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Abstract

Acoustic echo cancellation (AEC) is an essential component of effective hands-free tele-

phony. Conventional AEC systems employ linear adaptive filters; therefore transmission

channel nonlinearities caused by nonlinear components (especially the vocoders in digital

networks) can severely degrade performance.

This dissertation examines the performance of popular conventional AEC algorithms

based on adaptive filtering theory in nonlinear channels. In order to study the degradation

of the algorithms in nonlinear channels, properties of nonlinear devices such as vocoders and

loudspeakers are investigated, and a local linearization model is developed for the analysis

of the nonlinear devices. This local linearization model is justified by experiments.

A variable step-size adaptive cross-spectral algorithm is proposed so the acoustic echo

can be suppressed even during double-talk (DT) periods. This is important since adaptation

is frozen during DT periods in order to avoid divergence of the conventional adaptive

filtering algorithm; therefore the power of the residual echo may become higher than that

of the original echo in nonlinear channels. In addition, the proposed algorithm does not

need a DT detector, which is still part of AEC.

To compensate the echo attenuation loss of AEC algorithms caused by channel non-

linearities, post-filtering techniques are exploited. Combined with a linear adaptive filter,

post-filters based on various approaches, namely: Wiener-type post-filter, spectral subtrac-

tion, subspace method and pitch extraction, are proposed to further attenuate the echo.

Experimental results show that the combined AEC system can suppress the acoustic echo

to a satisfactory level in the nonlinear channel.

Subband adaptive filtering is also studied to reduce the computational complexity of the

AEC system so that it can be implemented in real-time. To this end, an improved simple

design of DFT filter banks is proposed. Furthermore, a post-filter is integrated with an

adaptive filter in the subband to significantly suppresses the acoustic echo in the presence of

channel nonlinearities. This approach also significantly reduces the computational burden.

Finally, a psychoacoustic approach based on the masking of the human ear is exploited

in order to mitigate the artifacts resulting from the abovementioned post-filters. Testing

indicates that the proposed method significantly reduces the distortion of near-end speech

when DT occurs. This makes any audible residual echo sound more natural since it has

less musical noise.
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Sommaire

L’annulation d’écho acoustique (AEA) est un élément essentiel d’un poste téléphonique

mains libres efficace. Cependant, les imperfections du canal de transmission résultant

des composants non linéaires, particulièrement les vocodeurs dans les réseaux numériques,

dégradent sévèrement la performance d’un système conventionnel de AEA qui utilise prin-

cipalement un filtre adaptatif linéaire.

Dans cette dissertation, la performance des algorithmes conventionnels de AEA, lesquels

sont basés sur la théorie du filtrage adaptatif, a été examinée dans le canal non-linéaire.

Pour expliquer la dégradation de la performance des algorithmes, les propriétés des disposi-

tifs non-linéaires tels que les vocodeurs et les haut-parleurs ont été étudiées et un modèle de

linéarisation local a été employé pour l’analyse des modèles non-linéaires, ce qui est justifié

expérimentalement.

Nous proposons un algorithme adaptatif à pas variables à spectre croisé de sorte que

l’écho acoustique puisse être supprimée même pendant la période d’émission simultanée de

parole (ESP). Ceci est motivé par le fait que, dans le canal non-linéaire, la puissance de

l’écho résiduel peut être plus grande que celle de l’écho original durant la période d’ESP,

où l’adaptation a été gelée pour éviter la divergence possible de l’algorithme de filtrage

adaptatif conventionnel. De plus, l’algorithme proposé n’a pas besoin d’un détecteur d’ESP,

ce qui fait partie intégrante de la AEA.

Pour compenser la perte d’atténuation de l’écho des algorithmes de AEA causée par

les non-linéarités du canal, des techniques de post-filtrage sont exploitées. En combinaison

avec un filtre adaptatif linéaire, nous proposons des post-filtres basés sur diverses approches

pour atténuer davantage l’écho: filtres de types Wiener, technique de soustraction spec-

trale, méthodes sous-espace et approche basée sur l’estimation de la hauteur (pitch). Les

résultats expérimentaux démontrent que le système combiné de AEA peut supprimer l’écho

acoustique à un niveau satisfaisant dans le canal non-linéaire.

Le filtrage adaptatif en sous-bandes est également étudié pour réduire la complexité de

calculs du système de AEA de sorte qu’il puisse être utilisé en temps réel. À cet effet,

nous proposons une conception simple et améliorée d’une batterie de filtres DFT. De plus,

un post-filtre est intégré avec un filtre adaptatif en sous-bande, ce qui réduit de manière

significative l’écho acoustique quand les non-linéarités du canal ne sont pas négligées. La

complexité de calculs est, par le fait même, réduite remarquablement.
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Enfin, une approche psychoacoustique basée sur les propriétés de masquage de l’oreille

humaine est exploitée pour atténuer les artéfacts résultant des post-filtres mentionnés ci-

dessus. Des tests indiquent que la méthode proposée réduit en grande partie la distorsion

de la parole locale quand l’ESP se produit, et fait en sorte que l’écho résiduel, s’il peut être

entendu, semble plus naturel, c’est-à-dire qu’il y a moins de bruit musical.
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Chapter 1

Introduction

When the telephone was first invented, people had to use both hands to make a telephone

call, but soon only one hand was needed [1]. Since then, much research has been done to

try to free both hands during phone conversations. Figure 1.1 illustrates the evolution of

telephones.

Fig. 1.1 The evolution of the telephones.

The main problem of hands-free devices is that acoustic echo severely degrades the

quality of communication. Normally, people hear their own voices through air and bone

conduction. This feedback (or echo) is used by the speakers to adjust their volume. During

telephone conversations, people find it reassuring to hear an additional echo of their own

voices through the earpiece. This is a psychoacoustic phenomenon: most people would find

the absence of an echo disturbing, believing that if you cannot hear yourself, then the other

person cannot hear you either. However, an echo that is too loud or arrives too late can

be annoying to the speaker. In order to avoid any disruption caused by echoes, the time

between an original spoken phrase and its echo must be short (normally less than 30 ms),

and the echo’s level has to be much lower than the original speech’s level [2]. From a
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telephony perspective, this echo of a speaker’s own voice through his/her receiver is called

sidetone [3]. Proper sidetone is desired in the design of telephones. A speaker’s tolerance

to sidetone depends on the delay time and the level difference between the speaker’s voice

and the echo signal. Echo tolerance curves can be found in [4].

There are two kind of echoes in telephony: electric echo and acoustic echo. Electric echo

(often referred to as talker echo) arises from impedance mismatches in the terminating

equipment [5], while acoustic echo is the sound of the speaker’s voice returning to the

speaker’s ear via the acoustic echo path (and via the telephone networks) when a hands-

free device is used. Compared to electric echo, acoustic echo has a higher power level and

a longer echo path that is also time-varying. Therefore, removing acoustic echo is more

challenging than removing electric echo. In fact, electric echo may be regarded as a special

case of acoustic echo where the echo path is short and time-invariant. This thesis focuses

only on the control of acoustic echoes.

Acoustic echo in hands-free telephones is illustrated in Figure 1.2. The two ends of the

communication are referred to as the near-end and the far-end. Without loss of generality,

it is assumed here that a hands-free device is used only at the near-end. When a far-end

user speaks, his/her voice is played by a loudspeaker at the near-end. Acoustic echo occurs

when this loudspeaker signal is picked up by the microphone at the near-end and gets

sent back to the far-end. As illustrated in the figure, the loudspeaker signal picked up
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Fig. 1.2 The acoustic echo in the use of the hands-free telephones.
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by the microphone consists of both direct sound and reflected sound. The amplitude of

the reflected sound is less than the amplitude of the direct sound, because the reflected

sound has travelled farther and part of its sound energy has been absorbed by reflecting

surfaces [6].

Both the direct sound and the reflections travel back to the far-end with some delay.

The delay of the direct sound depends on the distance between the microphone and the

loudspeaker, while the delay of the reflections depends on the size of the loudspeaker-

enclosure-microphone (LEM) system (for example, an LEM system could be a car com-

partment in which a hands-free telephone is placed). Since an LEM system usually causes

a long delay, the resulting acoustic echo is perceptible to the far-end user, thus the voice

quality over the communication channel is noticeably degraded. Furthermore, the acoustic

echo feedback may cause howling. As a result, it is extremely important to remove acoustic

echo in the use of hands-free devices. Two major approaches to solving this problem have

been extensively studied in the past decades: acoustic echo suppression (AES) and acoustic

echo cancellation (AEC).

1.1 Acoustic echo suppression (AES)

AES is an intuitive and straightforward approach to suppress acoustic echo. It uses various

devices to control the instantaneous levels of the receive and transmit channels. One of the

most commonly used AES techniques is voice controlled switching. It changes the insert

loss (i.e., negative gains) between both channels according to the direction of main activity,

as illustrated in Figure 1.3. As before, the two ends of the communication network in the

figure are called the near-end and the far-end, with the hands-free device shown at the

near-end. In order to suppress acoustic echo, a large loss is placed in the return path when

only the far-end speaker is talking. When the second speaker at the near-end begins talking

simultaneously with the first speaker (this situation is called double-talk), the inserted loss

must be reduced so that the speech of the second speaker is not prevented from reaching the

first speaker. This adjustment causes the acoustic echo to be attenuated to some extent [7].

In the use of voice controlled switches with high attenuation, a “comfort noise” is often

added to simulate a background noise so the users know that the communication is still

on-going. Other AES mechanisms include nonlinear centre-clippers, frequency shifters, and

comb filters [8].
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Fig. 1.3 AES with voice controlled switching.

Although AES is simple in structure and not computationally demanding, it has var-

ious drawbacks such as speech clipping, frequent loss of syllables as adjustable gains are

turned on, user fatigue resulting from the need to synchronize the conversation, and the

“pumping effect” in background noise resulting from changes in the instantaneous levels

and characteristics of the receive and transmit channels when comfort noise is used.

1.2 Acoustic echo cancellation (AEC)

AEC is a superior method in which an adaptive filter is used to produce a replica of the

acoustic echo signal. This replica is then subtracted from the microphone signal prior

to its transmission over the communication network so that the acoustic echo is removed.

Compared to AES that usually works in half duplex mode, AEC works in full duplex mode.

Figure 1.4 shows the principle of AEC with an adaptive filter.

Every hands-free device in a telecommunication system needs its own acoustic echo

canceller in order to prevent the acoustic echo produced by that device from transmitting

to the other end. Therefore, when hands-free devices are used in both ends of the telecom-

munication system, two acoustic echo cancellers are needed. Without loss of generality,

Figure 1.4 shows only one end with a hands-free device (i.e., the near-end). The signals

shown in this system are described as follows:
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Fig. 1.4 Principle of AEC with an adaptive filter.

• Far-end signal: the signal transmitted from the far-end and received by the AEC

system, denoted x(n).

• Near-end signal: the signal transmitted from the near-end and received by the AEC

system, denoted d(n). The near-end signal may consist of the following:

– Acoustic echo: the coupling signal between the loudspeaker and the microphone,

denoted y(n).

– Near-end speech: the signal produced by the near-end user, denoted ν(n).

– Background noise: the environment noise signal, denoted z(n).

• Residual signal: the output of the AEC system, i.e., the echo-suppressed signal, which

is sent to the far-end, denoted e(n).

As explained before, acoustic echo originates from the coupling between the loudspeaker

and the microphone of the hands-free device. Random sound fields composed of direct

and reflection waves provide a fundamental model for a finite impulse response (FIR)

system [9]. The impulse response of this linear system is the superposition of several delayed

and attenuated pulses. In practice, due to continual changes in the acoustic environment

(e.g., persons/objects moving), the impulse response is a complicated function of time and

the corresponding linear system is time-variant.
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As a systematic solution for removing acoustic echo, AEC has been extensively studied

in the past decades [10, 8, 11, 12]. AEC is essentially a system identification problem

where the Autoregressive Moving Average (ARMA) model can be employed to identify

the unknown linear system. In practice, a Finite Impulse Response (FIR) adaptive filter

(based on the Moving Average (MA) model) is usually employed in AEC to synthesize the

estimated acoustic echo. Infinite Impulse Response (IIR) adaptive filters (based on either

the Autoregressive (AR) or the ARMA model) are not as commonly used since they have

convergence and stability problems [13], and they do not show obvious advantages over

FIR filters [14]. The main challenges of AEC are caused by the following [8]:

• The acoustic echo path is long. For instance, it can be several hundred milliseconds

for a typical office room.

• Speech is a highly correlated and non-stationary signal.

To deal with the first challenge, a long FIR adaptive filter is used to compensate the long

echo path. This results in high computational cost even for the simplest AEC algorithms,

such as the normalized least-mean-square (NLMS) algorithm [15]. In order to reduce com-

putational complexity, methods such as subband adaptive filtering [16, 17, 18] and partially

updating the adaptive filter coefficients [19, 20] have been developed. To deal with the sec-

ond challenge, adaptive filters with faster convergence/tracking speed are needed. Among

these, the affine projection (AP) algorithm [21] and its fast version, fast affine projection

(FAP) algorithm [22] can be used. These algorithms have fast convergence rates when

excited by speech signals.

1.3 AEC over nonlinear channels

Most works on AEC assume that the echo path can be modelled as a slowly time-varying

linear system. However, this assumption is no longer valid when nonlinear components

along the echo path are taken into account. For analog telephone networks, major non-

linearities of the echo path may be caused by low-quality loudspeakers and overdriven

amplifiers.

Speech coding techniques for telephony have been extensively explored in the past

decades [23]. Today’s third generation digital and wireless networks are employing vocoders

(e.g., G.729 [24] and GSM [25]) that significantly lower speech transmission rates with little
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loss of perceptual quality. However, these codecs can introduce severe distortion in the

speech signals. Figure 1.5 shows a centralized AEC system, where the AEC devices are

placed in central stations or base stations instead of in user terminals. In such systems,

distortions introduced by codecs would result in nonlinearities of the entire echo path for

the centralized AEC.

�	���	�

�����	�

�	���	�

�����	�

���������	�
�

����	��	�

�	������ ������

�	���	��
���	��

�������	
� ���
	���	
�

����

��������

Fig. 1.5 The centralized AEC in the presence of codecs.

It is important to study centralized AEC systems because they have the following

advantages:

• They have low system cost since each terminal does not need its own AEC device.

• One AEC device can be dynamically shared by numerous channels.

• They simplify the implementation of the user terminals where the computational

capacity and physical size may be limited.

The echo path nonlinearities pose a new challenge to the design of centralized AEC systems,

since the nonlinear echo path is very difficult to identify by conventional means, especially

when modern vocoders are present.
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1.4 Main contributions

This thesis studies the performance of AEC systems over nonlinear channels. The main

focus is on cases where vocoders are present along the echo path, since this configuration

poses an important and challenging problem in modern digital communication networks.

The main contributions of this thesis are summarized as follows:

• A linear approximation approach is developed to model systems with vocoder and

loudspeaker nonlinearities. With this approach, a nonlinear system is approximated

by a piecewise linear system, with the proviso that the approximating linear system

varies as a function of the input signal. The proposed model is verified by applying

it to several popular adaptive filtering algorithms in nonlinear channels. Simulation

results reveal that the performance of an adaptive filter in a nonlinear channel depends

on its tracking capability: the faster an adaptive filter tracks the changes of a linear

system, the lower the mean-squared-error (MSE) it achieves, which is consistent with

the theoretical analysis.

• Two approaches are proposed to attenuate echo during double-talk (DT) periods.

In conventional AEC, adaptive filter coefficients are often fixed during DT in order

to prevent the adaptive filtering algorithm from diverging. Unfortunately, stopping

adaptation in a nonlinear channel may produce a residual echo that has a higher

power level than the original echo signal. The first approach proposed for echo atten-

uation exploits a pitch analysis technique to extract the pitch information from the

residual echo, so that the power level of the residual echo can be largely reduced [26].

The second approach is a variable step-size adaptive cross-spectral algorithm [27].

It exploits the correlation between the far-end signal and the acoustic echo. This

algorithm does not need DT detection and it keeps adapting during DT periods.

• A combined AEC system is presented that employs post-filtering to enhance acoustic

echo suppression. It is shown that using linear adaptive filters alone in nonlinear chan-

nels cannot sufficiently suppress acoustic echoes. When combined with post-filtering,

however, results demonstrate that the proposed AEC system achieves significantly

better echo suppression in nonlinear channels [28, 29]. Furthermore, a perceptual

model of the human ear is incorporated into the combined AEC system [30]. This
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allows the system to exploit the masking properties of the human ear in order to miti-

gate musical noise and near-end speech distortion caused by Wiener-type post-filters.

• An effective approach in reducing AEC’s computational complexity by using subband

adaptive filtering is presented. Reducing computational complexity is important since

AEC systems must work in real-time. This work developed a practical method for

the rapid design and prototyping of suitable filter banks. Using subband adaptive

filters significantly reduces the computational cost of a combined AEC system while

achieving desired echo attenuation [31].

1.5 Thesis organization

This thesis is organized as follows:

Chapter 2 investigates popular linear and nonlinear adaptive filters in AEC applications.

The performance of these adaptive filters is analyzed.

Chapter 3 describes nonlinear channel characteristics where vocoder and loudspeaker

nonlinearities are taken into account. The effects of these nonlinearities on conventional

AEC systems (which mainly employ linear adaptive filters) are studied.

Chapter 4 details a robust adaptive filtering algorithm called the variable step-size adap-

tive cross-spectral algorithm. The derivation of the algorithm is given, and its performance

in various situations (e.g., during initialization and double-talk) is investigated.

Chapter 5 explores the use of post-filtering techniques in AEC systems. Various post-

filters, namely: Wiener-type post-filter, the spectral subtraction, the subspace method

and the pitch extraction approach, are presented. Also their performance is analyzed and

evaluated in the nonlinear channels.

Chapter 6 presents subband adaptive filtering algorithms used to reduce AEC’s com-

putational complexity. A practical method of designing simplified subband adaptive filters

based on DFT filter banks is described. As a result, a combined AEC system with signifi-

cant computational power reduction is presented.

Chapter 7 incorporates the perceptual model of the human ear into the combined AEC

system. The concept of auditory masking and a few popular masking models are introduced.

The use of these masking models in AEC is presented, followed by an examination of the

performance of this AEC system in nonlinear channels.

Chapter 8 summarizes this thesis and discusses future research directions.
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Chapter 2

Fundamentals of AEC: adaptive

filtering

AEC is a problem of system identification, where the unknown system (i.e., the echo path)

is usually time-variant and in some cases nonlinear. In a conventional AEC system, the

echo path is treated as a slowly time-varying linear system where the nonlinearities along

the echo path are negligible. For example, the loudspeaker is approximated as a linear

device when its volume is sufficiently low. Under such assumptions, linear adaptive filters

are used to identify the echo path.

In the cases where the nonlinearities of the echo path cannot be neglected (e.g., when

vocoders are cascaded along the echo path), a more complex system model is needed in

order to identify the nonlinear echo path. Intuitively, a nonlinear adaptive filter could

identify a corresponding nonlinear echo path. In practice, some popular nonlinear adaptive

filters are indeed employed in certain AEC applications.

2.1 Introduction

System identification is an experimental approach of modelling a process or a plant, as is

illustrated in Figure 2.1. When building an appropriate model for an unknown system,

the model need not be a true and accurate description of the system; it only has to be

suitable for its intended purpose [32]. In AEC, the unknown system is the echo path,

and an adaptive filter is employed to model it. This system identification process is done

iteratively with adaptive control algorithms. Let x(n), y(n), ŷ(n) and s(n) respectively
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denote the input signal, the output signal of the unknown system, the output signal of

the adaptive filter and the disturbance signal. The summation of y(n) and s(n) results in

d(n). The adaptive control algorithm seeks to minimize in some sense the difference signal

between ŷ(n) and d(n). If the algorithm converges and the output ŷ(n) of the adaptive

filter is very close to the output y(n) of the plant (i.e., the unknown echo path), then the

unknown echo path is identified.

Plant

Adaptive

Filter
+

_

+
)(nx )(ny

)(ns

)(nd

)(ˆ ny )(ne

Fig. 2.1 The system identification using an adaptive filter.

Decades of research in adaptive filter theory have produced an enormous number of

adaptive filtering algorithms [33, 34]. These algorithms can be categorized as linear or

nonlinear. Each category includes a large number of algorithms, but only a few of them are

suitable for AEC due to computational complexity, convergence rate, and tracking capa-

bility issues. Many popular adaptive filtering algorithms have been studied in white noise

excitation. However, when excited by speech signals, the performance of these algorithms

is degraded.

AEC has been extensively studied with the focus on identifying the acoustic echo path [8,

35]. Typically, the impulse response of an LEM system is represented by a finite all-zero

model because the signal energy becomes so small that it can be neglected after a certain

number of reflections [36]. Infinite impulse response (IIR) filter models or autoregressive-

moving-average (ARMA) models have also been used [37, 38]. However, IIR models do not

appear to offer any advantage over FIR ones in AEC [14].

To obtain a room impulse response, a loudspeaker and a microphone were connected to

a PC via a sound card. The loudspeaker played a white noise signal while the microphone
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picked up the reflected sounds (including the direct sound). Both signals were recorded by

a PC for post-processing, in which an adaptive filter was run with the loudspeaker signal

as excitation and the microphone signal as the reference. After the steady-state of the

adaptive filter was reached, where a very small step-size was used, the filter coefficients

were regarded as the room impulse response. For illustration purposes, Figure 2.2 shows

an impulse response of a typical office room based on an FIR filter model.
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Fig. 2.2 The acoustic impulse response of a typical office room.

In the following sections, linear adaptive filters are discussed first. They are used when

the acoustic echo path can be modelled as a linear system. Next, nonlinear adaptive filtering

algorithms are investigated. They may be needed when the nonlinearities in the echo path

introduced by nonlinear devices such as loudspeakers and vocoders cannot be neglected.
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2.2 Linear adaptive filters

A linear adaptive transversal filter is shown in Figure 2.3, where z−1 represents a unit

delay. It is based on an FIR filter structure. The latter is inherently stable, as opposed to

IIR filters, as is thus commonly used in practice. In order to discuss several popular linear

adaptive filtering algorithms suitable for AEC, it is necessary to first define the far-end

signal vector xn and the adaptive filter coefficient vector wn:

xn = [x(n), x(n− 1), · · · , x(n−N + 1)]T (2.1)

wn = [w0(n), w1(n), · · · , wN−1(n)]
T , (2.2)

where N is the length of the adaptive filter, n is the index of the discrete time and T

denotes the transposition operator.
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Fig. 2.3 The structure of a FIR adaptive filter.

