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Abstract

This thesis introduces novel signal processing algorithms for cognitive radar systems that

consider the constraints of operation under real scenarios as well as hardware limitations.

Specifically, the thesis focuses on the analysis and practical solution of three key problems

encountered in the design and realization of the signal processing chain within the cognitive

new-generation radars.

Firstly, we consider detecting and excluding the non-homogeneous received data from the

estimation of the interference covariance matrix. The available non-homogeneity detectors

(NHDs) in the literature require estimating the covariance matrix for each examined data

cell, leading to exacerbating the NHD complexity, especially with large-dimensional data.

Instead, we employ the projection depth functions, inherited from the field of robust statis-

tics, to formulate a new NHD test statistic that avoids estimating the covariance matrix.

Moreover, the projection depth function converts the multivariate problem to a scalar one,

evading the exponential growth of the computational complexity with the data dimension.

Secondly, we turn our attention to a scarcely but nevertheless important discussed aspect

of radar system, namely the waveform design for cognitive multi-input multi-output (MIMO)

radars taking into account the reflective properties of the transmitting antenna array. For

the first time, we propose a waveform design method using proximal optimization that

not only improves the signal-to-interference plus noise ratio (SINR), but also lowers the

reflected power from the transmitting antenna array. Consequently, the proposed waveform

design method increases the radar system efficiency and protects the amplification unit of

the transmitter, while at the same time, significantly improves the SINR.

Finally, we introduce a novel formulation of the target frequency response (TFR) estima-

tion problem, a crucial requirement for cognitive radars. Under the conventional assumption

of a linear Gaussian model, the TFR is usually estimated using the Kalman filter. Sur-

prisingly, even though in practice this assumption is often violated and the Kalman filter

is no longer an optimal solution, the study of TFR estimation for more general models has

not yet been considered. In our proposed formulation, the infinite hidden Markov model

(iHMM) is used in TFR estimation without prior knowledge of the channel or the interfer-

ence. Interestingly, when iterated over multiple pulses and under jamming conditions, the

proposed estimation method exhibits superior performance compared to the Kalman and

particle filters for different TFR models.
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Throughout the thesis, the newly proposed algorithms are evaluated by objective Monte

Carlo simulations with different clutter distributions and radar parameters. Under the con-

sidered evaluation conditions, the results clearly show that the proposed methods can provide

superior performance to existing benchmarks from the literature.
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Sommaire

Cette thèse présente de nouveaux algorithmes de traitement du signal pour les systèmes de

radar cognitif qui tiennent compte des contraintes de fonctionnement dans des scénarios réels

ainsi que des limitations matérielles. Plus précisément, la thèse se concentre sur l’analyse et

la solution pratique de trois problèmes clés rencontrés dans la conception et la réalisation de

la châıne de traitement du signal au sein des radars cognitifs de nouvelle génération.

Tout d’abord, nous considérons l’exclusion des données reçues non homogènes de l’esti-

mation de la matrice de covariance d’interférence. Les détecteurs de non-homogénéité (non-

homogeneity detectors, NHDs) disponibles dans la littérature nécessitent l’estimation de la

matrice de covariance pour chaque cellule de données examinée, ce qui exacerbe la complexité

de mise en ouevre, en particulier avec des données de grande dimension. Alternativement,

nous utilisons les fonctions de profondeur de projection, héritées du domaine des statistiques

robustes, pour formuler une nouvelle statistique de test NHD qui évite d’estimer la matrice de

covariance. De plus, la fonction de profondeur de projection convertit le problème multivarié

en un problème scalaire, évitant ainsi la croissance exponentielle de la complexité de calcul

avec la dimension des données.

Deuxièmement, nous concentrons notre attention sur un aspect peu discuté du système

radar, à savoir la question importante de la conception de forme d’onde pour les radars cog-

nitifs multi-entrées multisorties (multi-input multi-output, MIMO), prenant en compte les

propriétés de réflexion du réseau d’antennes émettrices. Pour la première fois, nous proposons

une méthode de conception de forme d’onde qui améliore non seulement le rapport signal sur

brouillage plus bruit (signal-to-interference plus noise ratio, SINR), mais réduit également la

puissance réfléchie par le réseau d’antennes d’émission en utilisant l’optimisation proximale.

Par conséquent, la méthode de conception de forme d’onde proposée augmente l’efficacité

du système radar et protège l’unité d’amplification de l’émetteur, tout en améliorant con-

sidérablement le SINR.

Enfin, nous introduisons une nouvelle formulation du problème d’estimation de la réponse

en fréquence cible (target frequency response, TFR), une exigence cruciale des radars cogni-

tifs. Dans l’hypothèse conventionnelle d’un modèle linéaire gaussien, le TFR est généralement

estimé à l’aide du filtre de Kalman. Alors que, dans la pratique, cette hypothèse est souvent

violée et que le filtre de Kalman n’est plus une solution optimale, l’étude de l’estimation de

l’ISF pour des modèles plus généraux n’a pas encore été envisagée. Dans notre formulation
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proposée, le modèle de Markov caché à l’infini (infinite hidden Markov model, iHMM) est

utilisé dans l’estimation du TFR sans connaissance préalable du canal ou du brouillage. Fait

intéressant, lorsqu’elle est itérée sur plusieurs impulsions et dans des conditions de brouillage,

la méthode d’estimation proposée présente des performances supérieures à celles de Kalman

et aux filtres à particules pour différents modèles de TFR.

Les algorithmes proposés sont évalués par des simulations objectives de Monte Carlo

avec différentes distributions de fouillis, signaux de brouillage et paramètres radar. Dans les

conditions de test considérées les résultats montrent que les méthodes proposées offrent une

performance supérieure à leurs homologues de référence dans la littérature.
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Chapter 1

Introduction

1.1 Radar Overview

RADAR (RADio Detection And Ranging) was first invented by the British scientist Robert

Watson-Watt in 1935. In his own words, radar is “the art of detecting by means of radar

echoes the presence of objects, determining their direction and ranges, recognizing their

character and employing data thus maintained in the performance of military, navy or other

operations [1].” Since their invention, radar systems have been tremendously evolved to en-

sure their robust performance under harsh conditions such as the presence of dense echos

from the environment, known as clutter, and electronic counter measures that have been con-

ceived to deny their functionality. Although the radar has been initially invented for military

applications, radar systems have been utilized in a many other applications. This includes,

geophysics radars used to create soil profiles, anti-collision radars in modern vehicles, and

medical radars used as monitoring systems and for diagnostic procedures.

There are different classification criteria for radar systems such as the type of transmitted

waveform, the targeted application, or the carrier platform. A simple approach is to classify

radar systems on the basis of their functionality, which leads to three main categories, namely:

search, tracking, and imaging radars. In this thesis, we are concerned with search radars,

whose task is to detect the presence of a target in the presence of noise, clutter, jamming,

or any other forms of interference.

The main purpose of modern radar systems is to: improve detection, tracking, and target

identification performance and capabilities; decrease the probability of intercept of radar

signals; counter electronic warfare (EW) operations and severe environmental conditions;
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and increase the abilities of field operation. To achieve these objectives, different advanced

radio and signal processing techniques are applied to different radar subsystems.

The evolution of phased array antennas provides modern radar systems with several

performance advantages including better spatial resolution, superior scanning via electronic

beam steering (as opposed to mechanical steering), and multi-target capability. In fact,

the phased array antenna is not only a breakthrough as a hardware development, it also

initiated the development of a plethora of signal processing algorithms that in turn have

given rise rise to different types of modern radar systems. Since real time operation is one of

the distinguishing features of modern radar systems, the development and study of advanced

algorithms for on-line processing of phased array antenna signals is henceforth an active area

of research within the radar community.

1.2 Cognitive Multiple-Input Multiple-Output Radars

Phased arrays have become the most commonly used antenna type in modern radar sys-

tems. The reasons for this are plentiful. First, phased arrays provide high reliability, high

bandwidth, and excellent sidelobe control. Second, there are certain applications for which

phased arrays are uniquely qualified. For instance, in airborne applications, because they

can electronically steer the beam to extreme angles while maintaining a low profile, hence

minimizing aircraft drag. They are also ideal for ground radar systems, which in some cases

are too large for mechanical rotation. Finally, phased arrays have remarkable electronic

beam agility that enables multiple functions to be performed nearly simultaneously by a

single radar.

The number of antenna elements in the phased array defines the spatial resolution of the

radar system, the number of directions where the interference can be nulled, and the pro-

cessing gain obtained by the coherent processing of the multiple spatial channels. Therefore,

it is apparent that increasing the number of antenna elements improves the performance of

the radar. However, besides the high cost of large phased array antennas, the complexity of

the signal processing associated with the increase in the number of the spatial channels can

be overwhelming.

A multiple-input multiple-output (MIMO) radar transmits from its antenna elements

different and usually orthogonal set of waveforms characterized with better spatial resolution.

This waveform diversity has motivated a huge body of research with the aim of optimizing
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the transmitted waveforms from various perspectives, including: SINR maximization, good

ambiguity functions, and optimizing the spatial coverage. To achieve these objectives, besides

the requirement of orthogonal waveforms, MIMO radars need to know the covariance matrix

of the interference, which complicates the waveform design problem for MIMO radars.

The classic model for radar targets is the point target model, which consists of a single

physical reflector. In practice, however, some targets are more complex in nature and this

simple model does not apply, as for instance when the target return is composed of several

reflections. In this case, the target is more adequately modeled by the target impulse response

(TIR), which is in effect the impulse response of a linear system modeling the reflection

process.. For this class of targets, the transmitted waveform is preferably adapted to the

TIR. This adaptation of the radar transmitter to the TIR, and to the environment in general,

is the defining characteristic of the so-called cognitive radars. Therefore, the waveform design

problem for cognitive MIMO radars is even more complex than for conventional MIMO radars

as it involves the estimation of the TIR, which is conventionally unknown, in addition to

improving the SINR and preserving the orthogonality of the transmitted waveforms.

1.3 Research Motivations

We discuss the motivations of the research work presented in this thesis with the aid of

Fig. 1.1, which depicts a generic functional diagram of a radar system. The received signals

at the NR receiving antenna elements are each passed to a chain of radio frequency (RF)

circuits for filtration, amplification, and down conversion. The output baseband signals then

proceed to the analog-to-digital converters (ADCs ) and matched filters (MF). The outputs

of the matched filters from all receiving channels for multiple pulses are then processed by the

non-homogeneity detector (NHD), which finds the outliers within the set of received signal

samples to be excluded from covariance estimation. The estimated covariance matrix is then

used in the final detection of the target based on space time adaptive processing (STAP).

In the case of a MIMO radar, it is also fed to the transmitter for the purpose of waveform

design. For cognitive radars, both the covariance matrix and the received signal samples

are passed to the transmitter for TIR estimation. In all cases, the transmit waveforms are

converted to the analog domain using digital-to-analog converters (DACs) and then up-

converted to the required RF and finally amplified for transmission by the NT antennas. It

should be noted that the functional diagram in Fig. 1.1 reduces to that of the conventional
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phased array radar by removing the TIR estimation and the waveform design blocks and,

consequently, the feedback from the receiver to the transmitter from Fig. 1.1. Therefore,

the NHD is common to the conventional phased array radars as well as the more advanced

MIMO and cognitive MIMO radars.

.
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Figure 1.1 Generic functional diagram of cognitive MIMO radar

The focus of the research presented in this thesis targets the three shaded blocks in

Fig. 1.1, i.e., NHD, TIR estimation, and waveform design. Following a thorough survey of

the literature, our research motivations are summarized as follows:

� NHD: A STAP detector applies a test statistic on a given range cell to explore the

target presence in this cell. The used test statistics require estimating the covariance

matrix of this cell, and this estimation process is denoted as “main covariance esti-

mation”, as in Fig. 1.1. Since the covariance matrix of this given cell is unknown in

practice, it is estimated from the sample data surrounding this cell, which are nothing

but other range cells. These cells may contain non-homogeneous components, includ-

ing target, jammer and high-power clutter signals, which if included in the sample cells

may significantly degrade the estimation accuracy of the covariance matrix. The NHD
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tests the sample cells for outliers, so that the non-homogeneous cells are censored from

the “main covariance estimation” [2]. However, the NHD is basically a STAP detector

that requires estimating the covariance matrix of each sample cell tested for homo-

geneity, which we denote here as the “scondary covariance estimation”. Therefore, to

detect a target in a given range cell, we need to perform the “main covariance esti-

mation”, which in turn requires performing the “scondary covariance estimation” for

all the sample cells. For real-time processing applications, the covariance estimation

needed as part of the NHD is quite challenging, especially in the presence of non-

Gaussian interference. Existing solutions are not computationally efficient and require

considerable resources [3].

� Waveform Design: As we mentioned earlier, in addition to the orthogonality among

transmitted waveforms, there are several criteria for waveform design in MIMO radars

such as achieving ambiguity functions and spatial coverage with desirable properties,

as well as matching the waveform spectrum to that of the TIR in the case of extended

targets. However, the effect of the transmitted waveforms on the magnitude of the

reflected power back from the transmitting antenna array has not been considered

in the waveform design algorithms so far [4]. The ratio of the reflected power to

the input power of the antenna determines its efficiency and, in turn, the effective

radiated power. Moreover, if the reflected power is high, it may cause damage to the

amplification stage preceding the transmitting antenna. From a practical perspective,

the reflection properties of the antenna should be considered in the design of cognitive

MIMO radars for efficient performance and hardware durability [5].

� TIR Estimation: The TIR is conventionally assumed to be known or to follow a

linear Gaussian model. While the former assumption is merely introduced for the sake

of simplification, the latter assumption is made to allow the use of the Kalman filter in

TIR estimation [6]. In practice, however, the measured TIR data exhibits non-Gaussian

distributions, for which the Kalman filter is no longer optimal [7]. While the particle

filter seems to be a rational alternative to the Kalman filter assuming non-Gaussian

distributions, the random generating model of the TIR may degrade the accuracy of

the particle filter estimation due to model mismatch [8]. In addition, the complexity

of the particle filter is another concern, especially in real-time applications. Hence,

there is a need for TIR estimation algorithms that can be applied to a wider range
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of distributions and generating models, and this with low to moderate complexity of

implementation.

1.4 Objectives and Contributions

Considering the the above limitations of existing techniques for the three signal radar signal

processing stages identified in Fig. 1.1, the main objectives of this thesis are:

� To develop a covariance-free test statistic for the NHD that provides a robust perfor-

mance and lower computational cost compared to competing detectors in the literature,

and this without prior knowledge about the statistics of the interference.

� To design orthogonal cognitive MIMO radar waveforms, assuming known TIR, that

achieve both SINR improvement and low reflected power back from the transmitting

antenna array.

� To estimate the TIR without prior information about neither the TIR nor the inter-

ference. The estimation accuracy should be also evaluated over multiple pulses and

under harsh operating conditions such as jamming.

The main contributions of this thesis in the light of the above-listed objectives are as follows:

1. Towards the first objective, inspired by robust statistics, the projection depth function

is employed to derive a novel test statistic for the NHD based on the normalized

adaptive matched filter (NAMF), the most well-known robust nonparametric NHD. By

exploiting robust nonparametric statistical measures, such as the median, the median

absolute deviation, and the Spearman/Kendall correlation matrices, as well as the

dimension reduction of the projection depth function, the proposed detector provides

robust performance, yet with significant computational savings. The performance of

the proposed NHD is evaluated for different clutter distributions and for different radar

parameter configurations and compared to that of a robust benchmark in the literature.

2. Regarding the second objective, we propose to add a regularization term to the objec-

tive function, which represents the reflected power from the transmitting antenna array

in the waveform design problem. We use two different regularization terms that are

expressed as functions of the scattering matrix of the transmitting antenna array. The
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first regularization term is the `2-norm of the reflected signal from the transmitting

antenna array, which represents the average reflected power from the antenna. The

second regularization term is the `∞-norm of the reflected signal from the antenna,

which represents the maximum reflected power from the transmitting antenna among

all pulses and antenna elements. The proposed waveform design with the `∞-norm

regularization is shown to provide a robust control over the reflected power from the

transmitting antenna. The evaluation of the proposed method relies on the most rele-

vant figures of merit, i.e., the active reflection and the total active reflection coefficients.

In this evaluation, we consider different antenna array sizes along with various TIR

distributions.

3. To achieve the third objective, we propose a novel formulation for the TIR estimation

problem, or equivalently for the target frequency response (TRF) estimation problem,

in which the samples of the TRF are modeled as stochastic finite state machine. To

overcome the difficulty of obtaining prior knowledge of the number of states taken by

the TRF, we adopt the nonparametric Bayesian models, which do not require prior

information about the statistics of the TIR nor the interference. Specifically, we employ

the infinite hidden Markov model (iHMM) and a modified beam sampling algorithm

to infer the TFR. We also apply a new generating model for the TIR that does not

suffer from the limitations of the linear Gaussian state-space model employed in the

literature. The estimation accuracy of the proposed algorithm is shown to be superior

to those of the Kalman and particle filters for different TIR distributions and under

the effect of both traditional and smart noise jamming.

These contributions led to the following publications:

Journal papers

� Ahmed A. Abouelfadl, I. Psaromiligkos, and B. Champagne, “Covariance-free nonho-

mogeneity STAP detector in compound Gaussian clutter based on robust statistics,”

IET Radar, Sonar & Navigation, in press.

Conference papers

� Ahmed A. Abouelfadl, I. Psaromiligkos, and B. Champagne, “A low complexity non-

parametric STAP detector,” in IEEE National Aerospace and Electronics Conf. (NAE-

CON), (Ohio, USA), pp. 592–596, July 2018.



1 Introduction 8

� Ahmed A Abouelfadl, I. Psaromiligkos, and B. Champagne, “Extended target fre-

quency response estimation using infinite HMM in cognitive radars,” in IEEE Global

Conference on Signal and Information Processing (GlobalSIP), (Ottawa, Canada), Nov.

2019.

Regarding the contributions of the authors in all papers above, the first author, Mr. Abouelfadl,

developed the idea, derived and implemented the algorithms, conducted the simulations and

wrote a first draft of each manuscript. The co-authors, Professor Psaromiligkos and Cham-

pagne, supervised the work by providing guidance, validating theoretical developments, and

contributing to the editing and writing of the final manuscripts.

1.5 Thesis Organization

Following this introduction, Chapter 2 provides a review of basic background on radar top-

ics within the scope in thesis. This chapter also provides a very brief overview on the main

mathematical tools used throughout the thesis. The first contribution of this thesis is pre-

sented in Chapter 3, where we propose a novel NHD based on projection depth function.

In Chapter 4, we introduce a new waveform design method for cognitive MIMO radars that

improves the SINR and, simultaneously, minimizes the reflected power from the transmitting

antenna array based on the gradient proximal optimization method. The formulation of the

TIR estimation problem using the iHMM and its performance evaluation are presented in

Chapter 5. The conclusion and future work are discussed in Chapter 6.
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Chapter 2

Background

In this chapter, we present a brief survey of fundamental radar topics within the scope of the

thesis, including: radar system workflow; the basics of space time adaptive signal process-

ing; modern radar systems such as multiple-input multiple-output (MIMO) and cognitive

radars; and the principles of radar detection. In addition, we provide a quick review for the

mathematical tools used throughout the thesis.

2.1 Radar System Workflow

Radar systems can extract target range, velocity, azimuth and elevation by processing the

returned echo from the target as in Fig. 2.1. Range measurement depends on two radar

parameters, namely maximum radar transmitted power and pulse repetition interval (PRI).

In a pulse Doppler radar, the radar transmits a pulsed waveform as shown in Fig. 2.2. In

the case of unambiguous target range, the target return-pulse is received in the time interval

between the end of a transmitted pulse and the start of the next one . If range ambiguity

happens, a target return pulse may be received after the end of the next pulse. There are

many techniques to resolve radar ambiguity, but we do not consider the ambiguous case in

this thesis. Target range is determined by measuring the time delay td between the leading

edges of the transmitted and received radar pulses. Hence, the target range is given by [9]

Rt =
c td
2

(2.1)
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where c is the speed of light. In the case of unmodulated pulse, the radar range resolution

4R is determined by its pulse width (PW) using

4R =
c

2
PW (2.2)
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For an intra-pulse1 modulated waveform, the range resolution is related to the radar band-

width B as

4R =
c

2B
(2.3)

To determine a moving target velocity, radar measures the frequency shift fd between the

transmitted and the received pulses, i.e., Doppler shift. Pulse Doppler radars sample the

Doppler frequency shift at the pulse repetition frequency (PRF), PRF=1/PRI, which leads to

Doppler ambiguity if the PRF is not high enough. Therefore, the maximum and minimum

unambiguous Doppler frequency shifts a radar can measure are determined by its PRF

using [10]

fdmax =
PRF

2
, fdmin =

−PRF

2
(2.4)

Consider a phased array pulsed Doppler radar using a uniform linear array (ULA) of N

antenna elements that are spaced d = λ/2 apart, where λ is the wavelength at the radar’s

center frequency. The radar simultaneously transmits from each antenna element a sequence

of M coherent pulses with a PRI T , which define the so-called slow time domain. The

transmitted signal from each antenna element is assumed to be narrowband, that is, its

bandwidth B satisfies B � c/Nd [11].

Each antenna element is preceded with a radio frequency (RF) processing stage for filtration,

amplification, and down conversion. The resulting baseband signals are digitized using an

analog-to-digital converter (A/D) and then passed through a matched filter as shown in

Fig. 2.3. The matched filter is employed to maximize the signal-to-noise ratio in the presence

of additive white Gaussian noise (AWGN). The M received pulses from each antenna element

are stacked to form the coherent pulse interval (CPI) using M -tap delay line that are fed to

the space time adaptive processor.

2.2 Space Time Adaptive Processing (STAP)

The normalized Doppler frequency shift due to the target velocity is expressed as

fd =
2νrT cos(θt)

λ
(2.5)

1Intra-pulse modulation refers to the frequency and/or phase modulation of the carrier signal inside the
radar pulse.
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where θt is the target azimuth angle from the boresight of the radar antenna array; and the

Doppler shift is normalized with respect to the pulse repetition frequency 1/T . Let Tu be the

time delay corresponding to the radar maximum unambiguous range, while the time delay

corresponding to the radar range resolution is 1/B. Hence, the total number of range cells

in the so called fast time domain is

L = bTuBc (2.6)

where b·c denotes the floor integer. The CPI can be visualized as an L×M ×N data cube

as shown in Fig. 2.4. For each range cell the data is an MN × 1 vector that contains the

received signal from the target from each PRI and antenna element. The M -dimensional

temporal2 steering vector of the target is given by [11]

b(fd) = [1 exp(j2πfd) exp(j2π(2fd) ... exp(j2π((M − 1)fd)) ] (2.7)

The N -dimensional azimuth space steering vector3 is given by

a(θt) = [1 exp(j2π d
λ

sin(θt)) exp(j2π 2d
λ

sin(θt)) ... exp(j2π (N−1)d
λ

sin(θt)) ] (2.8)

2By temporal domain it is meant the slow time domain or the Doppler domain.
3The discussion here is limited to the azimuth plane; however, the same rules are applied to the elevation

plane.
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The MN × 1 spatio-temporal steering vector is given by

s(fd, θt) =
b(fd)⊗ a(θt)

‖b(fd)⊗ a(θt)‖2

(2.9)

where ⊗ represents the Kronecker product. The baseband received signal x is expressed as

x = as (2.10)

where a is the complex amplitude of the received signal at the output of the matched filter.

The received signal z can be expressed as

z = x + c + n (2.11)

where x is the received signal from the target defined in Eq. (2.10), c is the clutter signal,

and n is the additive white Gaussian noise. The covariance matrix of the received signal is

an MN ×MN matrix that is given by

R = E[zzH ] (2.12)

where (·)H denotes the Hermitian transpose. Due to the presence of correlated clutter and,

possibly, jamming, the covariance matrix R of the received signal is not diagonal. However,
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since the white noise is generated in the receiver, R can be guaranteed to be positive definite

and full rank [11]. With this fact in hand, a closed form solution for the optimum weight

vector that maximizes the signal to interference noise ratio (SINR) can be reached using the

following optimization problem

max
w

|wHs|2

wHRw
(2.13)

subject to wHw = 1 (2.14)

Solving Eq. (2.13) results in the optimum weight vector

w = kR−1s (2.15)

where k is a scalar and the optimum SINR is [11–13]

SINRopt = |a|2sHR−1s (2.16)

There is another, normalized, form of the weight vector, that is [14]

w =
R−1s

sHR−1s
(2.17)

From Eq. (2.16) one can see that the signal should be adaptively processed in both space and

temporal domains. That is why the name “space time domain adaptive processing” (STAP)

is used.

As shown in Eq. (2.15), both the covariance matrix and space-time steering vector of the

received signal should be known to form the weighting vector which is not a valid assump-

tion in most cases. The spatial steering vector may be known in the case of radars that

perform electronic scanning; however, the temporal steering vector is totally unknown to

the radar receiver. The steering vector can be estimated by finding the steering vector that

maximizes the SINR in Eq. (2.16) through scanning different Doppler shifts and angles [13].

It is assumed that target steering vectors are stationary during the CPI. This assumption is

valid as long as the relative motion between the radar and the target does not result in a an

angle difference more than orders of 1/100th of the beam width, which is the case in most

radar situations [15].
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Different estimation techniques are used to estimate the covariance matrix. The maximum

likelihood (ML) estimator of the covariance matrix R̂ for a Gaussian distributed interference

is given by

R̂ =
1

K

K∑
k=1

zHk zk (2.18)

where K ≥ 2MN is the required number of the secondary cells [16], R̂ in Eq. (2.18) is known

as the sample covariance matrix (SCM). It should be emphasized that the SCM is not robust

in the case of non Gaussian interference, in which case other estimators should be used as

will be shown in the next chapter.

2.3 MIMO Radars

In contrast to phased array radars, MIMO radars transmit independent waveforms from the

transmitting antenna elements and observing the target(s) returns by the receiving antenna

elements. The operation of the MIMO radar is illustrated in Fig. 2.5.

Figure 2.5 MIMO radar.

Consider a MIMO radar system with NT transmitting antennas and NR receiving an-

tennas. The ith transmitting antenna element radiates a discrete-time baseband waveform

f̄i ∈ CLs , where Ls is the number of samples within the pulse width. The receiving antenna

array is a filled ULA4 and the transmitting antenna array has an inter-element spacing of

4A filled phased array has its elements placed with half-wavelength spacing between each consecutive
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NRλ/2. When the waveforms f̄i, i = 1, · · · , NT are orthogonal, the MIMO radar has a virtual

filled ULA of NTNR elements. The idea of the virtual array in MIMO radar is illustrated

with the aid of Fig. 2.6.
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Figure 2.6 The virtual array of MIMO radar.

In Fig. 2.6a, we depict a radar system consisting of one transmitting antenna and eight

receiving antennas with inter-element spacing of λ/2. The transmitted signal from the

transmitting antenna results in phase shifts of ω, · · · , 7ω at the receiving antennas, with the

first antenna element as the reference. Using two transmitting antennas and four receiving

antennas, as shown in Fig. 2.6b, results in the same phase shift sequence at the receiving

antennas. The signal transmitted from the first transmitter results in phase shifts 0, ω, 2ω, 3ω.

Since the second transmitting antenna is separated from the first one by four times the

elements [17].
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separation between the receiving antennas, its transmitted signal arrives the receiver with an

additional 4ω phase shift. Therefore, the transmitted signal from the second antenna element

results in a phase-shift sequence of 4ω, 5ω, 6ω, 7ω. Combining the two phase shifts resulting

from the first and second transmitting antenna elements, we obtain the same sequence of

phase shifts obtained by the radar configuration in Fig. 2.6a. In general, using the proper

placement of NT transmitting and NR receiving antennas, a virtual array of NTNR antennas

is synthesized at the receiver.

The advantages of the MIMO radars over the phased array radars include higher spatial

resolution, better parameter identification, improved performance for ground moving target

identification (GMTI) [18, Ch.2], and enhanced detection performance due to their spatial

diversity [19].

The problem of waveform design of MIMO radars has attracted a wide interest in the last

decade, which resulted in the following main trends in the design of MIMO radar waveforms

[20]:

1. To consider only the covariance matrix of the waveforms instead of the entire waveform,

to control the spatial distribution of the transmitted power. However, this design

method covers the spatial domain only.

2. Waveform design based on the optimization of the ambiguity waveform properties

such as the autocorrelation peak to sidelobes level ratio (PSLR), the cross-correlation

between the waveforms, the Doppler and range resolutions, and Doppler tolerance.

