
Energy-Efficient Synchronization and
Resource Allocation Strategies for
Device-to-Device Communications

Onur Karatalay

Department of Electrical & Computer Engineering

McGill University

Montreal, Canada

April 2022

A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

© 2022 Onur Karatalay

i

Abstract

Device-to-Device (D2D) communication technology offers energy-efficient, high through-

put, and ultra-low latency data transmissions while significantly reducing the total overhead

and data traffic at the core network. Nevertheless, there are several practical aspects to

be considered in the realization of this type of peer-to-peer, close-proximity communication

framework. Among these, in this thesis, we focus on two fundamental challenges, namely,

synchronization and resource allocation, towards the implementation of reliable, robust and

efficient D2D communications.

Since synchronization is the foundation of reliable data communications, we begin with

addressing the clock synchronization problem in distributed D2D networks. In this regard,

we first develop a scalable, pulse-based half-duplex synchronization algorithm that operates

in a timing-advance fashion by taking the signal propagation time into account. Then, in

light of this algorithm, we propose a fully distributed synchronization protocol that allows

synchronized devices to proceed into data communication after acquiring the global synchro-

nization status of the network. The proposed protocol also allows synchronized devices to

become idle and save energy while maintaining synchronization. Compared to a benchmark

from the literature, the proposed protocol not only achieves faster synchronization but also

attains a lower synchronization error under various simulation conditions such as multi-path

channels, clock skew, dynamic number of devices, and different network topology.

After resolving the synchronization problem, we consider D2D communications as an

enabling technology for a task offloading framework. In this regard, we address the energy-

efficient resource allocation problem in a D2D-aided task offloading scenario, in which com-

putation intensive tasks can be offloaded to nearby available wireless devices via D2D links.

However, high operating temperatures during task processing result in CPU throttling, which

randomly alters the task processing time. We formulate the resource allocation problem to

minimize the expected total energy consumption subject to probabilistic constraints on the

task processing time. Since the formulated problem is non-convex, we develop two sub-

optimal methods to solve it. The first method relies on Difference of Convex (DC) program-

ming combined with chance-constraint optimization to handle the probabilistic constraints.

However, the performance of DC programming depends on a good initial point, hence, we

propose a second method, which only uses convex programming. As a benchmark, we adopt

the total energy consumption when the task is computed only locally. The simulation results

ii

show that both methods significantly reduce the energy consumption in comparison to the

benchmark while the latter method outperforms the former in terms of energy efficiency and

run time.

Finally, we investigate a multi-device D2D-aided task offloading scenario by including a

more powerful, centralized computation server to be utilized simultaneously. Due to the non-

convex nature of the formulated problem, we propose two methods to sub-optimally solve

it. First, by investigating the relationship between the task processing time and the total

energy consumption, the original problem is relaxed into a sequence of convex sub-problems

whose solutions can be efficiently obtained by using the convex optimization techniques.

Second, to further reduce computational complexity, we develop a low-complexity heuristic

task offloading strategy, which does not require computing gradients and Hessian matrices.

For performance comparison, we calculate a lower bound on the total energy consumption

for an ideal scenario to be used as a benchmark. The computer simulations show that both

methods significantly reduce the total energy consumption compared to processing tasks

only locally while attaining near-optimal solutions with respect to the lower bound.

iii

Sommaire

La technologie de communication d’appareil à appareil (D2D) offre des transmissions de

données écoénergétiques, à haut débit et à latence ultra-faible, tout en réduisant la sur-

charge totale et le trafic de données au niveau du réseau central. Néanmoins, plusieurs

aspects pratiques sont à considérer dans la réalisation de ce type de cadre de communication

pair-à-pair et de proximité. Dans cette thèse, nous nous concentrons sur deux défis fonda-

mentaux, à savoir, la synchronisation et l’allocation des ressources, dans le but d’assurer des

communications D2D fiables, robustes et efficaces.

Puisque la synchronisation est le fondement de communications de données fiables, nous

commençons par aborder le problème de synchronisation d’horloge dans les réseaux D2D

distribués. À cet égard, nous développons tout d’abord un algorithme de synchronisation

semi-duplex évolutif et basé sur des impulsions; l’algorithme exploite l’avance temporelle

prenant en compte le temps de propagation du signal. Nous proposons ensuite un pro-

tocole de synchronisation entièrement distribué qui permet aux appareils synchronisés de

passer à la communication de données après avoir acquis l’état de synchronisation globale

du réseau. Le protocole proposé permet également aux appareils synchronisés de devenir

inactifs et d’économiser de l’énergie tout en maintenant la synchronisation. En comparaison

aux méthodes existantes, le protocole proposé permet non seulement une synchronisation

plus rapide, mais atteint également une erreur de synchronisation plus faible dans diverses

conditions de simulation telles que les canaux multi-chemins, le décalage d’horloge, le nombre

dynamique d’appareils et la topologie de réseau.

Après avoir résolu le problème de synchronisation, nous considérons les communications

D2D comme une technologie habilitante pour un cadre de délestage de tâches. À cet égard,

nous abordons le problème d’allocation de ressources écoénergétique dans un scénario de

déchargement de tâches assisté par D2D, dans lequel les tâches gourmandes en calculs peu-

vent être délestées vers des appareils sans fil disponibles à proximité via des liaisons D2D.

Cependant, des températures de fonctionnement élevées pendant le traitement des tâches

entrâınent une limitation du processeur, ce qui modifie aléatoirement le temps de traite-

ment. Nous formulons le problème d’allocation des ressources pour minimiser la consom-

mation totale d’énergie attendue sous réserve de contraintes probabilistes sur le temps de

traitement de la tâche. Puisque le problème formulé est non convexe, nous développons

deux méthodes sous-optimales pour le résoudre. Les résultats de la simulation montrent

iv

que les deux méthodes réduisent considérablement la consommation d’énergie par rapport à

une approche de référence, tandis que la deuxième méthode surpasse la première en termes

d’efficacité énergétique et d’autonomie.

Enfin, nous étudions un scénario de délestage de tâches assisté par D2D multi-appareils

en incluant un serveur de calcul centralisé plus puissant à utiliser simultanément. En raison

de la nature non convexe du problème formulé, nous proposons deux méthodes pour le

résoudre de manière sous-optimale. Premièrement, le problème d’origine est décomposé

en une séquence de sous-problèmes convexes dont les solutions peuvent être efficacement

obtenues en utilisant les techniques d’optimisation convexe. Deuxièmement, pour réduire la

complexité de calcul, nous développons une stratégie de délestage des tâches heuristique de

faible complexité. Pour la comparaison des performances, nous calculons une limite inférieure

sur la consommation totale d’énergie pour un scénario idéal, à utiliser comme référence. Les

simulations informatiques montrent que les deux méthodes réduisent considérablement la

consommation totale d’énergie par rapport aux tâches de traitement effectuées uniquement

sur l’unité locale, tout en atteignant des solutions presque optimales par rapport à la limite

inférieure.

v

Acknowledgement

First and foremost, I would like to express my deepest gratitude towards my supervisor

Prof. Ioannis Psaromiligkos and my co-supervisor Prof. Benoit Champagne for giving me the

privilege to work under their guidance and learn from their wisdom. Without their expertise

and knowledge as well as their continuous support and patience throughout my studies, this

thesis would have never been possible. I would also like to thank my Ph.D. supervisory

committee members Prof. Xiao-Wen Chang, Prof. Aditya Mahajan and Prof. Michael

Rabbat for their constructive criticisms and valuable feedbacks to constantly improve my

work.

I am also deeply grateful for the funding from McGill University given under the McGill

Engineering Doctoral Awards (MEDA). Also, I profoundly thank my supervisor Prof. Ioannis

Psaromiligkos for the financial support for my studies through the research grants from the

Natural Sciences and Engineering Research Council of Canada (NSERC) and InterDigital

Canada Ltée under the Mitacs Accelerate Internship program. Hereby, I would also like to

thank Dr. Benoit Pelletier for his technical guidance and expertise as well as his welcoming

attitude towards me during my internship at InterDigital Canada Ltée.

Finally, I would like to thank my friends who are always by my side. And most impor-

tantly, I would like to express how much I am grateful for my family to have their continuous

support and love during my studies. Without their encouragement and guidance, I would

not have enough strength to finish this journey. Hereby, I dedicate this thesis to my lovely

family.

vi

Preface and Contributions of the Author

The research presented in this dissertation was carried out in the Department of Electri-

cal and Computer Engineering (ECE) of McGill University from September 2016 to August

2021. This dissertation is the result of my original work that is created under the supervisions

of Prof. Ioannis Psaromiligkos and Prof. Benoit Champagne from the same department. I,

Onur Karatalay, conducted the literature survey and accordingly formulated the problems

with the guidance of Prof. Ioannis Psaromiligkos and Prof. Benoit Champagne. Then, I

proposed the methods, developed the algorithms, and implemented the computer simula-

tions. Finally, I wrote the first draft of each paper, which are reviewed and edited by the

co-authors Prof. Ioannis Psaromiligkos, Prof. Benoit Champagne and Dr. Benoit Pelletier.

• Journal Papers

(J-1) O. Karatalay, I. Psaromiligkos, B. Champagne and B. Pelletier, “A distributed

pulse-based synchronization protocol for half-duplex D2D communications,” IEEE

Open Jour. of the Commun. Soc., vol. 2, pp. 245–261, 2021.

(J-2) O. Karatalay, I. Psaromiligkos, and B. Champagne, “Energy-efficient resource

allocation for D2D-assisted fog computing,” (submitted).

• Conference Papers

(C-1) O. Karatalay, I. Psaromiligkos, B. Champagne and B. Pelletier, “Fast converg-

ing Distributed pulse-coupled clock synchronization for half-duplex D2D commu-

nications over multipath channels,” in Proc. IEEE Int. Symp. on Signal Process.

and Info. Tech., pp. 123–128, Dec. 2018.

(C-2) O. Karatalay, I. Psaromiligkos, B. Champagne and B. Pelletier, “Fully dis-

tributed energy-efficient synchronization for half-duplex D2D communications,”

in Proc. IEEE Pers. Indoor and Mobile Commun., pp. 1–7, Sept. 2019.

(C-3) O. Karatalay, I. Psaromiligkos, and B. Champagne, “Energy-efficient D2D-

aided fog computing under probabilistic time constraints,” in Proc. IEEE Glob.

Commun. Conf., pp. 01–07, Dec. 2021.

vii

Contents

1 Introduction 1

1.1 D2D Networks . 1

1.2 Applications of D2D Communications . 5

1.3 Thesis Objectives and Contributions . 8

1.4 Thesis Organization and Notations . 10

2 Background and Literature Review 12

2.1 Technical Challenges of D2D Communications 12

2.2 Synchronization in D2D Networks . 14

2.2.1 Centralized vs Distributed Synchronization 14

2.2.2 Synchronization Techniques and Duplexing Scheme 16

2.2.3 Clock Skew and Propagation Delays 17

2.2.4 Transitioning from Synchronization to Communications 18

2.3 Task Offloading via D2D Communications 19

2.3.1 Task Offloading Strategies . 19

2.3.2 Mobile Fog Computing . 20

2.3.3 Effect of CPU Throttling on Task Processing Time 21

2.4 Background on Numerical Optimization . 22

2.4.1 Convex vs Non-Convex Optimization 22

2.4.2 Difference of Convex Programming 23

2.4.3 Reducing Constrained DC Program with Penalty Theory 24

2.4.4 Chance-Constraint Optimization . 25

2.5 Summary . 25

Contents viii

3 A Distributed Synchronization Protocol for D2D Networks 27

3.1 Introduction . 27

3.2 System Model and Problem Formulation . 29

3.2.1 Network Setup and Clock Model . 29

3.2.2 Half-duplex Signaling Model . 30

3.2.3 DPLL Clock Update . 32

3.2.4 Problem Formulation . 33

3.3 Timing-Advance Synchronization Algorithm 35

3.3.1 Alternating Transceiver Mode . 35

3.3.2 Modified DPLLs . 37

3.3.3 Estimation of the Bias . 39

3.3.4 Proposed Algorithm . 40

3.4 Proposed Synchronization Protocol . 41

3.4.1 Bias Update State . 44

3.4.2 Fixed Bias State . 44

3.4.3 Transition State . 45

3.4.4 Data Communication State . 47

3.4.5 Complexity Analysis . 49

3.5 Simulation Results . 49

3.5.1 Clock Phase Convergence . 50

3.5.2 Synchronization Performance before Data Communication 52

3.5.3 Timing Error during Data Communication 56

3.5.4 Energy-Efficiency of the Synchronization Protocol 58

3.6 Conclusion . 59

4 D2D-aided Fog Computing under Probabilistic Time Constraints 60

4.1 Introduction . 60

4.2 System Model and Problem Formulation . 61

4.3 Proposed Sub-Optimal Methods . 64

4.3.1 DC Programming Method . 65

4.3.2 Convex-Programming Method . 68

4.4 Simulation Results . 70

4.5 Conclusion . 74

Contents ix

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 75

5.1 Introduction . 75

5.2 System Model and Problem Formulation . 77

5.2.1 System Model . 77

5.2.2 Problem Statement . 79

5.3 Convex Programming Method . 81

5.3.1 Problem Analysis . 81

5.3.2 Allocation of Transmit Powers and Task Sizes 82

5.3.3 Limitation of Computation Resources 83

5.3.4 Summary of the Proposed Method 83

5.4 Heuristic Task Offloading Method . 84

5.4.1 Initial Resource Allocation . 84

5.4.2 Re-allocating the Excess Resources 86

5.4.3 Complexity Analysis . 89

5.5 Simulation Results . 89

5.6 Conclusion . 98

6 Conclusion 99

6.1 Summary . 99

6.2 Future Works . 102

Appendix A Reduction of TO in Multi-Device Setting 104

Appendix B Rate of TO Reduction 109

Appendix C Expectation of TO Estimate 111

Appendix D Convexity of Problem P2 112

Appendix E Optimal Task Offloading for the Ideal Case 114

References 115

x

List of Acronyms

3GPP Third Generation Partnership Project

4G Fourth Generation

5G Fifth Generation

AD Active Device

AP Access Point

B5G Beyond 5G

BS Base Station

CCP Convex-Concave Procedure

CDF Cumulative Distribution Function

CFO Carrier Frequency Offset

CPU Central Processing Unit

CSI Channel State Information

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

CUs Cellular Users

D2D Device-to-Device

DC Difference of Convex

DCF Difference of Convex Functions

DPLLs Distributed Phase-Locked Loops

DTM Dynamic Thermal Management

DUs D2D Users

List of Acronyms xi

eNB evolved Node B

ES Edge Server

FD Fog Device

ID Idle Device

IoT Internet of Things

ISM Industrial, Scientific and Medical

LTE Long Term Evolution

LTE-A Long Term Evolution-Advanced

MAC Medium Access Layer

MEC Mobile Edge Computing

P2P Peer-to-Peer

PHY Physical Layer

ppm parts per million

ProSe Proximity Services

PUs Primary Users

QoS Quality of Service

SINR Signal-to-Interference-plus-Noise Ratio

SNR Signal-to-Noise Ratio

SUs Secondary Users

TA Timing-Advance

TO Time-Offset

UE User Equipment

List of Acronyms xii

V2X Vehicle-to-Everything

WSNs Wireless Sensor Networks

ZC Zadoff-Chu

1

Chapter 1

Introduction

In this chapter, we first introduce the concept of Device-to-Device (D2D) communications

and present its role and possible use cases in the Fifth Generation (5G) and Beyond 5G (B5G)

networks. We then give the main objectives of our research and outline the contributions

of the thesis. Finally, we give an overview of the thesis organization and the mathematical

notations used in the thesis.

1.1 D2D Networks

By the end of 2023, there will be 13.1 billion mobile devices worldwide, which represents

a nearly 50% increase since 2018 [1, 2]. Along with the proliferation of connected devices,

the tremendous growth of data traffic has resulted in larger bandwidth demands in the

Fourth Generation (4G) of wireless networks, which have initiated the standardization of

new technologies by the Third Generation Partnership Project (3GPP) [3–5]. In 4G Long

Term Evolution (LTE) and Long Term Evolution-Advanced (LTE-A) networks, low-power

consuming fixed Base Stations (BS)s called evolved Node B (eNB), managed efficient spec-

trum usage and data traffic until recent years; however, they will not be able to support the

envisioned data traffic in the next decade [5]. As opposed to 4G networks, where devices

connect to the network only via a BS, one of the enabling technologies envisaged for the 5G

and B5G networks1 to satisfy future demands is direct connections between devices in close

proximity, also known as D2D communications.

1The worldwide deployment of 5G technologies is now progressing rapidly, but initially, only a limited

subset of the envisaged functionalities will be available.

1 Introduction 2

D2D communications has been proposed as a way to improve the performance of cel-

lular networks in numerous aspects [6, 7]. First, D2D functionality enables Peer-to-Peer

(P2P) communication via side links between proximate devices, called D2D Users (DUs).

Compared to conventional cellular networks, where BSs must initiate, maintain and relay

the connections between Cellular Users (CUs), D2D communications not only reduces the

overhead by bypassing the BSs but also mitigates end-to-end transmission delays, which is

beneficial for applications that require ultra-low latency [8]. Moreover, by allowing the DUs

to operate in dedicated frequency bands, the network capacity can be further improved com-

pared to conventional cellular networks, in which devices must use cellular uplink/downlink

channels to communicate through BSs. Additionally, DUs may also share the cellular spec-

trum by using the same physical resources with CUs as long as harmful interference to CUs

is prevented, hence, the spectrum can be utilized in a more efficient manner [9]. Second, the

close proximity between the DUs yields high data rates and improves the overall throughput

without needing to use high transmit powers, which is both energy efficient and beneficial for

interference management [10]. Third, the connectivity of CUs which have poor signal recep-

tion from the BS due to path loss and low Signal-to-Interference-plus-Noise Ratio (SINR),

can be significantly improved by using D2D communications for device relaying and range

extension [11].

Depending on the cellular network coverage and the received signal strength at devices,

D2D networks deployment scenarios can be divided into three main categories, namely, in-

network coverage, partial network coverage and out-of-coverage as shown in Fig. 1.1. In the

case of the in-network coverage scenario, similar to a conventional network setting where

User Equipment (UE)s communicate with a BS by using uplink/downlink channels, DUs

can communicate not only with the BS but also exchange data directly with each other by

establishing sidelinks as illustrated in Fig. 1.1 (a). Nonetheless, some of the devices may

be located outside the coverage area of the BS, or due to low SINR they cannot maintain a

connection with the BS with the desired Quality of Service (QoS). For example, if the average

received SINR from the BS at an UE is less than –6 dB, then those devices are considered to

be out-of-coverage [12]. However, some devices within the coverage of the cellular network

can act as relaying devices via D2D communications and extend the network coverage as

illustrated in the partial-network coverage scenario in Fig. 1.1 (b). Finally, in the out-of-

coverage scenario shown in Fig. 1.1 (c), none of the devices can maintain a connection with

1 Introduction 3

a BS or a relaying device inside the coverage of a cellular network. However, such devices

that are in close proximity can still communicate with each other via side links by forming

a D2D network.

(a) In-network coverage scenario. (b) Partial-network coverage scenario.

(c) Out-of-coverage scenario.

Fig. 1.1. Illustration of different D2D network (area with dashed-line) deployment scenarios with respect
to the cellular network (area with solid line).

1 Introduction 4

Fig. 1.2. Spectrum utilization of D2D communications.

D2D communications can be further classified into two groups depending on the spectrum

utilization strategy as shown in Fig. 1.2 [13].

• Inband D2D communications: DUs operate within the licensed cellular spectrum and

depending on the its utilization, inband D2D communications are further divided into

two sub-classes:

− Inband-Underlay D2D communications: In the licensed band, CUs are Primary

Users (PUs) and DUs are Secondary Users (SUs) [14]. DUs share the same time

and frequency resources with CUs to increase spectrum efficiency as long as they

do not cause harmful interference to them [15–20]. In the literature, various inter-

ference mitigation techniques are studied such as mode selection for determining

uplink/downlink or sidelink connection [21–23], power control [24, 25], Carrier

Sense Multiple Access/Collision Avoidance (CSMA/CA) based random access

schemes [26], and space diversity techniques [27]. If the QoS of CUs cannot be

maintained while co-existing with DUs, D2D communications should be moved

to different time/frequency resources or terminated.

– Inband-Overlay D2D communications: Some portion of the licensed cellular spec-

trum is allocated to D2D operation depending on availability [28]. Thus, harmful

interference to CUs is avoided, however, the spectrum is not efficiently utilized. In

addition, D2D communications should be terminated in the case of the allocated

1 Introduction 5

time and frequency resources are requested by CUs as they are the PUs in this

band.

• Outband D2D communications: DUs can also operate outside of the licensed spec-

trum, e.g., in the Industrial, Scientific and Medical (ISM) band, hence the name [29].

Although the interference among D2D and cellular networks is averted similar to in-

band overlay D2D communications, interference within D2D networks is possible [30].

Outband D2D communications can be further divided into two sub-categories, namely,

controlled and autonomous D2D communications [13]. In the controlled D2D com-

munications, a BS monitors and controls the D2D communications links, whereas in

autonomous mode, DUs are responsible to distributively optimize their communication

links.

1.2 Applications of D2D Communications

While 5G networks are currently being deployed in various parts of the world, the standard-

ization of D2D communications was initiated in 2012 by 3GPP in Release 12 under the name

of Proximity Services (ProSe) also known as LTE-Direct [31]. The main focus of ProSe is

the discovery and direct communication of mobile devices in close proximity for public safety

applications. To this end, the LTE-A networks in the U.S. have reserved a bandwidth of

20MHz in the 700MHz frequency band for such applications [32,33]. In the event of natural

disasters and emergency situations, where the cellular network service may be partially or

completely disrupted, D2D communications, especially the out-of-coverage network setting,

provides fast localization and intervention for mission-critical operations executed by emer-

gency dispatchers, fire-fighters, police officers and paramedics [32]. In addition, the high data

rates and ultra-low-latency due to utilization of D2D communications also improve the QoS

in such applications by offering high precision geopositioning, accurate navigation, and real-

time indoor mapping [34]. Finally, time-critical emergency alerts such as early tsunami and

earthquake detection warnings can be effectively relayed among proximate wireless devices

without the need of a cellular infrastructure.

D2D communication is a key technology to enable the Internet of Things (IoT), which

describes a network of connected physical objects equipped with sensors, transceivers and

software to exchange data over the internet [35]. In addition to the public safety aspects

1 Introduction 6

Fig. 1.3. Ubiquitous applications of D2D communications.

of D2D communications, some appealing new use cases for non-public safety applications

are remote health care, smart home technologies, online gaming, local advertising, and task

offloading as illustrated in Fig. 1.3. In remote health monitoring, elderly people who are

living alone or patients equipped with on-body sensors can be monitored constantly without

needing to be present in hospitals [13]. Similarly, smart home technologies allow residents to

remotely control and manage their home appliances, heating, lighting, and security with ease

by using their mobile devices [36]. Furthermore, D2D communications enable augmented

reality, P2P interactive gaming, and real-time content sharing such as local advertising by

offering ultra-low latency and high data rates [37–39]. However, compared to the proliferation

of these applications along with their exacting computation and storage requirements, the

technology on the device side has generally advanced slower, which challenges the capabilities

of mobile devices as they can hardly meet such demands [40–42]. Therefore, in the past few

years, the idea of task offloading, which allows devices with computation-intensive tasks to

utilize more powerful dedicated servers and/or nearby idle mobile devices through incentive

policies for task processing as illustrated in Fig. 1.4, has attracted a great deal of attention

[43–45]. Hence, the computation burden on mobile devices can be significantly reduced while

improving the overall energy efficiency [46,47].

1 Introduction 7

Fig. 1.4. Illustration of a D2D-aided task offloading scenario.

Moreover, in Release 14 of the 3GPP specifications, Vehicle-to-Everything (V2X) com-

munications is considered, which allows intelligent vehicles to communicate not only with

other vehicles in their vicinity but also with other smart devices in their surroundings for

safer commuting. As illustrated in Fig. 1.5, intelligent vehicles and pedestrians with mobile

devices can form D2D connections and communicate with each other at intersections, traf-

fic lights and cross-walks to prevent accidents. This specific type of D2D communications

forms a Vehicle-to-Pedestrian network as referred in Release 16 of the 3GPP specifications

to support advanced use cases such as helping people with vision and hearing impairments

for safer commuting [48]. V2X networks are expected to be further developed for enhanced

autonomous driving, extended network coverage via device relaying, industrial applications

and virtual reality for B5G networks [49].

Fig. 1.5. Use-case of V2X and D2D communications in a busy intersection.

1 Introduction 8

1.3 Thesis Objectives and Contributions

The main objective of this thesis is to develop efficient signal processing and optimization

strategies for the implementation of reliable D2D communications as envisioned to be a part

of 5G and B5G networks. In this regard, we address two main challenges towards the re-

alization of D2D communications, namely, synchronization and resource allocation. Since

synchronization is the fundamental block of high data rate communications, our first objec-

tive focuses on implementing fast and robust clock synchronization algorithms to allow the

initiation of reliable data communications. After investigating the synchronization problem,

we then turn our attention to the problem of energy-efficient resource allocation in a D2D-

aided task offloading scenario as reducing the energy consumption on battery-driven mobile

devices is crucial. Our next objective is to develop optimal resource allocation strategies to

achieve energy-efficient task offloading via D2D communications. The main contributions

and the research outcomes of the thesis are summarized as next.

In Chapter 3, we propose a scalable, robust and energy-efficient synchronization protocol

for D2D communications, specifically for the out-of-coverage scenario. Since no common ref-

erence time is available in such a scenario, achieving and maintaining global synchronization

is challenging. In comparison to distributed synchronization algorithms in the literature,

such as synchronization in Wireless Sensor Networks (WSNs), in which information usually

flows towards a single end-node called sink, our objective differs as follows. First, the main

goal of synchronized D2D communications is different as data transmission is opportunis-

tic and can be established between any proximate devices. Therefore, in D2D networks,

synchronization should be achieved not with respect to a single common device but glob-

ally. However, several factors impact the synchronization performance. For example, the

duplexing scheme, i.e., half-duplex or full-duplex, drastically changes the synchronization

time. Full-duplex technology allows simultaneous signal transmission, however, it is not

practical yet to implement on mobile devices in terms of cost and energy efficiency. Fur-

thermore, physical factors such as clock skew, propagation delays and dynamic network size

continuously degrade synchronization. For a D2D synchronization algorithm to be robust

and resilient it should consider the above-mentioned challenges and mitigate their effects.

Second, in distributed D2D networks, devices should be aware of the synchronization sta-

tus of others in order to initiate data communications, therefore, the synchronization phase

should be successfully terminated at all devices, ideally at the same time, to allow devices

1 Introduction 9

to communicate. To address all of the aforementioned issues, we start by developing a half-

duplex timing-advance synchronization algorithm wherein each device alternates between

being a transmitter and a receiver in its exchange of synchronization pulses at each clock

period. Based on this algorithm, we propose a novel fully-distributed pulse-based synchro-

nization protocol for half-duplex D2D communications. The protocol allows participating

devices to become aware of the global synchronization status, so that they can complete the

synchronization process simultaneously and proceed to data communications. The proposed

protocol is robust against possible perturbations and performs well in comparison to an

existing benchmark from the literature over a wide range of conditions such as multi-path

frequency selective channels, clock skew, dynamic number of devices, and different network

topologies.

After implementing the full-fledged synchronization protocol, in Chapter 4 we address

the energy-efficient resource allocation problem in a D2D-aided task offloading scenario with

respect to task partitioning, computation resources and transmit power. However, processing

computation-intensive tasks at mobile devices might lead to Central Processing Unit (CPU)

throttling to control the operating temperatures. Consequently, task processing times be-

come random, which negatively affects the task offloading performance in terms of QoS

and energy efficiency. To address this issue, we formulate the resource allocation problem

to minimize the expected total energy consumption under probabilistic constraints on the

processing time. However, the formulated problem is non-convex and intractable, hence, we

propose two sub-optimal solution methods to efficiently solve it. The first method is based on

Difference of Convex (DC) programming, where we adopt chance-constraint optimization for

the probabilistic constraints on the task processing time to obtain their deterministic equiv-

alents. Considering that DC programming is dependent on a good initial point, we propose

a second method that relies only on convex programming. Simulation results demonstrate

that both proposed methods significantly improve the energy efficiency when computing the

same task compared to the total energy consumption when the task is completed locally.

However, the second method outperforms the first in terms of energy efficiency and run-time.

Chapter 5 complements the task offloading scenario in Chapter 4 by considering multiple

devices with computation-intensive tasks, which can be offloaded not only to proximate

wireless devices via D2D links but also to a more powerful, central computation server,

referred to as Edge Server (ES). On the one hand, the ES has more computation capability

1 Introduction 10

compared to the mobile devices, and hence can compute more tasks simultaneously; however,

data rates on the ES links may limit the task uploading speed. On the other hand, D2D-aided

task offloading framework can take advantage of close proximity to yield higher data rates and

reduce the task offloading time. However, in comparison to Chapter 4, we assume that the

task processing time at each device is deterministic due to the additional complexity imposed

by handling the probabilistic constraints and jointly allocating the computation resources at

the ES. The considered problem is non-convex and finding its global optimum is generally

intractable; hence we propose two sub-optimal methods to solve it. First, by investigating the

relationship between the task processing time and the total energy consumption, we show how

the original problem can be relaxed into a sequence of convex subproblems whose solutions

can be efficiently obtained via standard algorithms from convex optimization theory. Second,

to further reduce computational complexity, we propose a low-complexity heuristic resource

allocation strategy which does not require calculating gradients and Hessian matrices in the

solution process. We compare both proposed methods against two benchmarks. Similar to

Chapter 4, for our first benchmark, we consider the total energy consumption when the task

is completed only locally, which acts as an upper-bound on the task offloading performance

in terms of energy efficiency. For the second benchmark, we calculate the total energy

consumption in an ideal task offloading scenario to be used as a lower-bound. Computer

simulations under a wide range of conditions and parameter settings (number of fog devices,

task sizes, computation resources, transit power, etc.) show that both methods significantly

reduce the total energy consumption compared to the upper-bound while attaining near

optimal solutions in comparison to the lower-bound.