2.2.1 The normalized least-mean-square (NLMS) algorithm

The normalized least-mean-square (NLMS) algorithm [33] is shown in Algorithm 1. The

step-size µ controls the convergence behaviour of the algorithm: the larger the value of µ,

the faster the algorithm converges, but this would also cause a greater misadjustment (i.e.,

larger residual error signal e(n)) in steady-state. For the algorithm to be stable, µ must be

chosen from 0 < µ < 2. The small positive constant δ is introduced in order to prevent the

denominator from being too small when the power of the input signal x(n) is very low.

NLMS is one of the most popular algorithms for AEC due to its simplicity of im-

plementation, low computational complexity, and robust behaviour. The computational
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Algorithm 1 The normalized least-mean-square (NLMS) algorithm

Initialization:

1: w1 = 0

Recursion:

2: for n = 1, 2, . . . do

3: e(n) = d(n)−wT
nxn

4: wn+1 = wn +
µ

xT
nxn+δ

e(n)xn

5: end for

complexity of NLMS is O(2N) operations per sample (OPS), where one operation is de-

fined as one real multiplication plus one real addition. The step-size in line 4 of Algorithm 1

is normalized by the input signal power; so the algorithm’s convergence behaviour is in-

dependent of any variations of the input signal power. However, the algorithm has a slow

convergence rate, especially for coloured excitation signals such as speech because of the

large eigenvalue spread associated to coloured signals.

2.2.2 The recursive least-squares (RLS) algorithm

The RLS algorithm is relatively unaffected by eigenvalue disparity [13]. RLS is based on

minimizing a weighted squared error sum, and thus it can be derived by minimizing the

the cost function Jn(wn) given below with respect to filter coefficients wn.

Jn(wn) =
n∑
i=1

λn−i|e(i)|2 =
n∑
i=1

λn−i|d(i)−wn
Txi|2 (2.3)

where λ (0 < λ ≤ 1) is a weighting factor which gives more weight to the most recent

errors. This is useful in non-stationary environments where recent changes in the signal

characteristics make the inclusion of old data less appropriate. λ is also known as the

forgetting factor.

Differentiating (2.3) with respect to wn and equating to zero leads to a set of normal

equations:

Rnwn = gn, (2.4)
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where the autocorrelation matrix Rn and cross-correlation vector gn are defined as follows:

Rn =
n∑
i=1

λn−ixix
T
i , (2.5)

gn =
n∑
i=1

λn−ixid(n). (2.6)

Note that Rn in (2.5) can be updated recursively as

Rn = λRn−1 + xix
T
i (2.7)

After mathematical manipulations and applying the well-known matrix inversion lemma

(Sherman-Morrison-Woodbury formula) [39] to (2.7), the RLS algorithm in Algorithm 2 is

obtained, where δ is a small positive constant. The value of δ should be chosen so that the

ratio of δ and the variance of the data sample x(n) is 0.01 [40].

Algorithm 2 The recursive least-squares (RLS) algorithm

Initialization:

1: w0 = 0

2: R−1
0 = δ−1I

Recursion:

3: for n = 1, 2, . . . do

4: Γn = R−1
n−1xn

5: α(n) = 1
λ+xT

nΓn

6: e(n) = d(n)−wT
n−1xn

7: wn = wn−1 + α(n) e(n)Γn

8: R−1
n = 1

λ

[
R−1

n−1 − α(n)ΓnΓ
T
n

]
9: end for

Compared to classical descent-based algorithms, such as NLMS, the RLS algorithm is

better suited for coloured signal excitations. The RLS algorithm has a much higher con-

vergence rate and a lower steady-state mean-squared error than NLMS. However, a major
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disadvantage of RLS is its expensive computational load of O(N2) OPS. Another issue is

RLS’s numerical sensitivity. In recent years, numerous variations of the RLS algorithm

have been developed [15] to lessen its computation burden and/or improve its numerical

robustness [41]. As a result, fast versions of RLS, such as the fast a priori error sequential

technique (FAEST) [42] and the fast transversal filter (FTF) [43], have a complexity of

about 7L OPS. Although this is still too high for AEC applications and the fast algorithms

suffer from numerical stability problems [44], RLS is still important for this study because

of its fast initial convergence.

The forgetting factor λ must be chosen carefully. Usually λ = 1 is appropriate for

stationary data, while 0.95 < λ < 0.9995 has been suggested for other data [45]. The

algorithm may become unstable if the value of λ is too small. In practice, it is not clear

how to choose a specific value of λ because this depends on the adaptive filter length and

the excitation signal.

2.2.3 The affine projection (AP) algorithm

The affine projection (AP) algorithm [21] is very attractive for AEC. It has a faster con-

vergence rate than NLMS for speech excitation, and it is stable and less complex than

RLS. The AP algorithm is a generalization of the NLMS algorithm. In the latter, each

filter coefficient vector update can be viewed as a one-dimensional affine projection. The

AP algorithm generalizes this concept by allowing the projections to be made in multiple

dimensions. As the projection dimension increases, so does the convergence speed of the

coefficient vector.

In the AP algorithm, the excitation signal matrix Xn, microphone signal vector dn, and

error signal vector en are defined as

Xn = [xn,xn−1, · · · ,xn−p+1]
T (2.8)

dn = [d(n), d(n− 1), · · · , d(n− p+ 1)]T (2.9)

en = [e(n), e(n− 1), · · · , e(n− p+ 1)]T , (2.10)

where the input signal vector xn is the same as before in (2.1). The relaxed and regularized

form of the AP algorithm is given in Algorithm 3.

The vector εn in Algorithm 3 is called the normalized error (or residual echo) vector.
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Algorithm 3 The affine projection (AP) algorithm

Initialization:

1: w1 = 0

Recursion:

2: for n = 1, 2, . . . do

3: en = dn −Xnwn

4: εn = [XnX
T
n + δI]−1en

5: wn+1 = wn + µXT
nεn

6: end for

SinceXnX
T
n may have eigenvalues close to zero (thus creating problems when computing its

inverse), a small diagonal matrix δI is added to XnX
T
n before inversion. δ is a small positive

constant called the regularization parameter for the excitation signal autocorrelation matrix

XnX
T
n . δ should be as small as possible while still allowing a well-behaved inverse. The

constant µ > 0 sets the step size and is sometimes called the relaxation factor in AP. As in

NLMS, AP is stable for 0 < µ < 2. The parameter p, called the projection order, defines

the dimension of the vectors dn, en, εn, and the matrix Xn. If p is set to 1, then the AP

algorithm reduces to the NLMS algorithm. If p is set to 2, then the AP algorithm reduces

to the decorrelation NLMS algorithm [46], which will be discussed in the next section.

There is little difference between the convergence behaviour of NLMS and AP with

white noise excitation. However, when they are driven by coloured excitation signals, AP

has a much faster convergence rate than NLMS [11], especially as the projection order p is

increased.

The computational complexity of AP is 2pN+7p2 OPS. This complexity is significantly

reduced in variants of the AP algorithm, such as the block exact fast AP algorithm [47]

and the fast affine projection (FAP) algorithm [22]. The computational complexity of FAP

is 2N + 14p or 2N + 20p, depending on whether µ = 1 or µ < 1. The fast versions of AP

have lately received considerable attentions for AEC applications [48, 11].
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2.2.4 The decorrelation NLMS algorithm

In order to overcome the major drawback of NLMS, i.e., the slow convergence rate for

speech signal excitation, many decorrelation algorithms have been proposed. The main

idea of these algorithms is to pre-whiten speech signals before feeding them to the NLMS

algorithm. These algorithms can be classified into two categories: the first is represented

by the second order AP algorithm, although algorithms in this category may have been

derived from different viewpoints [46, 49]; the second is represented by the conventional

NLMS associated with decorrelation filters. This section focuses on the second category

since the first has been addressed in Section 2.2.3.

The linear predictive coding (LPC) filter given below can be used as a decorrelation

filter:

H(z) = 1−
M∑
i=1

aiz
i. (2.11)

The LPC filter, represented by its coefficient vector aM = [a1, a2, . . . , aM ]T , significantly

whitens speech signals by exploiting the properties of speech. It removes short-term re-

dundancies of speech signals, resulting in an output signal with a relatively flat spectral

envelope [50].

For simplicity, most LPC work employs an all-pole model (i.e., AR model). Two ap-

proaches are often used to obtain the coefficient vector of the LPC filter aM . The classic

least-squares method computes aM by minimizing the mean energy in the error signal over

a frame of speech data x(n), while the lattice approach involves both a forward and a

backward prediction [51]. In practice, the Levinson-Durbin algorithm [33] is used to es-

timate the LPC coefficients due to its computational efficiency. Although the prediction

error decreases monotonically with the order of the LPC filter M , the 10 poles is appro-

priate for 8 kHz sampled speech, considering the compromise between spectral accuracy

and the computational complexity [52]. The length of the window theoretically can be as

short as M , but spectral accuracy usually increases with larger length. The typical length

corresponds to 10-30 ms.

A possible approach for decorrelation is shown in Figure 2.4, and the corresponding

algorithm is given in Algorithm 4. This approach, referred to here as decorrelation scheme

1 (NLMS-DF1), employs an auxiliary loop for adaptation [53, 54]. The adaptive filter

coefficients are copied into the echo cancellation filter at each iteration. Since the excitation



2 Fundamentals of AEC: adaptive filtering 19

Adaptive Filter

+

Decorrelation Filter

Speech

Residual
echo - d(n)

y(n)

e(n)

x(n)

A
co

us
tic

ec
ho

pa
th

+

Decorrelation Filter

Echo
Cancellation

Filter

-
d(n)

y(n)
e(n)

x(n)

~
~

~

~

H

Lo
ca

ln
oi

se

Local speech

^

Fig. 2.4 Decorrelation scheme 1 – using an auxiliary loop for adaptation
(NLMS-DF1).

signal is pre-whitened by a decorrelation filter, the adaptive filter has a faster convergence

rate.

This approach has the shortcoming that the auxiliary path increases computational

and memory requirements. The filtering operation of the echo canceller must be performed

twice: first for the decorrelated signal, then for the original signal. Furthermore, extra

buffers are needed to store the decorrelated excitation signals x̃(n), d̃(n) and ẽ(n).

A different approach of using decorrelation filters is depicted in Figure 2.5, and its

algorithm is given in Algorithm 5. This is referred to here as decorrelation scheme 2 (NLMS-

DF2). It employs an inverse decorrelation filter in order to recover the decorrelated signal,

which is either the residual echo or the near-end speech. The inverse decorrelation filter is

a recursive filter derived from the LPC filter coefficients. The inverse decorrelation filter is

causal and stable because the LPC filter is minimum phase. Compared with NLMS-DF1,

the NLMS-DF2 scheme has lower computational complexity and less memory requirement.

NLMS-DF2 also has several shortcomings. First, using a recursive filter as the inverse

decorrelation filter may cause instability in fixed-point implementations. Second, the resid-

ual echo signal e(n) in NLMS-DF2 differs from the residual echo signal that would result

from a standard application of the NLMS, i.e., without the use of decorrelation filters.
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Algorithm 4 The decorrelation NLMS algorithm scheme 1 (NLMS-DF1)

Initialization:

1: w1 = 0

Recursion:

2: for n = 1, 2, . . . do

3: d(n− 1) = [d(n− 1), d(n− 2), . . . , d(n−M)]T

4: x(n− 1) = [x(n− 1), x(n− 2), . . . , x(n−M)]T

5: d̃(n) = d(n)− aTM(n)d(n− 1)

6: x̃(n) = x(n)− aTM(n)x(n− 1)

7: x̃n = [x̃(n), x̃(n− 1), · · · , x̃(n− L+ 1)]T

8: ẽ(n) = d̃(n)−wT
n x̃n

9: e(n) = d(n)−wT
nxn

10: wn+1 = wn +
µ

x̃T
n x̃n

ẽ(n) x̃n

11: end for

To demonstrate this difference, decorrelated signals ẽ(n) and x̃n are expressed in terms of

original signals d(n) and xn:

ẽ(n) = d̃(n)−wT
n x̃n,

= d(n)−
M∑
i=1

aid(n− i)−wT
n

(
xn −

M∑
i=1

aixn−i

)

= e0(n)−
M∑
i=1

ai
(
d(n− i)−wT

nxn−i

)
, (2.12)

where e0(n) = d(n) − wT
nxn is the residual echo signal at the output of standard NLMS.

Now, let ẽ0(n) denote the output of the LPC filter (with coefficient vector aM(n)) when

excited by the input e0(n). That is, ẽ0(n) is the prediction error associated with the residual
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Fig. 2.5 Decorrelation scheme 2 – using an inverse decorrelation filter
NLMS-DF2).

echo e0(n) in NLMS. According to the definition of the LPC filter, ẽ0(n) is given by

ẽ0(n) = e0(n)−
M∑
i=1

aie0(n− i)

= e0(n)−
M∑
i=1

ai
(
d(n− i)−wT

n−ixn−i

)
. (2.13)

Comparing (2.13) with (2.12), it is clear that ẽ0(n) is not equal to ẽ(n) in the transient

state where wn−i �= wn (i ≥ 1). Thus the residual echo e0(n) cannot be recovered by

passing ẽ(n) through an inverse decorrelation filter. In other words, the residual echo e(n)

in NLMS-DF2 is different from that in NLMS-DF1 (where e(n) = e0(n)). Although this

does not imply that NLMS-DF2 has a poorer performance than NLMS-DF1, it does pose

difficulties in analyzing and interpreting NLMS-DF2.

Accurate speech prediction (such that the resulting prediction error signal is maximally

whitened) is very important in decorrelation NLMS algorithms. Increasing the prediction

order results in a more accurate speech estimate, and thus a whiter error signal at the

output of the LPC filter. According to a common geometrical interpretation [21], the
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Algorithm 5 The decorrelation NLMS algorithm scheme 2 (NLMS-DF2)

Initialization:

1: w1 = 0

Recursion:

2: for n = 1, 2, . . . do

3: d(n− 1) = [d(n− 1), d(n− 2), . . . , d(n−M)]T

4: x(n− 1) = [x(n− 1), x(n− 2), . . . , x(n−M)]T

5: e(n− 1) = [e(n− 1), e(n− 2), . . . , e(n−M)]T

6: d̃(n) = d(n)− aTM(n)d(n− 1)

7: x̃(n) = x(n)− aTM(n)x(n− 1)

8: x̃n = [x̃(n), x̃(n− 1), · · · , x̃(n− L+ 1)]T

9: ẽ(n) = d̃(n)−wT
n x̃n

10: wn+1 = wn +
µ

x̃T
n x̃n

ẽ(n) x̃n

11: e(n) = aTM(n) e(n− 1) + ẽ(n)

12: end for

decorrelated input signal x̃n is orthogonal to a hyperplane in the L-dimensional Euclidean

space defined by {w : w ∈ R
L, wT x̃n = d̃(n)}. This hyperplane is formed by the adaptive

filter coefficient vectors which give the output equal to the decorrelated echo signal d̃(n).

The convergence speed of the coefficient vector greatly depends on the angle between two

successive hyperplanes. The fastest convergence rate occurs when the angle is π/2, which

thus requires that the signals x̃n and x̃n−1 be orthogonal (i.e., the decorrelated signals

are ideally whitened). In order to achieve perfect whitening of the input speech signal,

the prediction coefficients should be adaptive, and they should be updated as quickly as

possible since speech is a non-stationary signal. However, this condition cannot be achieved

for AEC, as explained in the following.

Let d(n) = hTxn, where h represents the impulse response of the acoustic echo path.
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Applying the LPC filter (2.11) to the microphone signal d(n), we have

d̃(n) = d(n)−
M∑
i=1

ai(n)d(n− i)

= hTxn −
M∑
i=1

ai(n)h
Txn−i

= hT

(
xn −

M∑
i=1

ai(n)xn−i

)

= hT x̃n. (2.14)

The above relation is the basis of decorrelation NLMS algorithms. It is assumed that the

prediction coefficients ai(n) (i = 1, 2, · · · ,M) do not change over a duration comparable to

the length of the excitation signal vector xn. This duration may be hundreds of milliseconds

corresponding to thousands of filter taps at an 8 kHz sampling rate. If the coefficients ai(n)

change over such a period of time, then x̃n in (2.14) contains more than one set of ai(n),

which makes the last equality in (2.14) untrue. This means that if the prediction coefficients

are adapted too frequently, then using signals x̃(n) and d̃(n) instead of x(n) and d(n) will not

lead to a correct identification of the unknown system h. Thus, the prediction coefficients

must not change too rapidly compared to the impulse response duration. Unfortunately,

this is not the case in AEC applications where impulse responses are long (especially in

office rooms). Consequently, the accuracy of the predictions is limited.

For these reasons, using a higher order prediction does not lead to increased performance

of decorrelation NLMS algorithms. In practice, using a first order LPC filter is often

sufficient to achieve a significantly faster convergence rate than a standard NLMS algorithm.

A first order decorrelation filter has very low computational complexity, especially a fixed

decorrelation filter (a fixed decorrelation filter can exploit the long term characteristic

of speech and has a first order autocorrelation coefficient of about 0.9). Using a fixed

first-order LPC filter with an adaptive filter of length L, the computational complexity of

NLMS-DF1 is about 3L OPS, and that of NLMS-DF2 is about 2L OPS.
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2.3 Nonlinear adaptive filters in AEC

This section investigates some nonlinear adaptive filtering algorithms used for nonlinear

echo paths in AEC. Unlike linear systems, which are completely characterized by their

unit impulse response, nonlinear systems cannot be characterized in such an unified way.

Therefore each nonlinear adaptive algorithm uses its own fitting model. Nonlinear adaptive

filters can compensate the saturation nonlinearities caused by loudspeakers [55, 56]. So far,

only two types of nonlinear adaptive filters have been used in AEC: polynomial adaptive

filters [57, 58] and neural networks [59, 60]. In practice, serious drawbacks of these non-

linear adaptive algorithms limit their applications, even where the nonlinear mechanism

is clear [61]. The major shortcomings of nonlinear adaptive algorithms are: high com-

putational complexity, slow convergence speed due to a large number of adaptive filter

coefficients, multiple local minima that may halt the adaptation of the algorithm, and nu-

merical sensitivity which requires an extremely careful selection of algorithm parameters

in order to avoid divergence.

2.3.1 Volterra filters

Volterra filters belong to the polynomial filter category [62]. Let x(n) represent the input

signal and y(n) represent the output signal of a nonlinear system. Then the Volterra series

expansion for y(n) using x(n) is given by [34]

y(n) = w0 +
∞∑

m1=0

w1(m1)x(n−m1)

+
∞∑

m1=0

∞∑
m2=0

w2(m1,m2)x(n−m1)x(n−m2)

+ · · ·+
∞∑

m1=0

∞∑
m2=0

· · ·
∞∑

mp=0

wp(m1,m2, · · · ,mp)

·x(n−m1)x(n−m2) · · ·x(n−mp) + · · · (2.15)

where wp(m1,m2, · · · ,mp) is called the p-th order Volterra kernel of the system. Without

loss of generality, one can assume that Volterra kernels are symmetric, meaning the ker-

nels are the same for every permutation of indices (e.g., w(m1,m2) = w(m2,m1)). Since

the Volterra series expansion is an infinite series (similar to the Taylor series expansion
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but with memory), one must work with a truncated form in practice. A Volterra filter’s

computational complexity increases exponentially with its order p; therefore most applica-

tions employ low-order models. The second-order Volterra filter is most commonly used in

practice [63, 64].

Adaptive schemes of Volterra filters use linear adaptive filtering criteria such as least-

squares and stochastic gradient methods [65, 66]. This work focuses only on the NLMS

adaptive Volterra filter [67] because of its simplicity and stability. The NLMS adaptive

Volterra filter is obtained through a procedure similar to that used in NLMS, with w0

neglected (w0 can often be estimated independently of the adaptive filter structure). To

simplify the presentation, the following notations are introduced,

Wn =
[
wT

n,1 |wT
n,2 | · · ·

]T
(2.16)

wn,1 = [wn,1(0), wn,1(1), · · · , wn,1(L− 1)]T (2.17)

wn,2 = [wn,2(0, 0), wn,2(0, 1), · · · , wn,2(L− 1, L− 1)]T (2.18)

· · ·

and

Xn =
[
xTn,1 |xTn,2 | · · ·

]T
(2.19)

xn,1 = [x(n), x(n− 1), · · · , x(n− L+ 1)]T (2.20)

xn,2 = [x(n)x(n), x(n)x(n− 1), · · · , x(n− L+ 1)x(n− L+ 1)]T (2.21)

· · ·

Wn is the filter weight vector and Xn is a modified input signal vector containing all

possible cross-products of the input samples. The NLMS adaptive Volterra algorithm,

shown as Algorithm 6, is then developed in a way similar to the linear NLMS. Accordingly,

the stability region of its step-size µ is the same as in the linear case, i.e., 0 < µ < 2.

The adaptive Volterra filter has computational complexity O(Lp), where L is the length

of the input signal vector and p is the order of the filter. Using multirate signal processing

methods can reduce this computational burden, but certain constraints must be imposed

and the filter order is limited [68]. In AEC applications, the filter length L typically varies

from several hundred to several thousand taps, so the computational complexity becomes
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Algorithm 6 The NLMS adaptive Volterra algorithm

Initialization:

1: W1 = 0

Recursion:

2: for n = 1, 2, . . . do

3: e(n) = d(n)−WT
nXn

4: Wn+1 =Wn +
µ

XT
nXn

e(n)Xn

5: end for

unmanageable even for a second-order adaptive Volterra filter. In order to make adaptive

Volterra filters suitable for AEC, approximations are necessary as discussed below.

From (2.16) - (2.21), it can be seen that a Volterra filter has a linear part (wn,1 and

xn,1) and a nonlinear part (the high-order signal cross-terms). Therefore, an adaptive

Volterra filter can be implemented as a linear adaptive filter connected in parallel with

an adaptive high-order kernel. Since adaptive Volterra filters are known to be effective

only in cases of weak nonlinearities [69], the linear component plays a more important

role than the nonlinear one. However, the nonlinear component is responsible for most of

the computational burden. This suggests that modifying the nonlinear component with

approximations can significantly reduce the filter’s computational complexity.