3. In his seminal book [21], Woodward employed, for the first time, the information theory

in the design of radar receivers. After three decades, this was followed by the work

in [22], where it was shown that the radar performance is enhanced by maximizing the

conditional mutual information between the target and the radar reflected signal. This

category of waveform design is concerned with the extended target model5. In [23], it

has been shown that maximizing the MI between the random target impulse response

and the reflected radar signal is equivalent to minimizing the value of the minimum

mean-square error (MMSE) of the target impulse response estimation.

5Extended targets are those targets that occupy more than one range cell. While this abridged definition
is sufficient for the purpose of the discussion here, more details about extended targets will be provided in
Chapters 4 and 5.
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In Chapter 4, we delve more into the problem of waveform design of the third trend in the

aforementioned waveform design trends in cognitive MIMO radars.

2.4 Cognitive Radars

Adaptive radars involve adjusting the receiver to improve different aspects of radar perfor-

mance. This adjustment includes setting the detection threshold automatically according

to the environment through employing adaptive detectors and antenna arrays. The latter

led to devising the STAP that adaptively filters the signal in both Doppler and spatial do-

mains. The more advanced cognitive radars extend the concept of adaptation to the radar

transmitter as well as the receiver [24]. Since the cognitive radar is still in the research

and development phase, there is no unique, formal definition on what constitutes a cogni-

tive radar. However, in the following, we describe briefly the distinguishing features of the

cognitive radar over conventional radars.

While the concept of cognitive radars can be rooted back to the work on knowledge-based

radar in the late nineties [25–27], the first formulation of the cognitive radar framework was

introduced by Haykin in [28]. Haykin outlined three main elements of the cognitive radar

that distinguish it from the adaptive radar:

1. The transmitter, receiver, and the environment form a dynamic closed-loop system as

shown in Fig. 2.7.

2. The radar system continuously learns from the environment through the received ob-

servations and the obtained information is used to adapt the receiver.

3. The transmitted waveform is also adapted according to the acquired information about

the environment and the target parameters.

The knowledge-based radars use prior knowledge of the environment to improve the per-

formance by employing the available environment database to choose the optimum signal

processing approach [29]. Therefore, the knowledge-based radars can be seen as employing

“inside-out” information, in which the prior knowledge, which can be considered as an in-

tegral part of the receiver, is used to improve the radar performance. Conversely, cognitive

radars use “outside-in” information, which is gathered online by the radar from the environ-

ment [30]. One of the most important information obtained by the cognitive radars is the
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Figure 2.7 Cognitive radar work flow.

target impulse response (TIR), which is used to optimize the radar waveform as we discuss

in more details in Chapter 5.

2.5 Radar Detection

The final stage in the signal processing chain of the radar receiver for all the radar types

discussed previously including phased array, MIMO, cognitive radars. Radar detection means

the ability of its receiver to decide whether a target is present or not in the presence of

noise, environment clutter6, and jamming. Radar detection is a binary hypothesis testing

problem with the null hypothesis H0 representing that no target is present and the alternative

hypothesis H1 corresponding to the target is present. This binary-hypothesis testing problem

reduces to the likelihood ratio test

Λ =
fR|H1(r|H1)

fR|H0(r|H0)

H1

≷
H0

γ (2.19)

where r is the observation, γ is the threshold, fR/H1(r/H1) and fR/H0(r/H0) are the con-

ditional probability density functions (PDF) of r under H1 and H0 respectively. The most

appropriate criterion to obtain the threshold is the Neyman Pearson criterion that maximizes

the probability of detection PD at a fixed probability of false alarm Pfa, which determines

the probability that H1 is decided while H0 is true. The value of the threshold is calculated

to achieve the required Pfa at a given level of interference. False alarms are generated due

to different sources of interference as clutter, high noise power, or jamming.

6Radar clutter is defined as “unwanted echoes, typically from the ground, sea, rain or other precipitation,
chaff, birds, insects, or aurora.” [31]



2 Background 20

To lower Pfa, the threshold γ should be raised, but this leads to a lower PD at lower

noise or clutter power levels than those at which Pfa has been calculated. To resolve this,

an adaptive threshold can be used, to maintain a fixed PD in different clutter and noise

environments [9, 32] among other solutions. The detector that maximizes the probability of

detection at a fixed level false alarm rate is the constant false alarm rate (CFAR) detector.

The basic assumption of adaptive threshold detectors is that the PDF of the interference is

known except for the variance σ2 or the covariance matrix R in the case of vector detectors.

The presence of an unknown parameter in the detection problem raises the need for the

generalized likelihood ratio test (GLRT) that is formed by estimating the unknown parameter

(the variance or the covariance) and substituting this estimate into the likelihood ratio test.

If the probability of false alarm does not depend on this estimated parameter, a GLRT is

possible [32, 33].

There are mainly two types of CFAR radar detectors based on the dimension of the

received radar signal: scalar and vector CFAR detectors, which will be described briefly

below.

2.5.1 Scalar CFAR

In the scalar CFAR detectors, as shown in Fig. 2.8, the secondary cells along with the primary

cell (the Cell Under Test (CUT) are complex scalars in time or frequency domain. The

threshold is calculated from the secondary cells, after excluding the guard cells [34], and

then it is compared to the CUT to decide about the target presence. The basic form CFAR

detector is the cell average CFAR (CA-CFAR) detector, whose threshold depends on the

average of the surrounding cells (reference or secondary cells) of the CUT. The secondary

cells are assumed to be independent and identically distributed (iid).

Secondary cells

Cell under test (CUT)

Threshold calculation

...
Guard cells

...
Decision

Figure 2.8 Block diagram of CA-CFAR

If the distribution of the secondary cells and CUT is Gaussian, the CA-CFAR detector
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is the optimum detector. however, the performance of CA-CFAR detector is degraded when

clutter or jamming are present in the secondary cells. That is why other types of CFAR

detectors have been proposed such as the Greatest of CFAR (GO-CFAR) [34], order statistic

CFAR (OS-CFAR ) [35], and censored CFAR [36].

2.5.2 Vector CFAR

While scalar CFAR detectors deal with the received signal that is represented in one dimen-

sion only, i.e., frequency (Doppler) or time (range), vector CFAR detectors handle multidi-

mensional signals. For the three-dimensional case, the received signal represents the target

in range (fast time), temporal (Doppler or slow time), and spatial (angle) domains where the

concept of “data cube” is used. The detector scans the signal in one dimension (fast time)

and vectorizes the remaining 2-D matrix into an array.

As indicated before, the received signal matrix is stacked into an MN × 1 single col-

umn vector. In light of the well-known RMB procedures7, Kelly in [37] has formulated the

following likelihood ratio test (LRT)

Λ1,0 =
|sHR̂−1z|2

(sHR̂−1s[1 + 1
K

(zHR̂−1z)])

H1

≷
H0

η, (2.20)

where H0 and H1 are the null and alternative hypotheses denoting the target absence or pres-

ence, respectively, and η is a threshold that is determined based on the required probability

of false alarm Pfa according to the Neyman-Pearson criteria [38]. The covariance matrix can

be estimated from the range cells surrounding the CUT (also called primary data) under

the assumption that the surrounding cells (also called secondary cells) are homogeneous and

free of targets. Both Kelly and Reed, at the same time, simplified the LRT in Eq. (2.20)

to [39,40]

Λ1,0 =
|sHR̂−1z|2

sHR̂−1s

H1

≷
H0

η (2.21)

This detector is known as the adaptive matched filter (AMF) detector. To improve the CFAR

property of the detector, a normalized version of this detector is the normalized adaptive

7RMB are the initials of the authors of [16]
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matched filter (NAMF)

ΛNAMF =

∣∣∣sHR̂−1z
∣∣∣2∣∣∣sHR̂−1s

∣∣∣ ∣∣∣zHR̂−1z
∣∣∣ (2.22)

2.6 Mathematical Background

In this section, we briefly describe the basic mathematical tools used in the thesis.

2.6.1 Depth functions

To identify outliers in a data set associated with a cumulative distribution function (CDF)

F defined on R, the data points are compared to a threshold, e.g., one of the quantiles of F ,

or a function of it. The outliers are identified by those data points whose values exceed the

threshold. Given a sample data set, the sample quantiles are obtained by applying linear

ordering to the data points, which induces a ranked or ordered data set. However, applying a

similar procedure on multidimensional data defined on Rd, with d > 2, is cumbersome, since

the concept of ranking is not defined for multidimensional data. Alternatively, employing a

center for the multivariate data using the mean or the median, the concept of center-outward

ordering can be applied to the multivariate data instead of the linear ordering [41]. Based

on this ordering, the depth of each point relative to the center is used to identify outliers

with the center as the deepest point.

Definition 2.1 (Depth function) [42]: Let the function D(x;Fx) : Rd → R of a

random vector x ∈ Rd and its CDF be Fx. If D(x;Fx) satisfies the following:

(a) D(Ax+b;FAx+b) = D(x;Fx) for a non-singular d×d matrix A and any d−dimensional

vector b. In other words, D(x;Fx) is affine invariant.

(b) D(x̄;Fx) = supx∈Rd D(x;Fx), where x̄ is the center of Fx.

(c) D(x;Fx)→ 0 as ‖x‖ → ∞.

Then D(x;Fx) is a statistical depth function. There are four main approaches in constructing

depth functions: weighted mean depth functions, depth functions based on halfspaces, spatial

depth function, and distance based depth functions [43,44].
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Weighted mean-based depth functions are defined by the so-called weighted-mean regions

that are convex sets, whose support functions are weighted means of order statistics [43]. For

the vectors x1, · · · ,xL and a vector u ∈ Rd, a linear ranking can be obtained by projecting

the data vectors as follows

uTxp(1) ≤ uTxp(2) < · · · < uTxp(L) (2.23)

where p is a permutation of the vectors’ indices. Let wi,α, i = 1, · · · , L and α ∈ [0, 1], be

scalar weights, where
∑L

i=1 wi,α = 1, then the weighted-mean (WM) depth is defined as [43]

DWM(x;Fx) =
L∑
i=1

wi,αu
Txp(i), (2.24)

Different weights result in different notions of data depths. For instance, one of the known

statistical depth functions is the zonoid regions, whose weights are given by [43]

wi,α =


0, if i < L− bLαc,
Lα−bLαc

Lα
, if i = L− bLαc,

1
Lα
, if i > L− bLαc

(2.25)

However, the Zonoid depth function, which is the most widely used weighted mean depth

function, has a higher complexity compared to other depth functions [45].

Depth functions based on halfspaces do not use a metric on Rd; instead they use closed

halfspaces. The most famous form of the halfspace depth function is the location depth, also

known as Tukey depth, whose population version is defined as [44]

DTukey(x;Fx) = inf
H
{F (H) : H is a closed halfspace ,x ∈ H} (2.26)

However, Tukey depth is not informative in the case of high dimensional data, i.e., d > L [46].

Spatial depth functions are based on the spatial quantiles [47]. The spatial median x̌ is
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the solution to the following optimization problem8 [49]

min
x̌∈Rd

L∑
i=1

‖x̌− xi‖2 (2.27)

The above problem is solved by setting the derivative of its objective function with respect

to x̌ to 0 to obtain

L∑
i=1

ξ(x̌− xi) = 0 (2.28)

where

ξ(x) =

 x
‖x‖2 , x 6= 0

0, x = 0
(2.29)

The spatial depth function is given by [50]

DS(x;Fx) = 1−
∥∥∥∥∫ ξ(y − x)dF (y)

∥∥∥∥
2

(2.30)

While the spatial depth function has various desirable properties, such as robustness to give

an example, its computation depends on the sample size L rather than the data dimension

d [50]. In radar applications, L, i.e., the number of secondary cells, is often larger than d,

leading to a high computational cost of the spatial depth function.

A distance-based depth function uses the distance from the center as a measure of depth.

One of the first and most famous distance-based functions is the Mahalanobis depth, whose

sample version is defined as

DMH(x;Fx) =
(

1 + (x− x̄)T Σ̂
−1

X (x− x̄)
)−1

(2.31)

where Σ̂ is the estimated covariance matrix of x and x̄ is its sample mean. Another distance-

8The definition of the spatial median given in Eq. (2.27) is equivalent to that of the median in the
univariate case [48].
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based depth function is the projection-depth function, which is defined as [43]

DProj(x;Fx) =

(
1 + sup

‖u‖=1

∣∣uTx−Med(uTX)
∣∣

MAD(uTX)

)−1

(2.32)

where X ∈ Rd×L is the sample of x of size L, u ∈ Rd, Med denotes the median, and MAD

denotes the median absolute deviation. It is noteworthy that for a one-dimensional data set

X = {X1, X2, · · · , XL} the rule
|Xi−Med(X)|

MAD(X)
, i = 1, · · · , L has been widely used as a robust

measure to detect outliers [51, 52]. Among other benefits, the projection depth function

requires the simplest computations compared to other types of depth functions [53, 54].

In Chapter 3, we employ the projection depth function in the problem of detecting non-

homogeneous secondary cells for a more robust estimation of the covariance matrix.

2.6.2 Proximal Optimization

Consider the following optimization problem [55]

min
x

f(x) + g(x) (2.33)

where f(x) is a smooth function, possibly non-convex, and g(x) is a convex function, possibly

non-smooth. The form of the problem in Eq. (2.33) is encountered in many applications of

signal processing and machine learning, where f(x) is an objective function that is dependent

on some observation and g(x) is a regularization term that imposes some favorable properties

on the solution [56]. The difficulty in solving Eq. (2.33) arises from the fact that g(x) can

be non-differentiable, which impedes the solution using conventional convex optimization

methods. One approach to solve such problems is to split the objective function of Eq. (2.33),

which leads to efficient solution algorithms that are known as proximal algorithms [57].

Proximal algorithms can solve the problems of the form of Eq. (2.33) with non-smooth g(x)

if its proximal operator can be calculated, which explains the name “proximal algorithms”.

Definition 2.2 (Proximal operator) [57]: Let g(x) be a convex function and x ∈ Rd,

d > 2. The minimization problem

min
y∈Rd

g(y) +
1

2
‖x− y‖2

2 (2.34)
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admits a unique solution that is known as the proximal operator of g and denoted as proxg(x).

Intuitively, proxg(x) minimizes Eq. (2.34) with a constraint on the distance from x. The

proximal operator is closely related to the Moreau envelope Mg(x), which is defined as [56]

Mg(x) = inf
y

{
g(y) +

1

2
‖x− y‖2

2

}
(2.35)

The Moreau envelope can be viewed as a regularized version of g [56]. The proximal operator

and the Moreau envelope are related as [58]

Mg(x) = g(proxg(x)) +
1

2
‖x− proxg(x)‖2

2 (2.36)

For a scaled version of g(x), we have

∇Mλg(x) =
1

λ
(x− proxλg(x)) (2.37)

where λ > 0. Eq. (2.37) can be rewritten as

proxλg(x) = x− λ∇Mλg(x) (2.38)

Therefore, the proximal operator can be considered as a gradient step to minimize Mλg(x),

and equivalently g(x), with a step size λ.

The basic optimization algorithm based on the proximal operator is the proximal point

optimization. This algorithm solves the minimization of the convex and possibly non-smooth

function λg(x) and its solution is the proximal operator itself such that xk+1 = proxλg(x
k).

For the solution of problems in the form of Eq. (2.33), the proximal gradient method is

applied. Using the gradient proximal algorithm, which is an iterative method. The kth

iteration is

xk+1 = proxλkg(x
k − λk∇fxk) (2.39)

where λk > 0 is the step size and the solution is obtained as k →∞. The proximal gradient

method reduces to the proximal point method when f(x) = 0. When g(x) = 0, the proximal

gradient method is the conventional gradient descent method. In Chapter 5, the proximal

gradient algorithm is used to design power-efficient cognitive MIMO radar waveforms.
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2.6.3 Dynamic Bayesian graphical models

Graphical models combine the use of both graph and probability theories. From the graph

theory, the graphical models inherit the ability of modeling system modularity, i.e., simpli-

fying the system into a number of connected parts. The probability theory is used to define

the connections, specifically the probabilistic relations, among those connected parts [59]. In

dynamic (or dynamical) Bayesian graphical models the nodes represent random variables,

whose dependencies are represented by the arcs between the nodes. As shown in Fig. 2.9,

the dependencies among the random variables A, B, C, D are described by the arcs between

the pairs of the variables, where the independent variables are not connected with arcs. It

should be noted that the use of the word “dynamic” means that the graph models are used

to describe dynamic systems9 and it does not mean that the model changes over time [61].

C

A

D

B

P(A|B)

P(C|A,B)

P
(B
|D
)

Figure 2.9 Example of a probabilistic graphical model

The main trend in the literature is to differentiate between two main classes of Bayesian

graphical models that are used widely in different applications: state space and hidden

Markov models. Both models, as will be detailed shortly, embody hidden states from the

observer; however, according to some authors [62], the state space model is defined with

continuous states while the hidden Markov model (HMM) assume discrete states. However,

some authors, like Murphy in [61], considers HMM as a type of state space model. While we

adopt the mainstream in the literature, the following descriptions show that the state space

models and HMM are strongly related.

9A dynamic system is one whose states are changing over time according to a family of transformations
that are parameterized by time [60]
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2.6.3.1 State space models

In the state space model, the observations and the hidden states are expressed as

y(t) = v(x(t)) + nm(t) (2.40a)

x(t) = u(x(t− 1)) + ns(t) (2.40b)

where x(t) ∈ Cd is the hidden state of the system at time t, y(t) ∈ Cd is the observation

vector, nm(t),ns(t) are the independent observation and state noise vectors, respectively, and

v, u : Cd → Cd are linear or nonlinear functions, assumed to be static, i.e., do not change

with time. Without loss of generality, it is assumed here that both the observation and state

vectors have the same dimension. It is customary to call Eq. (2.40a) as the measurement

equation and Eq. (2.40b) as the state or plant equation. As observed in Eq. (2.40b), the

current state is assumed to depend only on the previous state which is known as the first-

order Markov chain. A widely used model is the linear state space model [62]

y(t) = Vx(t) + ns(t) (2.41a)

x(t) = Ux(t− 1) + nm(t) (2.41b)

where V ∈ Rd×d is the design or observation matrix and U ∈ Rd×d is the transition matrix;

both of which are assumed to be constant. Bayesian inference is concerned with finding the

posterior probability density function (pdf) of the states given the observation. Specifically,

Bayesian filters are used to recursively, i.e., in a sequential manner, estimate the posterior

pdf from the observations [63]. Before delving into the concept and application of Bayesian

filter, it is important to discuss first the different types of the state-space models. As Fig. 2.10

depicts, there are four main types of the state space model based on the linearity or nonlin-

earity of the functions v, u and the distribution of nm(t) and ns(t). The type of Bayesian

filter realized to solve a problem of the form of a state-space model is determined based on

the properties of this model, which is summarized as follows:

(a) Linear Gaussian model: The Bayesian filter is realized exactly through the Kalman

filter, which is also, under the linear Gaussian model, the optimal filter based on the

mean square error (MSE) criterion.

(b) Nonlinear Gaussian model: The posterior pdf of the states is directly and locally
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Figure 2.10 The different types of state space models

approximated around the filtered estimate of the tth state given all the observations

up to t [63]. Examples of this approach include the extended, cubature, unscented,

and decoupled Kalman filters [63]. The other approach of approximating the posterior

pdf of the states is by using indirect approximation through sampling the posterior

from a set of randomly chosen samples (particles) with associated weights, which is

the approach adopted by the particle filter [64].

(c) Linear non-Gaussian model: In this case the non-Gaussian distribution of the

measurement and/or the state noise vectors are approximated by a Gaussian mixture

to form what is known as the mixture Kalman filter [65]. Moreover, the indirect

approximation of the posterior, i.e., the particle filter can be used for this model.

(d) Nonlinear non-Gaussian model: For this case, the particle filter is the only avail-

able approximation for the Bayesian filter [63].

For the sake of succinctness, brief descriptions of the Kalman and particle filter, which are

employed as benchmarks for the TIR estimation method proposed in Chapter 5, are provided

here.

Kalman filter

In practical applications, the estimation is performed in discrete time at time instants

t1, · · · , tk, which leads to the discrete Kalman filter. For simplicity of notation, we use

1, · · · , k to denote the time instants t1, · · · , tk. Let x−k be the a priori estimate of the state

at time instant k, while x̂k be its a posteriori estimate given a measurement yk. Therefore,
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the a priori and a posteriori error covariance matrices are defined by [66]

P−k = E[(xk − x−k )(xk − x−k )H ] (2.42a)

P̂k = E[(xk − x̂k)(xk − x̂k)
H ] (2.42b)

The a posteriori and a priori state estimates are related as

x̂k = x−k + Kk(yk −Vx−k ) (2.43)

where Kk is the Kalman gain or blending factor. Eq. (2.43) is known as the measurement

innovation, which reflects the discrepancy between the actual and the expected observations.

The Kalman filter operates in two main steps: the prediction step that involves estimating

the current state a priori and the update step in which the estimated state is adjusted

by the actual measurement. It is assumed that the state noise vector nsk ∼ CN (0,Q) and

observation noise vector nmk ∼ CN (0,R), where CN (µ,Σ) denotes the complex Gaussian

distribution with mean µ and covariance Σ. Both Q and R are assumed to be known and

they do not change with the time index k. The two steps of the Kalman filter are summarized

below.

Prediction step:

x−k = Ux̂k−1 (2.44a)

P−k = UP̂kU
H + Q (2.44b)

Update step:

Kk = P−k VH(VP−k VH + R)−1 (2.45a)

x̂k = x−k + Kk(yk −Vx−k ) (2.45b)

P̂k = (I−KkV)P−k (2.45c)

Particle filter

To fully grasp the idea behind the particle filter, we need to look back to Monte Carlo

methods, or more specifically, the sequential Monte Carlo (SMC) methods. Suppose we
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want to approximate a multivariate pdf π(x1:n) using Monte Carlo methods, where x1:n =

x1, · · · , xn and n ≥ 2. We sample N independent random variables, X i
1:n ∼ π(x1:n), such

that the approximated measure of π(x1:n) is

π̂n(x1:n) =
1

N

N∑
i=1

δXi
1:n

(x1:n) (2.46)

where δx0(x) is the Dirac delta function at x0. The samples, or the “particles”, X i
1:n are

obtained from the state equation assuming known state noise distribution [67]. In addition,

we can also approximate any marginal pdf, say π(xk) as

π̂n(xk) =
1

N

N∑
i=1

δXi
k
(xk) (2.47)

However, it is often difficult to sample directly from the target distribution, π(x1:n). This

problem can be solved using importance sampling, also known as weighted sampling, whose

purpose is to sample from a distribution that is different from the original distribution due to

the computational advantage of sampling from the former over the latter [68]. In particular,

let the original pdf be π(x1:n), also called the target or nominal pdf, and assume that we

have q(x1:n) ∝ π(x1:n) such that q(x1:n) > 0 whenever π(x1:n) > 0. Then10 [70]

π̂(xk) =
1

N

N∑
i=1

w(X i
1:n) (2.48)

with

w(X i
1:n) ∝ π(X i

1:n)

q(X i
1:n)

(2.49)

where X i
1:n are sampled from q(x1:n), known as the importance or proposal pdf, instead of

π(x1:n). Eq. (2.49) implies that we should be able to compute π(X i
1:n); however, in some

cases we are only able to compute an unnormalized version πu(X i
1:n) = cπ(X i

1:n), where

c > 0 is unknown. The same can be applied to q(x1:n) and its unnormalized version

qu(X i
1:n) = bq(X i

1:n), where b > 0 is also unknown. To overcome this difficulty, the new

10Some references state that q(x1:n) should share the same support with π(x1:n); however, it is sufficient
that the support of q(x1:n) includes that of π(x1:n) [69].
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weights wu(X i
1:n) = πu(X i

1:n)/qu(X i
1:n) can be used instead of w(X i

1:n) and Eq. (2.48) can be

modified to be

π̂(xk) =
N∑
i=1

wu(X i
1:n)∑N

i=1w
u(X i

1:n)
=

N∑
i=1

w̃(X i
1:n) (2.50)

where
1

N

∑N
i=1 w

u(X i
1:n) is a normalizing constant, w̃(X i

1:n) are known as the self-normalized

importance weights, and the ratio c/b cancels out. It is worthy to emphasize that importance

sampling can be used to reduce the variance of the pdf estimation by concentrating the

sampled points in the regions that are more “important” in the target distribution instead

of sampling equally from all the regions [71].

In practice, the sampling is performed sequentially by choosing the importance density

such that [64]

q(x1:n) = q(xn)q(x1:n−1) = q(xn)
n∏
k=2

q(xk) (2.51)

and the weights are given by [70]

w(X i
1:n) = w(X i

1)
n∏
k=2

α(X i
1:k) (2.52)

where α(X i
1:k) = π(X i

1:k)/π(X i
1:k−1)q(X i

k). After calculating the weights, the estimated state

x̂1:n is obtained from the particles using different schemes. The classic approach is to pick

the estimated state from the particles according to P (x1:n = X i
1:n) = w(X i

1:n) as initially

proposed in [67]. Other approaches are also possible, for instance the weighted mean, that

is x̂1:n =
∑N

i=1w(X i
1:n)X i

1:n, or the best particle x̂i1:n = argmax w(X i
1:n) [72].

The aforementioned sampling scheme is known as the sequential importance sampling

(SIS). A common problem with the SIS is that after some iterations all the particles except

one will have negligible weights, which is known as the degeneracy problem. To detect the

degeneracy problem, the number of effective particles is calculated as [64]

Neff =
1∑N

i=1(w(X i
k))

2
(2.53)
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A small Neff means degeneracy. When detected, the problem of degeneracy can be solved

through the appropriate choice of the importance density and resampling. The latter involves

sampling N independent and identically distributed (i.i.d) particles with equal weights, 1/N

[64].

2.6.3.2 Hidden Markov models

The hidden Markov model (HMM) embeds two stochastic processes: a “hidden” stochastic

process that is not observed but it can be inferred from the second stochastic process that

produces a sequence of observations [73]. The basic building block of the HMM is a Markov

chain, which describes the evolution of the “states”, each of which can takes values from

a discrete set X = {Xk|k ∈ N}. The main characteristic of the Markov chain is that the

current state Xk is independent from all previous states given Xk−1 [74], i.e.,

P (Xk|X ) = P (Xk|Xk−1) (2.54)

which is known as the “Markov property” or Markov assumption. In the HMM, the evolution

of the hidden states is governed by a Markov chain and an observation is generated depending

on the current state. Specifically, the HMM is determined by the following five elements [73]:

1. The set of the model’s hidden states S = {S1, · · · , SNs}, where Ns is its cardinality.

2. The model’s observation set O = {O1, · · · , ONs}, where No is its cardinality.

3. The transition matrix A, whose (i, j)th element is defined as

A = [aij] = P (Xk = Si|Xk−1 = Sj), 1 ≤ i, j ≤ Ns (2.55)

where A is a stochastic matrix such that

aij ≥ 0,
Ns∑
j=1

aij = 1 (2.56)

4. The observation matrix B, whose (i, j)th element is defined as

B = [bij] = P (Yk = Oi|Xk = Sj) 1 ≤ j ≤ No, 1 ≤ i ≤ Ns (2.57)
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where Yk is the observation at the kth time instant and B is a stochastic matrix that

admits the form of Eq. (2.56).

5. The initial distribution ζ = [ζi], whose ith element is defined as

ζi = P (X1 = Si), 1 ≤ i ≤ Ns (2.58)

It is customary to define the HMM using ϑ = (A,B, ζ). The research on the HMM is

concentrated on three problems: (a) the estimation of the observation Yk+1, · · · , YT for a

time duration T given ϑ and Y1, · · · , Yk, (b) the inference of the states X1, · · · , Xk given the

observations Y1, · · · , Yk and the model ϑ, and (c) how to adjust the model parameters ϑ

to maximize P (Y1, · · · , Yk|ϑ). Dynamic programming algorithms are employed to solve the

first two problems [73], while the adjustment of the model parameters is performed through

model training [75]. In Chapter 5 we deal with the HMM from a different stand point, from

which we propose a new formulation of the TIR estimation problem based on the HMM

assuming an uncountable number of states.
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Chapter 3

Covariance-Free Nonparametric

Nonhomogeneity Detector

In this chapter, we consider the problem of detecting outliers in the secondary cells used

to estimate the covariance matrix of the interference, which is an essential requirement for

target detection. In this regard, we propose a novel detector based on robust statistics, which

provides both robust performance and fast computations.

3.1 Introduction

Upon reflection of the transmitted pulses by a target, the radar antenna receives distorted

versions of these pulses due to other scatterers, clutter, and noise. A space time adaptive

processing (STAP) detector discretely scans the range dimension and, for each range bin,

arranges the data along the angle and Doppler dimensions into a vector, called a range cell. It

then linearly combines the spatio-temporal data in each range cell to form the test statistics.

