal

step-sizes will lead to improvement in the tracking speed and estimation accuracy of

the DLMS algorithms. In previous studies on DLMS algorithms, the step-sizes are

chosen according to some given stability range, where there was a trade off between

convergence speed and the steady-state MSE values over the network, i.e.: as the

step-sizes get smaller the steady-state MSE values decrease. This is not the case in

non-stationary signal environment, because if the step-sizes are chosen too small, the

algorithm may not be able to track the changes. In contrast, large step-sizes may

lead to unstable behavior. Under such circumstances, there are optimal adaptation

step-sizes that lead to low steady-state MSE and agile tracking ability.
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Appendix A

Proofs and Derivations

A.1 Mean Error Convergence of Diffusion LMS for

Space-Varying Parameters

Based on the rank of R = diag{R1, · · · , RN}, we have two possible cases:

a) Rk > 0 ∀k ∈ {1, · · · , N}: As (3.67) implies, E[w̃i] converges to zero if ρ(B) < 1. In

[82], it was shown that when R > 0, choosing the step-sizes according to (3.72) guarantees

ρ(B) < 1.

b) ∃k ∈ {1, · · · , N} for which Rk is rank-deficient: For this case, we first show that∥∥∥Bi+1
∥∥∥
b,∞
≤
∥∥∥(I −MΛ)i+1

∥∥∥
b,∞

(A.1)

where ‖ · ‖b,∞ denotes the block-maximum norm for block vectors with block entries of size

MNb × 1 and block matrices with blocks of size MNb ×MNb. To this end, we note that

for the left-stochastic matrices A1 and A2, we have ‖AT1 ‖b,∞ = ‖AT2 ‖b,∞ = 1 [82], and use

the sub-multiplicative property of the block maximum norm [53] to write:∥∥∥Bi+1
∥∥∥
b,∞
≤ ‖AT2 ‖b,∞ ‖I −MR‖b,∞ ‖AT1 ‖b,∞ · · · ‖AT2 ‖b,∞ ‖I −MR‖b,∞ ‖AT1 ‖b,∞

=
∥∥∥I −MR∥∥∥i+1

b,∞
(A.2)

If we introduce the (block) eigendecomposition of R (3.70) into (A.2) and consider the fact

that the block-maximum norm is invariant under block-diagonal unitary matrix transfor-
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mations [63,82], then inequality (A.2) takes the form:∥∥∥Bi+1
∥∥∥
b,∞
≤
∥∥∥I −MΛ

∥∥∥i+1

b,∞
(A.3)

Using the property ‖X‖b,∞ = ρ(X) for a block diagonal Hermitian matrix X [82], we

obtain: ∥∥∥(I −MΛ)i+1
∥∥∥
b,∞

=ρ

(
(I −MΛ)i+1

)
= max

1≤k≤N
1≤n≤MNb

∣∣∣∣(1− µkλk(n)
)i+1

∣∣∣∣
=

(
max

1≤k≤N
1≤n≤MNb

|1− µkλk(n)|
)i+1

=

(
ρ(I −MΛ)

)i+1

=
∥∥∥I −MΛ

∥∥∥i+1

b,∞
(A.4)

Using (A.4) in (A.3), we arrive at (A.1). We now proceed to show the boundedness of the

mean error for case (b). We iterate (3.67) to get:

E[w̃i] = Bi+1E[w̃−1] (A.5)

Applying the block maximum norm to (A.5) and using inequality (A.1), we obtain:

lim
i→∞

∥∥∥E[w̃i]
∥∥∥
b,∞
≤ lim

i→∞

∥∥∥(I −MΛ)i+1
∥∥∥
b,∞

∥∥∥E[w̃−1]
∥∥∥
b,∞

(A.6)

The value of limi→∞ ‖(I −MΛ)i+1‖b,∞ can be computed by evaluating the limits of its

diagonal entries. Considering the step-sizes as in (3.72), the diagonal entries are computed

as:

lim
i→∞

(
1− µkλk(n)