A common approximation uses the shortest possible memory length in the nonlinear

component, since the correlation between the signal samples decreases with the lag. This

leads to a modified second-order Volterra representation with a much shorter memory

length for the second-order terms [70]:

y(n) =
L−1∑
m1=0

w1(m1)x(n−m1)

+

L2+∆−1∑
m1=∆

L2+∆−1∑
m2=m1

w2(m1,m2)x(n−m1)x(n−m2), (2.22)

where L� L2, and ∆ is an adjustable delay introduced in order to focus on tap locations

where most nonlinear effects occur.
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This approach achieves a few decibels gain in echo-return-loss-enhancement (ERLE)

for the compensation of loudspeaker nonlinearities, where white Gaussian noise is used

as the excitation signal [70, 58]. However, it is important to note that the higher-order

cross-terms in a Volterra adaptive filter (or even in a truncated second order approximate

model) introduce valleys in the error surface J(w) = E[e2(n)], so the error surface has

multiple local minima. In practice, it is difficult to select an initial filter coefficient vector

that guarantees convergence to the global minimum.

2.3.2 Neural networks

In the past two decades, there has been an explosive development of neural networks for

various applications [71]. Interest in neural networks for signal processing is motivated by

their following properties: nonlinearity, weak statistical assumptions, and learning capabil-

ity [72].
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Fig. 2.6 Nonlinear model of a neuron (k−th neuron).

A neural network is an interconnection of nonlinear processing units called neurons.

These neurons are connected through a set of connection weights, also called synaptic

weights. Figure 2.6 shows the most commonly used model of a neuron. The model consists

of a linear combiner followed by a nonlinear activation function ϕ(·). The exact nature

of the neuron activation function depends on the neural network model. Two of the most

popular activation functions are the nonsymmetric logistic function

ϕ(ν) =
1

1 + e−βν
, (2.23)
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and the symmetric hyperbolic tangent function

ϕ(ν) = tanh(
βν

2
) =

1− e−βν

1 + e−βν
, (2.24)

where β is a positive parameter which determines the slope of the activation function.

There are different structures for neural networks. An important structure for dynamic

back-propagation (BP) learning consists of a bank of linear filters feeding a static neural

network. The linear filters manage the temporal dependence of the input signal, while the

static neural network handles nonlinear processing. A simple case is the time-lagged feed-

forward network (TLFN) that has a tapped-delay line followed by a multilayer perceptron

(MLP) which is trained by using the BP algorithm [72], as illustrated in Figure 2.7. It

is called a feedforward network in the sense that the input signals produce a response at

the output of the network by propagating in the forward direction only, i.e., there is no

feedback in the network. The BP algorithm may be viewed as a generalized form of the

well-known LMS algorithm. The MLP consists of an input layer, one or more layers of

hidden neurons, and an output layer.

In theory, a nonlinear input-output mapping can be approximated to any desired degree

of accuracy by a multilayer perceptron with a single hidden layer, provided that the mapping

is continuously differentiable and the hidden layer has enough processing units [73]. For

practical reasons, however, one may use a multilayer perceptron with two or more hidden

layers, depending on the complexity of the learning task.

Recent research on using neural networks in AEC has shown only limited benefits. For

example, an adaptive filter has been proposed consisting of a multi-layer neural network

in cascade with a linear FIR filter [59]. When compared with a classical linear adaptive

filter, this design only achieved modest gains of a few decibels when there are loudspeaker

nonlinearities. Furthermore, only white noise was used as the excitation signal in the

simulation, not speech signals. Another similar design uses a two-layer neural network for

the nonlinear part of the filter [60], where the nodes’ activation functions are hyperbolic

tangent functions. White noise is also used as the excitation signal, and results showed

limited gains.

Like other nonlinear adaptive filtering algorithms, neural networks cannot guarantee

convergence to the global optimum [74]. Furthermore, neural networks are not suitable

for real-time systems since they have high computational complexity and slow convergence
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Fig. 2.7 Time-lagged feedforward network (TLFN).

speed. Speech signals also represent a major challenge for neural networks since they can

make neural network algorithms unstable. Besides all these difficulties, it is time-consuming

to choose a proper neural network model and to develop the corresponding algorithm [75].

Neural networks may still be an option for AEC in the future since there is much to be

explored. However, results published to date are not so promising.
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Chapter 3

Effects of nonlinear channels

Centralized AEC systems place AEC devices in a central station or a base station instead

of user terminals (see Figure 1.5). These systems are attractive in practice since they lower

system costs and simplify user terminal implementation. A hands-free terminal (mainly

consisting of a loudspeaker and a microphone) is connected to the central station or the

base station via a digital link that uses a modern coding scheme, such as G.729 or GSM.

However, current echo cancellation technology that mostly uses adaptive transversal FIR

filters for echo path identification suffers from nonlinearities introduced by speech codecs

and non-ideal loudspeakers. These nonlinearities cause speech signal distortions that cannot

be ignored.

In this chapter, the effects of the main nonlinear components, i.e., the low bit-rate

speech codec and the loudspeaker, on the conventional AEC are studied. These nonlinear

devices significantly degrade the performance of the conventional AEC, resulting in a high

residual echo. This greatly impairs the communication quality of the hands-free telephone

used in the modern digital networks. To develop a good understanding of the degradation

caused by these nonlinearities, a qualitative approach is used throughout this chapter, as a

strict closed form of theoretical analysis is almost impossible to obtain due to the complex

characteristics of the nonlinear devices.

This chapter is organized as follows. First, the nonlinear mechanism of an important

speech codec, i.e., G.729, has been investigated, and a localized linear model is used to

analyze the nonlinear character of the codec. Then the nonlinear effects on the conven-

tional AEC that mainly employs a linear adaptive filter have been studied. The tracking
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capabilities of adaptive filters are also investigated because they are shown as an important

aspect of an adaptive filter working in a nonlinear channel. Finally, the nonlinearities of a

loudspeaker is studied.

3.1 Characteristics of speech codecs

3.1.1 Speech codecs

Digital coding of speech signals provides efficient and secure signal transmission and storage.

Speech is transformed by an encoder into a sequence of bits which is then transmitted over

a channel. At the receiver, the bits are converted back into an audible signal using a

decoder that acts as an inverse of the encoder. This inverse is only approximate since some

information may have been lost during coding (due to analog-to-digital conversions) and

data transmission (due to noisy channels).

Speech coding strives to represent speech signals economically while allowing them to

be reconstructed with minimal quality loss at the receiver. This is done by exploiting

speech signal redundancies as well as the masking properties of auditory perceptions. For

instance, natural speech (i.e., speech generated by the human vocal tract, as opposed to

speech generated by computers) has the following well known characteristics [50]:

• In general, vocal tract shape (and thus speech spectrum) changes slowly over time
relative to the sampling frequency.

• Vocal cords vibrate rapidly but the rate of change of the excitation frequency is slow.

• Successive pitch periods are virtually identical most of the time.

• The vocal tract spectrum varies slowly with frequency, and most of the speech energy
is concentrated at low frequency.

• Speech sounds can be modelled as a periodic or noisy excitation passing through a
vocal tract filter, and each sound can be represented with a few parameters.

• These parameters have nonuniform probability distributions.

In addition, human ears have the following perception limitations:

• The ear is relatively phase-insensitive.

• The high intensity position of the speech spectrum masks the low amplitude frequen-
cies.
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Speech coders can be classified as waveform coders and vocoders. Time-domain wave-

form coders take advantage of temporal waveform redundancies to allow data compression,

while frequency-domain waveform coders exploit the nonuniform frequency distribution of

speech information. Examples of waveform coders are PCM, log PCM (G.711) [76], and

ADPCM (G.726) [77]. Vocoders are more complex systems that use speech production

models. Such models separate speech information into two parts: one that estimates vo-

cal tract shape and one that estimates vocal tract excitation. Popular vocoders include

CS-ACELP (G.729) [24] and GSM [25]. In recent years, distinction between the two kinds

of speech coders, i.e., waveform coders and vocoders, has become blurred with the design

of hybrid systems that code both timing and spectral information. However, a distinction

can still be made between waveform coders that reconstruct speech sample-by-sample and

vocoders that exploit speech-specific models.

Excitation
codebook

Parameter decoding

Long-term
synthesis filter

Short-term
synthesis filter

Post-filter Output
speech

Received bitstream

Fig. 3.1 Conceptual synthesis model of CELP vocoders.

This thesis focuses only on vocoders widely used in wireless networks. Specifically, the

conjugate-structure algebraic-code-excited linear-prediction (CS-ACELP) coder is chosen

for investigation since it is a practical design that typifies the properties of many vocoders.

The CS-ACELP coder follows the 8kb/s ITU-T standard G.729 [24]. It is based on the

code-excited linear-prediction (CELP) coding model shown in Figure 3.1. The difference

between the standard CELP and CS-ACELP is that the latter does not store residual

sample vectors in a vector quantization (VQ) codebook, but rather derives them directly

from the transmitted index. This is done by using a simple algebraic transform on the index

in order to produce the residual signal used to excite the pitch and the linear-prediction
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(LP) synthesizer. In Figure 3.1, the long-term (or pitch synthesis) filter is implemented

using the adaptive-codebook approach, while the short-term synthesis filter is a 10th order

LP filter. The post-filter further enhances the reconstructed speech. CS-ACELP operates

on speech frames of 10 ms corresponding to 80 samples at a sampling rate of 8000 samples

per second. 80-bit parameters extracted from every 10 ms frame are used to reconstruct

the speech signal. Among these 80 bits, 18 represent line spectrum pairs (LSP) while the

others are used for the excitation codebook [24].

Vocoders usually introduce delay because a fixed number of consecutive samples (re-

ferred to as a frame) must be collected before the information parameters can be extracted

from these samples. CS-ACELP encodes 10-ms frames with a look-ahead of 5 ms, resulting

in a total algorithmic delay of 15 ms. Decoders do not introduce algorithmic delay, and

their computational delay is negligible with today’s DSP chips.

3.1.2 Distortion introduced by vocoders

As explained earlier, some information of the speech signal is irretrievably lost during the

coding process. The more information is lost, the more distortion a coder produces. Signal-

to-noise ratio (SNR) is a basic measure of the distortion introduced by coders. It is defined

as the ratio of the average speech energy to the average energy of the error signal, usually

expressed in decibels:

SNR(dB) = 10 log10

σ2
x

σ2
e

= 10 log10

E[x2(n)]

E[e2(n)]
= 10 log10

∑
n x

2(n)∑
n e

2(n)
, (3.1)

where x(n) is the speech signal and e(n) is the error signal. The operation E[·] represents
expectation (averaging) over the entire speech utterance. The temporal variation of SNR

can be studied by computing it once for every segment of 128 samples (corresponding to

16ms at an 8-kHz sampling rate). This is called the short-term SNR [78]. Short-term SNR

is widely used in speech signals research; it is simply referred to as SNR in this thesis.

It is important to note that SNR is an objective measure of speech quality only for

waveform coders. Vocoders distort the original speech signals to the extent that SNR

becomes irrelevant as a perceptual measure, so maximizing SNR would not guarantee the

best perceptual quality. However, SNR is still an useful tool for AEC systems, since the

operation of adaptive filters is based on the waveforms, in either the time or frequency

domain.
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Figure 3.2 shows how the short-term SNR of reconstructed speech is computed. The

original speech signal is first passed through the encoder and the decoder. The output

is then compared with a delayed version of the original signal (the delay is introduced to

synchronize the two signals), resulting in an error signal. The SNR is computed as the

ratio of the average power (over a window of 128 samples) of the original signal and that

of the error signal.

Encoder Decoder

Delay

C
om

pu
tin

g

Speech

SNR

Fig. 3.2 Computational approach for short-term SNR measurement.

Figure 3.3 shows speech distortion (in terms of SNR) produced by the G.729 vocoder for

the sample speech signal in Figure 3.4. Although the reconstructed signal has good speech

quality when it is heard, the waveform distortion is significant. It can be seen that the

maximal SNR is no larger than 10 dB. Comparing Figure 3.3 to Figure 3.4, it is observed

that the SNR is approximately proportional to the speech energy. Although the example

shown here is a male speech, similar results are obtained for other cases as well.

If white noise is used as the input to the encoder/decoder cascade in Figure 3.2, then

vocoder G.729 produces a more severe distortion, as displayed in Figure 3.5. This is be-

cause the coder cannot correctly predict parameters (e.g., LPC and pitch coefficients) for

white noise, which is an unpredictable waveform. Vocoder G.729 searches the codebook in

an attempt to find the optimal parameter values that would allow a reconstruction with

minimal distortion, but this effort results in only a few positive decibels of SNR. Since

white noise is similar to unvoiced speech, it is obvious that the vocoder introduces more

distortion for unvoiced speech than voiced speech.

As an important signal used for testing AEC systems, composite-source-signal (CSS) [79]

is a composition of three different signal parts: voiced sound, pseudo-noise signal, and

pause. When CSS is used as the input signal to the vocoders, severe distortion of the
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Fig. 3.3 SNR of the reconstructed speech signal from coder G.729.
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Fig. 3.4 Original speech signal (male: Oak is strong and also gives shade.)

reconstructed signal is observed at the output. This is because the CSS contains a white

noise component. In order to discover the true characteristics of vocoders, real (as opposed
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Fig. 3.5 SNR of reconstructed white noise from coder G.729.

to synthesized) speech signals are used throughout this work.

3.1.3 Analysis of vocoders

Both G.729 and GSM speech codecs have coding structures based on ACELP [80, 81].

ACELP is a VQ coding scheme. It searches the best combination of pulses and signs in

order to obtain the best matched synthesis signal. The error between the original signal

and the synthesized signal, called quantization error, is a nonlinear function of the input

signal. Furthermore, a post-filter used to enhance the perceptual quality of the synthesized

speech brings in more complex nonlinearities.

As a nonlinear dynamic system, the behaviour of the ACELP vocoder depends not only

on the current input signal, but also on the state of the vocoder. The state completely

describes the time history of the vocoder. It includes the influence of the past and “future”

(look ahead) input and output samples on the current output of the vocoder. The output of

the vocoder at a certain time instant is completely described by its state and input sample

at that time instant. A nonlinear state space model that takes the state of the system into
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account can be mathematically described as [82]

xk+1 = f(xk) + g(xk)uk (3.2)

yk = h(xk), (3.3)

where yk ∈ R
l is the output of the vocoder, uk ∈ R

m is the input of the vocoder, xk ∈ R
p

is the state of the vocoder, f and g are smooth vector fields, and h is a smooth nonlinear

function. Note that this is a discrete-time model with k denoting time, since vocoders

always deal with the sampled signal.

To obtain a state space model of a nonlinear dynamic system, it is necessary to esti-

mate the mappings f , g and h using only measurements of the system’s input and output.

One approach is to use a model structure that can be considered as a general approxima-

tion to these mappings. Examples of such structures are neural networks and radial basis

function networks [83]. These models are difficult to identify and analyze due to their com-

plex structures. Estimating these models usually involves solving a non-convex nonlinear

optimization problem.

A useful technique of nonlinear analysis is linearization, which approximates a nonlinear

system by a linear state space model at an operating point [84]. Considering that the

number of the vocoder states is very large, a continuous variable x is used to replace xk.

Without loss of the generality, assume that the nonlinear characteristic of the mapping f is

as shown in Figure 3.6. This mapping has an input x and an output f(x). The operating

point is at the input value x0.

Suppose that a small perturbation, ∆x, occurs in x (i.e., x = x0 +∆x). The nonlinear

function of Figure 3.6 can be linearized in the vicinity of the operating point x0 by using

the Taylor series expansion:

f(x) = f(x0) +
df(x)

dx

∣∣∣∣
x=x0

∆x+
d2f(x)

dx2

∣∣∣∣
x=x0

∆x2

2!
+ · · · (3.4)

Unfortunately, it is almost impossible to mathematically describe the mapping f and

its derivatives in closed forms due to the complex structure of the vocoder. A practical

method is to neglect the higher order terms in the expansion of f(x). Consequently, (3.4)
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Fig. 3.6 Nonlinear characteristic of a system.

becomes

∆f(x) = f(x)− f(x0) ≈ df(x)

dx

∣∣∣∣
x=x0

∆x. (3.5)

This equation is linear, since the derivative of a function evaluated at a point x0 is a

constant. Accordingly, the nonlinearities of the vocoder can be approximated by a linear

state space model with following structure:

xk+1 = Axk +Buk (3.6)

yk = Cxk +Duk, (3.7)

where xk ∈ R
n is the state. A, B, C and D are constant matrices in the vicinity of

the operating point x0. In other words, the dynamic nonlinear system of the vocoder

represented by (3.2)-(3.3) can be approximately identified by a linear system (3.6)-(3.7) if

the operating point is determined. Note that the state variable xk is a function of the input

signal uk, i.e., xk = xk(uk). A linear adaptive filter is able to fulfill this task by tracking

changes in the operating point. Error introduced by using a linear model mainly depends on

two factors: the tracking capability of the adaptive filter, and the nonlinear characteristic

of the vocoder in the vicinity of the operating point. Good tracking capability ensures an

accurate operating point at each iteration, while linearity in the vicinity of the operating

point makes the linear approximation reasonable.

To verify the accuracy of this approximate linear model for vocoders, a simulation was
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Fig. 3.7 Vocoder identification by an adaptive filter.

conducted using the setup shown in Figure 3.7. The vocoder used is G.729, and the adaptive

filter is an FIR filter with 100 taps. The input signal is the same as in Figure 3.4. Results

are shown in Figure 3.8, where the SNR is calculated using (3.1). It is seen that the SNR

reaches up to 20-25 dB. This means that the local linearization model is suitable for the

vocoder. This model provides a reasonable approximation and has been proven to yield

satisfactory performance. Therefore, it is used in this thesis for most of the work involving

vocoders.

3.2 Effects of vocoder nonlinearities on conventional AEC

3.2.1 Effects of vocoders on “Optimal” AEC

An acoustic echo canceller employs an adaptive filter to estimate the impulse response

of the echo path and to generate an echo replica which can then be subtracted from the

microphone signal. Ideally, if the impulse response (represented by filter coefficients) of

the adaptive filter is exactly the same as that of the echo path, then the acoustic echo will

be entirely cancelled; so there is nothing left but the near-end signal at the echo canceller

output. However, when vocoders are present along the returned echo path, they will affect

echo cancellation. To investigate this aspect, we first consider the use of a fixed filter to

mimic the acoustic echo path, which is assumed to be time-invariant.

In the simulation set-up illustrated in Figure 3.9, the coefficients of the fixed filter are

identical to the coefficients of the acoustic echo path impulse response. A fixed delay is

inserted at the input of the fixed filter in order to compensate for the delay introduced by

the vocoders in the echo path. The fixed filter is referred to as an “optimal” filter, since
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Fig. 3.8 Identification error for a vocoder.

the acoustic echo can be perfectly cancelled by this filter if vocoders are absent and other

nonlinearities are neglected. To simplify the discussion, neither noise nor local speech is

added to the microphone signal. Simulations are run using many different speech signals

and impulse responses. Figure 3.10 shows a typical simulation result. From the results, it

can be seen that when the encoders and decoders (G.729) are present, the power of the

residual echo signal e(n) is almost as high as that of the acoustic echo d(n).

In practice, a communication path may use multiple coders, where the output of one

vocoder provides the input to another. This introduces more distortion to the signal,

resulting in a higher residual echo. However, from the simulation results in Figure 3.9,

where the fixed filter is identical to the true echo path, it is observed that only the first

vocoder added in the echo path has a major effect on the system. Adding more vocoders

with the same coding technique only increases the effect slightly. This may be explained

by noting that subsequent vocoders have as their input a simplified speech signal that has
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Fig. 3.9 The use of “optimal” (fixed) filter for AEC.

been “cleaned up” by the first vocoder. If vocoders with different coding schemes are used,

however, the effect could be more severe because these coders exploit different properties

of the signal, thus more information of the original speech could be lost.

An optimal linear echo cancellation that would work perfectly well in a conventional

analog network is no longer effective in new digital networks that use speech codecs. This

represents a fundamental drawback of the conventional AEC scheme based on adaptive

FIR filters in the modern context of digital networks.

3.2.2 Effect of vocoders on NLMS-based AEC

Most AEC systems use adaptive filters since the echo path is time-varying. This section in-

vestigates how the performance of such AEC systems is affected by the presence of vocoders.

In particular, the performance of adaptive filters is compared with the performance of fixed

filters that are matched to the true echo path parameters. This comparison would indicate

whether using adaptive filters is better than simply trying to match the acoustic echo path

when vocoders are present.

The simulation setup used is the same as the one shown in Figure 3.9, except that the
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Fig. 3.10 The performance of AEC with the fixed filter in the presence of
channel nonlinearities (G.729 codec).

fixed filter and the delay unit are replaced by an adaptive filter. In addition, a white noise

is added to the acoustic echo when generating the total microphone signal. This adds local

background noise and makes the simulation more realistic. The power of the white noise

is adjusted so that the echo-to-noise ratio (ENR) at the microphone is 40 dB. This is a

reasonable value when the hands-free telephone is used in a quiet environment.

Among the adaptive filtering algorithms investigated, NLMS is used first in this study

because of its simplicity and robustness. This allows the fundamental characteristics of

AEC in the presence of vocoders to be easily observed without complication from external

factors caused by more complex algorithms.

Figure 3.11 shows the performance of the NLMS-based AEC in terms of MSE both

with and without vocoders along the transmission channel. The length of the acoustic echo

path used is 200 ms, which is typical for offices. Figure 3.12 shows corresponding results

for a shorter acoustic echo path of 40 ms, which is typical for vehicles. Note that a longer

time frame is used in the case of Figure 3.11, because the adaptive filter requires more

time to converge to steady-state when the impulse response is long. It can be seen that the

performance of NLMS is significantly degraded when vocoders are present. Specifically, the
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power of the residual echo in the nonlinear channel is about 10 to 20 dB higher than that

in a linear channel. Similar results are observed for other algorithms such as RLS, AP and

the decorrelation NLMS algorithms. The conclusions are summarized as follows:

• When in steady-state, the AEC performance of the adaptive filter is severely degraded

by the vocoder nonlinearities regardless of the acoustic echo path length.

• Comparing Figure 3.12 with Figure 3.10, it is clear that the adaptive filter performs

much better than a fixed filter whose coefficients are set to the true value of the

acoustic echo path.