To this end, it needs to compute a set of weight vectors corresponding to the different spatio-

temporal ”look” directions, which depend on the covariance matrix of the background clutter

and noise within the cell under test (CUT), also called the primary cell [11]. However, this

covariance matrix is not known in practice and it is commonly estimated from the adjacent

range cells, known as the secondary or training cells in this context.

The estimation of the covariance matrix from the secondary cells relies on the assumption

that they are homogeneous, i.e., independent and identically distributed (iid). In reality, the

homogeneity assumption is hardly met due to the presence of discrete scatterers, in-band
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interferers, target-dependent jammers [76, 77], or a combination thereof. In this case, the

estimated covariance matrix does not represent accurately the background clutter and noise,

and hence, the weight vectors computed from this matrix lead to a performance degradation

of the STAP detector. To tackle this problem, the non-homogeneity detector (NHD) was

introduced to detect the anomalous secondary cells to be censored from covariance matrix

estimation [78].

Conceptually, a secondary cell is considered to be homogeneous to its surrounding sec-

ondary cells if it shares with them the same covariance matrix up to a scalar. Since the true

covariance matrix of a given secondary cell is unknown, the work in [78] used the generalized

inner product (GIP) test to examine the similarity between this unknown covariance matrix

and the test covariance matrix estimated from the surrounding secondary cells. Later, the

normalized adaptive matched filter test (NAMF) was used as an NHD with Gaussian and

non-Gaussian clutter models in [79], where the NAMF detector was shown to be the most

robust NHD.

Recent research efforts on NHD have focused on improving the performance of the afore-

mentioned classical detectors or reducing their complexity. For instance, [80] proposed a soft

NHD concept, wherein the covariance matrix of the CUT is calculated using the weighted

secondary cells assuming Gaussian distributed clutter. In turn, the calculation of a weight

for each secondary cell is formulated as a non-linear optimization problem based on the

output of a modified version of the adaptive matched filter (AMF). An iterative approxi-

mate maximum-likelihood (ML) approach based on the GIP detector was developed in [2]

for estimating the subset of non-homogeneous cells. This approach shows a comparable

performance to the iterative original GIP test using the ML covariance estimator for the

Gaussian interference [81]. In addition, a large body of research has been devoted to re-

duce the dimensions of the STAP detection problem using different transformation and rank

reduction techniques as in [82], which can also be applied to NHD [83]. However, these

partially adaptive detectors generally exhibit inferior performance compared to their fully

adaptive counterparts. Based on the GIP detector, other NHD procedures for the special

cases of spaceborne or side-looking radars were introduced in [84,85].

The above referenced covariance-based NHDs share the need to estimate the covariance

matrix and its inverse (known as the precision matrix) for each secondary cell, which leads to

a high computational cost, especially for non-Gaussian clutter. Some covariance estimators

need a priori knowledge about the clutter distribution [86], which is imperfect in most
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cases, while other estimators need to solve non-convex optimization problems with high

computational complexity [3]. To avoid such difficulties, a covariance-free NHD with a

comparable performance to the GIP was introduced in [87]. However, it is known that the

GIP test is not robust, especially in non-Gaussian clutter scenarios [79].

In this chapter, we are concerned with the problem of detecting the non-homogeneous

cells out of the secondary cells in the Gaussian and non-Gaussian clutter distributions. We

introduce a novel covariance-free and nonparametric NHD based on projection depth func-

tion, a well known tool in robust statistics. This detector provides robust performance, does

not require any prior assumptions about the clutter distribution, and, most importantly,

does not require estimating the covariance or the precision matrices for each cell, and there-

fore, it reduces the computational burden significantly. The results show that the proposed

test maintains the robust performance of the NAMF test, but inherits the nonparametric

framework and simple computations of the projection depth functions.

This chapter is organized as follows: The signal model is introduced in Section 3.2.

The non-homogeneity detection problem is presented in Section 3.4. The proposed NHD is

introduced in Section 3.5 where its approximate equivalence to the NAMF test is proven.

The comparative analysis for the detection performance of the proposed detector with the

NAMF test is investigated in Section 3.6. Section 3.7 is a brief conclusion of the results.

3.2 Signal Model

As we introduced in Chapter 2, the total received signal z is expressed as

z = r + c + n (3.1)

and

r = as (3.2)

where a is an unknown deterministic complex amplitude (i.e., Swerling case 0 [88]), s is the

target steering vector, c is the clutter vector and n is the noise vector; n and c are assumed to

be statistically independent. The noise vector n is drawn from a complex circular symmetric

Gaussian distribution CN (0, ς2
nIJ) with zero mean and covariance matrix ς2

nIJ where ς2
n is

the noise variance. The clutter vector is modeled as [11]

Let R = E(zzH) be the covariance matrix of the received signal z in Eq. (2.11). For
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each CUT, STAP aims at forming the optimal beamforming (or weight) vector in real time

to maximize the received signal-to-interference-plus-noise ratio (SINR) with respect to s.

Under the minimum variance distortionless response (MVDR) criterion, the optimal weight

vector takes the form [11]

w = gR−1s (3.3)

where g is a complex scalar.

For the complex vector z = zR + jzI, where zR = <(z) and zI = =(z), the covariance

matrix is expressed as [89]

R = RzRzR
+ RzIzI

+ j(RT
zRzI
−RzRzI

) (3.4)

where RzRzR
= E(zRz

T
R ), RzRzI

= E(zRz
T
I ), RzIzI

= E(zIz
T
I ), and z is a proper complex signal,

i.e., RzRzI
= −RT

zRzI
and RzRzR

= RzIzI
, which is common in the radar context. Moreover, it

is customary to assume that the in-phase and quadrature components of z are independent,

i.e., RzRzI
= 0, where 0 is J × J zero matrix [90, 91]. Hence,

R = 2RzRzR
= 2RzIzI

(3.5)

In practice, the covariance matrix R is unknown and different techniques are used to

estimate it from the adjacent L− 1 secondary cells, assuming no guard cells. In the case of

Gaussian clutter, the ML estimator is the sample covariance matrix (SCM) given by:

R̂SCM =
1

L− 1

L−1∑
l=1

zlz
H
l (3.6)

where zl denotes the total received signal in the lth secondary cell, and the condition L−1 ≥
2J is needed to ensure robustness. If c follows a non-Gaussian distribution, the SCM is

neither a consistent nor robust estimator and other estimators should be used. More details

on these estimators will be presented shortly.
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3.3 Spherical Invariant Random Process (SIRP) Clutter Model

The clutter vector is modeled as [11]

c =
Nc−1∑
i=0

κiei (3.7)

where Nc is the number of clutter patches, κi is the complex amplitude of the ith patch and

ei ∈ CJ is the corresponding steering vector, which admits the form of Eq. (2.9). We are

concerned with coherent processing of the received signal vector z in Eq. (2.11), where both

the real and imaginary parts (i.e., in-phase and quadrature components) of each vector entry

are considered. In this regard, it is essential to employ a probabilistic model of the clutter

vector c in Eq. (3.7) that takes into account the joint statistics of the real and imaginary

parts of all its entries. In particular, for proper clutter modeling, both the spatio-temporal

correlation properties and probability density function (PDF) of the clutter envelope should

comply with experimental data. Under the SIRP model, which meets these requirements [92],

the clutter vector is modeled as a product of two independent components, that is: a zero-

mean complex Gaussian vector, known as the speckle component, and a positive random

variable, known as the texture component and assumed to vary slowly across range cells.

Therefore, the clutter vector in Eq. (3.7) can be represented as

c = vy, (3.8)

where y ∈ CJ follows a complex Gaussian distribution CN (0,Σ) with zero mean and co-

variance matrix Σ, and v is a positive random variable. By choosing the proper PDF of the

texture component v in the SIRP model Eq. (3.8), denoted as fV (v) in the sequel, we can

obtain different non-Gaussian clutter distributions, also known as the compound Gaussian

distributions, while the particular choice v = 1 (with probability one) yields the Gaussian

clutter model. Moreover, through a suitable choice of the covariance matrix Σ of the Gaus-

sian speckle vector y, the desired spatio-temporal correlation properties can be fulfilled. The

PDF of c can be expressed as [79]:

fc(c) = (2π)−Jdet(Σ)−
1
2h2J(cHΣ−1c) (3.9)
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where the function h2J(x) is defined as

h2J(x) =

∫ ∞
0

v−J exp(− x

v2
)fV (v)dv. (3.10)

The covariance matrix of the SIRP vector c is given by Rc = E(v2) Σ.

Other models for compound Gaussian clutter use zero memory nonlinear (ZMNL) trans-

formations. These methods apply nonlinear transformations on sequences of coherent Gaus-

sian samples that result in the desired marginal PDF of the clutter envelope. However, due

to the nonlinear transformations, the covariance matrix of the resulting non-Gaussian clutter

is related to that of the original Gaussian samples in an intricate manner, which makes it

difficult to obtain a desired covariance matrix. Moreover, these methods do not guarantee

that the resulting covariance matrix is nonnegative definite [92]. On the contrary, the SIRP

model in Eq. (3.9) allows to control both the envelope PDF and the covariance matrix of the

generated clutter.

One of the most common clutter distributions is the K-distribution, which provides a

good fit to the envelope of the data acquired from different environments. The K-distribution

of the clutter envelope is given by [79]

f(r) =
2δ

Γ(α)

(
δr

2

)α
Kα−1(δr), (3.11)

where α > 0 and δ > 0 are the shape and scale parameters, respectively, Γ(·) is the Gamma

function, and Kα(·) is the modified Bessel function of the second kind of order α. In order

to arrive at the K-distribution for the clutter envelope using the SIRP model, the PDF of

the texture component fV (v) should be selected as [79]

fV (v) =
2δ

Γ(α)2α
(δv)2α−1 exp(−δ2v2). (3.12)

In this case, the second moment of v is given by E(v2) = 2α/δ2. For the detailed simulation

procedures to generate coherent K-distribution clutter with the desired covariance matrix,

the reader can refer to [93].
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3.4 The non-homogeneity Detector (NHD)

To calculate the adaptive weight vector w in Eq. (3.3) for a given CUT within the available

L range cells, one needs to estimate the covariance matrix of this CUT from the adjacent

L1 = L− 1 secondary cells zl, where l ∈ L = {1, · · · , L1}, that together form the secondary

sample matrix Z = [z1, · · · , zL1 ] ∈ CJ×L1 . To censor non-homogeneous secondary cells from

the estimation, the NHD decides if a secondary cell, say zk for k ∈ L, is non-homogeneous

with respect to the remaining L2 = L1 − 1 secondary cells zl for l ∈ L − {k}, which

together form a matrix Zk (obtained from Z by removing the column zk). The NHD is

basically a STAP detector that sequentially processes the L1 secondary cells with one of them,

zk, temporarily considered as the CUT (also termed secondary CUT), while the remaining

secondary cells Zk are used to estimate the covariance matrix of zk.

A basic test employs the general inner product (GIP), which is equivalent to the square

of the Mahalanobis distance [78], i.e.,

ΛGIP = (zk − µ̂)HR̂−1(zk − µ̂)
H1

≷
H0

η1 (3.13)

where µ̂ ∈ CJ×1 is the sample mean of zk, R̂ ∈ CJ×J is its estimated covariance matrix,

and η1 is a threshold that is determined based on the required probability of false alarm

PF. In this test, H0 is the null hypothesis that zk is homogeneous with respect to Zk,

while H1 is the alternative hypothesis. However, the GIP test is not robust in non-Gaussian

clutter environment as reported in [79], where a more robust detector, namely the normalized

adaptive matched filter (NAMF), is proposed as

ΛNAMF =
|ŵHzk|2

(ŵHR̂ŵ)(zHk R̂−1zk)

=
|sHR̂−1zk|2

(sHR̂−1s)(zHk R̂−1zk)

H1

≷
H0

η2 (3.14)

where ŵ = gR̂−1s. For this detector, PF has been derived in [79] assuming Gaussian clutter,

but it is not tractable analytically for non-Gaussian SIRP clutter. In the latter case, Monte

Carlo simulations are used to set the threshold.

While the SCM in Eq. (3.6) is the ML estimator in the case of Gaussian clutter, the ML
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estimator of the covariance matrix in the case of compound Gaussian clutter cannot generally

be obtained in analytical form. Tyler introduced a generalization of the ML estimator for

elliptical distributions (which include Gaussian along with other distributions) that can be

expressed as the solution to the nonlinear equation [94]

R̂ =
J

L1

L1∑
l=1
l 6=k

zlz
H
l

zHl R̂−1zl
(3.15)

However, besides the difficulties posed by solving Eq. (3.15) due to the high computational

cost, it needs a large number of secondary cells L1 for estimator accuracy [79]. An approxi-

mation to the ML estimator for the covariance matrix of SIRP clutter is given by [79]

R̂SIRP =
1

L1

L1∑
l=1
l 6=k

ζlzlz
H
l , (3.16)

where

ζl =
h2J+2(zHl R̂−1

SIRPzl)

h2J(zHl R̂−1
SIRPzl)

(3.17)

where the function h2J(·) is defined in Eq. (3.10). The scalar ζl cannot be expressed in a

closed form, since both sides of Eq. (3.16) contain R̂SIRP, but it can be found by the iterative

expectation-maximization (EM) algorithm [95]. However, the EM algorithm converges slowly

[79], especially for low values of the shape parameter α introduced in Eq. (3.11), which are

common for many clutter environments. Moreover, the estimator in Eq. (3.16) needs a priori

knowledge of the clutter distribution. Another approximation to the ML covariance estimator

in case of non-Gaussian clutter is the iterative normalized sample covariance matrix (NSCM)

that is obtained through the following recursive formula [90]

R̂
(t+1)
NSCM =

J

L1

L1∑
l=1
l 6=k

<(zl)<(zTl )

<(zTl )(R̂
(t)
NSCM)−1<(zl)

(3.18)
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where t denotes the iteration index. The computation is initialized with the estimator [90]

R̂
(0)
NSCM =

J

L1

L1∑
l=1
l 6=k

<(zl)<(zTl )

<(zTl )<(zl)
(3.19)

Although it is also based on iterative procedures, its rate of convergence is faster than the

EM-based algorithm mentioned above for the solution of Eq. (3.16) and Eq. (3.17), and it

has been reported to converge after only four iterations [90]. Moreover, the NSCM shows a

detection performance that is very close to that of the EM-based estimator [96]. Henceforth,

whenever we use R̂ we mean R̂NSCM.

3.5 The Proposed NHD

In this section, we first introduce the projection depth function and use it to provide

covariance-free interpretations of the GIP and NAMF test statistics. We then introduce

a covariance-free NHD that employs a novel nonparametric (distribution-free) test statistic

based on the projection depth function and extend it to the case of correlated clutter.

3.5.1 Projection depth function

Let z ∈ CJ be a random vector with joint cumulative distribution function F (z). As we

discussed in 2.6, a depth function is a random scalar D(z, F ) ∈ [0, 1], defined as a function

of z and taking into account the features of its distribution F . Ideally, the value of D(z, F )

provides an inverse measure of ”distance” from a central point (such as the median or the

mean of the distribution F ), which can used for the center-outward ordering of observations

of vector z [42]. Based on this ordering, outliers can be detected when their distance from

the center is larger than a certain threshold. Hence, the concepts of depth function and

outliers are related. Specifically, we can define a measure of outlyingness as the function [54]

O(z, F ) =
1

D(z, F )
− 1 (3.20)

Let µ(·) and σ(·) be univariate location and scale measures, respectively. Then, the
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projection-based outlyingness of z is [54]

O(z, F ) = sup
u∈CJ ,‖u‖=1

|uHz− µ(Fu)|
σ(Fu)

(3.21)

where Fu is the cumulative distribution function (CDF) of uHz. In practice, the sample

version of Eq. (3.21) is found by replacing Fu by its empirical version F̂u.

The projection-based outlyingness has a higher breakdown value in comparison to other

types of outlyingness functions [54], which motivates its use in this work. To understand

the concept of the breakdown value, consider the estimation of a scalar parameter θ from n

observations Xn = {x1, ..., xn}, with Tθ(Xn) denoting the resulting estimator. Let us assume

that out of these observations, m are replaced by arbitrary values (outliers), resulting in the

contaminated sample set Xn,m. The estimator Tθ(Xn,m) is calculated for the same parameter

θ, but from the contaminated set Xn,m. The finite sample breakdown value of the estimator

Tθ(·) is the smallest ratio of contamination m/n for which the distance between Tθ(Xn) and

Tθ(Xn,m) can become arbitrarily large for certain choices of outliers [97]. For example, the

sample mean has a breakdown value of 1/n, which means that a single outlier in the sample

data can affect the sample mean estimator. However, the breakdown value of the sample

median is 1/2, which means that as long as the outliers are less than half of the sample size,

the estimator value is still unaffected.

The projection-based outlyingness function in Eq. (3.21) is a robust alternative to the

Mahalanobis distance and, hence, to the GIP. A nonparametric GIP NHD detector was

introduced in [87] for Gaussian clutter using the outlyingness function in Eq. (3.21) that

evades the high computational burden of estimating the covariance matrix and its inverse

with increasing dimensions of the range cells. We refer to it as the projection depth GIP (PD-

GIP). However, the generation of the projection vectors u to approximate the supremum

operation requires calculating the median of the secondary cells in Zk for each zk; besides,

the performance of the original GIP detector in case of non-Gaussian clutter environment

is not robust [79]. Below, we propose a covariance-free detector based on Eq. (3.21) that

is approximately equivalent to the NAMF detector in its robust performance, while at the

same time sharing the nonparametric character of Eq. (3.21) and its lower computational

complexity.
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3.5.2 Covariance-free reformulation of GIP and NAMF

We begin by stating a proposition about the equivalence of the outlyingness function in

Eq. (3.21) to the GIP in Eq. (3.13). This equivalence, which was demonstrated in [98] for

the case of real-valued data in image processing applications, is extended here to complex-

valued radar observations, as needed to comply with the case of coherent clutter model under

consideration in this chapter.

Proposition 3.1. Let Z = [z1, · · · , zL1 ] ∈ CJ×L1 be a secondary sample matrix. For any tar-

get steering vector s as in Eq. (2.9) and an arbitrary secondary cell zk, where k ∈ {1, · · · , L1},
is associated with an estimated covariance matrix R̂ and mean vector µ̂, we have

sup
‖u‖=1

( |uHzk − µ̂(uHZk)|
σ̂(uHZk)

)2

= (zk − µ̂)H R̂−1 (zk − µ̂) (3.22)

and

sup
‖u‖=1

( |uHs|
σ̂(uHZk)

)2

= sHR̂−1s (3.23)

where µ̂(uHZk), σ̂(uHZk) are the sample mean and standard deviation (SD) of uHZk, re-

spectively, and Zk denotes the secondary cells after excluding zk.

In Eq. (3.22) and Eq. (3.23), the supremum operation is taken over all unit-norm vectors

u ∈ CJ . The proof of Proposition 1 is given in Appendix A. We note that the denominator of

the test statistic of the NAMF detector in Eq. (3.14) can be expressed using the outlyingness

function in Eq. (3.21) as shown in Appendix A, specifically Eq. (A.4) and Eq. (A.6). However,

the numerator of Eq. (3.14), sHR̂−1zk, cannot be directly expressed in terms of Eq. (3.21). To

circumvent this difficulty, we suggest replacing zk in the numerator of Eq. (3.14) by (sHzk)s

to obtain

|sHR̂−1(sHzk)s|2= |sHzk|2(sHR̂−1s)2 (3.24)

The following proposition states that, in case of a dominant target, the expression in

Eq. (3.24) is approximately equivalent to |sHR̂−1zk|2, which is the numerator of Eq. (3.14).

Proposition 3.2. Let s, zk, and R̂ be as defined in Proposition 3.1, then (sHzk)s
HR̂−1s

has the same target’s signal component as sHR̂−1zk.

The proof of this proposition is provided in Appendix B. The next proposition introduces



3 Covariance-Free Nonparametric Nonhomogeneity Detector 46

a modified test statistic, which approximates the original NAMF test statistic in Eq. (3.14)

in terms of the projection-based outlyingness in Eq. (3.21).

Proposition 3.3. Let s, zk, Zk, and R̂ be as defined in Proposition 3.1. Then

Λ′NAMF ,
|sHR̂−1(sHzk)s|2

(sHR̂−1s)(zHk R̂−1zk)

=

|sHzk|2 sup
‖u‖=1

(
|uHs|

σ̂(uHZk)

)2

sup
‖u‖=1

(
|uHzk|
σ̂(uHZk)

)2 (3.25)

The proof of this proposition is provided in Appendix C. As observed from Eq. (3.25),

the test statistic Λ′NAMF is covariance-free. Moreover, besides its approximate equivalence

to the NAMF test in Eq. (3.14) as shown in Proposition 3.2, it inherits the nonparametric

characteristic of the projection-based outlyingness.

3.5.3 Robust, Covariance-free, and nonparametric NHD

Although the projection-based outlyingness in Eq. (3.21) does not dictate a specific scale

measure, the median absolute deviation (MAD) has been widely used in robust statistics to

detect outliers due to its robustness with respect to heavy-tailed distributions and higher

breakdown value compared to the SD [99].

For the real-valued random sample data Xn = [x1, · · · , xn] with order statistics x(1) ≤
· · · ≤ x(n), the sample median med(Xn) and sample median absolute deviation mad(Xn) are

calculated as [100]

med(Xn) =


x((n+1)/2) n is odd

0.5(x(n/2) + x((n/2)+1)) n is even

(3.26)

and

mad(Xn) = med(|xi −med(Xn)|), i = 1, · · · , n (3.27)

respectively. The population MAD of the random variable X MAD(X) is related to its
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population SD σ(X) as [101]

MAD(X) = kfσ(X) (3.28)

where kf is a positive constant to achieve consistency with the scale parameter and its value

depends on the population CDF of X. For the standard normal distribution, kf ≈ 0.6745

[99]. In the absence of outliers, the sample versions mad(Xn) and σ̂(Xn) are related, approx-

imately, by the same constant kf even with a sample size as low as 10 [99].

The breakdown value of the MAD is 0.5 [101], which is the best possible breakdown

value, compared to a value of 0 for the SD [97]. Therefore, the MAD is more robust than the

SD, especially for heavy-tailed clutter distributions as the K-distribution. Since heavy-tailed

distributions tend to have many outliers with very high values, the MAD constitutes a better

estimate for the scale parameter than the SD and leads to a lower threshold for the same

false alarm rate and, consequently, a better detection.

By employing the mad(uHZk) as a robust scale measure instead of σ̂(uHZk) in Eq. (3.25)

we obtain

Λ′NAMF ≈
|sHzk|2 sup

‖u‖=1

(
kf |uHs|

mad(uHZk)

)2

sup
‖u‖=1

(
kf |uHzk|

mad(uHZk)

)2 (3.29)

where, for the proper complex signal vectors Zk, we have according to Eq. (3.4)

mad(uHZk) = 2mad(<(uHZk)) = 2mad(=(uHZk)) (3.30)

Under the SIRP model considered in this chapter, all the CDFs Fu of the projections of

a given SIRP vector are the same [91]; this means that the value of kf , that is determined

based on Fu, does not depend on the projection vector u. To verify the independence of

kf from the projection vector u for the considered signal vector, a secondary sample matrix

Z ∈ CJ×L of uncorrelated clutter vectors is simulated with the dimension of the secondary

cells fixed at J = 20, while L/J changes from 2 to 10. For each sample size L, we perform 104

Monte Carlo simulation trials. For each trial, a sample of kf from different 1000 projection

vectors u is calculated using Eq. (3.28), but using the sample median absolute deviation

mad(uHZk) as defined in Eq. (3.27) in place of MAD(uHZk). The average relative standard
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deviation (RSD) of the kf sample is

RSD(kf ) =
σ̂(kf )

µ̂(kf )
(3.31)

where σ̂(kf ) and µ̂(kf ) are the sample SD and mean of kf , respectively, averaged over 104

trials. As Fig. 3.1 shows, the value of kf exhibits a low variation for both of the considered

distributions at all considered values of L. This also shows that Eq. (3.28) holds also for

mad(uHZk) even for a low sample size as shown in [99].

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5
10-3

Gaussian clutter
K-distribution cluter

Figure 3.1 The relative SD of kf at different number of samples (secondary
cells) with J = 20

With the agreement of the presented simulation results with the theoretical analysis

in [91, 99], the constant kf can be taken out of the supremum in Eq. (3.29). Therefore, the

proposed test (ΛPD) based on the NAMF and projection depth (PD) outlyingness is

ΛPD-NAMF ,

|sHzk|2 sup
‖u‖=1

(
|uHs|

mad(uHZk)

)2

sup
‖u‖=1

(
|uHzk|

mad(uHZk)

)2

H1

≷
H0

η3 (3.32)
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We call the detector based on the test statistic in Eq. (3.32) as the PD-NAMF. Theoreti-

cally, implementing the supremum requires calculating the projections of an infinite number

of vectors that cover the unit hypersphere in J-dimensional space. In practice, as shown

in [98, 102] for different applications, the supremum can be approximated by taking the

maximum magnitude of a finite number (Q) of projections of zk or s on randomly generated

vectors over this hypersphere. As suggested in [103], each of these vectors is obtained by

first generating J independent complex Gaussian variates ui ∼ CN (0, 1), 1 ≤ i ≤ J with

zero mean and unit variance to form the vector u = [u1, · · · , uJ ], and then normalizing u

with respect to ‖u‖2. As the steps above show, the generation method used in this work is

totally independent of the steering vector s or the CUT zk, hence it is performed once and

the obtained vectors are stored to be used for all range cells and any steering vector s. This

off-line method of generation of the projection vectors is different from that used in [87] for

the PD-GIP, whose test statistic is on the basic form of the projection-based outlyingness

function in Eq. (3.21). In [87], the projection vectors were recomputed for each CUT from

the secondary cells Z. The discussion on the choice of Q is left for Section 3.6.

3.5.4 Correlated Clutter

The correlation matrix of the clutter signal vector c in Eq. (3.7) is a Kronecker product of

the temporal (i.e., between pulses) and spatial (i.e., between antenna elements) covariance

matrices Ψt and Ψs, respectively, that is [104]

Ψ = Ψt ⊗Ψs (3.33)

The spatial correlation of the clutter depends on the inter-element spacing of the antenna

array as in [105,106]. It can be approximated as

Ψs =
[
ρ|i−j|s

]
, 1 ≤ i, j ≤ N (3.34)

where ρs is the one-lag spatial correlation coefficient. Based on experimental measurements

for different clutter environments, e.g., [107, 108], the temporal covariance matrix of the

clutter can be expressed similarly as

Ψt =
[
ρ
|i−j|
t

]
, 1 ≤ i, j ≤M (3.35)
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where ρt is the one-lag temporal correlation coefficient.

In practice, the sample version of the projection-based outlyingness function O(z, F̂ ) is

used rather than the population version O(z, F ). The former is obtained by replacing Fu in

Eq. (3.21) with its empirical version F̂u. Based on [109, Theorem B.1], we have

sup
z
|O(z, F̂ )−O(z, F )|= o(1) a.s., (3.36)

if

sup
‖u‖=1

|µ(F̂u)− µ(Fu)|= o(1) a.s., (3.37)

and

sup
‖u‖=1

|σ(F̂u)− σ(Fu)|= o(1) a.s. (3.38)

In the case of (µ, σ) =(med, mad), as assumed in this work, Zuo has proven that equa-

tions (3.37) and (3.38) hold for elliptical distributions under the assumption of F̂u →d Fu,

where →d denotes convergence in distribution [54, Remark 2.4]. However, this assumption

has been made assuming the samples drawn from Fu are iid, which is not true in the case of

correlated clutter.

Therefore, we need to discuss the convergence of the empirical CDF to the population

CDF for correlated data, which is addressed in [110, Theorem 1]. Let {xi}ni=1, be random

univariate samples that follow a joint normal distribution with correlation matrix Φ. If

{xi}ni=1 are not weakly correlated1, then E[Ĝ − G]2 does not tend to 0 as n → ∞. Hence,

O(z, F̂ ) does not converge to O(z, F̂ ) and, consequently, the test in Eq. (3.32) may deviate

from the true test value. Therefore, given the strong correlation shown by the available

experimental data for different clutter environments [107,108], the detection performance of

the test in such environments may be degraded.