1.4 Thesis Organization and Notations

The rest of the thesis is organized as follows. Chapter 2 includes a detailed literature sur-

vey on the technical challenges facing the realization of D2D communications, and provide

background on numerical optimization. Chapter 3 presents the proposed energy-efficient

synchronization protocol for D2D networks. Chapter 4 focuses on the resource allocation

problem in task offloading via D2D communications subject to the probabilistic task pro-

cessing times due to CPU throttling. Chapter 5 complements the task offloading scenario

by considering a multi-device setting under the supervision of a centralized node, which

1 Introduction 11

not only orchestrates the devices but also participates in task processing to increase energy

efficiency. Finally, Chapter 6 gives some concluding remarks and discusses possible future

research directions to extend and develop the work conducted in this thesis.

In the thesis we use the following notations: Boldface capital letters (e.g., A) denote

matrices, boldface letters (e.g., a) denote column vectors while [·]> represents the transpose,

‖ · ‖p is `p norm, ∗ denotes convolution, ∇ indicates the gradient operator and (·)−1 is

inverse. Furthermore, sets are denoted by calligraphy letters (e.g., N) and |N | represents

the cardinality of sets. Finally, E[·] is the expectation operator and P(·) is the probability of

an event.

12

Chapter 2

Background and Literature Review

In this chapter, we first present a comprehensive survey on the technical challenges for the

realization of D2D communications, among which we focus on two crucial aspects: synchro-

nization and task offloading. Then, we give a detailed literature review on these elements

to motivate our work. Finally, we present some of the optimization techniques useful to

construct the algorithms in the thesis.

2.1 Technical Challenges of D2D Communications

In spite of the numerous advantages of D2D communications, this new technology also

raises several questions of its own, e.g., how and when to initiate device discovery, syn-

chronize proximate devices, and allocate physical resources in a most energy-efficient way

while not creating interference between DUs and CUs [5]. During data communications,

conservation of energy and optimization of battery life of mobile devices is essential, hence,

energy-efficient resource allocation strategies are crucial. Furthermore, mode selection, i.e.,

network assisted or standalone D2D communications [50–52], preventing eavesdropping on

D2D links and maintaining data security are some of the other important factors to be taken

into consideration for robust D2D network deployments [21,53,54].

To achieve reliable and high data rate communications in D2D networks, synchronous

data transmission is essential and preferable over asynchronous communication [55–57].

Therefore, the challenges of achieving synchronization requires more attention as it is the

first step and the fundamental block of implementing realistic D2D communications [58].

2 Background and Literature Review 13

Depending on the different D2D network deployments, from the synchronization perspec-

tive, out-of-coverage scenario is the most challenging one since no common reference time

is available [59, 60]. Even though some devices become the synchronization broadcaster in

the network based on pre-determined algorithms [61], the other devices may not be aware of

these devices if they leave the network, which leads to frequent initialization of leader elect-

ing algorithms, hence, drains device batteries sooner. Moreover, a synchronization algorithm

should take environmental disturbances, i.e., multipath channels, into account while being

scalable to accommodate dynamic device numbers as DUs can arbitrarily join or leave D2D

networks.

In the literature, early contributions for realization of D2D communications considers

ideal conditions while putting less emphasis on practical constraints, e.g., disregarding prop-

agation delays and signal time of arrival [59, 62–64]. However, in multipath environments,

the propagation delays yield in asynchronous clocks even though the clocks are perfectly

synchronized at the beginning of data communications. In addition, considering the nature

of D2D networks, a synchronization algorithm should be fast and energy efficient. Ideally,

synchronization procedure should take the minimal time while consuming the least possible

energy from the device’s battery [65]. Hence, the devices could be ready to transmit/receive

data packets without losing time whilst efficiently utilizing their battery life. To the best

of our knowledge, there is no energy-efficient synchronization algorithm concerning out-of-

coverage D2D networks in the literature.

In addition, duplexing mode (half-duplex vs full-duplex) puts additional constraints on

communication systems. Since full-duplex is not yet a mature technology especially at the

device side, half-duplex communication scheme should be considered for practical D2D net-

work implementations [62,63]. However, for distributed networks, where there is no common

reference time, half-duplex scheme limits data transmission as the devices need to align their

frames independently to minimize packet collisions. Furthermore, when there is no dedicated

frequency band for synchronization (which is very likely for D2D communications operat-

ing underlaying cellular networks), then both synchronization and data communication in

half-duplex scheme should be considered together.

Once synchronization is successfully achieved, DUs can proceed to data communications.

However, efficient utilization of the physical spectrum while meeting the demand for high

data rates and ultra-low latency is challenging due to scarce resources. Therefore, physical

2 Background and Literature Review 14

resources should be efficiently allocated to maintain QoS, which is desired by network op-

erators to facilitate a profit [66]. In addition, processing computation-intensive tasks that

demand ultra-low latency, e.g., online gaming, push the limits of device capabilities, which

in turn, increase the total energy consumption on the device side [67]. Even though offload-

ing these tasks to more powerful servers or proximate devices via D2D links yields energy

efficiency, the allocation of limited transmit powers, task sizes and computation resources

subject to strict task processing times is a difficult optimization problem [68–70].

Furthermore, processing computation-intensive tasks with strict deadlines at mobile de-

vices is challenging since the thermal management on device-side is not advanced to handle

high operating temperatures [71]. Compared to cloud services, in which data centers rely on

efficient cooling technologies, mobile devices are likely to suffer CPU throttling during task

offloading [72]. Since this performance reduction in device CPUs is random depending on

the on-chip temperature readings, the time it takes to process tasks also becomes random,

which in turn negatively impacts the overall task offloading performance [73].

In what follows we present the background information and a detailed literature survey

on clock synchronization and resource allocation problems based on the aforementioned

challenges to motivate our research.

2.2 Synchronization in D2D Networks

In this section, we present the technical challenges facing the implementation of a realistic

synchronization algorithm for D2D communications. Specifically, we focus on the availability

of a common clock, design layer options such as Physical Layer (PHY) or Medium Access

Layer (MAC), and finally, transitioning from synchronization to data communication, which

is the main goal of synchronization.

2.2.1 Centralized vs Distributed Synchronization

Synchronization is an essential step in establishing a connection in a digital communication

system. For reliable data transmissions, all entities in a communication network must become

synchronized and remain in this state as long as they operate [58,65]. In cellular networks, a

fixed Access Point (AP) such as a BS regularly broadcasts a time signal so that user devices

can synchronize themselves to this common time reference as in Fig. 2.1. Such centralized

2 Background and Literature Review 15

schemes not only offer fast synchronization but also easily maintain it by regularly correcting

the device clocks, which can diverge due to clock skews. In addition, the same AP can

coordinate the devices during data communications to compensate for propagation delays

by adjusting their clocks, a technique known as timing-advance.

Fig. 2.1. Centralized synchronization (left) versus distributed synchronization (right), where a common
reference time is broadcasted from the BS or the distributed devices, respectively.

However, in distributed systems such as WSNs or out-of-coverage D2D networks, the

latter being one of the use case for D2D communications, no such fixed AP is available

as shown in Fig. 2.1. In this type of scenarios, the aforementioned benefits of centralized

synchronization can be retained by selecting, e.g., via an “elect-a-leader” algorithm [61],

one of the devices to serve as the synchronization AP. Nonetheless, the synchronization

performance depends heavily on the choice of the AP and on the quality of the channels

between the AP and the rest of the devices. In addition, if the AP loses connectivity with

a part of the network or leaves the network, then the AP selection process should be re-

initiated.

An alternative approach is distributed synchronization, wherein devices exchange syn-

chronization signals according to a predefined strategy, or protocol, allowing them to reach

a consensus on a common reference time [59]. Although typically slower than centralized

synchronization, distributed synchronization is more robust against connectivity failures and

network changes due to mobility. Hence, it may be better suited for WSNs or out-of-coverage

D2D networks where such conditions are prevailing [58]. Nevertheless, the technical aspects

of a network determine the design of the synchronization algorithm. Specifically, in a typical

WSN, information flows towards a single sink node, while data communication is low rate

and sporadic with relaxed guarantees in terms of latency and reliability. In contrast, D2D

2 Background and Literature Review 16

communications by nature requires high data rate, low-latency and reliable communication

between arbitrary devices among which the communication links are P2P. Therefore, to sat-

isfy these requirements, distributed D2D networks must employ a reliable, fast and efficient

synchronization algorithm, which should also mitigate the effect of propagation delays and

multipath channels by properly using timing-advance [56].

2.2.2 Synchronization Techniques and Duplexing Scheme

The prevalent approaches for distributed synchronization can be divided into two main cat-

egories, namely: packet-based and pulse-based [58]. Comparing the two, Packet-based syn-

chronization is a MAC layer-based approach relying on the exchange of timestamps encoded

in packets [74–77]. It requires collision-free transmission of the packets on a random access

channel and their subsequent successful decoding. As such it suffers from delays due to

packet queuing and re-transmissions and, more importantly in the context of D2D commu-

nications, it exhibits high energy expenditure, high latency and poor scalability. Pulse-based

synchronization, in contrast, is a physical layer-based approach where the timing informa-

tion is encoded in the transmission time of physical layer pulses. Hence, it can successfully

achieve frame synchronization with high precision while offering scalability [78]. Local clock

updates are done by processing the received superposition of timing pulses transmitted by

neighbouring devices. This approach, which naturally capitalizes on the broadcast nature of

wireless channels, can overcome the above-mentioned limitations of packet-based approach.

Thus, pulse-based is often preferred over packet-based synchronization in distributed wire-

less networks, especially for the initial network synchronization since the packets cannot be

demodulated due to asynchronous clocks. [58, 59]. However, after successful initial synchro-

nization, high data rate packet-based communication should be initiated.

Pulse-based synchronization is typically implemented by Distributed Phase-Locked Loops

(DPLLs) [63,79]. The performance of DPLLs is affected by the duplexing scheme employed

by the devices. Full-duplex technology allows simultaneous signal transmission and reception,

which is highly beneficial for synchronization as clock information is broadcasted and updated

at the same time. Naturally, full-duplex communication significantly decreases the synchro-

nization time compared to half-duplex, and has been considered by several authors [59, 64].

However, implementation of full-duplex technology, especially at mobile devices poses a num-

ber of practical issues in terms of cost, complexity and power consumption [62,63,79]. Due to

2 Background and Literature Review 17

the additional power required for self-interference cancellation mobile devices with a limited

battery life cannot currently afford to operate in the full-duplex mode [80]. Hence, half-

duplex communication is a more practical implementation choice for distributed networks

and is likely to remain so in the near future.

2.2.3 Clock Skew and Propagation Delays

Random clock initializations (i.e., clock phase difference) lead to Time-Offset (TO), which

is interpreted as the clock synchronization error. Nevertheless, various other factors also

introduce TO, such as the quality of the crystal oscillators whose frequency may drift with

temperature fluctuations. This effect, known as clock skew, not only alters the perceived rate

of signal transmission and reception arbitrarily over time but also causes Carrier Frequency

Offset (CFO), which may severely affect data communications if not compensated [81]. Even

though specially designed synchronization signals can deal with the presence of TO and CFO

in stationary networks [81], signal propagation time is another factor that imposes difficulty

on synchronization by introducing additional TO. Especially for pulse-based synchronization

techniques that use DPLLs, the effects of clock phases, clock skews, and propagation delays

are entangled within the superimposed timing pulses. Hence, to achieve synchronization, the

aforementioned effects should be estimated from the received pulses and removed by updating

the device clocks accordingly [79]. However, this estimation becomes highly challenging as

the received pulses are not only altered by these effects, but also by the very mechanisms

used to correct them in DPLLs, which could lead to instability.

In the literature, it is often assumed that: the device clocks are frequency synchronized

(i.e., there is no clock skew) [59, 63, 64, 79, 82], there are no propagation delays, and the

network size (i.e., the number of devices) is static [83]. For example in [81], joint time and

frequency synchronization for distributed networks is proposed, however, propagation delays

are not considered. The convergence of clock skew and clock phase offset is investigated in [83]

but environmental factors, such as radio propagation delays and changes in the number of

connected devices, are not taken into consideration. However, signal propagation delays do

exist and D2D devices can arbitrarily join or leave the network; hence, these assumptions

are not valid in a realistic scenario. In [84], a synchronization method is proposed, in which

clock skew and clock phases are corrected with respect to a selected reference node which

does not participate in the synchronization process. Another approach is proposed in [64],

2 Background and Literature Review 18

where the devices first estimate the propagation delays to their neighbors and then transmit

these estimates to a centralized fusion center; in turn, the center informs all the devices

about the delay estimates within the network. Consequently, synchronization is achieved

after pre-compensation for propagation delays is applied known as Timing-Advance (TA)

timing-advance. In the absence of a centralized fusion center as, for example, in an out-of-

coverage D2D network, such global time-advance compensation is impractical. Clock phases,

clock skews and propagation delays in this case should be jointly estimated in a distributed

manner, thereby allowing devices to synchronize their clocks individually by means of timing-

advance.

2.2.4 Transitioning from Synchronization to Communications

From the energy efficiency and performance perspectives it is beneficial to stop the syn-

chronization process at all devices at the same time and, ideally, as soon as they become

synchronized. However in a distributed D2D network, the devices are not aware of the syn-

chronization status of others and the time it takes to reach synchronization might vary for

each device. If some of the devices stop their synchronization process later than others, the

presence of ongoing timing pulses might trigger the synchronized devices to re-start this pro-

cess [79]. Thus, in a fully distributed wireless network, the participating devices should be

aware of the global synchronization status, so that they can terminate the synchronization

process ideally at the same time and proceed to data communications.

Once the synchronization process is completed, some of the devices might become idle to

conserve energy, while others might begin data communications. In this case, the idle devices

may lose synchronization with respect to the communicating ones since there is no mechanism

to inform them about their status. To prevent this, the devices must periodically re-transmit

timing pulses, i.e., discovery beacons, to remain part of the network [65, 85]. However, this

will cause a disturbance among the synchronized devices and increase energy consumption

in the overall network. Hence, synchronization should be maintained as long as possible

without exchanging timing pulses to reduce the frequency of unnecessary re-initialization.

2 Background and Literature Review 19

2.3 Task Offloading via D2D Communications

In this section, D2D communication technology is reviewed as an enabler of the task offload-

ing framework. To this end, we present both the advantages and the technical challenges of

using D2D communications in task offloading.

2.3.1 Task Offloading Strategies

Cloud computing, one of the most studied task offloading strategies, allows user data to

be stored and processed at remote data centers through the internet [86, 87]. However, un-

predictable wireless channel conditions and high data traffic due to excessive user density

limit the overall task offloading speed, which in turn, reduce the QoS [66]. Mobile Edge

Computing (MEC) as a substitute to cloud computing, brings data processing at the edge

of the network by allowing mobile devices to offload their tasks to ESs, which are usually

connected to BSs via high-speed links [86–89]. Therefore, MEC can effectively increase en-

ergy efficiency by reducing end-to-end delays and data processing bottlenecks within the

network, which enables many use-cases such as real-time video rendering, surveillance, on-

line gaming and task offloading [90–92]. In [67], the authors consider joint task offloading

and resource allocation in a MEC scenario, where a centralized mechanism allocates the

available resources to minimize total overhead and energy consumption. The authors in [93]

focus on total energy minimization subject to constraints on the task processing times in

a ultra-dense network. In [69], the authors propose a resource allocation method for MEC

aiming to minimize the maximum system delay, while in [94], energy consumption, task

execution delay and cost of task offloading are jointly optimized by using queuing theory.

In [70], energy-efficient resource allocation is investigated for latency-sensitive tasks by con-

sidering a multi-user offloading scenario. In [95], the authors study a similar scenario, in

which offloading decisions are now modeled by using a game-theoretic approach. Moreover

in [96], a distributed power allocation method is proposed, while in [97], minimization of

energy consumption and average response time is investigated based on game-theory. While

shedding light on the utilisation of MEC, the aforementioned studies only consider a single

off-loading destination, such as the ES. However, the limited computational capability of ES

(compared to the cloud) limits the energy efficiency and restrains the performance of task

off-loading as data traffic increases within the network.

2 Background and Literature Review 20

2.3.2 Mobile Fog Computing

As a complement to MEC and cloud computing, fog computing can exploit the full potential

of distributed data processing by allowing data-generating devices to offload their tasks to

nearby computation resources through incentive policies [98–101]. This strategy can sig-

nificantly decrease the total energy consumption and task processing times, by leveraging

the availability of all computation resources within radio proximity, referred to as fog de-

vices in this context. D2D communications provide an attractive technology enabler for fog

computing, by facilitating the creation of direct communication links between neighboring

devices. In [102], the authors integrate D2D communications with MEC, aiming to max-

imize the number of devices supported by the cellular network with constraints on both

communication and computation resources. Likewise in [68], the authors study computation

latency minimization in the case of D2D-enabled MEC system, while in [103] the authors

focus on time-average energy minimization. Nonetheless, due to the difficulties posed by the

optimal allocation of communication and computation resources as the number of offload-

ing destination increases, the above studies only consider a single D2D connection within a

MEC system. However, restricting the number of D2D connections limits the potential gains

in capacity and energy-efficiency of the task offloading. Therefore, a scalable approach, in

which an arbitrary number of fog devices is supported by multiple D2D connections in a

MEC scenario is needed.

Another factor that directly affects the energy consumption is the very nature of the

task offloading scheme, i.e., whether it is binary or partial. In the former case, a task is

either computed locally (i.e., on the data generating device) or offloaded entirely to a single

neighboring device, while in the latter case, a task is divided into various portions for parallel

computing on different devices, including the local one. In [104], binary task offloading with

multiple ES is studied to jointly optimize the network access selection subject to constraints

on time delays and QoS. In [105], the authors consider binary task offloading in a D2D-

assisted fog computing scenario, and propose new algorithms based on branch-and-price

for jointly optimizing link scheduling, channel assignment and power control. In [103], the

authors propose an optimization framework based on binary offloading in order to minimize

the time-average energy consumption for execution of all user tasks while taking into account

key incentive constraints. Likewise in [106], the overall system utility is maximized with

respect to binary offloading decisions by developing a pricing game-based algorithm.

2 Background and Literature Review 21

In contrast to the binary scheme, partial task offloading can take advantage of parallel

computation towards increasing the energy efficiency. In [70], both partial and binary task

offloading schemes are investigated and it is shown that partial offloading is beneficial in

terms of energy efficiency. In [107], partial task offloading in MEC is considered, where the

aim is to minimize the total energy consumption by jointly optimizing the transmit power,

computation speed and task partitioning. In [108], the authors consider a cooperative partial

task offloading scheme with both cloud and MEC computing, wherein task partitioning deci-

sions are made by minimizing the end-to-end delay. While offering considerable insights into

the partial task offloading, these works do not take advantage of D2D-aided fog-computing to

further improve energy-efficiency and reduce delay. In contrast, references [109–111] explic-

itly focus on partial task offloading with the help of D2D communications and fog-computing.

In [109], a hybrid D2D-aided fog and cloud computing scenario with a single task offloading

device is investigated, for which the total energy consumption is minimized subject to con-

straints on task processing time. Whereas the work in [110] seeks to find an optimal network

partition in a multi-device D2D-aided fog computing scenario by minimizing the overall en-

ergy consumption at the mobile terminal side. Similarly in [111], the authors minimize the

total energy consumption under delay constraints, by jointly optimizing of the task schedul-

ing and computation resources. Although these works achieve significant improvement in

energy-efficiency by using D2D-aided fog-computing, they do not consider the allocation of

transmit powers and utilization of an ES, which could further enhance the performance of

the task offloading.

2.3.3 Effect of CPU Throttling on Task Processing Time

In mobile devices, Dynamic Thermal Management (DTM) schemes control the on-chip tem-

perature by lowering the voltage and frequency of the CPU to prevent damage in the case

of high temperature [71, 112, 113]. Ideally, devices allocate the highest available CPU fre-

quency, measured in cycles per second, to perform a given task within a minimum amount

of time [114]. Due to DTM, however, significant yet unpredictable fluctuations in allocated

CPU frequency do occur [73]. Since real-time applications require low latency and strict

processing time, a random reduction in CPU frequency negatively impacts task offloading.

Consequently, to optimize fog computing performance subject to this type of uncertainty, al-

location of computation resources should be treated as a probabilistic optimization problem

rather than a deterministic one.

2 Background and Literature Review 22

2.4 Background on Numerical Optimization

In this section, we present some of the numerical optimization techniques that are used as a

basis to develop the proposed methods and the algorithms given in the thesis.

2.4.1 Convex vs Non-Convex Optimization

An optimization problem is convex if the feasible set, i.e., the set of all possible points that

satisfy all constraints, is a convex set and the objective function is a convex function [115].

Specifically, a set S ∈ Rn is convex, if the straight line segment connecting any two points

x ∈ S and y ∈ S is also in the set S, i.e., αx + (1 − α)y ∈ S,∀α ∈ [0, 1]. Similarly, the

function f is convex if its domain S is a convex set and any two points such as x ∈ S and

y ∈ S satisfies the inequality:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y),∀α ∈ [0, 1] (2.1)

The standard form of a convex minimization problem with equality and inequality con-

straints is given below:

min
x

f(x) (2.2a)

s.t. hi(x) = 0, i = 1, ...,m (2.2b)

gi(x) ≤ 0, i = m+ 1, ..., k (2.2c)

where the vector x ∈ Rn contains the decision variables, the functions f(x) and gi(x), i =

1, ..., k are convex and hi(x), i = 1, ...,m are affine.

In convex optimization, a local optimum e.g., x? that minimizes (2.2a) and satisfies con-

straints (2.2b) and (2.2c), is also the global optimum, which can be effectively obtained by

using any algorithm from the convex optimization theory [115,116]. Whereas if the objective

function or at least one of the constraints is a non-convex function, the problem becomes

a non-convex program. Hence, obtaining the global solution for such problem is often im-

practical or not possible in polynomial time due to computation complexity [117]. However,

convex programming can be still useful to find an initialization for local optimization of

a non-convex problem by approximating it as a convex problem [115]. Hence, recogniz-

ing and formulating non-convex problems as convex problem is a useful tool in non-convex

optimization.

2 Background and Literature Review 23

2.4.2 Difference of Convex Programming

DC programming is an important tool in non-convex optimization as it provides an efficient

and scalable method for smooth/non-smooth non-convex programming [118]. Although any

polynomial Difference of Convex Functions (DCF)s with a desired accuracy, the obtained

decomposition is not unique and there is no general procedure to construct the optimum

DCFs that lead the global solution [119, 120]. However, once the DCFs are available, a

non-convex program can be written as a DC program as follows:

min
x

f0(x)
∆
= h0(x)− g0(x) (2.3a)

s.t. fi(x)
∆
= hi(x)− gi(x) = 0, i = 1, ...,m (2.3b)

fi(x)
∆
= hi(x)− gi(x) ≤ 0, i = m+ 1, ..., k (2.3c)

where the vector x ∈ Rn contains the decision variables, hi(x) and gi(x), i = 0, 1, ..., k are

convex functions, hence, the non-convex functions fi(x), i = 0, 1, ..., k are a DCFs [119–122].

Then, problem (2.3a) can be solved by using the DC algorithm (DCA), which employs the

convex analysis to the two convex parts of the decomposed functions [123].

If the functions hi(x) and gi(x) i = 0, 1, ..., k are differentiable, then DCA reduces to

Convex-Concave Procedure (CCP) algorithm, which can iteratively solve problem (2.3a) by

using the convex program as follows [122]:

Algorithm 2.1 Convex-Concave Procedure

1: input Set k = 0, initialize x(0)

2: repeat

3: x(k+1) = argmin
x

f0(x)
∆
= h0(x)− g0(x(k))−∇g0(x)>(x− x(k))

4: s.t. fi(x)
∆
= hi(x)− gi(x(k))−∇gi(x)>(x− x(k)) = 0, i = 1, ...,m

5: fi(x)
∆
= hi(x)−gi(x(k))−∇gi(x)>(x−x(k)) ≤ 0, i = m+1, ..., k

6: k ← k + 1

7: until |f0(x(k+1))− f0(x(k))| > ε or k ≤ kmax

8: output x(k)

where k is the iteration number. Similar to many iterative algorithms, there must be a

stopping condition, which can be a tolerance value to control the performance variations

2 Background and Literature Review 24

between the consecutive iterations and accordingly make a decision, or simply a maximum

iteration number to terminate the algorithm. Hence, one stopping condition can be set

as |f(x(k+1)) − f(x(k))| < ε with ε being a tolerance value or kmax being the maximum

allowed iteration number. The main idea is to linearize the concave parts of DCFs, i.e.,

−gi(x), i = 0, 1, ..., k, hence, convexify the functions at the kth iteration. Therefore, the

non-convex program (2.3a) can be solved as a sequence of convex programs [121]. However,

the performance of CCP algorithm is sensitive to the choice of the initial point, i.e., x(0), as

well as the decomposition of non-convex functions, i.e., the construction of DCFs.

2.4.3 Reducing Constrained DC Program with Penalty Theory

Consider the following DC program with equality and inequality constraints:

min
x

f0(x)
∆
= h0(x)− g0(x) (2.4a)

s.t. fi(x)
∆
= hi(x)− gi(x) ≤ 0, i ∈ I = {1, ...,m} (2.4b)

fi(x)
∆
= hi(x)− gi(x) = 0, i ∈ E = {m+ 1, ...k} (2.4c)

which can be reduced into an unconstrained DC program with a penalty parameter σ ≥ 0

by incorporating the constraints into the objective function as follows: [119]:

Fσ(x)
∆
= f0(x) + σmax{0, fi(x), i ∈ I}+ σ

∑
i∈E

|fi(x)|

= Hσ(x)−Gσ(x) (2.5)

where Fσ(x) is the penalized objective function, Hσ(x) and Gσ(x) are convex functions given

as:

Hσ(x) = h0(x) + σmax

{∑
j∈I

gj(x);

[
hi(x) +

j 6=i∑
j∈I

gj(x)

]
, i ∈ I

}
+ 2σ

∑
i∈E

max{hi(x); gi(x)} (2.6)

Gσ(x) = g0(x) + σ

[∑
i∈I

gi(x) +
∑
j∈E

(
hj(x) + gj(x)

)]
(2.7)

2 Background and Literature Review 25

Then, depending on the properties of Hσ(x) and Gσ(x), i.e., differentiable, the new

penalized objective function Fσ(x) can be iteratively minimized similar to Algorithm 2.1 as

a sequence of convex problems by using any algorithms from the convex optimization theory

as follows:

x(k+1) ∈ argmin
x

Fσ(x)
∆
= Hσ(x)−Gσ(x(k))−∇Gσ(x)>(x− x(k)) (2.8)

2.4.4 Chance-Constraint Optimization

Chance-constraint optimization focuses on solving optimization problems subject to differ-

ent uncertainties imposed as probabilistic constraints. Therefore, this type of optimization

naturally arises in economics, finance, weather forecast, and engineering to ensure that the

probability of an anticipated event is above a certain threshold. The standard form of a

single chance constraints program is formulated as follows [124]:

min
x

f(x) (2.9a)

s.t. P(gi(x, ξ) ≤ 0) ≥ γ, i = 1, ..., k (2.9b)

where the vector x ∈ Rn, ξ is a random variable following some distribution and γ ∈ [0, 1] is

reliability level. Hence, constraint (2.9b), which can be interpreted as a reliability constraint,

ensures that the probability of realizing function gi(x, ξ) for the given values is smaller or

equal to zero at γ percent of the time.

Major difficulty arises when computing the probability p(x) = P(gi(x, ξ) ≤ 0) based on

the distribution of ξ. However, depending on the constraint functions gi(x) as well as the

distribution of ξ, the probability p(x) can be calculated by using the Cumulative Distribution

Function (CDF) of ξ, i.e., Fξ(·). Hence, the exact analytical form of constraint (2.9b) can be

obtained. Then, depending on the nature of the deterministic equivalent of constraint (2.9b)

and the overall problem, the equivalent deterministic optimization problem, i.e., convex vs

non-convex, can be solved by using the appropriate methods.

2.5 Summary

In this chapter, we presented the technical challenges and related studies from recent liter-

ature in regards to the implementation of realistic D2D communications as conceptualized

2 Background and Literature Review 26

to be part of future generation wireless networks. Motivated by the aforementioned missing

key points, in the next chapter, we propose a distributed synchronization protocol to be the

basis of reliable data communications in D2D networks.

27

Chapter 3

A Distributed Synchronization

Protocol for D2D Networks

In this chapter1, we focus on a clock synchronization problem in D2D networks. To this

end, we propose a novel distributed synchronization protocol, which not only achieves fast

and robust synchronization by taking realistic conditions, i.e., propagation delays, clock

skews, and dynamic network sizes, into account but also allows devices to initiate data

communication.

3.1 Introduction

In distributed D2D communications, no common reference time is available and the devices

must employ distributed synchronization techniques. In this context, pulse-based synchro-

nization, which can be implemented by DPLLs is preferred due to its scalability. However,

several factors degrade the performance of pulse-based synchronization, such as duplexing

scheme, clock skew and propagation delays. Furthermore, in distributed networks, devices

should be aware of the synchronization status of others, and terminate the synchroniza-

tion process ideally at the same time to initiate data communications. Otherwise, ongoing

synchronization signals may trigger the re-initiation of the synchronization process at some

of the synchronized devices, which may lead to an oscillating effect, where the distributed

devices cannot leave the synchronization phase.

1Parts of the work presented in this chapter have been published in [57,79,125].

3 A Distributed Synchronization Protocol for D2D Networks 28

Motivated by these prevailing issues and the technical challenges given in Section 2.2

of Chapter 2 regarding the need for an efficient synchronization algorithm for D2D com-

munications, we now focus on the development of a fast, scalable and robust distributed

synchronization protocol by considering out-of-coverage D2D networks. First, we propose a

timing-advance synchronization algorithm wherein each device alternates between the trans-

mitter and receiver modes in its exchange of synchronization pulses at each clock period.

Based on this algorithm, we then develop a fully-distributed pulse-based synchronization

protocol for half-duplex D2D communications using the channel models for 5G networks.

Specifically, our main contributions in this chapter are summarized as follows:

• We propose an online estimation technique which jointly tracks the synchronization

errors due to clock phases, clock skews and propagation delays in multipath channels.

We incorporate the obtained estimates in the conventional DPLLs clock update and

propose a half-duplex timing-advance synchronization algorithm which compensates

for all these effects in a distributed manner. In particular, we show analytically that

the proposed compensation mechanism contributes to reducing the synchronization

error at each iteration.

• We conceive a distributed synchronization protocol in the form of a state diagram,

which can be easily implemented on each device. In this protocol, the participating

devices acquire the synchronization status of others by a coordinated exchange of

pulses, and terminate this process as soon as the overall network is synchronized. Our

proposed protocol also allows the devices already in operation to detect the presence

of new devices joining the network at any time, and to re-synchronize themselves by

including the new ones.

