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Abstract

In this thesis, we develop novel training-based non-negative matrix factorization (NMF)

algorithms for single and multi-channel speech enhancement.

After introducing the problem and reviewing background material, we first present a

regularized NMF algorithm with Gaussian mixtures and masking model for single-channel

speech enhancement. The proposed framework seeks to exploit the statistical properties of

the clean speech and noise. This is accomplished by including the log-likelihood functions

(LLF) of the clean speech and noise magnitude spectra, based on Gaussian mixture models

(GMM), as the regularization terms in the NMF cost function. Moreover, we incorporate

the masking effects of the human auditory system to further improve the enhanced speech

quality.

Second, we introduce a training and compensation algorithm of the class-conditioned

NMF model for single-channel speech enhancement. The main goal is to reduce the residual

noise components that have features similar to the speech. To this end, during the training

stage, the basis vectors of different sources are obtained in a way that prevents them from

representing each other, based on the concept of classification. Another goal is to handle the

mismatch between the characteristics of the training and test data. This is accomplished

by employing extra free basis vectors during the enhancement stage to capture the features

which are not included in the training data.

Finally, we present a novel multi-channel speech enhancement algorithm based on a

Bayesian NMF model. Essentially, we consider the Poisson-distributed latent variable

model for multi-channel NMF. During the training stage, the NMF parameters are esti-

mated from the tensor-based training data. During the enhancement stage, the clean speech

signal is estimated via the NMF-based minimum variance distortionless response (MVDR)

beamforming technique. To this end, the source locations are estimated by observing the

spatial output power of a delay-and-sum (DS) beamformer applied to the NMF-based pre-

processed noisy speech signal.

For each one of the above algorithms, objective experiments are carried out for differ-

ent combinations of speaker, noise types and signal-to-noise ratio. The results show that

the proposed methods provide better speech enhancement performance than the selected

benchmark algorithms under considered test conditions.
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Sommaire

Dans cette thèse, nous développons des algorithmes novateurs de rehaussement de la parole

à un ou plusieurs canaux faisant appel à la factorisation matricielle non négative (non-

negative matrix factorization - NMF) avec entrainement.

Après avoir introduit la problématique et passé en revue les connaissances de base

pertinentes, nous présentons tout d’abord un algorithme de rehaussement à un canal qui

utilise une approche NMF régularisée comportant un mélange de gaussiennes ainsi qu’un

modèle de masquage. Le cadre proposé vise à exploiter les propriétés statistiques de la

parole non-bruitée et du bruit. Ceci est accompli en incluant les fonctions log-vraisemblance

des spectres d’amplitude de parole et de bruit, modélisées à l’aide de mélanges gaussiens,

comme étant les termes de régularisation dans la fonction de coût de la NMF. De plus, nous

intégrons les effets de masquage du système auditif humain afin d’améliorer davantage la

qualité de la parole rehaussée.

Deuxièmement, nous introduisons un algorithme d’entrainement et de compensation

d’un modèle NMF conditionné par la classe pour le problème du rehaussement de la parole

à un canal. L’objectif principal est de réduire les composantes de bruit résiduel qui ont des

caractéristiques similaires à la parole. A cette fin, les vecteurs de base des différentes sources

sont obtenus au cours de la phase d’entrainement sur la base de la notion de classification

qui les empêche de se représenter les uns les autres. Un autre objectif consiste à gérer

les différences entre les caractéristiques des données d’entrainement et de test. Ceci est

accompli en incluant des vecteurs de base supplémentaires pendant l’étape de rehaussement

afin de capter les caractéristiques qui ne sont pas incluses dans les données d’apprentissage.

Finalement, nous présentons un nouvel algorithme de rehaussement de la parole à

plusieurs canaux basé sur un modèle NMF bayésien. Essentiellement, nous considérons le

modèle de variable latente avec une distribution de Poisson dans une version de l’algorithme

NMF à plusieurs canaux. Pendant la phase d’entrâınement, les paramètres NMF sont es-

timés à partir de données formées de tenseurs. À l’étape du rehaussement, le signal de

parole non bruité est estimé à l’aide de la technique de formation de faisceau à variance

minimale sans distorsion (minimum variance distortionless response - MVDR) et d’une

NMF. Spécifiquement, l’emplacement des sources est estimé en observant la puissance de

sortie spatiale d’un dispositif de formation de faisceau par retard et addition (delay-and-

sum) appliqué au signal de parole bruité prétraité par une NMF.
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Pour chacun des algorithmes ci-dessus, des expériences objectives sont effectuées pour

différentes combinaisons de types de locuteurs et de bruits. Les résultats montrent que les

méthodes proposées offrent de meilleures performances de rehaussement de la parole que

les algorithmes de référence sélectionnés, et ce pour plusieurs conditions.
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Chapter 1

Introduction

In this chapter, we first introduce the speech enhancement problem and present survey of

several representative algorithms developed in the past to address this problem. This is

followed by a statement of the research objectives and contributions of the thesis.

1.1 The Speech Enhancement Problem

Speech is one of the predominant means for communications between humans. In the

context of electronic speech communication, the speech signal is generated by the speech

production system of a human speaker, captured by a single or multiple microphones and

transmitted through a certain medium such as optical fibers, copper wires or simply the air.

Once the transmitted speech signal is received, it is reproduced through an electro-acoustic

transducer such as a loudspeaker or earphone, and finally reaches the auditory system of a

human listener. During the transmission, the speech signal is usually corrupted by various

types of noises with acoustic or electromagnetic origin, yielding a noisy speech signal. The

general objective of speech enhancement algorithms is to remove the additive background
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noise from a noisy speech signal in order to improve its quality (naturalness and freedom

from distortion) and/or intelligibility (the likelihood of being correctly understood). These

algorithms have been an attractive research area for decades and find diverse applications,

including mobile telephony, hearing aids, speech coding and automatic speech recognition

systems, to name a few. In the following subsection, we briefly introduce representative

speech enhancement algorithms.

1.2 Speech Enhancement Algorithms

Numerous algorithms for speech enhancement have been proposed in the past decades.

Depending on the number of microphones used for acquiring the noisy speech signal, the

algorithms can be divided into two main groups, namely: single-channel and multi-channel.

One of the main advantages of the single-channel speech enhancement algorithms com-

pared to the multi-channel ones, is their low computational complexity in general. Over

the years, a considerable amount of research effort has been made on single-channel al-

gorithms, leading to various approaches, such as: Wiener filtering [1, 2], spectral sub-

traction [3, 4], Bayesian minimum mean-square error (MMSE) estimators [5–7], subspace

decomposition [8–10] and state-space [11–13] methods. The Wiener filtering and spectral

subtraction methods are the most popular choices mainly due to the simplicity of their

implementation. The Wiener filter is derived based on the minimum mean-square error

(MMSE) criterion, whereas the spectral subtraction is performed based on the variance of

the spectral coefficients, as estimated in the maximum likelihood (ML) sense. The Bayesian

MMSE estimators for the clean speech spectral amplitudes employ an explicit prior struc-

ture for the statistics of the spectral coefficients. The subspace approach is based on the

decomposition of the vector space of the observed noisy speech into two orthogonal sub-
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spaces, namely the signal subspace and noise subspace.

Regarding the multi-channel speech enhancement algorithms, their main advantage is

that they can exploit the spatial features of the acoustic field through a spatio-temporal

filter, also known as a beamformer, where coefficients can be designed to extract the clean

speech from a given direction in an optimal way. Several methods have been proposed to

design optimum beamformers, including: delay-and-sum (DS) [14], minimum variance dis-

tortionless response (MVDR) or linearly constrained minimum variance (LCMV) [15, 16],

generalized sidelobe cancellation (GSC) [17], and eigen-space beamforming [18]. The main

advantage of the DS beamformer is its computational efficiency, since it avoids matrix

inversion computation. The LCMV and MVDR beamformers are designed to minimize

the output power subject to a linear constraint and hence to preserve the target signal

from a given direction while attenuating the ambient noise and interference. The GSC

beamformer, which can handle multiple constraints, consists of a constrained and an un-

constrained weight vectors. The unconstrained weight vector is used to cancel interference

that leaks through the sidelobes of the beamformer specified by the constrained weight

vectors. To further reduce the residual noise components in the enhanced speech obtained

via a beamforming technique, the authors in [19, 20] apply a single-channel enhancement

algorithm to the beamformer output as a post-processor.

These single and multi-channel algorithms were originally introduced by using a mini-

mal amount of a priori information about the speech and noise. Consequently, they tend to

provide limited performance, especially when the speech is contaminated by adverse noise,

such as under low input signal-to-noise ratio (SNR) or non-stationary noise conditions. To

overcome these limitations, machine learning (i.e., training-based) techniques have been

applied to the speech enhancement task and have shown remarkable performance improve-

ment in recent years. In a machine learning framework, the features of the clean speech
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and/or noise are obtained using the training data a priori, and subsequently used during

the enhancement stage. For example, MMSE and maximum a posteriori (MAP)-based es-

timators for single-channel speech enhancement have been proposed by modeling the clean

speech spectrum via a Rayleigh mixture model (RMM) [21] or Gaussian mixture model

(GMM) [22–24], which provides a more detailed description of the speech distribution. In

contrast to the clean speech model, where the parameters are derived from the training

data, the noise spectrum is modeled by a single distribution where its model parameters are

estimated directly from the noisy speech, which tend to limit the enhancement performance.

Further improvements to the MAP estimator have been introduced lately [25], where the

authors model both the clean speech and noise spectra by the GMMs. In order to better

consider the time-varying spectral characteristics of the noisy speech, algorithms based on

a hidden Markov model (HMM), as specified by GMM-based state-conditional densities,

have been proposed [26–29]. The noisy speech signal is then modeled by combining the

clean speech and noise HMMs, where the model parameters are obtained a priori using the

training data. The clean speech can be estimated either via the approximated MAP esti-

mator [26] or MMSE estimator [28,29]. The former case can be interpreted as using a single

Wiener filter based on the dominant state and its corresponding mixture model parameters,

whereas the latter case can be considered as a weighted sum of the state-dependent MMSE

estimators where the weights are given by the posterior state probabilities. However, one

of the main issues when implementing the HMM-based algorithms is the computational

complexity, which grows rapidly as the model size (i.e., the number of states) increases.

Recently, the non-negative matrix factorization (NMF) approach has been successfully

applied to various problems such as image representation [30], music transcription [31],

single and multi-channel audio source separation [32,33] as well as single and multi-channel
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speech enhancement [34,35], as an alternative approach to the above mentioned methods1.

In general, NMF is a dimensionality reduction tool, which decomposes a given observation

matrix into basis and activation matrices with a non-negative element constraint [36, 37].

In audio and speech applications, the short-time magnitude or power spectrum can be

interpreted as a linear combination of the basis vectors. Based on this representational

aspect, the basis vectors are also referred to as a codebook or dictionary, that can be

obtained a priori using training data. To this end, in a supervised NMF-based framework,

the basis vectors are obtained using training data for each source during the training stage,

and used subsequently during the test (i.e., separation or enhancement) stage. A number

of variants of the NMF algorithms have been proposed, such as by considering various

cost functions [38, 39], introducing necessary regularization terms (which corresponds to

the prior structures within a statistical framework) [31,32,40] or developing more efficient

algorithms for the parameter estimation [41–43]. Several representative methods will be

discussed along with their limitations in the following subsection.

Deep neural network (DNN) algorithms have also gained enormous interest lately [44],

and find diverse applications such as image classification [45] and automatic speech recogni-

tion [46]. The DNN training aims at estimating the nonlinear mapping function, specified

by the weights and biases of the hidden layers of a processing network, that relates the

input features to the output target features. The feed-forward DNN has been applied to

single-channel speech enhancement [47, 48] as well as to multi-channel audio source sepa-

ration [49]. To better capture the temporal dynamics, application of the recurrent neural

network (RNN) to single-channel speech enhancement has been introduced in [50, 51]. A

1We note that the NMF algorithms (e.g., update rules or parameter estimation scheme) developed for a
given application can be often used in other applications. That is, for example, the parameter estimation
algorithm originally proposed for unsupervised audio source separation in [32] can be applied to other
context, such as image processing or speech enhancement.
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combination of NMF and DNN has also been proposed in [52, 53]. The NMF and DNN

algorithms differ significantly in terms of underlying modeling structure and training re-

quirements; in this thesis, we focus on a NMF model.

1.3 Research Motivations

To further improve the speech enhancement performance, several modified NMF algorithms

have been introduced in recent years. In this subsection, we briefly review some of these

contributions and comment on their limitations.

One main issue in a supervised framework is the existence of a mismatch between the

characteristics of the training and test data, which in turn leads to a decreased quality of the

enhanced speech signal; in particular, the enhanced speech may contain some residual noise

components. A possible remedy to this problem is to add explicit regularization terms to

the NMF cost function that incorporate some prior knowledge [40,54]. In these algorithms,

however, the basis vectors are fixed during the separation or enhancement stage, which

limits the performance when there is a large mismatch between the training and test data.

One alternative approach is to use a basis adaptation scheme during the enhancement stage,

e.g., [55, 56]. In most basis adaptation algorithms, the basis vectors are adapted from the

mixtures of multiple sources, e.g., noisy speech, such that the resulting basis vectors may

still exhibit features of different sources. Consequently, adapting the complete set of basis

vectors may limit the enhanced speech quality.

Another main problem in the NMF-based framework is that the basis vectors of the

different signal sources may share similar characteristics. For example, the basis vectors of

the speech spectrum can represent the noise spectrum and hence, the enhanced speech may

contain noise components that have similar features to the speech. One possible remedy to
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this problem is to train the basis vectors of each source in a way that prevents them from

representing each other [57–59]. However, in most algorithms aiming at training distinct

basis vectors, the latter are derived based on heuristic rules which do not guarantee the

convergence of the NMF in general [38,60]. Moreover, the distinct basis vectors are obtained

indirectly by means of the activation matrix estimated from the mixed training data, which

are generated by adding or concatenating the source signal samples. Hence, they lack an

explicit interpretation or characterization in terms of their discriminating ability.

Numerous NMF-based multi-channel speech enhancement algorithms have been also

introduced. The authors in [33] developed both the multiplicative update (MU) and

expectation-maximization (EM) algorithms for estimating the NMF parameters, based on

the Itakura-Saito (IS) divergence. To better exploit the spatial properties of the sources,

the authors in [61] aimed at factorizing the spatial covariance matrix (SCM) of the obser-

vation in each frequency bin, which is specified by the channel covariance matrices of the

individual sources. An extended SCM, formulated as a weighted superposition of multiple

direction-of-arrival (DoA) kernels (i.e., differential steering matrices), was proposed in [62].

A joint localization and enhancement method, based on the probabilistic steered response

power (SRP) model, was presented in [35]. Besides the need to improve the enhancement

performance, computational complexity remains one of the main issues when implementing

the multi-channel NMF algorithms. That is, the computational cost increases rapidly as

the number of NMF basis vectors, the number of microphones or the dimension of the

search grid for the speaker location increase.
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1.4 Research Objectives and Contributions

Considering the above limitations of existing NMF-based algorithms for speech enhance-

ment, the main objectives of this thesis were formulated as follows:

1. To exploit the statistical properties of the clean speech and noise signals in order to

further improve the perceptual quality of the enhanced speech signal

2. To reduce the residual noise components that have features similar to the speech

signals and to better handle a mismatch between the characteristics of the training

and test data

3. To improve the performance of the NMF algorithm in the multi-channel speech en-

hancement task

The main contributions of this thesis toward the above objectives are summarized below.

Regarding the first objective, the log-likelihood functions (LLF) of the magnitude spec-

tra for both the clean speech and noise, based on the GMM, are included as regularization

terms in the NMF cost function. By using this proposed regularization as a priori infor-

mation, we can exploit the statistical properties of both the clean speech and noise signals

during the enhancement stage. For further improvement of the enhanced speech quality,

we employ a weighted Wiener filter (WWF) by incorporating the masking effects of the

human auditory system. Specifically, we select the weighting factor in the WWF based on

the auditory masking threshold.

Towards the second objective, we consider the probabilistic generative model (PGM)

of classification, specified by class-conditional densities, along with the Poisson-distributed

PGM of NMF. During the training stage, the basis vectors of different sources are trained

by constraining them to belong to different classes, where we use the PGM of classification
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as an a priori distribution for the basis vectors. The NMF and PGM parameters of clas-

sification are jointly obtained by using the variational Bayesian expectation-maximization

(VBEM) algorithm, which guarantees convergence to a stationary point. During the en-

hancement stage, to better handle a mismatch between the training and test data, extra free

basis vectors are employed to capture the features which are not included in the training

data.

The last objective is attained by extending the Bayesian NMF model to a multi-channel

framework. An important advantage of the proposed framework is its efficiency in estimat-

ing the NMF parameters via the VBEM algorithm, which is facilitated by using the Poisson-

distributed PGM of NMF. During the enhancement stage, the clean speech point source

signal is estimated via the NMF-based MVDR beamforming technique, whose realization

involves two main steps. First, the speech source location is determined by observing the

spatial output power of the DS beamformer applied to the NMF-based pre-processed noisy

speech signal. Second, the noise correlation matrix is computed using the NMF parameters

for the magnitude components, and a combination of the noisy speech phase and steering

vector for the phase components.

These contributions have led to publications in peer-reviewed journals and refereed

conferences, as listed below:

Journal papers

• H. Chung, R. Badeau, E. Plourde and B. Champagne, “Training and compensation

of class-conditioned NMF bases for speech enhancement,” Neurocomputing, vol. 284,

pp. 107-118, Apr. 2018.

• H. Chung, E. Plourde and B. Champagne, “Regularized non-negative matrix factor-

ization with Gaussian mixtures and masking model for speech enhancement,” Speech
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Communication, vol. 87, pp. 18-30, Mar. 2017.

• H. Chung, E. Plourde and B. Champagne, “Discriminative training of NMF model

based on class probabilities for speech enhancement,” IEEE Signal Processing Letters,

vol. 23, no. 4, pp. 502-506, Feb. 2016.

Conference papers

• H. Chung, E. Plourde and B. Champagne, “Single-channel enhancement of convo-

lutive noisy speech based on a discriminative NMF algorithm,” in Proc. IEEE Int.

Conf. Acoustics, Speech, and Signal Processing (ICASSP), pp. 2302-2306, Mar. 2017.

• H. Chung, E. Plourde and B. Champagne, “Basis compensation in non-negative ma-

trix factorization model for speech enhancement,” in Proc. IEEE Int. Conf. Acous-

tics, Speech, and Signal Processing (ICASSP), pp. 2249-2253, Mar. 2016.

• H. Chung, E. Plourde and B. Champagne, “Regularized NMF-based speech enhance-

ment with spectral components modeled by Gaussian mixtures,” in Proc. IEEE Int.

Workshop on Machine Learning for Signal Processing (MLSP), six pages, Sep. 2014.

Regarding the contributions of the authors in all papers above, the first author, Mr. Han-

wook Chung, developed the idea, derived and implemented the algorithms, conducted the

experiments and wrote a first draft of the manuscripts. The co-authors, Professor Eric

Plourde and Benoit Champagne, supervised the work by providing guidance, validating the-

oretical development, and contributing to the editing and writing of the final manuscript.

In the journal paper published in Neurocomputing, the second author, Professor Roland

Badeau, provided useful inputs in the mathematical derivation and in the preparation of

the final manuscript.
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1.5 Thesis Organization

The thesis is organized as follows. In Chapter 2, we review the basic principles of the

NMF and its application to single and multi-channel speech enhancement. Regularized

NMF algorithm with Gaussian mixtures and masking model is presented in Chapter 3.

In Chapter 4, we explain a training and compensation algorithm of the class-conditioned

NMF bases. The extension of the Bayesian NMF model to multi-channel application is

presented in Chapter 5. Conclusion and future works are discussed in Chapter 6.

Throughout the thesis, we use the subscripts or superscripts Y , S and N to indicate the

noisy speech, clean speech and noise, respectively. The superscripts T , H and * respectively

denote matrix transpose, Hermitian transpose and complex conjugate operation. We use

the bold upper case letter to denote matrices, e.g., W, and bold lower case letter for the

column vectors, e.g., w. The symbols R, R+ and C denote the sets of real numbers, non-

negative real numbers and complex numbers, respectively. The symbol ! denotes factorial,

* indicates the convolution operation and || · ||2 denotes the l2-norm. The imaginary unit

is expressed by j =
√−1, while ∠Y represents the phase of a complex number Y .
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Chapter 2

NMF-based Speech Enhancement

In this chapter, we introduce the fundamental concepts at the basis of the NMF model,

with special emphasis on the derivation of the update rules from different points of views.

The application of the NMF framework to supervised single and multi-channel speech

enhancement is described subsequently.

2.1 Background on NMF

For a given matrix V = [vkl] ∈ R
K×L
+ , NMF finds a local1 decomposition V ≈ WH, where

W = [wkm] ∈ R
K×M
+ is a basis matrix, H = [hml] ∈ R

M×L
+ is an activation matrix, and

M is the number of basis vectors, typically chosen such that M < min(K,L) [36, 37, 60].

In contrast to other methods such as principal components analysis (PCA), independent

component analysis (ICA) and vector quantization (VQ) which train holistic features, the

NMF framework allows only additive and not subtractive combinations of the basis vectors.

Therefore, it is shown to be useful and effective to train localized features which correspond

to the so-called parts-based representation [36].

1The term “local” refers to a local minimum of the NMF cost function.
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The factorization is obtained by minimizing a suitable cost function D(V,WH), such

as the Euclidean (EUC) distance [37], the Kullback-Leibler (KL) divergence [37] or the

Itakura-Saito (IS) divergence [38], respectively:

DEUC(V,WH) =
1

2

K∑
k=1

L∑
l=1

(vkl − [WH]kl)
2 (2.1)

DKL(V,WH) =
K∑
k=1

L∑
l=1

(
vkl ln

vkl
[WH]kl

− vkl + [WH]kl

)
(2.2)

DIS(V,WH) =
K∑
k=1

L∑
l=1

(
vkl

[WH]kl
− ln

vkl
[WH]kl

− 1

)
(2.3)

where [·]kl denotes the (k, l)-th entry of its matrix argument. The NMF solutions can be

found iteratively using the corresponding multiplicative update (MU) rules [37, 63]:

EUC : W ← W⊗ VHT

WHHT
, H ← H⊗ WT V

WT WH
(2.4)

KL : W ← W⊗(V /(WH))HT

1KL H
T

, H ← H⊗WT (V /(WH))

WT 1KL

(2.5)

IS : W ← W⊗
(
(V /(WH)2)HT

(WH)−1 HT

)1/2

, H ← H⊗
(
WT (V /(WH)2)

WT (WH)−1

)1/2

(2.6)

where the operation ⊗ denotes element-wise multiplication, the quotient line and / are

element-wise division, 1KL is a K × L matrix with all entries equal to one, ← refers

to an iterative overwrite, and the exponents in (2.6) are computed element-wisely. The

scale indeterminacies in W and H, which appear as a product in V, can be prevented by

normalizing W using the l1 or l2-norm after estimating W, and subsequently compute H,

for each iteration [64].
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Fig. 2.1 Graphical illustration of the concept of the auxiliary function.

The MU rules in (2.4)-(2.6) are derived based on the concept of using the auxiliary

function [37, 63]. Specifically, let Fc(θ) ≥ 0 denote a non-negative cost function to be

minimized with respect to a multivariate parameter θ. A function Fa(θ, θ̃) which satisfies

Fa(θ, θ̃) ≥ Fc(θ), Fa(θ,θ) = Fc(θ) (2.7)

is called an auxiliary function for Fc(θ), where θ̃ is an auxiliary variable. It is obvious that

Fc(θ) is non-increasing under the following iterative update

θ(r+1) = argmin
θ

Fa(θ,θ
(r)) (2.8)

since Fc(θ
(r+1)) = Fa(θ

(r+1),θ(r+1)) ≤ Fa(θ
(r+1),θ(r)) ≤ Fa(θ

(r),θ(r)) = Fc(θ
(r)), where the

superscript (r) denotes the r-th iteration. Hence, the iterative update of θ guarantees the

convergence to a stationary point of Fc(θ). The concept of using the auxiliary function is

graphically illustrated in Figure 2.1.
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For example, the application of the auxiliary function approach to the NMF problem

with the KL-divergence is summarized as follows (see [37] for a more detailed discussion).

Let the cost function Fc(θ) denote the KL-divergence given by (2.2) with a fixed activation

H(r). We can construct the auxiliary function for Fc(θ) as

Fa(W,W(r)) =
K∑
k=1

L∑
l=1

[
vkl ln vkl − vkl

M∑
m=1

wkm(hml)
(r) − vkl +

M∑
m=1

γm
kl ln

wkm(hml)
(r)

γm
kl

]
(2.9)

where γm
kl is given by

γm
kl =

(wkm)
(r)(hml)

(r)∑
m′(wkm′)(r)(hm′l)(r)

. (2.10)

It is straightforward to verify that Fa(W,W) = Fc(W). The inequality Fa(W,W(r)) ≥
Fc(W) can be shown by using Jensen’s inequality based on the convexity of the log function

as

− ln
M∑

m=1

wkm(hml)
(r) ≤ − ln

M∑
m=1

γm
kl ln

wkm(hml)
(r)

γm
kl

(2.11)

which holds for a non-negative value γm
kl such that

∑
m γm

kl . By setting the partial derivative

of (2.9) with respect to wkm to zero, the basis element is found to be

(wkm)
(r+1) =

∑L
l=1 vklγ

m
kl∑L

l=1(hml)(r)
=

(wkm)
(r)∑L

l=1(hml)(r)

L∑
l=1

vkl(hml)
(r)∑M

m′(wkm′)(r)(hm′l)(r)
. (2.12)

The basis element update in (2.12) can be rearranged in a matrix form, which leads to (2.5).

The update rule of the activation matrix can be derived by following a similar approach.