• Comparing Figure 3.11 with Figure 3.12, and notwithstanding the difference in con-

vergence time, it can be seen that the effects of codec nonlinearities in steady-state are

similar for both cases. In particular, because of vocoder nonlinearities, the minimum

achievable residual echo power is much higher than that obtained without vocoders

(where only background noise and adaptive filter misadjustment affect the minimum
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achievable residual echo power).

Because of this “masking effect” of vocoder nonlinearities on adaptive filter performance,

the full potential of an adaptive filter may not be completely exploited. The next section

discusses the selection of a proper length for an adaptive FIR filter when vocoders are

present.

3.2.3 Performance of AEC with different filter lengths

To evaluate the performance of AEC, a common measurement is the echo-return-loss-

enhancement (ERLE) defined as

ERLE (dB) = 10 log10

E[d2(n)]

E[e2(n)]
, (3.8)

where d(n) is the microphone signal and e(n) is the residual echo obtained by subtracting

the echo cancellation filter output ŷ(n) from the microphone signal d(n). There are two

ways to compute the expectation in (3.8): (1) using the definition of E[·], it is computed
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by averaging over the sample space, i.e., the same experiment is repeated many times with

different random seeds for white noise excitation, and the average is taken; or (2) based on

the ergodicity assumption of the signal under consideration, it is computed by averaging

over time in a single experiment, which is much more practical than (1). Although a speech

signal is non-stationary in general, it can be treated as a piecewise stationary signal as long

as the window length is small enough. The expectation in (3.8) can thus be computed

using a window with a proper length. This is the approach taken in most research work on

AEC.

In AEC applications, the enclosure system’s impulse response which models sound trans-

mission between the loudspeaker (the system’s input) and the microphone (the system’s

output) has in theory an infinite duration because of the sound’s multiple reflections. In

practice, however, the magnitude of the impulse response decays rapidly with time so that

its tail can be discarded once its magnitude is small enough. Suppose the impulse response

has a length of N samples, where N is large enough so that the coefficients beyond N can

be neglected. If an adaptive filter with length L is excited by a white noise x(n), and no

local noise is present, it can be shown that the upper bound of the ERLE is equal to the

ratio of the impulse response power to the power of its tail, that is:

ERLE (dB) =




10 log10

N−1∑
i=0

h2(i)

N−1∑
i=L

h2(i)

, if L < N ;

∞, if L ≥ N,

(3.9)

where h(n) is the LEM impulse response. Ideally, the ERLE can get very large if the filter

length L is large. In practice, the ERLE hardly exceeds 60 dB because of the presence of

local noise and the misadjustments of the adaptive filtering algorithm. The contribution of

the filter tail to ERLE is masked when L exceeds a certain value. Also, distortions caused

by vocoders result in the saturation of ERLE at levels notably lower than that achievable

in conventional AEC (i.e., AEC without vocoders), as shown in Figure 3.11 and 3.12. Since

only a small portion of the total echo path impulse response power is contained in its tail

and ERLE experiences saturation with the presence of vocoders, it appears that adaptive

FIR filters that are shorter than the ones in conventional AEC may be used here without
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degrading the ERLE. Moreover, this would reduce the computational load and increase the

initial convergence speed.

In a simulation, an adaptive NLMS filter is excited by a speech signal until its filter

coefficients reach steady-state. A local noise is added so that the ENR reaches 40 dB. This

simulation is run both with and without vocoders, and for both short and long echo paths.

In each case, different values of the filter length L and step size µ are tested. The reason

for using different step sizes is that in steady-state, where the filter length approaches the

length of the echo path, using smaller step sizes results in a larger ERLE in theory.
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Fig. 3.13 ERLE versus normalized filter length and step-size µ in the steady-
state (no vocoders).

Figure 3.13 shows the results for the case where vocoders are absent and the echo path is

short. The ERLE values resulting from different filter lengths and step sizes are displayed.

Note that the filter length N has been normalized by the true acoustic echo path length

L. Figure 3.14 shows the results for the same case but with vocoders present along the

channel.

A comparison of Figures 3.13 and 3.14 indicates that vocoder nonlinearities play a

more important role than filter truncation in limiting the attainable ERLE (at least for
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Fig. 3.14 ERLE versus normalized filter length and step-size µ in the steady-
state (with G.729 vocoder).

reasonable values of filter length). According to classical adaptive filter theory, if vocoders

are absent and the step sizes are small, then the maximum value of ERLE in steady-state

should be attained when the normalized filter length is close to one (i.e., when the adaptive

filter has the same length as the echo path), and the value of ERLE should remain close

to that level when the normalized filter length is larger than one. For larger step sizes, the

saturation phenomenon in ERLE would occur at a shorter normalized filter length due to

misadjustment noise. This predicted behaviour is consistent with the results in Figure 3.13.

Figure 3.14 shows the different behaviour of ERLE when vocoders are present along the

echo path. In this case, the maximum value of ERLE is attained for a much smaller value

of normalized filter length, namely N/L ∼ 0.6. Also, the maximum value of ERLE is only

about 12 dB, compared to about 32 dB in Figure 3.13, where µ = 0.9. Another interesting

difference is that the ERLE does not remain constant as N/L increases beyond 0.6. Instead

of the saturation phenomenon, the ERLE actually decreases as the normalized filter length

exceeds 0.6. Results for different echo paths (not shown here) reveal a similar behaviour.

This is caused by reduced tracking capability when the filter length is increased.
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In conclusion, when vocoders are present, the adaptive filter can be shorter than the

acoustic echo path without degrading the ERLE of the AEC system. In fact, this can

improve performance since it reduces computational complexity and increases convergence

speed.

3.3 Tracking capabilities of adaptive filters

3.3.1 Adaptive filter coefficients in steady-state

It is well known that in order to obtain the smallest misadjustment in steady-state, the

step size µ of NLMS should be as small as possible under the constraint of an appropriate

initial convergence speed in conventional AEC. However, when vocoders are present, ERLE

reaches the maximum when µ is about 1, as seen in Figure 3.14. A larger or smaller value

of µ would cause ERLE to decrease. The fact that the ERLE is lower for a smaller value

of µ in steady-state implies that the adaptive algorithm does not converge to a certain

underlying optimal solution. Instead, the adaptive filter coefficients attempt to track the

continual change of the echo path caused by vocoders. As such, the step size should be

large enough to track the changes of the system but not too large to produce a significant

misadjustment that also reduces ERLE.

Figure 3.15 shows changes in the adaptive filter coefficients in steady-state when vocoders

are not present. The adaptive filter used has 300 taps, and the step size µ is set to 0.9.

In practice, the filter coefficients can be assumed to have reached steady-state after a long

period of adaptation (e.g., 10 seconds). For clarity, the figure shows a downsampled version

of the adaptive filter coefficient vector, where only one out of ten coefficients is included.

Observing the coefficients along the iteration axis, no significant changes is seen except

for a small noise-like disturbance (gradient noise), which is caused by the relatively large

µ in steady-state. Clearly, Figure 3.15 shows that the adaptive filter has converged to its

optimal solution.

Figure 3.16 displays changes in the adaptive filter coefficients when vocoders are present.

All other conditions are the same as before. It can be seen that the coefficients change

drastically over time. These results, along with the the analysis in 3.1.3, imply that the

echo path in the presence of vocoders can be approximated as a rapidly time-varying linear

system. In order to identify such a time-varying system, the adaptive algorithm should
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have very good tracking properties when excited by speech signals.

The aim of most adaptive filter algorithms is to minimize a cost function, usually defined

as the MSE J = E[e2(n)]. As a result, the adaptive filter tries to identify the entire echo

path instead of just the LEM impulse response in an AEC system. Therefore, when the

echo path changes drastically (as displayed in Figure 3.16 where vocoders are present) while

the local linearization model is used, the adaptive filter attempts to track the change of the

echo path by minimizing J . Obviously, the faster an adaptive filter can track the change

of the echo path, the more acoustic echo can be cancelled.

The fact that the adaptive filter operates in a tracking mode when codecs are present

poses no problems during single-talk when only the near-end speech or the far-end speech is

active (i.e., they are not active simultaneously). However, the situation is quite different for

double-talk. Recall that in conventional AEC, where it is assumed that the acoustic echo

path varies slowly over time, one simply needs to freeze the adaptive filter during the double-

talk period, and echo attenuation would still be effective. When vocoders are present,

however, the adaptive filter only operates effectively in a tracking mode and therefore,

freezing the coefficients no longer works well. In fact, freezing the coefficients may cause
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Fig. 3.15 Time variations of adaptive filter coefficients in the steady-state
where no vocoder is present.
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Fig. 3.16 Time variations of adaptive filter coefficients in the steady-state,
in the presence of G.729 codec.

the residual power to be temporarily larger than the echo power itself. Thus, when codecs

are present, one approach is to simply stop the echo cancellation altogether during double-

talk.

3.3.2 Tracking capability versus MSE in the presence of vocoders

Previous sections have investigated the performance of AEC systems based on NLMS in

the presence of vocoders. It was shown that vocoder nonlinearities severely degrade the

performance of traditional adaptive filtering algorithms. With vocoders, the total echo path

becomes a rapidly time-varying system. In fact, the total echo path changes with the speech

context depending on the vocoder’s coding scheme. Consequently, unlike the traditional

case where vocoders are absent, a steady-state solution for acoustic echo cancellation does

not exist. From the analysis in the previous sections, it appears that the tracking capability

is the most important property of a good acoustic echo canceller in the presence of vocoders.

In order to confirm this viewpoint, the following sets of experiments were carried out:

The first set runs the adaptive filtering algorithms in the absence of vocoders, and their

tracking behaviour in steady-state is monitored under a sudden change of the echo path.
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The second set of experiments run the same algorithms in the presence of vocoders and with

a fixed acoustic echo path. For both sets of experiments, the associated learning curves are

plotted. By comparing these learning curves, it is possible to confirm whether the faster

response of a particular algorithm to a sudden change in impulse response (i.e., a better

tracking property) is accompanied by a lower residual echo in the case where vocoders are

present. Of particular interest here is the tracking behaviour immediately after the change

in the echo path, say in the first 100 ms. When vocoders are present, changes in effective

echo path impulse response (due to a change in coding principle) will typically occur over

this time frame.

Now we examine the tracking capabilities of some popular AEC algorithms. The ex-

perimental conditions are identical for the same algorithm applied in different situations

(i.e., in the presence or absence of vocoders). As before, the vocoder used here is G.729,

and the ENR is set to 40 dB. The step size for NLMS and AP is 0.9, and the forgetting

factor for RLS is 0.999. The projection order of AP is set to 3 (this is chosen since it was

observed that a higher order does not improve tracking behaviour).
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Fig. 3.17 Tracking properties of various full-band adaptive filtering algo-
rithms (ENR=40 dB)

Figure 3.17 shows the tracking properties of popular adaptive filtering algorithms for

traditional AEC in a full-band structure without vocoders along the echo path. All these
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Fig. 3.18 Tracking properties of various full-band adaptive filtering algo-
rithms (enlarged from Figure 3.17).

algorithms have been described in Chapter 2. To simulate a sudden change of the impulse

response of the echo path, the impulse response coefficient vector h is changed to −h
at about 1.31 s in time. For clarity, the portion in Figure 3.17 within the dash-box is

enlarged in Figure 3.18. The results in Figure 3.17 and Figure 3.18 clearly show that the

AP algorithm has the strongest tracking capability while RLS has the poorest, although the

latter demonstrates the fastest initial convergence speed among all the adaptive algorithms.

It is concluded that AP should have the best performance in the presence of vocoders, and

RLS the worst one.

To make a clear comparison, the learning curves of the above algorithms when vocoders

are present are plotted in Figure 3.19. Comparing the echo cancellation performance of

the algorithms in Figure 3.19 to their tracking behaviour in Figure 3.18, one can see that

they agree with each other. In other words, AP achieves the lowest MSE in the presence of

vocoders because it tracks the changes in the echo path fastest among all these algorithms.

In contrast, RLS shows the worst performance in the nonlinear channel. Between these

two extreme cases, the NLMS-DF1 achieves a lower MSE than the traditional NLMS.
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Fig. 3.19 Performance of various full-band adaptive filtering algorithms in
the presence of vocoders (ENR=40dB).

3.4 Loudspeaker nonlinearities in AEC

The nonlinearities of a loudspeaker are mainly contributed by its nonlinear cone suspension

and uneven magnetic flux densities, especially under high volume [61]. In AEC applications,

the loudspeaker nonlinearities may be neglected if the loudspeaker is of high quality and

plays at a moderate volume. However, lower quality loudspeakers are usually preferred in

hands-free phones in order to reduce cost. Furthermore, the loudspeaker volume may need

to be high in a mobile terminal under a noisy environment. In such cases, the entire echo

path would have nonlinear characteristics that degrade the performance of a linear AEC

device.
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3.4.1 Analysis of loudspeaker nonlinearities

When the input power is low, the behaviour of a loudspeaker is usually modelled as a linear

system [85]. However, the presence of additional distortion components (e.g., harmonics and

intermodulation) indicates that the loudspeaker is a nonlinear system [86]. In fact, these

distortions increase rapidly as the input power increases. Nonlinear modelling is required

to describe the vibration behaviour and the transfer characteristics of loudspeakers over

the entire range of their power handling capacity.

It is difficult to completely describe the nonlinear characteristics of a loudspeaker. How-

ever, if the nonlinearities are to be localized, then it is convenient to use the lumped-

parameter model [87]. In general, loudspeakers can be modelled in three aspects: the elec-

tric, mechanical and acoustic parts of the transducer [88]. The modified lumped-parameter

model is described as follows.

First, the electric part of the voice coil can be described in terms of the voltage at

the coil terminals and the current flowing in the coil. The latter depends on the wire

resistance, the coil inductance, and the transduction of electric quantities (i.e., voltage and

current) into mechanical quantities (i.e., force and speed). In the electric part, the most

prominent nonlinearities are introduced by the force factor and the electric self-inductance,

both depending on the voice coil excursion [87]. The electric part of a loudspeaker can be

expressed as

e(t) = REi(t) +
d(LE(x)i(t))

dt
+Bl(x)

dx

dt
, (3.10)

where e(t) is the voice coil’s voltage, i(t) is the coil’s current, RE is the coil’s resistance,

LE(x) is the coil’s inductance, Bl(x) is the force factor, and x ≡ x(t) is the coil excursion.

Second, the mechanical part can be described by the force F (t) which acts on the coil

cone assembly. Its dynamic behaviour depends on the viscous resistance, the compliance of

the elastic suspension system, the inertial mass, and the transduction of mechanical quan-

tities (i.e., force and cone’s velocity) into acoustical quantities (i.e., pressure and volume air

velocity). In the mechanical part, the nonlinear suspension stiffness contributes the major

nonlinearities. The force is expressed as

F (t) = Bl(x)i(t). (3.11)

Finally, the acoustic part can be described in terms of several parameters, such as the
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acoustic pressure in front of the loudspeaker, the acoustic impedance, etc. Combined with

the mechanical part, a coupled differential equation is obtained that describes the vibration

of the loudspeaker diaphragm by a mass-spring system:

F (t)−Mm
d2x

dt2
−Rm

dx

dt
−K(x)x = p(t)Sr, (3.12)

where Mm is the moving mass, Rm is the mechanical damping, K(x) is the stiffness of the

mass-spring system, p(t) is the acoustic pressure, and Sr is the effective radiating surface.

Equations (3.10), (3.11) and (3.12) describe the nonlinear vibration of a loudspeaker.

Note that the parameters of this model rely on measurement results; therefore it is difficult

to accurately describe the nonlinearities. However, because the major nonlinearities heavily

depend on the voice coil excursion, they mostly occur near the resonance frequency of the

loudspeaker [89]. Therefore, the nonlinear parameters can be approximated by a truncated

power series, or Volterra series:

Bl(x) = Bl0 + b1x+ b2x
2 (3.13)

K(x) = K0 + k1x+ k2x
2 (3.14)

LE(x) = LE0 + l1x+ l2x
2, (3.15)

where the terms with orders higher than 3 have been discarded. Thus these differential

equations (3.10)-(3.12) can be solved and the parameters can be determined by experiments.

Examples can be found in [61, 87, 89].

Since the number of the nonlinear parameters is small, the Volterra series expansion is an

effective approach to approximately identify the nonlinearities of a loudspeaker. However,

when the Volterra expansion cascades with an unknown long FIR filter (such filters are

usually used to model the acoustic echo path), then the number of parameters that need

to be identified increases greatly. Theoretically, this nonlinear system can be modelled as

a Wiener system [90] or a Hammerstein system [91], and may be identified by an adaptive

Volterra filter. However, as discussed in Chapter 2, high computational complexity and

convergence issues prevent this approach from practical use in AEC.

An alternative approach is to locally linearize the loudspeaker characteristics around an

operating point. Because the operating point changes dynamically, tracking this change is

crucial. As discussed in Section 3.1.3, an adaptive FIR filter can be employed to approx-
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imate the nonlinear system at an operating point, while tracking the operating point can

be performed by the adaptation law.

3.4.2 Effects of loudspeaker nonlinearities on conventional AEC

In order to investigate the effects of the loudspeaker nonlinearities in AEC applications, we

conduct several experiments as described below.

The experiments are carried out in an office room with the dimension 4(long)× 3.5(wide)

×2.7(high)m3. A 1.3 GHz Pentium-IV PC is connected with a Midiman Delta 1010 Digital

Recording System that has a 10-input and 10-output full-duplex recording interface. A low-

cost amplified PC loudspeaker is used to play the far-end speech. The microphone signal

is amplified by a Tascam MX-80 microphone/line mixer before it is sent to the recording

system, where it is sampled at 8 kHz.

The experiments are run with the loudspeaker in both low volume and in a high volume.

Two adaptive filtering algorithms, NLMS and the adaptive Volterra filter (based on NLMS),

are evaluated. The filter length of NLMS is 600 taps. The Volterra filter is truncated up to

the second order. To reduce computational complexity, the length of the first order vector

is 600 taps, and the length of the second order vector is 300 taps. The step-size is set to

one for both algorithms.

Figures 3.20 and 3.21 show the performance of the truncated adaptive Volterra filter and

the NLMS adaptive filter under low volume and high volume. The results indicate that the

Volterra filter slightly outperforms the NLMS filter in terms of ERLE. This is because the

weak nonlinearities of the loudspeaker are compensated by the Volterra structure. However,

when the volume is high, the loudspeaker has strong nonlinear characteristics that cannot

be reasonably approximated by the truncated Volterra series expansion, resulting in notable

degradation of the performance. The performance may be improved by employing a higher

order Volterra filter, but the computational complexity would increase exponentially. Even

the second order truncated Volterra filter used in the experiments had a computational

complexity that is about 70 times that of the NLMS filter.

The performance of the NLMS adaptive filter is also degraded when the loudspeaker has

high volume. This is because the operating point changes faster and the linear vicinity of

the operating point becomes smaller when the low-cost loudspeaker plays in a high volume.

Since the performance of the linear adaptive filter is very close to that of the adaptive
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Fig. 3.20 The ERLE (dB) versus samples (loudspeaker in low volume):
truncated adaptive Volterra filter (solid line); NLMS (dash line).

Volterra filter, and the linear filter requires much less computation power, it is concluded

that linear filters should be used when handling loudspeaker nonlinearities.

3.5 Conclusion

The nonlinear devices such as low bit-rate speech codecs and non-ideal loudspeakers present

strong nonlinear characteristics. These nonlinearities significantly degrade the performance

of the conventional AEC, which mainly employs a linear adaptive filter to identify a time-

varying linear echo path.

In this chapter, we have investigated their nonlinear mechanism through the analysis

of their structures. Due to the extreme difficulty in modelling these inherent complex

nonlinearities, we employed a local linearized model to study the nonlinear characteristics.

Based on this simplified yet practical method, we were able to explain the performance

degradation of the conventional AEC in the nonlinear channels. Specifically, the length of

the adaptive filter and its tracking capability play important roles in the nonlinear channels,

especially when vocoders are present.
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Fig. 3.21 The ERLE (dB) versus samples (loudspeaker in high volume):
truncated adaptive Volterra filter (solid line); NLMS (dash line).

Beside the theoretical analysis, numerous experiments have been carried out in the

research work. Through these experiments, we not only verified the theoretical results, but

also developed a better understanding of the characteristics of the nonlinear components

and their effects on the conventional AEC system.
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Chapter 4

Variable step-size cross-spectral

algorithm

In conventional AEC, the adaptation of adaptive filter coefficients is often frozen during a

DT period, i.e., both the near-end and the far-end speakers are active simultaneously, in

order to prevent the adaptive filtering algorithm from diverging. Unfortunately, stopping

adaptation in a nonlinear channel may produce a residual echo that has a higher power

level than the original echo signal [26]. In this chapter, we develop a variable step-size

cross-spectral algorithm under an assumption of a linear echo path. However, because the

proposed algorithm always keeps adapting, it can be used to suppress the acoustic echo in

the nonlinear channels, especially during the DT periods.

4.1 Introduction

As discussed before, acoustic echo cancellation (AEC) can be classified as a problem of

system identification, where the system is time-varying due to continual changes in the

acoustic echo path. Conventional methods of adaptive system identification (e.g., the least-

squares algorithms [15]) are affected by local disturbance signals such as the near-end

speech and the background noise. When double-talk (DT) occurs, the adaptation of the

conventional AEC device has to be stopped to avoid the possible divergence of the adaptive

algorithm. Therefore, an accurate DT detector is essential for a conventional AEC device

to work properly. Furthermore, tracking changes in the acoustic echo path during the DT

period is particularly challenging for AEC.
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During the past decade, considerable efforts have been devoted to the research of ad-

vanced AEC schemes that can properly handle DT situations. Traditionally, adaptation

of the AEC device’s filter coefficients is frozen by assigning a very small value (most often

zero) to the step-size of the adaptive algorithm during the DT period. In this context,

many researchers have focused their efforts on developing accurate and robust DT detec-

tors [92, 93]. Alternatively, instead of completely freezing the adaptation, various schemes

with a variable step-size have been attempted to track the change in the acoustic echo

path when DT occurs [94, 95, 96, 18]. Unfortunately, due to fundamental difficulties in

distinguishing DT from echo path changes, most solutions are not satisfactory in terms of

robustness and accuracy.