To handle this problem, we propose decorrelating Z before applying Eq. (3.32). The

1As a rule of thumb [111], the data {xi}ni=1 is said to be weakly-correlated if its correlation coefficient is
≤ 0.4. For a more formal definition of weak correlation, define the average `1-norm of the correlation matrix

Φ ∈ RJ×J of the data {xi}ni=1 as ‖Φ‖(J)1 = 1
J2

∑J
i,j=1|φij |. If ‖Φ‖(J)1 → 0, then {xi}ni=1 are weakly correlated.

Otherwise it is called strongly correlated [110, Definition 1].
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decorrelated secondary cells are

Zd = Ψ̂
−1/2

Z (3.39)

where Ψ̂ is an estimate of the correlation matrix of Z. To keep the nonparametric charac-

teristic of the PD-NAMF, we use a nonparametric correlation estimator.

There are two prevalent nonparametric rank correlation coefficients, namely, the Kendall’s

and Spearman correlation coefficients. Compared to the Spearman coefficient, the Kendall’s

has a lower bias, shows better accuracy at lower number of samples, and has a lower mean

square error (MSE) for heavily correlated data [112]. However, calculating the Spearman

coefficient has a lower computation complexity than that of the Kendall coefficient. Gener-

ally, the Kendall correlation matrix estimator of the E-dimensional vector x calculated from

the sample data X ∈ RE×D is given by [113]

ψ̂Kjk =
2

D(D − 1)

∑
i<i′

sign(xji − xji′ )sign(xki − xki′ ) (3.40)

where ψ̂Kjk is the (j, k)-th entry of Ψ̂
K

, 1 ≤ j, k ≤ E, 1 ≤ i ≤ D, and 2 ≤ i′ ≤ D. The

Spearman correlation matrix estimator calculated from the same sample data is [113]

ψ̂Sjk =

∑D
i=1

(
o(xji)− D̄

) (
o(xki)− D̄

)√∑D
i=1

(
o(xji)− D̄

)2∑L1

i=1

(
o(xki)− D̄

)2
(3.41)

where D̄ = D+1
2

and o(xki) denotes the order of xki within xk1, ..., xkD.

The correlation estimators in Eq. (3.40) and Eq. (3.41) cannot be directly applied to the

complex-valued secondary cells assumed in this chapter. Based on Eq. (3.4), the correlation

matrix Ψ̂ ∈ CMN×MN is given by

Ψ̂ = 2Ψ̂zRzR
= 2Ψ̂zIzI

(3.42)

where Ψ̂zRzR
and Ψ̂zIzI

are the estimated autocorrelation of <(z) and =(z), respectively.

Equation Eq. (3.42) is applied to both Kendall and Spearman correlation matrix estimators

Ψ̂
K

and Ψ̂
S

, respectively.

Remark 1: It should be emphasized that the estimation of the correlation matrix Ψ is

not the same as estimating the covariance matrix R. The estimation of Ψ can be seen as a
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step to estimate R; a step that should be followed by estimating the SDs of the components

of zk. To illustrate this, the correlation matrix Ψ = [ψij] is related to the covariance matrix

R = [rij] as

rij = σiσjψij, 1 ≤ i, j ≤MN (3.43)

where σi, σj are the SDs of the i-th and j-th components of zk, respectively. The step of

estimating the SDs of zk’s components is cumbersome for non-Gaussian clutter models in

addition to the need to calibrate the resulting covariance matrix by solving multiple opti-

mization problems as shown in [114]. Under the proposed algorithm, it suffices to estimate

Ψ; avoiding the complexity of estimating R.

Remark 2: In the case of Gaussian distributed data, both the Spearman and Kendall

coefficient are related to the linear Pearson correlation coefficient ψ̂Pjk by [113]

ψ̂Pjk = sin
(π

2
ψ̂Kjk

)
= 2 sin

(π
6
ψ̂Sjk

)
. (3.44)

Nonetheless, we do not use the transformed coefficients for two reasons. The first is that

they are derived for the Gaussian distributed data, while we do not make any assumptions

about the distribution of the received signal vector. The second is that the transformations

in Eq. (3.44) do not guarantee the positive semidefiniteness of the estimated matrices [115],

in contrast to the estimators in Eq. (3.40) and Eq. (3.41).

The flow of the PD-NAMF with both of Kendall and Spearman decorrelation matrices

is shown below.
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Algorithm 1 Using Kendall

Input: Z,η3

Calculate Ψ̂
K

Z← (Ψ̂
K

)
−1/2

Z

Generate U = [u1, · · · ,uQ]

for k = 1 to L do

Perform the proposed test

as Eq. (3.32)

end for

Algorithm 2 Using Spearman

Input: Z,η3

Generate U = [u1, · · · ,uQ]

for k = 1 toL do

Zk ← [zl], l ∈ L − {k}

Calculate Ψ̂
S

from Zk

Zk ← (Ψ̂
S

)
−1/2

Zk

Perform the proposed test

as Eq. (3.32)

end for

3.6 Performance Assessment

In this section, the performance of the PD-NAMF in Eq. (3.32) is compared to that of the

NAMF detector in Eq. (3.14) using Monte Carlo simulations. To justify the robustness of the

PD-NAMF, we evaluate its performance with different clutter distributions and signal config-

urations. Moreover, we study the different choices for the algorithm parameters, specifically,

the type of the correlation estimator used and the minimum required number of projections.

Finally, we investigate the complexity and the execution time of the PD-NAMF compared

to the NAMF detector for different design parameters.

3.6.1 Simulation Parameters

The simulated radar signal has a fixed dimension J = 16 and L1 is either 65 or 33 cells. The

non-homogeneity detector is applied on a sequential basis on each secondary cell where R̂

and mad(uHZk) are estimated from the remaining L2 = 64 or 32 cells. An interfering target

is injected in a secondary CUT, representing a non-homogeneous cell, with a normalized

Doppler frequency fd = 0.3 and azimuth angle θt = 35°.

The Kendall correlation matrix Ψ̂
K

is estimated once from all the L1 secondary cells

Z including the secondary CUT zk, i.e., it is not recalculated for each zk. However, the

Spearman correlation matrix Ψ̂
S

, due to its lower immunity to outliers, is calculated for each
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secondary CUT zk from the remaining secondary cells. If the secondary CUT is included in

the calculations of Ψ̂
S

, a self-nulling effect appears at the output of the detector, especially

at low number of secondary cells and/or high interfering target’s power.

Regarding the clutter vectors, they are generated as proper complex SIRP vectors with

independent quadrature and in-phase components. For the clutter’s envelope distribution,

we consider two extreme cases: K-distributed clutter with α = 0.1, which represents heavy-

tailed spiky clutter, and Gaussian clutter. For the K-distributed clutter, δ is allowed to be

randomly and independently changed from a range cell to another as indicated by [86].

As for the value of δ, [116] gives measured values between (0, 1], which is the range

of values considered in most of the relevant works in the literature, where only the shape

parameter is considered to have an impact on the detection performance [79]. However, [117]

provides experimental data showing that 1 ≤ δ ≤ 2. Therefore, we examine the performance

of both the NAMF and the PD-NAMF in K-distributed clutter with the foregoing two cases

of δ for each range cell: δ ∼ U(0, 1], as a default case, and δ ∼ U [1, 2], where U denotes

the uniform distribution. The average clutter-to-noise ratio (CNR) is assumed to be 20 dB.

The one-lag spatial and temporal correlation coefficients of the clutter in equations (3.34)

and (3.35) are ρs = ρt = 0.99 [106,108], unless other values are specified.

The projection vectors are generated randomly over the J-dimensional unit hypersphere

as defined in Proposition 3.1. The default number of projections is Q = 4J , however, we

consider other values for Q later in this section. For all detection performance simulations,

PF is set to 0.01. The probability of detection PD is evaluated versus the input signal-to-noise

(SNR) of the interfering target using Monte Carlo simulation with 105 trials.

3.6.2 Results

3.6.2.1 The Low Dimensional Case (J/L2 = 0.25)

The STAP radar signal is considered low dimensional when J ≤ 0.5L2. Fig. 3.2 shows the

detection performance of the PD-NAMF and the NAMF detectors in K-distributed clutter

with α = 0.1 and δ ∼ U(0, 1]. We can observe that the detection performance of the PD-

NAMF is comparable to that of the NAMF detector with a maximum loss in PD of 0.051

in the case of Ψ̂
S

. For SNR > −7dB, it is also observed that using Ψ̂
K

provides a relative

improvement over Ψ̂
S

, narrowing the loss in PD relative to the NAMF detector to 0.036. The

difference in the performance between the NAMF detector and the PD-NAMF is getting
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Figure 3.2 Detection performance in K-distributed clutter (α = 0.1, δ ∼
U(0, 1], J = 16, L2 = 64)
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Figure 3.3 Detection performance in Gaussian clutter (J = 16, L2 = 64)
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narrower for SNR values beyond 5 dB and below -6 dB. While the observed slight advantage

of the NAMF over the PD-NAMF is not common among all the cases studied in this chapter,

it also comes with the cost of much higher complexity, as we show shortly. In Fig. 3.2, we can

also point out that the decorrelation is not only dictated by the theoretical need to achieve

the Fisher-consistency of mad(uHZk), but it also has a significant effect on the performance

of the PD-NAMF.

The performance in Gaussian distributed clutter is shown in Fig. 3.3. Compared to the

NAMF detector, the PD-NAMF has a maximum loss in PD of 0.051 with both Ψ̂
S

and Ψ̂
K

.

Moreover, the performance of the PD-NAMF with Ψ̂
S

is similar to, or slightly better than

that with Ψ̂
K

.

To validate our claim of the robustness of the PD-NAMF using the MAD, we replaced

MAD by SD in Eq. (3.29) and we evaluated the resulting detection performance in both

Gaussian and K-distributed clutter. The results are shown in Fig. 3.4. As we can observe,

the performance of the PD-NAMF using the SD is almost equivalent to that using the MAD

in the case of the Gaussian distribution for both Spearman Ψ̂
S

and Kendall Ψ̂
K

decorrelation

matrices. This is attributed to the equivalence of the SD and MAD, up to a constant

kf , in the case of the Gaussian distribution as we indicate in Eq. (3.28), which is based

on [99]. In the case of the K-distribution, however, the performance of the PD-NAMF with

both Ψ̂
S

and Ψ̂
K

degrades when SD is used in place of MAD. This is consistent with the

theoretical reasoning provided in Subsection 3.5.3. We can also notice that when using SD,

the PD-NAMF withΨ̂
K

is more robust than the one with Ψ̂
K

, which is ascribed to the higher

robustness of the former in the presence of outliers as shown in [118].

It is important to demonstrate the performance of the original GIP and the PD-GIP

detectors compared to the PD-NAMF in simulation. Interestingly, to the best of our knowl-

edge, the detection performance of GIP in correlated compound Gaussian clutter has not

been investigated in the open literature. Furthermore, the detection performance of the

PD-GIP has not yet been investigated. For a fair comparison between the PD-GIP and the

proposed PD-NAMF, we use a modified version of PD-GIP that differs from the one origi-

nally proposed in [87] in the following ways: the secondary cells are decorrelated using Ψ̂
K

,

and the projection vectors are generated in the same way as in the proposed PD-NAMF. To

make this point clear, we refer to this detector as the “modified PD-GIP.” Figs 3.5 and 3.6

show the performance of GIP, PD-GIP, modified PD-GIP, and PD-NAMF for both Gaussian

and K-distributed clutter, respectively. We first note from the figure that the modifications
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Figure 3.4 Detection performance in Gaussian and K-distributed clutter for
PD-NAMF with MAD and SD (J = 16, L2 = 64)

made to the PD-GIP contribute to improve its performance, as observed in the degraded

performance of the original PD-GIP. Furthermore, both the GIP and the modified PD-GIP

show a performance degradation in the case of Gaussian clutter of approximately 5dB and

7dB compared to the proposed PD-NAMF, respectively. However, this degradation is much

greater in the case of K-distributed clutter. These results are consistent with the false alarm

results for GIP presented in [79].

The effect of the scale parameter on the detection performance of both detectors can be

observed in Fig. 3.7. The PD-NAMF performs approximately the same with both Ψ̂
S

and Ψ̂
K

.

The maximum detection loss by the PD-NAMF relative to NAMF is 0.034. In general, the

detection performance of both the PD-NAMF and NAMF detectors are considerably affected

by the change in the scale parameter of the clutter. In addition to the typical choice of 0.99

for both ρs and ρt, we consider the case of a low value ρs = ρt = 0.2 for these coefficients.

The results are also shown in Fig. 3.7. The lower correlation coefficients of the clutter lead

to a degraded detection performance which coincides with the results in [119, Fig. 6].
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Figure 3.5 Detection performance in Gaussian clutter for GIP, modified PD-
GIP, and PD-NAMF (J = 16, L2 = 64)

3.6.2.2 The Higher Dimensional Case (J/L2 = 0.5)

The performance of the PD-NAMF is investigated at a higher dimensional case, where L2 =

32 and J = 16. As we notice in Fig. 3.8, in the presence of K-distributed clutter, the PD-

NAMF with Ψ̂
K

provides a relative advantage over the NAMF at SNR< −6 dB, with a

maximum increase in PD of 0.06. Beyond this point, the maximum loss in detection of the

PD-NAMF with Ψ̂
K

relative to NAMF detector is 0.03. With Ψ̂
S

the PD-NAMF shows a

maximum loss in PD of 0.061 relative to the NAMF for −10 dB ≤ SNR ≤ 0 dB. It is

noteworthy that the overall performance of both detectors is relatively degraded by lowering

L2/J as we observe by comparing the performance of each detector in Fig. 3.2 with its

counterpart in Fig. 3.8.

As Fig. 3.9 depicts for the Gaussian clutter, PD of the PD-NAMF with Ψ̂
K

is higher than

that of the NAMF with a maximum difference of 0.16. It is noteworthy that this improvement

in PD provided by the PD-NAMF is higher than any loss it shows relative to the NAMF

in the previous cases. When the PD-NAMF uses Ψ̂
S

, it shows a maximum improvement of

0.014 over the NAMF. Beyond the crossover point at SNR= −6 dB, the PD-NAMF with
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Figure 3.6 Detection performance in K-distributed clutter for GIP, modified
PD-GIP, and PD-NAMF (J = 16, L2 = 64)

Ψ̂
S

shows a comparable detection performance to the NAMF with a maximum loss in PD of

0.041.

To summarize, using Ψ̂
K

with the PD-NAMF improves the detection performance over

that of the NAMF detector in case of high dimensional signals at all SNR values in Gaussian

clutter and at lower SNR values for K-distributed clutter. This is explained by the robustness

of the Kendall’s coefficient in small sample conditions as mentioned before.

3.6.2.3 Number of Projections

Theoretically, the higher the number of random projections Q, the more accurate Eq. (3.22)

holds [98]. However, in practice, the used number of projections should be as small as

possible for fast computations. Unfortunately, there is no analytical method to determine

the minimum number of projections required for Eq. (3.22) to hold at a given approximation

level, consequently, simulations are used to determine this value as in [98, 102]. While

the simulations in these references are concerned with the convergence of Eq. (3.22), the

simulation in this chapter is concerned with maximizing PD at a given level of false alarm.
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Figure 3.7 Detection performance in K-distributed clutter (α = 0.1, δ ∼
U [1, 2] or U(0, 1], J = 16, L2 = 64, ρs = ρt = 0.99 or 0.2)

Fig. 3.10 illustrates the power of a secondary CUT with homogeneous interference (clutter

and noise) or an interfering target’s signal power at the output of the PD-NAMF with Ψ̂
K

and

Ψ̂
S

, as a function of the ratio Q/J , averaged over 105 trials. The powers of both interference

and target signals of the PD-NAMF, with both correlation estimators, are normalized with

respect to those of the NAMF detectors, respectively. The simulated clutter envelope follows

the K-distribution and the radar signal is low-dimensional (J = L/4). As shown in Fig. 3.10,

using Ψ̂
K

results in a lower interference power level at the output of the PD-NAMF than

Ψ̂
S

, which explains its superior performance relative to the latter. The interference level of

both of the correlation estimators decreases as Q increases up to Q = 4J , beyond this point

the interference level is almost constant with Ψ̂
S

while it decreases slightly using Ψ̂
K

. In

general, it is also obvious that the interference power at the output of the PD-NAMF for

Ψ̂
K

and Ψ̂
S

is lower than that at the output of the NAMF detector. This demonstrates the

validity of the proof in Appendix B. Fig. 3.10 also reveals that Q has a negligible effect on

the target signal level at the output of the PD-NAMF for both decorrelators with a relative

higher target’s signal level for Ψ̂
K

than that of Ψ̂
S

.
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Figure 3.8 Detection performance in K-distributed clutter (α = 0.1, δ ∼
U(0, 1], J = 16, L2 = 32)

The final choice of the minimum required Q is based on the detection performance of the

PD-NAMF as depicted in Fig. 3.11, where Ψ̂
S

is used in the presence of K-distributed clutter

(δ ∼ U (0, 1]) and J = L2/4. We can see that the increase of Q beyond 4J has a negligible

impact on the detection performance and for most values of SNR there is no difference in

the performance. When Q is reduced to 2J , PD decreases slightly with a maximum loss of

0.022. The same is shown for Ψ̂
K

in Fig. 3.12, but with a slight improvement with Q = 10J

at lower SNR values even over the NAMF. To investigate the dependence of Q on the clutter

distribution, we performed additional simulations for different values of Q, but in presence

of Gaussian clutter. As shown in Figs 3.13 and 3.14, for both Ψ̂
K

and Ψ̂
S

, the performances

of the PD-NAMF in the Gaussian clutter for different values of Q exhibit the same trend

as in the K-distributed clutter shown in Figs 3.11 and 3.12. Therefore, we can conclude

that using Q = 4J projections is an appropriate rule of thumb that does not depend on the

clutter distribution.
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Figure 3.9 Detection performance in Gaussian distributed clutter (J =
16, L2 = 32)
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Figure 3.10 Interference and the interfering target powers at the output of
the PD-NAMF in K-distributed clutter (α = 0.1, δ ∼ U(0, 1], J = 16, L2 = 64)
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Figure 3.11 Detection performance in K-distributed clutter with different Q
values (Ψ̂

S

, (α = 0.1, δ ∼ U(0, 1], J = 16, L2 = 64)
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Figure 3.12 Detection performance in K-distributed clutter with different Q
values (Ψ̂

K

, α = 0.1, δ ∼ U(0, 1], J = 16, L2 = 64)
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Figure 3.13 Detection performance in Gaussian distributed clutter with dif-
ferent Q (Ψ̂

K

, J = 16, L2 = 64)
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Figure 3.14 Detection performance in Gaussian distributed clutter with dif-
ferent Q (Ψ̂

S

, J = 16, L2 = 64)
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3.6.2.4 Complexity Analysis

The complexity of the PD-NAMF (with both Ψ̂
K

and Ψ̂
S

) compared to the NAMF is an-

alyzed in terms of the required arithmetic operations and the run time of each detector.

table 3.1 summarizes the mathematical operations performed by the PD-NAMF compared

to the NAMF for each secondary cell. The reported complexities are based on the Gaussian-

Jordan elimination, Schoolbook, and merge sort algorithms for matrix inversion, matrix

multiplication, and sorting, respectively [120]. By 1/L1 we mean that Ψ̂
K

is calculated once

for all the L1 secondary cells and not for each cell in contrast to Ψ̂
S

, which is estimated for

each secondary cell from the remaining L2 cells.

The computation reduction is more obvious in Fig. 3.15, where the run times of the NAMF

detector and the PD-NAMF are computed on the same platform dedicated only for this job.

The specifications of the machine used for this simulations are 64-bit Intel® CoreTM i7-6700

central processing unit (CPU) @3.4GHz and 16 GB of random access memory (RAM). For

both versions of the PD-NAMF with Ψ̂
S

and Ψ̂
K

, the figure shows their average run times

normalized by the run time of NAMF with L2 = 4J secondary cells for different J . It
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Figure 3.15 The run times of the PD-NAMF normalized by that of NAMF
(L2 = 4J)

is conspicuous that the PD-NAMF, either with Ψ̂
S

or Ψ̂
K

, substantially reduces the NHD
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Table 3.1 The performed operations by the proposed and the NAMF tests.

NAMF Proposed

Complexity Times Complexity
Times

Kendall Spearman

Multiplication

O(J2) 5L2 O(J2L1) 1/L1 −
O(J) L2 O(J2L2) − 1

O(J3) 4L2 + 3 O(QJ) 2 2

O(QJL2) 1 1

Inverse O(J3) 5 O(J3) 1/L1 1

Addition O(J2) 5(L2 − 1) − − −

Sort − − O(QL2 log(L2)) 4 4

Correlation
Estimation

O(J2L2
1) 1/L1 −

O(J2L2 log(L2)) − 1

run time depending on J . The larger the dimension of the cell J (and consequently L2), the

greater the reduction, which is of a great importance for modern radar systems with large

antenna arrays.

Remark 2: The complexity of the PD-NAMF can be reduced further using parallel pro-

cessing, given the independence of the random projections from each other. Moreover, the

use of parallel programming on graphical processing units (GPUs) can reduce the complexity

of calculating the median, and consequently the MAD, as in [121]. Furthermore, the calcu-

lation of Ψ̂
K

, the most computationally demanding step, can be parallelized as well [122].

Nevertheless, the parallelization is only possible partially in the NAMF due to the iterative

nature of the robust covariance estimators.

3.7 Conclusion

In this chapter, we introduced a novel covariance-free, nonparametric NHD detector for

correlated clutter environments with Gaussian and non-Gaussian distributions. Based on the
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projection depth function, the proposed PD-NAMF avoids the computationally expensive

estimation of the covariance matrix. Interestingly, the larger the dimension of the radar

signal vector, the higher the computation reduction the PD-NAMF provides relative to the

NAMF. This advantage fosters the application of the PD-NAMF in modern radars with

large antenna arrays. Further, this significant complexity reduction is not achieved at the

expense of a degraded performance. That is, the detection performance of the new detector

is shown to be comparable to, and in some cases better than, the full adaptive NAMF

detector at different dimensions and clutter distributions. With this robust performance

and the considerable reduction in computations, the PD-NAMF is superior to its covariance-

based counterparts in the literature for real time applications and it can be a more efficient

replacement of the computationally demanding GIP and NAMF detectors in iterative NHD

approaches. The feasible utilization of parallel processing and GPUs paves the way for more

efficient implementations of the PD-NAMF in the future.

With this robust performance of the proposed NHD and the choice of robust covariance

estimators as the one in Eq. (3.18), we can obtain an accurate estimation of the interference

covariance matrix. The estimated covariance matrix is employed in the waveform design of

cognitive MIMO radars as we will show in Chapter 4.
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Chapter 4

Design of Power-Efficient Waveforms

for Cognitive MIMO Radars

In this chapter, we address the second contribution of this thesis, in which we are concerned

with the high reflected power from the transmitting antenna of cognitive MIMO radars back

to the amplification stage. We establish a signal-processing approach that can reduce the

reflected power instead of reducing its effects. We show that the proposed approach controls

the power level of the antenna reflection, improves the SINR of the target, and exhibits

a lower computational burden than the standard method of waveform design of cognitive

MIMO radars.

4.1 Introduction

Multi-input multi-output (MIMO) radars are distinguished from the phased array radars by

their ability to transmit independent waveforms from the transmitting antenna elements.

The advantages of MIMO radars over phased array radars include better spatial resolution,

better parameter identification, improved performance for ground moving target identifi-

cation (GMTI) [18, Ch.2], and enhanced detection performance due to their spatial diver-

sity [19].

The problem of waveform design for MIMO radars has attracted considerable interest in

the last decade, which resulted in three main trends in designing MIMO radar waveforms, as

we mentioned in Section 2.3 and repeat here for convenience. The first approach is to control

the spatial distribution of the transmitted power, through the spatial covariance matrix of the
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waveforms. The second approach is to design the waveforms by the optimizing the ambiguity

waveform properties such as the autocorrelation peak-to-sidelobe level ratio (PSLR), cross-

correlation between the waveforms, Doppler and range resolutions, and Doppler tolerance.

The third approach is concerned with the extended target model and aims to maximize the

conditional mutual information (MI) between the target impulse response and the radar

signal for optimal target detection.

In the aforementioned waveform design methods, the spatial cross-correlation between the

different transmitted waveforms can range between perfect coherence, as in the phased array

radar, and mutual orthogonality [123]. The spatial orthogonality is customarily realized in

the fast-time domain, which is defined by the time samples transmitted from each antenna

element within a single pulse [124–130]. This means that the waveform differs from one

antenna element to another, but is repeated for each pulse. Another approach to achieve

orthogonality is to apply phase coding on the slow-time domain, which is defined by the

pulses within the coherent pulse interval (CPI); in this case the orthogonality is realized in

the Doppler domain, which is known as Doppler division multiple access (DDMA) [131]. This

Doppler division multiple access (DDMA) approach gives the radar designer the flexibility

to use the same waveform for all antenna elements, while the required orthogonality is

maintained after the Doppler processing in the receiver [132]. For the extended target models,

research has focused on matching the transmitted waveforms to the TIR and maximizing the

signal-to-interference plus noise ratio (SINR). This is achieved by solving an optimization

problem that maximizes the SINR assuming prior information about the TIR [20]; however

the orthogonality of the waveforms obtained by solving this optimization problem is not

discussed.

For all of the discussed waveform design approaches, the efficiency of the radar transmitter

using the obtained MIMO waveforms has not been explicitly considered. By efficiency we

mean the effect of the scattering parameters (S-parameters) of the transmitting antenna array

and its interaction with the used MIMO waveforms, which results in the reflection of a part

of the transmitted power back to the amplification stage. This reflection is not only crucial

to the efficiency of the radar system, but also to the durability of the microwave components

preceding the antenna array. Specifically, the high reflected power from the transmitting

antenna can damage the power module feeding the antenna [133]. The problem of power

reflection has earned a lot of attention from the microwave and antenna design perspectives.

From the signal processing standpoint, however, this problem has received scant coverage
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in the literature. The problem of mutual coupling in MIMO transmitting antennas was

first considered in [134] through the electromagnetic analysis of antenna arrays when all the

elements of the array are active. This work was followed by [135,136], where electromagnetic

simulations have shown the significant increase of antenna reflection in MIMO radars using

phase coded signals assuming a point target model. In [137], also assuming a point target and

phase coded signals, the transmitting antenna array was divided into groups, i.e., subarrays.

Each subarray treated as a single element with a single waveform to reduce the reflection

coefficient, or equivalently the voltage standing wave ratio (VSWR) of each antenna element.

Later, the significance of the waveform design to the MIMO radar efficiency has been pointed

out in [138]. Recently, the mutual coupling between the receiving antenna elements of MIMO

radars has been studied in [139]. However, to the best of our knowledge, the mutual coupling

between the transmitting antenna elements has not been considered in the design of MIMO

waveforms in the literature.

In this chapter, we consider the problem of power reflection in cognitive MIMO radars

from the transmitting antenna by proper design of power-efficient waveforms. In particular,

we propose a cognitive MIMO radar system in which the transmitted waveforms are adapted

to the TIR of the extended target of interest, but are also optimized to minimize the reflected

power from the transmitting antenna array. The reflected signal is related to the transmit-

ted signal by the S-parameter matrix. To achieve this, we formulate a new optimization

problem with the ordinary objective of minimizing the interference power, but with adding

a regularization term that includes the reflected power from the transmitted antenna array.

The regularization term takes two forms. The first form uses the Euclidean norm (`2-norm)

of the reflected signal and is solved using the Lagrange method. The second form utilizes the

infinity norm (`∞-norm) of the reflected signal, which is a non-smooth function of the trans-

mitted signal. In the latter case, and due to the non-differentiable regularization term, we

propose using the proximal gradient method to solve the formulated optimization problem.

To guarantee the orthogonality of the designed waveforms, the DDMA is employed. Monte

Carlo simulations are used to evaluate our algorithm with the two proposed solutions using

different figures of merit. The results show that the proposed algorithm improves the effi-

ciency of the cognitive MIMO radar and has a lower complexity than the original cognitive

waveform design method in [20], yet with acceptable SINR.

The rest of this chapter is organized as follows. Section 4.2 provides a background of

MIMO radar that includes the mathematical signal model and the waveform designs of
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MIMO and cognitive MIMO radars. The configurations of the MIMO antenna arrays and

the problem of their mutual coupling are discussed in Section 4.3. In Section 4.4 we introduce

the proposed waveform design approach for cognitive MIMO radars. The performance of

the proposed approach is evaluated in Section 4.5. Section 4.6 concludes the chapter.

4.2 MIMO Radar Background

In this section, we provide a brief description of the mathematical model of the MIMO radar

signal, the different schemes of the MIMO waveform orthogonality, and the waveform design

of the cognitive MIMO radar for extended targets.