There are two main alternative points of views of deriving the update rules for the basis

and activation matrices. The first one is interpreting the NMF model within a statistical

framework, and the second one is based on a heuristic observation. These are explained

below.
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1) Statistical interpretation of NMF: The NMF problem also can be interpreted within

a statistical framework. That is, it has been shown that the cost functions in (2.1)-(2.3)

have corresponding PGMs. For a given matrix X = [xkl], each entry is assumed to be a

sum of M latent variables as

xkl =
M∑

m=1

cmkl. (2.13)

where xkl is a non-negative real value for the PGMs corresponding to either the Euclidean

distance or the KL-divergence, and a complex value for the PGM corresponding to the IS-

divergence. The m-th latent variable cmkl is assumed to be drawn from one of the following

distributions [38, 41, 65]:

cmkl ∼ p(cmkl|wkm, hml) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N (cmkl|wkmhml, 1) : EUC

P(cmkl|wkmhml) : KL

N c(c
m
kl|0, wkmhml) : IS

(2.14)

where N (c|μ, σ2) = (2πσ2)−1/2 exp((c− μ)2/(2σ2)) is the univariate Gaussian distribution

with mean μ and variance σ2, P(c|u) = uc exp(−u)/(c!) is the Poisson distribution with

mean u and N c(c|μ, σ2) = (πσ2)−1 exp(−|c − μ|2/σ2) is the complex-valued univariate

Gaussian distribution with μ ∈ C (complex-valued) and variance σ2. Assuming that the

random variables xkl are drawn independently, the logarithm of the distribution of X is

obtained, for each case, as

ln p(X |W,H) = ln
K∏
k=1

L∏
l=1

p(xkl|wkl, hml) (2.15)
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c
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑K
k=1

∑L
l=1

[
−1

2

(
xkl −

∑M
m=1 wkmhml

)2
]

: EUC

∑K
k=1

∑L
l=1

[
xkl ln

(∑M
m=1 wkmhml

)
−∑M

m=1 wkmhml

]
: KL

∑K
k=1

∑L
l=1

[
− ln

(∑M
m=1 wkmhml

)
− |xkl|2∑M

m=1 wkmhml

]
: IS

where
c
= denotes equality up to a constant term. By adjusting the notations as V = X for

the Euclidean distance and the KL-divergence and V = [|xkl|2] for the IS-divergence, we

can see that the maximization of the LLFs given by (2.15) with respect to wkm and hml

are equivalent to the minimization of the cost functions in (2.1)-(2.3), respectively.

The ML estimates of the parameters wkm and hml, given the observations vkl, are

obtained via the iterative EM algorithm [66,67]. During the expectation step (E-step), the

posterior distribution of the latent variable given the observation is calculated. During the

maximization step (M-step), the parameters are estimated by maximizing the expectation

of the complete-data LLF with respect to the posterior distribution. For example, when

considering the Poisson-distributed PGM of NMF in (2.14), which corresponds to the KL-

divergence, the application of the EM algorithm is summarized as follows. During the

E-step, the posterior distribution p(cmkl|vkl) where ckl = [c1kl, ..., c
M
kl ] is computed, which is

shown to be a multinomial distribution [41]:

M(ckl; vkl, p̄kl) = δ

(
vkl −

M∑
m=1

cmkl

)
vkl!

M∏
m=1

(p̄mkl)
cmkl

cmkl!
(2.16)

where δ(x) is the Kronecker delta function defined by δ(x) = 1 for x = 0 and δ(x) =

0 otherwise. The entries of p̄kl = [p̄mkl] (also referred to as cell probabilities such that
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∑
m p̄mkl = 1) are given by

p̄mkl =
wkmhml∑
m′ wkm′hm′l

. (2.17)

During the M-step, the basis and activation elements are estimated by maximizing

LC(V |W,H)
c
=

K∑
k=1

L∑
l=1

M∑
m=1

(−wkmhml + c̄mkl ln(wkmhml)) (2.18)

where c̄mkl is the conditional expectation of the latent variable cmkl with respect to the pos-

terior distribtion p(cmkl|vkl), i.e., the mean value of the multinomial distribution in (2.16),

given by

c̄mkl = E[cmkl|vkl] = p̄mklvkl =
wkmhml∑M

m′=1 wkm′hm′l
vkl. (2.19)

The iterative NMF solutions obtained through the EM algorithm are shown as [41]

(wkm)
(r+1) =

∑L
l=1(c̄

m
kl)

(r)∑L
l=1(hml)(r)

(2.20)

(hml)
(r+1) =

∑K
k=1(c̄

m
kl)

(r)∑K
k=1(wkm)(r+1)

(2.21)

where again, the superscript (r) refers to the r-th iteration.

2) Heuristic MU rules: The NMF solutions can be found by using the so-called heuristic

MU rules, which can be considered as a generalized version of the MU rules given by (2.4)-

(2.6). To this end, the gradient of the cost function is expressed as the difference of two non-

negative terms such that ∇D(V,WH) = ∇+ D(V,WH) − ∇− D(V,WH), i.e., where

∇+ D(V,WH) ≥ 0 and ∇− D(V,WH) ≥ 0. By taking advantage of this representation,
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the heuristic MU rules are shown to be [38]:

W ← W⊗∇−
W D(V,WH)

∇+
W D(V,WH)

, H ← H⊗∇−
H D(V,WH)

∇+
H D(V,WH)

. (2.22)

In general, the heuristic MU rules do not guarantee the convergence to a stationary point

[38]. Nevertheless, they are widely used due to the simplicity of their derivation and

implementation, especially in diverse regularized algorithms, e.g., [32, 40, 68]. To this end,

a regularized cost function can be written as

J (W,H) = D(V,WH) + λR(W,H) (2.23)

where λ > 0 is a regularization coefficient and R(W,H) is a regularization term. The

convergence behavior as well as the performance of the target application generally depends

on the regularization coefficient.

The concept of NMF introduced so far can be extended to factorizing a given tensor

V = [vjkl] ∈ R
K×L×J
+ . Representative methods include the multi-channel NMF (MNMF)

algorithm [33] and the non-negative tensor factorization (NTF) algorithm [69]. The MNMF

and NTF models are respectively given by

vjkl ≈ v̂jkl =

⎧⎪⎪⎨
⎪⎪⎩
ajk

∑M
m=1 wkmhml : MNMF

∑M
m=1 a

j
mwkmhml : NTF

(2.24)

where ajk and ajm are the mixing coefficients in the MNMF and NTF models, respectively.

The parameters of the MNMF model based on the IS-divergence can be estimated via the
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following MU rules2 [33]:

ajk ← ajk

∑L
l=1

[
(v̂jkl)

−2vjkl
∑M

m=1 wkmhml

]
∑L

l=1

[
(v̂jkl)

−1
∑M

m=1 wkmhml

] (2.25)

wkm ← wkm

∑J
j=1 a

j
k

[∑L
l=1(v̂

j
kl)

−2vjklhml

]
∑J

j=1 a
j
k

[∑L
l=1(v̂

j
kl)

−1hml

] (2.26)

hml ← hml

∑J
j=1

∑K
k=1 a

j
kwkm(v̂

j
kl)

−2vjkl∑J
j=1

∑K
k=1 a

j
kwkm(v̂

j
kl)

−1
. (2.27)

The MNMF and NTF algorithms, aiming at factorizing a given tensor, can be applied to

multi-channel speech enhancement problem.

2.2 Application of NMF to Speech Enhancement

We next briefly introduce a general framework for the application of the supervised NMF-

based algorithms to the problems of the single and multi-channel speech enhancement.

2.2.1 Single-channel application

The frequency-domain representation is commonly used for audio and speech signal process-

ing to better exploit spectral characteristics. To this end, a popular choice is the short-time

Fourier transform (STFT), which consists of separate discrete Fourier transforms (DFT)

applied to the signal under consideration over successive time windows or frames. Let y[i],

where index i = 0, 1, 2, ..., denote the discrete-time samples of a noisy speech signal, as ob-

tained by passing a microphone output signal through an analog-to-digital converter (ADC)

2See [33] for the EM-based parameter estimation of the MNMF model, and [69] for the MU-based
parameter estimation of the NTF model.
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with sampling rate of fs [Hz]3. The STFT coefficients of the noisy speech are computed

as [70, 71]

Ykl =
Lw−1∑
i=0

y[i+ (l − 1)Lh]wa[i]e
−j 2π

F
(k−1)i (2.28)

where wa[ı] is an analysis window of length Lw defined in the interval of 0 ≤ i ≤ Lw − 1,

Lh is the frame advance (also referred to as hop size), F is the DFT size4, k ∈ {1, ..., K}
is the frequency bin index and l ∈ {1, ..., L} is the time frame index. Due to the conju-

gate symmetry of the spectral coefficients, only half of them are considered in general for

practical implementation, resulting in K = F/2+ 1 for even F and K = (F +1)/2 for odd

F .

Let us consider an additive noise model, i.e.,

y[i] = s[i] + n[i] (2.29)

where s[i] and n[i] respectively denote the clean speech and noise signals in the discrete-

time domain. Under this assumption, the noisy speech spectrum obtained via STFT is

given by the sum of the clean speech and noise spectra , i.e.,

Ykl = Skl +Nkl (2.30)

where Ykl, Skl and Nkl respectively denote the STFT coefficients of the noisy speech, clean

speech and noise at the k-th frequency bin and l-th time frame.

Different choices of NMF cost functions have been presented in Section 2.1. The KL-

3In practice, fs will range from 8 kHz (toll quality speech) to 44.1 kHz (high-quality audio).
4The DFT size F is often chosen to be larger than the window length Lw (equivalent to using the

well-known zero-padding method), to limit temporal aliasing. The latter may occur when converting the
enhanced speech spectrum, obtained by filtering the noisy speech spectrum, into the time-domain [75].
Throughout the thesis, however, we simply use F = Lw by assuming that such effect is negligible.
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based NMF algorithms when applied to speech enhancement are known to be better suited

for handling the magnitude spectral coefficients. Hence, one commonly assumes that the

magnitude spectrum of the noisy speech can be approximated by the sum of the clean

speech and noise magnitude spectra [32, 34, 40, 72], i.e., |Ykl| ≈ |Skl| + |Nkl|. In contrast,

the IS-based NMF algorithms are usually applied to the power spectral coefficients [38,40],

i.e., |Ykl|2 ≈ |Skl|2 + |Nkl|2. In single-channel source separation and speech enhancement

applications, the KL-based approach is a more popular choice and widely used since it has

been shown to provide better performance compared to using other measures, such as the

Euclidean distance or the IS-divergence [73, 74]. Hence, we focus on the KL-divergence as

the main cost function in this thesis.

A supervised NMF-based speech enhancement framework consists of two stages. During

the training stage, the basis matrices of the clean speech and noise, WS = [wS
km] ∈ R

K×MS
+

andWN = [wN
km] ∈ R

K×MN
+ respectively, are obtained by applying the NMF update rules to

the corresponding training data separately. During the enhancement stage, by fixingWY =

[WS WN ] ∈ R
L×(MS+MN )
+ , the activation matrix of the noisy speech HY = [HT

S HT
N ]

T ∈
R

(MS+MN )×L
+ is estimated5 by applying the activation update to VY = [|Ykl|] ∈ R

K×L
+ . Once

the activation matrix is computed, the clean speech spectrum can be estimated from the

noisy speech spectrum via Wiener filtering as [1]

Ŝkl =
p̂Skl

p̂Skl + p̂Nkl
Ykl (2.31)

5Besides this so-called batch approach, we can consider alternative implementation: online or mini-

batch online approach. In the former case, the activation vector hY
l = [(hS

l )
T (hN

l )T ]T ∈ R
(MS+MN )
+ is

estimated from the instantaneous target vector VY
l = [|Ykl|] ∈ R

K
+ for the l-th time frame. In the latter

case, the activation matrix HY
lb

= [(HS
lb
)T (HN

lb
)T ]T ∈ R

(MS+MN )×Lb

+ is obtained from a target matrix,

VY
lb

= [|Ykl|] ∈ R
K×Lb
+ where lb = 1, 2, ... is the mini-batch index and Lb is the mini-batch size, obtained

from consecutive time frames l ∈ {(lb − 1)Lb + 1, ..., lbLb}.
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where p̂Skl and p̂Nkl respectively denote the estimated power spectral densities (PSD) of the

clean speech and noise. The latter are typically obtained via temporal smoothing of the

NMF-based periodograms as [56]

p̂Skl = τS p̂
S
k,l−1 + (1− τS)

(
MS∑
m=1

wS
kmh

S
ml

)2

(2.32)

p̂Nkl = τN p̂
N
k,l−1 + (1− τN)

(
MN∑
m=1

wN
kmh

N
ml

)2

(2.33)

where τS and τN ∈ (0, 1) are the smoothing factors for the clean speech and noise.

Finally, the time-domain enhanced speech signal is obtained by applying the inverse

DFT (IDFT) to the enhanced speech spectrum for each time frame, followed by the overlap-

add method [71]. Specifically, the IDFT values for the l-th time frame are obtained as

s̃l[i] =

⎧⎪⎪⎨
⎪⎪⎩

1

F

∑F
k=1 Ŝkle

j 2π
F

(k−1)i, i = 0, ..., F − 1

0, else

. (2.34)

Samples from successive frames are reassembled into a single time sequence via the overlap-

add method:

ŝ[i] =
∞∑
l=1

s̃l[i− (l − 1)Lh]ws[i− (l − 1)Lh] (2.35)

where ws[i] is a synthesis window defined in the interval of 0 ≤ i ≤ Lw − 1. For perfect

reconstruction, the analysis and synthesis windows should satisfy [76]:

Lw∑
l=1

wa[i− (l − 1)Lh]ws[i− (l − 1)Lh] = 1 (2.36)

for all i ≥ 0. In practice, we can consider a rectangular synthesis window ws[i] = 1/Wa,
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where Wa is a constant value such that Wa =
∑

l wa[i − (l − 1)Lh] for all i ≥ 0. This

latter condition can be satisfied by selecting an appropriate analysis window6, e.g., a sine

or Hanning window.

2.2.2 Multi-channel application

We can extend the single-channel application discussed in the previous subsection to a

mutli-channel application, which utilizes a multi-channel noisy speech signal obtained

through a microphone array. The latter consists of a fixed spatial arrangement of J micro-

phone elements, indexed with j ∈ {1, ..., J} where the outputs are sampled at a sampling

rate fs and fed to a multi-channel processor. Let yj[i] denote the discrete-time samples of

a noisy speech signal recorded at the j-th microphone. By taking into account the con-

volutive nature of the acoustic medium, as represented by an acoustic impulse response

between the speech source and the microphone (also known as a mixing filter), the noisy

speech signal can be written in the time-domain as

yj[i] = zjS[i] + zjN [i] (2.37)

= ãjS[i] ∗ s[i] + zjN [i]

where zjS[i] is the so-called clean speech image source component7, zjN [i] is the additive

noise components, s[i] is the clean speech point source signal and ãjS[i] is the mixing filter

for the clean speech.

Assuming that the mixing filter length is shorter than the STFT analysis window length,

6In practice, due to the shape of wa[i], this condition cannot be satisfied for several initial values of the
time index i, i.e., for i = 0, 1, ..., Lh − 1. This can be simply handled by padding zero values prior to the
signal before implementing STFT, and discarding them after reconstruction.

7The term “image” refers to the convolution operation in (2.38), which can be interpreted as a sum of
scaled and delayed samples of s[i].
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the multi-channel convolutive noisy speech signal yj[i] in (2.38) can be expressed in the

STFT domain as [33, 62, 69]

Y j
kl = Zj

S,kl + Zj
N,kl = Ãj

S,kSkl + Zj
N,kl (2.38)

where Zj
S,kl and Zj

N,kl respectively denote the STFT coefficients of the convolutive clean

speech and noise signals, Ãj
S,k is the acoustic transfer function (ATF) for the clean speech

(obtained from the DFT coefficients of the mixing filter ãjS[i]), Skl is the STFT coefficient

of the clean speech point source signal, and k ∈ {1, ..., K}, l ∈ {1, ..., L} and j ∈ {1, ..., J}
are the frequency bin, time frame and microphone indices.

It is worth noting that we assume that the noise spectrum can be also expressed in

terms of an ATF and point source spectrum as Zj
N,kl = Ãj

N,kNkl, where Ãj
N,k is the ATF

for the noise and Nkl is the noise point source spectrum. Although this noise model is

theoretically valid only for a noise signal generated by a point source (e.g., when a small

fan is placed in a room [17]), it is widely used in NMF-based framework for multi-channel

speech enhancement in practice, e.g., [35, 61, 62]. Besides, we can directly consider the

noise image source magnitude spectrum |Zj
N,kl|, and estimate the basis vectors by applying

a single-channel NMF algorithm to each channel to obtain the basis vectors, e.g., [77].

However, such an approach results in a large size of the basis matrix (i.e., proportional

to the number of microphones J), which may increase the computational cost during the

enhancement stage. Moreover, it can hardly handle the dynamic of the ATF, especially

when the microphone configurations used while acquiring the training and test data are

different. In contrast, the point source model suggests an efficient representation of the

noise signal. That is, we can estimate a single basis matrix for a noise signal as well as

we can capture the dynamic characteristic of the acoustic environment explicitly by means
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of the mixing coefficients. In addition, the point source model enables a possible post-

processing of the beamformer output, e.g., the application of NMF-based single-channel

Wiener filtering, specified by the basis and activation elements, to the MVDR beamformer

output.

We can consider the MNMF or NTF model in (2.24) as an application of a tensor

factorization algorithm for multi-channel speech enhancement. However, the NTF model

employs frequency-independent mixing coefficients ajm. This intrinsically implies that the

NTF model is suited for a linear instantaneous mixture signal and hence, the model is

inadequate to handle the convolutive effects specified by the ATFs [33]. Therefore, we

consider the MNMF model in this thesis. As in the single-channel application, we apply

the MNMF algorithm to a given tensor based on the magnitude spectral coefficients, where

the parameters in (2.24) can be interpreted as follows. Considering the clean speech image

spectrum Zj
S,kl = Ãj

S,kSkl for instance, by setting the notation as vS,jkl = |Zj
S,kl|, the basis

and activation elements wkm and hml become related to the point source spectrum (i.e.,

|Skl| =
∑

m wkmhml), while the mixing coefficient corresponds to the magnitude value of

the ATF (i.e., aS,jk = |Ãj
S,k|).

Similar to the single-channel application developed in the previous subsection, a su-

pervised NMF-based multi-channel speech enhancement framework consists of two stages.

During the training stage, the basis matrices of the clean speech and noise, WS = [wS
km] ∈

R
K×MS
+ and WN = [wN

km] ∈ R
K×MN
+ , are obtained from the tensor-based training data.

During the enhancement stage, by fixing the basis matrices, we estimate the magnitude

values of the ATFs of the clean speech and noise (i.e., AS = {aS,jk } and AN = {aN,j
k })

and activation matrix HY ∈ R
(MS+MN )×L
+ from the noisy speech magnitude spectrum8

8As explained in Footnote 4, we can consider an online or mini-batch online approach, which enables
to handle the case of slowly moving sources (i.e., time-varying ATFs).
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VY = [|Y j
kl|] ∈ R

K×L×J
+ .

There are two main reconstruction targets in multi-channel applications, i.e., the image

source and point source estimation, which are explained below.

1) Image source estimation: The first one is to estimate the clean speech image source

spectral coefficients Zj
S,kl, which can be obtained by applying a single-channel Wiener filter

to the noisy speech STFT coefficients Y j
kl for each channel as [61, 62, 69]

Ẑj
S,kl =

|Âj
S,k|2p̂Skl

|Âj
S,k|2p̂Skl + |Âj

N,k|2p̂Nkl
Y j
kl (2.39)

where p̂Skl and p̂Nkl are given by (2.32) and (2.33)9, Âj
S,k = aS,jk ϕS,j

k and Âj
N,k = aN,j

k ϕN,j
k

(aS,jk � |Âj
S,k|, ϕS,j

k � exp(j∠Âj
S,k), a

N,j
k � |Âj

N,k| and ϕN,j
k � exp(j∠Âj

N,k)) are the estimated

complex-valued ATFs for the clean speech and noise. The phase-related components ϕS,j
k

and ϕN,j
k can be obtained based on the noisy speech phase for the l-th time frame, i.e.,

ϕS,j
k = ϕN,j

k = exp(j∠Y j
kl).

The clean speech image spectrum can be estimated alternatively via multi-channel

Wiener filtering [61]:

ẐS,kl =
[(
RS

kl +RN
kl

)−1
RS

kl

]H
Ykl (2.40)

where ẐS,kl = [Z1
S,kl, ..., Z

J
S,kl]

T and Ykl = [Y 1
kl, ..., Y

J
kl ]

T , and RS
kl ∈ C

J×J and RN
kl ∈ C

J×J

are the clean speech and noise correlation matrices. The latter are obtained via temporal

smoothing, e.g., [78], as

[RS
kl]ab = τS[R

S
k,l−1]ab + (1− τS)Â

a
S,k

(
Âb

S,k

)∗
(

MS∑
m=1

wS
kmh

S
ml

)2

(2.41)

9Note that p̂Skl and p̂Nkl are obtained based on the basis and activation elements (i.e., related to the point
source signal) and hence, do not depend on the microphone index j.
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Source

Fig. 2.2 Geometric illustration of the propagation delay between a source
and microphone array.

[RN
kl]ab = τN [R

N
k,l−1]ab + (1− τN)Â

a
N,k

(
Âb

N,k

)∗
(

MN∑
m=1

wN
kmh

N
ml

)2

(2.42)

where τS and τN (0 ≤ τS, τN ≤ 1) are the smoothing constants, and a, b ∈ {1, ..., J}.
2) Point source estimation: The second target is to estimate the clean speech point

source spectral coefficients Ŝkl, which can be obtained via the MVDR beamforming tech-

nique [78], as

Ŝkl =

(
(RN

kl)
−1 bk

bH
k (R

N
kl)

−1 bk

)H

Ykl (2.43)

where RN
kl is the noise correlation matrix given by (2.42) and bk = [bjk] ∈ C

J is the

steering vector. Specifically, assuming the far field model in which the wavefront of the

transmitted sound appears planar when impinging on the microphone array, the steering

vector is obtained in terms of the time difference-of-arrival (TDoA). The concept of the

TDoA illustrated in Figure 2.2. Let us denote by ζj = ||ls − lj||2/c the time delay for
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acoustic wave propagation between the source and the j-th microphone, where lj ∈ R
3 and

ls ∈ R
3 respectively denote the j-th microphone and source position vectors, and c is the

speed of sound. The TDoA of the source signal at the j-th microphone with respect to a

reference position lr is given by

ζrj = ζj − ζr (2.44)

where ζr = ||ls− lr||2/c is the propagation time delay between the source and the reference.

The j-th element of the steering vector is then given by

bjk = e−j2πfkζrj (2.45)

where fk = (k−1)fs/F is the continuous frequency [Hz] corresponding to the k-th frequency

bin with sampling rate fs [Hz] and DFT size F . Alternatively, the TDoA for the j-th

microphone can be written as

ζrj = −lTrjlo/c (2.46)

where lrj = lj − lr is the relative position vector of microphone j with respect to the

reference position and lo = (ls− lr)/||ls− lr||2 is the unit look direction vector of the source

from the reference position. Considering the microphone array in Figure 2.2 as a particular

example, where the first microphone is taken as the reference position (i.e., lr = l1) and

the microphones are equally spaced along a line (i.e., uniform linear microphone array),
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the steering vector is found to be

bk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e−j2πfk(−(l1−l1)T lo)/c

e−j2πfk(−(l2−l1)T lo)/c

...

e−j2πfk(−(lJ−l1)T lo)/c

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

e−j2πfk(d/c) sin θ

...

e−j2πfk((J−1)d/c) sin θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.47)

where θ is the DoA in radian.

To further reduce the residual noise components in the enhanced speech obtained via

the MVDR beamformer, we can apply a single-channel enhancement algorithm to the

beamformer output as a post-processor [19, 20], e.g., Wiener filtering:

ŜSC
kl =

p̂Skl
p̂Skl + p̂Nkl

Ŝkl (2.48)

where p̂Skl and p̂Nkl are given by (2.32) and (2.33). Again, once the clean speech spectrum is

estimated, the time-domain enhanced speech signal is obtained via inverse STFT, followed

by the overlap-add method as explained in Subsection 2.2.1.
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Chapter 3

Regularized NMF with Gaussian

Mixtures and Masking Model

In this chapter, we introduce single-channel supervised speech enhancement algorithms

based on regularized NMF1. In the proposed framework, the LLFs of the magnitude spectra

for both the clean speech and noise, based on GMM, are included as regularization terms in

the NMF cost function. By using this proposed regularization as a priori information in the

enhancement stage, we can exploit the statistical properties of both the clean speech and

noise signals. For further improvement of the enhanced speech quality, we also incorporate

a masking model of the human auditory system in our approach. Specifically, we construct

a WWF where the PSDs of the clean speech and noise are estimated from the above

mentioned NMF algorithm with the proposed regularization. The weighting factor in the

WWF is selected based on a masking threshold which is obtained from the estimated PSD

of the enhanced speech. Experimental results show that the proposed speech enhancement

1Parts of this chapter have been presented at the 2014 IEEE International Workshop on Machine
Learning for Signal Processing in Reims, France [79]; and have been published in the Speech Communication
[80].
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algorithms (i.e., regularized NMF with and without the masking model) provide better

enhancement performance than the benchmark algorithms.

This chapter is organized as follows. In Section 3.1, we address the research motivation

and a brief overview of the proposed algorithms. The proposed NMF training stage with

GMM parameter estimation is described in Section 3.2. In Section 3.3, the proposed modi-

fications to the enhancement stage, including NMF algorithm with regularization, masking

threshold estimation and perceptually motivated NMF algorithm for speech enhancement

are explained. Experimental results are presented in Section 3.4.