Okuno et al. [97] proposed an adaptive cross-spectral (ACS) algorithm that is partic-

ularly attractive for AEC applications. The ACS algorithm exploits the correlation (by

time averaging) of the far-end signal and the acoustic echo to estimate the echo path. Con-

sequently, it has the advantage that DT detection is not needed and echo path changes

can be tracked during the DT period. To achieve good levels of echo attenuation, the

ACS algorithm requires processing many blocks of samples, so that its correlation estimate

is reliable. Since the length of each block has to be greater than that of the echo path,

which typically ranges from several tens up to a few hundreds of milliseconds in AEC, the

ACS algorithm suffers from a relatively slow convergence rate, especially during initializa-

tion. Moreover, the non-stationary characteristics of speech signals affect the correlation

estimation, leading to insufficient echo suppression during DT periods.

In this chapter, a new variable step-size ACS (VSS-ACS) algorithm is proposed which

can achieve a faster convergence rate and a higher acoustic echo suppression during DT. A

generalized ACS (GACS) technique is first introduced where a step-size parameter is used

to control the magnitude of the incremental correction applied to the coefficient vector of

the adaptive filter. Based on the study of the effects of the step-size on the GACS con-

vergence behaviour, a variable step-size ACS (VSS-ACS) algorithm is then proposed. In

order to increase the convergence rate while keeping a low misadjustment, the step-size is

varied dynamically by a finite state machine that monitors changes in the norm of the ACS

correction applied to the adaptive filter coefficients. In addition, a new initial adaptation

scheme is adopted, resulting in a significant improvement to the convergence of the algo-

rithm at the early stage when the network connection is established. The advantages of

the new algorithm are verified by computer experiments on various sets of speech files.
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4.2 The generalized ACS technique

The block diagram of a generic AEC system operating in the discrete-time domain was

depicted in Figure 1.4. In the diagram, x(n), d(n), ŷ(n) and e(n) respectively denote the

far-end speech, the microphone signal, the adaptive filter output, and the residual signal

at time index n. For the time being, assume that the acoustic echo path between the

loudspeaker and the microphone can be modelled as a linear, time-varying system whose

impulse response at time n is represented by the N -tap vector

h(n) = [h0(n), h1(n), . . . , hN−1(n)]
T , (4.1)

where the superscript T denotes transposition. Accordingly, the microphone signal can be

expressed as

d(n) = h(n)Tx(n) + s(n), (4.2)

where x(n) = [x(n), x(n − 1), . . . , x(n − N + 1)]T is a vector of far-end speech samples,

the product h(n)Tx(n) represents the acoustic echo, and s(n) is a local disturbance signal.

s(n) includes both the near-end speech signal v(n) (when active) and a background noise

component z(n), as shown in Figure 1.4.

The coefficient vector of the adaptive filter is defined as w(n). Its length is also assumed

to be N taps, so that the adaptive filter output can be expressed as

ŷ(n) = w(n)Tx(n). (4.3)

The residual signal sent to the far-end user after echo cancellation is thus given by

e(n) = d(n)− ŷ(n)

= d(n)−w(n)Tx(n). (4.4)

Partitioning the data into consecutive blocks of lengthM samples and taking the short-

term Fourier transform (stDFT) [98] of length K ≥ M (zero-padding assumed) on both

sides of (4.4), the residual signal is expressed in the frequency domain as

E(k;m) = D(k;m)−W (k;m)X(k;m), (4.5)
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where E(k;m), D(k;m) and X(k;m) are the stDFTs of the signals e(n), d(n) and x(n)

over one block, respectively. W (k;m) is the DFT of the vector w(n) assumed to remain

constant within the duration of a block. Note that W (k;m) represents the estimated

frequency response of the echo path. In (4.5), the parameter k ∈ {1, 2, . . . , K} is the index
of the frequency bins and m ∈ {1, 2, . . .} is the block index in the time domain. For the

linear convolution in (4.4) to be equivalent to the circular convolution in (4.5), the stDFT

size K should be such that K ≥M +N − 1.

The cost function is defined as

Jk = E[|E(k;m)|2] = E[E(k;m)E∗(k;m)], (4.6)

where E[·] denotes statistical expectation. The update equation of the generalized ACS

technique is obtained using iterative steepest descent [13] applied to the cost function Jk,

namely:

W (k;m+ 1) =W (k;m)− µ′

2

∂E[|E(k;m)|2]
∂W (k;m)

. (4.7)

In the frequency domain, the signals and the adaptive filter coefficients are generally com-

plex valued. Splitting the various quantities in (4.5) into real and imaginary components,

the following are obtained:

D(k;m) = DR(k;m) + jDI(k;m) (4.8)

X(k;m) = XR(k;m) + jXI(k;m) (4.9)

W (k;m) = WR(k;m) + jWI(k;m). (4.10)

where the subscripts R and I respectively denote the real and imaginary parts of the

corresponding quantity. It is easy to show that

E(k;m) = DR(k;m)−WR(k;m)XR(k;m) +WI(k;m)XI(k;m)

+j [DI(k;m)−WR(k;m)DI(k;m)−WI(k;m)XR(k;m)], (4.11)
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The partial derivative in (4.7) can then be computed as [13]

∂E[E(k;m)|2]
∂W (k;m)

= E

[
∂|E(k;m)|2
∂WR(k;m)

+ j
∂|E(k;m)|2
∂WI(k;m)

]
= −2E[X∗(k;m)E(k;m)]. (4.12)

Applying an NLMS-like procedure of normalization, i.e.,

µ′ =
µ

E[|X(k;m)|2] , (4.13)

the adaptive filter update shown in (4.7) can be written as

W (k;m+ 1) = W (k;m) + µ∆W (k;m) (4.14)

∆W (k;m) =
E[X∗(k;m)E(k;m)]

E[|X(k;m)|2] . (4.15)

We note that (4.15) can be expanded as

∆W (k;m) = H(k;m)−W (k;m) +
E[X∗(k;m)S(k;m)]

E[|X(k;m)|2] , (4.16)

where H(k;m) is the frequency response of the true (unknown) acoustic echo path and

S(k;m) is the stDFT of the local disturbance signal s(n). During DT, under the assumption

that the far-end signal x(n) is uncorrelated with s(n) or the correlation between these

signals is very weak [99], the second term in (4.16) can be neglected. Therefore, the local

disturbance signal will have no effect on the algorithm.

The main difficulty associated with the implementation of (4.15) is that it requires

prior knowledge of the signals’ second order statistics. Although such knowledge is usually

unavailable, the desired expectations can be estimated by time averaging over the block

index m. Among the various types of sliding windows which can be employed for on-line

time averaging, the most commonly used are the exponential and rectangular windows,

with varying degrees of temporal overlap. Experiments indicate that a very small step-

size has to be used with either type of window when there is significant overlap between

successive windows, which in turn results in a slower convergence rate. For example, in

the case of a rectangular sliding window with length L (L � 1) blocks and a minimum
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shift of one block between each update of the time averages, the step-size in (4.14) must

be significantly reduced to avoid divergence of the algorithm due to the strong correlation

between successive gradient update directions.

Assume a rectangular sliding window of length L with a window shift of Q (1 ≤ Q ≤ L)

blocks for each update of the algorithm. Then the estimated echo path is updated once

every Q blocks, with the incremental correction computed as follows based on (4.15):

∆W (k; p) =

(p−1)Q+L∑
i=(p−1)Q+1

X∗(k; i)E(k; i)

(p−1)Q+L∑
i=(p−1)Q+1

|X(k; i)|2
, (4.17)

where k ∈ {1, 2, . . . , K} and p ∈ {1, 2, . . .}.
In order to avoid processing delay in the algorithm, the operation of the adaptive filter

is preferably carried out in the time domain, except for the computation of ∆W (k; p) in

(4.17). Thus, the adaptive filter coefficient vector is updated every MQ samples in the

time domain as follows:

wp+1 = wp + µ∆wp, (4.18)

where ∆wp is the inverse DFT of ∆W (k; p). The relationship between the iteration index

p and the sample index n is

p =

⌈
n

MQ

⌉
, n ∈ {1, 2, . . .}, (4.19)

where �δ� represents the smallest integer ≥ δ. Therefore, the coefficient vector of the

adaptive filter w(n) remains constant for MQ consecutive samples.

The generalized ACS (GACS) algorithm is shown in Algorithm 7. It includes equations

(4.4), (4.17) and (4.18), together with the associated stDFT computations. The original

ACS [97] is a special case of GACS when µ is set to one in (4.18). Introducing variable

step-sizes in GACS will provide additional flexibility for improved performance (see the

next Section). The step-size µ must be carefully chosen to ensure the convergence of the

algorithm (i.e., 0 ≤ µ ≤ µmax). In practice, an exact expression for the upper bound

µmax cannot be derived easily with non-stationary, non-white inputs such as speech signals.
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Algorithm 7 The generalized adaptive cross-spectral (GACS) algorithm

Initialization:

1: w1 = 0

Recursion:

2: for n = 1, 2, . . . do

3: p = � n
MQ

�,
4: e(n) = d(n)−wT

p x(n)

5: if � n
M
� = n

M
then

6: m = n
M

7: X(m) = DFT{x(n)}
8: E(m) = DFT{e(n)}
9: if m = L+ (p− 1)Q then

10: for k = 1, 2, . . . , K do

11: ∆W (k; p) =

(p−1)Q+L∑
i=(p−1)Q+1

X∗(k; i)E(k; i)

(p−1)Q+L∑
i=(p−1)Q+1

|X(k; i)|2

12: end for

13: ∆wp = IDFT{∆W(p)}
14: wp+1 = wp + µ∆wp

15: end if

16: end if

17: end for

Experimentally, it has been observed during the development of this algorithm that µmax

depends on the input signal type, the rectangular window length L, and the data reuse

factor (i.e., window overlap ratio) (L − Q)/L. For all the practical cases tested in this

work, the GACS algorithm worked properly with no observed instability when µ is selected

within the range 0 ≤ µ ≤ 1.5.
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There is a certain degree of similarity between GACS and the standard frequency do-

main adaptive filter (FDAF) [13]. However, although both GACS and FDAF operate in

the frequency domain, the former uses block averaging to estimate the required expected

values, while the latter uses instantaneous estimation (i.e., it uses a single block). There-

fore, GACS is much more robust than FDAF with disturbance signals, as long as a proper

number of blocks is employed in the time averaging operation in (4.17).

Finally, the behaviour of GACS as a function of its step-size µ is consistent with that of

other steepest descent adaptive filters (including FDAF). That is, increasing the step-size

results in a faster convergence rate at the expense of higher coefficient misadjustment in

the steady-state. (See 4.4.2 for results.)

4.3 Variable step-size ACS

4.3.1 Finite state machine

The observed performance of GACS suggests that using variable step-sizes could improve

the convergence rate and reduce the misadjustment. A larger value of µ should be used

during acoustic echo path changes and a smaller value should be used when the algorithm

has converged. Although many adaptive filtering algorithms with variable step-sizes have

been developed, there is still a lack of a robust algorithm which can accurately distinguish

an echo path change from a DT situation, and also track the echo path change during a

DT period.

Here, we propose a variable step-size ACS (VSS-ACS) algorithm based on the GACS

algorithm. It incorporates a step-size adjustment mechanism that is regulated by a finite

state machine, as shown in Fig. 4.1. The figure identifies three regions of operation that

correspond to different states. These regions are explained below.

Region I: This region corresponds to a fast tracking mode where the algorithm needs to

estimate or track large changes in the acoustic echo path. Initial operation of the algorithm

upon network connection also falls into this region. In order to quickly track echo path

changes, it is necessary to have a larger step-size (denoted µI).

Region II: This region represents a transient mode of the algorithm. After rapid adapta-

tion in Region I, misadjustment (due to gradient noise) gradually becomes significant while

it is still important to keep the adaptive filter updating its weight vector at a reasonable
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rate. The introduction of two states with smaller step-sizes, µIIa and µIIb, in this region

ensures a smooth and robust transition from Region I to Region III (see below).

Region III: This region corresponds to the steady-state of the algorithm; a small step-

size µIII is proper in this region. Two factors actually limit the choice of the step-size.

On the one hand, the step-size should not be too small, otherwise the VSS-ACS will not

be able to track the small, ever present fluctuations in the acoustic echo path. On the

other hand, it should be small enough so as to keep the misadjustment low and prevent the

estimated echo path error from increasing during DT periods. Indeed, while in theory the

GACS is not affected by DT, it will be in a practical implementation of Eq. (4.15) based

on temporal averaging with non-stationary signals.

The adaptive filter coefficient error could be used in theory to determine the proper

state of the algorithm. Unfortunately, it is almost impossible to obtain this information in

practice because the acoustic echo path is unknown and time-varying. As an alternative,

this work proposes to use the energy ratio of two successive increments of the estimated

system impulse response as the basis for a series of tests to decide upon state transition.

This energy ratio, denoted δw(p), is formally defined here as

δw(p) =

∣∣∣∣20 log10

‖∆wp‖
‖∆wp−1‖+ c

∣∣∣∣ , (4.20)

where δw(p) is defined as a non-negative value in order to avoid the fluctuation around 0

(i.e., the sign changes). ‖u‖ is the norm of the vector u, and c is a small constant that

prevents the division from overflow. Experiments indicate that this energy ratio is strongly

indicative of the true (but practically unknown) error in the adaptive filter coefficients.

Figure 4.1 shows the four states of the VSS-ACS algorithm. Transitions between these

states are determined by comparing δw(p) with a set of thresholds, labelled λ1, λ2, . . . , λ5.

For example, when in state µIIa, a transition to state µIIb occurs if δw(p) < λ2; otherwise,

a transition to state µI occurs if δw(p) > λ5. If neither case arises, then the algorithm

remains in state µIIb. Considerations in the selection of the thresholds are discussed below.

First, consider the case where the acoustic environment does not change significantly

over time. During the adaptation of VSS-ACS, the state of the algorithm is expected to

transit from Region I to Region II, or from Region II to Region III. Here, it is straightfor-

ward to set the values of λ1, λ2 and λ3. They should be in descending order, representing

different stages on the way to the convergence of the algorithm.
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Fig. 4.1 State machine diagram of the VSS-ACS algorithm.

Next, consider a situation where the acoustic echo path is notably changed (including

initialization). In this case, the algorithm is expected to track the variations as fast as

possible. Hence, the state of the algorithm should jump to Region I, no matter which region

it was in previously. One major advantage of the GACS technique over more traditional

approaches is its intrinsical ability to distinguish between echo path change and DT. In

the DT situation, δw(p) will not increase significantly, whereas a sudden significant change

in the echo path will result in a large difference in δw(p). Therefore, the threshold for the

change of the acoustic echo path, λ5, is significantly higher than the other thresholds.

Finally, two states are introduced in Region II to improve the robustness of the algo-

rithm. This is because the adaptive filter coefficient update may be unfavourably affected

by a specific segment of speech input. In that case, more time is needed to decide whether

the algorithm has reached the steady-state, where µIII should be used. Based on this

consideration, it is reasonable to set λ4 ≥ λ2.

Specific numerical values for the various parameters of the VSS-ACS algorithm (i.e., step-
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sizes and thresholds) will be given in Section 4.4.1.

4.3.2 Improvement to initial convergence

Among the total LM samples used to compute the incremental correction in (4.17), only

MQ samples are new data. Thus, similar to the original ACS, VSS-ACS updates the

estimated echo path everyMQ samples. At the beginning of adaptation, when the network

connection has just been created, the adaptive filter coefficients are initialized to zero, and

ACS starts acoustic echo attenuation once it has collected at least QM samples (assume

there are (L−Q)M padding zeros) to estimate the echo path. In AEC, the acoustic echo

path may be as long as several hundred or even several thousand taps at an 8 kHz sampling

rate. Consequently, with Q sufficiently large (say 40 or more [97]) and M ≥ N , where N is

the adaptive filter length, QM samples represent a relatively long time interval. It would

be inappropriate not to suppress the acoustic echo during such a long initial period. In

order to overcome this drawback, a modification of the VSS-ACS algorithm is described

below where different approximation and adaptation schemes are used to compute the

filter weight vector during the initial period. The proposed approach is an extension of the

technique originally reported in [28] for the ACS algorithm.

The microphone signal in (4.2) in the frequency domain may be expressed as

D(k;m) = H(k;m)X(k;m) + S(k;m), (4.21)

where H(k;m) and S(k;m) have been previously defined in (4.16). Multiplying both sides

of (4.21) by X∗(k;m), then taking the expectation and assuming that x(n) and s(n) are

uncorrelated, the frequency response of the acoustic echo path is obtained as

H(k;m) =
E[X∗(k;m)D(k;m)]

E[|X(k;m)|2] . (4.22)

This is referred to as the cross-spectral technique [100].

Using a similar approximation process as the one leading from (4.15) to (4.17), the

expected values in (4.22) can be estimated by time averaging. However, to make full use of

the available data so as to improve the initial convergence rate, the desired expected values

are estimated by accumulators running from block 1 up to the current block m (instead of

the summations over L blocks as in (4.17)). Therefore, the initial adaptation is expressed
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as

W (k;m) =

m∑
i=1

X∗(k; i)D(k; i)

m∑
i=1

|X(k; i)|2
, (4.23)

where the block index m ∈ {1, 2, . . . , L}. The coefficients of the estimated acoustic echo

path are then obtained by taking an inverse DFT on (4.23). It has been observed that the

magnitude of the estimated echo path impulse response may be smaller than that of the real

one due to the deformation phenomenon caused by the time window [100]. To reduce such

systematic error introduced by the cross-spectral technique, the estimated value needs to

be enlarged by a scaling factor. For consistency, this factor is also denoted by µ except that

here, µ ≥ 1. Hence, during initialization, the adaptive filter coefficient vector is updated

every M samples via

w1m = inverse DFT{µW (k;m)}. (4.24)

Note that the coefficients of the estimated echo path are computed directly during initial-

ization, whereas in subsequent periods they are computed recursively.

The blocking procedure of the VSS-ACS algorithm with modified initialization is illus-

trated in Fig. 4.2. In the figure, Bi refers to a block of m samples, and Fk refers to a

frequency bin within a block.

4.3.3 Computational complexity

The VSS-ACS algorithm involves both real and complex computations. As before, compu-

tational complexity is measured in terms of operations, where one operation is defined as

one real multiplication plus one real addition. Accordingly, four operations are required to

realize one complex multiplication and one complex addition.

To efficiently implement the VSS-ACS algorithm, an FFT algorithm can be employed

for theK-point stDFT computations. Thus, about 2K log2K operations are needed to map

each data block from the time domain to the frequency domain, and vice versa [101]. Hence,

the computational complexities for (4.4), (4.17) and (4.18) are about LMN , 4(L + Q)K

and N operations respectively per adaptive filter coefficient update.

In the state machine, the logarithmic scale was used in the definition of δw(p) in (4.20)

only to simplify understanding. In practice, both the thresholds and the energy ratio δw(p)
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Fig. 4.2 Adaptation of the VSS-ACS algorithm.

can be calculated in the linear scale, so that the computational complexity is reduced.

Hence, only the norm of the current coefficient increment needs to be computed, with a

computational load of approximately N operations per filter coefficient update.

During the initial period, the implementation can exploit recursive relations to reduce

the computational burden. Specifically, W (k;m) in (4.23) can be computed as

W (k;m) =
P (k;m)

Q(k;m)
(4.25)

P (k;m) = P (k;m− 1) +X∗(k;m)D(k;m)

Q(k;m) = Q(k;m− 1) + |X(k;m)|2,

where P (k;m) stands for
∑m

i=1X
∗(k; i)D(k; i), and Q(k;m) stands for

∑m
i=1 |X(k; i)|2. The

computational complexity of the modified initialization scheme is MN + N + 3K log2K

operations per coefficient update.

The computational complexity of the VSS-ACS algorithm, in units of operations per

sample (OPS), is obtained as follows:



4 Variable step-size cross-spectral algorithm 72

a) During the initial period

During this period, the algorithm updates the adaptive filter coefficient vector everyM

samples. Hence the computational complexity is

MN +N + 6K log2K + 12K

M
OPS. (4.26)

For the case where the block length is the same as the adaptive filter length, i.e.,M = N ,

and K =M +N for linear convolution, the computational complexity in the initial period

is about N + 12 log2N OPS.

b) In the subsequent period

Because the filter coefficients are updated every QM samples, the total computational

complexity of the VSS-ACS algorithm in OPS is

LMN + 4(L+Q)K + 2N + 4(L+Q)K log2K

MQ
. (4.27)

For the special case M = N and K = 2N , where one half window overlap is assumed

(i.e., Q = L/2 blocks in Eq. (4.17)), the computational complexity is approximately 2N +

24 log2N OPS.

Compared to the standard LMS algorithm that approximately requires 2N OPS [102],

the VSS-ACS algorithm does not require significantly higher computational capacity.

4.4 Computer experiments

4.4.1 Methodology

In the computer experiments, various segments of speech signals including males’, females’

and children’s speech are used as the excitation signals. A coloured noise, obtained by

passing a white noise signal through a first-order IIR filter H(z) = 1/(1− 0.9z−1), is added

to the microphone signal in order to simulate a local noisy environment, so that the echo-

to-noise ratio (ENR) is 30 dB. The impulse response of the acoustic echo path, which has a

length N = 300 corresponding to 37.5 ms at an 8 kHz sampling rate, has been synthesized

to mimic the driver’s compartment of a motor vehicle.

To evaluate the performance of the algorithms, the following normalized measure of the
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estimated impulse response coefficient error at time n is introduced (in dB):

Coef err(n) = 20 log10

(‖h(n)−w(n)‖
‖h(n)‖

)
. (4.28)

As before, h(n) is the coefficient vector of the true acoustic echo path, and w(n) is the

coefficient vector of the estimated one.

In the implementation of the GACS and VSS-ACS algorithms, the block size isM = 300

samples, L = 80 blocks are used for the average in (4.17), and the window shift between

updates is set to Q = 40 blocks. For the VSS-ACS algorithms, the set of step-sizes in the

three regions were: µI = 1.2, µIIa = 1.0, µIIb = 0.8 and µIII = 0.1. Correspondingly, the

thresholds of the state machine were 5.5, 3.0, 1.5, 4.0, and 20.0 for λ1, . . . , λ5.