)i+1

=

{
1, ifλk(n) = 0

0, otherwise
(A.7)
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Therefore, (A.6) reads as:

lim
i→∞

∥∥∥E[w̃i]
∥∥∥
b,∞
≤ ‖I − Ind(Λ)‖b,∞

∥∥∥E[w̃−1]
∥∥∥
b,∞

(A.8)

A.2 Mean Behavior When (A1 = A2 = I)

Setting A1 = A2 = I in the diffusion recursions (3.39)-(3.41) and subtracting wo from both

sides of (3.40), we get:

w̃k,i = w̃k,i−1 − µk
∑
`∈Nk

c`,kB
T
` u

T
`,i(d`(i)− u`,iB`wk,i−1) (A.9)

Under Assumption 3.1 and using d`(i) = u`,iB`w
o + v`(i), we obtain:

E[w̃k,i] = Qk[I − µkΛk]Q
T
k E[w̃k,i−1] (A.10)

We define pk,i , QT
k w̃k,i and start from some initial condition to arrive at

E[pk,i] = [I − µkΛk]E[pk,i−1] = [I − µkΛk]
i+1E[pk,−1]

If we choose the step-sizes according to (3.72) then we get:

lim
i→∞

E[pk,i] =
[
I − Ind(Λk)

]
E[pk,−1] (A.11)

Equivalently, this can be written as:

lim
i→∞

E[w̃k,i] = Qk

[
I − Ind(Λk)

]
QT
k E[w̃k,−1] (A.12)

This result indicates that the mean error does not grow unbounded. Now from (3.74), we

can verify that:

QkInd(Λk)Q
T
kw

o = R†krk (A.13)
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Then, upon substitution of w̃k,i = wo −wk,i into (A.12), we obtain:

lim
i→∞

E[wk,i] = QkInd(Λk)Q
T
kw

o +Qk[I − Ind(Λk)]Q
T
k E[wk,−1]

= R†krk +

MNb∑
n=Lk+1

qk,nq
T
k,nE[wk,−1] (A.14)

A.3 Proof of Theorem 3.2

From (3.86), we readily deduce that

lim
i→∞
Bi+1E[w−1] = (Z2Z̄2)E[w−1] (A.15)

On the other hand, from (3.85), we have

lim
i→∞

i∑
j=0

BjAT2Mr = lim
i→∞

i∑
j=0

(
Z1J

jZ̄1 + Z2Z̄2

)
AT2Mr (A.16)

Using (3.87), the term involving Z̄2 cancels out and the above reduces to

lim
i→∞

i∑
j=0

BjAT2Mr = lim
i→∞

i∑
j=0

(
Z1J

jZ̄1

)
AT2Mr

= Z1(I − J)−1Z̄1AT2Mr (A.17)

since ρ(J) < 1. We now verify that the matrix

X− = Z1(I − J)−1Z̄1 (A.18)

is a (reflexive) generalized inverse for the matrix X = (I − B). Recall that a (reflexive)

generalized inverse for a matrix Y is any matrix Y − that satisfies the two conditions [133]:

Y Y −Y = Y (A.19)

Y −Y Y − = Y − (A.20)
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To verify these conditions, we first note from ZZ−1 = I and Z−1Z = I in (3.85) that the

following relations hold:

Z1Z̄1 + Z2Z̄2 = I (A.21)

Z̄1Z2 = 0 (A.22)

Z̄2Z1 = 0 (A.23)

Z̄1Z1 = I (A.24)

Z̄2Z2 = I (A.25)

We further note that X can be expressed as:

X = (I − B) = Z1(I − J)Z̄1 (A.26)

It is then easy to verify that the matrices {X,X−} satisfy conditions (A.19) and (A.20),

as claimed. Therefore, (A.17) can be expressed as:

lim
i→∞

i∑
j=0

BjAT2Mr = (I − B)−AT2Mr (A.27)

Substituting (A.15) and (A.27) into (3.77) leads to (3.88).