3.1 Research Motivations and Contributions

One of the main problems of the NMF-based supervised speech enhancement algorithms

is the existence of a mismatch between the characteristics of the training and test data,

which in turn leads to a decreased quality of the estimated source signals. One possible

remedy to this problem is to add explicit regularization terms to the NMF cost function.

Based on a classical approach, we can simply consider the l1 or l2-norm of the activation

matrix [58, 64]. In order to account for the temporal dependency of the successive time

frames, [38] models the activations by means of Markov chain. Employing the regularization

terms that incorporate some prior knowledges has been also introduced. The authors in [81]

and [54] use a HMM, while [40] uses GMMs that help the activations to follow certain

patterns. In [79], both the speech and noise spectra are modeled by a GMM, and their

LLFs are used as regularization terms.

Besides the speech enhancement or source separation algorithms which mainly focus on

the perspective of signal estimation and reconstruction, several algorithms incorporating

modeling aspects of the human auditory system have been proposed in order to improve the
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perceptual quality of the estimated source signals. Specifically, these refined algorithms ex-

ploit a psychoacoustical property called auditory masking which refers to a process whereby

one sound is rendered inaudible due to the presence of another sound [82]. In the case of

frequency domain (or simultaneous) masking, the threshold which models this effect has

been used for selecting parameters in spectral subtraction [4], subspace decomposition [10],

Wiener filtering [83] and MMSE-based estimator [84, 85]. In the NMF-based algorithms,

weighted NMF update rules have been proposed by applying a weighting matrix based

on the masking threshold to the NMF cost function [86, 87]. For speech enhancement, the

masking threshold which determines the amount of the noise reduction is usually calculated

from the estimated PSD of the clean speech. This suggests that a more accurate estimation

scheme may lead to further improvement of the enhanced speech quality when applying a

masking threshold.

In this chapter, we introduce single-channel supervised speech enhancement algorithms

based on regularized NMF which are extensions of our earlier work [79]. The proposed

framework seeks to exploit the statistical properties of both the clean speech and noise,

an approach which is widely used in traditional speech enhancement algorithms. This

is achieved in two ways: i) by representing the corresponding magnitude spectra, which

capture the general characteristics of the signals, with the help of GMMs motivated by [22]

and [24], and ii) by adding regularization terms that incorporate this a priori information

to the NMF cost function in the enhancement stage. The proposed method, therefore,

can be interpreted as a combination of the NMF and statistical model-based approaches.

During the training stage, by using an isolated training set for each type of clean speech and

noise, we estimate the basis matrices in the NMF model via multiplicative update rules [37]

and the parameters of the GMMs via the EM algorithm [66,67]. For the GMM, we propose

to use normalized spectral values in order to handle the magnitude difference between the
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training and test data, similar to the work of [40]. In the enhancement stage, the LLFs of

the clean speech and noise magnitude spectra are added as regularization terms to the NMF

cost function and the activation matrix of the noisy speech is estimated. Consequently, the

PSDs of the clean speech and noise are obtained and the enhanced speech is reconstructed

using Wiener filtering.

For further improvement of the enhanced speech quality, we incorporate the masking

effects of the human auditory system in our approach. Specifically, we construct a WWF

where the PSDs of the speech and noise are estimated from the above mentioned NMF

algorithm with the proposed regularization. The weighting factor in the WWF is selected

based on a masking threshold which is obtained from the estimated PSD of the speech

based on [88].

3.2 Proposed Training Stage

In the proposed framework, a priori knowledge about the magnitude spectra of the clean

speech and noise is captured by distinct GMMs. As a brief overview of the training stage,

we first estimate the basis and activation matrices, i.e., W and H, for the clean speech

and noise independently using isolated training data. To this end, we consider the KL-

divergence given in (2.2) and apply the resulting update rules in (2.5), leading to factoriza-

tions for the clean speech and noise magnitude spectra VS ≈ WS HS and VN ≈ WN HN .

Subsequently, the GMM parameters for the speech and noise are estimated from the cor-

responding NMF parameters. The details of this computation, which is identical for the

speech and noise, are further developed below where for convenience in notation, the sub-

scripts S and N are dropped.

In [22] and [24], the probability density function (PDF) of the clean speech spectrum
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is modeled by a GMM. Motivated by this approach, we model the PDFs of the magni-

tude spectra for both the clean speech and noise by distinct GMMs2. Therefore, we can

expect that a more detailed and accurate statistical description is provided for the noise

as well as the clean speech. In the proposed algorithm, we consider the product WH,

which is an approximation of V, as the observation matrix for the parameter estimation of

the magnitude spectrum PDF3, since we intend to introduce a clear connection with the

regularization term shown in (2.23). Specifically, by expressing the observation as WH,

we can directly differentiate the regularization term with respect to H while deriving the

update rule given by (2.22) during the enhancement stage (a detailed derivation will be

presented in Section 3.3). Moreover, in order to handle the magnitude difference between

the training and test data, we consider normalized observations where the columns of WH

are normalized by their l1-norm, similar to [40]. Specifically, we define the normalized

column of the observation matrix as,

V̄l �
[WH]l∑

m hml

(3.1)

where [·]l denotes the l-th column of its matrix argument. Note that the l1-norm of [WH]l,

i.e.,
∑

k[WH]kl, simply turns into
∑

m hml since the basis vectors are normalized with

respect to the l1-norm, i.e.,
∑

k wkm = 1 for m ∈ {1, ...M}. The GMM is defined in terms

of the following parametric model for the PDF of V̄l

p(V̄l|θ) =
∑
z

p(z)p(V̄l| z) =
I∑

i=1

gi N (V̄l|μi,Σi) (3.2)

2Alternatively, we can model the PDF of the magnitude spectra by a RMM (e.g., [21]) or gamma
mixture model (e.g., [55]), which remain an interesting avenue for our future explorative work.

3Indeed, we could verify through independent experiments that there was no significant difference in
the enhancement performance when considering either V or WH as the observation matrix.
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where I is the number of Gaussian components, z = [z1, ..., zI ]
T is an I-dimensional vector of

discrete latent variables zi ∈ {0, 1} with
∑

i zi = 1, and the set θ � {gi,μi,Σi}Ii=1 consists

of the GMM parameters. The marginal distribution over z is specified in terms of the mixing

coefficients gi � p(zi = 1). The conditional PDF of V̄l given a particular value for the latent

variable zi is aK-dimensional Gaussian distribution such that p(V̄l|zi = 1) = N (V̄l|μi,Σi)

where μi = [μi,k] is the mean vector and Σi is the covariance matrix. In this work, we

ignore possible correlations between different spectral components and therefore consider

diagonal covariance matrices for simplicity, i.e., Σi = diag{σ2
i,k}. Recall that the entries

of the observation matrix V̄ = [v̄kl] are magnitude spectral values which are strictly non-

negative, while the GMM can in theory assign non-zero probability to negative values.

Nevertheless, modeling matrix V̄ by a GMM is perfectly reasonable if the mean value

of its entries exceed the corresponding standard deviation by a significant margin. More

specifically, if say μi,k ≥ 3σi,k for every Gaussian component i = 1, ..., I, then we can safely

assume that Pr[v̄kl < 0] ≈ 0. In effect, we have been able to verify that this condition is

generally satisfied in our experimental work.

The parameter set θ = {gi,μi,Σi}Ii=1 can be estimated using the EM algorithm [66,67].

For a given observation V̄ = [V̄1, V̄2, ..., V̄L] = [v̄kl], where the column vectors V̄l are

assumed to be drawn independently, the LLF can be written as,

L(V̄|θ) � ln p(V̄|θ)

=
L∑
l=1

ln

{ I∑
i=1

gi N (V̄l|μi,Σi)

}

≥
L∑
l=1

I∑
i=1

q(zi) ln

{
gi N (V̄l|μi,Σi)

q(zi)

}
� LB(V̄|θ) (3.3)

where q(zi) is an arbitrary probability distribution. The inequality holds for any choice
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of q(zi) due to Jensen’s inequality [24, 41]. Note that LB(V̄|θ) defines a lower bound

on �L(V̄|θ) where the equality holds for q(zi) = p(zi = 1|V̄l,θ), which is the posterior

distribution of latent variable zi given the observation V̄l. The EM algorithm is an iterative

procedure which consists of two steps. During the expectation step (E-step), the posterior

distribution of each latent variable given the observation is calculated, which is shown as

γ
(r)
il � p(zi = 1|V̄l,θ

(r)) =
g
(r)
i N (V̄l|μ(r)

i ,Σ
(r)
i )∑I

i=1 g
(r)
i N (V̄l|μ(r)

i ,Σ
(r)
i )

(3.4)

where the superscript (r) denotes the r-th iteration. In the maximization step (M-step),

by fixing the posterior distribution to γ
(r)
il , the parameter set θ which maximizes �LB(V̄|θ)

is determined. In effect, since γ
(r)
il in (3.4) does not depend on θ, this is equivalent to the

maximization criterion of the expectation of the complete data LLF with respect to the

posterior distribution,

LC(V̄|θ) �
L∑
l=1

I∑
i=1

γ
(r)
il ln{giN (V̄l|μi,Σi)}. (3.5)

The solution of the M-step can be obtained in closed form as,

g
(r+1)
i =

1

L

L∑
l=1

γ
(r)
il ,

μ
(r+1)
i,k =

∑L
l=1 γ

(r)
il v̄kl∑L

l=1 γ
(r)
il

, (3.6)

σ
2 (r+1)
i,k =

∑L
l=1 γ

(r)
il (v̄kl − μ

(r+1)
i,k )2∑L

l=1 γ
(r)
il

.

As for the initialization of θ, we apply k-means clustering to V̄, which is an iterative

algorithm aiming to partition the observations into clusters, such that each observation
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belongs to the cluster with the nearest mean [67]. The number of clusters is set equal to

I, the number of Gaussian components in the GMM, while the cluster mean values are

initialized randomly.

At this point, we emphasize the main difference between the above proposed training

algorithm and the one presented in our earlier work [79]. In the latter, we considered joint

training of W, H and θ, where we used a regularized cost function as in (2.23) in which the

regularization term was the expected LLF given by (3.5). We observed that the regulariza-

tion coefficient λ not only determines the convergence behavior of the iterative update but

that it also affects the enhancement performance. Hence, selecting an appropriate value

for this coefficient is difficult. In addition, the iterative update using the joint training con-

verges slowly and hence requires a more extensive computational effort. For these reasons,

we chose to consider here instead a sequential form of training, which is found to be simpler

and more efficient in both terms of computation and enhancement performance.

3.3 Proposed Enhancement Stage

In this section, we introduce the proposed regularized NMF algorithms. The LLF of the

magnitude spectra for both the clean speech and noise based on distinct GMMs are included

as regularization terms in the NMF cost function, which will be discussed in Subsection

3.3.1. For further improvement of enhancement performance, we incorporate a masking

model of the human auditory system in our approach, which will be provided in Subsection

3.3.2. Specifically, we construct a WWF where the PSDs of the speech and noise are

estimated by using the method in Subsection 3.3.1, and the weighting factor in the WWF

is selected based on a masking threshold which is obtained from the estimated PSD of the

clean speech.
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3.3.1 Regularized NMF with Gaussian mixtures

In the proposed enhancement stage, the activation matrix of the noisy speech HY =

[HT
S HT

N ]
T is estimated using the regularized NMF algorithm based on (2.22) and (2.23),

by fixing the basis matrices WY = [WS WN ] and the GMM parameter sets of the clean

speech and noise, θS = {gSi ,μS
i ,Σ

S
i }ISi=1 and θN = {gNi ,μN

i ,Σ
N
i }INi=1, which are obtained

during the training stage. Specifically, the LLFs of the clean speech and noise based on

(3.3), i.e., L(V̄S|θS) and L(V̄N |θN), are used as regularization terms. The proposed

regularized cost function is shown as,

J = DKL(VY ,WY HY )−RY (WY ,HY ) (3.7)

where DKL(·) is the KL-divergence given in (2.2) and RY (WY ,HY ) is the proposed regu-

larization term written as,

RY (WY ,HY ) = λS L(V̄S|θS) + λN L(V̄N |θN) (3.8)

where L(·|·) is given in (3.3) and V̄S, V̄N are the normalized clean speech and noise spectra

defined by (3.1). The values λS > 0 and λN > 0 are the regularization coefficients for the

clean speech and noise, respectively. The optimal choices for λS and λN depend on the

input SNR as well as the speaker, the type of noise and regularization term. In this work,

however, we do not consider such dependencies (except the type of regularization term),

and use constant values for simplicity, as we found indeed that the optimal choices mostly

depend on the regularization term. Note that a negative sign is applied to the regularization

term in (3.7), since the latter will represent a reward as opposed to a penalty.

For the derivation of the update rule of HY , we first compute the gradient of
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DKL(VY ,WY HY ) with respect to HY . This gradient is shown as

∇HY
DKL = ∇+

HY
DKL −∇−

HY
DKL (3.9)

where the dependence of DKL(VY ,WY HY ) on VY and WY HY is omitted for notational

convenience, and the values on the right-hand side are

∇+
HY

DKL = WT
Y 1 (3.10)

∇−
HY

DKL = WT
Y (VY /(WY HY )) (3.11)

where 1 is aK×LcY matrix with all entries equal to one. Note that (3.10) and (3.11) appear

respectively in the denominator and numerator in (2.5). Next, we derive the gradient of

the regularization term RY (WY ,HY ) in (3.8) with respect to HY . Note that by using the

equality in (3.3), i.e., L(V̄|θ) = LB(V̄|θ) for q(zi) = γil, the gradient of L(V̄|θ) is identical
to that of LB(V̄|θ), which is equivalent to the gradient of LC(V̄|θ). Consequently, the

gradient of (3.8) can be shown in terms of the gradients of LC(V̄S|θS) and LC(V̄N |θS)

with respect to HS and HN , respectively, as,

∇HY
RY (WY ,HY ) =

[
λS∇HS

LC(V̄S|θS)

λN∇HN
LC(V̄N |θN)

]
(3.12)

where LC(·|·) is the expected LLF given in (3.5). As we can see from (3.1), the observations

V̄S and V̄N are expressed in terms of the corresponding basis and activation matrices.

Hence, using (3.5), we can derive the gradients of the expected LLF with respect to the
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activation matrix in (3.12), which is shown as

∇H LC = ∇+
H LC −∇−

H LC (3.13)

where H stands for either HS or HN , and the dependence of LC(V̄|θ) on V̄ and θ is

omitted for convenience. In (3.13), the entries of the gradient terms on the right-hand side

are

[∇+
H LC ]ml =

K∑
k=1

I∑
i=1

γilσ
−2
i,k

(
μi,k

wkm

cl
+

([WH]kl)
2

c3l

)
(3.14)

[∇−
H LC ]ml =

K∑
k=1

I∑
i=1

γilσ
−2
i,k (wkm + μi,k)

[WH]kl
c2l

(3.15)

where γil is the posterior distribution given in (3.4) and cl =
∑

m hml is the normalizing

factor. Specifically, γil is computed based on WS and WS obtained during the training

stage and HY estimated in the previous multiplicative update iteration. Note that, based

on the concept of the lower bound in (3.3) and the objective used in the M-step given

by (3.5), the posterior γil is considered as a fixed constant value during the derivations of

(3.14) and (3.15).

Based on the heuristic MU rules given in (2.22), the update rule of HY can be written

as,

ĤY ← ĤY ⊗ ∇−
HY

DKL(VY ,WY ĤY ) +∇+
HY

RY (WY , ĤY )

∇+
HY

DKL(VY ,WY ĤY ) +∇−
HY

RY (WY , ĤY )
(3.16)

where ∇+
HY

DKL(VY ,WY HY ) and ∇−
HY

DKL(VY ,WY HY ) are given in (3.10) and (3.11).

The components ∇+
HY

RY (WY ,HY ) and ∇−
HY

RY (WY ,HY ) are easily found by substitut-
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ing (3.13) into (3.12). That is,

∇+
HY

RY (WY ,HY ) =

[
λS∇+

HS
LC(V̄S|θS)

λN∇+
HN

LC(V̄N |θN)

]
(3.17)

∇−
HY

RY (WY ,HY ) =

[
λS∇−

HS
LC(V̄S|θS)

λN∇−
HN

LC(V̄N |θN)

]
(3.18)

where ∇+
H(·) LC(·|·) in (3.17) and ∇−

H(·) LC(·|·) in (3.18) are given in (3.14) and (3.15),

respectively.

It is easy to show that the update rule given in (3.16) takes on non-negative values. In

fact, since the posterior distribution and all elements of the mean vector and the diagonal

entries of the covariance matrix are non-negative, the values given in (3.14) and (3.15) are

non-negative. Moreover, the values in (3.10) and (3.11) are also non-negative, and therefore

the activation matrix is updated under the non-negative elements constraint.

After estimating the activation matrix of the noisy speech, the smoothed PSDs of both

the clean speech and noise, P̂S = [p̂Skl] and P̂N = [p̂Nkl], are obtained by using (2.32) and

(2.33). Then the clean speech spectrum is estimated by Wiener filtering as given in (2.31).

This proposed algorithm based on regularized NMF with Gaussian mixtures will be referred

to as RNG.

3.3.2 Weighted Wiener filtering based on masking threshold

In this subsection, we describe our second method which uses a WWF. The masking thresh-

old estimation is described first, followed by the proposed WWF.
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Masking threshold estimation The masking effect, which is a psychoacoustical

property of the human auditory system, has been employed in diverse applications such as

audio and speech coding [88] and speech enhancement [4, 10, 83]. Masking refers to a pro-

cess where one sound is rendered inaudible (maskee) due to the presence of another sound

(masker) [82]. The masking properties are modeled using a masking threshold, where the

components below the threshold are not perceived. There are two main masking phenom-

ena, simultaneous (spectral) and non-simultaneous (temporal) masking. The former occurs

whenever two or more stimuli are simultaneously presented to the auditory system. The

latter takes place in the time domain, where the masking occurs both prior and after the

onset and offset of the masker with finite duration [82]. In the proposed framework, we

only consider the simultaneous masking effect.

Simultaneous masking can be explained in terms of critical band analysis which is a

central mechanism in the inner ear. The critical band is specified by means of the so-called

Bark scale, which is a perceptual measure relating acoustical frequency to the nonlinear

perceptual resolution, in which one Bark covers one critical band. The analytical expression

of the mapping function from the frequency f [kHz] to the Bark frequency B [Bark] is shown

as

Bf = 13 arctan(0.76f) + 3.5 arctan[(f/7.5)2]. (3.19)

We followed the procedure introduced in [88] for evaluating the masking threshold in

the l-th time frame, where we here briefly summarize the different steps involved in the

computation; further implementation details are given in [88].

1) Spectral analysis and normalization: The PSD is normalized and presented in dB

scale as,
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p̄kl = 90.302 + 10 log10[p̂
S
kl/L

2
w] (3.20)

where Lw denotes the analysis window length for the STFT, the constant 90.302 is used

for the power compensation, and p̂Skl is the estimated clean speech PSD given in (2.32).

2) Identification of tonal and non-tonal maskers : Tonal maskers are identified according

to the local maxima of the normalized PSD, p̄kl. A single non-tonal (noise-like) masker

for each critical band is then identified by summing the energy of the spectral components

which have not contributed to a tonal masker.

3) Reorganization of maskers : Any tonal or non-tonal maskers below the absolute hear-

ing threshold (AHTH) are discarded, where the AHTH in dB versus frequency f [kHz] is

shown as

TA
f = 3.65f−0.8 − 6.5e−0.6(f−3.3)2 + 10−3f 4 (3.21)

Next, any pair of maskers within a distance of 0.5 Bark are replaced by the stronger of the

two.

4) Individual masking threshold : The individual masking threshold at frequency bin i

due to a tonal masker at frequency bin j is given in dB as

T tm
ij = p̄tmj − 0.275 Bfj + SFij − 6.025 (3.22)

where p̄tmj is the level of tonal masker, fj [kHz] is the corresponding frequency of the j-th

bin, Bfj denotes the Bark frequency given in (3.19) and SFij is the spreading function
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which accounts for the inter-band masking. The latter is given by

SFij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

17ΔB − 0.4p̄tmj + 11, −3 ≤ ΔB < −1

(0.4p̄tmj + 6)ΔB, −1 ≤ ΔB < 0

−17ΔB, 0 ≤ ΔB < 1

(0.15p̄tmj − 17)ΔB − 0.15P̄ tm
j , 1 ≤ ΔB < 8

(3.23)

where ΔB = Bfi −Bfj . Similarly, the masking threshold of a non-tonal masker is given by

T nm
ij = p̄nmj − 0.175 Bfj + SFij − 2.025 (3.24)

where p̄nmj is the non-tonal masker level. The spreading function used in (3.24) is identical

to (3.23) where p̄tmj is replaced by p̄nmj . The above computation of the masking thresholds

T tm
ij for tonal maskers and T nm

ij for non-tonal ones are repeated for each frame; whenever

such a computed threshold value falls below the AHTH, it is replaced by the latter.

5) Global masking threshold : Finally, the resulting individual masking thresholds are

summed linearly along with the AHTH to obtain the global masking threshold in dB in

the k-th frequency bin, which is shown as,

T g
kl = 10 log10

(
10

0.1TA
fk +

Ntm∑
n=1

100.1T
tm
k,jn +

Nnm∑
n=1

100.1T
nm
k,jn

)
(3.25)

where Ntm and Nnm respectively denote the number of tonal and non-tonal maskers and

jn is the frequency bin location of the n-th masker. An example of the global masking

threshold is illustrated in Figure 3.1, where we considered a speech signal of a female

speaker.
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Fig. 3.1 Example of masking threshold (dotted: normalized power spec-
trum of a female speaker, solid: masking threshold, dashed: absolute hearing
threshold).

Weighted Wiener filtering A generalized Wiener filtering has been introduced in

[1], which is shown as,

Ŝkl =

(
p̂Skl

p̂Skl + ηp̂Nkl

)ν

Ykl (3.26)

where η and ν are tuning parameters. For simplicity, we will fix ν to 1 in the proposed

framework, and refer to the resulting method as weighted Wiener filtering [89]. The weight-

ing factor η is known to control the trade-off between noise reduction and speech distortion.

For a large η, for instance, more noise reduction is performed at the expense of increased

speech distortion, and vice versa. This phenomenon is illustrated in Figure 3.2 where we

computed different objective measures while varying η from 1 to 20. The objective mea-

sures considered are the source-to-interference ratio (SIR), source-to-artifact ratio (SAR)
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Fig. 3.2 SDR, SIR and SAR values for different weighting factors in WWF.

and source-to-distortion ratio (SDR) [99]4. The noisy speech was generated by adding a

factory noise to selected clean speech files5 at a 5 dB input SNR, and the results were

obtained by averaging over different speakers. For each noisy speech, the clean speech and

noise PSDs were computed from the proposed RNG method introduced in Subsection 3.3.1,

followed by temporal smoothing given in (2.32) and (2.33). As we can see from Figure 3.2,

the results obtained for the different objective measures vary greatly as a function of η and

therefore, an appropriate selection of the weighting factor is necessary.

In contrast to using a constant value as the weighting factor in (3.26), it has been

proposed to select different weighting factor for each time-frequency bin, i.e., ηkl, based on

4For a given target source, the interference refers to unwanted signal components such as noise, whereas
the artifact refers to components caused by other phenomena, such as e.g., forbidden distortion. In speech
enhancement applications, these measures can be interpreted as follows: the SIR and SAR are proportional
to the amount of noise reduction and inversely proportional to the speech distortion, respectively, while
SDR measures the overall quality of the enhanced speech [34].

5Further details about various speech and noise files used in our experimental work are described in
detail in Section 3.4.
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the masking threshold computed for each of these bins. [90] proposed a heuristic approach

where the linear estimator of the clean speech spectrum was derived, aiming to mask the

distortion of the residual noise which is defined as the difference between the actual and

residual noise powers. This estimator was extended in [83] by solving an optimization

problem which minimizes a related error criterion. The authors in [91] proposed to use an

exponential function to map the so-called noise-to-mask ratio (NMR) into the weighting

factor, where the NMR in dB, Φkl, is defined as the log distance from the minimum masking

threshold in one critical band to the noise level [88]:

Φkl = p̄Nkl − min
k∈Cb

T g
kl (3.27)

where Cb is the set of frequency bins for the b-th critical band and p̄Nkl is the normalized

PSD given in (3.20).

For all these algorithms, a zero weighting factor is applied when the noise power is lower

than the masking threshold, i.e., ηkl = 0 for T g
kl > p̄Nkl. However, this strict condition limits

the performance, since the masking threshold is calculated from an inaccurate estimate of

the clean speech PSD. Although we can expect that a more accurate clean speech PSD can

be obtained by using the proposed RNG method, we further suggest to relax this strict

condition by taking into account in a continuous way the case where the noise power is

even lower than the masking threshold. This approach can be regarded as a soft decision

on the weighting factor.

In advance of describing the proposed method, we summarize several intuitive aspects,

which should be considered for selecting the weighting factors in the WWF, as follows.

When T g
kl is low, the noise signal (maskee) is easily perceived due to the low masking

capability of the speech signal (masker). The emphasis then should be put on reducing this
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0

Fig. 3.3 Proposed mapping function from NMR, Φkl, to weighting factor,
ηkl, based on a sigmoid function.

perceivable noise. Consequently, a high weighting factor is necessary in the WWF. On the

contrary, if T g
kl is high, the noise is easily masked by the speech. Hence, a small weighting

factor is selected. Note that these aspects hold for both the cases where the NMR is either

positive or negative. The difference is that a much smaller weighting factor for the case of

negative NMR is necessary compared to the positive NMR.