Motivations guiding the choice of the step-sizes and the corresponding thresholds for the

VSS-ACS algorithm have been discussed in Section 4.3.1. In particular, flexibility in the

choice of these parameters provides the possibility of a tradeoff between different properties

of the algorithm. However, it is difficult to theoretically derive the optimal values of the

step-sizes and the thresholds because they depend on many factors such as M , L and

Q. The above reported values of the step-sizes and thresholds were determined mainly

through experiments (e.g., Figure 4.3 and Figure 4.4). They are not necessarily optimal

in a mathematical sense, but they lead to good and reliable performance of the VSS-ACS

algorithm. Note that proper values of the thresholds are important to reduce the number

of erroneous transitions between the states. Furthermore, experiments showed that the

performance of the VSS-ACS algorithm is not very sensitive to the specific choice of these

parameters, provided that they are selected in the proper range. The parameter values

chosen above may vary within a certain margin, say 5-10%, without incurring significant

performance degradation to the algorithm.

Properties of the VSS-ACS algorithm have been tested for three different aspects: be-

haviour in the DT situation, initial convergence rate, and tracking capability in the presence

of near-end speech. For comparison, these tests are also applied to the original ACS algo-

rithm, with same values of M , L and Q as above.

4.4.2 Results

a) Effect of the step-size µ on GACS
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To support the previous statement regarding the effect of the step-size µ on the GACS

convergence rate, Figure 4.3 presents the time evolution of the coefficient error with various

step-sizes. The adaptive filter weight vector is initially set to zero, and speech is used as

the excitation signal. It can be seen that increasing the step-size µ in the GACS algorithm

leads to faster initial convergence but higher misadjustment in steady-state, as pointed out

earlier.

Note that GACS inherits the robustness properties of the original ACS algorithm to

local disturbance signals. While ENR was set to 30 dB in Figure 4.3, results of other ex-

periments show that the algorithm convergence behaviour is unaffected when the power of

the disturbance signal (e.g., additive noise) varies in a large range, say for ENR as low as

5 to 10 dB.
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Fig. 4.3 Effects of the step-size on the GACS algorithm.
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Fig. 4.4 Evolution of the energy ratio of two successive coefficient increments
of the adaptive filter (GACS).

b) Evolution of the energy ratio δh

The time evolution of the energy ratio of successive coefficient increments, as defined by

(4.20), is studied experimentally under similar conditions as in (a). Figure 4.4 illustrates

the results for the case where the step-size µ = 1.

Comparing the evolution of the energy ratio in Figure 4.4 with that of the coefficient

error in Figure 4.3, it is found that their behaviours are similar but for a difference in

scale. In particular, as the adaptation progresses from initialization, both measures decay

roughly at the same rate and eventually converge to a steady-state value. In the case of the

energy ratio, the limiting values after convergence fluctuate near 0 dB. These fluctuations

can be explained as the result of the adaptive filter misadjustment. Indeed, during the

steady-state, consecutive incremental corrections are very close to each other in terms of

their energy. Thus the incremental correction does not decay any more as the progress of

the adaptation. Their amplitudes depend on the specific speech segment being considered

since the latter is a non-stationary signal.

Similar results were obtained for other values of the step-size. Hence, it appears justi-

fied to use the energy ratio δh as an approximation to the coefficient error when testing for

state transition.
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c) Behaviour of VSS-ACS during DT

In this experiment, a speech signal segment with comparable power as the acoustic echo

is added to the microphone signal in order to simulate DT. Moreover, to clearly demonstrate

the effect of DT on the algorithms, DT is only allowed to occur after initial convergence of

the algorithms.

Figure 4.5 shows the performance of the original ACS algorithm (i.e., GACS with µ = 1)

and the VSS-ACS algorithm during the DT period. The microphone signal (its waveform
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Fig. 4.5 Waveforms in the DT situation: (a) original near-end signal; (b)
microphone signal (acoustic echo plus near-end signal); (c) residual echo of
ACS; (d) residual echo of VSS-ACS.
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Fig. 4.6 Coefficient errors versus time for the original ACS algorithm
(dashed line) and VSS-ACS algorithm (solid line).

is displayed in Fig. 4.5(b)) is comprised of the acoustic echo and the near-end signal. The

latter consists of a near-end speech superimposed on a background noise, as plotted in

Fig. 4.5(a). The signal waveforms of the residual echo produced by ACS and VSS-ACS are

shown in Fig. 4.5(c) and 4.5(d). Note that the near-end signal has been subtracted from

the residual signal for clarity. These waveforms demonstrate that VSS-ACS provides much

more attenuation to the acoustic echo than ACS during DT.

The error in the estimated coefficients of the acoustic echo path is shown in Figure 4.6

for both the proposed VSS-ACS algorithm and the original ACS algorithm. These results

reveal that the new VSS-ACS algorithm has notably smaller coefficient error than ACS

during the DT situation, which is in agreement with the results presented in Figure 4.5.

Note that the VSS-ACC step-size did not change (µ = 0.1 in Figure 4.6) during the DT

period; that is, the disturbance introduced by the presence of the near-end speech did not

trigger a transition from state µIII to another state.

d) Improvement to initial convergence

The initial convergence properties of different schemes are examined. The signal wave-

forms of the acoustic echo, the residual echo of ACS, and the residual echo of VSS-ACS
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are shown in Figures 4.7(a), 4.7(b) and 4.7(c). The VSS-ACS algorithm achieves a much

faster convergence rate when the network connection is created. The time evolution of the

echo path coefficient errors for both ACS and VSS-ACS are plotted in Figure 4.8. VSS-

ACS shows a significant improvement in acoustic echo suppression as a result of using the

modified initialization scheme described in Section 4.3.2.

e) Tracking in the presence of DT

In order to test the tracking capability of the new algorithm, the acoustic echo path is

changed from h(n) to −h(n) during a DT period after the algorithm has converged. The

coefficient errors for the original ACS and VSS-ACS are displayed in Figure 4.9(a), while

the corresponding values of the step-size used in VSS-ACS are plotted in Figure 4.9(b).

Here, the sudden change in the echo path occurs at time 8.2 seconds. The VSS-ACS state

machine demonstrates a satisfactory behaviour in its ability to control the step-size, as dis-
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Fig. 4.7 Waveforms in the initial period: (a) acoustic echo signal; (b) resid-
ual echo of ACS; (c) residual echo of VSS-ACS.
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Fig. 4.8 Coefficient error versus time during initial period for the original
ACS (dashed line) and VSS-ACS (solid line) algorithms.

cussed in Section 4.3.1. The proposed VSS-ACS algorithm not only inherits the desirable

property of ACS (i.e., it can track acoustic echo path changes in the presence of strong

disturbance signals), but it also has better performance than ACS.

f) Subjective experiments

Results of informal listening tests suggest that, compared to the original ACS algorithm,

the proposed VSS-ACS can suppress the acoustic echo to a satisfactory level even during

initialization. During DT, the near-end speech contained in the residual signal, which is sent

to the far-end user, is more clearly audible with the VSS-ACS than with ACS because of the

lower level of interference signal (i.e., residual acoustic echo). Furthermore, no perceptual

distortion of the near-end speech signal is observed. In the case when the acoustic echo

path changes, the acoustic echo is suppressed more rapidly by VSS-ACS.

4.5 Conclusion and discussion

A generalized ACS technique was proposed where a step-size parameter is used to control

the magnitude of the incremental correction applied to the coefficient vector of the adaptive
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Fig. 4.9 (a) Coefficient errors versus time (acoustic echo path changed from
h(n) to -h(n) at 8.2s) for ACS (dashed line) and VSS-ACS (solid line); (b)
Corresponding step-sizes of VSS-ACS.

filter. Based on the study of the effects of the step-size on the ACS convergence behaviour,

a new variable step-size ACS (VSS-ACS) algorithm was developed, where the value of the

step-size is set dynamically by a finite state machine, so as to optimize algorithm perfor-

mance in terms of convergence rate and misadjustment size. Furthermore, the proposed

algorithm has a new adaptation scheme that improves the initial convergence rate when

the network connection is created.

The proposed VSS-ACS algorithm is attractive in AEC applications because it sig-

nificantly attenuates acoustic echo without the requirement of DT detection even in the
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presence of near-end speech and high levels of background noise. The computational com-

plexity of the VSS-ACS algorithm is comparable to that of the standard LMS algorithm;

this allows for low-cost real-time implementation with existing DSP technology. The results

of computer experiments show that the new VSS-ACS algorithm outperforms the original

ACS in terms of the superior acoustic echo suppression during DT periods and faster initial

convergence rate.

In the presence of vocoders, the performance of the VSS-ACS algorithm would be

severely degraded due to the nonlinearities of the echo path, just like other adaptive filtering

algorithms. However, the VSS-ACS algorithm keeps adapting during the DT period, and

this results in notably better echo suppression than the other algorithms. Moreover, in

a nonlinear channel, the insufficient echo attenuation of the VSS-ACS algorithm may be

compensated by a post-filter, which will be discussed in the following chapter.
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Chapter 5

Post-filtering technique in AEC

A post-filter usually refers to an auxiliary filter in the last step of speech processing, es-

pecially in the fields of speech coding and speech enhancement. In the context of acoustic

echo cancellation, a post-filter further attenuates the residual echo after the adaptive filter

cancels part of the acoustic echo. In fact, integrating a post-filter in the AEC system is

an effective way to suppress the acoustic echo to a satisfactory level when the echo path is

nonlinear. This chapter discusses various post-filtering techniques and their combination

with conventional adaptive filtering algorithms, which are suitable for use in the nonlinear

channels.

5.1 Introduction

As pointed out earlier, the performance of the conventional AEC system is significantly

degraded when speech codecs are used in the new generation digital networks [103]. So far,

it is clear that a conventional acoustic echo canceller which has a linear structure cannot

by itself achieve sufficient attenuation of the acoustic echo in the nonlinear channel.

Recently, several promising approaches have been proposed that combine a conventional

AEC system with a post-filter to suppress the acoustic echo to a satisfactory level [104,

105, 106]. The basic idea for these algorithms is to employ a Wiener filter [107] or spectral

subtraction [108] combined with a conventional acoustic echo estimator. As a matter of

fact, Wiener filtering and spectral subtraction have been widely used in speech enhancement

for decades [98, 50]. Figure 5.1 shows the main concept behind these techniques, which is

to design an estimator that removes the unwanted component δ(n) from the contaminated
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Fig. 5.1 Diagram of the estimator: v̂(n) is the estimate of v(n) from the
contaminated signal v(n) + δ(n).

signal v(n) + δ(n).

Although Figure 5.1 shows a traditional estimation model which can be traced back to

half century ago [109], recent works focus on its application to new situations. In AEC,

the near-end speech needs to be extracted from the mixed signal that consists of near-end

speech, residual echo and background noise. Since the residual echo may be modelled as a

non-stationary background noise, the estimation model is applicable to AEC. This chapter

derives several algorithms for AEC based on the minimum mean-squared error (MMSE)

criterion.

5.2 The Wiener-type post-filter

Figure 5.2 shows the post-filter configuration in AEC systems used over nonlinear channels.

Suppose that the decoded microphone signal, denoted d(n), consists of acoustic echo y(n),

near-end speech v(n), and background noise z(n), that is

d(n) = v(n) + y(n) + z(n). (5.1)

Also let ŷ(n) denote the estimated echo signal and let e(n) denote the residual signal,

computed as

e(n) = d(n)− ŷ(n). (5.2)

Define the residual echo δ(n) as

δ(n) = y(n)− ŷ(n). (5.3)
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Fig. 5.2 Configuration of the post-filter in AEC over nonlinear channels.

Then (5.2) may be rewritten as

e(n) = v(n) + z(n) + δ(n). (5.4)

Now the estimation of v(n), denoted v̂(n), can be obtained by an estimator that is

usually implemented by an optimal filter. Because this filter is placed after the conventional

acoustic echo canceller, it is also called the post-filter.

5.2.1 The Wiener optimal filter

The cost function J(n) is defined as the mean square error between the near-end speech

v(n) and its estimator v̂(n):

J(n) = E[|v(n)− v̂(n)|2]. (5.5)
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Since v̂(n) is estimated from the output of the conventional acoustic echo canceller e(n),

i.e.,

v̂(n) = e(n) ∗ h(n), (5.6)

minimizing the cost function (5.5) leads to the orthogonality condition [33]

E[[v(n)− v̂(n)]e(n)] = 0. (5.7)

Substituting (5.6) for (5.7), the Wiener-Hopf equations are obtained [33]:

ree(n) ∗ h(n) = rev(n), (5.8)

where ree(n) is the autocorrelation function of e(n), and rev(n) is the cross-correlation

function of e(n) and v(n).

If (5.8) is expressed in the frequency domain by a short-term Fourier transform (STFT),

then the Wiener filter is given by

H(k;m) =
Sev(k;m)

See(k;m)
, (5.9)

whereH(k;m) denotes the STFT of the filter impulse response h(n) in (5.8), k = 0, 1, . . . , K−
1 is the frequency index, andm = 1, 2, . . . is the time index. In the above, See(k;m) denotes

the power spectral density (PSD) of v(n), and Sev(k;m) denotes the cross spectral density

of v(n) and e(n), respectively defined as

See(k;m) = STFT{ree(n)} (5.10)

Sev(k;m) = STFT{rev(n)}. (5.11)

Assuming that the near-end speech v(n), the background noise z(n) and the far-end

speech x(n) are mutually uncorrelated, we have

rev(n) = E[e(l + n)v(l)]

= rvv(n) + rzv(n) + rδv(n)

= rvv(n), (5.12)
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and

ree(n) = E[e(l + n)e(l)]

= rvv(n) + rzz(n) + rδδ(n), (5.13)

where rvv(n), rzz(n) and rδδ(n) denote the autocorrelation functions of v(n), z(n) and δ(n),

respectively. rzv(n) is the cross-correlation function of z(n) and v(n), and rδv(n) is the

cross-correlation function of δ(n) and v(n). Taking the STFT of (5.12) and (5.13), the

Wiener filter in (5.9) becomes

H(k;m) =
Svv(k;m)

Svv(k;m) + Sδδ(k;m) + Szz(k;m)

=
1

1 +
Sδδ(k;m)

Svv(k;m)
+
Szz(k;m)

Svv(k;m)

. (5.14)

Three cases arise in using (5.14):

• Only near-end speech is present. No signal from the far-end leads to Sδδ(k;m) ≈ 0.

Then this becomes a noise reduction case. If the SNR at the near-end is high, i.e.,

Svv(k;m) � Szz(k;m), generally H(k;m) ≈ 1. So there is almost no distortion in

the near-end speech when it is sent to the far-end. If the SNR in the near-end is low,

i.e., Svv(k;m) � Szz(k;m), then the speech quality is improved by suppressing noise,

where the attenuation depends on the SNR in each frequency bin.

• Only far-end speech is present. In this case, Svv(k;m) ≈ 0 so that H(k;m) → 0.

This leads to very strong attenuation of the residual echo and the noise. Ideally, the

far-end user would not hear anything from the near-end due to the high attenuation.

This could make the far-end user uncomfortable because he/she needs to obtain a

feedback from the near-end, such as a low level background noise. In order to retain

a constant level of natural sounding background noise in the output signal, different

optimization objectives have been studied [106].

• Both near-end and far-end speech are present. This is the double-talk case. The

attenuation of the residual echo in each frequency bin depends on the PSD ratio of

the residual echo to the near-end speech. The larger the residual echo’s power level
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compared to the near-end speech, the stronger the attenuation. However, the power

level of the residual echo is normally lower than that of the near-end speech for a

conventional acoustic echo canceller. Thus, the residual echo suppression may not be

sufficient even if the masking effect is taken into consideration.

Because neither Sev(k;m) in (5.9) nor Svv(k;m) in (5.14) can be estimated in practice,

H(k;m) needs to be rewritten. From (5.1), first note that

rev(n) = E[e(l + n)v(l)]

= red(n)− rey(n)− rez(n), (5.15)

where red(n), rey(n) and rez(n) are the cross-correlation functions of e(n) and d(n), e(n) and

y(n), and e(n) and z(n), respectively. Since E[e(n)y(n)] = 0 for the conventional adaptive

filter in steady-state [13], the term rey in (5.15) can be neglected. Under the assumption

that z(n) is uncorrelated to all signals in (5.4) but itself, it follows that

rez(n) = rzz(n). (5.16)

Therefore, the Wiener filter H(k;m) (5.9) is rewritten as

H(k;m) =
Sed(k;m)− Szz(k;m)

See(k;m)
. (5.17)

If the noise signal z(n) is stationary during a relatively long interval, then Szz(k;m) esti-

mated during a speech silence period can be used when the speech (either near-end speech,

echo signal, or both) is active until the next speech silence period arrives. This procedure

needs a voice activity detector (VAD) to decide when Szz(k;m) should be estimated [107],

but it is difficult to design a reliable VAD that operates under different circumstances. Fur-

thermore, musical noise could be introduced by (5.17) [106] since its numerator is similar

to the spectral subtraction method [108].

Since this work focuses on echo cancellation, the second term in the numerator of (5.17)

may be discarded so that musical noise is avoided. Hence, the optimal filter (5.17) is

approximated by the sub-optimal filter:

H(k;m) =
Sed(k;m)

See(k;m)
. (5.18)
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In practice, the PSDs in (5.18) are estimated recursively using

Sed(k;m) = γSed(k;m− 1) + (1− γ)E(k;m)D∗(k;m), (5.19)

See(k;m) = γSee(k;m− 1) + (1− γ)|E(k;m)|2, (5.20)

where E(k;m) is the STFT of e(n) at block m, and D(k;m) is the STFT of d(n) at block

m. The forgetting factor γ can be chosen around 0.8 at the sampling rate of 8 kHz.

In order to analyze the performance of the Wiener filter in (5.18), the equation is

rewritten by using the relations in (5.1) and (5.4) and exploiting the 2nd order properties,

resulting in

H(k;m) =
Svv(k;m) + Szz(k;m)

Svv(k;m) + Sδδ(k;m) + Szz(k;m)
. (5.21)

Suppose that the echo attenuation is 20 dB for a conventional acoustic echo canceller, and

the echo-to-noise ratio (ENR) is 40 dB at the near-end, then (5.21) becomes

H(k;m) � 1 + 10−2η

1 + η
, (5.22)

where the PSD ratio is η = Sδδ(k;m)/Svv(k;m).

Corresponding to (5.22), Figure 5.3 shows that the attenuation of the residual echo by

the filter H(k;m) increases monotonically with the PSD ratio η. For the situation discussed

earlier where near-end speech dominates the microphone signal, i.e., η � 1, the residual

echo attenuation achieved is the lowest. However, this is acceptable since the power level

of the echo is low enough for the echo to be masked by the near-end speech. In the second

situation where near-end speech is absent, i.e., η = ∞, the residual echo attenuation is

very high at about 20 dB. Assuming that a typical conventional acoustic echo canceller

has 20 dB echo suppression [48], the echo is inaudible for the far-end user with the total

40 dB echo suppression. In the third case of double-talk, the power level of the echo is

comparable to that of the near-end speech, i.e., η ≈ 1, the residual echo attenuation is very

small. Therefore, the residual echo could be heard by the far-end user in this period.

5.2.2 The over-weighted Wiener filter

As discussed in the previous section, the Wiener filter in (5.18) cannot sufficiently suppress

the residual echo when the power level of the latter is relatively high. This case happens
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Fig. 5.3 Residual echo attenuation with filter H(k;m) versus PSD ratio of
the residual echo δ(n) to the near-end speech v(n) (ENR=40dB).

with an imperfect acoustic echo canceller (e.g., a conventional linear adaptive filter used

when the echo path is non-linear) especially during the double-talk. This section derives

another optimal filter that can achieve better attenuation of the residual echo under certain

constraints.

Referring to Figure 5.2, the output signal of the conventional acoustic echo canceller

e(n) is expressed in the frequency domain as

E(ω) = V (ω) + ∆(ω) + Z(ω), (5.23)

where D(ω), V (ω), ∆(ω) and Z(ω) denote the discrete-time Fourier transforms of e(n),

v(n), δ(n) and z(n). Let V̂ (ω) = H(ω)E(ω) be a linear estimator of the near-end speech

component V (ω), where H(ω) is a real-valued frequency weighting function. Making use

of (5.23), the error signal associated with this estimator can be expanded as

ε(ω) = V̂ (ω)− V (ω)

= [H(ω)− 1]V (ω) +H(ω)∆(ω) +H(ω)Z(ω), (5.24)
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where the components V (ω), ∆(ω) and Z(ω) are assumed to be mutually uncorrelated.

Let Sεε denote the PSD of the error signal ε(ω). It can be verified that

Sεε = [H(ω)− 1]2Svv(ω) +H(ω)2Sδδ(ω) +H(ω)2Szz(ω), (5.25)

where the first term represents the PSD of the signal distortion, the second term represents

the PSD of the processed residual echo, and the third term represents the PSD of the

processed residual noise. Let Jv(ω), Jδ(ω) and Jz(ω) denote the three terms in (5.25), i.e.,

Jv(ω) = [H(ω)− 1]2Svv(ω), (5.26)

Jδ(ω) = H(ω)2Sδδ(ω), (5.27)

Jz(ω) = H(ω)2Szz(ω). (5.28)

Then the linear estimator of the near-end speech with constraints on the processed residual

echo and the noise is obtained by

min
H(ω)

Jv(ω)

subject to : Jδ(ω) ≤ αSδδ(ω)

Jz(ω) ≤ βSzz(ω), (5.29)

where 0 ≤ α, β ≤ 1. This estimator is derived with the aim of minimizing the near-end

speech distortion while suppressing the processed residual echo and noise to a predefined

level.

The optimal estimator in (5.29) can be found by using the Karush-Kuhn-Tucker neces-

sary conditions for inequality constraints [110]. The Lagrangian function is given by

L[H(ω), µ1, µ2] = Jv(ω) + µ1 [Jδ(ω)− αSδδ(ω)] + µ2 [Jz(ω)− βSzz(ω)] , (5.30)

where µ1 and µ2 are the Lagrange multipliers, and

µ1 [Jδ(ω)− αSδδ(ω)] = 0 for µ1 ≥ 0,

µ2 [Jz(ω)− βSzz(ω)] = 0 for µ2 ≥ 0.
(5.31)
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From ∇H(ω)L[H(ω), µ1, µ2] = 0, we have

[H(ω)− 1]2Svv(ω) + µ1H(ω)Sδδ(ω) + µ2H(ω)Szz(ω) = 0. (5.32)

There are three feasible points for this optimization problem:

1. The first constraint in (5.29) is active and µ2 = 0. This is the case where the residual is

suppressed and there is no constraint on noise reduction. Then the optimal estimator

is

Hopt1(ω) =
Svv(ω)

Svv(ω) + µ1Sδδ(ω)
, (5.33)

and the Lagrange multiplier µ1 is

µ1 = (
1√
α
− 1)

Svv(ω)

Sδδ(ω)
. (5.34)

Note that although this estimator is optimized under the constraint of residual echo

suppression, it may also suppress the background noise depending on the PSD ratio

of the near-end speech to the residual echo.