• After the network is synchronized, the devices can either initiate data communication

or stay idle and only operate as a receiver to conserve power. At this point, to maintain

synchronization in the network without exchanging timing pulses, the devices predict

their relative clock time based on estimated values of the synchronization parameters.

Thus, they can preserve the already achieved synchronization without unnecessarily

re-initiating this process.

• The complete integrated protocol is evaluated by means of computer simulations based

on 5G channel models and under different conditions of operation, i.e., clock skew,

3 A Distributed Synchronization Protocol for D2D Networks 29

number of devices, and network topologies, including full mesh and partial mesh.

Our extended results show that the proposed protocol offers better synchronization

performance than a benchmark approach from the current literature [63], even for

partial-mesh topology.

3.2 System Model and Problem Formulation

In this section, we first present the overall system model including the network setup, the

communication scheme and the clock model. Then, we formally define the clock synchro-

nization problem in out-of-coverage D2D networks by considering the effects of clock skew,

multipath channels and duplexing scheme.

3.2.1 Network Setup and Clock Model

We consider a distributed overlaying D2D network, which can be fully or partially connected,

with J wireless devices indexed by j ∈ J = {1, ..., J} as illustrated in Fig. 3.1. We assume

that the devices may join or leave the network at any time and that they do not have any

information about the network, such as the number of nearby devices or their locations.

Since there is no BS to provide a common timing reference, the devices synchronize their

clocks in a fully distributed manner by exchanging timing pulses over radio frequencies at

the physical layer.

Fig. 3.1. Fully or partially connected D2D networks. In the partial mesh topology, common devices (shown
in red), act as a relaying node during synchronization.

The physical clock of the jth device is modeled as tj(t) = αjt + θj [126], where t is the

universal time, αj is the clock skew, and θj ∈ [0, T0) is the clock phase with T0 being the

3 A Distributed Synchronization Protocol for D2D Networks 30

clock period. A discrete logical clock is obtained by uniformly sampling the physical clock

at times t = νT0, that is:

tj[ν] = tj(νT0) = αjνT0 + θj (3.1)

where ν ∈ N is the discrete-time index. We refer to time tj[ν] as the νth clock tick of the

jth device. It is convenient to partition the universal time axis into a sequence of non-

overlapping time slots [νT0, (ν+1)T0). In practice, αj differs from 1 by a very small amount,

on the order of a few parts per million (ppm) [127], and it is therefore safe to assume that

each time slot contains a single clock tick tj[ν] as shown in Fig. 3.2. In the ideal case of no

propagation delay, we define the TO between the ith and the jth devices as the minimum

clock tick difference, that is:

∆tij[ν] = min
η∈Vν

∣∣ti[η]− tj[ν]
∣∣ (3.2)

where for convenience, we define the set Vν = {ν, ν±1}. In effect, ∆tij[ν] can be interpreted

(for this ideal case) as the synchronization error between the devices i and j.

3.2.2 Half-duplex Signaling Model

We assume half-duplex communication, where a device can only transmit or receive at any

given time. We define the transceiver mode of the jth device at the νth clock tick as

M j
ν ∈ {TX,RX} indicating whether the device operates in transmitter mode (TX) or in

receiver mode (RX), as depicted in Fig. 3.2. We let Tν and Rν denote the mutually exclusive

index sets of transmitter and receiver devices at the νth clock tick, respectively.

If, at a given clock tick ν, a device operates as a transmitter, i.e., i ∈ Tν , it broadcasts a

time-shifted synchronization signal x(t− ti[ν]) with x(t) defined as:

x(t) =
Ns−1∑
n=0

s[n]g(t− nTp) (3.3)

where g(t) ∈ R is a normalized baseband pulse and Tp denotes the pulse spacing with

NsTp � T0. In (3.3), s[n] is a synchronization sequence of length Ns = 2N constructed by

concatenating two Zadoff-Chu (ZC) sequences of length N with root indices u and−u [64,81],

that is:

s[n] =

{
e j π

N
un2

, 0 ≤ n ≤ N − 1

e−j π
N
u(n−N)2

, N ≤ n ≤ 2N − 1
(3.4)

3 A Distributed Synchronization Protocol for D2D Networks 31

where u and N are coprime, and j =
√
−1. By constructing the synchronization sequences

as in (3.4), the effect of CFO is decoupled from TO estimation [64,81].

A receiver device j ∈ Rν listens for broadcasted synchronization signals over the reception

period [tj[ν] − T0

2
, tj[ν] + T0

2
), centered at its own clock tick tj[ν], as illustrated in Fig. 3.2.

The received signal at the jth device is:

yj(t) =
∑
η∈Vν

∑
i∈Tη

x(t− ti[η]) ∗ hij(t) + wj(t) (3.5)

where hij(t) =
∑

p∈P ρijpδ(t− τijp) is the impulse response of the multipath channel between

the ith and jth device, p ∈ P = {1, · · · , P} is the path index, P is the number of resolvable

paths, assumed to be the same for all devices, and δ(·) is the Dirac delta function. Addi-

tionally, ρijp ∈ C and τijp ∈ R+ are the complex gain and propagation delay, respectively, of

the pth path, while operator ∗ denotes convolution and wj(t) is an additive noise term. Note

that depending on the clock phase of the receiver device, the received signal may contain

signal contributions not only from the νth clock tick but also from the adjacent ones, i.e.,

(ν ± 1)th. Thus, the outer summation in (3.5) takes all possible signal contributions into

account; however, it does not span beyond the (ν − 1)th time slot as the propagation delays

are assumed to be much smaller than the clock period, that is, τijp � T0.

Fig. 3.2. Clock ticks of two devices relative to the partitioned universal time axis. At the νth clock tick,
device 1 is a transmitter as denoted by TX (upward arrow) whereas device 2 is a receiver as
denoted by RX (downward arrow).

3 A Distributed Synchronization Protocol for D2D Networks 32

Finally, the jth receiver device samples (3.5) at time instances kTs during the reception

period, where Ts � T0 is the sampling period, k ∈ K = {−K, · · · ,−1, 0, 1, · · · , K} is the

discrete-time index, and K = b T0

2Ts
c. The resulting sampled signal at the νth clock tick is

expressed as:

yj[k;ν]=yj(kTs + tj[ν]) (3.6)

=
∑
η∈Vν

∑
i∈Tη

∑
p∈P

ρijpx(kTs+tj[ν]−ti[η]−τijp)+wj[k]

where wj[k] is the discrete-time noise process.

3.2.3 DPLL Clock Update

At the νth clock tick, the jth receiver device cross-correlates (3.6) with the two distinct

parts of the synchronization signal (available locally) to decouple the effect of CFO in TO

estimation [64]:

Ryjx± [l, ν] =
∑
k∈K

yj[k; ν]x±[k − l]∗ (3.7)

where l is the integer lag and superscript * denotes complex conjugation. The first correlation

is with x+[k] =
∑N−1

n=0 s[n]g(kTs − nTp), which is obtained from (3.3) by retaining pulses

with index 0 ≤ n ≤ N − 1 and sampling every Ts, while the second correlation is with

x−[k] =
∑2N−1

N s[n]g(kTs−nTp), which is obtained in a similar way but for N ≤ n ≤ 2N−1.

Hence, the subscripts ± in the signals x±[k] indicate which ZC root index (i.e., +u or −u)

is used to construct them.

The jth device then uses a weighted average across lags l to obtain two different prelim-

inary TO estimates [59]:

q±j [ν] =

∑
l l Ts|Ryjx± [l, ν]|2∑
l |Ryjx± [l, ν]|2

. (3.8)

Here, q+
j [ν] provides an estimate of the average TO seen by the jth device, while q−j [ν]

provides a similar estimate but with a positive offset of NTp due to the definition of x−[k] in

(3.7). Then, the jth device combines the estimates in (3.8) to obtain the desired weighted

average TO estimate as:

∆̂tj[ν] =
1

2

(
q+
j [ν] + q−j [ν]−NTp

)
. (3.9)

3 A Distributed Synchronization Protocol for D2D Networks 33

In the following, this quantity will be interpreted as the synchronization error experienced

by the jth receiver at the νth clock tick. Hence, the jth device updates its clock tick for the

(ν + 1)th time slot as dictated by DPLLs [58]:

tj[ν + 1] = tj[ν] + αjT0 + ε∆̂tj[ν], j ∈ Rν (3.10)

where ε > 0 is a scaling parameter. We note that by using the DPLLs clock update, the

devices implicitly change their clock phases, which makes the clock phase time-variant, i.e.,

θj ≡ θj[ν]. Therefore, to emphasize this point, we re-write the discrete logical clock in (3.1)

as tj[ν] = αjνT0 + θj[ν], ∀j ∈ J . In contrast to (3.10), for the ith transmitter device, no

correction is made and the clock tick is updated as:

ti[ν + 1] = ti[ν] + αiT0, i ∈ Tν . (3.11)

3.2.4 Problem Formulation

When devices join the network, unpredictable differences in clock phases, clock skews and

propagation delays lead to synchronization errors. To further elaborate on this point, let us

analyze the weighted average TO expression in (3.9). Based on the signal model in (3.6),

this can be approximated as [58]:

∆̂tj[ν]≈
∑
η∈Vν

∑
(i,p)∈Dν,ηj

µijp(ti[η] + τijp)− tj[ν] (3.12)

=
∑
η∈Vν

∑
(i,p)∈Dν,ηj

µijp
(
ti[η]−tj[ν]

)
︸ ︷︷ ︸

∆tj [ν]

+
∑
η∈Vν

∑
(i,p)∈Dν,ηj

µijpτijp

︸ ︷︷ ︸
βj [ν]

where Dν,ηj =
{

(i, p) ∈ Tη × P :
∣∣ti[η] + τijp − tj[ν]

∣∣ ≤ T0

2

}
is the set of pairs formed by

the index of transmitter devices and the path indices contributing to the received signal of

the jth receiver device during the reception period centered at its νth clock tick. In (3.12),

µijp is the normalized channel gain of the pth path between the ith and jth devices given

by µijp = |ρijp|
(∑

η∈Vν
∑

(i,p)∈Dν,ηj
|ρijp|

)−1
. Moreover, ∆̂tj[ν] can be written as a sum of

two terms: the first term ∆tj[ν], is the weighted average of clock tick differences between

the contributing transmitters and the jth receiver, which includes the effects of the relative

clock phases and clock skews. The second term βj[ν] is a weighted average of the propagation

delays seen from the jth device; we will refer to this term as bias.

3 A Distributed Synchronization Protocol for D2D Networks 34

Using (3.12), the DPLL clock update in (3.10) becomes:

tj[ν + 1] ≈ tj[ν]+αjT0 +ε
(
∆tj[ν]+βj[ν]

)
, j ∈ Rν . (3.13)

Even if the device clocks were perfectly aligned initially, i.e., ti[0] = tj[0] ∀i, j ∈ J , and

consequently ∆tj[0] = 0, the clocks might start deviating from each other as ν increases

due to differences in clock skews, i.e., αi 6= αj, so that ∆tj[ν] 6= 0 for ν > 0 in general.

Furthermore, the propagation delays, which are always positive by nature, introduce an

additional error due to the bias βj[ν]. Hence, our first objective in this work is to reduce

the effects of clock phases, clock skews and bias by means of distributed timing-advance

synchronization. Ultimately, for ν sufficiently large, the maximum synchronization error

for the overall network in the practical case with propagation delays should not exceed a

pre-defined threshold λsync, that is:(
max
i,j∈J
η∈Vν

∣∣ti[η] + τij1 − tj[ν]
∣∣) ≤ λsync (3.14)

where τij1 is the delay of the first path and the maximum is over all i, j ∈ J as well as

η ∈ Vν .
In distributed networks, the devices are not aware of the synchronization status of others

and they do not generally experience the same synchronization error. Therefore, the devices

cannot stop the synchronization process simultaneously by just relying on their own error

estimates, as given by (3.9). In fact, if some devices stop this process earlier than others,

they might become asynchronous with respect to the remaining devices still running DPLLs;

while if some devices stop later than others, the presence of ongoing timing pulses might

trigger the synchronized devices to re-start the process. Hence, our second objective aims

for distributed coordination among the devices to let them be aware of the overall network

synchronization status and, ideally, terminate the synchronization process at the same time.

After synchronization, some of the devices may become idle to conserve energy instead

of immediately initiating data communication, in which case the idle devices may become

asynchronous with the rest of the network. To prevent this, they must periodically re-initiate

the synchronization process. However, frequent re-initialization will lead to a disturbance

among the synchronized devices and increased energy consumption in the overall network.

Thus, our third and final objective is to maintain synchronization as long as possible without

exchanging timing pulses to reduce the frequency of re-initialization.

3 A Distributed Synchronization Protocol for D2D Networks 35

3.3 Timing-Advance Synchronization Algorithm

In this section, we introduce a timing-advance synchronization algorithm that will later be

used to develop a full-fledged synchronization protocol. First, we introduce a half-duplex

method, whereby each device alternates between the transmitter and receiver modes in their

exchange of timing pulses at each clock tick. Second, we modify the DPLLs clock update to

achieve timing-advance synchronization in a distributed manner. Third, we present an online

bias estimation technique, which will be incorporated into the modified DPLLs. Finally, the

overall algorithm is given from the perspective of a single device.

3.3.1 Alternating Transceiver Mode

In distributed half-duplex synchronization, some devices broadcast timing pulses, while the

others listen for the broadcasted signals during their own reception period to update their

clock. However, if the devices randomly decide their transceiver mode at each clock tick as

in [63], then the set Dν,ηj of transmitter devices and path indices seen by the jth receiver

device, as defined in (3.12), will evolve unpredictably over time. In turn, this will result in

arbitrary fluctuations in the weighted average TO estimates ∆̂tj[ν] [125].

Fig. 3.3. Concept of the alternating transceiver mode.

3 A Distributed Synchronization Protocol for D2D Networks 36

To eliminate this source of randomness in the set Dν,ηj , we propose a method called

alternating transceiver mode, which enables devices to determine their transceiver mode

independently in a systematic manner. The underlying concept of the method is illustrated

in Fig. 3.3. When a device first joins the network at the νth clock tick, it randomly initializes

its transceiver mode, where the probability of being a transmitter, denoted as ptr ∈ (0, 1),

is pre-determined and the same for all devices. If a device operates as a transmitter, it

broadcasts its synchronization signal and then for the next clock tick, it changes its mode

to become a receiver. If instead the device operates as a receiver, it listens for broadcast

synchronization signals and attempts to determine whether or not such a signal is present

during its reception period. This detection is performed by comparing the cross-correlation

in (3.7) to a threshold value, as further explained in Section 3.4. In the case of signal

detection (whose probability depends on several factors, e.g., the number of devices, ptr, and

the Signal-to-Noise Ratio (SNR)) the device alternates its mode at the next clock tick to

operate as a transmitter; otherwise, it randomly re-determines its transceiver mode based

on ptr as above.

To illustrate the behavior of the proposed alternating transceiver mode, we compare it

in Fig. 3.4 to the random transceiver mode proposed in [63], where its main goal is to

randomly determine the transceiver mode of devices at each clock tick based on being a

transmitter with probability ptr or a receiver with probability 1 − ptr. As seen in Fig. 3.4

(a), in the case of selecting the transceiver mode randomly, the average TO seen from the

receivers may fluctuate greatly from one clock tick to the next, which, in turn, results in

increased synchronization errors. In sharp contrast, with the proposed method the average

TO estimates and clock updates evolve over time in an orderly manner (cf. Fig. 3.4 (b))

which facilitates fast convergence with a deterministic bias.

Based on the diagram in Fig. 3.3 and assuming that the probability of signal detection for

a receiver is high, the devices will cluster themselves into TX and RX groups and alternate

between them at each clock tick, which can be also seen in Fig. 3.4 (b). We elaborate this

behavior in our simulations under representative conditions of operation for LTE [128], as

further discussed in Section 3.5. Hence, the synchronization signals are exchanged between

the same groups of transmitter and receiver devices, which has two important implications.

First, the clocks of each device are corrected at every two clock ticks by using DPLLs as given

in (3.10). Consequently, clock skew can only alter the device clocks for no more than one clock

3 A Distributed Synchronization Protocol for D2D Networks 37

tick before being compensated, which helps speed up synchronization. Second, in the case of

time-invariant channels, the bias term in (3.12) becomes constant, i.e., βj[ν] = βj[ν+2], since

the jth receiver is always affected by the same combination of transmitters and propagation

paths, i.e.,
⋃
η D

ν,η
j remains constant as ν is incremented to ν + 2.

(a) Random transceiver mode.

(b) Alternating transceiver mode.

Fig. 3.4. Comparison between the random transceiver mode and the proposed alternating transceiver mode
for pulse-coupled clock synchronization in the presence of propagation delays with no clock skew.
A network of 3 devices is assumed, located at equal distances from each other. The propagation
delay from one device to any other device is τ . Hence, the broadcasted beacons are detected with
a delay as depicted with dashed-arrows within the receiver’s reception period (depicted in gray).
Note that at the νth clock tick Device 2 is a receiver while the other two devices are transmitters.

3.3.2 Modified DPLLs

Timing-advance synchronization can reduce the effect of propagation delays. Under the

alternating transceiver mode, the receiver devices expect signals from the same group of

transmitters at every two clock ticks. Hence, we let the receiver devices take proactive

3 A Distributed Synchronization Protocol for D2D Networks 38

actions by modifying the DPLLs clock update in (3.10) as follows:

tj[ν + 1] = tj[ν]+αjT0 +ε∆̂tj[ν]− 2β̂j[ν], ∀j ∈ Rν (3.15)

where β̂j[ν] is an estimate of the bias term in (3.12). Meanwhile the clock update of trans-

mitter devices remains unchanged, as already given by (3.11).

Fig. 3.5. Timing-advance synchronization in a distributed manner with propagation delay τ (upward dashed
arrow represents the arrival time of a synchronization signal).

To motivate the introduction of the term −2β̂j[ν] in (3.15), we consider a simple case

wherein two devices, labeled as D1 and D2, exchange synchronization signals under the

alternating transceiver mode over a single path channel with delay τ > 0. Assume that at

the νth clock tick, D1 and D2 operate as transmitter and receiver, respectively, and that

their clocks are perfectly aligned without clock skew, i.e., t1[ν] = t2[ν] and α1 = α2 = 1 as

illustrated in Fig. 3.5. After broadcasting its signal, D1 updates its clock based on (3.11)

as t1[ν + 1] = t1[ν] + T0, and then switches to the receiver mode. Meanwhile, due to the

propagation delay, the corresponding synchronization error at D2 is ∆̂t2[ν] = τ . Assuming

that D2 has a perfect bias estimate, i.e., β̂2[ν] = τ , it updates its clock based on the modified

DPLLs (3.15) as t2[ν + 1] = t2[ν] +T0− τ , where ε is set to 1 for simplicity. At the (ν + 1)th

clock tick, D2 which now operates as a transmitter, broadcasts its synchronization signal.

Due to the additional term −2β̂j[ν] = −2τ , the synchronization error at D1, which now

operates as a receiver, will be ∆̂t1[ν + 1] = 0.

More generally, by employing the modified DPLLs along with alternating transceiver

mode, clocks of the receivers will be advanced in time with respect to the clocks of the

3 A Distributed Synchronization Protocol for D2D Networks 39

transmitters at every tick. Therefore, the devices can achieve timing-advance synchronization

in a distributed manner.

3.3.3 Estimation of the Bias

Application of the modified DPLLs in (3.15) requires an estimate of the bias term βj[ν].

For estimating this term, the jth device can only rely on its TO estimate ∆̂tj[ν] from (3.9),

which includes contributions from both ∆tj[ν] and βj[ν], as seen from (3.12). Furthermore,

as each device updates its clock based on ∆̂tj[ν] by using the recursive DPLLs in (3.15),

future TO estimations will be affected by previous clock corrections. Hence, conventional

time averaging techniques applied to ∆̂tj[ν] might fail to yield an unbiased estimate. Besides,

the averaging time required by conventional techniques to achieve the desired accuracy may

negatively impact the overall synchronization time. Therefore, estimation of βj[ν] becomes

challenging.

Alternatively, we can capitalize on the fact that, by using the alternating transceiver

mode, the bias seen from a receiver device over time-invariant channels becomes constant.

By exploiting this special property of β̂j[ν], the jth receiver device may try to isolate it from

∆̂tj[ν] while updating its clock based on (3.15). Since by using DPLLs, ∆tj[ν] tends to 0 as ν

increases in the absence of propagation delays [58], estimation of the bias can be achieved by

seeking to iteratively reduce the absolute synchronization error, i.e., |∆̂tj[ν + 2]| ≤ |∆̂tj[ν]|.
To this end, we therefore propose the following online bias estimation technique:

β̂j[ν] = β̂j[ν − 2] + γjsgn(∆̂tj[ν]) (3.16)

where sgn(·) is the sign function, i.e., the jth receiver device applies corrections to its bias

estimate with a small step size γj ∈ R+ based on the sign of its current TO estimate.

Specifically, if ∆̂tj[ν] > 0 (< 0), then the weighted average of the signal contributions from

transmitters to the jth device is advanced (is lagging) in time with respect to its own clock

tick. Hence, the jth device increases (decreases) its previous estimate β̂j[ν − 2] by γj in

order to reduce its future TO estimate |∆̂tj[ν + 2]|. When a device joins the network at tick

ν0, it may initialize its bias estimate β̂j[ν0] = β̂init based on the expected physical delay in

the network. For instance, the initial value can be set to β̂init = d
c
, where d is the average

distance between the devices and c is the speed of light.

3 A Distributed Synchronization Protocol for D2D Networks 40

In Appendix A, we analytically show that the application of (3.16) in a multi-device

network leads to a reduction of the synchronization error at each device as ν increases. In

practice, we have found that this technique can be improved further by using a dynamic step

size instead of a fixed one, that is, γj[ν] = aγj[ν − 2] + b, where a ∈ (0, 1) and b ∈ R+ is a

constant increment.

3.3.4 Proposed Algorithm

Each device independently implements the above procedures for distributed timing-advance

synchronization after joining the network at the ν0th clock tick. In Algorithm 3.1, these

procedures are summarized and presented from the perspective of the jth device, assuming

without loss in generality that it joins the network at the ν0 = 0th clock tick.

Algorithm 3.1 Timing-Advance Synchronization

1: Initialize M j
ν0

(based on ptr) and β̂j[ν0] = β̂init

2: for ν = 0, 1, 2, ... do

3: if M j
ν = TX then

4: Broadcast the synchronization signal (3.3)

5: Advance the clock as in (3.11)

6: Become receiver: M j
ν+1 = RX

7: else

8: if Synchronization signal is detected then

9: Estimate the average TO (3.9)

10: Update the clock based on modified DPLLs (3.15)

11: Update the bias estimate (3.16)

12: Become transmitter: M j
ν+1 = TX

13: else

14: M j
ν+1 =

{
TX, with ptr

RX, with 1− ptr

15: Advance the clock as in (3.11)

16: end

17: end

18: end

3 A Distributed Synchronization Protocol for D2D Networks 41

In Appendix B we study the rate of decrease of TO when Algorithm 3.1 is applied to

a simplified scenario consisting of two devices. Furthermore, in Appendix C, we derive the

expected value of TO when the devices run Algorithm 3.1 in the same simplified scenario.

Therefore, based on the effect of various parameters such as γj, ptr and ε used in the algo-

rithm, we can choose the values that yield the best performance in terms of error reduction.

3.4 Proposed Synchronization Protocol

Based on the timing-advance synchronization algorithm, we first propose a synchronization

protocol and present it over a state-transition diagram and then we give its complexity anal-

ysis. The underlying idea of the protocol is to create coordination among the participating

devices to ensure a simultaneous termination of the synchronization process and let them

initiate data communication. Therefore, to coordinate the devices in a distributed manner,

we propose to use two different synchronization signals; the first signal is utilized for error

reduction, whereas the presence of the second signal is a declaration of the synchronization

status of a device to the network.

We construct these two signals based on (3.3)-(3.4), which can be distinguished by their

ZC index u. Specifically, all the transmitter devices broadcast the first signal by using the ZC

index u = u1 to decrease their synchronization error below a threshold. Once they achieve

this, the devices start broadcasting the second signal by switching to the ZC index u = u2.

If a receiver device detects only the second signal but not the first one, then it knows that

all the contributing devices are synchronized. In other words, the use of the ZC root index

u2 by a device serves as a declaration to the rest of the network that it has deemed itself

synchronized.

Since the devices use two synchronization signals, the cross-correlated received signal at

a device can be one of four kinds:

• It contains no synchronization signals (this may occur when there are no transmitter

devices).

• It only contains synchronization signals using root index u1 (this occurs when all trans-

mitter devices try to reduce their own synchronization errors);

3 A Distributed Synchronization Protocol for D2D Networks 42

• It only contains synchronization signals using root index u2 (this occurs when all the

transmitter devices deem themselves to be synchronized).

• It contains a mix of signals using u1 and u2 (this occurs when some devices are still

reducing their errors while others are deem themselves to be synchronized).

Therefore, a receiver device should be able to reliably detect the presence or absence of the

ZC root index u1 or u2 within the received signal by performing the cross-correlation in (3.7),

which we re-define as Ryjxu±
[l, ν] =

∑
k∈K yj[k; ν]xu±[k − l]∗ to emphasize u.

Considering the properties of ZC sequences, auto-correlation of two synchronization sig-

nals that have the same root index yields a peak value N at lag l, i.e., |Rx
u1
± x

u1
±

[l, ν]| =

N [129]; however, cross-correlation of such two signals with different root indices yields

|Rx
u1
± x

u2
±

[l, ν]| =
√
N [130]. Hence, after cross-correlating the received signal in (3.7) with

both xu1
± [k] and xu2

± [k] at the the νth clock tick, the jth receiver device calculates the following

decision statistic for each u ∈ {u1, u2}:

ψ(ν, u) = max
l

(|Ru
yjx±

[l, ν]|) (3.17)

and compares it to a detection threshold λdet. Note that in LTE, ZC sequence length N is

839 [130], and considering the typical noise levels, we set this detection threshold as λdet = N
2

in our work. Accordingly, the receiver makes one of the following four decisions:

D00
ν : ψ(ν, u1) < λdet ∧ ψ(ν, u2) < λdet

D10
ν : ψ(ν, u1) ≥ λdet ∧ ψ(ν, u2) < λdet

D01
ν : ψ(ν, u1) < λdet ∧ ψ(ν, u2) ≥ λdet

D11
ν : ψ(ν, u1) ≥ λdet ∧ ψ(ν, u2) ≥ λdet

(3.18)

where ∧ is the logical conjunction and the superscripts of the decisions indicate the presence,

i.e., 1, or the absence, i.e., 0, of the ZC root indices u1 and u2, respectively. Decision D00
ν

corresponds to the case where no synchronization signal is detected. In response, the device

re-establishes its transceiver mode for the next tick based on ptr and advances its clock by

one clock period. For any of the other three decisions, the receiver device forms its final TO

3 A Distributed Synchronization Protocol for D2D Networks 43

estimate as follows:

∆̂tj[ν] =

∆̂t

u1

j [ν] , D10
ν

∆̂t
u2

j [ν] , D01
ν

1

2

(
∆̂t

u1

j [ν] + ∆̂t
u2

j [ν]
)
, D11

ν

(3.19)

In the above, the superscript to the weighted average TO estimate ∆̂t
u1

j [ν] or ∆̂t
u2

j [ν]

indicates from which ZC root index it is obtained. In the case of D11
ν , the jth device forms

its final TO estimate by using the arithmetic mean of its individual TO estimates ∆̂t
u1

j [ν]

and ∆̂t
u2

j [ν], since it is consistent with the definition of (3.9) as a weighted average.

In what follows we describe the proposed protocol over a state-transition diagram as

given in Fig. 3.6 from the point of view of the jth device.

Fig. 3.6. State-transition diagram of the proposed protocol. Transitions happen at each clock tick under
different conditions; the conditions and their complements are denoted by Ci and Ci, respectively,
where i ∈ {1, 2, ..., 5}.

Initialization: When the jth device joins the network, it stores its initial transceiver mode

M j
ν0

. Furthermore, the jth device initializes Γj, ξj and ζj, which will be used as error level,

stopping and clock skew control counters, respectively, as:

Γj = 0, ξj = 0 and ζj = 0 (3.20)

3 A Distributed Synchronization Protocol for D2D Networks 44

The purpose of using the counters throughout the protocol is to provide a controlled evolution

between the states by comparing them to pre-defined thresholds.

3.4.1 Bias Update State

In this state, the jth device tries to iteratively estimate its bias to reduce its synchroniza-

tion error while updating its clock. Therefore, the device runs Algorithm 3.1 with u = u1 as

long as the following condition is satisfied:

C 1: |∆̂tj[ν]| ≤ |∆tj|min ∨ |∆tj|min > λsync

where ∨ is the logical disjunction, |∆tj|min is the smallest value of the weighted average TO

encountered up to the νth iteration and λsync is the pre-defined synchronization threshold.

Note that |∆tj|min can be less than λsync. Hence, if the synchronization error stays above the

desired threshold or it keeps decreasing in absolute value, then the device does not change

its state.

3.4.2 Fixed Bias State

In this state, the absolute value of the synchronization error of the device stops decreasing.

Therefore, the device stops updating its bias estimate and fixes it to the one that yields the

smallest error |∆tj|min as:

β̂j[ν + 2] = β̂j[ν] (3.21)

From then on, the device only uses this bias estimate in Algorithm 3.1, i.e., (3.16) is replaced

by (3.21). Meanwhile, the device increases its error level counter Γj but only when it operates

as a receiver device:

Γj = Γj + 1 , if M j
ν = RX (3.22)

In order for a device to leave this state, there are two conditions. The first condition

captures the effect of a perturbation in the system, e.g., a new device joining the network,

which can be detected by checking for a sudden change in the weighted average TO estimate

as follows:

C 2:
∣∣|∆̂tj[ν]| − |∆tj|min

∣∣ > λsync

In this way, the proposed protocol can operate with dynamic network size.