In the proposed WWF, the weighting factor is selected through a heuristic approach

using a sigmoid function as a mapping from the NMR to the weighting factor. The mo-

tivation for using the logistic function is to limit the range of the weighting factor to be

selected, therefore avoiding extreme values that could lead to instability (Figure 3.3). The

proposed mapping function is given by

ηkl =
2ρ1,kl

1 + exp(−ρ2,klΦkl)
(3.28)

where ρ1,kl, ρ2,kl > 0 are tuning parameters and the NMR, Φkl, is given in (3.27). The

value ρ1,kl defines the range of ηkl ∈ (0, 2ρ1,kl) and ρ2,kl determines the slope of the sigmoid
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function. For simplicity of the implementation, we consider a constant slope, i.e., ρ2,kl = ρ2,

and identical values of ρ1,kl across the frequency bins for a given time frame, i.e., ρ1,kl = ρ1,l.

The value ρ1,l is calculated using the following function

ρ1,l = ξ1e
−ξ2Rl (3.29)

where ξ1, ξ2 > 0 are tuning parameters and Rl is defined as

Rl = 10 log10

∑
k p̂

S
kl∑

k p̂
N
kl

. (3.30)

The underlying motivation for using the form given in (3.29) and (3.30) is similar to the

approach introduced in [92]. That is, a small weighting factor is selected for a high input

SNR. Specifically in the proposed method, the input SNR for a given time frame of the

noisy speech is estimated from Rl given in (3.30), which is then applied to determine the

range of ηkl through ρ1,l given in (3.29).

The proposed enhancement algorithm based on the regularized NMF with Gaussian

mixtures and weighted Wiener filtering will be referred to as RNG-WWF. A simplified

block diagram of both the RNG and RNG-WWF methods is illustrated in Figure 3.4. We

note that for both algorithms, the same training approach as described in Section 3.2 is

employed.

3.4 Experiments

In this section, a performance evaluation of the proposed methods is presented.
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Fig. 3.4 Simplified block diagrams of RNG and RNG-WWF methods.

3.4.1 Methodology

We used clean speech from the TSP [95] and Grid Corpus [96] databases and noise from

the NOISEX database [97], where the sampling rate of all signals was adjusted6 to 16

kHz. For the clean speech, 20 speakers (10 males and 10 females) were selected from

the TSP and 34 speakers (17 males and 17 females) from the Grid Corpus databases for

a total of 54 speakers. For the noises, we selected the Buccaneer 1, Hfchannel, Babble

and Factory 1 noises from the NOISEX database. Each clean speech and noise signal was

divided into three disjoint groups: i) training data, used for estimating the NMF and GMM

parameters, ii) validation data, used for selecting the regularization coefficients and tuning

parameters, and iii) test data, used for final verification. Specifically, the training data

consisted of approximately 2 minutes (50 sentences) and 8 minutes (350 utterances) of long

speech segments for each speaker from the TSP and Grid Corpus databases, respectively,

as well as 3 minutes segment for the noises. The validation data consisted of 12 seconds

(5 sentences) and 20 seconds (15 utterances) of speech for each speaker from the TSP and

Grid Corpus databases, respectively, and 30 seconds of noise from the NOISEX database.

6The original noise signals with 8 kHz sampling rate were upsampled to 16 kHz.
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The same partitioning was used for the test data. The noisy speech signals were generated

from the test and validation signals by scaling and adding the noise to the clean speech

(based on the estimated variances of the time-domain signals) to obtain input SNRs of 0,

5 and 10 dB7. The STFT analysis was implemented by using a Hanning window of 512

samples with 50 % overlap. After enhancement, the estimated clean speech signal in the

time-domain was reconstructed by applying the inverse STFT on its spectrum followed by

the overlap-add method.

Regarding the implementation of the proposed algorithms, we considered a speaker-

dependent (SD) application, where one basis matrix and associated GMM parameter set

were trained for each speaker. We used M = 80 basis vectors and I = 8 Gaussian compo-

nents in the GMM for both the clean speech and noise. The values of (τS, τN) = (0.4, 0.9)

were chosen empirically using the validation set and used as the temporal smoothing factors

in (2.32) and (2.33). For the regularization coefficients λS and λN in (3.8), we examined

different values from 0.0005 to 0.1 and obtained good results in the range [0.005, 0.01].

Hence, we selected (λS, λN) = (0.005, 0.01). We also examined several choices for the tun-

ing parameters in the proposed weighting function (3.28), i.e. ξ1, ξ2 and ρ2. We first fixed

ξ1 to 4, 5 and 6, based on the results shown in Figure 3.2. For each value of ξ1, we then

considered various choices of ρ1 and ξ2 and determined the ones that gave the highest SDR

values. Good results for both ρ2 and ξ2 were found around [0.005, 0.1]. Ultimately, we

chose ρ2 = 0.01 and (ξ1, ξ2) = (5, 0.1) for the experiments.

We used the perceptual evaluation of speech quality (PESQ) [98], SDR [99], as well as

the segmental SNR (SSNR) as the objective measures of performance. The PESQ attempts

to predict overall perceptual quality in mean opinion score (MOS) and the SDR measures

7For a given source speech file, the desired input SNR values were obtained by scaling the noise signal
level. In this case, we assume that there is no long pause in the speech signal, which is indeed justified for
the data we used in the experiments.
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the overall quality of the enhanced speech in dB by considering both the speech distortion

and noise reduction as explained in Subsection 3.3.2. For all the measures, a higher value

indicates a better result.

3.4.2 Benchmark algorithms

To evaluate the speech enhancement performance of the newly proposed algorithms, we

compared them against several algorithms from the literature. Basic settings such as the

STFT analysis and synthesis, number of basis vectors and Gaussian components in the

GMM, and masking threshold calculations, when applicable, were kept identical for all

the benchmark and proposed algorithms. Also, we considered the SD application for all

NMF-based algorithms.

The benchmark algorithms were categorized into two groups. The purpose of the first

group was only to compare the enhancement performance of the proposed WWF (i.e., RNG-

WWF) to that of other perceptually-motivated and/or weighting methods. Specifically, we

considered the algorithms proposed by [83, 90–92]; in the sequel, we shall refer to each

algorithm using the names of its authors for simplicity. Although the algorithms in [91]

and [92] were proposed for multi-channel speech enhancement, they can still be applied in

the current single-channel framework. We used the following tuning parameters for these

algorithms: a trade-off control parameter ζ = 0.1 in [90], (γ, δ, ε) = (0.2, 0.9, 0.9) in [91]

and (α, β) = (1, 2) in [92] (see the references for the meaning of these notations). For all

the benchmark algorithms and RNG-WWF method, we employed identical PSDs of the

clean speech and noise, which were estimated using the RNG method. The salient features

of the benchmarks and proposed algorithms are summarized in Table 3.1.

The purpose of the second group was to compare the enhancement performance of the

proposed algorithms with that of various speech enhancement algorithms, which are given
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Table 3.1 A comparison between different perceptually-motivated and/or
weighting methods

Reference
Gain function, Gkl Description
(Ŝkl = GklYkl)

Gustafsson et al. [90] min

(√
T g
kl

p̂Nkl
+ ζ, 1

)
Heuristic gain function, aiming to mask the

distortion of the residual noise

Hu et al. [83]

(
1 + max

(√
p̂Nkl
T g
kl

− 1, 0

))−1
Gain function obtained by minimizing an

error criterion (extension of [90])

Defraene et al. [91]

p̂Skl
p̂Skl + ηklp̂

N
kl

Heuristic mapping from the NMR to ηkl
(hard desicion)

Kodrasi et al. [92]
Curvature-based optimization

for the estimation of ηkl

Proposed
Heuristic mapping from the NMR to ηkl

(soft desicion)

below. Note that, for all NMF-based algorithms, except the proposed RNG-WWF method

which requires a weighting factor, we used the same reconstruction method introduced in

Subsection 2.2.1, i.e., computing smoothed PSDs and Wiener filtering, for fair comparison.

1) Short-time spectral amplitude estimator (STSA): We implemented the well-known

classical MMSE-STSA estimator proposed by [5]. A smoothing factor of 0.98 in the

decision-directed (DD) method for a priori SNR estimation was used. The noise PSD

was estimated using an algorithm described in [93] with a value of 0.8 for the smoothing

factor.

2) Spectral subtraction with masking properties (SSM): We considered a spectral sub-

traction algorithm with masking properties proposed in [4]. The noise PSD in this approach

was also estimated using the algorithm from [93] with 0.8 for the smoothing factor.

3) Standard NMF : The standard NMF algorithm based on KL-divergence introduced

in Chapter 2 was evaluated, which will be referred to as NMF.

4) Regularized NMF : In order to compare with other regularization-based NMF al-

gorithms, we chose an algorithm proposed by [40], where the column vectors of the

activation matrix of the clean speech and noise are modeled by distinct GMMs. We

employed the sequential form of training, and used the regularization coefficients of
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(λS, λN) = (0.005, 0.001) in our experiments as they provided good results. This method

will be referred to as RNMF-AGM.

5) Weighted NMF (WNMF): We evaluated a perceptually weighted NMF (WNMF) al-

gorithm introduced in [87], where the perceptual weighting matrix was constructed (based

on the masking threshold) as in [94]. Although the WNMF algorithm was originally pro-

posed for an unsupervised application, we applied it in a supervised manner. That is,

the basis matrices for the clean speech and noise were obtained independently during the

training stage. In the enhancement stage, the WNMF activation update was applied to the

noisy speech, where the masking threshold was calculated from the noisy speech. Although

the masking threshold can be obtained from the estimated clean speech PSD by first ap-

plying a simple speech enhancement scheme, e.g., [4, 91], we followed the original paper,

since we observed similar results when using the masking threshold either computed from

the noisy or estimated clean speech PSD.

3.4.3 Results

We first illustrate an example of the proposed weighting factor ηkl for different input SNRs

in Figure 3.5. In this particular example, a male speech is degraded with Buccaneer 1 noise

at 0, 5 and 10 dB input SNR. We can make the following observations:

• The values of ηkl around 3 kHz, which corresponds to the intense ringing sound of

the buccaneer 1 noise, are larger compared to the other frequencies;

• For a given time-frequency bin, ηkl decreases as the input SNR increases from 0 to

10 dB;

• The values of ηkl at the time frame of 2.1s (a speech-absence period) are larger than

the ones at 1.3s (a speech-presence period).
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Fig. 3.5 Examples of proposed weighting factor. Each column from left to
right respectively correspond to input SNR of 0, 5 and 10 dB. Each row from
top to bottom shows the noisy speech magnitude spectrum, time-frequency
representation of the proposed weighting factor and the weighting factor at
the time frame of 1.3s and 2.1s.
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These phenomena are essentially due to the estimated input SNR Rl given by (3.30). That

is, as we intended, a larger value of ηkl is selected based on (3.28) and (3.29), for a lower value

of Rl. Consequently, the noise components will be further suppressed in the corresponding

time-frequency bins.

We compared the proposed RNG-WWF method with other methods in the first group

of benchmark algorithms in order to verify the performance of the proposed weighting

method. Average SDR and SSNR values over all speakers for Factory 1 and Hfchannel

noises, with 0, 5 and 10 dB input SNRs, are displayed in Figure 3.6. We can see that in

all cases, the proposed weighting scheme provides the best results. It is worth noting that

the perceptually-motivated benchmark algorithms showed a worse performance than using

a constant weighting factor of η = 2, and tend to show similar quality to using η = 0.1.

This is mainly due to the hard decision on the weighting factor such that ηkl = 0 for

p̄Nkl < T g
kl, which leads to Ŝkl = Ykl, i.e., the noise components are not reduced in such time-

frequency bins. Therefore, it is verified through experiments that employing soft decision

on the weighting factor, i.e., applying non-zero value on ηkl for p̄Nkl < T g
kl, improves the

enhancement performance. Similar results were also found for the Babble and Buccaneer

1 noises.

Regarding the benchmark algorithms in the second group and the proposed algorithms,

the average results over all speakers of the three objective measures (i.e., PESQ, SDR and

SSNR) are shown for each noise type, respectively, in Table 3.2 to 3.5. As it can be observed,

the best enhancement results were obtained with the proposed RNG-WWF method for all

the different noise types and input SNRs. Moreover, the RNG method generally provided

better results than the benchmark algorithms except in specific cases, e.g., SSNR for the

Factory 1 noise at 0 dB input SNR. Among the benchmark algorithms, the STSA and SSM

which used no training data provided reasonable results for Babble and Factory 1 noises
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Fig. 3.6 SDR and SSNR comparisons for Factory 1 (top) and Hfchannel
(bottom) noises.

compared to the NMF-based algorithms. However, they resulted in poorer performances

for Buccaneer 1 and Hfchannel noises. Among the NMF-based benchmark algorithms,

which used training data to obtain some prior knowledge of the clean speech and noise, it

was found in general that the RNMF-AGM provided slightly better results compared to

the NMF and WNMF methods (except in some cases, e.g., slightly better PESQ results

using the WNMF method for the Buccaneer 1 and Factory 1 noises). If we only compare

between the two proposed methods, the RNG-WWF method provided much better results
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Table 3.2 Average results for Buccaneer 1 noise
Input

Eval. Noisy STSA SSM NMF WNMF
RNMF

RNG
RNG

SNR -AGM -WWF

0 dB
PESQ 1.25 1.58 1.61 1.79 1.83 1.81 1.98 2.22
SDR 0.02 4.31 4.25 5.25 5.74 5.43 6.13 7.92
SSNR -3.97 -0.27 -0.56 0.13 1.15 0.28 1.79 3.18

5 dB
PESQ 1.54 1.94 1.99 2.18 2.21 2.20 2.35 2.47
SDR 5.01 8.56 8.79 9.75 9.63 9.92 10.59 11.38
SSNR -0.49 2.79 2.78 3.58 4.07 3.75 4.40 6.17

10 dB
PESQ 1.89 2.32 2.39 2.53 2.55 2.55 2.64 2.69
SDR 10.01 12.43 12.97 13.80 13.23 13.91 14.59 14.85
SSNR 3.48 6.14 6.47 7.14 7.28 7.33 8.06 9.19

Table 3.3 Average results for Hfchannel noise
Input

Eval. Noisy STSA SSM NMF WNMF
RNMF

RNG
RNG

SNR -AGM -WWF

0 dB
PESQ 1.23 1.50 1.59 1.78 1.71 1.79 2.01 2.30
SDR 0.03 7.11 7.62 7.32 6.97 7.51 8.31 9.88
SSNR -3.97 1.95 2.35 1.64 2.16 1.81 2.56 5.46

5 dB
PESQ 1.45 1.92 2.04 2.15 2.08 2.16 2.35 2.51
SDR 5.02 10.80 11.66 11.50 10.85 11.66 12.37 13.05
SSNR -0.50 4.96 5.78 5.12 5.22 5.30 6.20 8.35

10 dB
PESQ 1.75 2.31 2.46 2.50 2.43 2.52 2.63 2.70
SDR 10.01 14.12 15.19 15.12 14.44 15.22 15.91 16.11
SSNR 3.47 7.91 9.03 8.58 8.48 8.74 9.67 11.09

than the RNG method, which further validates that using the proposed weighting factor

improves the enhanced speech quality.

Figure 3.7 illustrates the magnitude spectra of clean, noisy and enhanced speech for

several benchmark and proposed algorithms. In this particular example, a female speech is

degraded with Buccaneer 1 noise at 0 dB input SNR. As we can see, the proposed RNG-

WWF method could reduce the background noise significantly, and especially during the

speech-absence periods where the noise is further reduced.

Informal listening tests were also conducted to compare the performance of the bench-

mark algorithms in the second group and the proposed algorithms. It was generally found

that the latter, and especially the RNG-WWF method offered the best performance, both

in terms of noise reduction and speech distortion. More specifically, the STSA and SSM
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Table 3.4 Average results for Babble noise
Input

Eval. Noisy STSA SSM NMF WNMF
RNMF

RNG
RNG

SNR -AGM -WWF

0 dB
PESQ 1.52 1.68 1.62 1.77 1.72 1.78 1.81 1.84
SDR 0.02 2.76 2.69 3.06 2.52 3.18 3.36 4.55
SSNR -3.48 -0.57 -0.65 -0.36 -0.34 -0.32 -0.29 1.28

5 dB
PESQ 1.86 2.05 2.02 2.16 2.11 2.17 2.20 2.24
SDR 5.01 7.39 7.53 7.70 6.80 7.89 8.12 8.53
SSNR 0.05 2.44 2.58 2.79 2.54 2.94 3.09 4.06

10 dB
PESQ 2.22 2.42 2.43 2.53 2.47 2.55 2.56 2.59
SDR 10.01 11.52 11.90 11.53 10.38 11.73 12.17 12.21
SSNR 4.05 5.84 6.23 5.91 5.66 6.16 6.66 7.07

Table 3.5 Average results for Factory 1 noise
Input

Eval. Noisy STSA SSM NMF WNMF
RNMF

RNG
RNG

SNR -AGM -WWF

0 dB
PESQ 1.36 1.68 1.66 1.74 1.80 1.76 1.80 1.98
SDR 0.02 4.44 4.16 4.34 4.29 4.54 4.49 6.60
SSNR -3.72 0.28 0.17 -0.14 0.28 0.12 -0.10 1.99

5 dB
PESQ 1.70 2.09 2.10 2.15 2.18 2.16 2.19 2.34
SDR 5.01 8.62 8.69 9.07 8.53 9.24 9.27 10.48
SSNR -0.21 3.21 3.34 3.33 3.19 3.53 3.42 4.99

10 dB
PESQ 2.07 2.45 2.50 2.53 2.52 2.54 2.54 2.64
SDR 10.01 12.49 12.91 13.33 12.42 13.37 13.61 14.22
SSNR 3.78 6.48 6.91 6.91 6.46 6.96 7.12 8.13

gave an enhanced speech with reasonable quality for the Babble and Factory 1 noises al-

though some musical noise was found in the SSM method. However, they both failed to

remove high frequency components in the Buccaneer 1 noise which resulted in a highly

annoying ringing sound. The enhanced speech with the benchmark NMF algorithms, i.e.,

NMF, RNMF-AGM and WNMF, was perceived as being similar to that obtained with the

STSA and SSM for Babble and Factory 1 noises, but of better quality for Buccaneer 1 and

Hfchannel noises. Focusing on the proposed algorithms, the RNG method could remove

more low frequency noise than the benchmark algorithms, whereas the high frequency com-

ponents were further removed using the RNG-WWF method. Consequently, the enhanced

speech using the RNG-WWF method was perceived as having much better quality than

the one using the RNG method.
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Fig. 3.7 Example of magnitude spectra of the clean, noisy and estimated
clean speech for the benchmark and proposed algorithms. A female speech is
degraded with Buccaneer 1 noise at 0 dB input SNR

3.5 Summary

New single-channel speech enhancement algorithms based on regularized NMF have been

introduced in this Chapter. In the proposed framework, a priori knowledge about the

magnitude spectra of the clean speech and noise is captured by distinct GMMs, where

normalized spectra are employed to handle the magnitude difference between the training
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and test data. The corresponding LLFs are included as regularization terms in the NMF

cost function during the enhancement stage. Further improvement of the enhance speech

quality was obtained by exploiting the masking effects of the human auditory system.

Specifically, we constructed a weighted Wiener filter where the weighting factor is selected

based on the masking threshold calculated from the estimated clean speech PSD. In addition

to informal listening tests and visual inspection of spectrograms, experimental results using

three different objective measures (PESQ, SDR and SSNR) showed that the proposed

speech enhancement algorithms could provide better performance than the benchmark

algorithms for several types of noises and input SNRs.
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Chapter 4

Training and Compensation of

Class-conditioned NMF Bases

In this chapter, we introduce a training and compensation algorithm of the class-conditioned

basis vectors in the NMF model for single-channel speech enhancement1. The main goal is

to estimate the basis vectors of different signal sources in a way that prevents them from

representing each other, in order to reduce the residual noise components that have features

similar to the speech signal. During the proposed training stage, the basis matrices for the

clean speech and noises are estimated jointly by constraining them to belong to different

classes. To this end, we employ the PGM of classification, specified by class-conditional

densities, as an a priori distribution for the basis vectors. The update rules of the NMF and

the PGM parameters of classification are jointly obtained by using the VBEM algorithm,

which guarantees convergence to a stationary point. Another goal of the proposed algorithm

1Parts of this chapter have been presented at the 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing in Shanghai, China [100], and 2017 IEEE International Conference on Acous-
tics, Speech and Signal Processing in New Orleans, USA [102]; and have been publishted in the IEEE Signal
Processing Letters [101], and Neurocomputing [103].
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is to handle a mismatch between the characteristics of the training and test data. This

is accomplished during the enhancement stage, where we implement a basis compensation

scheme. Specifically, we use extra free basis vectors to capture the features which are not

included in the training data. Objective experimental results for different combinations

of speaker and noise types show that the proposed algorithm can provide better speech

enhancement performance than the benchmark algorithms under various conditions.

This chapter is organized as follows. In Section 4.1, we address the research motivation

and contributions of the proposed method. In Section 4.2, we introduce the PGMs of

the NMF and classification models. The propose training stage is derived in Section 4.3,

and the proposed enhancement stage is explained in Section 4.4. Experimental results are

presented in Section 4.5.

4.1 Research Motivations and Contributions

In a supervised NMF-based framework, the basis vectors are typically obtained a priori

for each source by independently using isolated training data during the training stage.

However, there are two main problems in such a framework. The first one is that the basis

vectors of the different signal sources, e.g., speech and noise, may share similar charac-

teristics. For example, the basis vectors of the speech spectrum can represent the noise

spectrum and hence, the enhanced speech may contain residual noise components which

have features similar to the speech signal. One possible remedy is to train the basis vectors

of each source in a way that prevents them from representing each other. In [104], the

cross-coherence of the basis vectors is added as a penalty term to the NMF cost function,

whereas the cross-reconstruction error terms are considered in [105]. The authors in [57–59]

propose to use additional training data which are generated by mixing, e.g., adding or con-
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catenating, the isolated training data of each source. However, the approaches in [57, 59]

are based on heuristic MU rules which do not guarantee the convergence of the NMF in

general [38, 60]. Moreover, the basis vectors in [58, 59] are obtained indirectly by means of

the activation matrix estimated from the mixed training data and hence, lack an explicit

interpretation in terms of discrimination.

The second problem in a supervised framework is the existence of a mismatch between

the characteristics of the training and test data. As mentioned in Chapter 3, a common

approach to overcome this problem is to add explicit regularization terms to the NMF cost

function that incorporate some prior knowledge, such as the temporal continuity [54] or

statistical characteristics of the magnitude spectra [80]. In these algorithms, however, the

basis vectors are fixed during the enhancement stage, which limits the performance when

there is a large mismatch between the training and test data. One alternative approach

is to use a basis adaptation scheme during the enhancement stage. In [55], the basis

vectors are adapted based on prior distributions modeled by gamma mixtures. The authors

in [106] employ extra validation data for speaker adaptation in a speech-music separation

task. In [56], the basis vectors are adapted by using a combination of the original and

pre-processed noisy speech samples, the latter being obtained via a classical MMSE-based

speech enhancement algorithm. In these algorithms, however, the basis vectors are adapted

from the mixtures of multiple sources, e.g., noise and speech, such that the resulting basis

vectors may still exhibit features of different sources. Consequently, the enhanced speech

may contain some residual noise components and hence, adapting the complete set of basis

vectors may limit the enhancement performance.

In this chapter, to overcome these limitations, we introduce a training and compensation

algorithm of the class-conditioned basis vectors in the NMF model for single-channel speech

enhancement, which is an extension of our earlier works on training class-conditioned basis
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vectors in [101], and basis compensation in [100]. In the proposed framework herein, we

consider the PGM of classification specified by class-conditional densities [67], along with

the NMF model [41]. Specifically, the PGM of classification is used as an explicit a priori

distribution for the basis vectors. During the proposed training stage, the basis matrices

for all the clean speech and noise sources are estimated jointly by constraining them to

belong to one of several speech and noise classes. In our earlier work [101], we used a

traditional Gaussian-distributed class-conditional density [67], and the model parameters

were obtained through a MAP estimator using the EM algorithm. In this chapter, we make

two key modifications. First, we employ a gamma-distributed class-conditional density to

bring more coherence into the NMF model. Second, the update rules of the NMF model

and the PGM parameters for classification are jointly obtained via the VBEM algorithm,

which can be considered as an extension of the EM algorithm [41,67,107].

The proposed enhancement stage consists of two steps. First, we perform noise classi-

fication based on the posterior class probability (PCP), in order to determine which type

of noise is included in the noisy speech. Second, we implement a basis compensation algo-

rithm by adopting the approach in [100]. That is, we use extra free basis vectors for both

the clean speech and noise to capture the features which cannot be explained by the limited

set of basis vectors due to the hard decision on the noise type as well as features which

are not included in the training data. The PGM parameters for classification are employed

while inferring the free basis vectors as well as during the noise classification. Previously

in [100], the free basis vectors were estimated by using the MU rules, whereas we use the

VBEM algorithm.
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4.2 Probabilistic Generative Models

In this section, we introduce two underlying PGMs for the proposed framework: the PGM

of NMF, where the LLF corresponds to the KL-divergence, is described in Subsection 4.2.1,

while the PGM of classification, which will be applied to the basis vectors, is presented in

Subsection 4.2.2.

4.2.1 NMF model

We first briefly revisit the statistical interpretation of NMF, introduced in Section 2.1. The

NMF model with KL-divergence is described within a statistical framework in [41]. Each

entry of a non-negative matrix, V = [vkl], is assumed to be a sum of M latent variables as

vkl =
M∑

m=1

cmkl. (4.1)

The m-th latent variable, cmkl, is assumed to be drawn from a Poisson distribution parame-

terized by wkm and hml

p(cmkl|wkm, hml) = P(cmkl|wkmhml) (4.2)

where P(c|u) = uc exp(−u)/(c!) is the Poisson distribution with mean u. Note that the

approximation of vkl as a sum of integer variables in (4.1) can be justified by assuming a

large dynamic range for the former quantity, which in practice can be realized by a proper

scaling of the magnitude spectra [34, 101, 109]. The ML estimates of the parameters wkm

and hml, given the observation vkl, are obtained via the EM algorithm, where the iterative

solutions are given by (2.20) and (2.21).
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4.2.2 Classification model

In the classification problem, the input vector w = [wk] ∈ R
K under test is assigned to one

of IC classes. The essential part of the classification is to find a partition of the observation

space RK into decision regions that will minimize the classification error, by using training

data and their corresponding class labels. There are two main approaches to solve this

problem: PGM and discriminative modeling [67, 110]. The former approach maximizes

the likelihood based on the joint distribution of the input data and class labels, whereas

the latter maximizes the PCP. In this work, we consider the PGM since it can provide the

necessary a priori distributions to be used in the proposed training framework.