Let us now verify that the right-hand side of (3.88) remains invariant under basis trans-

formations for the Jordan factors {Z1, Z̄1,Z2, Z̄2}. To begin with, the Jordan decomposi-

tion (3.85) is not unique. Let us assume, however, that we fix the central term diag{J, I}
to remain invariant and allow the Jordan factors {Z1, Z̄1,Z2, Z̄2} to vary. It follows from

(3.85) that

Z̄2B = Z̄2, BZ2 = Z2 (A.28)

so that the columns of Z2 and the rows of Z̄2 correspond to right and left-eigenvectors of

B, respectively, associated with the eigenvalues with value one. If we replace Z2 by any

transformation of the form Z2X2, where X2 is invertible, then by (A.25), Z̄2 should be

replaced by X−1
2 Z̄2. This conclusion can also be seen as follows. The new factor Z is given

by

Z ,
[
Z1 Z2X2

]
=
[
Z1 Z2

] I 0

0 X2

 (A.29)
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and, hence, the new Z−1 becomes

Z−1 =

 Z̄1

X−1
2 Z̄2

 (A.30)

which confirms that Z̄2 is replaced by X−1
2 Z̄2. It follows that the product Z2Z̄2 remains

invariant under arbitrary invertible transformations X2.

Moreover, from (3.85) we also have that

Z̄1B = JZ̄1, BZ1 = Z1J (A.31)

Assume we replace Z1 by any transformation of the form Z1X1, where X1 is invertible,

then by (A.24), Z̄1 should be replaced by X−1
1 Z̄1. However, since we want to maintain J

invariant, then this implies that the transformation X1 must also satisfy

X−1
1 JX1 = J (A.32)

It follows that the product Z1(I − J)−1Z̄1 remains invariant under such invertible trans-

formations X1, since

Z1(I − J)−1Z̄1 = Z1X1X−1
1 (I − J)−1X1X−1

1 Z̄1

= Z1X1(I −X−1
1 JX1)−1X−1

1 Z̄1

= Z1X1(I − J)−1X−1
1 Z̄1 (A.33)

A.4 Proof of Theorem 3.3

We first establish that Z̄2Y and YZ̄T2 are both equal to zero. Indeed, we start by replacing

r in (3.87) by its expression from (3.60) and (3.62) as r = CT col{r̄du,1, · · · , r̄du,N}:

Z̄2AT2MCT col{r̄du,1, · · · , r̄du,N} = 0 (A.34)

By further replacing r̄du,k by their values from (3.32), we obtain:

Z̄2AT2MCTdiag{BT
1 , · · · , BT

N}col{rdu,1, · · · , rdu,N} = 0 (A.35)
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This relation must hold regardless of the cross-correlation vectors {rdu,k}. Therefore,

Z̄2AT2MCTdiag{BT
1 , · · · , BT

N} = 0 (A.36)

We now define

V = diag{σ2
v,1IMNb , · · · , σ2

v,NIMNb} (A.37)

and rewrite expression (3.99) as

Y = AT2MCTdiag{BT
1 , · · · , BT

N}diag{Ru,1, · · · , Ru,N}

× diag{B1, · · · , BN} V CMA2 (A.38)

Multiplying this from the left by Z̄2 and comparing the result with (A.36), we conclude

that

Z̄2Y = 0 (A.39)

Transposing this relation and noting that Y is symmetric, we obtain:

YZ̄T2 = 0 (A.40)

Returning to recursion (3.101), we note first from (3.85) that B can be rewritten as

B = Z1JZ̄1 + Z2Z̄2 (A.41)

Since B is power convergent, the first term on the right hand side of (3.101) converges to

lim
i→∞

E‖w̃−1‖2
(BT )i+1ΣBi+1 = E‖w̃−1‖2

(Z2Z̄2)TΣZ2Z̄2
(A.42)