3 A Distributed Synchronization Protocol for D2D Networks 45

Whereas the second condition indicates whether or not the device deems itself synchro-

nized. Specifically, the decrease in the weighted average TO of the jth device, i.e., |∆̂tj[ν]|,
might be temporarily due to noise in the TO estimate or some devices leaving the network,

hence, the device should not consider itself to be synchronized immediately. Instead, the

device observes the change in |∆̂tj[ν]| by using condition C 2 and assumes synchronization

only after this condition is satisfied for λcons consecutive clock ticks, that is:

C 3: Γj ≥ λcons

3.4.3 Transition State

In this state the device declares its synchronization status to the network. Although the

device still continues to run Algorithm 3.1, it changes its ZC index as follows:

u← u2 if M j
ν = TX (3.23)

Therefore, if the device in this state operates as a receiver at the νth clock tick, i.e., M j
ν = RX,

and detects the presence of the second synchronization signal but not the first one, it assumes

that other devices are also synchronized, hence, it increases its stopping counter ξj as:

ξj=

{
ξj +1 , D01

ν ∨ (D00
ν ∧ ξj > 0)

0 , D10
ν ∨ D11

ν

(3.24)

Note that when (D00
ν ∧ ξj > 0) is satisfied, the receiver device does not detect any signals, i.e.,

D00
ν , yet it has a non-zero stopping counter. Since the device is in the transition state, this can

be interpreted in two ways: either the previously detected devices left the network, or they

switched to Data Communication State, where they essentially stop their synchronization

process. In both cases, the device continues to increase its counter.

In contrast, a device operating as a transmitter at the νth clock tick, i.e., M j
ν = TX,

cannot detect any signals, therefore, cannot make any decisions about the presence of the

synchronization signals. Hence, we propose to incorporate the initial transceiver mode M j
ν0

to the decision process. Specifically, when a device operates as a transmitter at the νth

clock tick and its initial mode was also transmitter, i.e., M j
ν = M j

ν0
= TX, then it increases

its stopping counter. However, a transmitter device still needs to obtain decision statistics

3 A Distributed Synchronization Protocol for D2D Networks 46

at the νth clock tick (3.17), therefore, we propose to rely on the decision statistic from the

(ν − 1)th clock tick, where the device was a receiver.

If M j
ν = TX:

ξj=

{
ξj +1 , (M j

ν0
=TX) ∧ D01

ν−1

0 , (M j
ν0

=TX) ∧ (D10
ν−1 ∨D11

ν−1)
(3.25)

Similar to the previous state, perturbations must be detected, i.e., condition C 2. How-

ever, since not every device necessarily has the same synchronization error, there might be

some devices that are still trying to reduce their error by broadcasting the first signal with

ZC index u = u1 while not triggering condition C 2. In this case, when the jth device in this

state detects the first synchronization signal, it resets its stopping counter, i.e., sets ξj = 0.

Therefore, it waits for the other devices to first synchronize themselves, then switch to the

transition state, where they finally broadcast the second synchronization signal.

Note that when proceeding to the communication state, the devices should not lose syn-

chronization with respect to each other. Specifically, this is important to avoid re-initiating

the synchronization process for timing-advance communication, which will be explained later.

Therefore, the next condition not only allows devices to terminate the synchronization pro-

cess, ideally at the same time, but also enables them to initiate timing-advance data com-

munication in a distributed manner.

C 4: C4.1 ∨C4.2

C4.1: (M j
ν =M j

ν0
= RX) ∧

(
(ξj > λstop) ∨ (D00

ν ∧ ξj > 0)
)

C4.2: (M j
ν =M j

ν0
= TX) ∧ (ξj > λstop)

The device switches to the data communication state when its stopping counter exceeds the

pre-defined stopping threshold λstop if and only if its current transceiver mode at the νth

clock tick, i.e., M j
ν , is the same as its initial transceiver mode, i.e., M j

ν0
. Specifically, if

the device is a receiver (transmitter) and the first (second) sub-condition C4.1 (C4.2) is

satisfied, the device stops its synchronization process as a receiver (transmitter). Hence, the

device is aware of whether or not its clock is advanced or regressed with respect to others

when the synchronization process stops.

Note that in the case of no signal detection with a non-zero stopping counter, the device

can safely assume that the contributing transmitter devices have already switched to the

data communication state or left the network, hence, it can proceed to the next state.

3 A Distributed Synchronization Protocol for D2D Networks 47

3.4.4 Data Communication State

In this state, the device can conserve energy by only operating as a receiver until it initiates

data communication. Therefore, the device sets its transceiver mode to receiver:

M j
ν ← RX (3.26)

and updates its clock similarly to (3.11). However, if the device anticipates data communica-

tion, then it relies on how condition C4 was satisfied, i.e., whether or not its clock is advanced

or regressed at the termination of synchronization process. Specifically, M j
ν0

= RX means

that the device is in the RX group which is suitable for data reception, while M j
ν0

= TX

that the device in the TX group which is suitable for data transmission. On the contrary,

if the device is in the group that does not match the anticipated communication type, i.e.,

M j
ν0

= RX but the device has data to transmit or M j
ν0

= TX but it expects to receive

data, then any two devices in this case would need to re-initiate their own synchronization

process for proper timing-advance, which would cause a network-wide perturbation. In or-

der to avoid this, the proposed protocol allows such devices to re-arrange their clocks for

proper timing-advance without actively transmitting and receiving synchronization signals

as follows:

tj[ν+1] =

{
tj[ν]+αjT0− β̂j[ν], M j

ν0
=RX ∧ Bj = 1

tj[ν]+αjT0 + β̂j[ν], M j
ν0

=TX ∧ Bj = 0
(3.27)

where Bj ∈ {0, 1} indicates that the jth device anticipates data transmission or reception,

when it is one or zero, respectively. By applying (3.27), the jth device uses its own bias

estimate to adjust its clock to approach the vicinity of the clocks of the opposite group in

time as shown in Fig. 3.7. Note that if the device applies (3.27), then it can simply revert

this procedure to return its original TX or RX group after stopping data communication.

Overall, (3.27) is useful in terms of extending the achieved synchronization by allowing de-

vices to use timing-advance communication without unnecessarily exchanging timing pulses.

Therefore, for the proposed protocol, clock-skew is the only factor affecting re-initialization

of the synchronization process. Indeed, in a practical system, the presence of clock skew

imposes an upper bound on how long devices can stay synchronized. Since in the communi-

cation state, the jth device does not apply the DPLL clock update in (3.15), its clock might

diverge from the clocks of other devices after some period of time due to clock skew. To

3 A Distributed Synchronization Protocol for D2D Networks 48

Fig. 3.7. After synchronization, the devices are aware the group they are in, i.e. TX or RX group. Hence,
they can re-arrange their clocks by only using their own bias estimate for timing-advance commu-
nication.

prevent this, the device keeps track of how long it stays in this state by increasing its clock

skew control counter at each clock tick as ζj ← ζj + 1, which is then compared to clock skew

control threshold λskew as follows:

C 5: ζj ≥ λskew

If ζj exceeds the allowed limit, then the device re-initiates its synchronization process by

resetting its variables as follows:

Γj = 0, ξj = 0 and ζj = 0 (3.28)

|∆tj|min = ∆̂tj[ν] (3.29)

β̂j[ν] = β̂init (3.30)

u← u1 (3.31)

M j
ν ←M j

ν0
(3.32)

We note that the condition C5 is different than Initialization, where the devices are setting

all their variables to 0 and determining M j
ν0

randomly. However, in C5, the jth device sets

its current transceiver mode to its initial transceiver mode M j
ν0

. Hence, if the devices switch

to the bias update state due to the condition C5, then re-synchronization should take much

less time since the effect of clock skew cannot cause drastic deviations on the device clocks.

3 A Distributed Synchronization Protocol for D2D Networks 49

3.4.5 Complexity Analysis

To derive the complexity analysis of the proposed protocol, we first analyze the required

operations in Algorithm 3.1. When a device operates as a transmitter at the νth clock tick,

i.e., M j
ν = TX, constructing the synchronization signal as in (3.3) requiresO(2N) operations.

Then, the clock update in (3.11) only takes one multiplication and one addition, hence, the

complexity is relatively small. If a device operates as a receiver at the νth clock tick, i.e.,

M j
ν = RX, it first estimates the average TO in (3.9), which requires computing a cross-

correlation as in (3.7), and then forming two different preliminary TO estimates as given by

(3.8). Hence, the total operations needed for (3.7) haveO(2K) complexity related to complex

multiplications, whereas each preliminary TO estimate, i.e., q±j [ν], in (3.8) takes O(8K2)

operations. Therefore, the overall computation complexity of Algorithm 3.1 at the νth clock

tick is O(16K2 + 2N). Now considering the overall computation complexity of the proposed

protocol, forming the final average TO estimate in (3.19) doubles the amount of operations

due to utilization of two distinct ZC sequences, hence, the computational complexity at the

νth clock tick becomes O(32K2 + 2N). However, the rest of the computation complexity

of the proposed protocol is relatively small since it only requires memory registers and

comparisons between the assigned values.

3.5 Simulation Results

In this section, the proposed synchronization protocol is evaluated by means of computer

simulations based on METIS 5G channel models [131] and under different conditions of

operation, i.e., clock skew, number of devices, and network topologies, including full mesh

and partial mesh.

The complete synchronization protocol for a dense stationary D2D network is imple-

mented in Matlab. Unless otherwise is specified, we consider a network of 14 devices,

where 12 of them initialize at ν = 0 with 2 more devices joining the network at ν = 33. We

use a channel model according to the Manhattan grid scenario in [131] with Rician fading

for the line of sight path (if present) and Rayleigh fading for the other paths. The SNR at

the input of the correlator is fixed at 15dB. The rest of the system parameters are chosen

accordingly from [12] and given in Table 3.1.

3 A Distributed Synchronization Protocol for D2D Networks 50

Table 3.1. System parameters

Parameter Description Symbol Value

Number of Devices J 2, 5, 8, 14

Scaling Term of DPLL ε 1

Zadoff-Chu Index u1, u2 7, 13

Zadoff-Chu Sequence Length N 839

Clock Period T0 1 ms

Pulse Spacing Tp 0.1 µs

Sampling Period Ts 3 ns

Transmit and Reception Powers PTX, PRX 23 dBm, 8 dBm

Maximum Network Distance d 500 m

Operating Frequency f 2 GHz

Bias Estimate Initialization β̂init .86 µs

Step Size Initialization γinit 33 ns

Step Size Slope a .98

Step Size Increment b 3 ns

Probability of Being a Transmitter ptr {0.1, 0.5, 0.9}
Signal Detection Threshold λdet

N
2

Synchronization Error Threshold λsync 1.5 µs

Consecutive Clock Tick Threshold λcons 2

Clock Skew Control Threshold λskew 10

Stopping Threshold λstop 2

Number of Resolvable Paths P 4

Rayleigh Fading Scaling Parameter - 1

Rician Fading Noncentrality Parameter - 1

Rician Fading Scaling Parameter - 1

3.5.1 Clock Phase Convergence

First, we study how fast our protocol reduces the synchronization error compared to [63]

under the exact same network conditions. In Fig. 3.8 (a) we show a single realization of

the clock phase evolution for the algorithm in [63] where the devices randomly choose their

transceiver mode based on ptr = 0.5. Similarly in Fig. 3.8 (b), the devices employ the pro-

posed protocol with ptr = 0.5. We note that the algorithm in [63] transmits synchronization

signals for the duration of the experiment, while the proposed protocol only transmits until

Data Communication State as illustrated in Fig. 3.8 (b).

3 A Distributed Synchronization Protocol for D2D Networks 51

(a) Random transceiver mode (RTM) [63] (ptr = 0.5).

(b) Proposed synchronization protocol (ptr = 0.5).

Fig. 3.8. A single realization of clock phase evolution with a perturbation at the 33rd clock tick.

3 A Distributed Synchronization Protocol for D2D Networks 52

As we can see, during these states, the proposed protocol not only reduces the difference in

relative clock phases faster but also achieves a smaller deviation. Furthermore, our protocol

quickly reacts to the perturbation that occurs at ν = 33 when new devices join the network,

and compensates for it better than [63].

Importantly, by using the proposed protocol, the devices are aware of the global synchro-

nization status which allows them to terminate the synchronization process simultaneously

at ν = 22 and proceed to data communication state as shown in Fig. 3.8 (b). However,

when using the algorithm in [63], the devices are not aware of the synchronization status

of others, hence, they cannot simultaneously terminate this process and proceed to data

communication as intended.

3.5.2 Synchronization Performance before Data Communication

To quantify the synchronization performance, we introduce three synchronization perfor-

mance metrics: maximum, minimum and average synchronization errors at a given clock

tick ν, which take propagation delays into account. These metrics are defined as follows:

∆tmaxsync [ν] = max
(η,i,j)∈Sν

∣∣ti[η] + τij1 − tj[ν]
∣∣ (3.33)

∆tminsync[ν] = min
(η,i,j)∈Sν

∣∣ti[η] + τij1 − tj[ν]
∣∣ (3.34)

∆tavgsync[ν] =max
j∈Rν

∣∣ 1

|Aνj |
∑

(η,i)∈Aνj

(ti[η] + τij1)− tj[ν]
∣∣ (3.35)

In (3.33) and (3.34), Sν =
⋃
η∈Vν

{
(η, i, j) : i ∈ Tη, j ∈ Rν ,

∣∣ti[η] + τij1 − tj[ν]
∣∣ ≤ T0

2

}
is

the set of triplets containing the indices of transmitters from the ηth clock tick that are

contributing to the received signal of the jth device at the νth clock tick. Furthermore

in (3.35), we consider the maximum of the average synchronization error, hence, the set

Aνj =
⋃
η∈Vν

{
(η, i) : i ∈ Tη,

∣∣ti[η] + τij1 − tj[ν]
∣∣ ≤ T0

2

}
includes the index of the transmitter

devices from the ηth clock tick detected by the jth device at the νth clock tick.

In Fig. 3.9 we compare the synchronization performance of the proposed protocol to [63]

using these metrics. Since there is no stopping condition in [63], we set λcons = ∞ in the

proposed protocol for a fair comparison, hence, the devices only operate in Bias Update

State and Fixed Bias State. Furthermore, in [63], it is stated that the lower the ptr, the

3 A Distributed Synchronization Protocol for D2D Networks 53

better the synchronization performance. We confirmed this observation by trying several

values of ptr ∈ {0.1, 0.5, 0.9} and we found that ptr = 0.1 indeed yields the best performance.

So, in Fig. 3.9 we use ptr = 0.1 for the algorithm in [63]. We see that the proposed

protocol reduces the synchronization error and reaches the steady-state much faster, while

outperforming [63] in all performance metrics, i.e., (3.33), (3.34), (3.35). In addition, the

proposed protocol adapts to the change in the network size, which occurs at ν = 33, more

rapidly. Furthermore, we can also observe that there is no fluctuation in the synchronization

error as the devices switch from Bias Update State to Fixed Bias State, which shows that

(3.19) produces reliable TO estimates.

Fig. 3.9. Synchronization error comparison; the proposed protocol vs the random transceiver mode (RTM)
in [63] when J = 14.

In Fig. 3.10, we investigate the sensitivity of the proposed bias estimation in (3.16) under

various initialization of β̂init
j = d

c
by assuming (±%80) over and underestimates of the average

distance d. We further study the performance of the dynamic step size γj[ν] = aγj[ν− 2] + b

and compare it to a fixed step size γj. As shown in Fig. 3.10, the proposed protocol still

provides an average synchronization error of 3µs even in the presence of severe errors in the

estimates of d. Furthermore, the dynamic step size leads to faster error reduction and a

lower error floor.

3 A Distributed Synchronization Protocol for D2D Networks 54

Fig. 3.10. Synchronization performance for dynamic and fixed step size under different bias initializations.

Fig. 3.11. Max. and Avg. synchronization performance based on (3.33) and (3.35) for a partial mesh
topology for one and eight common devices.

3 A Distributed Synchronization Protocol for D2D Networks 55

Next, we consider the performance of the proposed protocol for the partial mesh topol-

ogy as depicted in Fig. 3.1, where two physically separated device groups are synchronizing

through the common devices that act as relaying nodes. In Fig. 3.11, we compare our proto-

col to [63] with ptr = 0.1. We note that when the number of common devices decreases, the

overall synchronization performance degrades as expected. More specifically, if the common

devices do not operate as transmitters, which is more likely to happen in the case of random

transceiver mode (RTM) in [63], especially if ptr is low, then physically separated devices

cannot synchronize themselves. On the contrary, at each clock tick, the devices always al-

ternate their transceiver mode in the proposed protocol, hence, even with a single common

device, our protocol attains lower steady-state error.

In Fig. 3.12, we verify the analysis of the synchronization error reduction by Monte-Carlo

simulations for different number of devices. It is shown that the analysis tracks well the

synchronization error during the steady-state regime regardless of the number of devices.

Not surprisingly, the synchronization performance deteriorates as the number of devices

increases. However, the performance is better with two devices compared to the setting for

multiple devices since the TO estimate in (3.9) only includes the contribution from a single

transmitter device.

Fig. 3.12. Verification of the analysis with different number of devices.

3 A Distributed Synchronization Protocol for D2D Networks 56

3.5.3 Timing Error during Data Communication

In Fig. 3.13, we consider the termination of the synchronization process to let the devices

initiate timing-advance communication in a distributed manner. Thus, unlike Fig. 3.9, we

set λcons = 2 so the devices leave State 2 after 2 consecutive clock ticks, and proceed to the

next state, i.e., Transition State, where they will eventually terminate the synchronization

process. We note that the performance metrics in (3.33)-(3.35) are not useful after the devices

terminate synchronization since Tν = ∅. Therefore, we investigate the timing error between

the communicating devices once they initiate distributed timing-advance communication

according to (3.27). To that end, we introduce two performance metrics. The first one is

the maximum timing error over all pairs of potentially communicating devices:

∆tmaxcomm[ν]= max
(η,i,j)∈Cν

∣∣ti[η]− κiβ̂i[η] + τij1 − tj [ν] + ϑj β̂j [ν]
∣∣ (3.36)

where Cν =
{

(η, i, j) ∈ Vν×J ×J : i 6= j∧
∣∣ti[η]+τij1−tj[ν]

∣∣ ≤ T0

2

}
. In (3.36), the functions

κi and ϑj indicate whether a device regresses or advances its clock, respectively, according

to (3.27) and are defined as follows:

κi =

{
0, if M i

ν0
= TX

1, if M i
ν0

= RX

ϑj =

{
0, if M j

ν0
= RX

1, if M j
ν0

= TX

The set Cν in (3.36) contains all triplets (η, i, j) where j is the index of a receiver device at

clock tick ν, and i is the index of a device that might transmit to device j from the clock

tick η ∈ Vν .
The second metric is the maximum over all receivers of the average timing error between

a given receiver and all potential transmitters:

∆tavgcomm[ν]=max
j∈Rν

∣∣ 1

|Hνj |
∑

(η,i)∈Hν
j

(ti[η]−κiβ̂i[η]+τij1)−tj [ν]+ϑj β̂j [ν]
∣∣ (3.37)

where the set Hν
j =

{
(η, i) ∈ Vν ×

{
J − {j}

}
:
∣∣ti[η] + τij1 − tj[ν]

∣∣ ≤ T0

2

}
includes the pairs

(η, i) where i is the index of a device that might transmit to device j from the clock tick

η ∈ Vν .

3 A Distributed Synchronization Protocol for D2D Networks 57

Fig. 3.13. Transitioning from synchronization to data communication in full mesh topology.

Note that in Fig. 3.13, we compare the timing error in two cases: with and without clock

skew. We see that the timing error slightly increases in both metrics when the devices stop

synchronization and use the clock arrangements in (3.27) as they switch to data communi-

cation state at the 25th and 56th clock ticks. Specifically, for the maximum timing error,

the degradation is higher since the devices synchronized their clocks based on the weighted

average TO and their bias estimates are the approximation of the average propagation delay

with respect to the multiple transmitters.

In addition, clock skew increases the timing error since the devices do not employ DPLL

update in data communication state. In Table 3.2, we show the change in the timing error

due to the clock skew for different number of devices. We assume 20ppm crystal accuracy in

our simulations. Here, the second column indicates the timing error right before the synchro-

nization process stops and the third column is the timing error when data communication

state starts. As time elapses without DPLL clock updates, the timing error increases. Specif-

ically, after 9T0, the timing error is more than 1.5 times the error achieved at the end of the

synchronization process. Hence, by using Table 3.2 and assuming that the synchronization

error between any device should not exceed 2.5µs, we should set λskew = 10 to re-initiate

3 A Distributed Synchronization Protocol for D2D Networks 58

the synchronization process after 10T0. However, if there would not be clock skew, then the

devices would use timing-advance data communication without needing to re-initiate the

synchronization process.

Table 3.2. Timing-advance data communication performance with clock skew

Comm. Performance Sync. Stopped After 1T0 After 5T0 After 9T0

Max Sync. Error (14 Dev.) 1.5µs 1.7µs 1.98µs 2.6µs

Avg Sync. Error (14 Dev.) .41µs .48µs .54µs .61µs

Max Sync. Error (8 Dev.) 1.35µs 1.58µs 1.79µs 2.1µs

Avg Sync. Error (8 Dev.) .39µs .43µs .5µs .59µs

Max Sync. Error (2 Dev.) .1µs .13µs .18µs .21µs

Avg Sync. Error (2 Dev.) .1µs .13µs .18µs .21µs

3.5.4 Energy-Efficiency of the Synchronization Protocol

Finally, we analyze the total energy consumed during synchronization by considering a net-

work of 5 devices while running the proposed protocol and the random transceiver mode

(RTM) algorithm in [63] over the synchronization time Tsync = 50ms. Note that as the

devices may join or leave the network arbitrarily, they may consume less energy compared

to the others that are present from the first clock tick throughout the synchronization pro-

cess even though they achieve the same synchronization error. Therefore, for this particular

experiment, we assume no devices join or leave the network after initialization. We consider

different power levels for each transceiver mode, namely PTX and PRX, to operate as a trans-

mitter and as a receiver device, respectively. The total energy consumed by the jth device

up to the νth clock tick during synchronization is calculated recursively as follows:

Eν+1
j =

E
ν
j + PTXT0 , ∀j ∈ Tν

Eν
j + PRXT0 , ∀j ∈ Rν

(3.38)

The proposed protocol allows devices to proceed to data communication stage after ap-

proximately 15ms. Then, all the devices operate as a receiver as in Fig. 3.7, where they

still keep synchronization but do not actively transmit synchronization signals. Hence, the

average energy consumption of the proposed protocol is Esync = 1
J
∑J

j=1

∑∞
ν=0 E

ν
j = 1.73mJ,

which is 3 and 4.7 times less than the algorithm in [63] with ptr = 0.5 and ptr = 0.9, respec-

tively. In other words, RTM algorithm not only fails to achieve the same synchronization

3 A Distributed Synchronization Protocol for D2D Networks 59

error level but also consumes more energy except for ptr = 0.1. However, we note that in the

proposed protocol, 84.5% of the total energy is used for signal transmission, i.e., ETX
sync, while

only 15.5% of the total energy is used for signal reception, i.e., ERX
sync. This means that if the

simulation time Tsync increases, the energy efficiency of the proposed protocol also increases

over time as the devices operate only as a receiver device which consumes less power.

Table 3.3. Energy-efficiency comparisons.

Avg. Energy

Consumption

Proposed

Protocol

RTM [63]

ptr = 0.1

RTM [63]

ptr = 0.5

RTM [63]

ptr = 0.9

Esync (mJ) 1.73 1.25 5.16 8.13

ETX
sync(%) 84.5 76.9 96.9 99.4

ERX
sync(%) 15.5 23.1 3.1 0.6

3.6 Conclusion

In this chapter, we proposed a novel, fully-distributed pulse-based synchronization proto-

col for half-duplex D2D communications in 5G networks, specifically for the out-of-coverage

scenario. The new protocol allows devices to first synchronize themselves in a distributed

manner and then simultaneously proceed to timing-advance data communication by main-

taining the achieved synchronization. Our protocol also rapidly adapts the changes in the

network size by allowing new devices to easily synchronize themselves to the network without

disrupting the ongoing synchronization process. Finally, we note that the proposed proto-

col is not limited to out-of-coverage D2D communications and it can be implemented for

any distributed system that demands reliable, high data rate communication. After hav-

ing implemented the full-fledged synchronization protocol and resolved the synchronization

problem, in the next chapter, we address the energy-efficient resource allocation problem in

a D2D-aided fog computing scenario.

60

Chapter 4

D2D-aided Fog Computing under

Probabilistic Time Constraints

In this chapter1, we consider D2D communication as an enabling technology for a task

offloading framework while taking the performance instability of device CPUs into account

during task processing.

4.1 Introduction

D2D communication is an enabling technology for fog computing by allowing the sharing

of computation resources between mobile devices. In this way, DUs can exploit the proxi-

mate available computation resources based on different incentive policies to process their

computation-intensive tasks. However, mobile devices may suffer CPU throttling in the

event of high operating temperatures during task processing as they are not equipped with

sophisticated heat-dissipating mechanisms. Naturally, these temperature variations in device

CPUs affect the availability of computation resources for task offloading, which unpredictably

alters task processing times and overall energy consumption.

In this chapter, motivated by the challenges presented in Section 2.3 of Chapter 2, we

focus on the energy-efficient resource allocation strategy for a task offloading framework

via D2D communications subject to the uncertainties on CPU performances. Specifically,

we address the problem of optimal resource allocation with respect to task partitioning,

1Parts of the work presented in this chapter have been published in [132].

4 D2D-aided Fog Computing under Probabilistic Time Constraints 61

computation resources and transmit power in a D2D-aided fog computing scenario, aiming

to minimize the expected total energy consumption under probabilistic constraints on the

processing time. The main contributions in this chapter are summarized as follows:

• We focus on minimization of the expected total energy consumption under probabilistic

constraints on the task processing time. We adopt the partial task offloading scheme to

utilize the fog devices in a more flexible manner to increase energy efficiency. Since the

formulated problem is non-convex, finding the global optimum is generally intractable;

therefore, we propose two sub-optimal solution methods.

• The first sub-optimal method is based on difference of convex (DC) programming,

where we develop a CCP algorithm to leverage the DC optimization framework com-

bined with chance-constraint programming to handle the probabilistic constraints.

Nonetheless, we find out that the performance of DC programming depends on a

good initial point.

• Therefore, we propose a second method that relies on only convex programming,

which eliminates the dependence on user-defined initialization. Similar to the first

sub-optimal method, we also adopt the chance-constraint method to obtain the deter-

ministic equivalents of the probabilistic constraints.

• As a benchmark, we consider the total energy consumption when a task is processed

locally. Simulation results demonstrate that both methods yield higher energy effi-

ciency in comparison to completing the same task only locally. However, the proposed

convex-programming method outperforms the DC programming method in terms of

energy efficiency and run-time.

4.2 System Model and Problem Formulation

We consider a wireless sub-network comprised of a single active device that has a computa-

tionally intensive task to perform and J offloading devices which can be used to offload this

task via side-links, as seen in Fig. 4.1. We label the active device by 0 and the offloading de-

vices by j ∈ J = {1, 2, . . .}. Similar to [133], we assume simultaneous orthogonal side-links

to establish D2D communications between the active device and each one of the offload-

ing devices prior to task offloading, which can be achieved using various device association

strategies such as distance, availability and maximum utility, etc. [134,135].

4 D2D-aided Fog Computing under Probabilistic Time Constraints 62

Fig. 4.1. D2D-aided fog computing scenario, where an active device (indexed by 0) can offload its tasks to
nearby offloading devices (indexed by j ∈ J) .

The computation task of the active device is characterized by the tuple (b, c, tmax). Here,

b indicates the task size in bits, c denotes the number of CPU cycles required to process one

bit of data, and tmax is the task processing deadline for completing the task. The device may

compute its task locally and/or partially offload it to one or more offloading devices in J .

Accordingly, the task size can be decomposed as:

b = b0 +
∑
j∈J

bj (4.1)

where b0 and bj represent the portions kept at the active device and sent to the jth offloading

device, respectively. These portions are collected in the vector b = [b0 b1 . . . bJ]> where >

denotes the transpose operation.

To compute the local portion of its task, the active device allocates a part f0 of its com-

putation resources, measured in CPU cycles per second, which cannot exceed its maximum

computation capability fmax
0 . However, due to unpredictable CPU throttling, e.g., result-

ing from temperature fluctuations, the actual computation resource used by the device is

f̃0 = (1 − ξ0)f0, where ξ0 ∈ [0, 1] is a random variable with known distribution. Denoting

the time it takes to complete the local portion of the task at the active device as tco
0 , we can

write:

f̃0t
co
0 = b0c (4.2)

The energy consumed for local computation is given by [96]:

Eloc = µb0cf̃
2
0 = µf̃ 3

0 t
co
0 (4.3)

4 D2D-aided Fog Computing under Probabilistic Time Constraints 63

where µ is an effective capacitance constant that depends on the chip architecture.

The active device also uploads to the jth offloading device the corresponding task portion

of size bj. The achievable data rate for transmission to the jth device is:

Rj = W log2

(
1 +

PjGj

N0

)
(4.4)

where Pj is the allocated transmission power, Gj is the channel gain, W is the channel

bandwidth, and N0 is the noise power. Denoting by tup
j the upload time, we have:

bj = Rjt
up
j (4.5)

As in the case of the active device, the jth offloading device allocates a part fj of its

computation resources, which cannot exceed its maximum computation capability fmax
j , to

complete the offloaded task. As before, the actual computation resource used is f̃j = (1−ξj)fj
where ξj is a random variable with known distribution. Then, similar to (4.2), we have:

f̃jt
co
j = bjc (4.6)

where tco
j is the time it takes the complete the offloaded portion.

Overall, the energy consumed to upload and compute the offloaded tasks is:

Eoff =
∑
j∈J

(
Pjt

up
j + µf̃ 3

j t
co
j

)
(4.7)

Then the total energy consumed to complete the task can be given as a sum of two terms:

E = Eloc + Eoff =
∑
j∈J

Pjbj
Rj︸ ︷︷ ︸

φ(p,b)

+
∑
i∈I

µbicf̃
2
i︸ ︷︷ ︸

ψ(b,̃f)

(4.8)

where I = {0} ∪ J , while φ(p,b) and ψ(b, f̃) are the total task uploading energy and the

total task computation energy, respectively. Furthermore, p = [P1 ... PJ]> contains the

transmit powers of the active device to its offloading devices and f̃ = [f̃0 f̃1 ... f̃J]> contains

the actual computation resources used by the devices.

Finally, we can now formulate the problem of optimal resource allocation, in terms of

task portions, computation resources and transmit powers, in the above D2D-aided fog

computing scenario. Since the allocated computation resources have a random nature, we

4 D2D-aided Fog Computing under Probabilistic Time Constraints 64

aim to minimize the expected value of the total energy consumption subject to probabilistic

constraints on the task processing times:

P1 : min
p,b,f,t

Eξ

[
E
]

(4.9a)

s.t. 0 ≤
∑
j∈J

Pj ≤ Pmax (4.9b)∑
i∈I

bi = b (4.9c)

P(tco
0 ≤ tmax) ≥ γ (4.9d)

P
(
tco
j ≤(tmax − tup

j)
)
≥ γ, ∀j∈J (4.9e)

bj = Rjt
up
j , ∀j ∈ J (4.9f)

f0 ≤ fmax
0 , fj ≤ fmax

j ,∀j ∈ J (4.9g)

b0, bj, f0, fj, t
up
j ≥ 0 ∀j ∈ J (4.9h)

where f = [f0 f1 ... fJ]> contains the allocated computation resources and t = [tup
1 ... tup

J]>

includes the task upload times to each offloading devices. Also, Eξ[·] is the expectation

operator, and P(·) is the probability of an event.