The PGM can be described by a class-conditional density based on a Gaussian dis-

tribution [67, 101] or a Gaussian mixture model [111]. In this work, we instead employ

a gamma distribution, which is shown to be a conjugate prior to the Poisson model [41],

to bring more coherence into the NMF model. By ignoring possible correlations between

different entries in w, the class-conditional density based on the gamma distribution can

be expressed as

p(w |di = 1) =
K∏
k=1

G(wk;α
i
w,k, βw,k) (4.3)

where G(x;α, β) = xα−1β−α exp(−x/β)/Γ(α) is the gamma distribution with mean αβ,

Γ(·) is the gamma function, and α and β are referred to as the shape and scale parameters,

respectively. Although we can use class-specific scales βi
w,k, we consider a common value of

βw,k for all classes [67], in order to avoid over-fitting.

For a given training set of W = [w1, ...,wM ] and D = [d1, ...,dM ], where dm = [dim]

with dim ∈ {0, 1} (such that
∑

i dim = 1) is an IC×1 target class label vector, and assuming
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the columns wm are independently drawn, the likelihood function is given by

p(W,D;θC) =
M∏

m=1

IC−1∏
i=0

[
p(wm |di = 1)pi

]dim (4.4)

where θC = {{pi, {αi
w,k}Kk=1}IC−1

i=0 , {βw,k}Kk=1} is a PGM parameter set for classification and

pi � p(di = 1) is the prior class probability. The set θC can be simply estimated via the

ML criterion. Using Bayes’ theorem, the PCP of class i, given the observation w, can be

expressed as

p(di = 1|w) =
p(w |di = 1)pi∑
j p(w |dj = 1)pj

. (4.5)

4.3 Proposed Training Stage

In many applications of the EM algorithm, evaluating the posterior distribution or indeed

computing expectations with respect to this distribution is analytically intractable. Con-

sequently, it is highly demanding to derive a lower bound for the marginal likelihood of

the observed data or to estimate the hyper-parameters. The VBEM algorithm overcomes

this difficulty by computing an analytical and efficient approximation to the posterior dis-

tribution [67, 107], and also provides an effective estimation of the hyper-parameters. In

general, the VBEM algorithm can be considered as an extension of the EM algorithm from

the ML or MAP estimation of the single most probable value of each parameter to fully

Bayesian estimation in which any unknown parameter is absorbed into the set of latent

variables. We employ the VBEM method to develop the proposed training algorithm, as

further explained below.
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4.3.1 Prior structures

We first explicitly address the prior structures for the PGM in (4.2), which will be used

in the proposed framework. We denote by Mi the number of basis vectors in class i (such

that M =
∑

i Mi), and by Li the number of time frames in class i. For the basis vectors,

the likelihood function p(W,D;θC) in (4.4), based on the class-conditional density given

by (4.3), can be simply rearranged as

p(W;θC) =

IC−1∏
i=0

Mi∏
m=1

K∏
k=1

piG(wi
km;α

i
w,k, βw,k) (4.6)

where we omit the dependence on D hereafter for convenience. For the activations, we

follow the prior model based on the gamma distribution as introduced in [34, 41]:

p(hi
ml;α

i
h,ml, β

i
h,ml) = G

(
hi
ml;α

i
h,ml,

βi
h,ml

αi
h,ml

)
(4.7)

which provides an intuitive interpretation in terms of the mean value simply given by βi
h,ml.

Moreover, we consider constant values of αi
h,ml and βi

h,ml for each class, i.e., αi
h,ml = αi

h and

βi
h,ml = βi

h, to avoid over-fitting [34,41]. Assuming that the entries of H are independently

distributed, the prior of H can be written as

p(H;αh,βh) =

IC−1∏
i=0

Mi∏
m=1

Li∏
l=1

p(hi
ml;α

i
h, β

i
h) (4.8)

where αh = {αi
h}I−1

i=0 and βh = {βi
h}I−1

i=0 . Note that employing the prior structure in (4.7)

for the basis vectors specifies the class-specific scales in the PGM for classification and

hence, limits the enhancement performance due to over-fitting.
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4.3.2 VBEM algorithm

Let us denote by θL = {C,W,H} the set of latent variables, where C = {cm,i
kl }, W =

{wi
km}, H = {hi

ml}, and by θR = {θC ,αh,βh} the set of hyper-parameters. In the proposed

framework, we use the class index i = 0 for the speech and i = 1, ..., IC − 1 for the different

noise types. For given training data sets of the clean speech and noise, V = {Vi}, the
marginal LLF can be written as

ln p(V;θR) ≥
∑
C

∫ ∫
q(C,W,H) ln

p(V,C,W,H;θR)

q(C,W,H)
dW dH

= Eq(θL)[ln p(V,θL;θR)]︸ ︷︷ ︸
� LV (q(θL);θR)

−Eq(θL)[ln q(θL)]︸ ︷︷ ︸
� −LE(q(θL))

� LB(q(θL);θR) (4.9)

where q(·) is an arbitrary distribution (often referred to as a variational distribution) and

Eg(x)[f(x)] indicates an expectation of f(x) with respect to g(x). The term LB(q(θL);θR)

defines the lower bound on ln p(V;θR), where the equality holds for q(θL) = p(θL |V;θR)

[41, 67]. A detailed expression of the lower bound is given in Appendix A.1. Analogous

to the EM algorithm, the VBEM algorithm consists of two stages. During the E-step, the

goal is to estimate q(θL) which approximates the exact posterior distribution p(θL |V;θR).

In the M-step, the hyper-parameters are obtained by maximizing the lower bound in (4.9)

computed with a fixed q(θL). That is, the term LE(q(θL)), which denotes the entropy

of q(θL), can be considered as a constant value and hence, maximizing the lower bound

becomes equivalent to maximizing the energy LV (q(θL);θR).

1) Variational E-step: Based on the mean-field approximation [67,107], we assume that
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q(C,W,H) can be factorized as (e.g., [41, 43, 108])

q(C,W,H) = q(C)q(W)q(H) =

(∏
i,k,l

q(cikl)

)(∏
i,k,m

q(wi
km)

)(∏
i,m,l

q(hi
ml)

)
(4.10)

where cikl = [c1,ikl , ..., c
Mi,i
kl ]. The resulting local optimal solutions can be found as [41, 67]:

q(C)(r+1) ∝ exp
(
Eq(W)(r)q(H)(r) [ln p(V,θL;θR)]

)
(4.11)

q(W)(r+1) ∝ exp
(
Eq(C)(r+1)q(H)(r) [ln p(V,θL;θR)]

)
(4.12)

q(H)(r+1) ∝ exp
(
Eq(C)(r+1)q(W)(r+1) [ln p(V,θL;θR)]

)
(4.13)

where the superscript (r) denotes the r-th iteration. For convenience, we hereafter omit the

superscript (r) and also drop the latent variables inside the subscript q(·) of the expectation
operator, e.g., Eq(wi

km)[w
i
km] = Eq[w

i
km].

First, the distribution q(cikl) in (4.11) is shown to be a multinomial distribution [41]:

M(cikl; v
i
kl, p̄

i
kl) = δ

(
vikl −

Mi∑
m=1

cm,i
kl

)
vikl!

Mi∏
m=1

(p̄m,i
kl )c

m,i
kl

cm,i
kl !

(4.14)

where δ(x) is the Kronecker delta function defined by δ(x) = 1 when x = 0 and δ(x) = 0

otherwise. The entries of p̄i
kl = [p̄m,i

kl ] are given by

p̄m,i
kl =

exp
(
Eq[lnw

i
km] + Eq[lnh

i
ml]

)∑Mi

m=1 exp
(
Eq[lnwi

km] + Eq[lnhi
ml]

) . (4.15)

Next, the distribution q(wi
km) in (4.12) is obtained as

q(wi
km) ∝ exp

[(
αi
w,k +

Li∑
l=1

Eq[c
m,i
kl ]− 1

)
lnwi

km −
( 1

βw,k

+

Li∑
l=1

Eq[h
i
ml]

)
wi

km

]
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∝ G(wi
km; ᾱ

i
w,km, β̄

i
w,km) (4.16)

where the parameters are given by

ᾱi
w,km = αi

w,k +

Li∑
l=1

Eq[c
m,i
kl ], β̄i

w,km =
( 1

βw,k

+

Li∑
l=1

Eq[h
i
ml]

)−1

. (4.17)

Finally, the distribution q(hi
ml) in (4.13) is also found to be a gamma distribution

G(hi
ml; ᾱ

i
h,ml, β̄

i
h,ml) [41], where the parameters are given by

ᾱi
h,ml = αi

h +
K∑
k=1

Eq[c
m,i
kl ], β̄i

h,ml =
(αi

h

βi
h

+
K∑
k=1

Eq[w
i
km]

)−1

. (4.18)

The sufficient statistics (expectations) are given below:

Eq[c
m,i
kl ] = viklp̄

m,i
kl (4.19)

Eq[lnw
i
km] = Ψ(ᾱi

w,km) + ln β̄i
w,km, Eq[w

i
km] = ᾱi

w,kmβ̄
i
w,km (4.20)

Eq[lnh
i
ml] = Ψ(ᾱi

h,ml) + ln β̄i
h,ml, Eq[h

i
ml] = ᾱi

h,mlβ̄
i
h,ml (4.21)

where Ψ(x) = d ln Γ(x)/dx is the digamma function [41].

2) Variational M-step: The hyper-parameter set θR is estimated by maximizing

LV (q(θL)
(r+1);θR). Setting the partial derivative of LV (q(θL)

(r+1);θR) with respect to

θR to zero, the PGM parameters for classification, θC , are obtained as

αi
w,k ← αi

w,k −
Ψ(αi

w,k)− αi
qw

Ψ′(αi
k)

(4.22)

βw,k =

∑I−1
i=0

∑Mi

m=1 Eq[w
i
km]∑I−1

i=0 Miαi
w,k

(4.23)
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where αi
qw =

∑Mi

m=1(Eq[lnw
i
km] − ln βw,k)/Mi and Ψ′(x) = dΨ(x)/dx. The prior class

probability is simply estimated by pi = Mi/M . The hyper-parameters for the activations,

αh and βh, are obtained as in [41]:

αi
h ← αi

h −
lnαi

h −Ψ(αi
h) + 1− αi

qh

1/αi
h −Ψ′(αi

h)
(4.24)

βi
h =

1

MiLi

Mi∑
m=1

Li∑
l=1

Eq[h
i
ml] (4.25)

where αi
qh =

∑Mi

m=1

∑Li

l=1(Eq[h
i
ml]/β

i
h − Eq[lnh

i
ml] + ln βi

h)/(MiLi).

The proposed training stage can be interpreted as follows. During the E-step, the

basis vectors are adjusted based on their priors which define the classification boundaries.

Hence, the basis vectors are estimated by constraining them to belong to different classes.

During the M-step, the hyper-parameters (i.e., the PGM parameters for classification θC)

are re-estimated, which define new classification boundaries.

4.3.3 Parameter initialization and normalization

For initialization, we generate positive random numbers and subsequently apply the MU

rules in (2.5) to V for several iterations [34, 108], where we found that 10 iterations are

sufficient. The resulting Wi and Hi are used as the initial values for the sufficient statistics,

i.e., Eq[w
i
km], exp(Eq[lnw

i
km]), Eq[h

i
ml] and exp(Eq[lnh

i
ml]). To initialize θC , we apply (4.22)

and (4.23) to the initial values of Eq[w
i
km] and Eq[lnw

i
km]. The hyper-parameters for the

activations are initialized as αi
h = 0.001 and βi

h = 10. We use 200 iterations for the VBEM

algorithm, whereas 5 iterations are used for estimating the hyper-parameters in (4.22)

and (4.24). To avoid scale indeterminacies in wkm and hml which appear as a product in

the distribution (4.2), we include a normalization step. Motivated by [64], we normalize
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Eq[w
i
km] and exp(Eq[lnw

i
km]) such that they sum up to 1 with respect to k after computing

(4.16).

4.4 Proposed Enhancement Stage

A number of attempts of combining the classical speech enhancement algorithms and the

NMF-based framework have been made in the literature. In [56,100,112], a classical method

is used as a pre-processor to first remove some stationary background noise, and the NMF-

based algorithm is subsequently applied to further improve the enhancement performance.

The authors in [113] implement the classical and NMF-based algorithms independently,

and evaluate the geometric mean over them to estimate the clean speech spectrum. We

combine both approaches and propose to use the weighted geometric mean (WGM) of the

pre-processed noisy speech and its improvement via Wiener filtering. Regarding the pre-

processor, we use the well-knwon MMSE short-time spectral amplitude (STSA) estimator

[5], where the noise PSD is estimated based on [93]. The proposed enhancement stage

consists of two steps2, i.e., noise classification followed by basis compensation, which are

explained in the following subsections. We denote by S̄lb ∈ C
K×Lb the pre-processed noisy

speech and by N̄lb = Ylb −S̄lb the pre-estimated noise.

4.4.1 Noise classification

In many NMF-based speech enhancement algorithms, the background noise type is assumed

to be known a priori. In the proposed framework, we perform noise classification for the

lb-th mini-batch, to select a single noise type among different classes which has features

similar to the noise included in the noisy speech. To this end, one possible approach is to

2In this chapter, we consider the mini-batch online approach, as explained in Footnote 1 in Subsection
2.2.1
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apply the activation update given by (2.5) to |Ylb | for each noise type by fixing its corre-

sponding basis matrix and observing the reconstruction error (i.e., KL-divergence), such as

in [114]. However, this method requires additional iterations in which the computational

cost increases with respect to the number of noise types.

In the proposed method, we use the PGM-based classifier given by (4.5). That is, we

evaluate the PCP based on (4.5) and θC for i = {1, ...IC−1}, and select the noise type with

the highest PCP value. As a simple approach, we can first estimate a noise classification

basis vector wC = [wC
k ] ∈ R

K
+ by applying the MU rules in (2.5) to |N̄lb |, and use it as the

input to the classifier. However, we can further reduce the computational cost by simply

using the |N̄lb | due to the property of NMF (i.e., the target matrix is represented as a linear

combination of the basis vectors), since we can avoid additional iterations for computing

wC . To further improve the classification performance, we consider both Ylb and N̄lb .

That is, we compute the geometric mean of the magnitude spectra of the noisy speech

and pre-estimated noise (i.e., |Ylb ⊗N̄lb |1/2 ∈ R
K×Lb), to amplify the noise components.

Subsequently, we average over the rows and normalize the resulting column vector using

the l1-norm, where the corresponding vector will be denoted by w̃C ∈ R
K
+ .

Regarding the classifier, we found that employing the gamma distribution in (4.3) di-

rectly for computing the PCP resulted in poor classification performance. One main rea-

son is that the gamma distribution can lead to numerical instability, since Γ(α) rapidly

approaches infinity as α increases. Hence, we instead use the approximated Gaussian dis-

tribution3 as the class-conditional density, which is indeed simpler to compute than the

gamma distribution:

p(w̃C |di = 1) ≈ N (w̃C ; μ̃i, Σ̃i) (4.26)

3Note that this approximation is employed only for the noise classification. The inference on q(wi
km)

does not suffer from the extreme value of the gamma function, i.e., the extreme value of the digamma
function (−∞) appearing in Eq[ln(·)] in (4.20) and (4.21) is handled by the exponential in (4.15).
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where μ̃i = [μ̃ik] and Σ̃i = diag{σ̃2
ik} are the mean vector and diagonal covariance matrix

of the Gaussian distribution with entries μ̃ik = αi
w,kβw,k and σ̃2

ik = αi
w,kβ

2
w,k. The under-

lying motivation for using the form in (4.26) is similar to the application of the Laplace

approximation [67], which aims at finding a Gaussian approximation to the original distri-

bution. According to this approach, the mean and variance of the approximated Gaussian

distribution are obtained based on the mode and second order derivative at the mode of

the original distribution, respectively. However, since the mode of the gamma distribution

is defined only for α > 1, we instead use its mean and variance. Furthermore, we use

the average value of Σ̃i over all i for the covariance in (4.26), which leads to computing

the (exponential of the squared) Mahalanobis distance. The latter is known to further

reduce the computational cost compared to using the Gaussian model with class-specific

variances [70].

4.4.2 Basis compensation

Once the noise type is determined, we implement a basis compensation scheme by adopting

the approach proposed in [100]. That is, we use extra free basis vectors for both the

clean speech and noise to capture the features which cannot be explained by the limited

set of basis vectors due to the hard decision on a single noise type, as well as features

which are not included in the training data. We denote by WSF
lb

= [wSF
km] ∈ R

K×MSF
+ and

WNF
lb

= [wNF
km] ∈ R

K×MNF
+ (such that MSF<MS and MNF<MN) the free basis matrices of

the clean speech and noise, respectively.

For the lb-th mini-batch, motivated by [56] and [100], we aim at factorizing Vlb =

[|Ylb | |S̄lb |] ∈ R
K×2Lb
+ into the product of Wlb = [WS WSF

lb
WN WNF

lb
] = [wkm] ∈ R

K×MY
+

and Hlb = [HY
lb

HS̄
lb
] = [hml′ ] ∈ R

MY ×2Lb
+ , where MY = MS +MSF+MN +MNF. We use the

VBEM algorithm introduced in Subsection 4.3.2, to estimate the variational distributions
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q(WSF
lb
), q(WNF

lb
) and q(Hlb). At each iteration, the distribution q(C) is first inferred as

(4.14), where the parameters are given by (4.15). Second, we estimate the parameters of

q(WSF
lb
) and q(WNF

lb
), while fixing the parameters of q(WS) and q(WN). Specifically, the

parameters of q(wSF
km) and q(wNF

km), which correspond to the ones in q(wkm) for the intervals

MS < m ≤ MS+MSF andMS+MSF+MN < m ≤ MY , respectively, are computed based on

(4.17). The parameters of q(Hlb) are then simply obtained by using (4.18). Subsequently,

the parameter of the noisy speech activation prior βh,lb is obtained by

βh,lb =

∑MY

m=1

∑2Lb

l′=1 αh,ml′ Eq[hml′ ]∑MY

m=1

∑2Lb

l′=1 αh,ml′
(4.27)

where αh,ml = αS
h for 1 ≤ m ≤ MS +MSF and αh,ml = αN

h for MS +MSF + 1 ≤ m ≤ MY .

In contrast to the βh,lb , we fix the shape parameters of the clean speech and noise, αS
h and

αN
h , which controls the degree of sparsity [41], mainly in order to reduce the computational

cost since their updates require additional iterations as given by (4.24).

After estimating q(WSF
lb
), q(WNF

lb
) and q(Hlb), we compute the smoothed PSDs of the

clean speech and noise based on (2.32) and (2.33), where the periodograms are obtained

from the mean values4 of q(Wlb) and q(Hlb). Specifically, the mini-batch clean speech PSD,

P̂S
lb
= [p̂Skl] ∈ R

K×Lb
+ , is computed by replacing WS with [Eq[WS] Eq[W

SF
lb
]] ∈ R

K×(MS+MSF)
+

and HS
lb
with the first MS + MSF rows of Eq[H̃lb ] = (Eq[H

Y
lb
] + Eq[H

S̄
lb
])/2 ∈ R

MY ×Lb
+ . A

similar procedure is carried out for the mini-batch noise PSD P̂N
lb
= [p̂Nkl] ∈ R

K×Lb
+ . Then,

we estimate the clean speech spectrum where the magnitude is obtained via the WGM

of |S̄lb | and Wiener-filtered |S̄lb |, and the phase is taken from the noisy speech. Since

4Alternatively, based on [34], we can compute the smoothed PSD based on the sufficient statistics of
cm,i
kl in (4.19) where p̄m,i

kl is given by (4.15). However, we verified through experiments that using Eq[w
i
km]

provided better enhancement performance as well as reduced complexity.
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∠Ylb = ∠S̄lb [5], the enhanced speech spectrum can be written as

Ŝlb =

⎛
⎝∣∣S̄lb

∣∣νlb ⊗
∣∣∣∣∣ P̂S

lb

P̂S
lb
+ P̂N

lb

⊗ S̄lb

∣∣∣∣∣
1−νlb

⎞
⎠⊗ ej∠Ylb =

(
P̂S

lb

P̂S
lb
+ P̂N

lb

)1−νlb

⊗ S̄lb (4.28)

where 0 ≤ νlb ≤ 1 is the weighting factor. The motivation of using the WGM is to control

the effect of pre-processing. For a high input SNR, for instance, the classical method tends

to show a reasonable enhancement performance, which implies that Wiener filtering the

pre-processed signal may further distort the enhanced speech quality. Hence, it is necessary

to put more weight on S̄lb by selecting a large νlb . In contrast, the classical method results

in a poor enhanced speech quality for a low input SNR and hence, further improvement

is necessary. This can be specified by applying more weight on the Wiener-filtered S̄lb by

selecting a small νlb . Based on these considerations, we use the logistic function for selecting

νlb :

νlb =
ρ1

1 + exp(−ρ2Rlb)
(4.29)

where Rlb = 10 log10(
∑

k

∑
l p̂

S
kl/

∑
k

∑
l p̂

N
kl) is the estimated input SNR in dB for the lb-th

mini-batch. The parameters ρ1 and ρ2 respectively define the range of νlb ∈ (0, ρ1) and the

slope of the sigmoid function, where we use ρ1 = ρ2 = 0.5 through the experiments.

For the lb-th mini-batch, the parameters of q(WNF
lb

) are initialized by applying the

NMF algorithm to |N̄lb | for 2 iterations. Specifically, since MNF > Lb (i.e., over-complete),

we use the sparse NMF algorithm which is simply implemented by adding the sparsity

parameter (we use 0.5) to the denominator of the activation update in (2.5). In contrast,

the parameters of q(WSF
lb
) are initialized from the ones estimated in the previous mini-

batch frame index. The parameters of q(Hlb) are initialized by generating positive random

numbers. We use 5 iterations for the VBEM algorithm.
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Pre-

processing

Reconstruction

Basis compensation 

and 

PSD computation

Noise 

classification

Fig. 4.1 A simplified block diagram of the proposed VNCP-BC method.

The proposed algorithm, i.e., variational inference on the NMF model based on class

probabilities and basis compensation, will be referred to as VNCP-BC. A simplified block

diagram of the proposed method is illustrated in Figure 4.1, while the algorithm is summa-

rized in Table 4.1. Recall that the terms ᾱi
w = [ᾱi

w,km] ∈ R
K×Mi and β̄

i
w = [β̄i

w,km] ∈ R
K×Mi

represent the parameters of the variational distribution in (4.16), and the sets θC and {αi
h}

respectively denote the PGM parameters for classification and the shape parameters in the

activation prior.

4.5 Experiments

The enhancement performance of the proposed method was assessed through objective

experiments. Below, after describing the general methodology and benchmark algorithms,

we present and discuss the experimental results.
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Table 4.1 Algorithm summary of the proposed enhancement stage

for lb = 1, 2, ...

Estimate S̄lb and N̄lb = Ylb −S̄lb

if lb = 1

Initialize p̂Sk,0 =
∑

l |S̄kl|2/Lb and p̂Nk,0 =
∑

l |N̄kl|2/Lb

Initialize q(WSF
lb−1) parameters by applying sparse NMF to |S̄lb |

end

Compute w̃C by averaging and normalizing |Ylb ⊗N̄lb |1/2
Select noise type i ∈ {1, ..., IC − 1} via (4.5) and (4.26)

Initialize q(WSF
lb
) parameters by the one estimated at lb − 1

Initialize q(WNF
lb

) parameters by applying sparse NMF to |N̄lb |
Initialize q(Hlb) parameters by generating positive random numbers

for iter = 1:itermax

Estimate q(WSF
lb
) and q(WNF

lb
) and normalize

Estimate q(Hlb)

Update βh,lb via (4.27)

end

Compute P̂S
lb
= [p̂Skl] and P̂N

lb
= [p̂Nkl ]

Compute νlb via (4.29) and estimate Ŝlb via (4.28)

end

4.5.1 Methodology

We conducted the experiments using the 4th CHiME challenge corpus [115]. The speech

and noise files were divided into two disjoint groups: i) training data, used for estimating

the basis matrix for each class i during the training stage, and ii) test data, used during the

enhancement stage to evaluate the enhancement performance. The clean speech training

data of the CHiME database are from the Wall Street Journal (WSJ0) corpus, which

consists of 101 speakers. We considered a speaker-independent (SI) application, where one

universal basis matrix covering all speakers is estimated during the training stage. To
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this end, we randomly selected 40 utterances from each speaker and concatenated them to

construct the clean speech training data (i = 0), resulting in a total of 8 hours long signal.

Regarding the noise training data, we selected the Bus (i = 1), Pedestrian (i = 2) and

Street (i = 3) noises, where each noise type consists of 2 hours long signal.

We used the reference clean speech from the test set of the CHiME corpus, which consists

of 330 utterances. Regarding the test data for the noise signals, we categorized them into

two groups, referred to as: matched and mismatched cases. The matched case assumes that

the training data is available, whereas the purpose of the mismatched case is to evaluate the

enhancement performance for an unseen noise type, i.e., when no training data is available.

For both the matched and mismatched cases, we performed noise classification to select a

single noise type which has characteristics similar to the actual noise included in the noisy

speech.