Substituting (A.41) into the second term on the right hand side of (3.101) and using (A.39)

and (A.40), we arrive at

lim
i→∞

i∑
j=0

Tr

(
(BT )jΣBjY

)
=Tr

(
lim
i→∞

i∑
j=0

(Z1J
jZ̄1)TΣ(Z1J

jZ̄1)Y
)

(A.43)
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If matrices X1, X2 and Σ are of compatible dimensions, then the following relations hold

[82]:

Tr(X1X2) =
(

vec(XT
2 )
)T

vec(X1) (A.44)

vec(X1ΣX2) = (XT
2 ⊗X1)vec(Σ) (A.45)

Using these relations in (A.43), we obtain

Tr

(
lim
i→∞

i∑
j=0

(BT )jΣBjY
)

=

(
vec(YT )

)T(
lim
i→∞

i∑
j=0

(Z1J
jZ̄1)T ⊗ (Z1J

jZ̄1)T
)

vec(Σ)

(A.46)

This is equivalent to:

Tr

(
lim
i→∞

i∑
j=0

(BT )jΣBjY
)

=

(
vec(Y)

)T(
lim
i→∞

i∑
j=0

F j
)

vec(Σ) (A.47)

where

F =

(
(Z1 ⊗Z1)(J ⊗ J)(Z̄1 ⊗ Z̄1)

)T
(A.48)

Since ρ(J ⊗ J) < 1, the series converges and we obtain:

Tr

(
lim
i→∞

i∑
j=0

(BT )jΣBjY
)

=

(
vec(Y)

)T
(I −F)−1vec(Σ) (A.49)

Upon substitution of (A.42) and (A.49) into (3.101), we arrive at (3.103).

A.5 Computation of Π

We rewrite Π as:

Π = E[P iΩP∗i ] (A.50)
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where Ω = ωoωo∗. The [k, j]th block of Π can be computed as:

Πk,j =E
∑
`

∑
m

c`,kcm,j(z
∗
`,in`,i − σ2

n,`I)Ωkj(n
∗
m,izm,i − σ2

n,mI) (A.51)

We use (4.1) to replace z`,i and zm,i:

Πk,j = E
∑
`

∑
m

c`,kcm,j(u
∗
`,in`,i + n∗`,in`,i − σ2

n,`I)Ωkj

× (n∗m,ium,i + n∗m,inm,i − σ2
n,mI) (A.52)

This leads to:

Πk,j =
∑
`

∑
m

c`,kcm,jE[u∗`,in`,iΩkjn
∗
m,ium,i] (A.53)

+
∑
`

∑
m

c`,kcm,jE[n∗`,in`,iΩkjn
∗
m,in

∗
m,i]

−
∑
`

∑
m

c`,kcm,jE[σ2
n,`IΩkjn

∗
m,inm,i] (A.54)

If we assume the regression {uk,i} and the noise {nk,i} are zero mean circular Gaussian

complex-valued vectors with uncorrelated entries, then:

E[u∗`,in`,iΩkjn
∗
m,ium,i] =

0 ` 6= m

σ2
n,`Tr(Ωkj)Ru,` ` = m

(A.55)

E[n∗`,in`,iΩkjn
∗
m,inm,i] =

σ
2
n,`Ωkjσ

2
n,m ` 6= m

βσ2
n,`Ωkjσ

2
n,m + σ2

n,`I Tr(Ωkjσ
2
n,`I) ` = m

(A.56)

and

E[σ2
n,`IΩkjn

∗
m,inm,i] = σ2

n,`Ωkjσ
2
n,m (A.57)

We note that Ωk,j = wok w
o
j
∗ where woj = wok, ∀ k, j ∈ {1, 2, . . . N}. Therefore,

Ω`k = Ωmn, ∀`, k,m, n ∈ {1, 2, · · · , N} (A.58)



154 Proofs and Derivations

and Tr(Ωkj) = ‖wo‖2. As a result:

Πk,j =
∑
`

c`,kc`,j

{
σ2
n,`‖wo‖2

(
Ru,` + σ2

n,`I
)

+ (β − 1)σ4
n,`w

owo∗
}

(A.59)

A.6 Derivation of (4.67)

Computing the block vectorized version of the first three terms in (4.65) is straightforward.