In problem P1, the expectation in (4.9a) is taken over the distribution of the random

vector ξ = [ξ0 ξ1 ... ξJ]>, constraint (4.9b) limits the total transmit power of the active device

to Pmax while constraint (4.9c) guarantees that the task portion sizes add up to the original

task size. Constraints (4.9d) and (4.9e) stipulate that the probability of completing the task

within the task processing deadline tmax is higher than a given reliability level γ ∈ [0, 1].

Constraint (4.9f) ensures that the channel rate and corresponding task uploading time are

consistent with the allocated task portions. Finally, constraint (4.9g) indicates that the

allocated computation resources cannot exceed the computation capabilities of the devices

and constraint (4.9h) expresses the non-negative nature of the decision variables.

4.3 Proposed Sub-Optimal Methods

Due to the non-convex objective function (4.9a) and the non-convex constraints (4.9d),

(4.9e), problem P1 is intractable, we initially considered different evolutionary algorithms

such as particle swarm optimization and genetic algorithms to solve it [136, 137]. However,

these methods yield low performance with slow convergence for our problem. Therefore, in

this section, we propose two sub-optimal methods to efficiently solve problem P1.

4 D2D-aided Fog Computing under Probabilistic Time Constraints 65

In the first method, we develop a DC algorithm based approach, where we write the

non-convex objective function and the non-convex constraints as DCFs, while using chance-

constraint programming to handle the probabilistic time constraints. The new optimization

problem can then be solved using DC programming. In the second method, to address

certain issues related to initialization of the DC programming-based method, we propose a

more effective two-step approach which relies solely on convex programming.

4.3.1 DC Programming Method

We start by writing the task uploading energy φ(p,b) introduced in (4.8) as a DCF:

φ(p,b) = φ1(p,b)− φ2(p,b) (4.10)

where φ1(p,b) =
∑

j∈J (Pj +
bj

2Rj
)2 and φ2(p,b) =

∑
j∈J (P 2

j +
b2j

4R2
j
). We also decompose the

expected value of the total computation energy ψ(b, f̃) as follows:

Eξ[ψ(b, f̃)] = Eξ

[∑
i∈I

µbic(1− ξi)2f 2
i

]
= µc

∑
i∈I

ηi
(
(bi + fi/2)2 − (b2

i + f 2
i /4)

)
= ψ1(b, f)− ψ2(b, f) (4.11)

where ψ1(b, f) = µc
∑

i∈I ηi(bi + fi/2)2, ψ2(b, f) = µc
∑

i∈I ηi(b
2
i + f 2

i /4) and ηi = E[(1 −
ξi)

2], i ∈ I. Finally, the objective function (4.9a) expressed as a DCF:

Eξ[E]
∆
= H(x) = Y (x)− Z(x) (4.12)

where Y (x) = φ1(p,b) + ψ1(b, f) and Z(x) = φ2(p,b) + ψ2(b, f) are convex functions, and

x = [p>b>f>t>]> contains all the search variables for convenience.

As shown in [119], to apply a DC algorithm, each non-convex equality and inequality

constraints can be incorporated into (4.12) by using a penalty parameter once their DCFs are

available. However, for our problem, we found that this approach yielded slow convergence.

Whereas in [122], a DC algorithm is applied to a problem consisting of only non-convex

inequality constraints that are decomposed as DCFs. Hence, if we eliminate the equality

constraint (4.9f) by incorporating it into (4.12) based on the penalty approach in [119],

4 D2D-aided Fog Computing under Probabilistic Time Constraints 66

we can develop a DC-based algorithm as in [122] to solve a problem involving a penalized

objective function (which is shown to be DCF [119]) with only inequality constraints (4.9d)

and (4.9e).

To this end, we decompose the non-convex equality constraint (4.9f) as:

Ceq
j (x) =

bj
Rj

− tup
j = Y eq

j (x)− Zeq
j (x), ∀j ∈ J (4.13)

where Y eq
j (x) = (bj + 1

2Rj
)2 and Zeq

j (x) = (b2
j + 1

4R2
j

+ tup
j) are convex functions. Then

we introduce the penalty term in the objective function, which can be also written as a

DCF [119]:

Hλ(x) = Yλ(x)− Zλ(x) (4.14)

where
Yλ(x)=Y (x)+2λ

∑
j∈J

max
{
Y eq
j (x);Zeq

j (x)
}

(4.15)

Zλ(x) = Z(x) + λ
∑
j∈J

(Y eq
j (x) + Zeq

j (x)) (4.16)

and λ ≥ 0 is the penalty parameter.

In order to deal with the probabilistic inequality constraints (4.9d) and (4.9e), we adopt

the chance-constraint programming approach [124], and transform them into their deter-

ministic equivalents. Specifically, constraint (4.9d) can be given in terms of the cumulative

distribution function (CDF) of ξ0, Fξ0(·), as follows:

P
(

b0c

(1− ξ0)f0

≤ tmax

)
=P
(
ξ0≤

f0t
max − b0c

f0tmax︸ ︷︷ ︸
z

)
= Fξ0(z) ≥ γ

Then, assuming Fξ0(·) is invertible, we can obtain the deterministic form of constraint (4.9d)

as follows:

C0(x) =
f0t

max − b0c

f0tmax
− F−1

ξ0
(γ) ≥ 0 (4.17)

where F−1
ξ0

(γ) is the inverse CDF evaluated at γ. The new deterministic constraint (4.17)

can now be written as a DCF in the following way:

C0(x) = ln(
b0

f0

)− ln(q0) = Y0(x)− Z0(x) ≤ 0 (4.18)

4 D2D-aided Fog Computing under Probabilistic Time Constraints 67

where q0 = tmaxc−1(1−F−1
ξ0

(γ)) is a non-negative constant, and Y0(x) = −ln(f0) and Z0(x) =

−ln(b0) + ln(q0) are convex functions.

Proceeding in a similar way, the deterministic form of constraint (4.9e) is:

Cj(x) =
fj(t

max − tup
j)− bjc

fj(tmax − tup
j)

− F−1
ξj

(γ) ≥ 0, ∀j ∈ J (4.19)

where F−1
ξj

(γ) is the inverse CDF of ξj evaluated at γ. In turn, (4.19) can be decomposed as

follows:

Cj(x) =
tup
j fjqj

tmax
+bj−fjqj =Yj(x)−Zj(x) ≤ 0, ∀j ∈J (4.20)

where qj = tmaxc−1(1 − F−1
ξj

(γ)) ∀j ∈ J is a non-negative constant, and Yj(x) =
qj
tmax (tup

j +

fj/2)2 + bj and Zj(x) =
qj
tmax

(
(tup
j)2 + f 2

j /4
)

+ fjqj are convex functions.

Our first method is finally obtained by combining the DC programming approach in [122]

with the penalized DC approach in [119]; the resulting procedure is presented as Algorithm

4.1. Following initialization, at the kth iteration of the algorithm, we first determine the

convex approximations H
(k)
λ (x) and C

(k)
i (x) of Hλ(x) and Ci(x) in step 3 and 4, respec-

tively, where ∇ denotes the gradient operator. In step 5, we minimize H
(k)
λ (x) subject to

the indicated constraints using standard convex optimization techniques until the sequence

{H(k)
λ (x)} converges with tolerance ε or the maximum iteration number kmax is reached. The

algorithm outputs the desired vector x(k) of the allocated resources.

Algorithm 4.1 DC Algorithm Method

1: input Set k = 0, initialize x(0)

2: repeat

3: H
(k)
λ (x) = Yλ(x)− Zλ(x(k))−∇Zλ(x(k))>(x− x(k))

4: C
(k)
i (x)=Yi(x)−Zi(x(k))−∇Zi(x(k))>(x−x(k)), i ∈ I

5: solve x(k+1) = argmin
x

H
(k)
λ (x)

6: s.t. C
(k)
i (x) ≤ 0, i ∈ I

7: (4.9b), (4.9c), (4.9g) and (4.9h)

8: k ← k + 1

9: until |Hλ(x
(k+1))−Hλ(x

(k))| > ε or k ≤ kmax

10: output x(k)

4 D2D-aided Fog Computing under Probabilistic Time Constraints 68

4.3.2 Convex-Programming Method

Although DC programming guarantees a local optimum by converging to a stationary point

[138], its performance depends heavily on the choice of the initial point x(0). To address this

limitation, we propose a more effective two-step approach relying solely on convex program-

ming, which eliminates the dependence on user-defined initialization.

Consider an ideal scenario, in which there is no uncertainty in the allocated computation

resources and the task uploading is instantaneous, i.e., ξi = 0, ∀i ∈ I and tup
j = 0,∀j ∈ J .

For this scenario let f? and b? be the optimal computation resources and the optimal task

partitioning subject to constraint (4.9c), which gives the minimum total energy consumption

as E?. Note that based on (4.2) or (4.6), we have f ?i t
co
i = b?i c,∀i ∈ I. It can be seen

that at the optimal solution, the task completion time must match the given deadline, i.e.,

tco?

i = tmax, since there cannot be any other computation resources, say f+
i ∀i ∈ I with

f+
i < f ?i that can reduce further the total energy consumption E? without violating the time

constraint or constraint (4.9c).

Based on the above, we can write the total computation energy in terms of only transmit

power and task partitioning by replacing tco
0 with tmax and tco

j with (tmax − tup
j) as follows:

ψ(p,b) =
µ(b0c)

3

(tmax)2 +
∑
j∈J

µ(bjc)
3(

tmax − bj
Rj

)2 (4.21)

Hence, we decouple the allocation of computation resources and task partitioning in (4.21).

More importantly, it can be shown that (4.21) is a convex function over the convex feasible

set defined by constraints (4.9b) and (4.9c). Therefore, in the first step of our convex-

programming method, we minimize the convex part ψ(p,b) subject to constraints (4.9b),

(4.9c) and a modified form of constraint (4.9f) from problem P1:

P2 : min
p,b

ψ(p,b) (4.22a)

s.t. 0 ≤
∑
j∈J

Pj ≤ Pmax (4.22b)∑
i∈I

bi = b, bi ≥ 0 (4.22c)

bj − αRjt
max ≤ 0,∀j ∈ J (4.22d)

Problem P2 can be easily solved by means of standard convex optimization methods. In

constraint (4.22d), the scaling parameter α ∈ (0, 1) is used to avoid the task uploading time

4 D2D-aided Fog Computing under Probabilistic Time Constraints 69

exceeding the task processing deadline, i.e., tup
j > tmax. In this way, constraint (4.22d) allows

the computation time tco
j ∀j ∈ J to be within the task processing deadline, and consequently,

the solution of P2 lies in the feasible set of problem P1. We denote the solution of Problem

P2 as b∗ and p∗.

In the second step, we minimize the expectation of the total computation energy (4.11)

with respect to computation resources subject to deterministic equivalents of constraints

(4.9d) and (4.9e), wherein the optimal values of b∗ and p∗ from Problem P2 are used in

place of b and p.

P3 : min
f

Eξ[ψ(b∗, f̃)] =
∑
i∈I

µcηib
∗
i f

2
i (4.23a)

s.t.
b∗0c

tmax(1− F−1
ξ0

(γ))
≤ f0 (4.23b)

b∗jc

(tmax − tup∗

j)(1− F−1
ξj

(γ))
≤ fj,∀j∈J (4.23c)

Note that tup∗

j =
b∗j
R∗j
∀j ∈ J , where R∗j is the corresponding data rate for P ∗j ; we then form

the vector t∗ accordingly. It can be seen that the optimal solution f∗ of problem P3 can be

directly calculated since it satisfies constraints (4.23b) and (4.23c) with equality.

After solving problem P3, the allocated computation resource at an offloading device,

say j, might exceed its computation capability, i.e., f ∗j > fmax
j . In this case, the solution of

P3 is not in the feasible set of P1 as constraint (4.9g) is violated. To address this issue,

we reduce f ∗j to fmax
j and we adjust the initially allocated task portion b∗j so that it can be

computed without violating constraint (4.9g). Specifically, we replace b∗j by

b+
j =

fmax
j R∗j t

max(1− F−1
ξj

(γ))

R∗jc+ fmax
j (1− F−1

ξj
(γ))

(4.24)

which is the maximum task portion size that can be computed by utilizing the full available

computation resource fmax
j . The value of b+

j is obtained from constraint (4.23c) by replacing

fj with fmax
j . Then the excess task portion, b∗j − b+

j , is assigned to the active device and/or

the rest of the offloading devices. This is done by solving problem P2 and P3 after we

remove the jth device from the set of available offloading destinations, i.e., we replace J
with J − {j}. The process is repeated until constraint (4.9g) is no longer violated by the

remaining offloading devices. If the set J becomes empty, then the leftover portion of the

4 D2D-aided Fog Computing under Probabilistic Time Constraints 70

task size is computed at the active device, where we assume that
b∗0c

tmax(1−F−1
ξj

(γ))
= f ∗0 < fmax

0

based on constraint (4.23b). Finally, we present the overall progress of our second method

in Algorithm 4.2.

Algorithm 4.2 Convex-Programming Method

1: Solve P2 and P3 to obtain p∗, b∗, f∗and t∗

2: for j ∈ J do

3: if f ∗j > fmax
j then

4: f ∗j ← fmax
j

5: Calculate the new task size b+
j using (4.24)

6: b∗j ← b+
j

7: b← b− b+
j

8: Pmax ← Pmax − P ∗j
9: Disregard the jth device: J ← J − {j}

10: Update p∗, b∗, f∗and t∗ by solving P2 and P3

11: Go to line 2

12: end

13: end

14: Output p∗, b∗, f∗and t∗

4.4 Simulation Results

In this section, we compare the energy efficiency and run-time of the proposed methods

through Monte Carlo simulations over 4× 104 independent realizations. In each simulation

run, we uniformly place the offloading devices on a disk with a radius set to 15 m centered

at the active device. Furthermore, we consider independent Rayleigh fading channels and

distance-dependent path loss model, PL = 148 + 40log10(d) in dB, where d is the distance

in km [139]. As a benchmark we calculated a lower bound on the total energy consumption

subject to the uncertainties in the allocated computation resources. To derive the lower

bound, similar to the ideal scenario assumed in Appendix E, we consider instantaneous task

uploading times and infinite computation resources, i.e., tup
j = 0 and fmax

j = ∞, ∀j ∈ J ,

respectively. For this ideal scenario as stated in Appendix E, the total energy consumption

is minimized when the task sizes are equally distributed among the offloading destinations,

4 D2D-aided Fog Computing under Probabilistic Time Constraints 71

i.e., bi =
b

|I|
, ∀i ∈ I. Hence, a lower bound on the total energy consumption subject to the

probabilistic task processing times can be calculated as follows

min
f

Eξ

[
E
]

=
∑
i∈I

µcηibif
2
i (4.25a)

s.t. P(tco
i ≤ tmax) ≥ γ, ∀i ∈ I (4.25b)

where the deterministic equivalent of constraint (4.25b) can be obtained as bic

tmax(1−F−1
ξi

(γ))
≤

fi, ∀i ∈ I based on the chance-constraint programming. In addition to the lower bound, we

also include the total energy consumption when J = ∅, i.e., the task is completed locally.

For the CPU throttling we assume that ξi, i ∈ I, are uniform U(0, 0.1), i.e., the actual

computation resources may be below the allocated ones by up to 10%. We select the task

size b from a uniform distribution U(2×104, 4×105), and we set fmax
0 to a large value such

that the assumption in the previous section holds. The rest of the system parameters are

given in Table 4.1.

Table 4.1. System parameters

Parameter Description Symbol Value

Number of offloading devices J {1, 2, 3}
CPU cycles to process 1-bit data c 1500 cycles/bit

Effective capacitance constant µ 10−24 Ws3

Max. iteration for DC prog. kmax 103

Max. transmit power Pmax 200 mW

Task processing deadline tmax [.4, 1] s

Limiting term for task uploading time α .85

Reliability level γ .95

Convergence tolerance for DC prog. ε 10−2

Penalty parameter for DC prog. λ 12

Max. radius of a D2D link - 20 m

Noise level N0 −114 dBm

Channel bandwidth W 10 MHz

4 D2D-aided Fog Computing under Probabilistic Time Constraints 72

In Fig. 4.2, we investigate the effect of the task processing deadline to complete the task.

To simulate different computation capabilities of the offloading device we select fmax
j from

a uniform distribution U(3 × 107, 1 × 108) for each simulation run. As seen from Fig. 4.2,

regardless of the maximum time constraint, both of our methods significantly reduce the

total energy consumption compared to local task computation. However, the performance of

the convex-programming method outperforms DC programming in terms of energy efficiency.

Specifically, tmax = 0.4s, the total energy consumption with our convex-programming method

requires almost 30% less energy to compute the same task with respect to computing it only

at the local device. However, the performance of the proposed methods deviates from the

given lower bounds especially when tmax is very small since more computation resources must

be allocated to process tasks in order to meet the processing deadline. Nonetheless, it can

be shown that when the constraint on the maximum time limit is relaxed, the performance

of the proposed methods approach to a lower bound. Note that by increasing the task

processing deadline, we can reduce the required computation resources, which naturally

lowers the energy consumption. However, this negatively impacts the quality of service of

the given task in terms of latency.

Fig. 4.2. Expected total energy consumption versus tmax for different numbers of offloading devices (γ =
.95).

4 D2D-aided Fog Computing under Probabilistic Time Constraints 73

Fig. 4.3. Expected total energy consumption versus Fmax for different numbers of offloading devices (tmax =
1, γ = .95).

In Fig. 4.3, we consider the effect of maximum computation resources at the offloading

devices on the total energy consumption. Specifically, we select fmax
j from a uniform distribu-

tion U(Fmin,Fmax), where Fmin is set to 3×107 Hz while Fmax is ranging from 5×107−1.5×108

Hz. Even though increasing the number of offloading devices drastically reduces the energy

consumption, the amount of available computation resources at the offloading devices limits

the energy efficiency during task offloading. In comparison to the lower bound, the perfor-

mance of the proposed methods deviates from the calculated lower bound as Fmax decreases.

However, as the constraint on the computation resources is relaxed by increasing Fmax, the

performance gap between the proposed methods and the lower bound diminishes. Therefore,

reducing the total energy consumption not only depends on the number of nearby devices

but is also highly affected by the amount of available computation resources that can be

allocated by the offloading devices.

Finally, in Table 4.2 we compare the average run-time of proposed methods imple-

mented in Matlab on an Intel i7-3770 computer with 16GB RAM. The proposed convex-

programming based method not only achieves a better performance compared to our DC

programming approach in terms of energy efficiency but also its run-time is significantly

shorter. Specifically, with the increased number of offloading devices, DC programming

4 D2D-aided Fog Computing under Probabilistic Time Constraints 74

takes at least ten times longer to converge within the selected tolerance value ε. In addition,

we observe that the required number of iterations for DC programming to converge is more

than three times compared to our second method that is iteratively running Algorithm 4.2.

Table 4.2. Average run-time comparison (tmax = .4)

Simulation setup DC Prog. Method Convex-Prog. Method

Fmax = 4× 107 J = 1 3.98 s 0.40 s

Fmax = 1× 108 J = 1 3.64 s 0.40 s

Fmax = 4× 107 J = 2 8.26 s 0.41 s

Fmax = 1× 108 J = 2 7.53 s 0.40 s

Fmax = 4× 107 J = 3 11.88 s 0.46 s

Fmax = 1× 108 J = 3 11.60 s 0.42 s

4.5 Conclusion

In this chapter, we addressed the problem of optimal resource allocation in a D2D-aided

fog computing scenario under probabilistic time constraints. Since the formulated problem

was nonconvex, we proposed two sub-optimal methods to solve it. The first method relies

on DC programming, however, its performance is very sensitive to the choice of the initial

point. Hence, we proposed a novel alternative solution based on convex programming, which

eliminates the dependence on user-defined initialization. Nevertheless, due to the uncertain-

ties on the allocated computation resources, we incorporated chance-constraint programming

into both methods. While both proposed sub-optimal task offloading methods significantly

reduce the total energy consumption compared to computing the task locally, the second

method outperforms DC programming in terms of energy efficiency and run-time. In the

next chapter, we investigate a resource allocation problem by extending the considered fog

computing scenario with multiple active and idle devices as well as a central node.

75

Chapter 5

Energy-Efficient Resource Allocation

for D2D-aided Fog Computing

In this chapter, we focus on the minimization of the total energy consumption in a more

general fog computing scenario, wherein multiple devices can offload their tasks to nearby

fog devices via D2D links and to a centralized ES.

5.1 Introduction

While Cloud computing can provide infinite amount of resources over the internet for devices

with computation-intensive tasks, wireless channel conditions and network traffic may limit

its utilization for real-time applications with strict processing deadlines. On the contrary,

MEC can be an alternative to Cloud computing by taking advantage of servers located

at the edge of the network, hence, reduce end-to-end delays and total overheads in the

network. However, in comparison to cloud servers, the computation capabilities of ESs are

limited, which negatively affects the performance of MEC. In this regard, as a complement

to Cloud computing and MEC, fog computing provides an energy-efficient task offloading by

leveraging the close proximity of all available computation resources, and in turn, offering

ultra-low latency. To this end, D2D communications technology as a part of the future

generation networks, can enable fog computing to mitigate the task computation burden of

wireless devices by reducing the total energy consumption and task processing times.

Motivated by the advantages of a hybrid-task offloading scheme and the recent litera-

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 76

ture given in Section 2.3 of Chapter 2, we focus on the minimization of the total energy

consumption in a more general fog computing scenario in comparison to the one given in

Chapter 4. Specifically, we consider multiple wireless devices with computation-intensive

tasks, which can be offload to nearby fog devices via D2D links and to a centralized ES.

However, different than Chapter 4, we assume deterministic task processing time at each de-

vice due to the additional complexity imposed by handling the probabilistic time constraints

together with the joint allocation of the computation resources at the ES. We adopt the

partial task offloading scheme with transmit power management to improve the utilization,

that is, minimize the total energy consumption over the considered network. On the one

hand, the ES has more computation capability compared to the fog devices, and hence can

process more tasks simultaneously; however, achievable data rates on the ES links may limit

the task uploading speed. On the other hand, D2D-aided fog computing can take advantage

of close proximity, and hence yields higher data rates and reduces the task offloading time.

Therefore, depending on wireless channel conditions as well as constraints on delays, trans-

mit powers and computation resources, a device can either locally compute its task or offload

some of its portions for distributed data processing. Within this extended framework, the

main contributions of this chapter are summarized as follows:

• We consider a D2D-assisted fog computing scenario, where multiple cellular devices

can partially offload their computation-intensive tasks not only to the ES but also

to nearby fog devices via D2D links. Our main objective is to develop an optimal

resource allocation strategy by minimizing the total energy consumption subject to

the constraints on transmit powers, computation resources and task processing times.

• The formulated problem is non-convex and its optimal solution is generally intractable,

hence, we propose two sub-optimal methods. For the first method, we begin with

investigating the relationship between the task processing time and the total energy

consumption. By exploiting this relationship, we then show how the original problem

can be relaxed into a sequence of convex subproblems whose solutions can be efficiently

obtained via standard convex optimization methods.

• While our first method achieves good performance, its run time is relatively high.

To remedy this limitation, we propose a second method, which targets similar goals

as the first one, but relies on a low-complexity heuristic resource allocation strategy,

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 77

thereby avoiding costly calculations of gradients and Hessian matrices in the solution

process. We analyze in detail the computational complexity of this method in terms

of key system parameters, including the number of mobile devices and task offloading

destinations.

• We develop a lower bound on the total energy consumption for the considered task

offloading scenario as a performance benchmark for comparison purpose. Computer

simulations under a wide range of conditions and parameter settings show that both

methods approach the lower bound for a wide range of practical conditions, while the

second method leads to a quite significant reduction in run time.

5.2 System Model and Problem Formulation

In this section, we first present the D2D-aided fog computing scenario under study and

the associate computation and communication models. We then formulate the problem of

optimal resource allocation as a non-convex program.

5.2.1 System Model

We consider a stationary network consisting of a single BS and I active cellular devices with

computationally intensive tasks. Each active device can offload its task to an ES connected

to the BS via a high-speed link, and up to K nearby fog devices associated to that user via

D2D links, as shown in Fig. 5.1. Hence, we identify the available task offloading destinations

of the ith active device by a 2-tuple κ ∈ Ki = {(i, 0), (i, 1), ..., (i,K)}, i ∈ I = {1, ..., I}. We

assume that all active devices can utilize the same ES, indexed by 0, while the K fog devices

associated to different active devices are distinct. In the sequel, to simplify the notations,

we represent the 2-tuple (i, j) simply as ij. Similar to [133], the assignment of fog devices

to the active ones is decided beforehand based on various criteria: distance, availability, and

incentive etc.

The computation task of the ith active device is characterized by the tuple (di, ci, t
max
i).

Here, di indicates the task size in bits, ci denotes the average number of CPU cycles required

to process one bit of data, and tmax
i is the task processing deadline1. The ith active device

1That is, the latest time by which processing, including task uploading time if applicable, must be

completed.

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 78

Fig. 5.1. D2D-aided fog computing scenario, where active devices can offload their tasks to nearby fog
devices as well as to a more powerful central ES.

may offload parts of its task to available destinations. Accordingly, the computation task

size of the ith device can be decomposed as:

di = bi +
∑
κ∈Ki

bκ (5.1)

where bi and bκ indicate the sizes of the task portions kept at the local device and sent to

the κth offloading destination, respectively. The task portion sizes for the ith active device

form the vector bi = [bi bi0 bi1 ... biK]> with ‖bi‖1 = di.

Let fi, expressed in cycles per second, represent the computation resources allocated by

the ith active device to process the local portion of its task. Then, denoting the time taken

by the ith active device to compute the local portion of the task as tco
i , we can write:

bi =
fit

co
i

ci
, ∀i ∈ I. (5.2)

Accordingly, the energy consumption for processing this task is:

Eloc
i = µbicif

2
i = µf 3

i t
co
i , ∀i ∈ I (5.3)

where µ is an effective capacitance constant depending on the chip architecture of the devices

[96].

During task offloading, the ith active device uploads bκ bits to its κth offloading desti-

nation over a wireless communication link. The achievable data rate over this link is given

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 79

by:

Rκ = W log2

(
1 +

PκGκ

N0

)
, ∀κ ∈ Ki,∀i ∈ I (5.4)

where Pκ is the allocated transmit power, Gκ is the channel gain, W is the channel bandwidth,

and N0 is the thermal noise power.

Let tup
κ be the time needed to upload a task portion with size bκ from the ith active device

to the κth offloading destination. Based on the given data rate, the above quantities should

satisfy the following relation:

bκ = Rκt
up
κ (5.5)

Similar to (5.2), let fκ is the computation resources allocated by the κth destination to

process the task of size bκ. Then denoting the time taken by the κth device to compute this

task size as tco
κ , we have:

bκ =
fκt

co
κ

ci
, ∀κ ∈ Ki,∀i ∈ I (5.6)

Then, the energy consumption for uploading and processing the task sizes at the offloading

destinations of the ith device is given by:

Eoff
i =

∑
κ∈Ki

(
Pκt

up
κ + µf 3

κt
co
κ

)
, ∀i ∈ I (5.7)

Finally, the total energy consumption required to complete the overall task for the ith

active device is:

Ei = Eloc
i + Eoff

i , ∀i ∈ I (5.8)

5.2.2 Problem Statement

We formulate the optimal resource allocation problem in a D2D-aided fog computing sce-

nario to minimize the total energy consumption subject to the constraints on computation

resources, transmit powers and task processing deadlines. To this end, the overall problem

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 80

is given as follows:

P1 : min
p,f,b

∑
i∈I

Ei (5.9a)

s.t. 0 ≤
∑
κ∈Ki

‖bκ‖0Pκ ≤ Pmax, ∀i ∈ I (5.9b)∑
i∈I

‖bi0‖0fi0 ≤ fmax
0 , (5.9c)

bi +
∑
κ∈Ki

‖Pκ‖0bκ = di, ∀i ∈ I (5.9d)

0 ≤ tco
i ≤ tmax

i , ∀i ∈ I (5.9e)

0 ≤ tup
κ + tco

κ ≤ tmax
i ,∀i ∈ I,∀κ ∈ Ki (5.9f)

0 ≤ bi, bκ, fi, fκ, Pκ ∀i ∈ I, ∀κ ∈ Ki (5.9g)

where the matrix p = [p>1 p>2 ... p>I]> with pi = [Pi0 Pi1 ... PiK]> contains the allocated

transmit powers of each active device to its offloading destinations. In addition, the matrix

f = [f>1 f>2 ... f>I]> with fi = [fi fi0 fi1 ... fiK]> contains the allocated computation resources,

and the matrix b = [b>1 b
>
2 ... b>I]> contains the task splitting decisions of each active device.

In problem P1, constraint (5.9b) limits the total transmit power at the ith device to Pmax,

constraint (5.9c) restricts the ES to allocate its computation resource beyond its maximum

computation capability fmax
0 , and constraint (5.9d) ensures that the task splitting adds up

to original task size. Constraint (5.9d) ensures that the task splitting adds up to original

task size, while constraints (5.9e) and (5.9f) require that the time to complete the task does

not exceed the task processing deadline tmax
i ∀i ∈ I. Finally, constraint (5.9g) denotes that

the decision variables must be non-negative.

The presence of `0 norms in the constraints couples the decision variables. In this way,

transmit powers and computation resources cannot take arbitrary values if active devices do

not offload their tasks. At this point, problem P1 can be re-formulated as mixed-integer

program to avoid `0 norms however, non-convex objective functions and constraints still

impose difficulty as they make the problem intractable. Therefore, in the next section, we

propose a sub-optimal solution, which depends solely on convex programming.

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 81

5.3 Convex Programming Method

In this section, we first analyze problem P1 and then show how it can be relaxed into convex

subproblems by considering its main limitations. Finally, we present the overall procedures

to obtain the proposed method in an algorithm for convenience.

5.3.1 Problem Analysis

We begin with analyzing the task processing times at the optimal solution of problem P1.