4.2.1 MIMO Radar Signal Model

Consider a MIMO radar system with NT sparsely spaced transmitting antennas and NR

filled receiving antenna array. Assume a point target at azimuth angle θt and a uniform

linear array (ULA), then the steering vectors at the transmitter and receiver are expressed

as

aT (θt) = [1 ej2π
dT
λ

sin(θt) · · · ej2π
(NT−1)dT

λ
sin(θt)]T (4.1)

and

aR(θt) = [1 ej2π
dR
λ

sin(θt) · · · ej2π
(NR−1)dR

λ
sin(θt)]T , (4.2)

respectively, where dT and dR are the inter-element antenna spacings of the transmitting

and receiving antenna arrays, respectively, and λ is the wavelength corresponding to the

radar center frequency. Assuming NT orthogonal waveforms and denoting f̃i ∈ CLs as the

discrete baseband signal within a pulse duration Tp from the ith transmitting antenna, the

transmitted pulses from the NT elements are

X(m) = ej2πmTrdiag(aT (θt))F (4.3)

where F = [f̃T1 · · · f̃TNT ]T ∈ CNT×Ls . Each antenna element receives a group of M coherent

pulses resulting in a total of MNR pulses. The mth received group of NR pulses at the
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receiving antenna array output is

Y(m) = ej2π(m−1)fdTpF (4.4)

where Tp = diag(aR)T̃pdiag(aT ), T̃p ∈ CNR×NT is the TIR whose (i, j)th component is the

point target response between the ith receiving and the jth transmitting antenna elements,

and fd is the normalized Doppler frequency. The components of T̃p represent the two-way

attenuation and the phase difference between each pair of the receiving and the transmitting

antenna elements. The received signal can be expressed in the vector form as

y(m) = ej2π(m−1)fdblkdiag(Tp)f (4.5)

where blkdiag(Tp) ∈ CNRLs×NTLs is the block diagonal matrix of Tp and f = vec(F).

In the case of the extended target model, the TIR between each transmitting antenna

element and each receiving antenna element has a length Lt and the mth received pulse is

expressed as

y(m) = ej2π(m−1)fdTf (4.6)

where T ∈ CNRLR×NTLs is the Toeplitz matrix of the extended TIR defined as

T =



Te(0) 0 · · · 0

Te(1) Te(0)
. . . 0

Te(Lt − 1) · · · . . . Te(0)
...

. . . . . .
...

0 · · · 0 Te(Lt − 1)


(4.7)

where Te(l) = diag(aR)T̃e(l)diag(aT ), and T̃e(l) ∈ CNR×NT is the lth tap of the extended

TIR1.

1For the sake of generality, we assume here that the TIRs between all the pairs of the transmitting and
receiving antenna elements are statistically independent .
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4.2.2 Doppler Division Multiple Access in MIMO Radars

A characteristic feature of the MIMO radar is its spatial diversity achieved by utilizing NT

orthogonal waveforms. The orthogonality of the transmitted waveforms can be attained by:

(1) time division multiple access (TDMA), (2) frequency division multiple access (FDMA),

(3) code division multiple access (CDMA), and (4) Doppler division multiple access (DDMA)

[140]. The first three methods are implemented in the fast-time domain, i.e., using the

samples of the transmitted pulses. Conversely, the DDMA is implemented in the slow-time

domain, i.e., from pulse to pulse within the coherent pulse interval (CPI). The CPI consists

of a group of M identical pulses and each pulse is phase-coded, where the waveform of

the pulses of each antenna element can be any of the conventional radar waveforms [137].

The orthogonality of the DDMA waveforms is then obtained by the Doppler processing in

the receiver. The use of DDMA has the advantages of utilizing the full radar spectrum

and transmission time, which are not offered by the FDMA and TDMA, respectively. In

contrast to CDMA MIMO radar, the DDMA MIMO radar enjoys a simple hardware design

by evading the need for a waveform generator for each transmitting antenna element [138].

Let the pulse repetition interval (PRI) of the radar be Tr and the pulse repetition fre-

quency (PRF) fr = 1/Tr, which is the maximum Doppler frequency of the radar. The full

Doppler spectrum of the radar is divided to NT sub-bands each of width fc so that fc ≤
fr/NT . In DDMA, the transmitted waveform at the mth group of pulses in Eq. (4.3) becomes

[137] X(m) = diag(b
(m)
T )diag(aT (θt))F, where b

(m)
T = [exp(j2πα1mTr), · · · , exp(j2παNTmTr)]

and

αn = −fc
2

(NT − 1− 2n) n = 1, · · · , NT (4.8)

In this manner, the DDMA establishes NT orthogonal channels that are separated in the

receiver using Doppler processing. Since the orthogonality is achieved in the slow-time

(Doppler) domain and not the fast-time domain, f̃i, i = 1, · · · , NT , can be identical and

chosen to achieve desirable radar signal properties as the linear frequency modulated (LFM)

signal.
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4.2.3 Cognitive MIMO Waveform Design for Extended Targets

A salient aspect of the cognitive radars is to use the environmental information to adapt

the transmitted waveform to match the TIR(s) of the extended target(s) of interest [141].

Assuming known TIR and clutter statistics, a method has been proposed in [20] to jointly

design the transmitting waveforms and receive filter impulse response of the cognitive MIMO

radar with the aim of maximizing the SINR. The output of the receive filter at the mth pulse

is expressed as

r(m) = ej2π(m−1)fdhHTf + hHCf + hHn (4.9)

where h ∈ CNRLR is the impulse response of the receive filter, C ∈ CNRLR×NTLs is the clutter

impulse response, and n ∼ CN (0, INRLR). The clutter impulse response is defined as

C ,



Ce(0) Ce(−1) · · · Ce(−Ls + 1)

Ce(1) Ce(0)
. . .

...
...

. . . . . . Ce(0)
...

. . . . . .
...

Ce(LR − 1) Ce(LR − 1) · · · Ce(Lt − 1)


(4.10)

where Ce(l) ∈ CNR×NT is the lth tab of the clutter impulse response between the ith receiving

antenna element and the jth transmitting antenna element. The SINR at the filter output

is

χ(f ,h) ,
|hHTf |2

E[|hHCf |2] + E[|hHn|2]
(4.11)

Both f and h are jointly optimized to maximize the χ(f ,h). The resulting optimization

problem is generally nonconvex and it is solved iteratively by solving h in terms of f and

vice versa. This problem can be recast as two minimum variance distortionless response

(MVDR) problems for both h and f . The first MVDR problem to solve for f is

min
f

fH(Rc,h + hHRnhINTLs)f (4.12)

subject to hHTf = 1
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The solution for f is

f = αf (Rc,h + hHRnhINTLs)
−1THh (4.13)

where αf is a scalar, Rn , E[nnH ], and Rc,h , E[CHhhHC], which is related to the clutter

covariance matrix Rc(m) = E[vec(C(n))vec(C(n−m))H ],∞ < n,m <∞, as in [142, Lemma

2]. The solution in Eq. (4.13) is then normalized with respect to ‖f‖2, so that the scalar αf

can be neglected. The MVDR problem for h can be expressed as

min
h

hH(Rc,f + Rn)h (4.14)

subject to hHTf = 1

from which, the following solution is obtained

h = αh(Rc,f + Rn)−1Tf (4.15)

where αh is a scalar that satisfies the equality constraint in Eq. (4.14), Rc,f , E[CffHCH ],

and Rc,f is related to Rc(m) as shown in [142, Lemma 1]. Note that the scalar αh does not

affect the objective function in Eq. (4.11), hence it can be neglected.

4.3 MIMO Antenna Arrays

In this section, we discuss the different configurations of MIMO antenna arrays and give a

brief review of the mutual coupling of antenna arrays and the different reflection coefficients.

4.3.1 MIMO Virtual Antenna Array

A key characteristic of the MIMO radar is to form a virtual array that improves the spa-

tial resolution of the MIMO radar system. By transmitting orthogonal waveforms from the

transmitting antenna array, the MIMO radar can form a virtual array, whose elements’ loca-

tions result from the convolution between the locations of the elements of the transmitting

and receiving antenna elements. The resulting virtual array is larger than the total number

of receiving and transmitting antenna elements [143]. Conventionally, if the transmitting

antenna elements in a ULA are spaced by dT = NRdR, the resulting virtual antenna array
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has effectively NTNR elements with NTNR− 1 normalized2 aperture length, which improves

radar spatial resolution. [144]. However, this configuration requires large NT and NR to

achieve high aperture lengths.

One approach to achieve high spatial resolution using lower number of antennas is the

minimum redundancy array (MRA) [144]. Let the locations of the elements of the transmit-

ting and the receiving antenna arrays be d
(m)
T and d

(n)
R , respectively, where m = 1, · · · , NT

and n = 1, · · · , NR. The concept of the MRA is to use the minimum number of antenna

elements as long as the spacings between the pairs of antenna elements take all the integer

values between 0 and NV , where NV is the required normalized aperture length of the virtual

array [144].

The majority of the research efforts in implementing the MRA were focused on employing

optimization techniques to optimally configure the receiving and transmitting antenna arrays

as in [144–146]. Distinctively, the work in [147] proposed employing the difference basis and

simple perfect cyclic difference sets (SPCDS) to find the MRA for the MIMO radars. As

the number theory constitutes, a difference basis for the segment [0, P ], P ∈ N, is a set

of K integers (K < P ) such that all the integers 0, · · · , P can be expressed using this

set [148]. An SPCDS W (V,K) is a set of K integers chosen from {0, 1, · · · , V }, where

K(K − 1) = V − 1, such that any one of the ordered differences between the elements of

W (V,K) is not repeated [149]. As indicated in [147], the locations of both the transmitting

and receiving antenna elements are determined as follows:

1. The locations of the transmitting antenna elements d
(m)
T , m = 1, 2, · · · , NT , are the

elements of an SPCDS with parameters V,M with the first element is 0.

2. The locations of the receiving antenna elements d
(n)
R , n = 1, 2, · · · , NR, are the elements

of a set {pn � V }, where � denotes set multiplication, {pn} is a difference basis for a

segment [0, P ], and P is chosen such that the resulting difference basis has NR elements.

3. The resulting virtual minimum redundancy array (VMRA), d(k), is expressed as

{d(k)} = {d(m)
T } ⊕ {d

(n)
R } (4.16)

where k = 1, · · · , NTNR; m = 1, · · · , NT ; n = 1, · · · , NR; and ⊕ denotes the addition of

sets.
2Normalized with respect to λ/2.
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As has been proven in [150], the resulting VMRA is a difference basis for [0, NV ], where

NV = V (P + 1)− d(M)
T − 1 (4.17)

As shown in [147, 150], the resulting virtual MRA has a larger normalized aperture length

than the conventional length NTNR, yet with a lower number of antenna elements.

To illustrate the idea of MRA, consider d
(m)
T = {0, 1, 3} and d

(m)
R = {0, 6, 13, 40, 60}. The

resulting virtual array is {0, 1, 3, 6, 7, 9, 13, 14, 16, 40, 41, 43, 60, 61, 63}, which has a normal-

ized effective aperture length of 63 using a total of 8 antenna elements. To achieve the same

normalized aperture length using the conventional ULA, we need a total of 16 antenna ele-

ments. However, as the MRA reduces the inter-element spacing in the transmitting antenna

array, the mutual coupling between each pair of the NT antenna elements increases compared

to the ULA.

4.3.2 Mutual Coupling of Transmitting Antenna Arrays

The input-output relations of anNT -element antenna array are described using S-parameters,

which are represented by the matrix S ∈ CNT×NT . In particular, (i, j)th element of S,

1 ≤ i, j ≤ NT , represents the power reflected from element i to element j. The elements of

S are given by [151]

Spn =
bp
an

∣∣∣∣
ai=0

1 ≤ p, n, i ≤ NT , i 6= n (4.18)

where an is the input voltage to element n and bp is the reflected voltage from element n to

element p, with all the inputs to all ports except n are inactive. The reflected signal from

an NT -element antenna array is related to the input signal as Fref = SF. The scattering

parameters are related to the reflection coefficients of the antenna elements by

Γi = Sii 1 ≤ i ≤ NT (4.19)

where 0 < Γi < 1. However, the assumption of passive ports except one in the measurement

of Γ is not adequate in MIMO operation, where all the elements could be simultaneously

active. In this case, the mutual coupling between antenna elements makes the active prop-

erties of the array different from those measured under passive conditions [152]. The active
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reflection coefficient (ARC) of the ith antenna element is given by [153]

Γai =
bi
ai

=

∑NT
j=1 Sijaj

ai
(4.20)

As reported in [154], the ARC can exceed 1 for some antenna elements as the reflected

power is formed by coupling the reflected power from different elements. To characterize

the performance of the whole antenna array, the total active reflection coefficient (TARC) is

used [155, Eq. (12)]

Γt =

√∑NT
i=1|bi|2√∑NT
i=1|ai|2

(4.21)

where 0 < Γt < 1. The TARC has been used as a figure of merit for MIMO antenna arrays

as in [156,157].

4.3.3 Microwave Techniques for Protection against High Reflection

Before introducing the proposed method to reduce the reflected power from the transmitting

antenna arrays to the preceding amplification stage, it is important to discuss, briefly, the

microwave techniques developed to protect the amplification stage from this reflected power.

Radio frequency power amplifiers data sheets show that a reflection coefficient of 0.8 can be

damaging to the output stage of the amplifier [158]. Even if the reflection is not high enough

to damage the output stage, it can cause a reduction in the output power [159]. Convention-

ally, isolators have been employed between the antenna and the power amplifier; however,

they have a large space and weight requirements, which may make them not suitable for

many radar applications, besides their insertion loss. Additionally, conventional protection

methods also use clipping diodes, but they introduce parasitic capacitance that make them

not appropriate for RF applications [160].

The main challenge to microwave techniques to provide protection to the power amplifier

in the presence of high reflection is to achieve a balance between the required protection

and acceptable insertion loss [161]. Another challenge is to achieve fast response time in the

case of varying reflection coefficients. In the case of cognitive MIMO radars, the reflection

coefficients change on a pulse-to-pulse basis, which means they can change in less than
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a fraction of a millisecond. To face these challenges, closed- and open-loop circuits have

been proposed to sense the output of the power amplifier and change its operating point3

accordingly [163]. This is implemented by controlling the gain of the amplifier or the driving

input power if the reflected power exceeds predefined limits. Nevertheless, these methods

require complex design of the power amplifier and its driving stage to maintain the required

stability at different input and supply levels [163]. Moreover, sensing the output of the

amplifier, which is implemented using directional couplers, leads to losses of the output

power and, consequently, a lower transmitter efficiency. In addition, closed-loop techniques

require delicate design of the loop gain to cope with the nonlinear operation of the amplifier

and open-loop techniques need higher cost [164]. Finally, class-A amplifiers show robust

performance against high reflection; however, this comes at the cost of bulky modules, high

cost, and low efficiency that may drop down to %50 [165]. Generally, the methods reported

in the literature on the microwave techniques of the protection from high reflections, with

the disadvantages we have just reported, can protect the amplifier in the case of reflection

coefficient less than 1, but not with an ARC greater than unity as may be encountered in

cognitive MIMO radars, as we will show shortly.

4.4 Proposed waveform design for cognitive MIMO radar

In this section, we propose a novel approach to design power-efficient waveforms for cognitive

MIMO radars. This new approach takes into account the reflection characteristics of the

radar antenna array as well as the TIR of the target of interest. This approach reduces the

reflected power from the transmitting antenna rather than reducing its effects, as offered by

the microwave techniques. In this context, we formulate two optimization problems with

two different regularization terms and provide the solutions to both of them.

To maximize the SINR, the problem in Eq. (4.12) minimizes the interference term of

Eq. (4.11). To simultaneously minimize the reflected signal from the antenna array, we

propose adding a regularization term to the objective function of Eq. (4.12) as follows

min
f

fH(Rc,h + hHRnhINTLs)f + γ1g(Sdf) (4.22)

subject to hHTf = 1

3An operating point of the amplifier is the intersection between the load line of the amplifier and an
output characteristic at certain biasing conditions [162].
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where γ1 is a regularization parameter, Sd = blkdiag(S), Sd ∈ CNTLs×NTLs , and g(Sdf) is a

function of the reflected signal from the NT antenna elements at all samples of each pulse. In

the following, we propose using two different choices for g(Sdf), which result in two different

optimization problems.

4.4.1 Solution Using Lagrange Method with `2-Norm Regularization

By using the squared `2-norm as the regularization function g(Sdf), Eq. (4.22) becomes

min
f

fH(Rc,h + hHRnhINTLs)f + γ1‖Sdf‖2
2 (4.23)

subject to hHTf = 1

The problem in Eq. (4.23) is in the form of MVDR problem, which can be solved using

Lagrange method. The Lagrangian function is defined as

L(f , λ) , fH(Rc,h + hHRnhINTLs)f + γ1‖Sdf‖2
2 + λ1(hHTf − 1) (4.24)

where λ1 is the Lagrangian multiplier. By differentiating L(f , λ) with respect to f and

equating it to zero we obtain

fH(Rc,h + hHRnhINTLs) + γ1f
HSHd Sd + λ1h

HT = 0 (4.25)

Therefore, the solution for the waveform f is

f = −λ1

(
(Rc,h + hHRnhINTLs + γ1S

H
d Sd)

−1
)H

THh (4.26)

The scalar λ1 can be neglected as f in Eq. (4.26) is then normalized with respect to ‖f‖2

as in [20]. The detailed steps of the proposed waveform design using the Lagrange method

are shown in Algorithm 3. For faster convergence, γ1 is set to grow with each iteration as

discussed later in Section 4.5.
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Algorithm 3 Waveform design using Lagrange method

Input: Rc,f ,Rv,T,Sd, γ
(1)
1

Initialize: f (1),h(1), SINR
Output: f (k),h(k)

while ε < 1 do
Calculate h(k) according to Eq. (4.15)

Calculate R
(k)
c,h

Calculate f (k) according to Eq. (4.26)
f (k) ← f (k)/‖f (k)‖2

Calculate R
(k)
c,f

Calculate SINR according to Eq. (4.11)
ε← Improvement in SINR
k ← k + 1
Calculate γ

(k)
1

end while

4.4.2 Solution Using Proximal Gradient with `∞ Norm Regularization

Using the `∞-norm (maximum norm) as the regularization term g(Sdf) in Eq. (4.22), we

obtain

min
f

fH(Rc,h + hHRnhINTLs)f + γ2‖Sdf‖∞ (4.27)

subject to hHTf = 1

While minimizing the `2-norm reduces the average reflected power from the antenna array,

minimizing the `∞-norm reduces the reflected power of each single sample reflected from

each antenna element. This means a higher reduction to the reflected power at all pulses

and all antenna elements, which motivates the use of the `∞-norm as a regularization term.

The objective function in Eq. (4.27) contains two terms, which are convex. However, the

regularization term γ2‖Sdf‖∞ is nonsmooth, which impedes the solution of Eq. (4.27) using

Lagrange or conventional gradient methods. To solve this problem we propose using the

proximal method [58].

As mentioned in Section 2.6, for a convex function g(f), the proximal operator proxg(f)
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is defined by [56]

proxg(f) := argmin
v

(
g(v) +

1

2
‖v − f‖2

2

)
∀v ∈ CNTLs (4.28)

For a scaled function γ2g(f), the proximal operator is defined as

proxg(v) := argmin
v

(
g(f) +

1

2γ2

‖f − v‖2
2

)
(4.29)

The proximal operator, as perceived from Eq. (4.28), minimizes g, but at the same time

considers the Euclidean distance of the solution from f .

First we convert the constrained optimization problem in Eq. (4.27) to an unconstrained

optimization problem. To achieve this, we propose using the quadratic penalty method [166],

that is

min
f

fH(Rc,h + hHRnhINTLs)f + γ2‖Sdf‖∞ +
µ

2
(hHTf − 1)2 (4.30)

where µ > 0 is the penalty parameter. The objective function in Eq. (4.30) can be written

as

min
f

u(f) + w(f) (4.31)

where u(f) = fH(Rc,h + hHRnhINTLs)f + µ
2
(hHTf − 1)2 and w(f) = γ2‖Sdf‖∞. Discernibly,

u(f) is convex and smooth, while w(f) is convex but non-smooth. For solving this problem,

we propose applying the proximal gradient method. This method can iteratively find the

minimizer of u(f) +w(f) by calculating the so-called proximal operator of w(f) as a function

of ∇u(f), thus tackling the problem of a non-smooth w(f). Using the proximal gradient

method, the minimizer of Eq. (4.30) at the (k + 1)th iteration is [58, (4.6)]

f (k+1) := proxβw(f (k) − β(k)∇u(f (k))) (4.32)

where k is the iteration number, β(k) > 0 is the step size at the kth iteration, and proxβw is

the proximal operator of β(k)w(f). The solution of Eq. (4.31), which includes the proximal

operator of γ2‖Sdf‖∞, is given by Proposition 4.1, whose proof is provided in Appendix D.
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Proposition 4.1. Consider the following optimization problem

min
f

u(f) + w(f) (4.33)

where u(f) = fH(Rc,h+hHRnhINTLs)f + µ
2
(hHTf−1)2 and w(f) = γ2‖Sdf‖∞. The waveform

f in Eq. (4.33) at the (k + 1)th iteration is

f (k+1) = d(k) − (γ2S
−1
d )Proj‖·‖1<1

(
Sdd

(k)

γ2

)
(4.34)

where d(k) = f (k)− β(k)∇u(f), ∇u(f) = (f (k))H(Rc,h + hHRnhINTLs) + µ(hHTf (k)− 1)hHT,

and Proj‖·‖1<1(·) is the projection operator of the argument on the unit `1-norm ball.

As observed in Proposition 4.1, the computation of Proj‖·‖1<1

(
Sdd

(k)

γ2

)
is crucial to the

proposed waveform design. In the following, we discuss how to perform this computation.

4.4.2.1 Computation of the Projection onto the unit `1-Ball

This problem has been discussed for real-valued variables in the context of the matrix esti-

mation problem [167], and several algorithms have been proposed [168–170]. In this chapter,

we adopt a simple algorithm that has a straightforward geometrical interpretation.

As shown in [171], the projection onto the unit `1-ball is similar to the projection onto a

simplex4 of the same dimension. For the simplex projection of a vector p ∈ RQ, Proj∆(p),

there exists a unique scalar τ ∈ R such that [170, Proposition 2.2]

Proj∆(p(i)) = max{p(i)− τ, 0} ∀i = 1, · · · , Q (4.35)

For the projection onto the unit ball, we seek finding τ such that
∑Q

i=1 max{p(i)− τ, 0} = 1.

Let I be the set of indices i, for which Proj∆(p(i)) > 0. Then we have∑
i∈I

(p(i)− τ) = 1 (4.36)

4The simplex is the generalization of triangles and tetrahedra to any dimension. A more formal definition
of the simplex is that it is the convex hull of its vertices [172]
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Hence [170],

τ =
∑
i∈I

(p(i)− 1)/‖I ‖ (4.37)

where ‖·‖ denotes the cardinality of the set. Based on equations (4.35) and (4.37), a sim-

ple algorithm has been proposed in [173] for real-valued projections. For complex-valued

projections, as the problem at hand, the projection is computed for the vector of the com-

ponents’ modula of the original complex vector onto the real unit `1-ball, then the complex

soft thresholding operation is applied on the real projection [174]. Denoting p⊥ as the real

Proj‖·‖1<1 (p), then, for p ∈ CQ, the complex projection p⊥ = Proj‖·‖1<1

(
p
)

is given by

p⊥(i) = csgn(p(i))p⊥(i) ∀i = 1, · · · , Q (4.38)

where csgn(·) is the complex signum function. In this way, the phases of the input vector

components are preserved, while the main computations are performed on the vector of

components’ modula of the original complex vector. The steps of computing Proj‖·‖1<1 (p) are

indicated in Algorithm 4. The complexity of the algorithm is determined by the complexity

of the sort operation. If merge sort algorithm is used to sort the components of |p|, the

worst case complexity is O(Q log(Q)) [120].

Algorithm 4 Calculation of Proj‖·‖1<1

(
p
)

Input: p ∈ CQ

Output: p⊥

Sort |p| to u : u1 ≥ · · · ≥ uQ
for i = 1 to Q do

r(i) =
∑i

j=1(uj − 1)/i
end for
Find K = argmax

i
r(i) < u(i)

τ =
∑K

k=1 uk − 1/K
for i = 1 to Q do

p⊥(i) = max{p(i)− τ, 0}
p⊥(i) = csgn(p(i))p⊥(i)

end for

The proposed waveform design method is detailed in Algorithm 5. By comparing the two
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proposed waveform designs using Lagrange and proximal gradient methods in Algorithms 3

and 5, respectively, we can highlight two main points. First, the proximal gradient method

establishes a separate inner loop for the waveform design that is concerned with minimizing

the interference, the reflection, and the deviation from the constraint. The outer loop is

responsible for improving the SINR with h is taken into account. This separation of loops

offers a better control over the reflected power than the Lagrange method, besides the ad-

vantage offered by the `∞-norm over the `2-norm. Second, the proximal gradient method

avoids the evaluation of Rc,s for each iteration k, which is expected to reduce the complexity

of the design using the proximal gradient method. More details about the complexity of

both algorithms are provided in Section 4.5.

Algorithm 5 Waveform design using proximal gradient

Input: Rc,f ,Rv,T,Sd, γ1, β(1)

Initialize: f ,h, SINR, k = 1
Output: f (k),h(k)

while ε < 1 do
Calculate h according to Eq. (4.15)
Calculate Rc,h

while ζ < 1 do
Calculate ∇u(f (k)),d(k) according to Proposition 4.1.

Calculate Proj‖·‖1<1

(
Sdd

(k)

β(k)γ2

)
as in Algorithm 4.

Calculate f (k+1) as in Eq. (4.34)
ζ ← reduction of the objective function in Eq. (4.30).
k ← k + 1.
Calculate β(k).

end while
ε← Improvement in SINR.

end while

4.4.2.2 Convergence of the Proposed Proximal-Based Algorithm

It is well-known that if u(f) is convex and ∇u(f) is Lipschitz continuous with constant q, the

convergence rate of the proximal gradient method in solving Eq. (4.33) isO(1/k) if β(k) = β ∈
(0, 1/q] [175, Theorem 1 (a)] [58,176]. Obviously, u(f) is convex; we also prove its Lipschitz

continuity in Appendix E. Therefore, the convergence rate of the proposed algorithm is
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linear. The step size can also be found using line search with the same convergence rate as

indicated in [177], where

βk = ηβk−1 η ∈ (0, 1] (4.39)

with k ≥ 1 and β(1) ∈ (0, 1/q].

4.5 Performance Evaluation

In this section, we evaluate the performance of the two proposed method using Monte Carlo

simulations and we compare it to two benchmarks. The first is the standard waveform design

method for extended targets in cognitive radars introduced in [20] and briefed in Section 4.2,

which does not consider the mutual coupling of the transmitting antenna. Since, as far as

we know, there is no waveform design in the literature that takes into account the reflection

coefficients of the antenna elements, we opt to comparing the proposed methods with the

subarray solution used in [137]. It should be noted that the subarray configuration has been

used in [137] with point targets and with standard radar waveforms without any adaptation

done to the transmitted waveform. However, we will use the subarray configuration with

extended targets and the transmitted waveforms that are adapted to the TIR.

4.5.1 Simulation Setup

We consider two sizes of the transmitting antenna array: 4 elements and 8 elements. The

transmitting antenna is a linear MRA, as discribed in Subsection 4.3.1, where the locations

of the two antenna arrays are {0, 1, 3, 7} and {0, 9, 10, 12, 16, 27, 35, 40}. It should be noted

that there are different configurations for each assumed antenna size using SPCDS. How-

ever, the configurations we use in this work have the minimum spatial dimension among

other configurations. The antenna elements are assumed to be half-wave dipoles, and the

impedance values of the resulting array elements are calculated as [178]

Zii = 30[ln(ξ2π)− Ci(2π) + jSi(2π)] 1 ≤ i ≤ NT (4.40)
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where ξ is the Euler constant and Ci and Si are the cosine and sine integral functions. The

coupling impedance values Zij = Rij + jXij, i 6= j, are given by

Rij = 30[2Ci(µ0)− Ci(µ1)− Ci(µ2)] 1 ≤ i ≤ NT , i 6= j (4.41a)

Xij = −30[2Si(µ0)− Si(µ1)− Si(µ2)] 1 ≤ i ≤ NT , i 6= j (4.41b)

where

µ0 = 2πd, µ1 = 2π
√
d2 + 0.25 + 0.5

µ2 = 2π
√
d2 + 0.25− 0.5 (4.42)

where d is the spacing between the ith and jth antenna elements normalized with respect

to the wavelength corresponding to the center frequency. The S-parameters matrix S is

obtained from the impedance matrix Z by [151]

S =
Z− Z0INT
Z + Z0INT

(4.43)

where Z0 is the matched load impedance at which there is no reflection and it is customarily

taken as Z0 = 50Ω.