We focus on finding the block vectorization of the fourth term which is:

bvec(E[A1RiQRiAT1 ]) =(A1 ⊗b A1)bvec(X ) (A.60)

where Q = MA2ΣAT2M and X = E[RiQRi]. The (k, `)-th block of this latter is given

by:

Xk,` =
∑
m

∑
n

cm,kcn,`E
[
(z∗m,izm,i − σ2

n,mIM)Qk,`(z
∗
n,izn,i − σ2

n,nIM)

]
(A.61)

This is equivalent to:

Xk,` =
∑
m

∑
n

cm,kcn,`

(
E[z∗m,izm,iQk,`z

∗
n,izn,i] + E[σ2

n,m σ
2
n,nQk,`]− E[σ2

n,nz
∗
m,izm,iQk,`]

− E[σ2
n,mQk,`z

∗
n,izn,i]

)
(A.62)

When the {uk,i} are zero mean circular complex-valued Gaussian random vectors, for any

Hermitian matrix Γ of compatible dimensions, it holds that [89]:

E
[
(u∗m,ium,i)Γ(u∗m,ium,i)

]
=βRu,mΓRu,m +Ru,mTr(ΓRu,m) (A.63)

where β = 1 for complex regressors and β = 2 if the regressors are real. From this

expression, we deduce that:

E[u∗m,ium,iΓu
∗
n,iun,i] = Ru,mΓRu,n + δmn(β − 1)Ru,mΓRu,m + δmnRu,mTr(ΓRu,m) (A.64)

where δmn = 1 if m = n and zero otherwise. By using this relation, we obtain:
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Xk,` =

(∑
m

∑
n

cm,kcn,`Ru,mQk,`Ru,n

)
+
∑
m

cm,kcm,`

[
(β − 1)Ru,mQk,`Ru,m

+ (σ2
n,mIM +Ru,m)Tr[Qk,`(σ

2
n,mIM +Ru,m)] + (β − 1)σ2

n,m σ
2
n,mQk,`

]
(A.65)

Some algebra gives

bvec(X ) = Y (M⊗bM)(A2 ⊗b A2)σ (A.66)

where

Y =

(RT ⊗b R) +
N∑
m=1

[
diag{vec(Cm1N×NCm)}

]
⊗
[
(β − 1)(RT

u,m ⊗Ru,m + σ4
n,mIM ⊗ IM)

+ (rm + σ2
n,mq)(r

∗
m + σ2

n,mq
T )

] (A.67)

In this expression, Cm = diag(eTmC), em is a basis vector in RN with entry one at position

m, rm = vec(Ru,m) and 1N×N is the N ×N matrix with unit entries. Substituting (A.66)

into (A.60) gives

(A1 ⊗b A1)bvec(X ) = ∆Fσ (A.68)

where

∆F = (A1 ⊗b A1)Y (M⊗bM)(A2 ⊗b A2) (A.69)

Using (A.68) and the block vectorized of the first three terms of (4.65) leads to (4.67).

A.7 Computation of Rv,k

To obtain Rv,k in (5.64), we need to compute the expectation

E
[
a2
`,k(i) |ĝ`,k(i)|2

]
= E

 a2
`,k(i)

Pt
rα`,k
|ĥ`,k(i)|2

 (A.70)
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for ` ∈ Nk\k. For the case ` = k, we have Rv,`k = 0 and hence the expectation of

[a2
`,k(i) |ĝ`,k(i)|2]Rv,`k in (5.64) is zero. For ` 6= k, we proceed as follows. Since the joint

probability distribution function of the numerator and denominator in (A.70) is unknown,

the expectation can be approximated using one of two ways. In the first method, we can

resort to computer simulations. In the second method, we can resort to a Taylor series

approximation as follows. We introduce the real-valued auxiliary variable x = a2
`,k(i).