We considered two types of the noisy speech signals for the test: additive noise and

filtered noisy speech. The noisy speech signals for the former type were generated by

scaling and adding the noise to the reference clean speech signal to obtain input SNRs of

-5, 0, 5, and 10 dB. The filtered test set, provided by the CHiME organization (referred

to as “simulated test data”), contains the noisy speech signals which were generated by

artificially mixing the clean speech and noises. Specifically, the clean speech signals were

filtered by the impulse responses (IR) between the speaker and microphone, estimated from

the real recorded signals and hence, the filtered data exhibit a more realistic nature of the

noisy speech (see [115] for more details about the database).

For both the additive and filtered data types, we considered the Bus (i = 1), Pedestrian

(i = 2) and Street (i = 3) noises for the matched noise case and used the Cafe noise

from the CHiME database for the mismatched noise case. Regaring the additive noise, we

additionally selected the Factory 1 and Babble noises from the NOISEX database [97] for
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Table 4.2 Summary of the test noise types

Additive Filtered

Matched Bus, Pedestrian, Street (from CHiME)

Mismatched
Cafe (from CHiME),

Cafe (from CHiME)
Factory 1, Babble (from NOISEX)

the mismatched noise case. The sampling rate of all signals was set to 16 kHz. The noise

types used for the test are summarized in Table 4.2.

Regarding the implementation, a Hanning window of 512 samples with 50% overlap was

employed for the STFT analysis. We used Mi = 60 (for all i) and MSF = MNF = 20 basis

vectors. The values of (τS, τN) = (0.4, 0.9) were chosen as the temporal smoothing factors

in (2.32) and (2.33). We used Lb = 16 for the mini-batch size. For the pre-processor, the

value of 0.9 was used as the smoothing factor in the decision-directed (DD) method for the

a priori SNR estimation in [5], whereas 0.85 was used as the smoothing factor for the noise

PSD estimation in [93]. Regarding the shape parameters for the activation αi
h, we obtained

values around 0.02 using the training data (similar results were found when using different

initial values, e.g., αi
h = 0.1). Although we can use such values during the enhancement

stage, we found that instead using larger values resulted in slightly better enhancement

performance, where we ultimately chose αS
h = 0.1 and αN

h = 0.2 in the experiments. The

reason for this phenomenon can be explained as follows. The basis vectors in the proposed

framework are estimated within a restricted decision boundary for each class, which may

prevent them from properly representing the target magnitude spectrum. This becomes

severe when the number of sources increases (i.e., resulting in smaller decision regions) and

hence, may further limit the enhancement performance. Fortunately, the extra free basis

vectors can handle such limitation by supporting the class-conditioned basis vectors to

better represent the target observation Vlb . In particular, for a given class i, it is necessary



4 Training and Compensation of Class-conditioned NMF Bases 84

to relax the dependency of the free basis vectors on their prior distribution so that they are

able to be estimated beyond the decision boundaries. This can be specified by lowering the

degree of sparsity of the activations, which corresponds to using a larger value of αi
h [41].

We considered the PESQ [98], SDR [99] and SSNR as the objective measures of per-

formance. The PESQ attempts to predict overall perceptual quality in MOS and the SDR

measures the overall quality of the enhanced speech in dB by considering both the aspects

of speech distortion and noise reduction. For all the measures, a higher value indicates a

better result.

4.5.2 Benchmark algorithms

To evaluate the enhancement performance of the proposed VNCP-BC method, we imple-

mented several benchmark algorithms, which are summarized below. Basic settings, such

as the STFT analysis and synthesis, the mini-batch size Lb and the reconstruction method,

were kept identical when applicable.

1) MMSE-STSA estimator: We implemented the MMSE-STSA estimator [5], where

the noise PSD was estimated based on [93]. A smoothing factor of 0.85 in the DD method

and 0.9 in the noise PSD estimation were used.

2) NMF: The standard NMF algorithm based on KL-divergence introduced in Chapter

2 was evaluated.

3) NMF model with distinct basis vectors: Among several NMF algorithms aiming

at estimating the distinct basis vectors, we implemented two algorithms as representative

benchmarks. The first one estimates the basis vectors based on the cross-coherence penalty

(NCC) which is presented in [104]. The second one is our earlier work in [101], i.e., the

NMF model based on class probabilities (NCP), where the class-conditioned basis vectors

are obtained via the MAP estimator. A brief summary of the NCP method is given in
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Appendix B.

4) NMF with basis compensation (NBC): The NMF algorithm with basis compensa-

tion proposed in [100] was evaluated, as a representative benchmark among several NMF

algorithms proposed for handling the mismatch problem. We examined the NBC method

with three different types of basis vectors, i.e., obtained via the conventional NMF, NCC

and NCP methods. We used identical settings for the pre- and post-processing as in the

proposed VNCP-BC method.

5) Bayesian NMF model (BNMF): To compare with a VBEM-based NMF algorithm,

We implemented the BNMF method in [41]. The difference with the proposed VNCP (-BC)

method is that the BNMF method estimates the basis matrix for each source independently

as in the typical supervised NMF-based framework, whereas the proposed method estimates

the basis matrices for all sources jointly.

In addition to the above mentioned benchmarks, we implemented the proposed method

without employing the free basis vectors and pre-processing, which will be referred to as

VNCP.

We used Mi = 80 basis vectors for all NMF-based benchmark algorithms (including the

VNCP method) except for the NBC method, where we usedMi = 60 andMSF = MNF = 20.

Hence, the same total number of basis vectors was employed for fair comparison. To

perform the noise classification for the benchmark algorithms, we estimated the set θC

based on the Gaussian-distributed class-conditional density [67, 101]. For the NMF, NBC

and BNMF methods, we first estimated the basis vectors for each class i, then we applied

the ML criterion to the basis vectors [101]. The set θC for the NCP method was jointly

obtained with the NMF parameters. The noise classification was performed by following

a strategy similar to the one introduced in Subsection 4.4.1. Note that the pre-processing

was performed only for the noise classification in the NMF, NCP and VNCP methods, since
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these methods do not employ the pre-processed noisy speech during the reconstruction.

4.5.3 Results

Figure 4.2 shows the PCPs of the estimated basis vectors Eq[w
i
m] (which will be simply

denoted by wi
m). The x-axis indicates them-th column vector of the matrix [W0, ...,W3] =

[wm], where each submatrix Wi consists of 80 basis vectors, i.e., Mi = 80 for all i. For each

class i, the PCP values p(di = 1|wm) should be close to one for the interval iMi+1 ≤ m ≤
(i+1)Mi, whereas the PCPs for the other intervals should be close to zero. Regarding the

class i = 0, for example, the PCPs p(d0 = 1|wm) for the interval 1 ≤ m ≤ 80 should be

close to one, whereas the PCPs for the interval 81 ≤ m ≤ 320 should be close to zero. We

can see that the basis vectors are estimated to be distinct in terms of the PCP in general

(although p(d2 = 1|wm) for the interval 1 ≤ m ≤ 80 tend to be close to one since the

Pedestrian noise contains a lot of speech components), which implies that the basis vectors

of each source will be less likely to represent each other.

Figure 4.3 shows an example of the noise classification results using the method intro-

duced in Subsection 4.4.1. In this particular example, a male speech signal was degraded

with a noise at 0 dB input SNR. Specifically, the noise was generated by concatenating the

Bus (i = 1), Street (i = 3) and Pedestrian (i = 2) noises where each noise signal was 3 sec-

onds in duration. As we can see, the noise type is well estimated. The magnitude spectra

of the clean speech, noisy speech and the enhanced speech using the proposed VNCP-BC

method, for this particular example, are illustrated in Figure 4.4. As it can be observed,

the background noise has been significantly reduced.

The average results over all utterances for the additive noises are shown in Tables 4.3 to

4.8, where the values in bold indicate the best performance along the corresponding row.

Most of all, we can see that the proposed VNCP-BC method provided better enhance-
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Fig. 4.2 The posterior class probabilities p(di = 1|wm).

ment performance than the benchmark algorithms in general for both the matched and

mismatched noise cases. Specifically, the proposed VNCP-BC method resulted in better

performance compared to using the algorithms introduced in our previous works, i.e., the

NCP and NBC methods. Moreover, the VNCP-BC method provided better results than the

VNCP method, which further validates that implementing the basis compensation scheme

improves the performance.

Regarding the matched noises, the results of the VBEM-based VNCP method were

found to be better than the MAP-based NCP method. Comparing between the VBEM-

based methods, the class-conditioned model-based VNCP method exhibited better perfor-

mance than the independent source training-based BNMF method in general, whereas the
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Fig. 4.3 An example of noise classification. Top shows the true noise type
and bottom shows the estimated noise type using the proposed method.

BNMF method provided slightly better results for the Pedestrian noise. Among the NBC

methods with different types of basis vectors, we can see that using the basis vectors ob-

tained via the NCP method provided better results. We also conducted experiments for all

benchmarks and proposed algorithms assuming that the noise type is known a priori, for

the matched noise case. Although we do not report their objective results in this thesis, we

have seen that there were no significant differences with the results obtained by including

the noise classification. That is, the results increased by about 0.01 in PESQ and SDR for

all methods when assuming that the noise type is known a priori.

The effectiveness of using the basis compensation scheme can be better verified from the

results of the mismatched noises. In general, we can see that some NMF-based benchmark

algorithms showed even worse performance than using the STSA estimator, whereas the

NBC-based methods provided reasonable results. Specifically, although the NBC methods

gave acceptable SDR and SSNR values for the Cafe and Babble noises under low input
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Fig. 4.4 Examples of magnitude spectrograms of the clean, noisy and esti-
mated clean speech using the VNCP-BC method. A male speech is degraded
by a noise consisting of different types as shown in Figure 4.3, at 0 dB input
SNR.

SNRs, the proposed VNCP-BC method exhibited better than all benchmark algorithms in

most cases.

The average results over all utterances for the filtered data set are shown in Table 4.9.

Although the results showed slightly different pattern from the additive noise case (e.g., the

STSA estimator gave even better results than some of the benchmarks for the Pedestrian

noise), mainly due to the effect of the IR-filtered clean speech, we can see that the proposed
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Table 4.3 Average results for additive Bus noise (matched)
Input

Eval. Noisy STSA NMF NCC NCP
NBC NBC NBC

BNMF VNCP
VNCP

SNR -NMF -NCC -NCP -BC

-5 dB
PESQ 1.83 2.08 2.07 2.08 2.08 2.17 2.17 2.16 2.11 2.11 2.27
SDR -4.89 0.17 2.83 2.63 2.80 6.60 6.50 6.80 3.44 3.70 7.54
SSNR -13.57 -7.10 -4.50 -4.58 -4.49 -1.24 -1.22 -1.00 -3.54 -3.29 -0.29

0 dB
PESQ 2.20 2.43 2.41 2.42 2.42 2.49 2.49 2.48 2.42 2.42 2.57
SDR 0.05 5.25 7.70 7.51 7.67 10.39 10.33 10.51 8.05 8.28 11.13
SSNR -8.56 -2.75 -0.78 -0.85 -0.85 1.57 1.58 1.73 0.06 0.25 2.30

5 dB
PESQ 2.55 2.76 2.74 2.74 2.74 2.78 2.78 2.77 2.74 2.74 2.87
SDR 5.03 9.99 11.96 11.79 11.98 13.62 13.56 13.55 12.48 12.64 14.27
SSNR -3.56 1.43 2.38 2.31 2.21 4.12 4.13 4.20 3.62 3.74 4.75

10 dB
PESQ 2.90 3.07 3.04 3.04 3.05 3.04 3.04 3.03 3.06 3.06 3.15
SDR 10.03 14.33 15.05 15.04 15.19 16.22 16.12 15.96 16.51 16.58 17.07
SSNR 1.45 5.54 4.87 4.84 4.65 6.36 6.39 6.34 6.86 6.91 7.09

Table 4.4 Average results for additive Pedestrian noise (matched)
Input

Eval. Noisy STSA NMF NCC NCP
NBC NBC NBC

BNMF VNCP
VNCP

SNR -NMF -NCC -NCP -BC

-5 dB
PESQ 1.22 1.34 1.33 1.35 1.33 1.30 1.33 1.32 1.36 1.37 1.39
SDR -4.88 -3.61 -4.19 -3.96 -3.93 -3.55 -3.44 -3.58 -3.71 -3.76 -3.18
SSNR -13.88 -9.02 -9.22 -9.21 -9.25 -6.51 -6.53 -6.50 -9.21 -9.27 -5.97

0 dB
PESQ 1.51 1.70 1.70 1.71 1.70 1.73 1.75 1.74 1.75 1.76 1.86
SDR 0.06 1.95 1.11 1.31 1.33 2.09 2.16 2.05 1.94 1.90 2.76
SSNR -8.87 -4.70 -4.78 -4.80 -4.82 -2.67 -2.65 -2.66 -4.22 -4.28 -1.70

5 dB
PESQ 1.85 2.09 2.09 2.10 2.09 2.13 2.15 2.14 2.16 2.16 2.26
SDR 5.04 7.07 6.02 6.18 6.26 6.86 6.94 6.85 7.37 7.31 7.84
SSNR -3.87 -0.43 -0.80 -0.86 -0.86 0.92 0.95 0.90 0.85 0.76 1.93

10 dB
PESQ 2.20 2.44 2.46 2.48 2.46 2.45 2.47 2.45 2.54 2.53 2.61
SDR 10.03 11.88 10.00 10.16 10.28 10.69 10.76 10.59 12.36 12.25 12.30
SSNR 1.14 3.87 2.47 2.38 2.39 4.02 4.05 3.91 5.11 4.99 5.20

Table 4.5 Average results for additive Street noise (matched)
Input

Eval. Noisy STSA NMF NCC NCP
NBC NBC NBC

BNMF VNCP
VNCP

SNR -NMF -NCC -NCP -BC

-5 dB
PESQ 1.39 1.68 1.63 1.64 1.64 1.84 1.86 1.86 1.77 1.81 2.06
SDR -4.89 -0.35 0.76 1.06 0.89 4.07 3.80 4.72 4.05 4.58 7.11
SSNR -13.72 -6.80 -6.11 -6.05 -6.16 -2.73 -2.89 -2.40 -3.11 -2.65 -0.21

0 dB
PESQ 1.67 2.02 1.98 1.99 1.98 2.20 2.21 2.21 2.10 2.14 2.40
SDR 0.05 4.87 5.77 6.06 5.91 8.37 8.18 8.83 8.32 8.71 10.30
SSNR -8.72 -2.61 -1.97 -1.89 -2.02 0.42 0.36 0.65 0.43 0.72 2.10

5 dB
PESQ 2.00 2.37 2.35 2.36 2.36 2.52 2.53 2.53 2.44 2.47 2.67
SDR 5.03 9.63 10.17 10.43 10.37 11.83 11.81 12.13 12.32 12.55 13.27
SSNR -3.72 1.43 1.58 1.69 1.54 3.30 3.38 3.47 3.76 3.85 4.31

10 dB
PESQ 2.36 2.70 2.71 2.72 2.72 2.77 2.79 2.78 2.76 2.77 2.92
SDR 10.03 14.03 13.49 13.76 13.80 14.46 14.59 14.59 16.06 16.15 16.18
SSNR 1.29 5.41 4.39 4.57 4.38 5.67 5.94 5.80 6.66 6.63 6.69

VNCP-BC method provided the best results for all types of noises. Hence, it is verified

that the proposed VNCP-BC method performs well under a more realistic environment.
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Table 4.6 Average results for additive Cafe noise (mismatched)
Input

Eval. Noisy STSA NMF NCC NCP
NBC NBC NBC

BNMF VNCP
VNCP

SNR -NMF -NCC -NCP -BC

-5 dB
PESQ 1.30 1.38 1.38 1.38 1.38 1.29 1.32 1.32 1.37 1.37 1.39
SDR -4.89 -3.40 -2.98 -2.99 -2.78 -2.22 -2.23 -1.86 -3.29 -3.20 -1.89
SSNR -14.48 -10.93 -10.08 -10.19 -9.75 -7.99 -8.37 -8.09 -10.68 -10.53 -8.01

0 dB
PESQ 1.56 1.68 1.69 1.70 1.71 1.67 1.69 1.68 1.70 1.71 1.76
SDR 0.06 2.07 2.13 2.17 2.37 3.32 3.33 3.61 2.29 2.36 4.07
SSNR -9.47 -6.26 -5.56 -5.65 -5.27 -3.74 -4.06 -3.90 -5.82 -5.70 -3.26

5 dB
PESQ 1.87 2.00 2.03 2.04 2.06 2.04 2.05 2.04 2.09 2.10 2.15
SDR 5.04 7.18 6.88 6.93 7.13 7.99 8.07 8.25 7.91 7.95 9.16
SSNR -4.47 -1.72 -1.46 -1.54 -1.25 0.06 -0.11 -0.09 -0.44 -0.40 1.02

10 dB
PESQ 2.20 2.35 2.37 2.39 2.41 2.39 2.40 2.38 2.50 2.51 2.53
SDR 10.03 11.96 10.72 10.81 10.94 11.63 11.85 11.80 13.10 13.08 13.31
SSNR 0.54 2.74 1.96 1.91 2.08 3.35 3.34 3.21 4.55 4.51 4.68

Table 4.7 Average results for additive Factory 1 noise (mismatched)
Input

Eval. Noisy STSA NMF NCC NCP
NBC NBC NBC

BNMF VNCP
VNCP

SNR -NMF -NCC -NCP -BC

-5 dB
PESQ 1.23 1.44 1.33 1.34 1.33 1.47 1.49 1.48 1.40 1.41 1.57
SDR -4.90 -1.44 -3.33 -2.59 -3.17 0.56 0.51 0.83 -1.12 -0.92 2.07
SSNR -14.33 -8.33 -9.82 -9.22 -9.76 -5.36 -5.49 -5.13 -8.48 -8.56 -4.15

0 dB
PESQ 1.50 1.77 1.67 1.68 1.67 1.84 1.86 1.85 1.73 1.74 1.97
SDR 0.05 3.96 1.92 2.64 2.12 5.53 5.51 5.73 4.21 4.32 7.16
SSNR -9.32 -4.05 -5.31 -4.75 -5.25 -1.81 -1.87 -1.64 -3.95 -4.04 -0.56

5 dB
PESQ 1.83 2.12 2.05 2.06 2.04 2.20 2.22 2.21 2.11 2.12 2.34
SDR 5.03 8.83 6.68 7.34 6.90 9.52 9.57 9.59 9.44 9.51 11.13
SSNR -4.32 0.14 -1.32 -0.83 -1.28 1.50 1.53 1.58 0.71 0.56 2.63

10 dB
PESQ 2.18 2.48 2.43 2.44 2.42 2.51 2.53 2.51 2.50 2.50 2.67
SDR 10.03 13.40 10.42 10.94 10.72 12.38 12.56 12.35 14.08 14.19 14.52
SSNR 0.68 4.40 1.88 2.27 1.90 4.28 4.41 4.27 4.88 4.68 5.44

Table 4.8 Average results for additive Babble noise (mismatched)
Input

Eval. Noisy STSA NMF NCC NCP
NBC NBC NBC

BNMF VNCP
VNCP

SNR -NMF -NCC -NCP -BC

-5 dB
PESQ 1.33 1.45 1.44 1.44 1.44 1.40 1.43 1.43 1.46 1.46 1.53
SDR -4.89 -2.72 -3.75 -3.67 -3.68 -1.94 -1.91 -1.71 -3.95 -3.97 -1.63
SSNR -14.26 -9.90 -10.85 -10.90 -10.82 -7.53 -7.85 -7.70 -12.06 -12.09 -8.09

0 dB
PESQ 1.63 1.79 1.78 1.78 1.78 1.77 1.78 1.79 1.80 1.80 1.90
SDR 0.05 2.77 1.48 1.55 1.54 3.54 3.50 3.67 1.45 1.43 4.44
SSNR -9.25 -5.39 -6.17 -6.17 -6.12 -3.49 -3.69 -3.61 -6.83 -6.87 -3.15

5 dB
PESQ 1.96 2.12 2.14 2.15 2.14 2.12 2.13 2.14 2.19 2.19 2.29
SDR 5.03 7.78 6.47 6.58 6.51 7.97 8.01 8.11 7.21 7.14 9.54
SSNR -4.24 -1.02 -1.84 -1.78 -1.81 0.18 0.12 0.10 -1.19 -1.29 1.39

10 dB
PESQ 2.31 2.46 2.50 2.50 2.50 2.45 2.46 2.46 2.58 2.57 2.64
SDR 10.03 12.41 10.68 10.92 10.69 11.27 11.45 11.43 12.80 12.69 13.38
SSNR 0.77 3.31 1.82 1.94 1.80 3.32 3.38 3.24 4.26 4.11 4.97

A comparison of the computational times for the enhancement stage of the various

methods is reported in Table 4.10. Specifically, the table lists the total time needed (in



4 Training and Compensation of Class-conditioned NMF Bases 92

Table 4.9 Average results for filtered noisy speech
Input

Eval. Noisy STSA NMF NCC NCP
NBC NBC NBC

BNMF VNCP
VNCP

SNR -NMF -NCC -NCP -BC

B
U
S

(m
a
t.
) PESQ 1.70 1.97 1.94 1.95 1.94 2.05 2.06 2.05 1.98 2.00 2.16

SDR -1.34 2.79 3.62 4.18 4.00 6.45 6.39 6.66 5.48 5.53 7.98
SSNR -10.75 -7.35 -6.61 -6.36 -6.44 -4.75 -4.88 -4.67 -5.63 -5.65 -3.58

P
E
D
.

(m
a
t.
) PESQ 1.50 1.72 1.67 1.67 1.67 1.76 1.78 1.76 1.72 1.72 1.86

SDR 0.13 3.26 1.47 1.58 0.89 4.33 4.37 4.41 2.27 2.29 5.40
SSNR -10.58 -7.54 -7.32 -7.30 -7.36 -5.48 -5.60 -5.53 -7.12 -7.17 -4.54

S
T
R
.

(m
a
t.
) PESQ 1.51 1.76 1.73 1.74 1.74 1.85 1.86 1.85 1.81 1.82 2.00

SDR -1.76 2.08 1.77 2.10 1.98 4.69 4.69 4.96 3.64 3.67 6.45
SSNR -10.81 -7.40 -6.96 -6.89 -6.92 -5.10 -5.30 -5.02 -5.90 -5.94 -3.64

C
A
F
.

(m
is
.) PESQ 1.52 1.71 1.68 1.69 1.67 1.72 1.74 1.73 1.72 1.72 1.83

SDR -0.18 2.54 1.02 0.80 0.74 3.41 3.52 3.56 2.13 2.03 4.73
SSNR -10.64 -7.80 -7.48 -7.57 -7.53 -5.84 -5.99 -5.91 -7.37 -7.43 -4.84

Table 4.10 Comparison of computational times (in seconds)
STSA NMF NBC-NMF BNMF VNCP-BC
0.09 0.29 0.64 0.30 0.68

seconds) to process an 8.15 seconds long noisy speech file with the corresponding algorithm

when implemented in MATLAB and running on a 3.4 GHz CPU with 32 GB RAM. Note

that some of the methods use identical implementation for their enhancement stage and

so, we only report the processing times of representative methods. In particular: NMF

includes NCC and NCP; NBC-NMF includes NBC-NCC and NBC-NCP; while BNMF

includes VNCP. The STSA estimator showed the shortest running time, since it requires

no iterations. The NBC and VNCP-BC methods took more time than the NMF, NCP and

BNMF methods due to the additional computation of the free basis vectors.

Besides the experiments using the CHiME database, we also conducted additional exper-

iments using the clean speech from the TSP database [95] and the noise from the NOISEX

database [97]. The main purpose was to see whether the classification-based VNCP and

VNCP-BC methods limits the enhancement performance when we increase the number of

noise classes (from 3 to 8). Although we do not report the objective results in this thesis,

we were able to verify that the VNCP-BC method still provided the best enhancement
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performance in general.

4.6 Summary

We introduced a training and compensation algorithm of the class-conditioned basis vectors

in the NMF model for single-channel speech enhancement. We considered the PGM for

both the NMF and classification models. The former is specified by a Poisson observation

model, whereas the latter is specified by gamm class-conditional densities, which are used

as a priori distribution for the basis vectors. During the training stage, the basis matrices

for the clean speech and noises were estimated jointly by constraining them to belong

to different classes. The parameters of the NMF model and PGM of classification were

obtained by using the VBEM algorithm, which guarantees convergence to a stationary

point. During the enhancement stage, we performed a noise classification followed by

a basis compensation. The latter was implemented by using extra free basis vectors to

capture features which are not included in the training data. The PGM parameters for

classificaion were employed while estimating the free basis vectors as well as during the

noise classification. Experiments showed that the proposed VNCP-BC method provided

better enhancement performance than the benchmark algorithms in general.
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Chapter 5

Multi-channel Extension of Bayesian

NMF Model

In this chapter, we introduce a supervised multi-channel speech enhancement algorithm

based on a Bayesian MNMF model. In the proposed framework, we consider the PGM

of MNMF, specified by Poisson-distributed latent variables and gamma-distributed priors.

During the proposed training stage, the MNMF parameters of different speech and noise

sources are estimated from the tensor-based training data via the VBEM algorithm. During

the enhancement stage, the clean speech point source signal is estimated via the MNMF-

based MVDR beamforming technique, whose realization involves two main steps. First, the

speech source location is determined by observing the output powers of a DS beamformer

applied to the MNMF-based pre-processed noisy speech signal. Second, the noise correla-

tion matrix is computed using the MNMF parameters for the magnitude components, and

a combination of the noisy speech phase and steering vector for the phase components.

Experimental results for different combinations of speaker and noise types show that the

proposed Bayesian algorithm can provide better speech enhancement performance than the
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benchmark algorithms.