2. The second constraint in (5.29) is active and µ1 = 0. This is a noise reduction case.

The optimal estimator is

Hopt2(ω) =
Svv(ω)

Svv(ω) + µ2Szz(ω)
, (5.35)

and the Lagrange multiplier µ2 is

µ1 = (
1√
β
− 1)

Svv(ω)

Szz(ω)
. (5.36)

The residual echo may also be suppressed by this estimator, and the attenuation

depends on the PSD ratio of the near-end speech to background noise.

3. Both constraints in (5.29) are active. It can be verified that the only feasible point

exists when α = β. This means that the constraints are dependent. Hence, the
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optimal estimator is given by

Hopt3(ω) =
Svv(ω)

Svv(ω) + µ1Sδδ(ω) + µ2Szz(ω)
, (5.37)

and the Lagrange multipliers µ1 and µ2 must satisfy

α =
S2
vv(ω)

[Svv(ω) + µ1Sδδ(ω) + µ2Szz(ω)]
2 , (5.38)

In this case, both the residual echo and the noise can be suppressed to a predetermined

level.

Finally, each of the three estimators above is analyzed to see whether the stationary

points so obtained correspond to global minima. This can be shown by evaluating the

second derivative of the Lagrangian function:

∇2
H(ω)H(ω)L[H(ω), µ1, µ2] = 2Svv(ω) + 2µ1Sδδ(ω) + 2µ2Szz(ω). (5.39)

Since ∇2
H(ω)H(ω)L[H(ω), µ1, µ2] ≥ 0, and the optimized function as well as the constraints

are convex functions for all three cases, the filters are indeed optimal.

Among the above optimal filters, the third one (Hopt3(ω) in (5.37)), which suppresses

the residual echo and the noise simultaneously, is the most interesting. Therefore, the rest

of this section is exclusively focused on this estimator.

Due to a lack of prior knowledge of signals such as the near-end speech, the residual

echo and the background noise, (5.37) must be put into a form that is more easily amenable

to practical implementation. Let Sev(ω) and Svv(ω) denote the Fourier Transform (FT) of

rev(n) and rvv(n), respectively. From (5.12), we have

Sev(ω) = Svv(ω). (5.40)

Similarly, from (5.15) we have

Sev(ω) = Sed(ω)− Sez(ω)− Sey(ω), (5.41)

where Sed(ω), Sez(ω) and Sey(ω) are the FT of red(n), rez(n) and rey(n), respectively.
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Assume that v(n), z(n), δ(n) and y(n) are mutually uncorrelated; then it is easy to

show that

Sez(ω) = Szz(ω) (5.42)

Sey(ω) = 0. (5.43)

Finally, it is obtained that

Svv(ω) = Sed(ω)− Szz(ω). (5.44)

Therefore, (5.37) is rewritten as follows (where, in the sequel, H(ω) stands for Hopt3(ω) for

simplicity):

H(ω) =
Sed(ω)− Szz(ω)

See(ω) + (µ1 − 1)Sδδ(ω) + (µ2 − 1)Szz(ω)
. (5.45)

Unfortunately, the difficulty in estimating Sδδ(ω) and Szz(ω) still remains in (5.45). How-

ever, since the main goal is to attain a high echo attenuation, some reasonable approxima-

tions can be made.

First, if the second term in the numerator of (5.45) (i.e., Szz(ω)) is neglected, then the

attenuation is reduced by only a few decibels, since normally Svv(ω) ≥ Szz(ω) when near-

end speech is present. When near-end speech is absent, the effect of neglecting Szz(ω) in

(5.45) is noticeable, but some compensation can be obtained by appropriate modification

of the denominator, as explained below.

Second, the denominator in (5.45) can be simplified by setting µ2 = 1, since noise

reduction is not the focus of this work. However, so far we still need the exact information of

the processed residual echo δ(n), which is almost impossible to obtain, for the computation

of Sδδ. Here, we propose to use the estimated echo signal ŷ(n) provided by the conventional

acoustic echo canceller (see Figure 5.2) to approximately estimate Sδδ.

The average magnitude spectra of δ(n) and ŷ(n) are compared in Figure 5.4 for two

different speech frames using the VSS-ACS algorithm developed in Chapter 4, where speech

codecs (i.e., G.729) were present along the echo path. The shapes of the magnitude spectra

are alike for both cases. A possible explanation of this phenomenon is discussed below.

Nonlinearity usually brings in new frequency components. Because the spectrum of

speech almost occupies the entire 4 kHz bandwidth, the contribution of the system non-

linearities over that range distorts the spectrum by increasing or decreasing the existing

frequency components. According to the properties of the vocoder, this spectrum distor-
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Fig. 5.4 Signal spectra of estimated echo ŷ(n) and residual echo δ(n): (a)
vowel-dominated frame, (b) fricative-dominated frame.

tion, especially in the regions of higher energy, is not severe enough to affect auditory

perception. The distortion also varies with acoustic phonetics: there is less distortion in

the vowel-dominated frame (see Fig. 5.4(a)) than in the fricative-dominated frame (see

Fig. 5.4(b)).

Based on these considerations, it appears reasonable to approximate Sδδ(k;m) by a

scaled version of Sŷŷ(k;m). Hence, the post-filter (5.45) becomes

H(ω) =
Sed(ω)

See(ω) + αSŷŷ(ω)
, (5.46)

where µ1 − 1 in (5.45) has been replaced by α without loss of generality. In practice, the

STFT may be employed to estimate the PSDs in (5.46):
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Sed(k;m) = γSed(k,m− 1) + (1− γ)E(k;m)D∗(k,m), (5.47)

See(k;m) = γSee(k,m− 1) + (1− γ)|E(k;m)|2, (5.48)

Sŷŷ(k;m) = γSŷŷ(k,m− 1) + (1− γ)|Ŷ (k;m)|2. (5.49)

As before, E(k;m), D(k;m) and Ŷ (k;m) denote the STFTs of e(n), d(n) and ŷ(n) at

block m, respectively, while k is the frequency index. The forgetting factor γ is chosen to

be around 0.7 in the experiment. The over-weighting parameter α in (5.46) can be chosen

from a wide range, say from 5 to 40, depending on the requirement of echo suppression

and the tolerance of near-end speech distortion. Note that the over-weighted Wiener filter

(5.46) reduces to the conventional Wiener filter (5.18) when α is set to zero.
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Fig. 5.5 Residual echo attenuation versus the PSD ratio of the residual echo
δ(n) to the near-end speech v(n) for an over-weighted Wiener filter.

Here, (5.46) is rewritten as follows for its performance analysis:

H(ω) =
Svv(ω) + Szz(ω)

Svv(ω) + Sδδ(ω) + Szz(ω) + αSŷŷ(ω)
. (5.50)

Suppose that the attenuation of the echo is 20 dB (i.e., Syy(ω) = 102Sδδ(ω)) for a conven-

tional acoustic echo canceller, and ENR=40 dB (i.e., Syy(ω) = 104Szz(ω)) at the near-end,
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(5.50) becomes

H(k;m) � 1 + 10−2η

1 + 102αη
, (5.51)

where the PSD ratio η = Sδδ(k;m)/Svv(k;m).

The attenuation of the residual echo with the over-weighted Wiener filter (5.46) is shown

in Figure 5.5. Compared with the conventional Wiener filter (was µ = 0 shown with dashed

line), the over-weighted Wiener filter (shown in solid and dotted lines) suppresses much

more residual echo.

5.2.3 Application in AEC systems

In a nonlinear channel, a post-filter works together with a linear adaptive filter to suppress

the acoustic echo to a satisfactory level. The adaptive filter performs the primary echo

attenuation, as well as providing an estimated echo for the post-filter. Among the possible

combinations, the VSS-ACS algorithm combined with a over-weighted Wiener filter is a

very attractive one. This is because VSS-ACS is robust in the presence of high disturbance

such as double-talk. The main weakness of this algorithm is insufficient acoustic echo

suppression, especially when codecs are present along the echo path. This weakness can be

compensated by the post-filter. Figure 5.6 illustrates the resulting combined cross-spectral

and post-filtering (CSP) algorithm over a non-linear channel in AEC.

In this work, the CSP is implemented in the frequency domain where FFT and IFFT are

used for computational efficiency. The indices k and m in Figure 5.6 denote the frequency

bins and the index of the data blocks in the time domain. In order to avoid producing

noise during the conversion between time domain and frequency domain, the overlap-and-

add technique is employed where the input data is segmented into blocks with 50% overlap.

The analysis and synthesis windows are Hanning and rectangular windows, respectively,

with the length of the windows set to 300 samples (corresponding to 37.5 ms at an 8 kHz

sampling rate). In our experiment, the forgetting factor γ in (5.47)-(5.49) is set to 0.7, and

the overlap ratio of the VSS-ACS algorithm is 0.5 (i.e., Q = M/2), where M = 40 (see

Chapter 4).

The vocoders used in the simulations (both in the upper and lower branches of Fig-

ure 5.6) are software implementations of G.729 [24]. The microphone signal consists of a

white noise that simulates background noise, and a speech signal with comparable power

as the acoustic echo that simulates near-end speech. The ENR in the near-end was set to
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Fig. 5.6 The diagram of the CSP algorithm in AEC.

10 dB to simulate a noisy background.

Figure 5.7(a) shows the microphone signal when double-talk occurs between time 4.5 s

and 6.5 s. The error signal produced by the VSS-ACS is shown in Figure 5.7(b). Clearly,

the level of echo suppression achieved by this algorithm over the non-linear channel is not

sufficient. In comparison, the CSP achieves a much higher echo attenuation as shown in

Figure 5.7(c). The original near-end speech signal is plotted in Figure 5.7(d) for reference.

The spectrograms in Figure 5.8(d) also demonstrate the superiority of CSP over VSS-ACS

in terms of both echo suppression and background noise reduction.

Although the general approach of combining an adaptive echo canceller with noise re-

duction algorithms, e.g., [111], has been proposed for a while, it is not widely used because

it introduces distortion in the near-end speech. This distortion is evidenced by comparing

the reconstructed signal in Figure 5.7(c) with the original speech in Figure 5.7(d). Fur-

thermore, a conventional acoustic echo canceller is able to suppress the acoustic echo to an

acceptable level in conventional telephone networks, so that a post-filter is not necessary.

However, when vocoders are present, a slight speech distortion is acceptable because the

vocoders themselves already distort the speech signal.

Based on experimental results and informal listening tests, it is concluded that the

CSP algorithm is successful in AEC over non-linear channels. It achieves notable echo
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Fig. 5.7 Signal waveforms in the double-talk situation (ENR = 10 dB):
(a) microphone signal, including acoustic echo and near-end speech; (b) error
signal for the AEC using ACS only; (c) error signal for the AEC using ACS
combined with a post-filter; (d) original near-end speech.
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Fig. 5.8 Spectrograms in the double-talk situation (ENR = 10 dB): (a)
microphone signal, including acoustic echo and near-end speech; (b) error
signal for the AEC using ACS only; (c) error signal for the AEC using ACS
combined with a post-filter; (d) original near-end speech.
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suppression and is robust to local disturbances, compared to earlier approaches such as

[105]. Such robustness is particularly useful in the double-talk situation, since neither a

double-talk detector nor voice activity detection is required.

5.3 The spectral subtraction technique in echo suppression

The spectral subtraction technique was developed for speech enhancement [108]. The

principle of this technique is to convert both the noisy speech e(n) and an estimate of the

noise z(n) into the frequency domain using Fourier transforms, yielding E(ω) and Z(ω).

The magnitudes of their Fourier transforms are then subtracted to obtain the magnitude

of the enhanced speech, i.e.,

|V̂ (ω)| = |E(ω)| − κ|Z(ω)|, (5.52)

where κ ≥ 1 is an overestimation factor used to improve noise reduction. Combined with

the phase of E(ω), V̂ (ω) is converted back into the time domain. Since the frequencies

where |V̂ (ω)| in (5.52) is negative cannot be recovered, |V̂ (ω)| = 0 should be used for those

values. A more general form of spectral subtraction is given by [98]

V̂ (ω) = [|E(ω)|α − κ|Z(ω)|α]1/α ejϕE(ω) , (5.53)

where the noisy speech phase ϕE(ω) is used as the phase of the enhanced signal. α controls

the amount of the noise reduction, and κ controls the amount of speech distortion. Usually,

α is set to 1 or 2. When α = 1, (5.53) corresponds to the basic linear spectral subtraction;

when α = 2, it corresponds to the power spectral subtraction.

Equation (5.53) can be rearranged as

V̂ (ω) = E(ω)

[
1− κ

∣∣∣∣Z(ω)E(ω)

∣∣∣∣
α]1/α

, (5.54)

or equivalently,

V̂ (ω) = E(ω)H(ω), (5.55)
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with

H(ω) =

[
1− κ

∣∣∣∣Z(ω)E(ω)

∣∣∣∣
α]1/α

. (5.56)

In (5.56), H(ω) is a signal dependent filter which reduces the noise power in the noisy

signal to improve speech quality.

As previously discussed, the residual echo may be regarded as a noise signal; so the

filter in (5.56) can be used in AEC to further attenuate residual echo, if we let E(ω)

denote the FT of the residual signal, and let Z(ω) represent the FT of the unwanted signal

(i.e., residual echo and noise). There are many variants for this corresponding to different

approximations.

For instance, let α = 2, and substitute ∆(ω)+Z(ω) for Z(ω) in the general form of the

filter (5.56), where ∆(ω) represents the Fourier transform of the processed residual echo

signal δ(n). Then the alternative form is obtained as

H(ω) =

√
1− κ

∣∣∣∣∆(ω) + Z(ω)

E(ω)

∣∣∣∣
2

. (5.57)

Expressing (5.57) by using the first-order Taylor expansion in terms of the PSDs, and

introducing a spectral floor [105], H(ω) becomes

H(ω) =




1−
√
κSδδ(ω) + κSzz(ω)

See(ω)
H(ω) > βω

βω otherwise.

(5.58)

The purpose of the spectral floor βω is to limit the attenuation introduced by the filter

H(ω) to a small positive value in order to preserve speech quality [112].

The spectral subtraction in AEC, which is considered a post-filter, is expressed in (5.58).

The performance of this filter is shown in Figure 5.9, where κ is set to one. The echo

attenuation curves of the conventional Wiener filter and the over-weighted Wiener filter

are plotted as well for comparison. The simulation results indicate that the behaviour of

the spectral subtraction in AEC is similar to the over-weighted Wiener filter with a small

α (about one).

An alternative way to use the spectral subtraction method (5.54) in AEC is to estimate

the near-end speech v̂(n) from the microphone signal d(n) instead of from the output of
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Fig. 5.9 Residual echo attenuation versus the PSD ratio of processed resid-
ual echo δ(n) to the near-end speech v(n) for Spectral Subtraction (solid),
over-weighted Wiener filter (dash) and conventional Wiener filter (dot).

the conventional acoustic echo canceller e(n) (see Figure 5.2). The general form of spectral

subtraction corresponding to (5.54) can be written as [113]

S(ω) = D(ω)

[
1− κ

∣∣∣∣∣ Ŷ (ω)D(ω)

∣∣∣∣∣
α]1/α

, (5.59)

where Ŷ (ω) and D(ω) are the Fourier transforms of the estimated echo ŷ(n) and the

microphone signal d(n). Expanding (5.59) and expressing it in terms of the signals’ PSDs,

we have

V̂ (ω) = [E(ω) + Ŷ (ω)]

[
1− κ

(
Sŷŷ(ω)

Svv(ω) + Syy(ω) + Szz(ω)

)α/2
]1/α

, (5.60)
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or equivalently,

V̂ (ω) = [E(ω) + Ŷ (ω)]H(ω)

= E(ω)H(ω) + Ŷ (ω)H(ω), (5.61)

with

H(ω) =

[
1− κ

(
Sŷŷ(ω)

Svv(ω) + Syy(ω) + Szz(ω)

)α/2
]1/α

. (5.62)

The attenuation curves of H(ω) in (5.62) for different values of α are plotted in Figure 5.10,

where κ is set to one. The results suggest that a smaller α leads to greater echo attenuation.

Note that due to the existence of a second term in (5.61) (i.e., Ŷ (ω)H(ω)), the behaviour

of the spectral subtraction approach of (5.60) is significantly different from that in (5.55).

Because this term is approximately proportional to the echo signal, echo suppression is

significantly degraded. Indeed, our informal subjective experiments suggest that this ap-

proach is the least attractive in terms of echo suppression and signal distortion among the

post-filters discussed in this chapter.
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Fig. 5.10 The attenuation of the filter H(ω) in (5.62) versus the PSD ratio
of residual echo to the near-end speech for spectral subtraction in AEC.
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5.4 Subspace method

The subspace approach has been widely used in signal processing, including applications

in signal enhancement [114, 115]. Based on the assumption that signal vectors lie in a

subspace of the Euclidean space of the noisy signal, whereas the white noise vectors occupy

the entire space, the vector space of the noisy signal can be decomposed into a signal plus

noise subspace and a noise subspace [114]. Removing the noise subspace and extracting the

signal from the signal plus noise subspace result in an enhanced signal. In the context of

AEC, the microphone signal is decomposed into an echo subspace and a near-end signal plus

echo (mixed) subspace. The acoustic echo is suppressed by eliminating the echo subspace

and attenuating the non-signal components in the mixed subspace. This section presents

an algorithm for subspace echo suppression [29]. The structure of the subspace processing

is illustrated in Fig. 5.11.
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5.4.1 Echo attenuation in subspace

a) Karhunen-Loeve transform (KLT)

The microphone signal in Figure 5.14 is expressed as a K-dimensional vector, defined

by

d(n) = [d(n), d(n− 1), . . . , d(n−K + 1)]H , (5.63)

and

d(n) = y(n) + v(n) + z(n), (5.64)

where y(n) is the echo signal vector, v(n) is the near-end speech signal vector, and z(n) is

the background noise vector. Under the assumption that the signals y(n), v(n) and z(n)

are mutually uncorrelated, the covariance matrix of d(n) is obtained as

Rd(n) = E[d(n)dH(n)]

= Ry(n) +Rv(n) +Rz(n), (5.65)

where Ry(n), Rv(n) and Rz(n) are the covariance matrices of y(n), v(n) and z(n), respec-

tively. E[·] denotes the expectation operator. The eigendecomposition of Rd(n) can be

written as

Rd(n) = Q(n)Λd(n)Q(n)H , (5.66)

where

Q(n) = [q1(n),q2(n), . . . ,qK(n)] (5.67)

is an orthonormal matrix of eigenvectors of Rd(n), and

Λd(n) = diag{λ(1)
d (n), λ

(2)
d (n), . . . λ

(K)
d (n)} (5.68)

is a diagonal matrix of eigenvalues of Rd(n), with the diagonal elements in non-increasing

order, i.e.,

λ
(1)
d (n) ≥ λ

(2)
d (n) ≥ . . . ≥ λ

(K)
d (n). (5.69)

Hence, Q(n)Hd(n) is the KLT of d(n), which projects the microphone signal d(n) into

the noisy signal basis vectors qi(n), i = 1, 2, . . . , K. Similarly, the estimated echo signal

ŷ(n) from the conventional acoustic echo canceller can be decomposed into the same sub-

space by KLT, resulting in Q(n)H ŷ(n).



5 Post-filtering technique in AEC 106

b) Echo subtraction in KLT domain

The estimated echo and the microphone signal are decomposed into the subspace by

KLT, resulting in Q(n)H ŷ(n) and Q(n)Hd(n). Subtracting the estimated echo from the

microphone signal, the residual signal in the transform domain is obtained as

Q(n)Hε(n) = Q(n)Hd(n)− βQ(n)H ŷ(n), (5.70)

where the underestimation matrix β = diag(β1, β2, . . . , βK), βm ∈ [0, 1], m = 1, 2, . . . , K,

is introduced to reduce the distortion of the near-end speech signal. As mentioned earlier,

ŷ(n) is not an ideal estimator of y(n) due to loudspeaker non-linearities. Thus, coefficients

βm that are less than one can reduce the effect of the estimation error, which is serious

during the double-talk when the adaptation of the AEC device is stopped.

Hence, the residual signal ε(n) in the time domain is

ε(n) = v(n) + δy(n) + z(n), (5.71)

where δy(n) denotes the residual acoustic echo in ε(n), and it is defined by

δy(n) = y(n)−Q(n)βQH(n)ŷ(n). (5.72)

c) Echo suppression filter

Let H(n) be a K × K matrix, which is the echo suppression filter, and let v̂(n) =

H(n)ε(n) be the estimator of the near-end speech signal v(n); then the estimation error

ev(n) is written as

ev(n) = v̂(n)− v(n)

= [H(n)− I]v(n) +H(n)[δy(n) + z(n)], (5.73)

where the first term in (5.73) is the distortion of the near-end speech, and the second term

is the further suppression of the echo and the reduction of the background noise. The ideal

case is ev(n) = 0, which means both terms in (5.73) are 0. Because the signals v(n), δy(n)

and z(n) may not be 0, the condition ev(n) = 0 requires that H(n)− I = 0 and H(n) = 0

simultaneously. Thus, it is impossible to attenuate the echo without any near-end speech
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distortion.

In this thesis, we propose to minimize the speech distortion in terms of mean-squared

error under the constraints of suppressing the acoustic echo and the background noise to a

certain level. By employing Kuhn-Tucker necessary conditions [110] and using a procedure

similar to that in 5.2.2, the optimal filter is obtained as

Hopt(n) = Q(n)G(n)QH(n) (5.74)

where G(n) = diag{g(1)(n), g(2)(n), . . . , g(K)(n)} is a diagonal matrix with

g(m) =
λ

(m)
v

λ
(m)
v + µ[λ

(m)
δy

+ λ
(m)
z ]

(5.75)

where µ is the Lagrange multiplier. In the derivation of (5.74)-(5.75), the approximation

has been made that the off-diagonal elements in matrixQ(n)Rv(n)Q
H(n) can be neglected.