Considering the combination rule (5.23), the expectation of x when ` 6= k will be:

E[x] = γ2
`kp`,k (A.71)

To compute the variance and expectation of the denominator in (A.70), we let the ex-

ponential distribution function fy(y) with parameter λ given by (5.28) denote the pdf of

y = |ĥ`,k(i)|2, i.e.,

fy(y) = λ`,ke
−λ`,ky, for y ∈ [0, ∞) (A.72)

We also let f
(t)
y (y) represent the pdf of y for y ∈ [ν`,k, ∞). It can be verified that f

(t)
y (y)

represents a truncated exponential distribution and is given by:

f (t)
y (y) = λ`,ke

−λ`,k(y−ν`,k), for y ∈ [ν`,k, ∞) (A.73)

If we now define

z =
Pt
rα`,k
y (A.74)

Then, the pdf of z can be computed as [126]:

fz(z) =

∣∣∣∣dydz
∣∣∣∣f (t)

y (g−1(z)) (A.75)

where

dy

dz
=
rα`,k
Pt

and g−1(z) =
rα`,k
Pt
z (A.76)
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Therefore,

fz(z) =
rα`,k
Pt
λ`,ke

−λ`,k(
rα`,k
Pt

z−ν`,k)
, for z ∈

[
Pt
rα`,k

ν`,k, ∞
)

(A.77)

Using this distribution the mean and variance of z will be [126]:

E[z] =
Pt
rα`,k

(
1

λ`,k
+ ν`,k

)
(A.78)

var(z) =

(
Pt

rα`,kλ`,k

)2

(A.79)

We can now proceed to approximate the expectation (A.70) by defining

f(x, z) =
x

z
(A.80)

and employing the second order Taylor series expansion given below:

E[f(x, z)] ≈ E[x]

E[z]
− 1

(E[z])2
cov(x, z) +

E[x]

(E[z])3
var(z) (A.81)

Substituting, E[x], E[z], cov(x, z) and var(z) into (A.81), we then arrive at:

E[f(x, z)] ≈ E
[
a2
`,k(i) |ĝ`,k(i)|2

]
≈ γ2

`kp`,k

(
1

Pt
rα`,k

( 1
λ`,k

+ ν`,k)
− ν`,k

Pt
rα`,k

( 1
λ`,k

+ ν`,k)2
+

1
Pt
rα`,k
λ2
`,k(

1
λ`,k

+ ν`,k)3

)
(A.82)

A.8 Derivation of F for Gaussian Data

First, we note that when uk,i are zero mean circular complex-valued Gaussian random

vectors and i.i.d. over time, then for any Hermitian matrix Γ of compatible dimensions it

holds that [89]:

E[u∗k,iuk,iΓu
∗
k,iuk,i] = β(Ru,kΓRu,k) +Ru,kTr(ΓRu,k) (A.83)
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where β = 1 for complex regressors and β = 2 when the regressors are real. Using (A.83)

and spatial independence of the regression data we have

E[u∗k,iuk,iΓu
∗
`,iu`,i] = Ru,kΓRu,` + δk`(β − 1)Ru,kΓRu,k + δk`Ru,kTr(ΓRu,k) (A.84)

where δk` is the Dirac delta sequence. To compute F̄ , we first introduce

Li = (I −MRi)Q(I −MRi) (A.85)

where Q is an arbitrary deterministic Hermitian matrix. We now note that

bvec (E[Li])
(i)
= E

[
(I −MRi)

T ⊗b (I −MRi)
]

bvec(Q)

(ii)
= F̄ bvec(Q) (A.86)

where (ii) obtained by comparing the expectation term on the right hand side of (i) with

definition (5.72). We proceed by taking expectation of both sides of (A.85), i.e.,

E[Li] = Q−RMQ−QMR+ E [RiMQMRi] (A.87)

To compute the block vectorization of the last term on the right hand side of (A.87), we

introduce the block partitioned matrix Q′ = MQM with blocks Q′k` and use (A.84) to

obtain (A.88), where rk = vec(Ru,k).