Regarding the TIR, we consider two different distributions. The first distribution is

the Gaussian model, which is considered widely in the literature [179, 180]. The Gaussian

TIR between each pair of the transmitting and receiving antenna elements is generated as a

random vector distributed as CN (0, ILt). The second distribution is the K-distribution [181],

which has not been explored in the literature on the cognitive radar applications, neither

any other non-Gaussian distribution. The K-distributed TIR between each pair of the

transmitting and receiving antenna elements is generated as a spherical invariant random

vector (SIRV), as shown in Section 3.3 and [182, 183]. For both distributions, the TIR is

conventionally assumed to be known by the radar system [20, 22, 23, 180]. If the TIR is

unknown, it is estimated from the received data5 as in [179, 184]. For a comprehensive

evaluation of the proposed method, we used 1000 Monte Carlo simulation trials each with a

5In Chapter 5, we discuss in details the problem of TIR estimation.
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different TIR.

The initial radar waveform is assumed to be LFM signal, as has been also assumed

in [20,179]. The signal bandwidth is 250 KHz and sampled at 0.5 MHz. The pulse width is

10µs and the PRI is 500µs, which corresponds to a maximum Doppler of 2 KHz. For the

proposed Lagrange-based method, the regularization parameter is taken as γ
(k)
1 = 3γ

(k−1)
1 ,

with γ
(1)
1 = 10. For proximal-based method, the step size is β(k) = 0.99β(k−1) with β(1) = 10,

the quadratic penalty parameter µ = 0.001, and the regularization parameter γ2 = 0.5.

These values have been chosen using simulations to achieve the best balance between the

SINR improvement and the reflection reduction. However, it should be emphasized that

while these are the recommended values we found through the simulations, the proposed

algorithms are not sensitive to these values. This means that the deviation from these values

does not cause a significant effect on performance.

4.5.2 Performance Evaluation with 4-Element Transmitting Antenna Array

We first consider the case of 4-element transmitting antenna array in the case of Gaussian

TIR. Fig. 4.1 shows the worst case scenario among the 1000 simulated Gaussian TIRs for the

four considered algorithms. The figure shows the values of Γa for each antenna element with

some elements having Γa > 1 at some pulses for the standard waveform design method. The

subarray configuration offers lower Γa when used with point targets as reported in [137], i.e.,

standard DDMA with standard radar signals [137]. However, when it is used in cognitive

radars with extended targets it can be greater than the full MIMO configurations at some

pulses and some antenna elements. Regarding the proposed algorithms, we can observe that

the Lagrange-based algorithm does not guarantee a lower Γa for all pulses and all antenna

elements. This can be attributed to the criterion of lowering the average reflected power,

which does not guarantee the reduction of the reflection at each pulse and each antenna

element. Moreover, the Lagrange method works on two objectives simultaneously, the SINR

and Γa, which limits its ability to obtain a waveform that satisfies both objectives.

On the other hand, the proximal gradient method guarantees lower Γa at all elements and

all pulses, such that Γa barely exceeds 0.6 at maximum. The relative reduction achieved by

the proximal-based proposed method is approximately between 27.24% and 84.64%. This

superior performance of the proximal-based method can be explained by the opposite of

the reasons behind the unsatisfactory performance of the Lagrange-based method. That is,
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the proximal-based method in Algorithm 5 deals with lowering the reflected power from the

antenna array as a separate objective in an inner loop, while dealing with the SINR separately

in the outer loop. This gives the proximal-based method more flexibility in minimizing Γa.

In addition, the `∞-norm metric used to measure the reflected power in this algorithm

guarantees lowering Γa, iteratively, for each pulse and each antenna element.
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Figure 4.1 ARC of the 4 antenna elements (Gaussian TIR).

Fig. 4.2 shows Γa, but with K-distributed TIR, where we can draw the same discus-

sion provided for the Gaussian TIR, noting that Γa is larger for most antenna elements.
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The proximal-based method provides a minimum relative reduction in Γa of 52.28% and

maximum reduction of 82.26%. To investigate the effect of each algorithm on the SINR
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Figure 4.2 ARC of the 4 antenna elements (K-distributed TIR).

improvement, Fig. 4.3 shows the average SINR versus the iteration number over the 1000

simulated TIRs for both considered distributions. It should be noted that the iteration num-

ber reported for the proximal-based method in the figure is that of the outer loop. The first

notice is that, on average, all the considered algorithms converge to a steady-state SINR

value after approximately the same number of iterations. For both distributions, the subar-
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ray configuration provides larger improvement of the SINR. The larger improvement of the

subarray configuration over the full MIMO array is ascribed to the formation of two phased

array radar within the MIMO radar, which enhances the processing gain of the receiver as

reported in [185]. For the Gaussian TIR shown in Fig. 4.3a, the Lagrange-based proposed

method provides the same SINR improvement as the standard algorithm, while the supe-

rior performance of the proximal-based proposed method comes on the expense of a lower

improvement of the SINR than the standard method. That is to say, while the proximal-

based method provides a superior Γa compared to all other considered algorithms, it still

improves the SINR by 7 dB approximately compared to the 9 dB improvement provided

by the standard and the proposed Lagrange-based methods. As shown in Fig. 4.3b for the

K-distributed TIR, Lagrange-based method cannot provide the same SINR improvement as

the standard method even without providing Γa at all pulses and antenna elements, while

the proximal-based method still provides the same SINR as for the Gaussian TIR along with

guaranteed superior Γa at all pulses and antenna elements. It should be emphasized that

the reduction in SINR improvement is inevitable if Γa is to be minimized by proper design

of the transmitted waveforms. The basic idea of maximizing the SINR is to minimize the

interference power while in the same time maximizing the target signal power by matching

the transmitted waveform to the TIR of the target of interest. However, constraining this

matching by a low reflected power form the transmitting antenna array has the effect of

limiting the maximization of the target power and, in turn, the SINR. This limitation of

the SINR improvement should be weighed in the light of the achieved power efficiency of

the transmitter and the protection of its power module. We give the results of the efficiency

under the two considered TIR distributions with the used antenna sizes at the end of this

section.

The TARC has been conventionally used as a figure of merit to evaluate the design of

MIMO antenna arrays as mentioned in Subsection 4.3.2. For both TIR distributions, the

TARC is calculated over all the array elements and all the transmitted pulses for each TIR.

Fig. 4.4 shows the empirical cumulative distribution function (ECDF) of the TARC over 1000

TIR realizations for both Gaussian and K-distributions. For both of these distributions,

it is depicted that the TARC for all algorithms does not exceed 0.5 with the standard,

Lagrange, and proximal gradient methods. Surprisingly, the ECDF of the TARC gives the

impression that the standard and the Lagrange-based design methods have better reflection

properties than the proximal based method. However, we emphasize that the TARC cannot
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Figure 4.3 SINR for the 4-element antenna array.

be used as a unique characteristic for the antenna design evaluation. While the TARC

provides an average measure of the whole antenna array, it does not reflect the actual

reflection properties encountered at each antenna element and each transmitted pulse as

we can obviously conclude by comparing Fig. 4.4 with Fig. 4.1 and Fig. 4.2.

To have a more comprehensive evaluation of the ARC, we present in Table 4.1 some sta-

tistical measures of the ARC for the simulated TIR from both Gaussian and K-distributions

denoted as “G” and “K”, respectively. We can see that both sample mean, µ̂Γ, and median,

Γ̃a, are approximately equal for all the considered algorithms and both TIR distributions.

This, again, asserts the importance of not depending solely on the average reflection prop-

erties of the MIMO antenna array. The sample standard deviation, σ̂Γ, shows very similar

values for the standard, Lagrange, and subarray methods with a relatively larger values for

the K-distributed TIR than that for the Gaussian TIR. However, the proximal gradient

method exhibits σ̂Γ that is down to half of that of the standard method in the case of the

K-distributed TIR. This means a lower scattering of Γa values around the mean.

To have a closer look on the trend of the scattering of Γa values around the mean, we

calculated the skewness of Γa, denoted as ς̂Γ. Except for the proximal gradient method, all

the considered methods have ς̂Γ > 4, which means that the Γa are scattered more to the right

of the mean, i.e., greater than the mean. It should be noted that symmetrically distributed

data has ς̂Γ = 0 [186]. We can also notice that ς̂Γ is larger in the case of K-distributed TIR
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Figure 4.4 TARC ECDF for the 4-element antenna array.

than the Gaussian TIR. Only the proximal gradient method has a negative skewness, which

means more scattered values of Γa are lower than the mean. Further, we seek to have more

information about the magnitude of the scattered values of Γa, which can be perceived from

measuring the tailedness of Γa values. We use the sample kurtosis, κ̂Γ, to measure the tail

heaviness of Γa values. The proximal gradient method provides the lowest κ̂Γ for both TIR

distributions, even lower than that of Gaussian distributed data for which κ̂Γ = 3 [186]. For

all the other methods, the values of κ̂Γ are much larger than that of the proximal method

with the K-distributed TIRs have larger κ̂Γ than that of the Gaussian TIR. This means a

much higher tendency of the standard, subarray, and Lagrange methods to have high-valued

outliers than that of the proximal-gradient proposed method. This explains the difference

between the average and worst-case evaluations of Γa shown in Fig. 4.4 compared to Figs 4.1

and 4.2, respectively. Moreover, this statistical analysis emphasizes our claim of the false

conclusions that can be drawn depending on the TARC.

4.5.3 Performance Evaluation with 8-Element Transmitting Antenna Array

In this subsection, we consider a larger transmitting antenna array with NT = 8 assuming

Gaussian and K-distributed TIR. In this size of antenna array, we consider the two possible

configurations of the subarray MIMO. The first configuration is two subarrays with each

subarray having four antenna elements, while the second configuration is four subarrays
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Method Standard Lagrange Proximal Subarray
Dist. G K G K G K G K
µ̂Γ 0.4025 0.4084 0.4028 0.4029 0.4002 0.4004 0.4044 0.4116

Γ̃a 0.3840 0.3857 0.3836 0.3838 0.4175 0.4176 0.3825 0.3873
σ̂Γ 0.1185 0.1429 0.1219 0.1213 0.0703 0.0704 0.1297 0.1562
ς̂Γ 4.1582 5.3415 4.3319 4.7418 -0.2620 -0.2612 4.0734 5.7962
κ̂Γ 48.67 60.54 46.30 69.10 2.08 2.09 43.09 70.13

Table 4.1 ARC statistical data of 4-element antenna array

with two elements in each subarray. In Fig. 4.5, Γa for each antenna element in the array

is shown with Gaussian TIR. The results shown here in Fig. 4.5 and in Fig. 4.1 are similar.

That is, with both of the subarray configurations, Γa can exceed that of the full MIMO

radar. We can also see that the proposed proximal-based method has the smallest Γa among

all other waveform design techniques, while the Lagrange-based waveform design method

cannot guarantee a lower Γa at all pulses and antenna elements.

The same can be shown for the K-distributed TIR in Fig. 4.6. We can see that the

proposed proximal-based method provides the best control over Γa along all the pulses and

antenna elements as in the case of Gaussian TIR. Conversely, both the standard and the

proposed Lagrange-based methods show high Γa that exceeds 1 at some antenna elements

and pulses. As a general remark, from Figs 4.1, 4.2, 4.5 and 4.6, we can see how Γa changes

from pulse to pulse and from one antenna element to another. The fast varying Γa challenges

the implementation of impedance matching circuits [187] and highlights the relevance of the

signal-processing handling of the reflection problem proposed in this work.

The effect of all the considered waveform design techniques on the SINR is shown in

Fig. 4.7. The improvement in the SINR with the proposed proximal-based method is lower

than that of the standard method with less than 3 dB as a cost for its superior reflection

performance. This reduction in SINR improvement is slightly greater than what the pro-

posed proximal-based method exhibits for the 4-element array. While the Lagrange-based

method does not guarantee lowering Γa at all pulses or antenna elements, it limits the SINR

improvement by more than 1 dB.

Fig. 4.8 shows the ECDF of Γt for the 8-element array. Just as we have shown for the

4-element array, the TARC ECDFs for the standard, Lagrange-based, and proximal-based

methods do not show a significant difference from those of the Gaussian TIR, despite the

relative reduction of probability of higher Γt in the proximal-based method relative to the
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other two methods. We can also observe that the subarray method has slightly higher TARC

values than the latter three methods. This emphasizes our previous conclusion about the

insufficiency of the average reflection performance represented by Γt that does not trace the

reflected power at each antenna element or each pulse.

The statistical data for the three waveform design methods and the subarray configuration

(2 subarrays), shown in Table 4.2, gives the same deduction as in Table 4.1. The proposed

proximal-based method provides the lowest scattering of the Γa around its mean value and

the lowest tendency to exhibit high-valued outliers among the 1000 simulated TIR of both
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Figure 4.5 ARC of the 8 antenna elements (Gaussian TIR).

distributions considered in this work. The data in Table 4.2 also corroborates the closeness of

the mean and median values of Γa for all the methods. We can also notice that κ̂Γ is greater

in the case of NT = 8 than in the case of NT = 4 for all considered algorithms. In addition,

ς̂Γ in the case of NT = 8 is greater than the case of NT = 4 for all algorithms, with that

of the proposed proximal-based has larger negative values, which means more compactness

around the mean.

To evaluate the effect of the proposed algorithm using the `∞-norm on the efficiency of
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Method Standard Lagrange Proximal Subarray
Dist. G K G K G K G K
µ̂Γ 0.3915 0.3924 0.3876 0.3881 0.3700 0.3699 0.4191 0.4211

Γ̃a 0.3766 0.3769 0.3755 0.3756 0.3617 0.3616 0.3983 0.3991
σ̂Γ 0.1130 0.1207 0.0955 0.0973 0.0807 0.0806 0.1105 0.1172
ς̂Γ 6.4826 7.2141 4.2844 4.1433 -0.9419 -0.9476 6.2984 6.7264
κ̂Γ 107.52 119.3 49.47 69.1 5.26 5.29 84.39 97.58

Table 4.2 ARC statistical data of 8-element antenna array
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Figure 4.6 ARC of the 8 antenna elements (K-distributed TIR).

the transmitting antenna, we need to calculate the ratio between the effective transmitted

power from each antenna element to its input power. The total reflected power from the jth

port is given by

P ref
j =

LT∑
k=1

NT∑
i=1

|SijFjk|2 (4.44)

where Spn and Fpn are the components of the (p, n)th element of S and F, respectively. On
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Figure 4.7 SINR for the 8-element antenna array.

the other hand, the input power fed to the jth antenna element is

P in
j =

LT∑
k=1

|Fjk|2 (4.45)

Therefore, the efficiency factor of the jth port can be expressed as

ηj = 10 log

(
1−

∑LT
k=1

∑NT
i=1|SijFjk|2∑LT

k=1|Fjk|2

)
(4.46)

The efficiency factors of all antenna elements of the two considered arrays over 1000 sim-

ulated TIRs from both Gaussian and K-distributions are shown in Figs 4.9 and 4.10. As

observed in these figures, the proposed algorithm with `∞-norm regularization guarantees

the efficiency factor to be better than -1 dB for the two considered antenna sizes and TIR

distributions. Conversely, we observe that the standard cognitive MIMO waveform design

method can have the efficiency factor as low as -5.5 dB for some antenna elements. It is also

obvious that the proposed method offers a stable efficiency factor at all antenna elements

for the two considered cases for both the TIR and antenna arrays.

It should be emphasized that the data depicted in Figs 4.9 and 4.10 is not related to that

illustrated in Figs 4.1, 4.5, 4.2 and 4.6 for the ARC. While the ARC expresses the total power
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Figure 4.8 TARC ECDF for the 8-element antenna array.

reflected to an antenna element compared to the input power to this element, the efficiency

factor relates the effective transmitted power from an antenna element to the input power to

this element. Of course, the effective transmitted power from an antenna element is closely

related to the total power reflected from this element. Therefore, there is no contradiction

to have some elements with a slightly higher efficiency, with 0.5 dB approximately, using the

standard method than the proposed method.

4.5.4 Complexity Analysis

The complexity of the `∞-based proposed method compared to the standard method is

evaluated through the calculation of the execution times of both algorithms using a machine

dedicated for this task with 64-bit Intel® CoreTM i7-6700 CPU @3.4GHz and 16 GB RAM.

Fig. 4.11 shows the execution time of the two proposed waveform design methods compared

to the standard algorithm in logarithmic scale. It is manifest that the proposed proximal-

based method provides the lowest execution time among the considered algorithms at all

array sizes. This result is not surprising since the proximal-based algorithm has two major

reductions in calculations compared to the standard and proposed Lagrange-based methods.

The first reduction is eliminating the calculation of Rc,f from Rc, which requires scanning

all the elements of Rc leading to a complexity of O((NTLs)
2). The second reduction is

replacing the calculation of the inverse of (Rc,h + hHRnhINTLs) by calculating the inverse
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of Sd. Obviously, in contrast to Rc,h, Sd is fixed and does not change with the proximal

algorithm iterations, so that its inverse is calculated once and stored to be used for all the

iterations6. With a complexity of O((NTLs)
3) of the inverse operation and O((NTLs)

2) of

the search operation compared to O(NTLs log(NTLs)) for finding the proximal operator of

the `∞-norm, the low complexity of the proposed proximal-based algorithm is justified.
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Figure 4.11 Execution times of the three considered waveform design meth-
ods.

4.6 Conclusion

In this chapter, we delved into the problem of power-efficient waveform design for cognitive

MIMO radars. We proposed two novel algorithms that maximize the SINR for a certain tar-

get of interest, while at the same time minimizing the reflected power from the transmitting

antenna array. The first proposed method adds an `2-norm regularization to the original ob-

6For lower memory storage in practice, the inverse of the matrix is calculated using lower-upper (LU)
factorization or using the block recursive inversion [188].
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jective function of the standard waveform design method and the resulting problem is solved

using Lagrange method. The second proposed method employs the `∞-norm regularization,

which results in a non-smooth term in the objective function. This non-smoothness necessi-

tates the use of the proximal methods, from which the proximal gradient method is chosen

to find the optimal waveform. The performances of the two proposed methods are compared

to the standard waveform design method and to the subarray configuration, the only solu-

tion introduced in the literature to reduce the reflected power, yet with point targets and

less degrees of freedom for the MIMO radar. Through extensive Monte Carlo simulations,

the proposed proximal-based method has demonstrated outstanding performance from the

reflection standpoint compared to the other considered benchmark methods in addition to

the lowest complexity. These merits come with the cost of a reduced improvement of the

SINR. This cost is considered low, especially when compared to the offered efficiency for the

radar transmitter and the guaranteed protection for its microwave components. The work

in this chapter lays the foundation for new methods of power-efficient waveform design.

In this chapter, we assumed that the TIR is known by the radar receiver apriori and we

also pointed out that the TIR is estimated if this knowledge is not available. In Chapter 5,

we deal with the problem of estimating the TIR under different distributions and generating

models.
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Chapter 5

Extended Target Frequency Response

Estimation Using Infinite HMM

In this chapter, we delve into the estimation problem of the target impulse response (TIR),

which has been assumed to be known apriori in the previous chapter. We introduce a

new estimation method of the TIR based on Bayesian nonparametric models. Moreover,

we introduce a new generating model and explore non-Gaussian distributions of the TIR.

Through extensive Monte Carlo simulations, we show the robustness of the proposed method

and its computational efficiency compared to the benchmark methods.

5.1 Introduction

As we discussed before in Section 2.4, cognitive radar systems are distinguished by their dy-

namic adaptation of their transmitter and receiver operations through continuous learning

from the environment [141]. One goal of the transmitter adaptation is to optimize its wave-

form relative to the target of interest. The radar may encounter two types of targets: point

targets, with dimension less than the radar range cell, and extended targets, occupying more

than one range cell. An extended target can be viewed as a combination of multiple point

targets and is modeled as a linear time-invariant or time-variant system and characterized

by its TIR or, equivalently, by its target frequency response (TFR) [88,189]. Since the TIR

is band-limited in practice [181], the spectrum of the transmitted waveform can be matched

to that of the TIR to improve radar detection [179].

In Chapter 4, we assumed that the TIR is known apriori by the radar. In practice,



5 Extended Target Frequency Response Estimation Using Infinite HMM 105

however, the TFR is unknown and is conventionally estimated as the hidden state of a state-

space model using a Bayesian filter. For a linear Gaussian state-space model, a Bayesian

filter is realized exactly by the Kalman filter (KF). For nonlinear Gaussian models, the

KF can be approximated using extended, decoupled, unscented, or cubature KF [141]. As

indicated in Section 2.6, if both the Gaussian and linear assumptions are not met, the

particle filter (PF) is the best possible approximation for the Bayesian filter [63]. Previous

works reported in the literature have focused on using the KF assuming Gaussian TFR and

interference (noise and clutter) with known statistics [6,179,180,190], which are not always

available. That is, the clutter signal can deviate from the Gaussian distribution and the TIR

may not admit a linear or Gaussian model. In this case, the PF is the most viable option

for TFR estimation. Moreover, the estimation performance of KF was evaluated within

a single pulse, but its tracking performance over multiple pulses was not considered [179].

The estimation accuracy of the TRF is vital for the operation of cognitive radars. That

is, it has been proven in [23] that minimizing the minimum mean square error (MMSE) of

the TRF estimation is equivalent to maximizing the mutual information between the target

return and the transmitted signal. This leads to a better target detection and optimal target

information extraction [22,191].

In contrast to KF, the hidden Markov model (HMM) is not limited to linear Gaussian

models. While in the KF the state transitions follow a continuous Gaussian linear model,

the HMM assumes discrete states whose transitions follow a Markov chain. Interestingly,

the discrete states assumption is well-suited to modern digital radar receivers, where the

amplitudes of the processed signals are quantized to a finite number of values [192]. These

observations motivate our investigation of applying the HMM to the TFR estimation prob-

lem. However, in a similar manner to KF and PF, to apply HMM to TFR estimation the

model structure (e.g., transition probabilities) must be known, which is rarely the case. A

promising solution to this difficulty is the nonparametric Bayesian framework, which when

applied to the HMM results in the infinite HMM (iHMM).

In this chapter, we provide a new formulation for the TFR estimation problem that

makes it amenable to iHMM-based solutions. Further, we propose a new iHMM-based

TFR estimation method that inherits all the desirable properties of nonparametric Bayesian

approaches that is, it does not require any prior knowledge about the statistical properties of

the TFR or the interference. Monte Carlo simulations are performed to compare the proposed

method with the KF assuming Gaussian TFR and interference. We take the performance
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analysis a step further than the literature by considering the tracking performance over

multiple pulses rather than the estimation performance at a single pulse. Moreover, we

extend the analysis to the non-Gaussian TFR or clutter cases, for which we develop the

PF and use it as a benchmark. Furthermore, we put forward a new generating model for

the TIR instead of the linear state-space model considered in the literature so far. Finally,

we consider severe operating conditions such as smart noise jamming, which has not been

considered before in TFR estimation context. Our simulations show that the proposed

method outperforms KF and PF in terms of tracking error in all considered scenarios. Since

there is no benchmark in the literature for the non-Gaussian case, we applied the PF to the

TFR estimation as a benchmark. Regarding the complexity of the proposed method, the

latter shows lower complexity compared to the PF at all TRF distributions and generating

models.

The remainder of the chapter is organized as follows. Section 5.2 is a background on

the extended target model. The TFR generating models and distributions are discussed in

Section 5.3, in which we propose a new generating model for the TRF. In Section 5.4 we

introduce our new formulation to the TRF estimation problem. Section 5.5 provides the

details of the proposed method to estimate the TRF equipped with the new formulation

introduced in the previous section. The performance of the proposed algorithm is compared

to that of Kalman and PFs in Section 5.6. Section 5.7 is a summary.

5.2 Extended Target Model

Let g̃ ∈ CLs be the discrete-time transmitted radar waveform, which is fixed for M pulses,

where Ls is the number of samples. A target with a range span larger than the radar’s range

cell can be divided into multiple, say Lt, discrete scattering centers, as shown in Fig. 5.1.

Hence, after a time delay corresponding to its range from the radar, the reflected signal from

the ith scattering center is [189, Ch. 9] [193]

xi = g̃ ∗ (
√
pt

P∑
j=0

bij)
Lt∑
i=1

δ(t− τi) (5.1)

where * denotes convolution, τi is the time delay corresponding to the ith scattering center,

bij ∈ C is the reflection coefficient of the jth reflecting surface within the ith scattering center,
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Figure 5.1 Extended target model.

pt is the average transmitted power of the radar, and P is the total number of reflecting

surfaces within the ith scattering center. It should be noted that the radar antenna gain1,

path loss, and the radar cross sectional area of a reflecting surface are all absorbed in bij.

Hence, the TIR can be expressed as [193]

h̃ =
Lt∑
i=1

Aiδ(t− τi) (5.2)

where Ai =
∑P

j=0 bij is a random scalar representing the amplitude of the ith scattering

center. The model in Eq. (5.2) is known as the scattering center model. Therefore, the

extended target can be seen as a composition of Lt point targets.

When the P reflections are approximately equal, Ai can be modeled as a Gaussian random

variable, where the central limit theorem applies 2. In this case, the total received signal at

the mth pulse r̃(m) ∈ CLs+Lt−1 is

r̃(m) = g̃ ∗ h̃(m) + c̃(m) + ñ(m) (5.3)

h̃(m) ∈ CLt is the target impulse response, which changes on a pulse-to-pulse basis, c̃(m) is

the clutter vector and ñ(m) is the noise vector. In this work, ñ(m) and c̃(m) are modeled as

1Monostatic radar configuration is assumed in this chapter.
2It was reported in [189, Ch. 9] that the Gaussian approximation is valid while P can be as low as 10 .
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independent random vectors with ñ(m) ∼ CN (0,Σn), while the distributions of h̃(m) and

c̃(m) are discussed later.

After passing through an analog-to-digital converter (ADC), the baseband received signal

r̃(m) is passed through a receive filter of length Ls. The filter output of length Lr = 2Ls+Lt−2

is then transformed to the frequency domain via an Lr-point discrete Fourier transform

(DFT). Denoting T{·} as the combined effect of the Lr-point DFT and the receive filter

operations, which are both linear, the frequency-domain received signal is

r(m) = Gh(m) + c(m) + n(m) (5.4)

where r(m) = T{r̃(m)}, G = diag(T{g̃}) is the diagonal matrix of T{g̃}, h(m) is the target

frequency response (TFR), c(m) = T{c̃(m)}, and n(m) = T{ñ(m)}.
The TFR is usually assumed to be linear and Gaussian distributed, an assumption that

is validated if there are at least 10 scattering centers with approximately equal reflections, as

the central limit theorem applies [88,189]. In this case, the Bayesian filter for TFR estimation

is realized using the KF. However, the TIR may deviate from the Gaussian distribution, as

we will show shortly. Moreover, the clutter signals in many radar environments are non-

Gaussian [194]. In such nonlinear and non-Gaussian models, the PF can be used [63], which

is not limited to linear or Gaussian assumptions. The PF approximates the Bayesian filter

by using sequential importance sampling, which represents the posterior distribution of the

states by weighted particles [64] as shown in Section 2.6.

The lack of prior knowledge about the TFR distribution hinders the choice of the right

approach for its estimation and tracking (over pulse index m) the TFR. Even if this infor-

mation is available, knowledge of the distribution parameters would be necessary for the

proper design of the Bayesian filter or any of its approximations. In this chapter, we are

concerned with estimating and tracking h(m) from the received signal r(m) without any prior

information about h(m) or interference terms c(m) and n(m).

5.3 TFR Generating Models and Distributions

Before delving into the TRF estimation problem, we discuss the TRF, or equivalently the

TIR, generating models. This discussion is important for two reasons. The first reason is that

employing the most realistic generating model is essential to the reliability of the assessment
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of different estimation approaches. The second reason is that all the related previous work

in the literature has assumed the linear state space model as the exclusive generating model

of the TIR. This assumption, along with the Gaussian assumption, led to the prevalence of

the KF in TFR estimation as the best candidate for estimating the TRF. In this section, we

investigate this assumption and whether it is based on experimental data or not. Moreover,

we discuss the different distributions of the TIR according to the available measured data

published in the literature.