Let p?, f? and b? be the global minimizers of problem P1 yielding the total energy con-

sumption as E? = Eloc? + Eoff? . At the optimal solution, we have di = b?i +
∑

κ∈Ki b
?
κ and

the corresponding computation resources for these task portions are f ?i and f ?κ , respectively.

Assume that the optimal task processing time for the local portion of the task is smaller

than the task processing deadline tco?

i =
b?i ci
f?i

< tmax
i . Then there can be f ‡i < f ?i such that

tco?

i <
b?i ci

f‡i
= tmax

i , which yields Eloc‡

i = µb?i cif
‡
i

2
< Eloc?

i , and consequently reduces the total

energy consumption E‡i = Eloc‡ + Eoff? < E?
i further. Therefore, f ?i cannot be the global

minimizer. Similarly, assume that the optimal total task offloading time is smaller than the

task processing deadline, tup?

κ + tco?

κ = toff?

κ < tmax
i , or equivalently by using (5.5) and (5.6),

we have b?κ
R?κ

+ b?κci
f?κ

= toff?

κ < tmax
i , where R?

κ is the data rate calculated by using the optimal

transmit power P ?
κ . However, there can be f ‡κ < f ?κ such that b?κ

R?κ
+ b?κci

f‡κ
= tmax

i or P ‡κ < P ?
κ

such that b?κ
R‡κ

+ b?κci
f?κ

= tmax
i , in which both f ‡κ and P ‡κ yield smaller energy consumption for

task offloading, i.e., Eoff‡

i < Eoff?

i . Consequently, f ?κ and P ?
κ cannot be the optimal minimiz-

ers since the total energy consumption in (5.8) can be reduced further. Therefore, at the

optimal solutions p?, f? and b?, the time it takes the process a given task must match the

deadline if the goal is to minimize energy consumption.

Based on the above, we can modify the objective function (5.9a) by replacing tco
i with

tmax
i ,∀i ∈ I and tco

κ with (tmax
i −tup

κ),∀i ∈ I,∀κ ∈ Ki, and write the total energy consumption

of the ith device as a combination of two terms Ei = ξi(pi,bi)+ψi(pi,bi), i ∈ I. Specifically,

the first term is the total energy consumption for uploading the task size portions:

ξi(pi,bi) =
∑
κ∈Ki

Pκbκ
Rκ

(5.10)

while the second term is the total computation energy and obtained from (5.3) and (5.7) as

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 82

follows:

ψi(pi,bi) =
µ(bici)

3

(tmax
i)2 +

∑
κ∈Ki

µ(bκci)
3(

tmax
i − bκ

Rκ

)2 (5.11)

Note that reducing both terms simultaneously in Ei could not be possible since decreasing

transmit power Pκ might reduce the first term, but it increases the second one due to elevated

uploading time tup
κ = bκ

Rκ
. Fortunately, total computation energy given in (5.11) is a convex

function on a convex domain as demonstrated in Appendix D. Hence, by leveraging the

convexity of total computation energy (5.11), we can now decouple problem P1 into convex

sub-problems that can be solved using standard techniques.

5.3.2 Allocation of Transmit Powers and Task Sizes

First, we allocate the transmit powers and task sizes. Specifically, we determine the optimal

task splitting under transmit power constraints that, in turn, limit the data rates, without

considering the available computation resources at the ES:

P2 : min
p,b

∑
i∈I

ψi(pi,bi) (5.12a)

s.t. 0 ≤
∑
κ∈Ki

Pκ ≤ Pmax, ∀i ∈ I (5.12b)

bi +
∑
κ∈Ki

bκ = di, ∀i ∈ I (5.12c)

bκ − αRκt
max
i ≤ 0, ∀i ∈ I, ∀κ ∈ Ki (5.12d)

0 ≤ bi, bκ ∀i ∈ I,∀κ ∈ Ki (5.12e)

In constraint (5.12d) we include a factor α ∈ (0, 1) to limit the task uploading time and

provide sufficient time for task computation at the offloading destinations tco
κ = (1−α)tmax

i .

This naturally prevents the violation of constraint (5.9f) in problem P1, and consequently,

allows the solution of problem P2 to be in the feasible solution set of the main problem.

However, we note that the choice of α cannot be arbitrary since it plays an important role

in the convexity of problem P2 as demonstrated in Appendix D. Then, we allocate the

computation resources corresponding to the transmit powers and the task splitting decisions

p∗ and b∗ obtained by solving problem P2.

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 83

5.3.3 Limitation of Computation Resources

To determine the computation resources corresponding to p∗ and b∗, we first calculate the

task uploading times using (5.5) as tup∗
κ = b∗κ

R∗κ
,∀i ∈ I, ∀κ ∈ Ki, where R∗κ is the data rate

calculated by using the transmit power P ∗κ (cf. eq. (5.4)). Then, using the remaining time

tco∗
κ = tmax

i − tup∗
κ , we allocate the computation resources at the κth offloading destination as

follows:

f ∗κ =
b∗κci

tmax
i − tup∗

κ

, ∀i ∈ I ∀κ ∈ Ki. (5.13)

Similarly, the allocated computation resource to the ith device is:

f ∗i =
b∗i ci
tmax
i

, ∀i ∈ I. (5.14)

Using (5.13) and (5.14) we form the optimal allocated computation resource vector f∗ in the

same manner as f. Recall that problem P2 does not consider constraints (5.9c), therefore, it

may happen that the allocated task sizes are such that
∑

i∈I
b∗i0ci

tmax
i −

b∗
i0
R∗
i0

> fmax
0 , consequently,

constraint (5.9c) is violated. In that case, we reallocate the task sizes b∗ subject to constraint

(5.9c) by fixing the transmit powers to p∗ as follows:

P3 : min
b

∑
i∈I

ψi(p
∗
i ,bi) (5.15a)

s.t.
∑
i∈I

bi0R
∗
i0ci

R∗i0t
max
i − bi0

≤ fmax
0 (5.15b)

bi +
∑
κ∈Ki

bκ = di, ∀i ∈ I (5.15c)

bκ− αtmax
i R∗κ≤ 0,∀i ∈ I,∀κ ∈ Ki (5.15d)

0 ≤ bi, bκ,∀i ∈ I,∀κ ∈ Ki (5.15e)

We denote the new task size allocations obtained by solving problem P3 as b+. Then, we

update the task uploading times as tup+

κ = b+κ
R∗κ
,∀i ∈ I, ∀κ ∈ Ki. Finally, we calculate the

new allocated computation resources f+ as in (5.13) and (5.14) by using b+ and p∗.

5.3.4 Summary of the Proposed Method

In Algorithm 5.1 we summarize the proposed convex-programming-based sub-optimal method

to solve problem P1. The algorithm runs in a central location, for example at a BS, and

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 84

the obtained solution is relayed to the active devices.

Algorithm 5.1 Convex Programming Method

1: Solve Problem P2 to obtain initial b∗ and p∗

2: Calculate tup∗
κ = b∗κ

R∗κ
∀i ∈ I, ∀κ∈ Ki

3: Calculate f∗ based on b∗ and p∗ by using (5.13) and (5.14)

4: if ‖f∗0‖1 > fmax
0 then

5: Re-distribute tasks to obtain be by solving Problem P3

6: Obtain the new task portions as b+ = b∗ + be

7: Calculate tup+

κ = b+κ
R∗κ
∀i ∈ I, ∀κ∈ Ki

8: Calculate f+ based on b+ and p∗ by using (5.13) and (5.14)

9: end

5.4 Heuristic Task Offloading Method

In this section, we propose a heuristic algorithm to solve problem P1. The main goal is

to provide an accurate, low-complexity method without computing gradients and Hessian

matrices in the solution process. To develop the heuristic method we will follow a sequen-

tial approach as in Section 5.3. We start by allocating the transmit powers and the task

sizes under data rate constraints, as we did in problem P2. Then, we take the maximum

computation capability of the ES into account as in problem P3 to prevent the violation of

constraint (5.9c).

5.4.1 Initial Resource Allocation

In an ideal scenario given in Appendix E, the total energy consumption is minimized when

the task sizes are equally partitioned among the offloading destinations. Based on this,

we first initialize the task sizes by partitioning them among the ith active device and its

offloading destinations in Ki as follows:

b∗i = di(|Ki|+ 1)−11, ∀i ∈ I (5.16)

where 1 is the column vector of all-ones. If the task uploading time between each active device

and its offloading destination is instantaneous, then the total energy consumption based on

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 85

the initial task splitting strategy in (5.16) clearly attains the lower bound in Appendix E.

However, in a realistic scenario, due to wireless channel conditions as well as the transmit

power constraints, the achievable data rates are limited. Hence, our next step is to reduce

the task uploading time as much as possible to approach the lower bound. To this end,

we allocate the transmit powers to compensate the channel conditions among the ith active

device and its offloading destinations:

p∗i =
hiP

max

‖hi‖1

, ∀i ∈ I (5.17)

where hi = ‖gi‖11−gi is the vector that contains the channel gains of the ith device that are

subtracted from its `1-norm and the channel gain vector is defined as gi =
[
Gi0 Gi1 ... GiK

]>
,

i ∈ I. By initializing the transmit powers as in (5.17), each active device allocates more

transmit power to its offloading destinations with relatively low channel gain to increase

data rates, and in turn, reduce task uploading time. However, for an ith device and its κth

offloading destination, b∗κ and P ∗κ might exceed the task processing deadline, i.e., tup∗
κ > tmax

i ,

which violates constraint (5.9f).

Since p∗ is initialized to compensate physical channel conditions, we update the initial

task partitioning b∗ to have a feasible tup∗
κ similar to constraint (5.12d). Specifically, for any

device i and its κth offloading destination for which tup∗
κ > tmax

i , we set tup∗
κ = αtmax

i , which

is the maximum time limit for uploading the task sizes as in constraint (5.12d). Then, we re-

calculate the corresponding task size as b+
κ = R∗καt

max
i , which is smaller than b∗κ. Therefore,

there is an excess task size at the κth device be
κ = b∗κ − b+

κ , which can not be uploaded,

and must be re-allocated for processing among other offloading destinations. As in (5.16),

we equally re-allocate this excess task size among the ith active device and its remaining

offloading destinations whose indices are in the set Ki − {κ}. However, it is likely that

increasing the task sizes at those destinations under fixed transmit power p∗ may increase

the task uploading time enough to violate constraint (5.12d). Therefore, we continue re-

allocating the task sizes b∗i ∀i ∈ I until constraint (5.12d) is satisfied by all active devices.

Once the feasible task partitioning is obtained with respect to p∗, we can then calculate the

computation resources f∗ for the corresponding new task sizes as in (5.13) and (5.14). The

overall heuristic resource initialization strategy is given in Algorithm 5.2.

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 86

Algorithm 5.2 Initial Resource Allocation

1: Calculate b∗ and p∗ based on (5.16) and (5.17)

2: for i ∈ I do

3: Assign a temporary set Ki = Ki
4: Calculate tup∗

κ = b∗κ
R∗κ
,∀κ ∈ Ki

5: if tup∗
κ > tmax

i ,∀κ ∈ Ki then

6: Set tup∗
κ = αtmax

i and update b∗κ as b+
κ = R∗καt

max
i

7: Calculate the excess task size be
κ = b∗κ − b+

κ

8: Update Ki ← Ki − {κ} to partition be
κ

9: b+
i = b∗i + beκ

|Ki|+1

10: b+
κ = b∗κ + beκ

|Ki|+1
∀κ ∈ Ki

11: Update b∗i ← b+
i then calculate tup∗

κ ,∀κ ∈ Ki
12: Go to line 5

13: end

14: end

15: Calculate f∗ by using b∗ and p∗ based on (5.13) and (5.14)

5.4.2 Re-allocating the Excess Resources

After running Algorithm 5.2, the offloaded tasks at the ES may not be processed if the total

required computation resources exceed the maximum limit ‖f∗0‖1 > fmax
0 . In that case, the

surplus task sizes at the ES are re-allocated to the other offloading destinations. To determine

what should be removed from the ES, we introduce the vector r whose elements are inversely

proportional to the amount of the computation resources that should be allocated to the ES

for the corresponding task sizes b∗i0,∀i ∈ I:

r =
r∗

‖r∗‖1

(5.18)

where r∗ = ‖f∗0‖11−f∗0. By using r, we can calculate the new allocated computation resources

at the ES by removing the excess resources as follows:

f+
0 = f∗0 − f er (5.19)

where f e = ‖f∗0‖1 − fmax
0 , with f∗0 = [f ∗10 f

∗
20 . . . f ∗I0]>, contains the excess computation

resources at the ES. Note that f+
0 in (5.19) not only satisfies constraint (5.9c), but also each

element f+
i0 , i ∈ I of f+

0 is still proportional to the amount of task sizes of the active devices,

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 87

which is important in terms of reducing the energy consumption as shown in Appendix E.

Finally, we obtain the task sizes that should be left at the ES based on f+
0 . Specifically,

given the data rate R∗i0, we calculate the new task size to be offloaded to the ES from the

ith device by using (5.5) and (5.6) as follows:

b+
i0 =

R∗i0f
+
i0t

max
i

f+
i0 + ciR∗i0

, ∀i ∈ I (5.20)

Nevertheless, if the amount of subtracted computation resources surpasses the previously

allocated resources by the ES, then some of the elements of f+
0 in (5.19) might become

negative, which by definition is not possible. Therefore, in the case of negative f+
i0 for any

i ∈ I, constraint (5.9c) remains violated since the excess resource f e could not be properly

removed from f∗0.

In Algorithm 5.3, we present an iterative strategy to address the above issue and re-

allocate the resources in by properly removing the excess computation resource f e until it

becomes zero. Specifically, in line 2, we first calculate the excess computation resources to

obtain f+
0 (5.19), which is the new allocated computation resources by the ES to not violate

constraint (5.9c). If f+
i0 ≥ 0,∀i ∈ I, we can directly determine the corresponding task sizes

that can be uploaded to the ES b+
i0, ∀i ∈ I (5.20) based on f+

0 as given in line 15. Then,

the excess task size be
i , which cannot be processed at the ES, is re-allocated among all the

offloading destinations of the ith device except the ES ∀i ∈ I as given by lines 16 and 17. If

the new task uploading time exceeds the deadline, i.e., b+κ
R∗κ

> tmax
i , as controlled in line 18,

we run lines 5-13 in Algorithm 5.2 without (w/o) line 15 as it is now redundant. Hence, we

obtain the final task splitting decision of the ith device by b+
i = [b+

i b+
i0 b

+
i1 ... b

+
iK]> to form

b+. However, if f+
i0 < 0 in f+

0 for any i ∈ I, we first take its absolute value and add it to

the remaining excess resource f e to be removed in the next iterations as it is not properly

removed from the resources that the ES initially allocated while obtaining f+
0 in line 2. This

emphasizes that the active devices whose corresponding computation resources allocated by

the ES becomes negative cannot utilize the ES for task offloading anymore. Hence, we set

f+
i0 = 0 if f+

i0 < 0, i ∈ I as given in 6. Since those devices are not utilizing the ES, their

initial allocated transmit power, i.e., P ∗i0, for the ES also becomes redundant. Therefore, we

should re-allocate the transmit powers of these active devices among their other offloading

destinations as given in line 8 by setting the 1st element of hi to zero and using (5.17). Then,

in line 10, we replace f∗0 with f+
0 to be used in the next iteration in the case of f e 6= 0. Thus,

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 88

Algorithm 5.3 recursively continues in this manner until f e = 0 and obtains f+
0 , which are the

new computation resources allocated by the ES without violating constraint (5.9c). Finally,

it outputs the new task splitting decisions b+, hence, we can calculate the corresponding

computation resources f+ as in (5.13) and (5.14) by using b+ and p∗.

Algorithm 5.3 Re-allocating Resources

1: if ‖f∗0‖1 > fmax
0 then

2: Calculate f e = ‖f∗0‖1 − fmax
0 and r (5.18) to obtain f+

0 (5.19)

3: Reset f e = 0

4: if f+
i0 < 0, i ∈ I then

5: Update f e ← f e + |f+
i0 |

6: Set f+
i0 = 0

7: Set the ith element of r∗ to 0

8: Set the 1st element of hi to 0 and re-calculate p∗i (5.17)

9: end

10: Replace the previous allocation f∗0 ← f+
0

11: if f e 6= 0 then

12: Re-calculate r (5.18) to obtain new f+
0 based on f∗0 (5.19)

13: Go to line 3

14: end

15: Based on f+
0 , obtain b+

i0, ∀i ∈ I (5.20)

16: Calculate the excess task size be
i = b∗i0 − b+

i0, ∀i ∈ I
17: Re-allocate be

i among Ki = Ki − {0},∀i ∈ I for b+

b+
i = b∗i +

bei
|Ki|+1

, ∀i ∈ I
b+
κ = b∗κ +

bei
|Ki|+1

, κ ∈ Ki,∀i ∈ I
18: if b+κ

R∗κ
> tmax

i , κ ∈ Ki,∀i ∈ I then

19: Update b∗i ← b+
i

20: Run lines 4-13 in Algorithm 5.2 w/o line 15

21: Update b+
i ← b∗i

22: end

23: Calculate f+ by using b+ and p∗ based on (5.13) and (5.14)

24: end

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 89

5.4.3 Complexity Analysis

We sequentially calculate the required operations, which are only real multiplications and

real additions, throughout the proposed heuristic method. For simplicity, we assume that

the maximum number of task offloading destinations for any ith device is |Ki| = K. First,

we consider Algorithm 5.2, which takes I(K + 1) and I(5K + 1) operations for (5.16) and

(5.17), respectively. Note that the data rates R∗κ, ∀κ ∈ Ki can be obtained in advance, which

requires 4K operations ∀i ∈ I, hence, line 4 requires only K operations. Assuming the if

condition between the lines 5 and 13 is repeated ∀κ ∈ Ki, we have 2K2 + 5K operations.

Furthermore, line 15 takes 3K + 2 operations and repeating all these operations I times

yields the time complexity of Algorithm 5.2 as O(IK2 + IK).

Second, we consider Algorithm 5.3 and begin with line 2 by calculating f e, r (5.18), and

f+
0 (5.19), which take I + 1, 3I and 2I operations, respectively. Then, assuming lines 4-14

are repeated for every active device, we have 5I2 + 5IK + 2I operations. The rest of the

required operations from line 15 to line 17 are 10I + 3K and from line 18 to line 20 are

2K2 + 5K. Hence, the time complexity of Algorithm 5.3 is O(I2 +K2 + IK).

Finally, the overall time complexity of the proposed heuristic method is O(IK2+I2+K2).

5.5 Simulation Results

In this section, we compare both the convex-programming method and the heuristic method

to the lower-bound on the total energy consumption given in Appendix E through Monte-

Carlo simulations under various conditions such as the number of active and fog devices, task

sizes, time constraints, and computation resources. For the network layout, we uniformly

distribute the active device (AD)s within a 500×500 m2 area and the fog device (FD)s are

placed on a disk with a radius of 15m centered at an active device. We consider independent

Rayleigh fading channels between the devices and we use the following path loss models for

the cellular wireless links between ADs and the BS, PLcell = 128.1 + 37.6 log10(d), and for

the D2D links between ADs and FDs, PLD2D = 148 + 40log10(d), where d is the distance

in km [139]. At each simulation run, the task size di, ∀i ∈ I is chosen from a uniform

distribution U(2 × 104, 4 × 105) and the maximum computation capability of the ES fmax
0

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 90

is selected based on:

fmax
0 = E

[∑
i∈I

f opt
i

]
× η (5.21)

where f opt
i is obtained from Appendix E and η ∈ [0 1] is a scaling term of fmax

0 . The reason

behind choosing fmax
0 as such instead of fixing it a pre-defined value is to make sure that

condition (5.9c) in the original problem is effective and challenging its solution. Therefore, by

changing fmax
0 in a controlled manner as in (5.21), we ensure that problem P3 and Algorithm

5.3 must be employed in the simulations for both proposed methods. To this end, we choose

η = 0.8 to reduce fmax
0 for 20% of the total required computation resources on average in

the optimum scenario given in Appendix E. The rest of the system parameters are given in

Table 5.1 unless otherwise is specified.

Table 5.1. System parameters

Parameter Description Symbol Value

Network size - 500×500 m2

Max. radius of a D2D link - 25 m

Number of active devices I {2 3 . . . 12}
Number of fog devices K {0 1 . . . 5}
Task size di [2×104, 4×105] bits

CPU cycles to process 1-bit data ci 1500 cycles/bit

Effective capacitance constant µ 10−24 Ws3

Scaling term for fmax
0 η 0.8

Limiting term for task uploading time α 0.85

Max. computation capability at the ES fmax
0 [0.2, 1.5] GHz

Max. transmit power Pmax [0, 200] mW

Task processing deadline tmax
i [0.4, 1] s

Noise level N0 −114 dBm

Channel bandwidth W 10 MHz

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 91

In Fig. 5.2, we investigate the total energy consumption as a function of the num-

ber of ADs, where I ∈ {2 4 . . . 12} and the number of FDs follows K ∈ {0 1 3 5}.
As the number of ADs changes, we set the computation capability of the ES to fmax

0 ∈
{0.25 0.51 0.77 1.03 1.27 1.53} in GHz, which is calculated based on (5.21). We compare

both proposed methods to their corresponding lower bound on the total energy consumption

obtained in Appendix E. It can be shown that by incorporating D2D communications in the

task offloading process, computing a similar task on average takes less energy with the help

of each additional fog device compared to utilizing only the ES.

Fig. 5.2. Total energy consumption versus different number of ADs while tmax
i = 1 ∀i ∈ I and Pmax = 100.

We note that the performance of both proposed methods starts deviating from the lower

bound as the number of FDs increases in a considered scenario. This performance gap

happens due to two reasons. First, under the limited computation capability of the ES, task

partitioning cannot be as equal among the offloading destinations as in the lower bound in

Appendix E. Second, under the finite data rates and transmit powers, more computation

resources must be allocated as opposed to the lower bound in Appendix E to compensate

the task uploading time in order to meet constraints (5.9e) and (5.9f). Therefore, to validate

these explanations and show that the proposed methods achieve near-optimal performance,

we individually investigate them.

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 92

(a) ES capacity: fmax
0 = 0.2 GHz

(b) ES capacity: fmax
0 = 0.4 GHz

(c) ES capacity: fmax
0 = 0.8 GHz

Fig. 5.3. Utilization of the offloading destinations in percentage under different computation capability of
the ES.

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 93

To validate the first explanation, in Fig. 5.3 we observe the effect of fmax
0 to the total

energy consumption by plotting the utilization of the offloading destinations in percentage

for a given task under various values of fmax
0 . We set fmax

0 ∈ {.2 .4 .8}GHz, which are pre-

defined values and not calculated based on (5.21), while we choose I = 5, |Ki| ∈ {0, 1}, i.e.,

the ES and a single fog device, and tmax
i = 1 ∀i ∈ I. If both the convex-programming method

and the heuristic method distribute the tasks as equal as possible subject to the constraints,

then we show that the proposed methods can approach to the optimal solution given as the

lower-bound. In Fig. 5.3a, when fmax
0 is 0.2 GHz, the utilization of the ES by the devices

is limited, but the tasks are distributed equally for local and fog computing. However the

performance deviations in terms of the total energy consumption of the convex-programming

and the heuristic method from the lower bound are 43% and 65%, respectively. When the

limitation of fmax
0 is gradually removed by choosing fmax

0 = 0.4GHz as in Fig. 5.3b, the

participation of the ES for task offloading increases, which reduces the performance gap to

1% for the convex-programming and 19% for the heuristic method. Finally, when there

is no resource limitation at the ES (relatively to task sizes and the number of devices in

the network), both proposed methods achieve near-optimal solution, where the performance

deviations are only 0.13% and 1%, respectively.

Fig. 5.4. Total energy consumption versus maximum computation capability of the ES, i.e., fmax
0 .

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 94

To validate the second explanation, we study the effect of fmax
0 in Fig. 5.4 while changing

the number of FDs, hence, the limitation of data rates and transmit powers on the proposed

methods can be investigated. We assume that the number of ADs is 6 and we increase

fmax
0 as in the figure. When the computation capability of the ES is fmax

0 = 0.2GHz, the

performance gap for both proposed methods in the case of utilizing only the ES (black line)

is significantly higher compared to incorporating a single FD (blue line) as the limitation of

fmax
0 is being compensated with the additional computation resources at the FD. However, for

values of fmax
0 higher than = 0.6GHz, the effect of fmax

0 almost disappears and both proposed

methods approach to near-optimal solution for these two scenarios. Nonetheless, with the

addition of one more FD (red line), a constant offset appears between the performance of

the proposed methods and the lower bound, which is a direct indication of requiring more

computation resources by the devices to compensate the task uploading time under the

limited data rates and transmit powers. Therefore, we numerically demonstrated that both

proposed methods achieve a near-optimal solution and the performance gaps occur due to

the physical limitations in the considered scenarios and not their implementation.

Fig. 5.5. Total energy consumption versus different maximum time constraints, i.e., tmax
i ∈ [0.4, 1] ∀i ∈ I,

while I = 6 and Pmax = 100.

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 95

In Fig. 5.5, we plot the change in the total energy consumption with respect to the

task processing deadline. Similar to the result in Fig. 5.4, as tmax
i ∀i ∈ I decreases, more

computation resources must be allocated by the devices to process the offloaded tasks within

the given deadline, and consequently, the total energy consumption increases. However, it

can be also verified that both the convex-programming method and the heuristic method in

the case of utilizing only the ES or a single FD achieve a near-optimal performance regardless

of the task processing deadline, which again demonstrates that the performance gaps are the

direct indications of the physical limitations imposed by the constraints.

Fig. 5.6. Total energy consumption with respect to different number of ADs and IDs while tmax
i = 1 and

Pmax = 100.

In Fig. 5.6, we study the total energy consumption with respect to the change in the

number of fog devices, where K ∈ {0 1 . . . 5} and I ∈ {1 3 5}. Similar to Fig. 5.2, the

computation capability of the ES is determined based on (5.21) as the number of devices in

the network change in each simulation run. It is shown that by increasing the number of

fog devices in the task offloading process, the total energy consumption can be significantly

decreased. Specifically, it takes ten times less energy to compute a similar task on average

with the help of 5 FDs via D2D links instead of utilizing only the ES. Nevertheless, the total

energy consumption is higher in the case of 1 AD compared to the case of 5 ADs and 5

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 96

FDs. This shows that taking a computation-intensive task off a single device and effectively

partitioning it across all the available computation resources can significantly reduce the

overall energy consumption even though more devices are involved in the task offloading

process.

Fig. 5.7. Total energy consumption versus task size under different number of offloading devices and com-
putation capability of the ES, i.e., |Ki| ∈ {0, 1} and fmax

0 ∈ {108, 109}, respectively.

In Fig. 5.7, we study the change in the total energy consumption with respect to the dif-

ferent task sizes. The number of ADs is set to 5 while there is only a single FD. In addition, we

set the available computation resource of the ES to pre-defined values as fmax
0 ∈ {108, 109}.

It is shown that when the task size is 400kbits, there is a drastic increase in the total

energy consumption if D2D communication is not used for task offloading, especially when

fmax
0 = 108Hz. On the contrary, by employing only a single FD in the task offloading process,

the total energy consumption decreases by almost 5 times. More importantly, the change in

the total energy consumption with fmax
0 = 108Hz and fmax

0 = 109Hz is relatively small when

compared to utilizing only the ES. Hence, we can conclude that by incorporating D2D com-

munication and exploiting nearby computation resources, we can alleviate the dependence

on the ES, which is crucial when the traffic density is high and the available resources are

scarce in the network.

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 97

Finally, we compare the average run-time of both proposed methods implemented in

MATLAB and executed on an Intel i7-3770 computer with 16GB RAM. For the first com-

parison, we assume only one AD and three FDs while changing the task processing deadline

from 0.4 to 1 second as presented in Table 5.2. Even though the proposed convex pro-

gramming method slightly outperforms the heuristic one in terms of energy efficiency as

demonstrated earlier, its average run-time is significantly higher. For the second comparison

as shown in Table 5.3, we include three more ADs to the network while keeping the number

of FDs the same. For tmax = 0.4s, the average run time of our heuristic method is almost

2x104 times less than the convex programming method. This indicates that the proposed

heuristic method becomes more beneficial especially for scenarios with increased network

capacity and data traffic.

Table 5.2. Average run-time comparison when I = 1 and J = 3

Simulation setup Convex Prog. Heuristic

tmax = 0.4 s 0.145 s 97.1 µs

tmax = 0.6 s 0.135 s 95.4 µs

tmax = 0.8 s 0.131 s 95.1 µs

tmax = 1s 0.129 s 94.5 µs

Table 5.3. Average run-time comparison when I = 5 and J = 3

Simulation setup Convex Prog. Heuristic

tmax = 0.4 s 3.015 s 0.156 ms

tmax = 0.6 s 2.602 s 0.156 ms

tmax = 0.8 s 2.331 s 0.154 ms

tmax = 1s 2.206 s 0.154 ms

5 Energy-Efficient Resource Allocation for D2D-aided Fog Computing 98

5.6 Conclusion

In this chapter, we addressed the energy-efficient resource allocation problem in a general-

ized multi-device D2D-aided fog computing scenario, wherein a central ES and proximate

fog devices are utilized for task offloading. Since the formulated problem is intractable, we

first analyzed it to develop a sub-optimal convex-programming based method, in which the

computation resources, task sizes and the transmit powers are allocated to reduce the to-

tal energy consumption in the network. Then, based on this first method, we developed a

heuristic task offloading method, which does not require computing gradients and Hessian

matrices during the solution process. We showed in detail the computational complexity of

this method in terms of key system parameters, including the number of mobile devices and

task offloading destinations. Finally, we developed a lower bound on the total energy con-

sumption as a performance benchmark for both the convex-programming and the heuristic

methods. The computer simulations demonstrated that the proposed methods significantly

reduce the total energy consumption compared to processing tasks only locally while attain-

ing near-optimal solutions in comparison to the derived lower bound.

99

Chapter 6

Conclusion

In this chapter, we first present a detailed summary of the thesis and then discuss some

possible research directions that can emerge as future works.

6.1 Summary

D2D communication is a promising technology to be part of 5G and B5G networks by

allowing proximate devices to opportunistically establish P2P connections. Naturally, this

type of communication technology significantly reduces end-to-end delays, traffic loads and

total overheads at base stations while providing high data rates and ultra-low latency that are

extremely beneficial for many use cases such as mission critical operations for public safety. In

the events of cellular network outage, e.g., natural disasters, D2D communication, especially

the out-of-coverage network setting, in which the proximate devices can communicate to each

other without coordination of a centralized node, can offer fast localization and intervention.