bvec
(
E
[
RiQ′Ri

])
=

{
(RT⊗bR) +

N∑
k=1

[
diag(

(
vec(diag(ek)))

]
⊗
[
(β − 1)(RTk,u ⊗Rk,u) + rkr

∗
k

]}
× (M⊗bM)bvec(Q) (A.88)

Now, using (A.87), we can write:

bvec(E[Li]) =
(
I − I ⊗bMR−RTM⊗b I

)
bvec(Q) + bvec

(
E
[
RiQ′Ri

])
(A.89)

From (A.86), (A.88) and (A.89) and using the fact that the real vector space of Hermitian

matrices is isomorphic to RN2×1, we arrive at (5.74).
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A.9 Computation of D

We expand D = E[Di] in (6.22) as:

D =

{
E[Ai ⊗Ai] + E[Ai ⊗E∗Ti ] + E[Ei ⊗Ai] + E[Ei ⊗E∗Ti ]

}
⊗ IM2 (A.90)

The (r, z)-th entry of E[Ai ⊗Ai], denoted by fr,z, is:

fr,z = E[a`,k(i)am,n(i)] (A.91)

where the relation between (r, z) and `, k) is:

r = (`− 1)N +m, and z = (k − 1)N + n (A.92)

When k 6= n, entries a`,k(i) and am,n(i) come from different columns of Ai and are inde-

pendent. Hence, in this case, we can write:

fr,z = E
[
a`,k(i)

]
E
[
am,n(i)

]
(A.93)

with

E
[
aj,q(i)

]
=


1−

∑
r∈Nq\q

prqγrq, if j = q

pjqγjq, otherwise
(A.94)

When k = n, the entries a`,k(i) and am,n(i) come from the same column of Ai and may be

dependent. In this case, there are four possibilities:

(1) if ` = m and ` 6= k:

fr,z = γ2
`,kp`,k (A.95)

(2) if ` = m and ` = k:

fr,z = E
[(

1−
∑

`∈Nk\k

a`,k(i)

)(
1−

∑
`∈Nk\k

a`,k(i)

)]
(A.96)

= 1− 2
∑

`∈Nk\k

p`,k(γ`,k − γ2
`,k)−

∑
`∈Nk\k

p2
`,kγ

2
`,k +

∑
(`∈Nk\k)

∑
(m∈Nk\k)

p`,kpm,kγ`,kγm,k (A.97)
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(3) if ` 6= m and ` 6= k and m 6= n:

fr,z = γ`,kγm,np`,kpm,n (A.98)

(4) if ` 6= m and ` = k and m 6= n:

fr,z = E
[(

1−
∑
j∈N\k

aj,k(i)
)
am,n(i)

]
= γm,npm,n

(
1− γm,n +

∑
j∈Nk\{k,m}

γj,kpj,k

)
(A.99)

The (r, z)-th entry of E[Ai ⊗E∗Ti ], denoted by xr,z, can be expressed as:

xr,z = −E
[
a`,k(i)am,n(i)ĝ∗m,n(i)v(y)∗

m,n(i)

]

= −E

a`,k(i)am,n(i)

√
rα

Pt
hm,n(i)v

(y)∗
m,n(i) + rα

Pt
|v(y)
m,n(i)|2∣∣∣hm,n(i) +

√
rα

Pt
v

(y)
m,n(i)

∣∣∣2
∣∣∣∣∣∣∣hm,n(i) +

√
rα

Pt
v(y)
m,n(i)

∣∣∣2 ≥ νm,n


(A.100)

Likewise, the entries of E[Ei ⊗ Ai] and E[Ei ⊗ E∗Ti ] can be expressed in terms of the

combination weights, channel coefficients and the estimation error. We can follow the

argument presented in Remark 5.1 to show that the right hand side of (A.100) as well as

the entries of E[Ei⊗Ai] and E[Ei⊗E∗Ti ] are invariant with respect to time and have finite

values.
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