This chapter is organized as follows. In Section 5.1, we state the research motivation and

explain the significance of the proposed method. The training stage of the new algorithm

is derived in Section 5.2, whereas the proposed enhancement stage is explained in Section

5.3. Experimental results are presented and discussed in Section 5.4.

5.1 Research Motivations and Contributions

Numerous NMF-based multi-channel speech enhancement and source separation algorithms

have been introduced. In [33], the authors derive both the MU rules and EM algorithm

for estimating the MNMF parameters, based on the IS-divergence. To better exploit the

spatial properties of the sources, the authors in [61] aim at factorizing the SCM of the ob-

servation in each frequency bin, which is specified by the channel covariance matrices of the

individual sources. The extended SCM, formulated as a weighted superposition of multiple

DoA kernels (i.e., differential steering matrices), is proposed in [62]. In [43], the complex-

valued Gaussian-distributed latent variables are modeled by auto-regressive moving average

(ARMA) processes to better handle reverberation effects in realistic environments. A joint

localization and enhancement method, based on the probabilistic SRP model specified

by the DoA, is presented in [35]. However, a main issue with the above algorithms (or

approaches) is the computational complexity of their implementation. That is, the com-

putational cost increases rapidly as the number of NMF basis vectors, microphones or the

dimension of the search grid for the speaker localization increase. The authors in [77] apply

a single-channel NMF algorithm to the beamformer output as a post-processor. Although

this approach is computationally efficient, it employs a classical MVDR beamforming tech-

nique which limits performance due to the poor estimation of the noise correlation matrix
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and source localization parameters.

As an alternative to MNMF, the NTF framework has been introduced in [69], where the

authors derived the MU rules for the KL and IS divergences. In [116], the authors derive the

EM algorithm for estimating the NTF parameters, based on the IS-divergence. A Bayesian

NTF algorithm for stereo source separation has been introduced in [117]. However, the NTF

model employs frequency-independent mixing coefficients, which implies that it can handle

a linear instantaneous signal mixture and inadequate to represent the convolutive effects

specified by the ATFs. In contrast, the MNMF model, which employs frequency-dependent

mixing coefficients, does not suffer from this limitation.

In this chapter, we introduce a novel supervised multi-channel speech enhancement

algorithm based on a Bayesian MNMF model. We consider the PGM of MNMF that

corresponds to the KL-divergence within a statisical framework, as specified by Poisson-

distributed latent variables and gamma-distributed priors. During the proposed training

stage, the MNMF parameters of different sources are estimated from the tensor-based

training data via the VBEM algorithm, which can be considered as an extension of the

EM algorithm [41, 67, 107]. Specifically, compared to using the complex-valued Gaussian-

distributed PGM of MNMF [43], one main advantage of using the Poisson-distributed PGM

is that we can reduce the computational cost, since we only need the marginal statistics

while implementing the VBEM algorithm [41].

During the proposed enhancement stage, the clean speech point source signal is esti-

mated via the MNMF-based MVDR beamforming technique, whose realization involves

two main steps. First, the clean speech and noise locations are determined by observing

the spatial output power of a low-complexity DS beamformer applied to the MNMF-based

pre-processed noisy speech signal. Second, the noise correlation matrix is computed using

the MNMF parameters for the magnitude components, and a combination of the noisy
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speech phase and steering vector for the phase components.

5.2 Proposed Training Stage

In this section, we first explain the PGM of MNMF that corresponds to KL-divergence.

Then, we introduce the explicit prior distributions for the PGM, which will be used in the

proposed framework. Finally, the VBEM algorithm for estimating the latent variables and

hyper-parameters is presented.

5.2.1 PGM of multi-channel NMF with KL-divergence

For a given tensor V = [vjkl] ∈ R
K×L×J
+ , the MNMF algorithm aims at factorizing it into

a mixing matrix A = [ajk] ∈ R
K×J
+ , a basis matrix W = [wkm] ∈ R

K×M
+ and an activation

matrix H = [hml] ∈ R
M×L
+ . Specifically, it seeks to represent each entry of V in the form

of [33]

vjkl ≈ v̂jkl = ajk

M∑
m=1

wkmhml. (5.1)

From a statistical perspective, each entry of V can be constructed as a sum of M latent

variables

vjkl =
M∑

m=1

cm,j
kl . (5.2)

According to [41], the m-th latent variable cm,j
kl can be assumed to be drawn from a Poisson

distribution parameterized by ajk, wkm and hml. That is:

p(cm,j
kl |ajk, wkm, hml) = P(cm,j

kl |ajkwkmhml) (5.3)
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where P(x|u) = ux exp(−u)/(x!) is the Poisson distribution with mean u. Assuming that

vjkl are independently drawn, the LLF of V can be written as1

ln p(V |A,W,H) = ln
J∏

j=1

K∏
k=1

L∏
l=1

P(vjkl|v̂jkl) (5.4)

=
J∑

j=1

K∑
k=1

L∑
l=1

(
vjkl ln v̂

j
kl − v̂jkl − ln vjkl!

)
.

We can see that maximizing the LLF with respect to the mixing, basis and activation

elements is equivalent to minimizing the KL-divergence given by

DKL(V, V̂) =
J∑

j=1

K∑
k=1

L∑
l=1

(
vjkl ln

vjkl
v̂jkl

− vjkl + v̂jkl

)
(5.5)

where the entries of the tensor V̂ = [v̂jkl] ∈ R
K×L×J
+ are given by (5.1).

5.2.2 Prior structures

Regarding the prior distributions for the MNMF parameters A, W and H, we consider the

gamma distribution, which is shown to be the conjugate prior to the Poisson distribution

[41]. Specifically, we employ the following priors based on [41]:

p(ajk;α
j
a,k, β

j
a,k) = G

(
ajk;α

j
a,k,

βj
a,k

αj
a,k

)
(5.6)

p(wkm;αw,km, βw,km) = G
(
wkm;αw,km,

βw,km

αw,km

)
(5.7)

p(hml;αh,ml, βh,ml) = G
(
hml;αh,ml,

βh,ml

αh,ml

)
(5.8)

1We note that the sum of independent Poisson random variables xm with means μm is another Poisson
random variable with mean

∑
m μm.
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where G(x; a, b) = xa−1b−a exp(−x/b)/Γ(a) is the gamma distribution with mean ab, Γ(·) is
the gamma function, and a and b are referred to as the shape and scale parameters, respec-

tively. Note that the parameterization of the gamma distributions given by (5.6), (5.7) and

(5.8) provide an appealing interpretation in terms of the mean of the distribution given by

βj
a,k, βw,km and βh,ml, respectively. In the proposed framework, we consider constant values

for the hyper-parameters for each type of matrix factor (e.g., αj
a,k = αa and βj

a,k = βa for

all k and j), to avoid over-fitting [34, 41]. Assuming that the entries of A, W and H are

independently distributed, the priors can be written as

p(A;αa, βa) =
K∏
k=1

J∏
j=1

G
(
ajk;αa,

βa

αa

)
(5.9)

p(W;αw, βw) =
K∏
k=1

M∏
m=1

G
(
wkm;αw,

βw

αw

)
(5.10)

p(H;αh, βh) =
M∏

m=1

L∏
l=1

G
(
hml;αh,

βh

αh

)
. (5.11)

5.2.3 VBEM algorithm

Let us denote by θL = {C,A,W,H} the set of latent variables, and by θR =

{αa, βa, αw, βw, αh, βh} the set of hyper-parameters. For a set of training data represented

by V = [vjkl] ∈ R
K×L×J
+ , which consists of the magnitude spectral coefficients of the image

source, our goal is to estimate the latent variables and hyper-parameters via the VBEM

algorithm. Note that, since we consider the magnitude spectra as entries of tensor V, the

mixing coefficients ajk represent the magnitude value of the ATFs. The marginal LLF can
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be written as

ln p(V;θR) ≥
∑
C

∫ ∫ ∫
q(C,A,W,H) ln

p(V,C,A,W,H;θR)

q(C,A,W,H)
dA dW dH

= Eq(θL)[ln p(V,θL;θR)]︸ ︷︷ ︸
� LV (q(θL);θR)

−Eq(θL)[ln q(θL)]︸ ︷︷ ︸
� −LE(q(θL))

� LB(q(θL);θR) (5.12)

where q(·) is a variational distribution and Eg(x)[f(x)] indicates an expectation of f(x)

with respect to g(x). The term LB(q(θL);θR) defines the lower bound on ln p(V;θR),

where the equality holds for q(θL) = p(θL |V;θR) [41,67] (see Appendix A.2 for a detailed

expression of the lower bound). The VBEM algorithm consists of two stages. During

the variational E-step, the variational distribution q(θL) which approximates the exact

posterior distribution p(θL |V;θR) is estimated. During the variational M-step, the hyper-

parameters are obtained by maximizing the lower bound in (5.12) computed with a fixed

q(θL).

1) Variational E-step: Based on the mean-field approximation [67,107], the variational

distribution q(C,A,W,H) can be expressed in a factorized form as (e.g., [41, 43, 108])

q(C,A,W,H) = q(C)q(A)q(W)q(H) (5.13)

=

(∏
j,k,l

q(cjkl)

)(∏
j,k

q(ajk)

)(∏
k,m

q(wkm)

)(∏
m,l

q(hml)

)

where cjkl = [c1,jkl , ..., c
M,j
kl ]. The resulting local optimal solutions can be found as:

q(C)(r+1) ∝ exp
(
Eq(A)(r)q(W)(r)q(H)(r) [ln p(V,θL;θR)]

)
(5.14)
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q(A)(r+1) ∝ exp
(
Eq(C)(r+1)q(W)(r)q(H)(r) [ln p(V,θL;θR)]

)
(5.15)

q(W)(r+1) ∝ exp
(
Eq(C)(r+1)q(A)(r+1)q(H)(r) [ln p(V,θL;θR)]

)
(5.16)

q(H)(r+1) ∝ exp
(
Eq(C)(r+1)q(W)(r+1)q(W)(r+1) [ln p(V,θL;θR)]

)
(5.17)

where the superscript (r) denotes the r-th iteration. For convenience, we shall omit the

superscript (r) and also drop the latent variables inside the subscript q(·) of the expectation
operator, e.g., Eq(wkm)[wkm] = Eq[wkm].

First, the distribution q(cjkl) in (5.14) is inferred as [41]:

M(cjkl; v
j
kl, p̄

j
kl) = δ

(
vjkl −

M∑
m=1

cm,j
kl

)
vjkl!

M∏
m=1

(p̄m,j
kl )c

m,j
kl

cm,j
kl !

(5.18)

where δ(x) is the Kronecker delta function defined by δ(x) = 1 when x = 0 and δ(x) = 0

otherwise. The entries of p̄j
kl = [p̄m,j

kl ] are given by

p̄m,j
kl =

exp
(
Eq[ln a

j
k] + Eq[lnwkm] + Eq[lnhml]

)∑M
m=1 exp

(
Eq[ln a

j
k] + Eq[lnwkm] + Eq[lnhml]

) . (5.19)

The distributions q(ajk), q(wkm) and q(hkm) are found successively as

q(ajk) ∝ exp

[(
αa +

M∑
m=1

L∑
l=1

Eq[c
m,j
kl ]

︸ ︷︷ ︸
�ᾱj

a,k

−1
)
ln ajk −

( αa

βa

+
M∑

m=1

L∑
l=1

Eq[wkm]Eq[hml]︸ ︷︷ ︸
�(β̄j

a,k)
−1

)
ajk

]

∝ G(ajk; ᾱj
a,k, β̄

j
a,k) (5.20)
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q(wkm) ∝ exp

[(
αw+

J∑
j=1

L∑
l=1

Eq[c
m,j
kl ]

︸ ︷︷ ︸
�ᾱw,km

−1
)
lnwkm−

( αw

βw

+
J∑

j=1

L∑
l=1

Eq[a
j
k]Eq[hml]︸ ︷︷ ︸

�(β̄w,km)−1

)
wkm

]

∝ G(wkm; ᾱw,km, β̄w,km) (5.21)

q(hml) ∝ exp

[(
αh +

K∑
k=1

J∑
j=1

Eq[c
m,j
kl ]

︸ ︷︷ ︸
�ᾱh,ml

−1
)
lnhml −

( αh

βh

+
K∑
k=1

J∑
j=1

Eq[a
j
k]Eq[hml]︸ ︷︷ ︸

�(β̄h,ml)−1

)
hml

]

∝ G(hml; ᾱh,ml, β̄h,ml). (5.22)

The sufficient statistics (expectations) are given below:

Eq[c
m,j
kl ] = vjklp̄

m,j
kl (5.23)

Eq[ln a
j
k] = Ψ(ᾱj

a,k) + ln β̄j
a,k, Eq[a

j
k] = ᾱj

a,kβ̄
j
a,k (5.24)

Eq[lnwkm] = Ψ(ᾱw,km) + ln β̄w,km, Eq[wkm] = ᾱw,kmβ̄w,km (5.25)

Eq[lnhml] = Ψ(ᾱh,ml) + ln β̄h,ml, Eq[hml] = ᾱh,mlβ̄h,ml (5.26)

where Γ(x) is the gamma function and Ψ(x) = d ln Γ(x)/dx is the digamma function [41].

2) Variationl M-step: The hyper-parameter set θR is estimated by maximizing

LV (q(θL)
(r+1);θR). Setting the partial derivative of LV (q(θL)

(r+1);θR) with respect to

θR to zero, the hyper-parameters for the mixing coefficients, αa and βa, are obtained as

αa ← αa − lnαa −Ψ(αa) + 1− αqa

1/αa −Ψ′(αa)
(5.27)
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βa =
1

KJ

K∑
k=1

J∑
j=1

Eq[a
j
k] (5.28)

where αqa =
∑K

k=1

∑J
j=1(Eq[a

j
k]/βa − Eq[ln a

j
k] + ln βa)/(KJ) and Ψ′(x) = dΨ(x)/dx. The

hyper-parameters for the bases, αw and βw, are obtained as

αw ← αw − lnαw −Ψ(αw) + 1− αqw

1/αw −Ψ′(αw)
(5.29)

βw =
1

KM

K∑
k=1

M∑
m=1

Eq[wkm] (5.30)

where αqw =
∑K

k=1

∑M
m=1(Eq[wkm]/βw −Eq[lnwkm] + ln βw)/(KM). The hyper-parameters

for the activations, αh and βh, are obtained as

αh ← αh − lnαh −Ψ(αh) + 1− αqh

1/αh −Ψ′(αh)
(5.31)

βh =
1

ML

M∑
m=1

L∑
l=1

Eq[hml] (5.32)

where αqh =
∑M

m=1

∑L
l=1(Eq[hml]/βh − Eq[lnhml] + ln βh)/(ML).

5.2.4 Parameter initialization and normalization

For initialization, we first generate positive random numbers and subsequently apply the

MU rules in (2.5) to V̄ = [
∑J

j=1 v
j
kl/J ] ∈ R

K×L
+ for several iterations [33,34,108], where we

found 10 iterations are sufficient. The resulting W and H are used as the initial values for

the sufficient statistics Eq[wkm], exp(Eq[lnwkm]), Eq[hml] and exp(Eq[lnhml]). The sufficient

statistics Eq[a
j
k] and exp(Eq[ln a

j
k]) are initialized to 1. The hyper-parameters are initialized

as αa = αw = αh = 0.001 and βa = βw = βh = 10. We use 200 iterations for the VBEM al-
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gorithm, whereas 5 iterations are used for estimating the hyper-parameters in (5.27), (5.29)

and (5.31). To avoid scale indeterminacies in ajk, wkm and hml which appear as a product

in the distribution (5.3), we include a parameter normalization step at each iteration. Mo-

tivated by [64], we normalize Eq[a
j
k] and exp(Eq[ln a

j
k]) after computing (5.20), such that∑

j Eq[a
j
k] = 1 and

∑
j exp(Eq[ln a

j
k]) = 1. Also, we normalize Eq[wkm] and exp(Eq[lnwkm])

after computing (5.21), such that
∑

k Eq[wkm] = 1 and
∑

k exp(Eq[lnwkm]) = 1.

5.3 Proposed Enhancement Stage

In the enhancement stage, we propose an effective method of estimating the clean speech

point source signal via the MVDR beamforming technique, whose realization involves two

main steps. First, the speech source location is determined by observing the spatial output

power of a DS beamformer applied to the MNMF-based pre-processed noisy speech sig-

nal. Second, the noise correlation matrix is computed using the MNMF parameters for the

magnitude components, and a combination of the noisy speech phase and steering vector

for the phase components. In the following subsections, we explain the MNMF parame-

ter estimation, followed by the proposed source localization method and noise correlation

matrix computation and finally, the proposed MVDR beamforming method.

5.3.1 MNMF parameter estimation

We consider a mini-batch online approach while enhancing the noisy speech signal. Let

us denote by Ylb = [Y j
kl] ∈ C

K×Lb×J the tensor consisting of the noisy speech spectral

coefficients of the time frames l ∈ {(lb − 1)Lb + 1, ..., lbLb} � Clb , where lb = 1, 2... is

the mini-batch frame index and Lb is the mini-batch size. For the lb-th mini-batch frame,

we aim at factorizing the tensor VY
lb
= [|Y j

kl|] ∈ R
K×Lb×J
+ into AY = {aS,jk , aN,j

k }, WY =
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[WS WN ] = [wY
km] ∈ R

K×MY
+ and HY

lb
= [hY

ml] ∈ R
MY ×Lb
+ , where MY = MS + MN and

aS,jk and aN,j
k are the magnitude values of the ATFs of the clean speech and noise ÃS,j

k and

ÃN,j
k given by (2.38) (i.e., aS,jk � |ÃS,j

k | and aN,j
k � |ÃN,j

k |). The factorization model can be

written as

|Y j
kl| ≈ v̂jkl = aS,jk

MS∑
m=1

wS
kmh

S
ml + aN,j

k

MN∑
m=1

wN
kmh

N
ml. (5.33)

We use the VBEM algorithm introduced in Subsection 5.2.3 to infer the variational dis-

tributions q(C), q(WY ) and q(HY ). That is, at each iteration, the parameters of q(C)

are estimated via (5.18) and (5.19). Next, we estimate the parameters of q(AY ) based

on (5.20). The parameters of q(HY
lb
) are then simply obtained by using (5.22). Subse-

quently, the hyper-parameters of the mixing coefficients and noisy speech activation priors

are obtained by

βS
a =

1

KJ

K∑
k=1

J∑
j=1

Eq[a
S,j
k ], βN

a =
1

KJ

K∑
k=1

J∑
j=1

Eq[a
N,j
k ] (5.34)

βS
h =

1

MSLb

MS∑
m=1

∑
l∈Clb

Eq[h
Y
ml], βN

h =
1

MNLb

MY∑
m=MS+1

∑
l∈Clb

Eq[h
Y
ml] (5.35)

In contrast to the parameters given above, we fix the shape parameters, mainly in order to

reduce the computational cost since their updates require additional iterations as given by

(5.27) and (5.31) [34].

5.3.2 Source localization and noise correlation matrix computation

One main step in the MVDR beamformer is the steering vector specified by the TDoA,

which is computed based on the estimated speech source position. To this end, numer-

ous methods for source localization have been proposed, such as angular spectrum-based

and clustering-based methods. The former method constructs a function of the TDoA
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known as the angular spectrum for each time-frequency bin. The source TDoA is then

estimated by the highest peak of that function. The latter method iteratively estimates

the time-frequency bins associated to each source, e.g., the clean speech and noise, and the

corresponding TDoAs by means of a clustering algorithm. A more detailed discussion of

various source localization methods can be found in [118] and references therein.

In the proposed framework, we consider the angular spectrum-based approach mainly

due to the simplicity of its implementation compared to the clustering-based approach.

Specifically, the speech source position is determined by observing the spatial output power

of a DS beamformer applied to the noisy speech signal [35,119]. To improve the localization

performance, we apply the DS beamformer to the MNMF-based pre-processed noisy speech

signal, and subsequently apply the single-channel Wiener filtering to the DS beamformer

output as given by (2.48). A detailed processing of the proposed localization method is

described below.

Let us denote by Lo = {lo}Oo=1 a set of unit-length look direction vectors lo (i.e., the

search grid for source localization). Based on (2.39), the NMF-based pre-processed noisy

speech, S̄kl = [S̄1
kl, ..., S̄

J
kl]

T ∈ C
J and pre-estimated noise, N̄kl = [N̄1

kl, ..., N̄
J
kl]

T ∈ C
J , are

first obtained as

S̄j
kl =

(aS,jk )2p̂Skl
(aS,jk )2p̂Skl + (aN,j

k )2p̂Nkl
Y j
kl (5.36)

and N̄ j
kl = Y j

kl − S̄j
kl, where p̂Skl and p̂Nkl are given by (2.32) and (2.33). Specifically, as

explained in Subsection 4.2.2, the latter are computed based on the mean values of q(Wlb)

and q(Hlb) and similarly, we use Eq[a
S,j
k ] and Eq[a

N,j
k ] in (5.36). Subsequently, the clean

speech and noise spectra at the o-th DoA, Ŝo
kl and N̂ o

kl, are estimated by applying the DS
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beamformer to S̄j
kl and N̄ j

kl, followed by single-channel Wiener filtering as:

Ŝo
kl =

p̂Skl
p̂Skl + p̂Nkl

ŜD
kl (5.37)

N̂ o
kl =

p̂Nkl
p̂Skl + p̂Nkl

N̂D
kl (5.38)

where ŜD
kl = (bo

k)
HS̄kl and N̂D

kl = (bo
k)

HN̄kl are the DS beamformer outputs, and bo
k is the

steering vector given by (2.45) which is computed based on lo. At the lb-th mini-batch,

the look direction vectors for the clean speech and noise, lSo,lb and lNo,lb , are then determined

that give the highest input SNR (in dB)

Ro
lb
= 10 log10

∑K
k=1

∑
l∈Clb

|Ŝo
kl|2∑K

k=1

∑
l∈Clb

|N̂ o
kl|2

(5.39)

and the lowest input SNR, respectively.

To avoid a rapid change in the estimation of the source locations and to exploit extra

DoAs which are not included in the search grid Lo, we consider the smoothed lo based on

the input SNR as

l̂So,lb = σ(Rlb−1)̂l
S
o,lb−1 + σ(Rlb)l

S
o,lb

(5.40)

l̂No,lb = σ(−Rlb−1)̂l
S
o,lb−1 + σ(−Rlb)l

N
o,lb

(5.41)

where σ(x) = ρ1/(1 + exp(−ρ2x)) is the logistic function, and Rlb is the estimated input

SNR in dB given by

Rlb = 10 log10

∑J
j=1

∑K
k=1

∑
l∈Clb

(aS,jk )2p̂Skl∑J
j=1

∑K
k=1

∑
l∈Clb

(aN,j
k )2p̂Nkl

. (5.42)
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The estimated look direction vectors are then normalized to have unit length. Note that

Rlb differs from Ro
lb
as follows. The former SNR is computed based on the image spectra

and used for estimating the smoothed look direction vectors l̂So,lb and l̂No,lb . The latter SNR is

computed based on the DS beamformer output and used for estimating the instantaneous

look direction vectors lSo,lb and lNo,lb .

Another main step in the MVDR beamformer is the estimation of the noise correlation

matrix RN
kl, which can be computed via temporal smoothing based on (2.42). Regarding

the phase components, we can use the noisy speech phase as mentioned in Subsection 2.2.2.

However, this may limit the performance especially for a high input SNR since the clean

speech phase will dominate the noisy speech phase. Hence, we instead propose to use the

combination of the noisy speech phase and steering vector, based on the estimated input

SNR, as

ϕj
N,k = σ(Rlb)b

N,j
k + (1− σ(Rlb)) exp(j∠Y

j
kl) (5.43)

where bN,j
k is the k-th entry of the steering vector given by (2.45), computed based on the

estimated noise look direction vector l̂No,lb . The estimated phase-related component ϕN,j
k is

then normalized to have unit magnitude, i.e., ϕN,j
k /|ϕN,j

k |, to ensure | exp(j∠Âj
N,k)| = 1 as

discussed in connection with image source estimation in Subsection 2.2.2.

5.3.3 NMF-based MVDR beamforming

The MVDR beamformer output is given by [120]

Ŝkl =

(
(RN

kl +λIJ)
−1 bk

bH
k (R

N
kl +λIJ)−1 bk

)H

Ykl (5.44)

where λ is the diagonal loading factor, IJ is the J × J identity matrix, and bk = [bjk] ∈ C
J

is the steering vector computed based on (2.45) and estimated DoA.
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NMF 

parameter 

estimation

Source 

localization

Noise 

correlation 

matrix 
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MVDR 

beamforming

Fig. 5.1 A simplified block diagram of the proposed enhancement stage.

To further reduce the residual noise components in the enhanced speech obtained via

the MVDR beamformer, we can apply a single-channel enhancement algorithm to the

beamformer output as a post-processor, as given by (2.48) [19, 20]. However, the post-

processing may further distort the clean speech components, especially for a high input

SNR. Hence, motivated by [103], we consider the WGM of the magnitude components of

the MVDR output and its improvement via single-channel Wiener filtering:

ŜGM
kl =

(∣∣∣Ŝkl

∣∣∣νlb ∣∣∣∣ p̂Skl
p̂Skl + p̂Nkl

Ŝkl

∣∣∣∣1−νlb
)
ej∠Ŝkl =

(
p̂Skl

p̂Skl + p̂Nkl

)1−νlb

Ŝkl (5.45)

where 0 ≤ νlb ≤ 1 is the weighting factor. Similar as in [103], we select the weighting factor

by νlb = σ(Rlb), where Rlb is the estimated input SNR given by (5.42).

A simplified block diagram of the proposed method is illustrated in Figure 5.1, while

the algorithm is summarized in Table 5.1. The proposed method, i.e., variational inference

on the multi-channel Bayesian NMF model and the MNMF-based beamforming, will be

referred to as VMNMF throughout this section.
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Table 5.1 Algorithm summary of the proposed enhancement stage

% Initialize

Initialize q(AY ) parameters to 1

Initialize p̂Sk,0 and p̂Nk,0 to 0

Initialize Rlb to 0

for lb = 1, 2, ...