5.3.1 Linear State Space Generating Model

The TFR is conventionally modeled as a state-space model [179],

h(m) = e−Tr/ζh(m−1) + v(m−1) (5.5)

where ζ is the decay time constant, Tr is the radar pulse repetition interval, and v(m−1) is the

white Gaussian state noise vector in frequency domain. Both v(m−1) and h(m−1) are assumed

to be independent.

Comparing Eq. (5.5) to Eq. (2.41) in Subsection 2.6.3, we can say that the model assumed

for the TIR is a very special case of the linear state space model. That is, in Eq. (5.5) the

transition matrix is not only assumed to be time-invariant, but it is also reduced to a scalar.

Besides the constraints this model imposes on the generation of the TIR, there is a crucial

question about the validity of these assumptions in real scenarios.

5.3.2 Correlated Random Process Model

We noticed that the linear state space model in Eq. (5.5) has been used recently in the

literature, but it is not based on real measured data. We traced the use of Eq. (5.5) in the

literature, and we found out that the first time it has been used was in [195] based on the

fact that “the TIRs of different time in a short interval are correlated, and the correlation

coefficient decreases with increasing time interval”. However, this statement, which is based

on measured data reported in [196], does not dictate or suggest a certain generating model

as the one in Eq. (5.5), which has been later followed in [179,190,197].

Nevertheless, the measured data from real targets suggests that the correlation model

of target return follows a first-order Markov process [198]. This conclusion also agrees with
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Edrington’s findings in [199], also based on measured data, that the target returns are

exponentially correlated. Therefore, the only available information about the generating

model of the TIR, based on experimental data, is about the correlation of this model. The

correlation matrix of the TIR is expressed as [200]

Ψh =
[
ρ
|i−j|
h

]
, 1 ≤ i, j ≤ Lt (5.6)

As noticed from Eq. (5.6), the correlation properties of the TIR admits the same form as

that of the clutter in equations (3.35) and (3.34) as we have shown in Chapter 3. With this

available information about the generating model of the TIR and the distributions to which

the TIR measured data has been fitted, it is more convenient to model the TIR as a random

vector generated from a correlated random process. In this regard, we propose to model the

TIR using an SIRP, which has been shown before in Section 3.3, as a less restrictive model

than the linear state space model conventionally assumed in the literature.

5.3.3 TFR distributions

As we have noticed in the literature, both the Gaussian distribution and the linear state

space model have been jointly assumed for the TIR. These assumptions facilitate the task of

estimating the TIR and make it viable for the KF to be employed. However, as we disputed

the validity of the linear state space model to the TIR in the previous section, we bring the

generalization of the Gaussian TIR assumption into question.

The conditions for the Gaussian assumption are not always met in real scenarios. As

Swerling outlined in [201] for point targets, and the same is applied for extended targets

under the scattering-center model, the random amplitude Ai in Eq. (5.2) deviates from the

Gaussian assumption when a scattering center is formed of a dominant reflection and other

roughly equal small reflections. Even without physical justification, several non-Gaussian

distributions fit the measured reflections from different target types [181,202].

Measured data for different target types suggests different non-Gaussian distributions,

among them the Log-normal, Weibull, and K-distributions, which are common to different

targets types [203]. The Log-normal distribution can be easily generated by applying the

exponential function to a complex multivariate Gaussian distribution and the generation

of the complex multivariate K-distribution has been discussed under the SIRP in Section

3.3. Unfortunately, the generation of the complex multivariate Weibull distribution is not
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straight forward as the complex multivaraite K-distribution. As mentioned in Eq. (3.8) in

Section 3.3, and revisited here for convenience, the SIRV is on the form

h̃ = vy, (5.7)

where y ∈ CLt follows a complex Gaussian distribution CN (0,Σ) with zero mean and covari-

ance matrix Σ, and v is a positive random variable. The pdf of v for the complex multivariate

Weibull distribution is given in terms of infinite summations [204]. To approximate these

summations, [92] suggested using an algorithm based on the Rejection Method, which can

be computationally unattainable for low values of shape parameters and high dimensions.

Furthermore, in [205] the ZMNL method has been employed to generate the mutlivariate

complex Weibull distribution. However, as we have also mentioned in Section 3.3 for mul-

tivariate complex distributions, the ZMNL method suffers from the difficulty of controlling

the pdf and the correlation matrix of the generated vectors at the same time. A better

approximation for the multivariate complex Weibull distribution has been recently proposed

in [206], which also uses the Rejection Method. The envelope r of the complex multivariate

Weibull distribution for an Lt-dimensional vector h̃ is given by

fH(r) =
2(−1)Lt

Γ(Lt)

Lt∑
k=1

Ck
ak

k!
rkb−1 exp(−arb) (5.8)

where a > 0 and 0 < b ≤ 2 are the scale and shape parameters and

Ck =
k∑

m=1

(−1)m

(
k

m

)
Γ(1 + mb

2
)

Γ(1 + mb
2
− Lt)

(5.9)

To generate the pdf of v, the variable w, where v =
√
w, is first generated and its pdf is

given by

fW (w) = ab(2π)b/2−1

∞∑
n=0

(−a(
√

2w)b)n

n! Γ(1− b
2
(n+ 1))

. (5.10)

Performing one-to-one transformation from w to x = (2a′w)b/2, where a′ = a2/b, the pdf of
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x is

∞∑
n=0

(−x)n

n! Γ(1− b
2
(n+ 1))

(5.11)

This infinite summation can be upper-bounded by the exponential pdf defined for a variable

z by

fZ(z) = λ exp(−λz) (5.12)

and λ = 1/Γ(1− b
2
). The Rejection Method can be used to generate v with the upper bound

in Eq. (5.12) and reversing the performed one-to-one transformation.

5.4 TRF Estimation: A New Formulation

In this section, we formulate of TFR estimation as a nonparametric Bayesian iHMM esti-

mation problem and provide its solution.

5.4.1 HMM as a Stochastic Finite State Machine

A finite state machine (FSM), also known as finite state automaton, consists of a set of

states, a set of outputs (observations), an optional set of inputs, a transition function that

controls the evolution of the states, and an emission function that describes the evolution of

the observations [207]. Stochastic FSM (SFSM) is an FSM in which the transition and/or

the emission functions are probabilistic. The simplest form of the SFSM is the Markov

model, where the observations are associated to the states. The HMM is an extension to the

simple Markov model in which the states are hidden from the observer, which suits many

applications as channel modeling [208,209], speech signal processing [73,210], and many other

applications. As we have briefly discussed in Chapter 2, the HMM has been considered in

the literature as the cousin of state space models under the umbrella of graphical Bayesian

models. However, HMM does not dictate generating models for the states or the observations,

as the state space models. Conversely, the HMM probabilistically describes the dependencies

among the states and observations regardless of their generating models. While the state-

space model are susceptible to the generating model mismatch, the HMM does not assume

a generating model at all.
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As we discussed in Chapter 2, the main trend in the literature is to differentiate between

KF, or the Bayesian filter in general, and the HMM based on the continuity of the states

and the outputs. However, we argue that this is not quite accurate. As a matter of fact, the

signal processing community has employed discrete time KF, as in [211] to give an exam-

ple. Moreover, the continuous-time HMM (CT-HMM ) has been used recently in different

applications and different fields [212–214]. While the CT-HMM still assumes finite space of

states, the iHMM can relax this assumption, as we will show shortly. Therefore, we believe

that the distinguishing feature of the HMM over the Bayesian filters is that the former is

not restricted to a generating model and is concerned only with the probabilistic model of

the states and observations. Therefore, viewing the HMM as an SFSM is a more accurate

and generic approach than viewing it as a variant of the state space model as claimed by

Murphy in [61]. In addition, it is also more accurate than distinguishing the HMM from the

state-space model based on the continuity of the states. In the following, we introduce a

new scope of the TRF estimation based on the HMM as an SFSM.

5.4.2 TFR Modeling Using HMM

In related previous works, h(m) is considered as a random vector with known distribution

and generating model. This vector is estimated recursively over the pulse index m using a

Bayesian filter [179]. Alternatively, we propose estimating h(m) = [h
(m)
1 , · · · , h(m)

l , · · · , h(m)
Lr

]T ,

where h
(m)
l denotes the lth frequency sample, by considering a recursion over the frequency

index l within each pulse. The fact that the observations r(m) = [r
(m)
1 , · · · , r(m)

l · · · , r(m)
Lr

]T are

quantized to a finite number of quantization levels allows us to assume a discrete model for

the amplitudes of the TFR samples. Regardless of the TFR generating model or distribution,

the finite set of values taken by h
(m)
l can be seen as the possible states in a scalar SFSM.

In this SFSM, the sample amplitude at frequency l can transit from a given state to any

other state at frequency l + 1 according to a certain probability distribution. Specifically,

the TFR samples for each pulse can be modeled as an HMM, in which the output value (i.e.

r
(m)
l ) associated to each state is also stochastic and the states are hidden from the observer.

The proposed formulation differs from the Bayesian filter not only in the employed tool but

also in the scope. The Bayesian filter considers the TRF as a random vector and track its

evolution from pulse to pulse based on their statistics, assumed to be known. The proposed

formulation, however, views the samples of the TRF of each pulse as the random variables



5 Extended Target Frequency Response Estimation Using Infinite HMM 114

of an SFSM, specifically HMM, based on a learned transition model that is updated each

pulse.

To apply the HMM to the TFR at the mth pulse, the components of h(m) are considered

as the hidden state sequence, while the components of r(m) are the observations. Each

sample of h(m) or r(m) can take any value from the discrete level sets, Q = {q1, · · · , qNs} or

O = {o1, · · · , oNo}, respectively. Without loss of generality, it is assumed that Ns = No ≡ N ,

where N denotes the quantization levels of the used ADC. Within the mth pulse, we assume

that the components of h(m) form a Markov chain of first order, that is

Pr(h
(m)
l = qi|h(m)

l−1 = qj, · · · , h(m)
1 = qk) = Pr(h

(m)
l = qi|h(m)

l−1 = qk) (5.13)

where 1 ≤ i, j, k ≤ N and 1 ≤ l ≤ LR. We also assume a homogeneous HMM within

the same pulse, but not from pulse to pulse. That is, the probabilities in Eq. (5.13) do not

depend on l but may change with m. To simplify the notation, we temporarily drop the

index m noting that the following steps are applied to each pulse.

To estimate the hidden states, the HMM structure should be specified a priori. For

1 ≤ l ≤ Lr, this structure is defined by:

1. The discrete sets of states Q and observations O.

2. The state transition matrix A defined as

A = [aij] = Pr(hl = qj|hl−1 = qi), 1 ≤ i, j ≤ N (5.14)

3. The emission matrix B is

B = [bij] = Pr(rl = oj|hl = qi), 1 ≤ i, j ≤ N (5.15)

4. The prior distribution of the states π.

Both A and B do not depend on l based on the homogeneity assumption. To achieve both

low quantization noise and high dynamic range, the number of bits of the ADC can be as

high as 14 bits or more [215]. This implies transition and emission matrices of very high

dimensions, let alone the difficulty of obtaining prior knowledge about them. To solve these
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problems, nonparametric Bayesian models allow the parameters to grow or shrink according

to the observed data rather than assume a fixed number of parameters [216].

5.5 TFR Estimation and Tracking

In this section, we provide a discussion about the Bayesian non-parametric (BNP) models3,

which may be unfamiliar to the radar signal processing community. From the BNP, we set

the stage for the iHMM to be employed in the TRF estimation problem.

5.5.1 Bayesian Nonparametric (BNP) Models and Dirichlet Process

Before delving into the BNP models and how they differ from conventional Bayesian para-

metric models, we need first to clarify what is meant by “non-parameteric”. The importance

of this clarification stems from two reasons. The first is that there is no agreement on a

unique definition of the term between the statisticians [217] and the second, and the most

important, is that we use the term in Chapter 3 in a way that may seem different from the

way we are going to use in this chapter.

Conventional Bayesian models consists of a set of parameters and a prior distribution.

The prior distribution is then updated to the posterior distribution using the observa-

tions [218]. As Jacob Wolfowitz4 outlined, the parametric statistical analysis is the one where

the distribution is determined by a finite set of parameters. He denoted the non-parametric

case as the one where functional forms of those distributions, in terms of their parameters,

are unknown [220]. Therefore, the non-parametric statistical analysis tries to use the mini-

mum number of assumptions about the underlying distribution. From this standpoint, the

non-parametric statistical methods are commonly denoted as the distribution-free methods.

However, we emphasize that using the two terms, non-parametric and distribution-free, as

synonymous terms is not quite accurate. That is to say, while the non-parametric analysis

involves one or more unknown parameters of the distribution, distribution-free tools do not

make any assumptions about the form of the entire distribution [221]. In Chapter 3, we used

the term “non-parametric” in the context of the proposed NHD to refer to a distribution-free

detector.

3We use the term “statistical model” to denote a probabilistic measure on the sample or observations.
4Jacob Wolfowitz is a mathematician who first coined the term “non-parametric” in a seminal paper in

1942 [219].
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Recently, “non-parametric” has been used in a way that can be seen as a generalization

to Wolfowitz’s definition, in which the model is determined by an infinite set of parameters.

This allows the model parameters to grow with the observed data without specifying the

cardinality of the parameters’ set. In other words, the word “non-parametric” in the context

of BNP does not mean the model does not have any parameters, but, in fact, it has infinite

set of parameters. This recent definition of non-parametric models is the one used in this

chapter.

The BNP models are probability models with infinite number of parameters. There-

fore, following the Bayesian framework, we need to use a prior distribution on an infinite

dimensional space with the following desirable properties: (1) a large support and (2) sim-

ple posterior inference [222]. The Dirichlet process has been introduced in [223] to fulfill

these requirements. A Dirichlet process is a random probability measure that generates a

distribution F for any measurable partitions A1, · · · , AK of the sample space. The vector of

random probabilities F (Ai) follows a Dirichlet distribution that is defined by [222]

[F (A1), · · · , F (AK)] ∼ Dir(αF0(A1), · · · , αF0(AK)) (5.16)

where α > 0 known as the concentration parameter and F0 is a distribution known as the

base measure. The Dirichlet distribution, denoted also as D(α, F0), can be better understood

with the aid of the stick-breaking process.

Definition (Stick-breaking process) Let c > 1 be an integer and βc be independent, the

stick length ι is

ι1 = β1 (5.17a)

ιc = βc
∏

1<c′<c

(1− βc′) (5.17b)

The process starts with a stick of unit length from which a proportion βc is broken at the

step c and the remaining is kept for the subsequent proportions. The proof of the equivalence

between the stick-breaking process and the Dirichlet distribution can be found in [224].

As we mentioned above, one of the attractive properties of the Dirichlet distribution is the

simple form of its posterior distribution. Assume x1, · · · , xn ∼ F and δx(.) is the delta Dirac

function at x, then the posterior distribution F |x1, · · · , xn is proportional to a Dirichlet

distribution D(α + n, F0 +
∑n

i=1 δxi). This means that the posterior distribution of the
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Dirichlet prior is also a Dirichlet distribution. The extension of the Dirichlet distributions to

the infinite dimension is straight forward by letting K, c→∞ in equations (5.16) and (5.17).

5.5.2 Employing iHMM in TFR Modeling

Inspired by the nonparametric Bayesian models and the new formulation we introduced for

the TRF estimation problem using HMM, the problem of determining A and B can be

avoided using an iHMM with unbounded number of states [225]. In iHMM, only a finite

number of states, say K, are invoked initially at m = 1; K may grow or shrink for m > 1

depending on r(m). Each row of A or B is modeled using a Dirichlet process (DP), also

known as stick-breaking process, which does not need prior knowledge of the number of

states that is possibly unbounded (in our application K ≤ N). As both r and h are for the

same target, the DP of the rows of A as well as those of the rows of B should be linked. To

model this relationship, we propose using the hierarchical DP (HDP) [226].

For any γ > 0, we define the infinite length random vector β = [βi]
∞
i=1 , Stick(γ)

as [226]

βi = β̂iΠ
i−1
k=1(1− β̂k) (5.18a)

β̂k
iid∼ Beta(1, γ) (5.18b)

where Beta(1, γ) denotes the Beta distribution with shape parameters 1 and γ. The ith row

of A of length K is

ai = [aij, · · · , aiK ] ∼ Dir(αβ1, · · · , αβK) (5.19)

where α is a non-negative scalar as before. The emission matrix B is generated in the same

way as in equations (5.18) and (5.19), but using βe, γe, and αe. Therefore, using HDP, the

rows of A are linked through the common vector β. Similarly, the rows of B are linked

through the common vector βe. The prior probabilities of the states are generated as a

random vector, that is

π ∼ Dir(βiK , · · · , βiK) (5.20)

where the parameter βi is generated as a random vector distributed uniformly over a K-
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dimensional hypersphere. It is should be noted that the proposed algorithm does not depend

on the choice of the prior-probabilities vector π.

Therefore, using only four hyperparameters α, αe, γ, γe, the iHMM model is fully specified

and controlled. Specifically, choosing higher values of hyperparameters the model is more

biased to explore new states, while using lower values of the hyperparameters makes the

states more concentrated around lower number of atoms in β and βe.

For a constructive definition and better understanding of the HDP, we opt for the hierar-

chical Polya urn scheme shown in Fig. 5.2. Polya urn schemes are used to represent discrete

probability distributions through filling colored urns with colored balls. For hierarchical

Polya urns, we have an additional urn denoted as oracle urn [227]. We denote the number of

balls of color j in a Polya urn of color i as nij. We also record the color of the last drawn ball.

As Fig. 5.2 depicts, we choose a ball of color i to be put in an urn of color j with a probability

proportional to the number of balls of color i in the urn of color j. With a probability α, we

query the oracle urn. We choose a ball with a certain color according to the number of balls

of this color in the oracle urn, otherwise we choose a new color with a probability γ. The

number of balls of color j in the oracle urn is denoted as noj . In iHMM, nij corresponds to

the probability of moving from state i to state j, while noj and α are common to all states.

From Fig. 5.2 we can grasp the idea behind the fact that the larger the values of α and

γ with respect to nij and noij, respectively, the higher the tendency of the iHMM algorithm

to explore new states. The same is applied to the hyperparameters αe and γe.

5.5.3 TFR Estimation Using iHMM

In the following, we show how to infer the state sequence h and the iHMM hyperparameters

α, αe, γ, γe for each pulse.

5.5.3.1 TFR inference

The first step in estimating h is to estimate the posterior probability density function (pdf)

f(hl|r1:l) of the lth sample within the Lr samples, where r1:l = [r1, · · · , rl]. The canonical

state inference algorithm is the Gibbs sampler, however, its convergence is slow, especially

with correlated data. Moreover, the posterior and the prior pdfs of h should be conjugate5

5Conjugate distributions are members of the same distribution family. An example of these families is
the exponential family that includes Dirichlet, normal, exponential, and Gamma distributions.



5 Extended Target Frequency Response Estimation Using Infinite HMM 119

Figure 5.2 Hierarchical Polya urn scheme.

[228]. However, most of the measured data for radar clutter are correlated and the conjugate

posterior needs a priori information about the prior probability distribution that is not

usually available. To avoid these drawbacks, we adopt another inference algorithm, the

beam sampling [228].

The beam sampler utilizes auxiliary variables to reduce the states of A and B at each l

resulting in a finite number of states. Consequently, dynamic programming algorithms can

be used to estimate the posterior pdf of the states as in the conventional HMM. Using the

auxiliary variables u1:Lr = [u1, · · · , uLr ], the posterior pdf can be estimated as [228]

f(hl|r1:Lr , u1:Lr) ∝ f(rl|hl)
∑

ul<Pr(hl|hl−1)

f(hl−1|r1:l−1, u1:l−1) (5.21)

In Eq. (5.21), the sum at each l is evaluated only over a limited number of states, say Ku, out

of the invoked states K, whose transition probabilities exceed a threshold ul. The choice of

ul is important. On one hand, a large ul may result in underestimating the actual number of

states. On the other hand, a small ul may result in a higher number of states that increases

the complexity of the model and the resulting error. The threshold is conventionally taken
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as [225]

ul ∼ U(0,Pr(hLr |hl−1)) (5.22)

with U(a, b) denoting the uniform distribution in the interval [a, b]. It can also be generated

as [227]

ul ∼ Pr(hLr |hl−1)Beta(w, z) (5.23)

with w, z > 0. In the latter case, the appropriate choices of w and z, which have not been

specified in the literature, should force ul to be either close to 0 or Pr(hLr |hl−1).

In this work, we propose adjusting ul depending on the pulse number m. Since there is

no prior information about the true states of h(m), the model is initialized at m = 0 with a

low K. As m advances, the number of the invoked states K grows and, consequently, their

relative transition probabilities tends to be lower. Therefore, ul needs to be decreased as

m increases, otherwise the number of surviving states Ku will be too low for an accurate

estimation of h(m). The details of the choice iHMM parameters are provided in Section 5.4.

Finally, to estimate the state sequence h, hLr is first sampled using f(hLr |r1:Lr , u1:Lr),

then the backward induction is used to estimate the remaining states from the posterior pdf

as [228]

f(hl|hl+1, r1:Lr , u1:Lr) ∝ f(hl+1|hl, ul+1)f(hl|r1:l, u1:l) (5.24)

In this work, we employ the forward-backward algorithm [73] to infer the state at each time

step as shown in Algorithm 6, where the lth column of the matrix X is denoted as collX

and � denotes the Hadamard multiplication. The process of estimating h(m) is performed

for each received signal r(m), where the hyperparameters inferred based on h(m−1) are used

in generating A and B to estimate h(m).

5.5.3.2 Inference of hyperparameters

After inferring the states, we infer the model hyperparameters α, γ, αe, and γe as a second

step. For A, at m = 0 the two hyperparameters α and γ are initialized as [228]

α(0) ∼ Gamma(aα, bα), γ(0) ∼ Gamma(aγ, bγ), (5.25)
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Algorithm 6 Forward-backward Algorithm

Input: A,B,π
Initialize: ε1 = π � col1(B),τLr = 1

ε1, τLr ∈ RK

for l = 2 to Lr do
εl = Aεl−1 � coll(B)

end for
for l = Lr − 1 to 1 do
τ l = Acoll+1(B)� τ l+1

ϕl = τ l�εl
εTl τ l

ĥl = argmax1≥i≥K ϕl(i)
end for

where Gamma(a, b) denotes the Gamma distribution with shape parameter a and inverse

scale parameter b, where aα, bα, aγ, bγ > 0. At the mth pulse, α(m) is generated as [229,

eq. (47)]

α(m) ∼ Gamma(aα + E −
Ku∑
k=1

ek, bα −
Ku∑
k=1

log qk), (5.26)

where ek is a binary variable that randomly takes a value of 0 or 1, E is the number of

inferred states within h(m) obtained after solving the dynamic program in the TFR inference

step, and qk ∼ Beta(α(m−1) + 1, n) with n being the number of times each state of E is

visited. Moreover, γ(m) is obtained by [226, eq. (13)]

γ(m) ∼ πηGamma(aγ + E, bγ − log(η)) + (1− πη)Gamma(aγ + E − 1, bγ − log(η)) (5.27)

where

πη = (aγ + E − 1)/(E(bγ − log(η))) (5.28)

and

η ∼ Beta(γ(m−1) + 1, E) (5.29)
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Equations equations (5.25), (5.26) and (5.27) can be applied to infer αe, γe given hl using

aαe , bγe as initialization parameters, Ke
u as the number of surviving output values, ne as the

number of times an output value is visited, and Ee as the total number of visited observations.

The steps of the proposed method based on beam sampling for the inference of the states

and the hyperparameters are shown in Algorithm 7.

Algorithm 7 Beam sampling of TFR iHMM

Input: A,B,π
Initialize: h

(0)
1:Lr

, α, αe, γ, γe,A,B
for m = 1 to M do

Generate u1:Lr

Apply Algorithm 6 ∀ Pr(hl|hl−1)> ul
Sample hT−1:1 from Pr(hl|ht+1, y1:Lr)
Sample α, αe, γ, γe,A,B using equa-

tions (5.25), (5.26), (5.27) and (5.19)
end for

5.6 Performance Evaluation

In this section we evaluate the TFR estimation accuracy of the proposed iHMM-based

method and compare it to the particle and KF through Monte Carlo simulations.

5.6.1 Simulation Setup

Here, we briefly give the details of the simulation parameters and assumptions for the radar

signal, clutter, TFR, the proposed iHMM-based estimator, Kalman, and particle filters.

5.6.1.1 Radar and clutter signal models

The radar transmitted waveform g̃ is simulated as a linear frequency modulated signal with

1 MHz bandwidth and 4 µs pulse width sampled at 2.5 MHz and the ADC has N = 214

quantization levels. The clutter vector c̃ is generated in the same way as h for both Gaussian

and K-distributions with a covariance matrix

Σc = [0.9|i−j|], 1 ≤ i, j ≤ Ls (5.30)



5 Extended Target Frequency Response Estimation Using Infinite HMM 123

The noise vector c̃ ∼ CN (0, ILs), where ILs is the identity matrix with dimension Ls.

5.6.1.2 Kalman Filter Design for TFR Estimation

The performance of the proposed method is compared to the KF in the case of Gaussian h(m)

and c(m) assuming a linear state space model. The minimum mean square error (MMSE)

estimator is used to initialize the KF, which is given by [23,230]

h(0) =
(
GHG + DRiD

HR−1
h

)−1
GHr(0) (5.31)

where D is the diagonal matrix of the receive filter in the frequency domain, Ri is the total

interference covariance matrix, clutter plus noise, in the frequency domain, and Rh is the

covariance matrix of the TRF. The final estimate is taken after 50 filter iterations. The

recursion of this KF is based on equations (2.44) and (2.45) and is shown below

Prediction step

ĥ(m)− = exp(−Tr/ζ)ĥ(m−1) (5.32a)

P(m)− = exp(−2Tr/ζ)P(m−1) + (1− exp(−2Tr/ζ)Rh (5.32b)

Update step

K(m) = P(m)−GH
(
GP(m)−GH + DRiD

H
)

(5.33a)

ĥ(m) = ĥ(m)− + K(m)(r(m) −Gh(m)−) (5.33b)

P(m) = P(m)− −K(m)GP(m)− (5.33c)

where ĥ(m)− and ĥ(m) are the a priori and a poteriori estimates of the TIR, respectively,

P(m)− and P(m) are the a priori and a poteriori error covariance matrices, respectively, and

K(m) is the Kalman gain; all at the mth pulse.

5.6.1.3 Particle Filter Design for TFR Estimation

In the case of K-distributed h(m) and/or c(m), we apply the particle filter as we explained in

Section 2.6. The number of particles is Np = 50 as recommended in [231] for the considered

signal dimension, with the ith particle at the m-th pulse having a weight w
(m)
i calculated



5 Extended Target Frequency Response Estimation Using Infinite HMM 124

as [64, eq. (63)]

w
(m)
i ∝ w

(m−1)
i f(r(m)|h(m)) i = 1, · · · , Np (5.34)

where f(r(m)|h(m)) is the likelihood pdf of r(m), which is as deduced for the a mixture of K-

distributed clutter and Gaussian noise in [232] as

fI(i) =

∫ ∞
0

fV (v)
1

(2π)Ls|vΣc + ILs|
1
2

exp

(
−1

2
iH(vΣc + ILs)

−1i

)
dv (5.35)

where i = c̃(m) + ñ(m) and Eq. (5.35) is solved numerically. To overcome the degeneracy

problem, the particles with negligible weights are removed and Np particles are resampled,

each with a weight 1/Np [64].

For the PF and KF, we assume three cases. In Case I, the filters have complete prior

knowledge about the statistical parameters of h(m), c(m), and n(m). Case II assumes partial

knowledge of the three vectors, that is, the distributions are known, but not their parameters.

In Case III, the filters have no prior knowledge about the three vectors.

5.6.1.4 Parameters of the Proposed iHMM for TFR Estimation

In the iHMM, we found through simulations that ul = 10−κU(0,Pr(hl|hl−1)), with κ =

0.15m, is an appropriate value. There are no recommended values for aα, aγ and bα, bγ in the

literature, but we found aα, aγ ∼ U(1, 10) and bα, bγ ∼ U(0.1, 1) to be appropriate. Again,

these choices are independent on the distribution or the generating model of h(m).

The estimation error for all algorithms is calculated over M = 16 pulses using the nor-

malized root mean square error (NRMSE) defined as

ε(m) =‖h(m) − ĥ(m)‖2/‖h̄‖2 (5.36)

where h(m) and ĥ(m) are the true and estimated TFR at the mth pulse, respectively, h̄ is

the sample mean of the true TFR over the 16 pulses, and ‖ · ‖2 denotes the `2-norm. The

NRMSE is averaged over 250 trials.
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5.6.2 Results and Discussion

In this subsection, we present the results obtained for the linear state-space model of the

TFR, used in the literature, but we also assume non-Gaussian distributions. Moreover, we

consider the new model proposed in this thesis for the TFR based on the SIRP.