In addition to public safety applications, D2D communication can also be integrated in

numerous non-public safety applications such as smart home technologies, augmented reality

and online gaming, local advertising, and task offloading. However, implementing realistic,

reliable, and energy-efficient D2D communication poses several difficulties of its own. To this

end, in this thesis, we addressed two of the most fundamental problems on the realization

of D2D communications, namely, synchronization and resource allocation.

In Chapter 3, we addressed a clock synchronization problem in distributed D2D networks

by considering the following challenges. First, the duplexing scheme, i.e., full-duplex or half-

6 Conclusion 100

duplex, can drastically change the synchronization time as full-duplex allows simultaneous

signal transmission and reception. However, full-duplex technology is not practical yet, es-

pecially for commercial hand-held mobile devices. Second, the physical phenomenon called

clock skew arbitrarily leads device clocks to lag or advance in time with respect to each

other, hence, become asynchronous even though the clocks are initially synchronized. Third,

multipath channels introduce propagation delays, which lead to additional synchronization

error at every signal exchange. Thus, a proactive action, i.e., timing-advance synchroniza-

tion, is required to mitigate the effect of propagation delays. In addition, by considering

the nature of D2D networks, where devices arbitrarily join or leave the network and can

distort the ongoing synchronization process, a synchronization algorithm should be flexible

and robust to accommodate dynamic device numbers. Finally, synchronized devices should

be able to terminate the synchronization process, ideally at the same time, to initiate data

communication while maintaining the achieved synchronization state. In this regard, to

address all these aforementioned issues, we developed a half-duplex timing-advance synchro-

nization algorithm wherein each device becomes a transmitter and receiver in its exchange

of synchronization pulses at each clock period. Then, in light of this algorithm, we proposed

a novel fully-distributed pulse-based synchronization protocol for half-duplex D2D commu-

nications. The proposed protocol achieves distributed devices to become aware of the global

synchronization status to be able to initiate data communication. In addition, synchronized

devices, which might not need to participate in data communication, can become idle to

conserve energy while maintaining the synchronization with respect to the rest of the net-

work. The simulation results demonstrated that the proposed protocol not only achieves fast

synchronization in comparison to a benchmark from the literature but also compensates for

possible perturbations and performs well over a wide range of conditions such as multi-path

frequency selective channels, clock skew, dynamic number of devices, and different network

topology.

After resolving the synchronization problem by implementing the full-fledged synchro-

nization protocol, in Chapter 4, we considered D2D communications as an enabling tech-

nology for a fog computing framework to develop an energy-efficient task offloading scheme.

In comparison to Cloud computing and MEC, fog computing can significantly reduce end-

to-end delays and total overheads in the network, and in turn, provide energy efficiency

when processing computation-intensive tasks that require ultra-low latency. However, high

6 Conclusion 101

operating temperatures while processing such tasks may lead to random CPU throttling on

mobile device due to DTM, which controls the on-chip temperature by lowering the volt-

age and frequency of CPUs. Consequently, task completion time become random, which

negatively impacts the task offloading performance. To this end, we considered the opti-

mal resource allocation problem with respect to task partitioning, computation resources

and transmit power, to minimize the expected total energy consumption under probabilistic

constraints on the processing time. However, the formulated problem is nonconvex and its

optimal solution is generally intractable, hence, we proposed two sub-optimal methods to effi-

ciently solve this problem. In the first method, we adopted DC programming combined with

chance-constraint programming to obtain the deterministic equivalents of the probabilistic

constraints. Since the performance of DC programming depends on a good initial point,

we proposed a second method, which relies only on convex programming and eliminates the

user defined initialization. Similar to the first method, chance-constraint programming was

merged into the convex programming to handle the probabilistic constraints. The computer

simulations demonstrated that both methods significantly reduce total energy consumption

in comparison to processing tasks locally.

In Chapter 5, we considered a more general task offloading scenario compared to Chapter

4, in which multiple devices can offload their tasks to nearby fog devices via D2D links and to

a centralized ES. Since an ES has more computation resources relative to fog devices, it can

process more tasks simultaneously, which can increase the overall energy efficiency. However,

network traffic and wireless channel conditions may limit its utilization and affect the task

offloading performance. On the contrary, D2D-aided fog computing can significantly reduce

the task uploading time by leveraging the close proximity of fog devices, hence, mitigate

energy consumption. In this regard, we addressed the optimal resource allocation problem

in the considered multi-device D2D-assisted fog computing scenario to minimize the total

energy consumption subject to the constraints on transmit powers, computation resources

and task processing times. Since the formulated problem is nonconvex, we proposed two

sub-optimal methods. In the first method, we initially analyzed the original problem and

then showed that it can be relaxed into sequence of convex sub-problems, whose solutions

can be efficiently obtained by using the convex optimization theory. In light of this first

method, we proposed a second method, which depends only on a low-complexity heuristic

resource allocation strategy to avoid costly calculations of gradients and Hessian matrices

6 Conclusion 102

in the solution process. We also showed in detail the computational complexity of this

method in terms of key system parameters such as the number of mobile devices and task

offloading destinations. Finally, we derived a lower-bound on the total energy consumption

as a benchmark to compare the performance of the proposed methods. The simulation results

showed that both methods achieve a near-optimal solution in terms of energy efficiency. In

what follows we present some future work that may extend our research.

6.2 Future Works

Although in this thesis we addressed some of the fundamental and practical challenges upon

implementing D2D communications, future research may provide additional merits by con-

sidering the following aspects.

First, as opposed to Chapter 3, where we consider a clock synchronization problem in sta-

tionary networks and assume time-invariant channels, achieving distributed synchronization

subject to time-varying channels can be investigated. In the case of high device mobility,

the coherence time and the assumption of time-invariant channels may no longer be valid

due to Doppler effects. Consequently, the performance of pulse-based clock synchronization

will be diminished due to the additional CFO as well as the effect of time varying channels,

i.e., hij(τ, t) =
∑

p∈P ρijp(t)δ(t− τijp(t)), i ∈ Tν j ∈ Jν as they introduce time varying prop-

agation delays to received signals. Even though the proposed Alternating Transceiver Mode

algorithm in Section 3.3.1 would eliminate the randomness that is introduced to received

synchronization signals due to arbitrarily choosing synchronization signal broadcasters, the

bias term βj[ν] in Section 3.13 would be time-varying, i.e, βj[ν, t]. Therefore, future research

might focus on developing an adaptive-bias tracking algorithm to eliminate the effect of

time dependent bias. Hereafter, a similar timing-advance based synchronization protocol

can be investigated to allow devices to first synchronize themselves and then proceed to data

communication. In addition, maintaining the achieved synchronization in such a scenario

also poses several practical issues as synchronization is not only deteriorating due to clock

skew but also due to the mobility of devices. Hence, more frequent re-initialization of the

synchronization process might be needed among the synchronized devices. Consequently, in

comparison to the proposed synchronization protocol, which lets synchronized devices stay

idle and passively maintain synchronization as much as clock skew allows, future research

6 Conclusion 103

should put more emphasis on energy efficiency.

Second, compared to the assumption of deterministic task arrival during task offloading

in Chapter 4 and Chapter 5, future research may extend the resource allocation problem by

including randomness in task arrival during task offloading. In this way, the optimal resource

allocation strategy should take the expected task sizes into account while allocating the lim-

ited computation resources. Moreover, future research may investigate the effect of imperfect

Channel State Information (CSI) in task offloading by assuming the full channel properties

are not available at the devices, hence, task uploading time becomes random. Also, similar

to Fig. 3.1, fog computing in a partial mesh topology with dynamic network size, where

devices arbitrarily join or leave the network, can be investigated. In such a scenario, one or

more fog devices can be utilized for task offloading by multiple active devices simultaneously.

Hence, such a task offloading framework should seamlessly adapt to the change in the avail-

ability of computation resources, which imposes the total computation capability of devices

to be random. Finally, adaptive resource allocation and device association problems in a

task offloading scenario can be jointly addressed by considering mobile networks with high

mobility, wherein an efficient hand-off strategy can be investigated for device discovery.

104

Appendix A

Reduction of TO in Multi-Device

Setting

We consider distributed multi-device pulse-based synchronization over multipath channels

with half-duplex technology. Consequently, there is no single timing reference for the clocks

of the devices to converge to. Therefore, we analyze the reduction of timing offset, which

is interpreted as the synchronization error by the devices. We assume each device runs the

proposed protocol and, based on Algorithm 3.1, the devices keep alternating their transceiver

mode at each clock tick ν after initialization. We will use the index j to denote a receiver

device at clock tick ν and i to denote a transmitter device. These devices become transmitters

and receivers, respectively, at the next clock tick, i.e., j ∈ Rν = Tν+1 and i ∈ Tν = Rν+1.

We further assume that the network remains constant, i.e., no new devices join or leave the

network, and channels are time-invariant. Therefore, the cardinality of the sets is |Tν | = T

and |Rν | = R. For simplicity of the analysis and with no loss of generality, we assume that

the signal contributions are coming from the same time slot of the receiver. Hence, we have

η = ν and the set of pairs formed by the index of transmitter devices and the path indices

contributing to the received signal of the jth receiver device becomes Dν,νj . In addition, we

use the superscript T and R on the device clock models to indicate their transceiver mode

at the corresponding clock ticks. Thus, in the high SNR region, the weighted average TO

estimate over multipath channels at the device j ∈ Rν equals to:

∆̂tj[ν] =
∑

(i,p)∈Dν,νj

µijp
(
tTi [ν] + τijp

)
− tRj [ν]. (A.1)

A Reduction of TO in Multi-Device Setting 105

For the ith device ∆̂ti[ν + 1] can be defined similarly. Then, the average TO estimate of the

jth device when it becomes a receiver again is given as follows:

∆̂tj [ν + 2] =
∑

(i,p)∈Dν+2,ν+2
j

µijp
(
tTi [ν + 2] + τijp

)
− tRj [ν + 2]

=
∑

(i,p)∈Dν+2,ν+2
j

µijp
(
tRi [ν+1]+αiT0−2β̂i[ν+1]+∆̂ti[ν+1]

+τijp
)
−tTj [ν+1]−αjT0

=
∑

(i,p)∈Dν+2,ν+2
j

µijp
(
tTi [ν]+2αiT0−2β̂i[ν+1]+∆̂ti[ν+1]

+τijp
)
−tRj [ν]−2αjT0 +2β̂j [ν]−∆̂tj [ν] (A.2)

where tTi [ν + 2] and tRj [ν + 2] are obtained from (3.15) and (3.11) at the clock tick (ν + 1),

respectively, knowing that the receiver device becomes transmitter and vice versa (cf. Section

3.3.1). We have Dν,νj = Dν+2,ν+2
j , and using (A.1), the weighted average TO estimate in (A.2)

is further simplified to:

∆̂tj[ν + 2] =
∑

(i,p)∈Dν+2,ν+2
j

µijp
(
∆̂ti[ν + 1]− 2β̂i[ν + 1] + 2αiT0

)
+ 2β̂j[ν]− 2αjT0 (A.3)

Similarly, the weighted average TO estimate at the ith device is:

∆̂ti[ν + 3] =
∑

(j,p)∈Dν+3,ν+3
i

µijp
(
∆̂tj[ν + 2]− 2β̂j[ν + 2] + 2αjT0

)
+ 2β̂i[ν + 1]− 2αiT0 (A.4)

where it is simplified as in (A.3) by using ∆̂ti[ν + 1] and for the sets Dν+1,ν+1
i = Dν+3,ν+3

i .

To track the error at the devices when they are receivers, we can generalize (A.3) for the

device j ∈ Rν as follows:

y[ν]=W
(
x[ν−1]− 2r[ν−1] + 2aT0

)
+ 2p[ν−2]− 2bT0 (A.5)

whereas the generalization of (A.4) for the device i ∈ Rν+1 is given as:

x[ν+1] = V
(
y[ν]− 2p[ν] + 2bT0

)
+ 2r[ν−1]− 2aT0 (A.6)

A Reduction of TO in Multi-Device Setting 106

where y[ν] and x[ν + 1] are the vectors that contain the weighted average TO estimates of

the receiver devices in the sets Rν and Rν+1, respectively. Here, the notation [·]> is the

transpose of a vector. In addition, W and V are the matrices with compatible dimensions

that contain the normalized channel weights of the jth and the ith devices, i.e., µijp and

µjip, respectively. Note that the row sums of W and V are normalized to one and since their

product is a square matrix, it becomes a right stochastic matrix [140]. This feature will be

used later in the proof. Furthermore, p[ν] and b are the vectors that contain the biases and

clock skews of the devices in Rν , whereas r[ν − 1] and a are the vectors that contain the

biases and clock skews of the devices in Rν−1.

For simplicity of the analysis, we assume fixed step sizes as in (3.16), hence, online bias

estimates are generalized for both j ∈ Rν and i ∈ Rν+1 as follows:

p[ν] = p[ν − 2] + m� sgn(y[ν − 2])

r[ν + 1] = r[ν − 1] + n� sgn([x[ν − 1]) (A.7)

where � is the Hadamard product, m and n are the vectors with compatible lengths, which

contain the step sizes of the jth and the ith devices in the sets Rν and Rν+1, respectively,

To continue the analysis, we assume that the synchronization error of each device is

greater than the synchronization threshold chosen in the network, i.e., |y[ν]| > λsync and

|x[ν + 1]| > λsync, where the absolute values and comparisons are element-wise. In other

words, C1 is satisfied, hence, the devices should try to decrease their errors until C1 is

satisfied, where they stop updating their bias estimates and maintain the reduced error

level.

In order to show the reduction in absolute value of the synchronization error, we compare

the weighted average TO estimates at two consecutive clock ticks, i.e., |y[ν + 2]| and |y[ν]|
as ν increases. Hence, by using (A.6) in (A.5) at the (ν + 2)th clock tick, we obtain the

following:

y[ν + 2] = W
(
x[ν + 1]− 2r[ν + 1] + 2aT0

)
+ 2p[ν]− 2bT0

= WVy[ν]−2(WV−I)p[ν]−2Wn�sgn(x[ν−1])

+2(WV−I)bT0 (A.8)

where I is the identity matrix with compatible size. By subtracting y[ν] from the both sides,

A Reduction of TO in Multi-Device Setting 107

we further obtain:

y[ν + 2] = y[ν] +
(
WV−I

) q[ν]︷ ︸︸ ︷(
y[ν]− 2p[ν] + 2bT0

)
(A.9)

+ 2W
(
r[ν − 1]− r[ν + 1]

)
= y[ν]+

(
WV−I

)
q[ν]−2Wn�sgn(x[ν−1]).

The multiplication of (WV−I), which is a zero row-sum matrix, with a vector that has

identical elements yields a zero vector. In this case, if all the elements in q[ν] approaches

the same values as ν increases, then (WV−I)q[ν]→ 0, which is a zero vector. In order to

prove that, we can re-arrange q[ν] by using (A.5) and (A.6) through recursive iterations as

follows:

q[ν] =

q1[ν]︷ ︸︸ ︷
WVWV

q2[ν]︷ ︸︸ ︷(
y[ν − 4]− 2p[ν − 4] + 2bT0

)
− 2WVWm� sgn(x[ν − 5])

− 2WVn� sgn(y[ν − 4])

− 2Wm� sgn(x[ν − 3])

− 2n� sgn(y[ν − 2]) (A.10)

Note that by multiplying the same stochastic matrices recursively, i.e., WVWV..., we obtain

a right stochastic matrix that has identical elements in each column. Then, multiplication

of WVWVq2[ν] = q1[ν] ≈
[
q1[ν], q1[ν], ..., q1[ν]

]>
approximates a vector that has identical

elements. Thus,
(
WV− I

)
q1[ν] ≈ 0. In addition, the remaining terms in q[ν] include

the fixed step sizes, which are the same for each device, and the sign of the error remains

unchanged1. Therefore, they can be re-arranged such that -2(WV − I)z = 0, where z =

Wm� sgn(x[ν−5]) = Wm� sgn(x[ν−3]). Hence, we can conclude that (WV−I)q[ν]→ 0

as ν increases and we left with the following:

y[ν + 2] = y[ν]−2Wn�sgn(x[ν−1]) (A.11)

Note that sign of y[ν] is dominated by Wx[ν − 1] as given in (A.5). Then, sgn(y[ν]) =

sgn(Wx[ν−1]), or equivalently sgn(x[ν−1]) = sgn(W†y[ν]), where W† is the pseudo-inverse

1Synchronization error must be decreased to zero before changing its sign.

A Reduction of TO in Multi-Device Setting 108

of W. By multiplying both sides in (A.11) with W†, we obtain the following:

y′[ν + 2] = y′[ν]−2n�sgn(y′[ν]) (A.12)

where y′[ν] = W†y[ν]. Since the step-sizes are always positive, we can conclude that the

quantity in (A.12) is reducing by 2n at each clock tick. In other words, the synchronization

error decreases in absolute value, that is |y′[ν+ 2]| < |y′[ν]|, where the vectors are compared

element-wise.

Finally, when the desired synchronization error is achieved, i.e., C1 is satisfied, the

devices switch to Fixed Bias State, hence, stop updating their bias estimates. In this

case, r[ν + 1] = r[ν − 1] or equivalently the term n � sgn(x[ν − 1]) is no longer present in

(A.7). Hence, from (A.11), we can conclude that the synchronization errors are reached a

steady-state level that is smaller than or equal to the pre-defined synchronization error, i.e.,

y[ν + 2] = y[ν] ≤ λsync as ν →∞.

109

Appendix B

Rate of TO Reduction

We consider a simplified scenario consisting of two devices labeled as D1 and D2 communi-

cating over a flat reciprocal channel with propagation delay τ . We assume that the devices

follow the alternating transceiver mode and based on ptr, D1 operates as a transmitter,

whereas D2 is a receiver at the νth clock tick. We further assume that the relative clock

skew is negligible, i.e., ∆α12 = α1 − α2 = 0. Hence, the first TO estimate of D2 is equal

to ∆̂t12[ν] = t1[ν] − t2[ν] + τ . However, ∆̂t12[ν] is the initialization error due to misaligned

clock phases. To observe the effect of the protocol, we consider the next TO estimate of D2,

which occurs at the (ν + 2)th clock tick (see Section 3.3.1) as follows:

∆̂t12[ν+2] = t1[ν + 2]− t2[ν + 2] + τ

= t1[ν+1]+α1T0 +∆̂t21[ν+1]−2β̂1[ν+1]

−t2[ν+1]−α2T0 +τ

= t1[ν+1]−t2[ν+1]−τ+∆̂t21[ν+1]+2τ−2β̂1[ν+1]

= 2(τ − β̂1[ν + 1]) (B.1)

Note that the corresponding clock simplifications, i.e., t1[ν + 2] and t2[ν + 2], are derived

respectively from (3.11) and (3.15) for a transmitter and a receiver device when ε = 1. We

further note that β̂1[ν + 1] = β̂init and without loss in generality, we assume ∆̂t12[ν + 2] > 0.

B Rate of TO Reduction 110

Similarly, at the (ν + 4)th clock tick, D2 estimates its TO again and it is given by

∆̂t12[ν + 4] = 2(τ − β̂1[ν + 3])

= 2(τ − β̂1[ν + 1]− γ sgn(∆̂t21[ν + 3])

= ∆̂t12[ν + 2]− 2γ sgn(∆̂t21[ν + 3]) (B.2)

where the bias estimate of D1, i.e., β̂1[ν + 3], is simplified accordingly from (3.16) and we

assume a fixed step size, i.e., γ, for updating the bias estimate. Note that TO estimate at each

device must decrease to zero before changing sign, consequently, we have sgn(∆̂t21[ν + 3]) =

sgn(∆̂t12[ν+ 4]) = sgn(∆̂t12[ν+ 2]) = sgn(∆̂t12[ν]). Since we assume ∆̂t12[ν+ 2] > 0, we can

simplify (B.2) as ∆̂t12[ν + 4] = ∆̂t12[ν + 2]− 2γ. Finally, the change in the TO estimate of

D2 for two consecutive clock ticks where it operates as a receiver is given by:

m =
∆̂t12[ν + 4]− ∆̂t12[ν + 2]

(ν + 4)− (ν + 2)− 1
= −2γ (B.3)

Fig. B.1. Synchronization performance based on the scenario in Appendix A with remaining parameters
chosen from Table I.

In Fig. B.1, we plot the maximum synchronization error (3.33) against a straight line

with negative slope as given by (B.3). The results show a very close match between the two

curves, thereby supporting our analysis. For comparison, we also plot the synchronization

error with adaptive step size.

111

Appendix C

Expectation of TO Estimate

We assume two devices labeled D1 and D2 communication over a flat reciprocal channel

with propagation delay τ and the relative clock skew is negligible, i.e., ∆α12 = α1 − α2 = 0.

In order for a device, say D2, to estimate the synchronization for updating its clock, it

should operate as a receiver, while D1 should be a transmitter or vice versa. Therefore, the

probability of this event is pe = 2ptr(1 − ptr). Then, the synchronization error at the νth

clock tick for D2 is ∆t12[ν] = t1[ν] + τ − t2[ν], whereas for D1, it is ∆t21[ν] = t2[ν] + τ − t1[ν].

Hence, the expected initial synchronization error can be given as ∆θ = |t1[ν] − t2[ν]| =

|θ1 − θ2| = |∆θ12| = |∆θ21|. Now, based on the alternating transceiver mode and the clock

updates according to (11) and (15), where we assume β̂12[ν] = β̂21[ν] ≈ τ ∀ν , the expected

TO estimate at D2 (similar for D1) is equal to:

E
[
∆̂t12[ν]

]
=

(
(1− pe)ν︸ ︷︷ ︸

P1

+ pe(1− ε)(ν−1)︸ ︷︷ ︸
P2

+
ν−1∑
k=1

(1− pe)kpe(1− ε)(ν−1−k)

︸ ︷︷ ︸
P3

)
∆θ, ∀ν ≥ 1 (C.1)

Here, P1 is the probability that the devices never operate at the opposite modes, which is

the worst scenario since they cannot detect the error and update their clocks. Furthermore,

P2 is the probability that the devices operate on the opposite modes at the first clock tick

and then start alternating between them, hence, it is the best scenario. Finally, P3 is the

probability that the devices start alternating their mode and update their clocks once they

operate at the opposite modes, which is a mixed scenario.

112

Appendix D

Convexity of Problem P2

We begin with proving the each function that forms the objective function of Problem P2

given in (5.11) is convex. Since the summation of convex functions is a convex function,

without loss of generality, we can consider an active device and a single offloading device

κ ∈ Ki = {i0} to prove the convexity of (5.11) as follows:

ψi(pi,bi) =
µ(bici)

3

(tmax
i)2︸ ︷︷ ︸
ψloc

+
µ(bκci)

3(
tmax
i − bκ

Rκ

)2︸ ︷︷ ︸
ψoff

, ∀i ∈ I

We denote the Hessian of ψloc and ψoff by ∆2ψloc and ∆2ψoff, respectively. Obtaining ∆2ψloc

is straightforward since it only depends on bi. Hence, after calculating its eigenvalues as 0

and
6biµc

3
i

(tmax
i)2 , we can determine that ∆2ψloc is positive semi-definite and ψloc is convex since

bi ≥ 0, ∀i ∈ I. For the Hessian of ψoff, we have:

∆2ψoff =

∂ψoff

2

∂b2
κ

∂ψoff
2

∂bκ∂Pκ
∂ψoff

2

∂Pκ∂bκ

∂ψoff
2

∂P 2
κ

where we can show that its trace and determinant are positive to prove the convexity of ψoff.

Specifically, the first element of the main diagonal is equal to:

∂ψoff
2

∂b2
κ

=
6µb3

κc
3
i

R2
κ

(
tmax
i − tup

κ

)2 +
12µb2

κc
3
i

Rκ

(
tmax
i − tup

κ

)2 +
6µbκc

3
i(

tmax
i − tup

κ

)2

D Convexity of Problem P2 113

while the second entry is:

∂ψoff
2

∂P 2
κ

=
mib

4
κ

u
(
tmax
i − tup

κ

)3 +
2mib

4
κ

uκln(vκ)
(
tmax
i − tup

κ

)3 +
3b5
κmiln(2)

Wuκln
2(v)

(
tmax
i − tup

κ

)4

where mi = 2µc3
iG

2
κln(2), vκ = (1 + PκGκ

N0
) and uκ = WN0

2v2
κln

2(vκ) are positive variables.

Since the task uploading time is always smaller than the task processing deadline due to

constraint (5.15d), i.e., tmax
i ≤ αtup

κ , the trace of ∆2ψoff is positive.

Furthermore, the determinant of ∆2ψoff is calculated as:

det(∆2ψoff) =
4µ2c6

i b
5
κG

2
κln(2)si

N2
0W

3ln5(vκ)v2
κ

(
tmax
i − tup

κ

)7

where

si = b2
κln

2(2) +W 2tmax
i ln2(vκ)

(
6tmax
i − 7tup

κ + 3tmax
i ln(vκ)

)
We can show that det(∆2ψoff) is positive if si and (tmax

i − tup
κ) are positive. Both can be

ensured simultaneously if tmax
i > 7/6tup

κ . Hence, we must select α ∈ (0, 0.85) in constraint

(5.15d) to keep the determinant positive for any values of bκ and Pκ, ∀κ ∈ Ki,∀i ∈ I.

Note that the energy efficiency increases when we set α = 0.85 as it is the highest value to

relax the constraint on time to upload intended tasks. Therefore, ψoff is a convex function

over the convex set based on the constraints in problem P2. Finally, we can conclude that

ψi(pi,bi), ∀i ∈ I is convex as it is a summation of convex functions.

114

Appendix E

Optimal Task Offloading for the Ideal

Case

We calculate the lower bound on the total energy consumption (5.8) by evaluating the

optimal task offloading strategy in the ideal scenario. As demonstrated in Section 5.3.1,

the task size di, regardless of how it is split, must be computed at exactly tmax
i to minimize

energy consumption. Hence, we can calculate the total resource required for computing di

as follows:

f tot
i =

dici
tmax
i

(E.1)

At this point, the main objective becomes finding the optimal task splitting strategy, i.e,

di = bi +
∑

κ∈Ki bκ, such that the allocated computation resources, i.e., fi and fκ ∀κ ∈ Ki,
minimize the total energy consumption in (5.8).

Suppose that there is no constraint on the computation capability of device k ∈ Ki and

the task uploading speed is very high. Hence, we can assume Pκ = 0 and tup
κ = 0, which

yields tco
i = tco

κ = tmax
i , ∀i ∈ I ∀κ ∈ Ki. Then, based on (5.2) and (5.6), we have bi =

fit
max
i

ci

and bκ =
fκt

max
i

ci
, ∀κ ∈ Ki, equivalently, the total required resource is f tot

i = fi +
∑

κ∈Ki fκ.

Therefore, by using (5.3) and (5.7), the total energy consumption of the ith device is equal

to:

Ei = µf 3
i t

max
i +

∑
κ∈Ki

µf 3
κt

max
i (E.2)

E Optimal Task Offloading for the Ideal Case 115

To obtain the lower bound for (E.2), we define the following problem:

min
f

∑
i∈I

Ei (E.3)

s.t. fi +
∑
κ∈Ki

fκ = f tot
i , ∀i ∈ I (E.4)

Since the problem is convex, we can find the optimal value by using Lagrange multiplier

method, where the Lagrangian function for the ith device with a Lagrange multiplier λi is

defined as follows:

Li(fi, λi) = Ei − λi(fi +
∑
κ∈Ki

fκ − f tot
i) (E.5)

Then, by taking the gradient of (E.5) and solving it as ∇Li(fi, λi) = 0, we have:

3µ

f 2
i

f 2
i0

f 2
i1
...

f 2
iK

tmax
i − λi1 = 0 (E.6)

where 1 is the column vector of all-ones. Hence, we obtain fi = fκ =
√

λi
3µtmax

i
∀κ ∈ Ki,

and by using (E.4), we have λi = 3µtmax
i

(f tot
i

|Ki|+1

)2
. Consequently, the optimal computation

resources are calculated as fi = fκ =
f tot
i

|Ki|+ 1
, ∀κ ∈ Ki. Finally, by considering (E.1), the

optimal task splitting based on (5.2) and (5.6) becomes bi = bκ =
di

|Ki|+ 1
.

This shows that the minimum total energy consumption is achieved when the tasks are

split equally. Accordingly, the allocated computation resource at each device should be

identical, where we can denote the optimum resource as f opt
i =

f tot
i

|Ki|+1
. Therefore, the lower

bound of the total energy consumption for the given task size di can be calculated as follows:

E∗i = µ
(
|Ki|+ 1

)
(f opt
i)3tmax

i ≤ Ei (E.7)

116

References

[1] Cisco Annual Internet Report, 2018-–2023 [Online]. Available:

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-

internet-report/white-paper-c11-741490.html

[2] Cisco visual networking index: global mobile data traffic forecast update, 2016—

2021 [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-

provider/global-cloud-index-gci/white-paper-c11-738085.html

[3] A. Asadi, Q. Wang and V. Mancuso, “A survey on device-to-device communication in

cellular networks,” IEEE Commun. Surveys and Tutorials, vol. 16, no. 4, pp. 1801–1819,

2014.

[4] R. I. Ansari et al., “5G D2D networks: Techniques, challenges, and future prospects,”

IEEE Systems Jour., vol. 12, no. 4, pp. 3970–3984, Dec. 2018.

[5] M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, “Device-to-device communication in

5G cellular networks: Challenges, solutions, and future directions,” IEEE Commun.

Mag., vol. 52, pp. 86–92, May 2014.

[6] B. a. Coll-Perales, J. Gozalvez and J. L. Maestre, “5G and beyond: Smart devices as

part of the network fabric,” IEEE Network, vol. 33, no. 4, pp. 170–177, Jul. 2019.

[7] J. Cao, M. Ma, H. Li, R. Ma, Y. Sun, P. Yu, L. Xiong, “A survey on security aspects

for 3GPP 5G networks,” IEEE Commun. Surveys and Tutorials, vol. 22, no. 1, pp.

170–195, 2020.

References 117

[8] D. H. Lee, K. W. Choi, W. S. Jeon, and D. G. Jeong, “Resource allocation scheme for

device-to-device communication for maximizing spatial reuse,” in Proc. IEEE Wireless

Commun. and Net. Conf., pp. 112–117,Apr. 2013.

[9] B. Kaufman, J. Lilleberg, and B. Aazhang, “Spectrum sharing scheme between cellular

users and ad-hoc device-to-device users,” IEEE Trans. Wireless Commun., vol. 12, no.

3, pp. 1038–1049, Mar. 2013.