% NMF parameter estimation

Initialize q(AY ) parameters to the ones estimated at lb − 1

Initialize q(Hlb) parameters by generating positive random numbers

for iter = 1:itermax

Estimate q(AY ) and normalize

Estimate q(Hlb)

Update βS
a , β

N
a , βS

h and βN
h via (5.34) and (5.35)

end

Compute P̂S
lb
= [p̂Skl] and P̂N

lb
= [p̂Nkl ] via (2.32) and (2.33)

Compute νlb via (5.42)

% Source localization

Compute S̄lb = [S̄j
kl] via (5.36) and N̄lb = [N̄ j

kl] = Ylb −S̄lb

for o = 1, ..., O

Compute Ŝ
o
lb
= [Ŝo

kl] and N̂
o
lb
= [N̂o

kl] via (5.37) and (5.38)

Compute Ro
lb
via (5.39)

end

Compute l̂So,lb and l̂No,lb via (5.40) and (5.41)

Compute Rlb via (5.42)

% MVDR beamforming

Compute bk via (2.45) and (2.46)

Compute {RN
kl} via (2.42) and (5.43)

Estimate ŜGM
lb

= [ŜGM
kl ] via (5.44) and (5.45)

5.4 Experiments

The enhancement performance of the proposed method was assessed through objective

experiments. Below, we describe the general methodology and benchmark algorithms, and

then present the experimental results.
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5.4.1 Methodology

We conducted the experiments using the 4-th CHiME challenge corpus [115], where the

sampling rate of all signals was set to 16 kHz. The speech and noise files were divided into

two disjoint groups: i) training data, used for estimating the basis matrix during the training

stage, and ii) test data, used during the enhancement stage to evaluate the enhancement

performance. The clean speech training data of the CHiME database are from the Wall

Street Journal (WSJ0) corpus, which consists of 101 speakers. We considered a speaker-

independent (SI) application, where one universal basis matrix covering all speakers is

estimated during the training stage. To this end, we randomly selected 40 utterances from

each speaker and concatenated them to construct the clean speech training data, resulting

in an 8 hours long signal. Regarding the noise training data, we considered the Bus, Cafe,

Pedestrian, and Street noises, where we used a 2 hours long signal for each noise type.

Regarding the test data, we used the development set of the CHiME corpus (referred

to as “simulated development data”), which consists of 410 utterances of the 6-channel

noisy speech signals, generated by artificially mixing the clean speech and noises. The

multi-channel noisy speech signals were generated by scaling and adding the noise to the

filtered clean speech signal to obtain input SNRs of -5, 0, 5, and 10 dB. Specifically, the

clean speech signals were filtered by the time-varying impulse responses (IR) between the

speaker and microphones. The IR is estimated from the real recorded signals (see [115] for

more details about the database).

Regarding the implementation, a Hanning window of 1024 samples with 50% overlap

was employed for the STFT analysis. We used M = 80 basis vectors for the clean speech

and noises and Lb = 32 for the mini-batch size. Although we can use noise classification

as introduced in [103] to determine which type of noise is included in the noisy speech, we
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assumed that the noise type is known a priori throughout the experiments. The values of

τS = 0.4 were chosen as the temporal smoothing factors in (2.32), and τN = 0.9 in (2.33)

and (2.42). We used λ = 0.01 for the diagonal loading factor for the MVDR beamformer.

Regarding the shape parameters during the enhancement stage, we used αS
a = αN

a = 1

and αS
h = αN

h = 0.1. We used ρ1 = 2 and ρ2 = 0.01 for the parameters of the logistic

function while computing the smoothed look direction vector sgiven by (5.40) and (5.41),

whereas we used ρ1 = ρ2 = 0.5 while computing the noise correlation matrix in (5.43)

and the clean speech spectrum estimation in (5.45). The geometry of the microphone

array used for recording the CHiME data is described in [77], which can be expressed in

the Cartesian coordinates by (x, y, z) = (-0.1,0.095,0), (0,0.095,-2), (0.1,0.095,0), (-0.1,-

0.095,0), (0,-0.095,0), (0.1,-0.095,0) in meters. We used the origin, i.e., (x, y, z) = (0, 0, 0),

for the reference position lr. Considering the spherical polar coordinates, let us denote

by θ the azimuth angle in the xy-plane from the x-axis with 0 ≤ θ < 2π, and by φ the

polar angle from the positive z-axis with 0 ≤ φ ≤ π (see Figure 5.2). The unit-length look

direction vector lo ∈ R
3 then can be expressed in the Cartesian coordinates as (x, y, z) =

(sinφ cos θ, sinφ sin θ, cosφ). Regarding the search grid for source localization (i.e., the set

of look direction vectors Lo), we considered the polar angles of φ = {0, 15, 30, 45, 60} in

degrees, where the azimuth angles for the given polar angle were sampled by the angles of

360, 45, 30, 15 and 10 in degrees, respectively, resulting in a total of O = 81 look direction

vectors.

We considered the PESQ [98], SDR [99] and overall composite value (Cov) [121] as

the objective measures of performance. The PESQ attempts to predict overall percep-

tual quality in MOS and the SDR measures the overall quality of the enhanced speech in

dB by considering both aspects of speech distortion and noise reduction. The Cov pre-

dicts overall quality in MOS, by taking into account of different objective measures, i.e.,
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Fig. 5.2 Geometric illustration of the spherical coordinates.

PESQ, weighted-slope spectral distance (WSS) and log-likelihood ratio (LLR). For all the

measures, a higher value indicates a better result.

5.4.2 Benchmark algorithms

To evaluate the enhancement performance of the proposed VMNMF method, we imple-

mented several benchmark algorithms, which are summarized below. Basic settings, such

as the STFT analysis and synthesis, the number of basis vectors, the mini-batch size Lb

and the reconstruction method, were kept identical when applicable (except the diago-

nal loading factor λ in (5.44) where we used 0.1 since it provided better enhancement

performance). Moreover, the essential steps for the MVDR beamforming, i.e., the source

localization and noise correlation matrix computation, were performed using the proposed

method introduced in Subsections 5.3.2 and 5.3.3.

1) MMSE-STSA estimator : We implemented the MMSE-STSA estimator [5] and ap-

plied it to each channel of the noisy speech to obtain the initial estimates of the clean

speech and noise spectra for the source localization and MVDR beamforming. The noise

PSD was estimated based on [93]. Regarding the post-processing for the WGM-based
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clean speech estimation, we applied the MMSE-STSA estimator to the MVDR output. We

used a smoothing factor of 0.85 in the decision-directed method for computing the a priori

SNR [5], and used 0.9 for the noise PSD estimation [93].

2) MNMF : We implemented the MNMF algorithm based on the IS-divergence [33].

Specifically, we considered the MU rules, which were applied to the power spectral coeffi-

cients. During the training stage, the basis and activation matrices were initialized by first

generating positive random numbers and subsequently applying the KL-based MU rules in

(2.5) to V̄ = [
∑J

j=1 v
j
kl/J ], where vjkl is the power spectral coefficient of the training data.

The mixing coefficients were initialized to 1.

3) NTF : We implemented the NTF algorithms based on the KL and IS divergences

(i.e., the MU rules introduced in [69]), which will be referred to as NTF-KL and NTF-

IS, respectively. The NTF-KL method was applied to the magnitude spectral coefficients,

whereas the NTF-IS was applied to the power spectral coefficients. During the training

stage, the basis and activation matrices were initialized by positive random numbers for

the NTF-KL method, whereas we followed the same procedure as in the MNMF method

for the NTF-IS method. The mixing coefficients were initialized to 1, for both the NTF-KL

and NTF-IS methods.

5.4.3 Results

The average results over all utterances are shown in Tables 5.2 to 5.5, where the values in

bold indicate the best performance along the corresponding row. We can observe that the

proposed VMNMF method provided better enhancement performance than the benchmark

algorithms for all types of noises and input SNRs (except in some cases where the best Cov

results at -5 dB input SNR were found in the MNMF method for the Bus and Street noises).

Comparing between the IS-based methods (i.e., MNMF and NTF-IS methods), the MNMF
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method provided better results in general. This validates that the MNMF model, which

employs the frequency-dependent mixing coefficients, can better handle the convolutive

effects specified by the ATFs. Also comparing between NTF-KL and NTF-IS methods, the

former method showed better enhancement performance in general. Such patterns that the

KL-based method can provide better performance than the IS-based method, have been

widely reported e.g., in [73, 74]. Moreover, we found that the computational cost of the

VMNMF method was comparable to that of the efficient MU-based MNMF, NTF-KL and

NTF-IS methods.

Figure 5.3 illustrates the magnitude spectra of the clean speech (point source signal),

noisy speech (recorded at microphone j = 1) and the enhanced speech using the proposed

VMNMF method. In this particular example, a female speech is degraded by the Street

noise at 0 dB input SNR. As it can be observed, the background noise has been significantly

reduced.

5.5 Summary

We introduced a supervised multi-channel speech enhancement algorithm based on a

Bayesian MNMF model. In the proposed framework, we considered the PGM of MNMF,

specified by Poisson-distributed latent variables and gamma-distributed priors. During the

proposed training stage, the MNMF parameters of different speech and noise sources are es-

timated from the tensor-based training data via the VBEM algorithm. During the enhance-

ment stage, the clean speech point source signal is estimated via the MNMF-based MVDR

beamforming technique, whose realization involves two main steps. First, the speech source

location is determined by observing the output powers of a DS beamformer applied to the

MNMF-based pre-processed noisy speech signal. Second, the noise correlation matrix is



5 Multi-channel Extension of Bayesian NMF Model 116

Table 5.2 Average results for Bus noise
Input

Eval. STSA MNMF
NTF NTF

VMNMF
SNR -KL -IS

-5 dB
PESQ 2.12 2.36 2.26 2.24 2.36
SDR -0.60 7.36 7.14 6.25 8.77
Cov 2.45 2.60 2.47 2.47 2.50

0 dB
PESQ 2.43 2.63 2.57 2.54 2.65
SDR 3.81 10.21 10.50 9.64 11.72
Cov 2.84 2.91 2.91 2.86 2.94

5 dB
PESQ 2.74 2.91 2.87 2.84 2.93
SDR 8.08 12.92 13.18 12.35 14.05
Cov 3.21 3.21 3.30 3.22 3.32

10 dB
PESQ 2.99 3.18 3.16 3.11 3.19
SDR 11.87 15.77 15.38 14.33 16.13
Cov 3.49 3.48 3.62 3.52 3.64

Table 5.3 Average results for Cafe noise
Input

Eval. STSA MNMF
NTF NTF

VMNMF
SNR -KL -IS

-5 dB
PESQ 1.60 1.75 1.71 1.73 1.83
SDR -1.83 0.17 0.66 -0.55 1.46
Cov 1.73 1.78 1.76 1.64 1.92

0 dB
PESQ 1.91 2.04 2.04 2.05 2.17
SDR 3.58 5.36 5.49 5.02 6.84
Cov 2.15 2.19 2.23 2.06 2.41

5 dB
PESQ 2.24 2.38 2.39 2.39 2.50
SDR 8.21 9.80 9.49 9.25 11.09
Cov 2.56 2.58 2.66 2.46 2.83

10 dB
PESQ 2.55 2.72 2.72 2.72 2.80
SDR 12.03 13.65 12.41 12.38 14.45
Cov 2.93 2.93 3.02 2.81 3.17

computed using the MNMF parameters for the magnitude components, and a combination

of the noisy speech phase and steering vector for the phase components. Experimental

results showed that the proposed Bayesian algorithm could provide better speech enhance-

ment performance than the benchmark algorithms for different combinations of speaker

and noise types under various input SNRs.
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Table 5.4 Average results for Pedestrian noise
Input

Eval. STSA MNMF
NTF NTF

VMNMF
SNR -KL -IS

-5 dB
PESQ 1.64 1.78 1.78 1.86 1.93
SDR -1.81 -0.24 0.12 0.70 2.58
Cov 1.82 1.91 1.86 1.91 2.07

0 dB
PESQ 1.99 2.12 2.12 2.18 2.28
SDR 3.32 4.90 4.98 5.59 7.66
Cov 2.29 2.35 2.36 2.37 2.57

5 dB
PESQ 2.32 2.47 2.47 2.48 2.59
SDR 7.98 9.48 9.32 9.48 11.61
Cov 2.69 2.76 2.78 2.77 2.96

10 dB
PESQ 2.63 2.80 2.76 2.77 2.87
SDR 11.91 13.51 12.54 12.34 14.79
Cov 3.04 3.10 3.11 3.11 3.29

Table 5.5 Average results for Street noise
Input

Eval. STSA MNMF
NTF NTF

VMNMF
SNR -KL -IS

-5 dB
PESQ 1.81 2.03 2.01 1.92 2.15
SDR -1.54 3.63 3.71 3.95 5.61
Cov 2.06 2.23 2.12 1.90 2.21

0 dB
PESQ 2.17 2.34 2.34 2.26 2.47
SDR 3.32 7.34 7.45 7.82 9.59
Cov 2.52 2.63 2.61 2.42 2.69

5 dB
PESQ 2.50 2.66 2.65 2.58 2.75
SDR 7.84 10.90 10.99 10.83 12.72
Cov 2.92 3.00 3.03 2.86 3.09

10 dB
PESQ 2.79 2.97 2.95 2.87 3.00
SDR 11.72 14.36 14.32 12.74 15.23
Cov 3.25 3.32 3.38 3.23 3.43
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Fig. 5.3 Examples of magnitude spectrograms of the clean speech, noisy
speech (j = 1) and estimated clean speech using the VMNMF method. A
female speech is degraded by the Street noise at 0 dB input SNR.
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Chapter 6

Conclusion and Future Works

In this thesis, we introduced and studied on training-based NMF algorithms for single and

multi-channel speech enhancement.

After introducing the problem and reviewing background material in Chapter 2, we

first presented a regularized NMF algorithm with Gaussian mixtures and masking model

for single-channel speech enhancement in Chapter 3. In the proposed framework, a priori

knowledge about the magnitude spectra of the clean speech and noise is captured by distinct

GMMs, where normalized spectra are employed to handle the magnitude difference between

the training and test data. The corresponding LLFs were included as regularization terms

in the NMF cost function during the enhancement stage. Further improvement of the

enhanced speech quality was obtained by exploiting the masking effects of the human

auditory system. Specifically, we constructed a WWF where the weighting factor is selected

based on the masking threshold calculated from the estimated clean speech PSD.

Second, we introduced a training and compensation algorithm of the class-conditioned

basis vectors in the NMF model for single-channel speech enhancement in Chapter 4. We

considered the PGM for both the NMF and classification models. The former is specified
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by a Poisson observation model, whereas the latter is specified by gamma class-conditional

densities, which are used as a priori distribution for the basis vectors. During the training

stage, the basis matrices for the clean speech and noises were estimated jointly by constrain-

ing them to belong to different classes. The parameters of the NMF model and PGM of

classification were obtained by using the VBEM algorithm, which guarantees convergence

to a stationary point. During the enhancement stage, we performed a noise classification

followed by a basis compensation. The latter was implemented by using extra free basis

vectors to capture features which are not included in the training data. The PGM pa-

rameters for classification were employed while estimating the free basis vectors as well as

during the noise classification.

Third, we presented a novel algorithm for multi-channel speech enhancement in Chapter

5. Specifically, we considered the Poisson-distributed latent variables for MNMF, which

corresponds to the KL-divergence within a statistical framework. During the training stage,

the MNMF parameters were estimated from the tensor-based training data, by using the

VBEM algorithm. During the enhancement stage, the clean speech point source signal was

estimated via the NMF-based MVDR beamforming technique. Specifically, the clean speech

and noise locations were determined by observing the output powers of the DS beamformer

applied to the NMF-based pre-processed noisy speech signal. The noise correlation matrix

was computed using the NMF parameters for the magnitude components, and the phase

components were derived from the combination of the noisy speech phase and steering

vector.

For each one of the above algorithm, objective experiments have been carried out for

different combinations of speaker and noise types. The results showed that the proposed

methods provide better speech enhancement performance than the selected benchmark

algorithms under various conditions.
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Finally, we comment on some interesting research avenues for further improving the

enhancement performance regarding either single or multi-channel application. Firstly, we

can consider modeling the basis vectors using a more accurate multimodal distribution,

e.g., the gamma mixture model [55]. This extended prior modeling may also offer the

potential of a noise-independent application (i.e., one universal basis matrix covering all

noise types), by handling highly correlated noise sources. Secondly, to better deal with

a highly reverberant environment, we can consider the ARMA processes to model the

latent variables [43]. However, the computational complexity of such an approach makes

it difficult to apply especially when training the basis vectors. To overcome this issue, we

can consider different cost functions for the training and test stages. For example, we can

train the basis vectors based on the Poisson-distributed latent variables during the training

stage, and consider the ARMA-based latent variables during the enhancement stage.
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Appendix A

Variational Lower Bound

In this appendix, we derive the variatoinal lower bound LB(q(θL);θR) on the marginal LLF

of the proposed class-conditioned NMF models: the bound regarding the single-channel

NMF model given by (4.9) is described in Appendix A.1, while the bound regarding the

multi-channel NMF model given by (5.12) is presented in Appendix A.2.

A.1 Single-channel Class-conditioned NMF Model

Based on (4.1), (4.2), (4.6) and (4.8), the logarithm of the full joint distribution is given by

ln p(V,C,W,H;θR) (A.1)

= ln p(V |C) + ln p(C |W,H) + ln p(W;θC) + ln p(H;αh,βh)

=

IC−1∑
i=0

K∑
k=1

Li∑
l=1

ln δ
(
vikl −

Mi∑
m=1

cm,i
kl

)

+

IC−1∑
i=0

K∑
k=1

Mi∑
m=1

Li∑
l=1

(
cm,i
kl ln(wi

kmh
i
ml)− wi

kmh
i
ml − ln(cm,i

kl !)
)
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+

IC−1∑
i=0

Mi∑
m=1

K∑
k=1

(
(αi

w,k − 1) lnwi
km − wi

km

βw,k

− ln Γ(αi
w,k)− αi

w,k ln βw,k

)

+

IC−1∑
i=0

Mi∑
m=1

Li∑
l=1

(
(αi

h − 1) lnhi
ml −

αi
h

βi
h

hi
ml − ln Γ(αi

h)− αi
h ln

(βi
h

αi
h

))
.

The energy LV (q(θL);θR) in (4.9) is simply found by evaluating the expectations of (A.1)

with respect to q(C,W,H) in (4.11)-(4.13), where the sufficient statistics are given by

(4.19)-(4.21).

Based on (4.14), (4.16) and (4.18), and using the sufficient statistics in (4.19)-(4.21),

the entropy LE(q(θL)) = −Eq[ln q(θL)] can be written as

LE(q(θL)) (A.2)

=

IC−1∑
i=0

K∑
k=1

Li∑
l=1

(
− ln(vikl!)−

Mi∑
m=1

viklp̄
m,i
kl ln p̄m,i

kl

−Eq

[
ln δ

(
vikl −

Mi∑
m=1

cm,i
kl

)]
+

Mi∑
m=1

Eq[ln(c
m,i
kl !)]

)

−
IC−1∑
i=0

K∑
k=1

Mi∑
m=1

(
(ᾱi

w,km − 1)Ψ(ᾱi
w,km)− ln β̄i

w,km − ᾱi
w,km − ln Γ(ᾱi

w,km)
)

−
IC−1∑
i=0

Mi∑
m=1

Li∑
l=1

(
(ᾱi

h,ml − 1)Ψ(ᾱi
h,ml)− ln β̄i

h,ml − ᾱi
h,ml − ln Γ(ᾱi

h,ml)
)
.

The lower bound on the marginal LLF, ln p(V;θR), is obtained by summing the energy

and entropy terms as given by (4.9). Note that the terms in Eq[·] in the third line in (A.2),

which are analytically intractable, are canceled by their corresponding terms in the energy

LV (q(θL);θR) [41].
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A.2 Multi-channel Bayesian NMF Model

Based on (5.2), (5.3), (5.9), (5.10) and (5.11), the logarithm of the full joint distribution is

given by

ln p(V,C,A,W,H;θR) (A.3)

= ln p(V |C) + ln p(C |A,W,H) + ln p(A;αa, βa) + ln p(W;αw, βw) + ln p(H;αh, βh)

=
J∑

j=1

K∑
k=1

L∑
l=1

ln δ
(
vjkl −

M∑
m=1

cm,j
kl

)

+
J∑

j=1

K∑
k=1

M∑
m=1

L∑
l=1

(
cm,j
kl ln(ajkwkmhml)− ajkwkmhml − ln(cm,j

kl !)
)

+
J∑

j=1

K∑
k=1

(
(αa − 1) ln ajk −

αa

βa

ajk − ln Γ(αa)− αa ln
(βa

αa

))

+
K∑
k=1

M∑
m=1

(
(αw − 1) lnwkm − αw

βw

wkm − ln Γ(αw)− αw ln
(βw

αw

))

+
M∑

m=1

L∑
l=1

(
(αh − 1) lnhml − αh

βh

hml − ln Γ(αh)− αh ln
(βh

αh

))
.

The energy LV (q(θL);θR) in (5.12) is simply found by evaluating the expectations of (A.3)

with respect to q(C,A,W,H) in (5.14)-(5.17), where the sufficient statistics are given by

(5.23)-(5.26).

Based on (5.18), (5.20), (5.21) and (5.22), and using the sufficient statistics in (5.23)-

(5.26), the entropy LE(q(θL)) = −Eq[ln q(θL)] can be written as

LE(q(θL)) (A.4)
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=
J∑

j=1

K∑
k=1

L∑
l=1

(
− ln(vjkl!)−

M∑
m=1

vjklp̄
m,j
kl ln p̄m,j

kl

−Eq

[
ln δ

(
vjkl −

M∑
m=1

cm,j
kl

)]
+

M∑
m=1

Eq[ln(c
m,j
kl !)]

)

−
J∑

j=1

K∑
k=1

(
(ᾱj

a,k − 1)Ψ(ᾱj
a,k)− ln β̄j

a,k − ᾱj
a,k − ln Γ(ᾱj

a,k)
)

−
K∑
k=1

M∑
m=1

(
(ᾱw,km − 1)Ψ(ᾱw,km)− ln β̄w,km − ᾱw,km − ln Γ(ᾱw,km)

)

−
M∑

m=1

L∑
l=1

(
(ᾱh,ml − 1)Ψ(ᾱh,ml)− ln β̄h,ml − ᾱh,ml − ln Γ(ᾱh,ml)

)
.

The lower bound on the marginal LLF, ln p(V;θR), is obtained by summing the energy

and entropy terms as given by (5.12). As mentioned in Appendix A.1, the analytically

intractable terms in Eq[·] in the third line in (A.4) are canceled by their corresponding

terms in the energy LV (q(θL);θR).
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Appendix B

A Brief Summary of NCP Method

In this appendix, we present a brief summary of the NCP method, which is our earlier work

on training distinct basis vectors [101].

For a given training data set V = {Vi}IC−1
i=0 , where i ∈ {0, ..., IC − 1} is the class

index, the goal is to estimate W = {Wi}IC−1
i=0 and H = {Hi}IC−1

i=0 (Wi ∈ R
K×Mi
+ and

Hi ∈ R
Mi×Li
+ ). For the basis prior, we use the Gaussian-distributed PGM of classification,

which is shown as

p(W;θC) =

IC−1∏
i=0

Mi∏
m=1

pi N (wi
km;μik, σ

2
k) (B.1)

where pi is the prior class probability, and θC = {pi, {μik, σ
2
k}Kk=1}IC−1

i=0 is the PGM parame-

ter set for classification. For the activations, we employ sparse NMF regularization, which

can be implemented by modeling the entries of H by an exponential distribution within

a statistical framework [122]. Assuming that the entries are independent and identically

distributed, the prior of H is shown as

p(H) =

IC−1∏
i=0

λMiLi exp

(
−λ

Mi∑
m=1

Li∑
l=1

hi
ml

)
(B.2)
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where the parameter λ controls the degree of sparsity.

The basis and activation matrices are obtained through a MAP estimator via the EM

algorithm, which leads to maximizing the following criterion in the maximization step:

LC(V |W,H;θC) =

IC−1∑
i=0

LC(V
i |Wi,Hi) + ln p(W;θC) + ln p(H) (B.3)

where LC(V
i |Wi,Hi) is given by (2.18). By setting the partial derivative of (B.3) with

respect to wi
km to zero, the update rule of wi

km is found to be

(wi
km)

(r+1) =
−qi1 +

√
q2i1 + 4q0qi2
2q0

(B.4)

where q0 = (σ−2
k )(r), qi1 =

∑
l(h

i
ml)

(r) − μ
(r)
ik (σ

−2
k )(r), qi2 =

∑
l(c̄

m,i
kl )(r), and the superscript

(r) denotes the r-th iteration. Following a similar approach as for the basis estimation, the

update rule of hi
ml is obtained as

(hi
ml)

(r+1) =

∑
k(c̄

m,i
kl )(r)∑

k(w
i
km)

(r+1) + λ
. (B.5)

The set θC is estimated by maximizing the marginal likelihood p(V |H,θC), which becomes

equivalent to maximizing (B.3) when we assume that W is well-determined [67]. The set

θC is then simply obtained by applying the ML criterion to p(W |θC) given by (B.1), where

the resulting estimate in a closed form is interleaved with the EM update, as

pi =
Mi∑
i Mi

, (μik)
(r+1) =

1

Mi

Mi∑
m=1

(wi
km)

(r+1) (B.6)

(σ2
k)

(r+1) =
1

M

IC−1∑
i=0

Mi∑
m=1

[
(wi

km)
(r+1) − (μik)

(r+1)
]2
. (B.7)

The enhancement stage is identical as presented in Subsection 2.2.1.
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