5.6.2.1 Linear State Space (LSS) TRF Model
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Figure 5.3 Estimation error of Gaussian TFR in Gaussian clutter (LSS
model).

Assuming Gaussian h(m), c(m) and linear h(m) model, the KF can be used to estimate

h(m). Fig. 5.3 shows that the KF provides the lowest error at m = 1 compared to the PF

and iHMM. However, beyond m = 1, its error is proportional to m at a higher rate than

that of the PF and above the iHMM. This lower error is ascribed to the fact that the KF is

the exact Bayesian filter for the TFR estimation problem under the assumption of Gaussian

h(m) and c(m). Nevertheless, as h(m) itself is a random vector, the model mismatch increases

with the accumulation of noise as m increases.

However, even this relative lower error of the KF at m = 1 is not guaranteed in all
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Figure 5.4 Estimation error of Gaussian TFR in jamming and Gaussian clut-
ter (m = 1, LSS model).

operating conditions. Specifically, when the radar system is under the effect of jamming. We

use the pulsed noise jamming (PNJ) and the convolution noise jamming (CNJ) to evaluate

the performance of the three methods. Both are generated by a repeater jammer matched

to the radar pulse width and repetition interval [77]. CNJ is the result of the convolution

between the intercepted radar pulse and a noise pulse generated by the jammer. Fig. 5.4

shows ε at m = 1 under the effect of the PNJ and CNJ versus different jamming-to-signal

ratios (JSRs). Compared to the jamming-free case, the KF is vulnerable to both jamming

techniques, especially to the CNJ, with a higher ε that increases with the (JSR). For the

PF, ε is higher at all JSR values in the case of PNJ, while ε increases significantly at higher

JSRs under the effect of the CNJ. Except for the small increase in ε at all JSRs, the iHMM

shows better stability in terms of ε in the presence of both PNJ and CNG.

Fig. 5.5 shows ε of the K−distributed h(m) and c(m) for both the iHMM and PF. Even

when the Case I of the PF is considered, ε increases with m. In Cases II and III, ε is higher

and increases in a faster rate. This is true whether the PF has prior partial knowledge or it

has no information about h(m) and c(m). On the contrary, the iHMM shows a lower ε at pulses



5 Extended Target Frequency Response Estimation Using Infinite HMM 127

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
Particle filter (Case I)

Particle filter (Case II)

Particle filter (Case III)

iHMM

Figure 5.5 Estimation error of K−distributed TFR and clutter (LSS model).
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Figure 5.6 Estimation error of Gaussian TFR in K−distributed clutter (LSS
model).
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and it does not increase with m; it even slightly decreases. Fig. 5.6 shows the performance for

the Gaussian h(m) with K−distributed c(m). It is observed that the iHMM shows the same

error trend as for the K−distributed h(m), but with a slight increase in ε at all m. While

the PF introduces a lower ε at m = 1 relative to its error with the K−distributed h(m), it

reaches approximately the same error at the m = 16 for the three cases considered. It should

be emphasized that the iHMM performance is obtained with no prior knowledge about the

h, c, or n. Fig. 5.7 shows the NRMSE of the TRF under the Log-normal distribution. It
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Figure 5.7 Estimation error of Log-Normal TFR in K−distributed clutter
(LSS model).

is obvious that the estimation NRMSE of the Log-normal TRF is lower for both the PF

and the proposed iHMM-based algorithm. Other than that, the PF continues to show the

same estimation error divergence while the proposed algorithm keeps the error below that

of the PF and lower than the initial value at different m. It is observed also that there is no

substantial performance advantage obtained by providing the PF partial knowledge about

the TRF over not having this knowledge at all.

The estimation performance of the PF under the Weibull distribution of the TRF is

different from the other distributions in the first few pulses. As observed in Fig. 5.8, the
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Figure 5.8 Estimation error of Weibull TFR in K−distributed clutter (LSS
model).

PF shows the lowest NRMSE across all its three cases, especially in Case I. However, this

relative advantage does not last for more than 4 pulses for Case II and III and 7 pulses

for Case I, out of the considered 16 pulses. Beyond that, the proposed algorithm offers the

lowest NRMSE that is approximately half of that of the PF with all its scenarios.

However, the relative advantage of the PF at the first few pulses given a Weibull TRF

is not obtainable under jamming conditions. As we have shown in Fig. 5.4 for the Gaussian

TRF, Fig. 5.9 depicts the performance of the proposed algorithm compared to the PF in the

presence of both PNJ and CNJ. The PF is assumed in Case I. As can be observed in the

figure, the NRMSE of the PF is increased under PNJ and CNJ at the first pulses to be higher

than that of the proposed method. The proposed method maintains the same NRMSE level

for both jamming techniques, while the PF shows more degradation under CNJ.

Based on the presented results under the LSS model, the KF and PF suffer from tracking-

error divergence in all considered cases of TIR and clutter, attributed to their sensitivity

to model mismatch. Moreover, when the jamming scenario is considered, both filters are

vulnerable to smart noise jamming as CNJ while the KF is also susceptible to the classic
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Figure 5.9 Estimation error of Weibull TFR in jamming and K-distributed
clutter (m = 1, SIRP model).

PNJ. On the contrary, the proposed iHMM shows lower and steady state estimation error

of TIR and better resistance to both the classic and smart noise jamming.

5.6.2.2 SIRP TRF Model

In the following, we explore the TRF estimation accuracy using the SIRP model for the

proposed iHMM-based algorithm compared to the PF. It should be noted that the use of the

KF under the SIRP model is not optimal because of the violation of the KF assumptions

of linearity and/or Gaussian distribution. The correlation coefficient of the TIR under the

SIRP model, ρh in Eq. (5.6), is assumed to be 0.5.

In Fig. 5.10 we can see the effect of using the SIRP TRF model on the estimation ac-

curacy of the considered algorithms. For the PF, there are two main observations. The

first observation from Fig. 5.10 is the estimation NRMSE, which is approximately fourfold

that under the LSS TRF model for the three cases of the PF—complete, partial, and no

knowledge. The second observation regarding the PF is the trend of the NMRSE with the

pulse number m, which is shown to change randomly around a mean value for the three
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knowledge-based scenarios of the PF. This can be explained by the fact that the PF does

not assume a linear model anymore, which causes the accumulation of the error from pulse

to pulse. Instead, the PF samples from a random process, SIRP, at each pulse without using

the particles of the previous pulse as in the linear model, except for the weights as shown in

Eq. (5.34).
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Figure 5.10 Estimation error of Gaussian TFR in Gaussian clutter (SIRP
model).

For the proposed iHMM-based algorithm we can notice that the estimation error com-

pared to the LSS TRF model for the Gaussian distribution is approximately doubled, but

it preserves its trend in lowering the estimation error from the initial one. It should be

emphasized that the parameters of the proposed algorithm are fixed for the two assumed

TRF models, which means there is still a possibility of parameter adaptation in the case of

the availability of training data even without prior information about the exact generating

model or the TRF distribution.

The same can be concluded for the K-distribution from Fig. 5.11, but with the estimation

error of the PF being higher than twice that of LSS TRF for the same distribution. For

the iHMM-based TRF model, it keeps the same trend of the NRMSE with m, but it is
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Figure 5.11 Estimation error of K−distributed TFR and clutter (SIRP
model).

approximately below one third of that of the PF under the same conditions. We can also

notice that there is no significant effect on the PF accuracy under K-distributed TRF with

the filter having the prior knowledge of the TRF distribution, which was not the case under

the Gaussian TRF.

For the Log-normal distribution, we can see that it still shows the easiest challenge for

the TRF estimation among the other considered distributions. We can also notice that

the NRMSE introduced by the particle filter is at least three times that introduced by

the proposed iHMM-based algorithm. While lacking the prior knowledge about the TRF

distribution increases the NRMSE by about 15% compared to having this knowledge, there

is no noticeable difference between Case II and the Case I of the PF.

The Weibull distributed TFR under the SIRP shows higher NRMSE for the two con-

sidered algorithms as depicted in Fig. 5.13. However, while both the PF and iHMM-based

algorithm start with the same value of NRMSE, the iHMM-based algorithm can lower the

NRMSE with about 30% over the 16 pulses. Moreover, without complete prior knowledge

about the TRF, the NRMSE of the PF is noticeably increased to be more than 150% that
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Figure 5.12 Estimation error of Log-normal TFR and K−distributed clutter
(SIRP model).

of the iHMM-based algorithm.

In general, we can clearly see that the SIRP TRF model is more challenging than the

simple LSS model assumed in the literature heretofore. This highlights our motivation behind

proposing the SIRP model for the TRF not only for its generality over that of the LSS, but

also for the challenge it poses for the TRF estimation. While the proposed algorithm does

not adapt its parameters for the SIRP TRF model, it can keep its NRMSE trend as that of

the LSS model but at different values, with the Weibull TRF having the highest bias. As

shown before for the LSS TRF model, the proposed iHMM-based algorithm guarantees the

lowest NRMSE at all pulses compared to the simulated PF.

In general, for both the LSS and the SIRP models of the TRF we can see how the particle

and Kalman filters suffer from the model mismatch due to the fact that the TRF is a random

process without any deterministic model for the dynamic state evolution. As we mentioned

in Section 2.6, the particle filter needs a deterministic state model, to generate particles that

describe the actual system. In the absence of this deterministic model, the particle filter

draws its particles from a random process, whose realizations differ in actual values from the
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Figure 5.13 Estimation error of Weibull TFR and K−distributed clutter
(SIRP model).

true TRF.

5.6.2.3 Complexity Analysis

After the comparative evaluation of the proposed iHMM estimation of the TRF, we evaluate

the complexity of the proposed method compared to the PF for the two considered generating

models and four distributions. As we observed in the performance assessment introduced

before, the KF is not optimal to be applied except for the special case of the Gaussian

LSS model only, therefore we exclude it from the complexity analysis. For this purpose,

we dedicated a machine with 64 bit Intel® CoreTM i7-8850H CPU @2.6GHz and 32 GB

RAM. In the following simulations, we assumed that the PF in Case I. Fig. 5.14 depicts

the execution time of the proposed algorithm compared to that of the PF in the case of

the LSS with different distributions. As we can observe in the figure, the time complexity

of the PF does not depend on the pulse number m; however, it strongly depends on the

distribution of the TRF the PF samples from. As we may anticipate, both the Gaussian and

the Log-normal distributions have approximately the same execution time as the generation
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operations of the TRF using both distributions are similar to each other. Nevertheless, in

the case of the K-distributed TRF we can see that the execution time increases compared to

the Gaussian and Log-normal distributions. For the Weibull distributed TRF, it is obvious

that it has the highest execution time among the other distributions. This is attributed

to the Rejection Method used in generating the modulating scalar random variable of the

Weibull SIRV compared to that of the K-distribution.

For the proposed iHMM-based method, the execution time is independent from the dis-

tribution, that is why we display a single curve for the proposed method. This is consistent

with its nonparametric nature that does not make any assumptions about the TRF or in-

terference. However, the execution time of the proposed method depends on m, which

can be explained by the formula we proposed for the auxiliary variable ul. Recalling that

ul = 10−κU(0,Pr(ht|ht−1)), with κ = 0.15m, the auxiliary variable for all the frequency bins

is inversely proportional to m. This setting of ul allows the proposed model to start with a

low number of states and then consider more states as m increases according to the param-

eters learned from the environment. Therefore, as m increases, the number of considered

states also gets higher, which explains the increase of the execution time. Nevertheless, it

is obvious that the average execution time of the proposed algorithm is lower than that of

the PF for all distributions. Moreover, we assumed the cognitive cycle6 of the radar is 16

pulses, which is relatively long, to investigate the cumulative estimation error of the proposed

algorithm compared to the benchmark estimators at the worst case scenario. In real appli-

cations, it is preferred to have shorter cognitive cycles, which means the proposed algorithm

will maintain the lowest execution time and error at the same time for all m.

Approximately, the same performance is obtained under the correlated SIRP model shown

in Fig. 5.15. We can see that the PF execution time is also sensitive to the generating model

of the TRF it samples from and the correlated SIRP model increases the execution time. In

addition, we can also observe that the execution time required for the Weibull distributed

TRF has been substantially increased compared to the same TRF distribution under the

LSS model. This is attributed to the fact that the PF is now forced to sample from the

Weibull distribution for each pulse for all the used 50 particles. The proposed method under

the correlated SIRP generating model of the TRF has the same execution time as the LSS

model and it appears to be lower than that of the PF even at m = 16 for the Weibull and

6The cognitive cycle of the radar is the time required to update the transmitter waveform through learning
from the environment.
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Figure 5.14 Complexity of the proposed iHMM-based method compared to
the PF assuming the LSS model.

K-distributions and slightly higher than that of the Gaussian and Log-normal distributions.

However, on average, the proposed method has a lower execution time than the PF at all

distributions.

5.7 Conclusion

In this chapter we delved into the problem of Gaussian and non-Gaussian TFR estimation

under the assumption of Gaussian and non-Gaussian clutter. We have also proposed a new

generating model for the TRF based on the SIRP, which is more general and challenging

than the LSS assumed in the literature heretofore. In this context, the performance of the

nonparametric Bayesian framework represented by the iHMM is compared to the classic

Bayesian frameworks of the KF and PF. Compared to the latter filters, the iHMM improves

the tracking accuracy of the TFR without any prior knowledge about its statistics or that

of the interference, even if the filters know completely the statistical parameters of the TFR

and interference. This robust performance is provided with a lower complexity compare to
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Figure 5.15 Complexity of the proposed iHMM-based method compared to
the PF assuming the SIRP model.

the PF. These promising results encourage further research in employing the nonparametric

Bayesian methods in cognitive radar applications.
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Chapter 6

Conclusion and Future Work

In this thesis, we introduced advanced radar signal processing algorithms for enhancing the

performance of phased array, MIMO, and cognitive MIMO radars considering the the real

field operation constraints and the limitations of radar systems hardware.

In Chapter 3, we discussed the NHD problem for robust covariance matrix estimation.

In this regard, we derived a new test statistic for the NHD based on the projection depth

function, termed PD-NAMF. To ensure the convergence of sample version of the test of

the proposed detector to its population version, we studied the convergence of the empirical

CDF to the population CDF. Our analysis showed that before applying the PD-NAMF to the

secondary cells, they need first to be decorrelated in the case of correlated clutter. To preserve

the nonparametric feature of the PD-NAMF, we proposed employing the nonparametric

Spearman and Kendall correlation matrices in the decorrelation operation. The performance

of the proposed PD-NAMF has been shown to be comparable to that of the NAMF, but

at much lower complexity. This performance has been demonstrated in different clutter

distributions and radar parameters.

In Chapter 4, we considered a signal processing approach to overcome the problem of

high reflection from the transmitting antenna back to the preceding amplification stage.

Specifically, we developed a waveform design algorithm for cognitive MIMO radars, which

maximizes the SINR and reduces the reflected power from the transmitting antenna array.

While the TARC has been conventionally used as a measure of the reflection performance

of antenna arrays of MIMO systems, we found that it is not sufficient to guarantee a low

reflection coefficient for each antenna element and each pulse. Therefore, we used the ARC
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as a more robust figure of merit to evaluate the performance of the proposed design method.

We employed the `∞-norm of the reflected signal as a regulation term, which is a non-

smooth function that hinders the use of the conventional gradient methods. To circumvent

this issue, we used the proximal gradient method. Since there is no similar benchmark

in the literature, we employed a competing method that handles the reflection from the

transmitting antenna array through grouping the antenna elements into subarrays. Monte

Carlo simulations showed that the proposed method guarantees low ARCs for all pulses

and antenna elements and simultaneously improves the SINR to a comparable level to the

original waveform design techniques for cognitive MIMO radars, yet with lower complexity.

It is assumed in Chapter 4 that the TIR is known apriori, which is not the case in practice.

In Chapter 5, we discussed the problem of estimating the TFR from the target received signal.

We introduced a new formulation to the estimation of the TRF using the iHMM and beam

sampling inference, which does not require prior information about the distribution of the

TRF or the interference. We extended the analysis further than the literature by assuming

non-Gaussian distributions of the TRF and by investigating the estimation accuracy over

multiple pulses. In addition, we proposed employing a new generating model for the TRF

based on the SIRP that is more generic than the linear Gaussian state model. While there

is no benchmark for the estimation of the non-Gaussian TRF in the literature, we used the

particle filter as our benchmark in this case. The results showed that the proposed method

exhibits superior estimation accuracy compared to both Kalman and particle filters at all

TRF distributions and models under different clutter distributions and jamming signals.

Equally important, the proposed algorithm requires a lower execution time compared to the

particle filter at all distributions and generating models.

The research results described in this thesis emphasized the importance of considering

the real-time operation of radar systems in devising radar signal processing techniques. The

complexity and the execution times of the used algorithms should be reduced in addition

to providing desirable theoretical properties and performance merits. The findings of this

thesis also highlighted the need of using nonparametric statistical techniques, such as the

depth functions and iHMM, in radar signal processing. Specifically, in most of radar scenar-

ios encountered in practice, the prior information about the distribution of the underlying

radar data or its parameters is not available. We have shown in Chapter 3 that the non-

parametric techniques can achieve a comparable performance as the parametric techniques.

Furthermore, nonparametric methods can be more efficient than their parametric counter-
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parts when the model mismatches are severe, as we have shown in Chapter 5. A substantial

outcome of this thesis is the significance of contemplating the RF hardware limitations of the

radar system in signal processing algorithms. For instance, in Chapter 4 we have discussed

how the microwave design techniques are used to reduce the effect of the reflection from

the transmitting antenna back to the power amplifier. However, properly designed cognitive

MIMO radar waveforms can reduce the reflected power itself, not just its effect, to safe lev-

els, yet without compromising performance. Guerci has noticed the lack of interest within

the signal processing community in considering the characteristics of the RF components.

He attributed this scarce coverage to the difference in the backgrounds between the signal

processing and RF hardware researchers. One year ago [4], he anticipated this situation to

be changed in the future, we hope that we took the first step to bridge the gap between the

two research communities.

Finally, we discuss some key avenues for future research. For the NHD, future research

may consider the parallel implementation of the PD-NAMF, specifically the median and

Kendall correlation matrix, which can lower the complexity of the proposed detector further.

As we pointed out in Chapter 3, employing GPUs can provide more efficient implementations

for different ordered-statistics measures. Regarding the power-efficient design of cognitive

MIMO radar waveforms, we found the basis for a new signal-processing approach that deals

with problem of the reflection from the transmitting antenna array. However, this paves the

way for more optimization methods that may provide the same good ARCs, yet with a better

SINR performance. Moreover, the research should also consider the experimental evaluation

of the ARC for cognitive MIMO radar waveforms, keeping in mind that the available network

analyzers measure the reflection coefficient using the standard continuous wave (CW) signal

only. With the joint work between researchers from both the microwave and signal processing

communities can lead to more efficient cognitive MIMO radars that achieve, at the same

time, the desirable performance quality. It is also important to consider the performance

of the proposed method under uncertainty of the TIR estimation. Regarding the third

contribution of this thesis, the new formulation of the TRF estimation using the iHMM opens

the door for more inference algorithms that may offer better estimation accuracy, especially

with high-dimensional signals. A promising and growing area of research in the field of

Bayesian inference is the variational inference [233]. Variational inference embodies different

algorithms, for instance, stochastic variational inference [234] and variational Hamiltonian

Monte Carlo inference [235]. Lastly, in this thesis, we introduced three contributions in three
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subsystems in the cognitive MIMO radar and analyzed the performance of each technique

separately. It is still an open question, and an interesting one, to explore the closed-loop

performance of the whole system using the proposed techniques compared to using the

conventional one.
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Appendix A

Proof of Proposition 3.1

Assuming that the covariance matrix R̂ is positive definite, it is invertible and admits of a

square-root R̂1/2, which is also invertible. Hence, applying the Cauchy-Schwartz inequality

|uHzk|2 =
∣∣∣uHR̂

1
2 R̂−

1
2 zk

∣∣∣2 ≤ ∥∥∥uHR̂
1
2

∥∥∥2

2

∥∥∥R̂− 1
2 zk

∥∥∥2

2

≤ (uHR̂u)(zHk R−1zk) (A.1)

Consequently, for any non-zero vector u ∈ CJ , we have

|uHzk|2

uHR̂u
≤ zHk R̂−1zk (A.2)

Hence,

sup
‖u‖=1

|uHzk|2

uHR̂u
= zHk R̂−1zk (A.3)

Among the possible scale measures of the scalar random variable uHzk, let us consider

the sample variance σ̂2(uHZk) = uHR̂u. Then according to Eq. (A.3)

sup
‖u‖=1

( |uHzk|
σ̂(uHZk)

)2

= zk
HR̂−1zk (A.4)

Based on Eq. (3.5), σ̂(uHZk) is given by
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σ̂(uHZk) = 2σ̂(<(uHZk)) = 2σ̂(=(uHZk)) (A.5)

Repeating the same steps from Eq. (A.1) to Eq. (A.4), but with replacing zk by s, a

similar relation can be proven for the steering vector s, that is

sup
‖u‖=1

( |uHs|
σ̂(uHZk)

)2

= sHR̂−1s (A.6)

For the centralized vector zk − µ̂, we can write

sup
‖u‖=1

( |uHzk − µ̂|
σ̂(uHZk)

)2

= (zk − µ̂)HR̂−1(zk − µ̂) (A.7)
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Appendix B

Proof of Proposition 3.2

Considering the k-th secondary cell zk = as + c + n, where for convenience we let s =

[s1, · · · , sJ ]T , c = [c1, · · · , cJ ]T , and n = [n1, · · · , nJ ]T , then we have

sHzks
HR̂−1s =

(
a

J∑
i=1

sis
∗
i +

J∑
i=1

s∗i (ci + ni)
)

.
J∑
i=1

(
s∗i

J∑
j=1

pijsj

)
(B.1)

where R̂−1 = [pij]. From Eq. (2.9),
∑J

i=1 sis
∗
i = 1, hence

sHzks
HR̂−1s = a

J∑
i=1

s∗i

J∑
j=1

pijsj

+
J∑
j=1

(
s∗j

J∑
i=1

(
s∗i

J∑
k=1

piksk

)
(cj + nj)

)
(B.2)

sHR̂−1zk =a
J∑
i=1

s∗i

J∑
j=1

pijsj +
J∑
i=1

s∗i

J∑
j=1

pij (cj + nj) (B.3)

From Eq. (B.2) and Eq. (B.3) we can observe that the two tests have the same target

signal component (i.e., the first term in each equation, which is equivalent to a(sHR̂−1s)),

but they differ in the interference component. There is no analytical way to compare the
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interference components in the two tests due to the different random weights of each term,

hence, we rely on simulation to compare them. Nevertheless, as Eq. (B.2) considers only the

interference component in the spatio-temporal direction of the target, its average interference

power is anticipated to be lower than that of Eq. (B.3), which is confirmed by simulation in

Section 3.6.
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Appendix C

Proof of Proposition 3.3

Using the term in Eq. (3.24), we obtain the modified NAMF test statistic

Λ′NAMF =
|sHR̂−1(sHzk)s|2

(sHR̂−1s)(zHk R̂−1zk)
(C.1)

Based on Eq. (A.6) we have∣∣∣(sHzk)s
HR̂−1s

∣∣∣2 =
∣∣∣(sHzk)

(
sup
‖u‖=1

|uHs|
σ̂(uHZk)

)2∣∣∣2 (C.2)

By substitution of Eq. (A.4), Eq. (A.6), and Eq. (C.2) into Eq. (C.1) and after simple

manipulations, Λ′NAMF reduces to

Λ′NAMF =

|sHzk|2 sup
‖u‖=1

(
|uHs|

σ̂(uHZk)

)2

sup
‖u‖=1

(
|uHzk|
σ̂(uHZk)

)2 (C.3)
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Appendix D

Proof of Proposition 4.1

Proof. It is known that the proximal operator of the ‖f‖∞ is the projection of f onto the

unit `1 ball [58]. Since the penalty term in Eq. (4.30), ‖Sdf‖∞, is a function of the linear

transformation of f , we seek to find the proximal operator of w(f) = y(Sdf) with respect to

y(f). In this case, proxw is defined as the solution of the following minimization problem

min
u∈CNTLs

{w(u) +
1

2
‖u− f‖2

2}

min
u∈CNTLs

{y(Sdu) +
1

2
‖u− f‖2

2} (D.1)

The problem in Eq. (D.1) can be formulated as

min
u,z∈CNTLs

{y(z) +
1

2
‖u− f‖2

2}

subject to z = Sdu (D.2)

Let the solution for the above problem is (ũ, z̃). Fixing z = z̃ and solving for u, we have

min
u∈CNTLs

1

2
‖u− f‖2

2

subject to z̃ = Sdu (D.3)
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The Lagrange function for this problem is given by

L(u,λ) =
1

2
‖u− f‖2

2 + (Sdu− z̃)Tλ (D.4)

where λ is the complex Lagrange multiplier vector. From the properties of complex Wirtinger

derivatives and considering the real valued Lagrangian function L(u,λ), we have [236, Result

A2.3]

∇uL(u,λ) = 0⇔ ∂L(u,λ)

∂u
= 0 (D.5)

Therefore, by setting ∂L(u,λ)
∂u

= 0, we obtain

ũ = f − STdλ (D.6)

Substituting Eq. (D.6) in the constraint of Eq. (D.2), we get

z̃ = Sd(f − STdλ) (D.7)

Then, we have

λ = (SdS
T
d )−1(Sdf − z̃) (D.8)

Substituting Eq. (D.8) in Eq. (D.6) we have

ũ = f − STd (SdS
T
d )−1(Sdf − z̃)

= ST
−1

d z̃ (D.9)

Now, solving for z̃

z̃ = argmin
z∈CNTLs

{y(z) +
1

2
‖ST−1

d z− f‖2
2} (D.10)

The problem in Eq. (D.10) can be equivalently expressed as

z̃ = argmin
z∈CNTLs

{y(z) +
1

2
‖z− Sdf‖2

2} (D.11)
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Comparing Eq. (D.11) with the definition of the proximal operator in Eq. (4.28), we have

z̃ = proxy(Sdf) (D.12)

Since ũ is the solution for Eq. (D.1), we can write

proxw(f) = ST
−1

d proxy(Sdf) (D.13)

When y(f) is defined as the `∞-norm of its argument, then proxy(f) is given by

proxy(f) = f − Proj‖·‖1<1 (f) (D.14)

Therefore, using the proximal operator property in Eq. (4.29) the proximal operator of γ2y(f)

is [20]

proxγ2y(f) = f − γ2Proj‖·‖1<1 (f/γ2) (D.15)

Substituting with Eq. (D.15) in Eq. (4.30), we obtain Eq. (4.34) and the proof completes.
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Appendix E

Proof of Lipschitz continuity of ∇u(f)
in Eq. (4.33)

Proof. We begin by the definition of the Lipschitz continuity for a complex function r :

CNTLs → CNTLs that is given by [237]

‖r(f)− r(g)‖2 ≤ Λ‖f − g‖2 ∀f ,g ∈ CNTLs (E.1)

where Λ ∈ R+ with R+ denoting the set of non-negative real numbers. Defining r(f) and

r(g) as ∇fu(f) and ∇gu(g), respectively, and defining R , Rc,h + hHRvhINTLs then we

have

‖r(f)− r(g)‖2 = ‖(fH − gH)R + µhHT(f − g)hHT‖2 (E.2)

Hence

‖r(f)− r(g)‖2 ≤ ‖(fH − gH)R‖2 + µ‖hHT(f − g)hHT‖2 (E.3)

Equivalently, we can write that

‖r(f)− r(g)‖2 ≤ ‖(fH − gH)‖2‖R‖F + µ‖hHT‖2
2‖(f − g)‖2 (E.4)
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where ‖·‖F denotes the Frobenius norm. Therefore

‖r(f)− r(g)‖2 ≤ (‖R‖F + µ‖hHT‖2
2)‖(f − g)‖2 (E.5)

where (‖R‖F + µ‖hHT‖2
2) ≥ 0. Comparing Eq. (E.5) with Eq. (E.1) we can conclude that

∇u(f) is Lipschitz continuous with constant Λ = ‖R‖F + µ‖hHT‖2
2. In real scenarios, the

values of ‖R‖F and ‖hHT‖2
2 is much smaller than unity. Therefore, with the value assigned

to µ in this work, µ = 0.001, it is easy to find β, β1 ∈ (0, 1/Λ] for fast convergence.
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