[10] M. Zulhasnine, C. Huang, and A. Srinivasan, “Efficient resource allocation for device-to-

device communication underlaying LTE Network,” in Proc. IEEE Int. Conf. on Wireless

and Mobile Comp., Networking and Commun., pp. 368—375, Oct. 2010.

[11] C. Yu, K. Doppler, C. B. Ribeiro and O. Tirkkonen, “Resource sharing optimization for

device-to-Device communication underlaying cellular networks,” IEEE Trans. Wireless

Commun., vol. 10, no. 8, pp. 2752—63, Aug. 2011.

[12] “Technical specification group radio access network; study on LTE device-to-device

proximity services,” 3rd Generation Partnership Project (3GPP), TR 36.843, Mar. 2014,

Sections A.2.1.1 - A.2.1.2. [Online].

[13] F. Jameel, Z. Hamid, F. Jabeen, S. Zeadally and M. A. Javed, “A survey of device-to-

device communications: Research issues and challenges,” IEEE Commun. Surveys and

Tutorials, vol. 20, no. 3, pp. 2133–2168, 2018.

[14] L. Wei, R. Q. Hu, Y. Qian and G. Wu, “Enable device-to-device communications un-

derlaying cellular networks: Challenges and research aspects,” IEEE Commun. Mag.,

vol. 52, no. 6, pp. 90–96, June 2014.

[15] W. Cheng, X. Zhang and H. Zhang, “Optimal power allocation with statistical QoS

provisioning for D2D and cellular communications over underlaying wireless networks,”

IEEE Jour. on Selec. Areas in Commun., vol. 34, no. 1, pp. 151–162, Jan. 2016.

[16] P. Phunchongharn, E. Hossain, and D. I. Kim, “Resource allocation for device-to-device

communications underlaying LTE-advanced networks,” IEEE Wireless Commun., vol.

20, no. 4, pp. 91–100, Aug. 2013.

References 118

[17] Z. Yang, N. Huang, H. Xu, Y. Pan, Y. Li and M. Chen, “Downlink resource allocation

and power control for device-to-device communication underlaying cellular networks,”

IEEE Commun. Lett., vol. 20, no. 7, pp. 1449–1452, Jul. 2016.

[18] J. Wang, D. Zhu, C. Zhao, J. Li, and M. Lei, “Resource sharing of underlaying device-

to-device and uplink cellular communications,” IEEE Commun. Lett., vol. 17, no. 6,

pp. 1148–1151, Jun. 2013.

[19] S. Dominic and L. Jacob, “Distributed resource allocation for D2D communications

underlaying cellular networks in time-varying environment,” IEEE Commun. Lett., vol.

22, no. 2, pp. 388–391, 2018.

[20] P. Jänis et al. C. Yu, K. Doppler, C. Ribeiro, C. Wijting, K. Hugl, O. Tirkkonen, and

V. Koivunen, “Device-to-device communication underlaying cellular communications

systems,” Int. Jour. Commun., Network and Sys. Sci., vol. 2, no. 3, pp. 169–178. Jun.

2009.

[21] K. Doppler, M. Rinne, C. Wijting, C. B. Ribeiro and K. Hugl, “Device-to-device com-

munication as an underlay to LTE-advanced networks,” IEEE Commun. Mag., vol. 47,

no. 12, pp. 42–49, Dec. 2009.

[22] H. Min, W. Seo, “Reliability improvement using receive mode selection in the device-to-

device uplink period underlaying cellular networks,” IEEE. Trans. Commun., vol. 10,

no.2, pp. 413–418, Feb. 2011.

[23] S. Xu and H. Wang, “Transmission mode selection and communication establishment

in the hybrid device-to-device and cellular networks,” in Prof. IEEE Int. Conf. on

Ubiquitous and Future Net., pp. 156–161, Jul. 2012.

[24] C. Yu, O. Tirkkonen, K. Doppler and C. Ribeiro, “On the Performance of device-to-

device underlay communication with simple power control,” in Proc. IEEE Vehic. Tech.

Conf., pp. 1–5, Apr. 2009.

[25] C.-H. Yu et al., “Power optimization of device-to-device communication underlaying

cellular communication,” in Proc. IEEE Int. Conf. on Commun., pp. 1–5, June 2009.

References 119

[26] E. Zihan, K. W. Choi, and D. I. Kim, “Distributed random access scheme for collision

avoidance in cellular device-to-device communication,” IEEE Trans. Wireless Com-

mun., vol. 14, no. 7, pp. 3571–3585, Jul. 2015.

[27] J. P. Jänis, V. Koivunen, C. B. Ribeiro, K. Doppler and K. Hugl, et al., “Interference-

avoiding MIMO schemes for device-to-device radio underlaying cellular networks,” IEEE

PIMRC, pp. 2385–2389, Sept. 2009.

[28] R. Ibrahim, M. Assaad, B. Sayrac and A. Ephremides, “Overlay D2D vs. cellular com-

munications: A stability region analysis,” in Proc. IEEE Int. Symp. on Wireless Com-

mun. Sys., pp. 378–383, Aug. 2017.

[29] A. Asadi, V. Mancuso and R. Gupta, “DORE: An experimental framework to enable

outband D2D relay in cellular networks,” IEEE/ACM Trans. on Networking, vol. 25,

no. 5, pp. 2930–2943, 2017.

[30] R. Chevillon, G. Andrieux, R. Négrier and J. Diouris, “Spectral and Energy Efficiency

Analysis of mmWave Communications With Channel Inversion in Outband D2D Net-

work,” IEEE Access, vol. 6, pp. 72104–72116, 2018.

[31] “Technical specification group SA; feasibility study for proximity services (ProSe)”, 3rd

generation partnership project (3GPP), (Release 12),” TR 22.803 V1.0.0, Aug. 2012.

[32] A. Alnoman and A. Anpalagan, “On D2D communications for public safety applica-

tions,” in Proc. IEEE Canada Int. Humanitarian Tech. Conf., pp. 124–127, Jul. 2017.

[33] A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Stochastic geometry study on

device-to-device communication as a disaster relief solution,” IEEE Trans. on Vehic.

Tech., vol. 65, no. 5, pp. 3005–3017, 2016.

[34] T. Castel et al., “LTE as a potential standard for public safety indoor body-to-body

networks,” in Proc. IEEE Symp. on Commun. and Vehic. Tech., pp. 1–6, Nov. 2015.

[35] B. M. ElHalawany, R. Ruby and K. Wu, “D2D communication for enabling internet-of-

things: Outage probability analysis,” IEEE Trans. on Vehic. Tech., vol. 68, no. 3, pp.

2332–2345, 2019.

References 120

[36] T. Perumal, S. K. Datta and C. Bonnet, “IoT device management framework for smart

home scenarios,” in Proc. IEEE Glob. Conf. on Consumer Elec., pp. 54–55, Oct. 2015.

[37] Y. Siriwardhana, P. Porambage, M. Liyanage and M. Ylianttila, “A survey on mobile

augmented reality with 5G mobile edge computing: Architectures, applications, and

technical aspects,” IEEE Commun. Surveys and Tutorials, vol. 23, no. 2, pp. 1160–

1192, 2021.

[38] D. Wu, L. Zhou and Y. Cai, “Social-aware rate based content sharing mode selection

for D2D content sharing scenarios,” IEEE Trans. on Multimedia, vol. 19, no. 11, pp.

2571–2582, 2017.

[39] Y. Liu, M. Peng, G. Shou, Y. Chen and S. Chen, “Toward edge intelligence: Multiaccess

edge computing for 5G and internet of things,” IEEE Int. of Things Jour., vol. 7, no.

8, pp. 6722–6747, 2020.

[40] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and compu-

tation Offloading,” IEEE Commun. Surveys and Tutorials, vol. 19, no. 3, pp. 1628–1656,

2017.

[41] X. Chen, Z. Liu, Y. Chen and Z. Li, “Mobile Edge Computing Based Task Offloading

and Resource Allocation in 5G Ultra-Dense Networks,” IEEE Access, vol. 7, pp. 184172–

184182, 2019.

[42] A. u. R. Khan, M. Othman, S. A. Madani and S. U. Khan, “A survey of mobile cloud

computing application models,” IEEE Commun. Surveys and Tutorials, vol. 16, no. 1,

pp. 393–413, 2014.

[43] M. Zeng, Y. Li, K. Zhang, M. Waqas and D. Jin, “Incentive mechanism design for

computation offloading in heterogeneous fog computing: A contract-based approach,”

in Proc. IEEE Int. Conf. on Commun., pp. 1–6, May 2018.

[44] S. Luo, X. Chen, Z. Zhou, X. Chen and W. Wu, “Incentive-aware micro computing

cluster formation for cooperative fog computing,” IEEE Trans. on Wireless Commun.,

vol. 19, no. 4, pp. 2643–2657, 2020.

References 121

[45] R. Beraldi, A. Mtibaa and A. N. Mian, “CICO: A credit-based incentive mechanism for

COoperative fog computing paradigms,” in Proc. IEEE Glob. Commun. Conf., pp. 1–7,

Dec. 2018.

[46] P. Pierleoni, R. Concetti, A. Belli and L. Palma, “Amazon, Google and Microsoft solu-

tions for IoT: Architectures and a performance comparison,” IEEE Access, vol. 8, pp.

5455–5470, 2020.

[47] Y. Lan, X. Wang, D. Wang, Z. Liu and Y. Zhang, “Task caching, offloading, and

resource allocation in D2D-aided fog computing networks,” IEEE Access, vol. 7, pp.

104876–104891, 2019.

[48] “Technical specification group radio access network,” 3rd generation partnership project

(3GPP), TS 38.300, Stage 2 (Release 16), Jul. 2020 [Online].

[49] M. Boban, A. Kousaridas, K. Manolakis, J. Eichinger and W. Xu, “Connected roads of

the future: Use cases, requirements, and design considerations for vehicle-to-everything

communications,” IEEE Vehic. Tech. Mag., vol. 13, no. 3, pp. 110–123, 2018.

[50] Z. Liu, T. Peng, S. Xiang and W. Wang, “Mode selection for device-to-device (D2D)

communication under LTE-Advanced networks,” in Proc. IEEE Int. Conf. on Commun.,

pp. 5563–5567, Jun. 2012.

[51] M. Jung, K. Hwang, and S. Choi, “Joint mode selection and power allocation scheme

for power-efficient Device-to-Device (D2D) communication,” in Proc. IEEE Vehic. Tech.

Conf., pp. 1–5, May 2012.

[52] S. Hakola, T. Chen, J. Lehtomaki, and T. Koskela, “Device-to-device (D2D) communi-

cation in cellular network - performance analysis of optimum and practical communica-

tion mode selection,” in Proc. IEEE Wireless Commun. and Net. Conf., pp. 1—6, Apr.

2010.

[53] G. Fodor et al., “Design aspects of network assisted device-to-device communications,”

IEEE Commun. Mag., vol. 50, no. 3, pp. 170–177, Mar. 2012.

References 122

[54] Y. Luo and Y. Yang, “D2D friendly jamming and cooperative relaying for combating

a full-duplex active eavesdropper,” in IEEE Proc. Int. Conf. on Commun. Tech., pp.

572–577, Oct. 2019.

[55] X. Lin, J. G. Andrews, A. Ghosh, and R. Ratasuk, “An overview of 3GPP device-

to-device proximity services,” IEEE Commun. Mag., vol. 52, no. 4, pp. 40–48, Apr.

2014.

[56] M. J. Cannon, “On the design of D2D synchronization in 3GPP Release-12,” in Proc

IEEE Int. Conf. on Commun., pp. 633–638, Jun. 2015.

[57] O. Karatalay, I. Psaromiligkos, B. Champagne and B. Pelletier, “Fast converging dis-

tributed pulse-coupled clock synchronization for half-duplex D2D communications over

multipath channels,” in Proc IEEE Int. Symp. on Signal Process. and Info. Tech., pp.

123–128, Dec. 2018.

[58] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz, “Distributed synchroniza-

tion in wireless networks,” IEEE Signal Process. Mag., vol. 25, no. 5, pp. 81–97, Sept.

2008.

[59] D. Tétreault-La Roche, B. Champagne, I. Psaromiligkos and B. Pelletier, “On the use

of distributed synchronization in 5G device-to-device networks,” Proc. IEEE Int. Conf.

on Commun., pp. 1938–1883, Jul. 2017.

[60] W. Sun, F. Brännström and E. G. Ström, “Network synchronization for mobile Device-

to-Device systems,” IEEE Trans. on Commun., vol. 65, no. 3, pp. 1193–1206, Mar.

2017.

[61] O. Olabiyi, A. Annamalai and L. Qian, “Leader election algorithm for distributed ad-hoc

cognitive radio networks,” in Proc. IEEE Cons. Commun. and Net. Conf. pp. 859–863,

Jan. 2012.

[62] H. Han, J. Kim, H. P. Hyuck and M. Kwon, “An effective distributed synchronization

method for device-to-device communications,” Proc. IEEE Int. Conf. on Consumer

Electronics, pp. 346–347, Mar. 2017.

References 123

[63] M. A. Alvarez, U. Spagnolini, “Half-duplex scheduling in distributed synchronization,”

in Proc. IEEE Int. Conf. on Commun., pp. 6240–6245, Jun. 2015.

[64] M. A. Alvarez and U. Spagnolini, “Distributed time and carrier frequency synchro-

nization for dense wireless networks,” IEEE Trans. on Signal and Info. Process. over

Networks, vol. 4, no. 4, pp. 683–696, Dec. 2018.

[65] K. Doppler, C. B. Ribeiro and J. Kneckt, “Advances in D2D communications: Energy

efficient service and device discovery radio,” in Proc. IEEE Wireless VITAE, pp. 1–6,

Chennai, Feb. 2011.

[66] Y. Fan, L. Zhai and H. Wang, “Cost-efficient dependent task offloading for multiusers,”

IEEE Access, vol. 7, pp. 115843–115856, 2019.

[67] C. Wang, F. R. Yu, C. Liang, Q. Chen and L. Tang, “Joint computation offloading and

interference management in wireless cellular networks with mobile edge computing,”

IEEE Trans. on Vehic. Tech., vol. 66, no. 8, pp. 7432–7445, 2017.

[68] H. Xing, L. Liu, J. Xu and A. Nallanathan, “Joint task assignment and resource alloca-

tion for D2D-enabled mobile-edge computing,” IEEE Trans. on Commun., vol. 67, no.

6, pp. 4193–4207, 2019.

[69] C. Zhao, Y. Cai, A. Liu, M. Zhao and L. Hanzo, “Mobile edge computing meets mmWave

communications: Joint beamforming and resource allocation for system delay minimiza-

tion,” IEEE Trans. on Wireless Commun., vol. 19, no. 4, pp. 2382–2396, 2020.

[70] X. Chen, Y. Cai, L. Li, M. Zhao, B. Champagne and L. Hanzo, “Energy-efficient resource

allocation for latency-sensitive mobile edge computing,” IEEE Trans. on Vehic. Tech.,

vol. 69, no. 2, pp. 2246–2262, 2020.

[71] J. M. Kim, Y. G. Kim and S. W. Chung, “Stabilizing CPU frequency and voltage for

temperature-aware DVFS in mobile devices,” IEEE Trans. on Comp., vol. 64, no. 1,

pp. 286–292, 2015.

[72] O. Kwon, W. Jang, G. Kim, C. G. Lee, “Optimal planning of dynamic thermal

management for NANS (N-App N-Screen) services” Electronics 7, no. 11: 311.

https://doi.org/10.3390/electronics7110311

References 124

[73] O. Sahin and A. K. Coskun, “On the impacts of greedy thermal management in mobile

devices,” IEEE Embedded Sys. Let., vol. 7, no. 2, pp. 55–58, June 2015.

[74] A. Guchhait, “Maximum likelihood estimation of clock skew in sparse one-way packet

transmissions for machine type communication applications,” in Proc IEEE Int. Conf.

on Commun., pp. 1–6, May 2016.

[75] O. Al-Kofahi, “Evaluating time synchronization using application-layer time-stamping,”

in Proc IEEE Wireless Commun. and Net. Conf., pp. 1–6, Apr. 2016.

[76] H. Wang, H. Zeng, M. Li, B. Wang and P. Wang, “Maximum likelihood estimation of

clock skew in wireless sensor networks with periodical clock correction under exponential

delays,” IEEE. Trans. on Signal Process., vol. 65, no. 10, pp. 2714–2724, May 2017.

[77] A. K. Karthik and R. S. Blum, “Optimum full information, unlimited complexity, in-

variant, and minimax clock skew and offset estimators for IEEE 1588,” IEEE Trans. on

Commun., vol. 67, no. 5, pp. 3624–3637, May 2019.

[78] Y.-W. Hong, and A. Scaglione, “A scalable synchronization protocol for large scale

sensor networks and its applications,” IEEE Jour. on Selec. Areas in Commun., vol.

23, no. 5, pp. 1085–1099, May 2005.

[79] O. Karatalay, I. Psaromiligkos, B. Champagne and B. Pelletier, “Fully distributed

energy-efficient synchronization for half-duplex D2D communications,” in Proc IEEE

Pers. Indoor and Mobile Commun., pp. 1–7, Sept. 2019.

[80] Z. Zhang, K. Long, A. V. Vasilakos and L. Hanzo, “Full-duplex wireless communications:

Challenges, solutions, and future research directions”, in Proceed. of the IEEE, vol. 104,

no. 7, pp. 1369–1409, 2016.

[81] M. A. Alvarez, B. Azari, U. Spagnolini, “Time and frequency self-synchronization in

dense cooperative network,” in Proc. Asilomar Conf. on Signals, Systems and Comput-

ers, pp. 1811–1815 Nov. 2014.

[82] K. Manolakis and W. Xu, “Time synchronization for multi-link D2D/V2X communica-

tion,” in Proc. IEEE Vehic. Tech. Conf., pp. 1–6, Sept. 2016.

References 125

[83] E. Garcia, S. Mou, Y. Cao, and D. W. Casbeer, “An event-triggered consensus approach

for distributed clock synchronization,” in Proc. IEEE American Control Conf., pp. 279–

284, May 2017.

[84] N. Gresset and J. Letessier, “A random broadcast consensus synchronization algorithm

for large scale wireless mesh networks,” in Proc. IEEE Wireless Commun. Net. Conf.,

pp. 1573–1577, Apr. 2012.

[85] L. Song, D. Niyato, Z. Han, and E. Hossain Wireless Device-to-Device Communications

and Networks. Cambridge Univ. Press, 2015.

[86] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, “A survey on mobile edge

computing: The communication perspective,” IEEE Commun. Surveys and Tutorials,

vol. 19, no. 4, pp. 2322–2358, 2017.

[87] Y. Mao, J. Zhang, Z. Chen, and K. B. Letaief, “Dynamic computation offloading for

mobile-edge computing with energy harvesting devices,” IEEE Jour. on Selec. Areas in

Commun., vol. 34, no. 12, pp. 3590–3605, 2016.

[88] K. Kaur, S. Garg, G. S. Aujla, N. Kumar, J. J. P. C. Rodrigues and M. Guizani, “Edge

computing in the industrial internet of things environment: Software-defined-networks-

based edge-cloud interplay,” IEEE Commun. Mag., vol. 56, no. 2, pp. 44–51, 2018.

[89] X. Ma, S. Zhang, W. Li, P. Zhang, C. Lin, and X. Shen, “Cost-efficient workload

scheduling in cloud assisted mobile edge computing,” in IEEE Proc. Int. Symp. on

Quality of Service, pp. 1-–10. June 2017.

[90] M. Huang, W. Liu, T. Wang, A. Liu and S. Zhang, “A cloud–MEC collaborative task

offloading scheme with service orchestration,” IEEE Int. of Things Jour., vol. 7, no. 7,

pp. 5792–5805, 2020.

[91] J. Yan, S. Bi, Y. J. Zhang and M. Tao, “Optimal task offloading and resource allocation

in mobile-edge computing with inter-user task dependency,” IEEE Trans. on Wireless

Commun., vol. 19, no. 1, pp. 235–250, 2020.

References 126

[92] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach and F. Giust, “Mobile-Edge comput-

ing architecture: the role of MEC in the internet of things,” IEEE Consumer Electronics

Mag., vol. 5, no. 4, pp. 84–91, 2016.

[93] X. Chen, Z. Liu, Y. Chen and Z. Li, “Mobile edge computing based task offloading

and resource allocation in 5G ultra-dense networks,” IEEE Access, vol. 7, pp. 184172–

184182, 2019.

[94] L. Liu, Z. Chang, X. Guo, and T. Ristaniemi, “Multi-objective optimization for compu-

tation offloading in mobile-edge computing,” in IEEE Proc. Symp. Comput. Commun.,

pp. 832–837, Jul. 2017.

[95] X. Chen, L. Jiao, W. Li and X. Fu, “Efficient multi-user computation offloading for

mobile-edge cloud computing,” IEEE/ACM Trans. on Networking, vol. 24, no. 5, pp.

2795–2808, 2016.

[96] N. Li, J. Martinez-Ortega and V. H. Diaz, “Distributed power control for interference-

aware multi-user mobile edge computing: A game theory approach,” IEEE Access, vol.

6, pp. 36105–36114, 2018.

[97] B. Wu, J. Zeng, L. Ge, Y. Tang and X. Su, “A game-theoretical approach for energy-

efficient resource allocation in MEC network,” in IEEE Proc. Int. Conf. on Commun.,

pp. 1–6, May 2019.

[98] H. Hong, “From cloud computing to fog computing: Unleash the power of edge and

end devices,” 2017 IEEE Proc. Int. Conf. on Cloud Comp. Tech. and Sci., pp. 331–334,

Dec. 2017.

[99] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar and J. H. Abawajy, “Fog

of everything: Energy-efficient networked computing architectures, research challenges,

and a case study,” IEEE Access, vol. 5, pp. 9882–9910, 2017.

[100] J. Wen, C. Ren and A. K. Sangaiah, “Energy-efficient device-to-device edge computing

network: An approach offloading both traffic and computation,” IEEE Commun. Mag.,

vol. 56, no. 9, pp. 96–102, 2018.

References 127

[101] M. Mehrabi, D. You, V. Latzko, H. Salah, M. Reisslein and F. H. P. Fitzek, “Device-

enhanced MEC: Multi-access edge computing (MEC) aided by end device computation

and caching: A survey,” IEEE Access, vol. 7, pp. 166079–166108, 2019.

[102] Y. He, J. Ren, G. Yu and Y. Cai, “D2D communications meet mobile edge computing

for enhanced computation capacity in cellular networks,” IEEE Trans. on Wireless

Commun., vol. 18, no. 3, pp. 1750–1763, 2019.

[103] L. Pu, X. Chen, J. Xu and X. Fu, “D2D fogging: An energy-efficient and incentive-

aware task offloading framework via network-assisted D2D collaboration,” IEEE Jour.

on Selec. Areas in Commun., vol. 34, no. 12, pp. 3887–3901, 2016.

[104] B. Gao, Z. Zhou, F. Liu, F. Xu and B. Li, “An online framework for joint network

selection and service placement in mobile edge computing,” IEEE Trans. on Mobile

Comp., doi: 10.1109/TMC.2021.3064847.

[105] C. Yi, S. Huang and J. Cai, “Joint resource allocation for device-to-device commu-

nication assisted fog computing,” IEEE Trans. on Mobile Comp., vol. 20, no. 3, pp.

1076–1091, 2021.

[106] L. Li, L. Gu, J. Hong and S. Jiang, “Joint computation offloading and wireless re-

source allocation in mobile edge computing,” in IEEE Proc. Int. Conf. on Comp. and

Commun., pp. 705–711, Dec. 2018.

[107] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile edge computing: Partial

computation offloading using dynamic voltage scaling,” IEEE Trans. Commun., vol. 64,

no. 10, pp. 4268–4282, 2016.

[108] Z. Ning, P. Dong, X. Kong and F. Xia, “A cooperative partial computation offloading

scheme for mobile edge computing enabled internet of things,” IEEE Int. of Things

Jour., vol. 6, no. 3, pp. 4804–4814, June 2019.

[109] X. Meng, W. Wang and Z. Zhang, “Delay-constrained hybrid computation offloading

with cloud and fog computing,” IEEE Access, vol. 5, pp. 21355–21367, 2017.

References 128

[110] S. Yu, R. Langar and X. Wang, “A D2D-multicast based computation offloading frame-

work for interactive applications,” in IEEE Proc. Glob. Commun. Conf., pp. 1–6, Dec.

2016.

[111] W. Liu, Y. Teng, M. Liu and M. Song, “Joint offloading and computation resource

allocation in D2D assisted hybrid framework,” in IEEE Proc. Annual Int. Symp. on

Pers., Indoor and Mobile Radio Commun., pp. 1–6, Sept. 2019.

[112] T. Yang et al., ”Compact and voltage-scalable sensor for accurate thermal sensing in

dynamic thermal management,” in Proc. IEEE Int. Midwest Symp. on Circuits and

Systems, pp. 33–36, Aug. 2017.

[113] Y. G. Kim, M. Kim, J. Kong and S. W. Chung, ”An adaptive thermal management

framework for heterogeneous multi-core processors,” IEEE Trans. on Computers, vol.

69, no. 6, pp. 894–906, 2020.

[114] A. Prakash, H. Amrouch, M. Shafique, T. Mitra and J. Henkel, “Improving mo-

bile gaming performance through cooperative CPU-GPU thermal management,” Proc

ACM/EDAC/IEEE Design Automation Conf., pp. 1–6, June 2016.

[115] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, U.K.: Cambridge

Univ. Press, 2004.

[116] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York: Springer-

Verlag, 2006.

[117] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma,. “Finding approx-

imate local minima for nonconvex optimization in Linear Time, in STOC, 2017,

http://arxiv.org/abs/1611.01146

[118] H. A. Le Thi, T. Pham Dinh, “DC programming in communication systems:

Challenging problems and methods,” Vietnam Jour. Comp. Sci. 1, 15–28, 2014,

https://doi.org/10.1007/s40595-013-0010-5.

[119] A. S. Strekalovsky, “On nonconvex optimization problems with D.C. equality and

inequality constraints”, IFAC-Papers OnLine, vol. 51, issue 32, pp. 895–900, ISSN 2405–

8963, 2018.

References 129

[120] R. Horst, P. M. Pardalos, and N. V. Thoai, Introduction to global optimization, Springer

New York, NY, 2000.

[121] B. K. Sriperumbudur, and G. R. G. Lanckriet, “On the Convergence of the Concave-

Convex Procedure,” in Proc. Neural Inf. Proc. Sys., vol. 22, pp. 1759–1767, 2009.

[122] A. A. Ahmadi, G. Hall, “DC decomposition of nonconvex polynomials with algebraic

techniques,” Math. Program., 169, 69–94, 2018.

[123] Tao, P.D., Souad E.B., “Duality in dc (difference of convex functions) optimization.

subgradient methods,” Trends in Mathematical Optimization, pp. 277–293, Springer

(1988).

[124] A. Charnes, and W. W. Cooper, “Chance-constrained programming,” Management

Science, vol. 6, no. 1 pp. 73–79. 1959.

[125] O. Karatalay, I. Psaromiligkos, B. Champagne and B. Pelletier, “A distributed pulse-

based synchronization protocol for half-duplex D2D communications,” IEEE Open Jour.

of the Commun. Soc., vol. 2, pp. 245–261, 2021.

[126] Y. Wu, Q. Chaudhari and E. Serpedin, “Clock synchronization of wireless sensor net-

works,” IEEE Signal Process. Mag., vol. 28, no. 1, pp. 124–138, Jan. 2011.

[127] P. Mart́ı, J. Torres-Mart́ınez, C. X. Rosero, M. Velasco, J. Miret and M. Castilla,

“Analysis of the effect of clock drifts on frequency regulation and power sharing in

inverter-based islanded microgrids,” IEEE Trans. on Power Electronics, vol. 33, no. 12,

pp. 10363–10379, Dec. 2018.

[128] “Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio

transmission and reception,” 3rd Generation Partnership Project (3GPP), TR 36.101,

Mar. 2020. [Online].

[129] D. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans.

Inf. Theory, vol. 18, no. 4, pp. 531–532, Jul. 1972.

[130] M. M. Mansour, “Optimized architecture for computing Zadoff-Chu sequences with

application to LTE,” in Proc. IEEE Glob. Commun. Conf., pp. 1–6, Nov. 2009.

References 130

[131] “Mobile and wireless communications enablers for the twenty-twenty infor-

mation society (METIS),” Deliverable D1.4 METIS Channel Models, ICT-

317669-METIS/D1.4, Feb. 2015. [Online] Available: https://metis2020.com/wp-

content/uploads/deliverables/METIS D1.4 v1.0.pdf

[132] O. Karatalay, I. Psaromiligkos, and B. Champagne, “Energy-efficient D2D-aided fog

computing under probabilistic time constraints,” in Proc. IEEE Glob. Commun. Conf.,

pp. 01–07, Dec. 2021.

[133] S. Jošilo and G. Dán, “Decentralized algorithm for randomized task allocation in fog

computing systems,” IEEE/ACM Trans. on Net., vol. 27, no. 1, pp. 85–97, 2019.

[134] J. Kim and J. W. Lee, “The mode selection scheme for group device-to-device commu-

nications underlay cellular networks,” in Proc. IEEE Int. Conf. on Info. and Commun.

Tech., pp. 259–260, Oct. 2014.

[135] L. P. Qian, Y. Wu, L. Huang and W. Zhang, “Optimal user association and resource

allocation for device-to-device communications underlaying cellular networks,” in Proc.

IEEE Int. Conf. on Comp., Net. and Commun., pp. 1–6, Feb. 2016.

[136] J. Kennedy and R. Eberhart, “Particle swarm optimization”, in Proc. IEEE Int. Conf.

on Neural Net., pp. 1942–1948, Nov. 1995.

[137] J.R. Koza, Genetic Programming: On the Programming of Computers by means of

Natural Selection, USA, MIT Press, 1992.

[138] N. Vucic, S. Shi and M. Schubert, “DC programming approach for resource allocation

in wireless networks,” in Proc. Int. Symp. on Modeling and Opt. in Mob., Ad Hoc, and

Wireless Net., pp. 380–386, May 2010.

[139] Y. Dai, M. Sheng, K. Zhao, L. Liu, J. Liu and J. Li, “Interference-aware resource

allocation for D2D underlaid cellular network using SCMA: A hypergraph approach,”

in Proc. IEEE Wireless Commun. and Network Conf., pp. 1–6, Apr. 2016.

[140] P. A. Gagniuc, Markov Chains, From Theory to Implementation and Experimentation.

USA, NJ: John Wiley and Sons, 2017.