λ
(m)
s represent the diagonal elements of Q(n)Rv(n)Q

H(n). Similarly, λ
(m)
δy

are the diagonal

elements of Q(n)Rδy(n)Q
H(n), and λ

(m)
z are the diagonal elements of Q(n)Rz(n)Q

H(n).

Unfortunately, it is difficult to apply (5.75) in practice, because Rv(n) and Rδy(n) must

be found in order to compute λ
(m)
v and λ

(m)
δy

. A voice activity detector is also needed

to determine Rz(n) for λ
(m)
z . Let Rŷ(n) be the covariance matrix of ŷ(n), and λ

(m)
ŷ be

a diagonal element of matrix Q(n)Rŷ(n)Q
H(n). In order to simplify the structure of the

subspace processor, a reasonable assumption can be made that λ
(m)
δy

is proportional to λ
(m)
ŷ .

Therefore, based on (5.75), we propose a suboptimal acoustic echo suppression filter gain

as:

g(m) =
λ

(m)
d

λ
(m)
d + µλ

(m)
ŷ

, m = 1, 2, . . . , K, (5.76)

where the Lagrange multiplier µ controls echo suppression and near-end speech distortion:

larger µ implies higher echo attenuation but more signal distortion. Note that λ
(m)
v has

been replaced by λ
(m)
d in (5.76) since the former cannot be obtained in practice.

d) Dimension of signal subspace

The K-dimensional microphone signal subspace is the noisy (i.e., signal plus noise)

subspace. Assuming that the dimension of the signal subspace is M where M < K, one
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can write Q(n) as

Q(n) = [Qv(n),Qz(n)] , (5.77)

where Qv(n) constitutes the signal subspace

Qv(n) = [q1(n),q2(n), . . . ,qM(n)], (5.78)

and the noise subspace is spanned by Qz(n):

Qz(n) = [qM+1(n), . . . ,qK(n)]. (5.79)

Since it is very difficult to find an accurate rank of the signal subspace, M , a fixed

value based on empirical data is used as the dimension of the signal subspace in this work

in order to simplify the algorithm of the subspace echo processor. Hence, only the signals

projected in the signal subspace are considered, as illustrated in Fig. 5.11.

e) Estimation of the covariance matrix Rd(n)

In practice, empirical data are used to estimate the covariance matrix Rd(n). Differing

from the approach in [114], many more past samples than future samples are used in this

work to estimate Rd(n) in order to reduce the delay, which is an important issue in acoustic

echo cancellation. Referring to the definition (5.63), the covariance matrix with samples

from the past (T − 1)th frame to the current frame is estimated as

Rd(n) =
1

TK

n∑
i=n−TK+1

d(i)dH(i), (5.80)

where K is the length of the vector d(i), i.e., the frame length.

The estimation of the covariance matrix Rd(n) is performed frame by frame with a

rectangular window, which contains the second order statistics of the samples in the win-

dow. After the estimation of the covariance matrix, the Q(n) and Λd(n) can be obtained

by applying eigendecomposition to Rd(n).
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5.4.2 Experimental Results and Discussion

The setup for the experiments are the same as in the previous chapter. The experiments

are carried out in an office room with dimension 4(L)× 3.5(W)×2.7(H) m3. A 1.3 GHz

Pentium-IV PC is connected to a Delta 1010 Digital Recording System which has a 10-

input and 10-output full-duplex recording interface. A common amplified PC loudspeaker

is used to play the far-end speech. The microphone signal is amplified by a Tascam MX-80

microphone/line mixer before it is sent to the recording system. The computer fans are

the main contributors of background noise.

The third-order AP algorithm is employed to estimate the acoustic echo, where the

filter length is 1600 taps, corresponding to 200 ms at an 8 kHz sampling rate. The step-size

is set to 0.9.
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Fig. 5.12 The signal power versus time: dot – acoustic echo; solid – residual
echo of a conventional AEC with AP; dash – residual echo of the proposed
AEC.

For the subspace echo processor, the dimension of the noisy signal subspace is set to

K = 40, and the dimension of the signal subspace is determined experimentally asM = 32.

A Hanning window is used for synthesis, and a rectangular window is used for analysis,
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both with a 50% frame overlap. T = 10 frames are used to estimate the covariance matrix

Rd(n). The parameter µ is set to 10 in order to compromise between echo suppression and

signal distortion.

The experimental results are shown in Fig. 5.12. The result from a conventional AEC

employing a linear adaptive filter with AP is also plotted for comparison. The proposed

AEC outperforms the conventional AEC with an extra 10-20 dB echo suppression and 8 dB

background noise reduction. Since the frame size is K = 40 samples corresponding to 5 ms,

the delay is acceptable in most acoustic echo cancellation applications. Informal listening

tests demonstrate that the subspace method achieves a satisfactory level of acoustic echo

cancellation in the nonlinear channel.

Note that the subspace echo processor in the proposed AEC system has an open-loop

structure, which shows a predictable behaviour. Therefore, it is much more robust than

other nonlinear adaptive algorithms, such as Volterra filters and neural networks. Since the

eigendecomposition operation in this AEC system leads to high computational complexity,

an appropriate subspace tracking technique, e.g. [116, 117], could be used to reduce the

computational burden.

5.5 Pitch extraction approach

Echo suppression during double-talk is a serious problem in conventional AEC systems

that have echo path nonlinearities. In a conventional AEC system, the coefficients of the

adaptive filter are frozen to avoid the divergence of the adaptive filtering algorithm when

both near-end and far-end speech are active [96]. However, in nonlinear channels with

vocoders, the acoustic echo is difficult to suppress and the residual echo may be larger than

the original echo if the adaptation of the conventional AEC system is stopped because of

the time-varying behaviour of the nonlinear characteristics [28].

In this section, a new AEC system is proposed for nonlinear channels. Combined with a

linear adaptive filter, the new AEC system exploits the speech analysis technique, namely

pitch extraction from the residual echo, to further suppress the residual echo produced by

the linear adaptive filter. Simulations show that the proposed AEC system significantly

suppresses the acoustic echo, especially during double-talk.
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5.5.1 Pitch prediction filter

A speech signal is highly correlated, and thus has redundancies in either near-sample or

distant-sample [118]. The near-sample redundancies can be removed by the formant filter,

while the distant-sample waveform similarities can be removed by the pitch filter.

In AEC applications, the pure acoustic echo path (i.e., from the loudspeaker to the

microphone) is modelled as a linear system. That is, the echo is the output of a linear

filter representing the LEM system, with the loudspeaker signal as input. Compared to the

loudspeaker signal, the formant of the acoustic echo usually changes significantly because

the formant is affected by the spectrum of the LEM system. However, the pitch is repre-

sented as periodic impulses in the frequency domain; hence the characteristic of the pitch

can be preserved for the output signal (i.e., echo) from the linear filter (i.e., LEM system).

Consequently, the pitch information of the loudspeaker signal is similar to that of the echo

signal, as we have been able to verify experimentally.

+

Mz − β

)(ns )(np

Fig. 5.13 The pitch prediction for a speech signal.

There are different pitch prediction filters such as multi-lag pitch filters and fractional

delay pitch filters [118]. This work only examines the one-lag pitch filter shown in Fig-

ure 5.13, because of its simplicity and robustness. In this figure, s(n) is the speech signal

and p(n) is the prediction error signal. This pitch filter has only one coefficient and is

expressed as

P (z) = βz−M , (5.81)

where β is a scaling factor related to the degree of waveform similarity, and the integer M

is the estimated period.

The basic method of finding the pitch parameters (the lag M and the correlation coef-

ficient β) is open-loop analysis [118]. Using this approach, the pitch parameters M and β
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are chosen to minimize the mean-squared residual p(n) in each N -sample frame:

argmin
M,β

N−1∑
n=0

p2(n), (5.82)

where, from Figure 5.13,

p(n) = s(n)− βs(n−M). (5.83)

In narrow-band speech applications where the sampling rate is typically 8 kHz, the lag M

ranges between 20 to almost 150 samples [50]. The pitch coefficient β varies from 0 to 1.

For a signal with no detectable periodic structure such as unvoiced speech, β is 0 and M

is irrelevant. For a well-structured periodic signal such as steady-state voiced speech, β is

close to 1. For other cases, the value of β lies between 0 and 1.

For a given lag M , (5.82) leads to the optimal value of pitch coefficient in terms of M :

βopt(M) =

∑N−1
n=0 s(n)s(n−M)∑N−1
n=0 s

2(n−M)
. (5.84)

Clearly, in order to find the optimal gain βopt among the values of βopt(M) and the cor-

responding M , an exhaustive search in the pitch lag range is necessary. Considering the

non-stationary property of the speech signal, the frame size N should not be too large, to

avoid reduction of prediction gain [119] and large delays. The frame size cannot be too

small either, or it may cause inaccurate estimation of the pitch lag. In this work, different

values of the frame size N are used to estimate the pitch lag and the coefficient. A larger

frame size N2 = 80 is used for the lag M estimation, while a shorter frame size N1 = 40 is

used to find the gain β and to update the output residual.

In order to avoid the pitch multiples issue of the pitch filter, the search range for the

parameters is divided into three regions [24]. In practice, the computational complexity of

a pitch predictor is significantly reduced by searching the pitch parameters in the following

steps.

Loop: for each frame (N1 = 40)
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• Step 1: Find three maxima r(mi), i = 1, 2, 3, from the correlations

r(m) =

N2−1∑
n=0

s(n)s(n−m), (5.85)

where the larger frame size N2 = 80 is used to obtain a better estimation of the

correlation, and the three ranges are

i = 1, 80 ≤ m ≤ 147

i = 2, 40 ≤ m ≤ 79

i = 3, 20 ≤ m ≤ 39.

(5.86)

• Step 2: Normalize the three candidates

r̃(mi) =
r(mi)√∑N2−1

n=0 s2(n−mi)
, i = 1, 2, 3. (5.87)

• Step 3: Search for the proper pitch lag M among the above candidates, where a

smaller one is preferred to avoid the pitch multiples:

Initialization: M = m1;

Loop: for i = 2, 3

if r̃(mi) ≥ ρr̃(M)

M = mi

end

end

The weighting parameter ρ is set to 0.85 experimentally.

• Step 4: Compute the pitch gain β by using a shorter frame of N1 samples:

β =

∑N1−1
n=0 s(n)s(n−M)∑N1−1
n=0 s2(n−M)

. (5.88)

End loop.
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5.5.2 Pitch extraction in AEC

Figure 5.14 shows the proposed AEC system for nonlinear channels where low-bit-rate

codecs are present along the echo path. It consists of two components: an echo estima-

tor and a pitch extractor. The estimated echo ŷ(n) produced by the echo estimator is

subtracted from the microphone signal d(n), resulting in the residual echo e(n). The pro-

cessed residual echo ep(n) is obtained by attenuating the residual echo e(n) through pitch

extraction where the pitch parameters are computed from the estimated echo ŷ(n).

�	���	�

�
��
�
�
�
��
�
��
�
��


�
�
�
	
�

<���


<����	�	��

�	������� �9���

�,�-

��������	���/,�-

�
�
�
�
�
��
�
�	
�


�
��
�
�


�

>�?��	���	���	������8��	��������

���������	
����


�
�
�
��
�
�
�	
�

	,�-

�	���	�

�����	�

�����	�

���������	�
�

����	��	�

<���


�/��������

�������	��	�
�

.,�- ��
�

���������

@

�

<���


<�	������

�������	��
>�����
��	� �9���

	
�
,�-

Fig. 5.14 Pitch analysis-based acoustic echo cancellation over a nonlinear
channel.

An adaptive filter is used to estimate the echo in most AEC applications, but its perfor-

mance is significantly degraded by the nonlinearities of the codecs along the echo path. The

affine projection (AP) algorithm [21] shows the best performance among popular adaptive

filtering algorithms in nonlinear channels [120], therefore it is used to estimate the echo in

the new AEC system.

Speech analysis indicates that most of the speech energy is concentrated in the voiced

sounds, which have a power that is about 20 dB larger than that of the unvoiced sounds [50].

Furthermore, the voiced sounds have a relative periodicity which is represented by the

pitch. Because the content of the residual echo is often recognizable, the residual echo

should retain certain speech characteristics. Based on these considerations, the power of

the residual echo from a conventional acoustic echo canceller can be further reduced if the

pitch of the residual echo is extracted.
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In the proposed AEC system shown in Figure 5.14, the acoustic echo is attenuated by

subtracting the estimated echo ŷ(n) from the microphone signal d(n) before it is further

suppressed by the pitch filter. The residual echo signal e(n) may contain the near-end

speech and the remaining echo. When the near-end speech is active, it is almost impossible

to obtain the correct pitch parameters of the echo component from the residual echo signal.

However, as discussed before, the pitch information of the far-end speech x(n) is similar

to that of the echo, but this information cannot be directly applied to the residual echo due

to the synchronization problem, i.e., the delay introduced by the codecs and the acoustic

echo path. This problem can be solved if the estimated echo ŷ(n) is used to obtain the

pitch parameters. Then these parameters can be applied to the pitch filter that attenuates

the residual echo. This is because the pitch information of the estimated echo ŷ(n) and

that of the echo component contained in the residual signal e(n) are very similar when the

echo estimator is active. Furthermore, based on the assumption that the delay of the entire

echo path does not change significantly during double-talk when the coefficients of the echo

estimator are frozen, those two signals are still well synchronized.

The pitch parameters (the pitch lagM and the pitch gain β) of the estimated echo ŷ(n)

are obtained by using the algorithm in section 5.5.1 from step 1 to 4, where s(n) should be

replaced by e(n). The pitch of residual echo e(n) is then extracted using (5.83). Similarly,

the signals p(n) and s(n) in (5.83) are replaced by ep(n) and e(n), respectively.

5.5.3 Simulation results

In order to test the proposed AEC system, a simulation is conducted using the platform

shown in Figure 5.14, where the codec used is G.729 [24]. A coloured noise, produced by

passing a white noise through an IIR filter with the system function H(z) = 0.1
1−0.9z−1 , is

added as the background noise so that the ENR is 30 dB. The LEM system of the test

platform is simulated to represent the cab of a vehicle. The impulse response is about

40 ms long, corresponding to 300 taps at the sampling rate of 8 kHz. The relaxation factor

µ for the AP echo estimator is set to 0.9, and the projection order p is 3 (a higher order

would not lead to obvious improvement in this case [28]).

DT occurs between time 0.6 s and 2.7 s. During this period, the coefficients of the echo

estimator, i.e., the AP algorithm, are frozen to avoid divergence. The simulation results are

shown in Figure 5.15 and Figure 5.16. The residual echo of the conventional AEC system
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that only employs AP to suppress echo is also plotted in these figures for comparison.

These simulation results show that, in the nonlinear channel, the pitch analysis-based

AEC system yields 5 to 10 dB of additional echo attenuation during double-talk compared

to the conventional AEC system. In the case of single-talk, the new AEC system obtained

the same results as the conventional AEC system, since the periodic similarities in the

residual echo have been removed by the echo estimator when the AP algorithm is active.

Minor distortions to the near-end speech, which may add a little extra noise to the near-

end speech, are introduced by the new AEC system. However, since local background noise

exists in most hands-free applications, this distortion is tolerable.

5.6 Conclusion

In this chapter, various post-filtering algorithms have been proposed and discussed in the

application of AEC. These algorithms significantly compensate the performance degra-

dation of a conventional AEC system in nonlinear channels. Different combinations of
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Fig. 5.15 Waveforms of the echo, residual echo I (only AP is employed),
and residual echo II (the proposed AEC system).
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Fig. 5.16 Power versus time for echo (dot), residual echo of AP (solid), and
residual echo of the proposed AEC system (dash).

adaptive filters and post-filters can be applied in different situations. For example, the

VSS-ACS algorithm combined with an over-weighted Wiener filter can be employed in the

case where the the acoustic echo level is moderate. Although the echo attenuation of this

combination is not ideal, it has the important advantage that no DT detector is required.

In another situation where echo suppression is critical, a combination of the AP algorithm

with an over-weighted Wiener filter is a good choice. However, a robust DT detector is nec-

essary in order to freeze the adaptive filter coefficients. In addition, the pitch subtraction

technique can also be used to reduce the power of the residual echo during the DT period.

Furthermore, an AEC system based on the subspace method is proposed to suppress the

acoustic echo in the nonlinear channel. Experimental results show that the acoustic echo

can be significantly attenuated by this AEC system.

These post-filters all introduce some distortion in the near-end signal depending on the

amount of echo attenuation. However, since signal distortion caused by nonlinear devices

is unavoidable in nonlinear channels, adding slightly more distortion with the benefit of
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significant echo suppression is acceptable. Musical noise is also present when a post-filter is

used, but it can be significantly diminished by exploiting a perceptual model of the human

ear, as will be discussed later.
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Chapter 6

Computational complexity reduction:

subband adaptive filtering

In the last chapter, the study of the post-filtering techniques reveals that the latter can

significantly suppress the residual echo that resulted from insufficient echo attenuation of

a conventional AEC. However, one of the challenging tasks of AEC remains: the long echo

path in AEC applications requires numerous taps for an FIR adaptive filter, resulting in very

high computational complexity. This may prevent the AEC system from being implemented

in real-time. In order to reduce the computational complexity, this chapter introduces an

effective approach called subband adaptive filtering. A simplified design of the oversampling

subband structure is investigated, and a practical AEC system that seamlessly incorporates

the post-filter in the subband is proposed. Compared to its full-band counterpart, the

proposed subband algorithm has a much lower computational complexity while achieving

a comparable performance in terms of acoustic echo suppression in the nonlinear channel.

These observations are supported by experimental results described in this chapter.

6.1 Introduction

For AEC applications requiring very long filters (N in excess of a few thousand), the 2N

computational complexity of the NLMS algorithm may be unacceptable for low-cost real-

time implementations. To go below the barrier of 2N operation per sample, some struc-

tural modifications to the conventional transversal filter structure are necessary. Possible

approaches include block processing [121, 47] and transform domain filtering [122, 123]. In
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recent years, the subband filtering approach has received considerable attention [124, 125].

Compared with the full-band case, subband adaptive filtering lowers computational com-

plexity by reducing the sampling rate of the subband signals.

Subband adaptive filtering has become a very important scheme for AEC. In fact, many

commercial AEC systems available today use subband filtering to reduce the computational

complexity so the system can be implemented in real-time.
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Fig. 6.1 Structure of a subband adaptive filter

Figure 6.1 shows conventional subband filtering for AEC. Both the loudspeaker signal

x(n) and the microphone signal d(n) are split into K subband signals by an analysis filter

bank, which can be viewed as a set of K band-pass filters that cover the whole spectrum

of interest. At the output of the analysis filter bank, the sampling rate of the subband

signals is reduced by an integer M , referred to as the decimation factor. In each subband,

an adaptive filter is used at a lower sampling rate in order to cancel echo within the

subbands. More specifically, each subband adaptive filter uses the corresponding subband

component of the loudspeaker as its input, and the corresponding subband component of

the microphone as its reference. The input and output are respectively denoted Xi(m) and

Di(m), i = 0, · · · , K − 1, where the index m is a time instant at the lower sampling rate.
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The components of the residual echo of each subband adaptive filter, denoted by Ei(m),

are reconstructed by the synthesis filter bank in order to form the full-band output e(n) at

the original sampling rate.

The most important advantage of using subband adaptive filtering is the reduction of

the computational complexity, especially when using a long filter (i.e., with a large number

of taps). This reduction is made possible by two changes:

• The updating rate of the adaptive filter coefficients in the subband is reduced by a

factor of M .

• The length of subband adaptive filters is reduced by the same factor M compared to

the corresponding full-band filter.

Thus, by using subband adaptive filters, a total computational gain of up toM2/K can

be achieved under the assumption that the computational requirements of the adaptive

filtering algorithm is proportional to the length of the transversal filter. When the addi-

tional computations required for the analysis/synthesis banks are taken into account, the

computational gain will be slightly lower. Since the reference signal may contain a near-end

speech component that will go through the cascade of an analysis and a synthesis bank

prior to its transmission, a perfect-reconstruction (PR) or near-PR property is needed for

the filter banks so that the near-end signal will not be distorted.

6.2 Uniform DFT filter banks

6.2.1 The basic structure

Uniform DFT filter banks provide a simple method for the rapid design and prototyping of

filter banks suitable for AEC. A structural diagram of the proposedK-channel uniform DFT

filter banks is depicted in Figure 6.2. In the analysis bank, a complex modulation function

W kn
K is applied to the input signal x(n), where WK = exp(j2π/K), k = 0, 1, 2, · · ·K is

the channel index, and n is the discrete-time index at high sampling rate. The analysis

filter, represented by its impulse response h(n), is a lowpass filter with cutoff frequency

ωc = π/K. Let H(z) =
∑∞

n=−∞ h(n)z−n denote the z-transform of h(n), then the ideal
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low-pass property for H(z) should be

|Hideal(e
jω)| =

{
1, 0 ≤ |ω| ≤ ωc

0, ωc < |ω| ≤ π
(6.1)
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Fig. 6.2 Uniform DFT filter banks

After modulation and lowpass filtering, the signal in kth branch is decimated by an

integer factor M , resulting in the desired subband signal, Xk(m), where m is the discrete-

time index at low sampling rate. Using well-known properties [126], the subband signal

can be expressed in the z-domain as

Xk(z) =
1

M

M−1∑
l=0

H(z1/MW−l
M )X(z1/MW−l

M W k
M). (6.2)

For subsequent discussions, it is convenient to rewrite (6.2) in the form

Xk(z) =
1

M
H(z1/M)X(z1/MW k

M) + Ak(z), (6.3)

where

Ak(z) =
1

M

M−1∑
l=1

H(z1/MW−l
M )X(z1/MW−l

M W k
M) (6.4)

is viewed as the aliasing component due to decimation in the kth subband signal Xk(z).
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In the application of subband adaptive filtering in AEC, this kind of frequency-domain

aliasing must be avoided to achieve effective cancellation of acoustic echo.

Note that Ak(x) is affected by the stop-band property of the low-pass filterH(ejω). Since

the ideal low-pass characteristic (6.1) can only be approximated in practice, i.e., in the case

of a realizable (causal and stable) filter H(ejω), a transition band does exist for H(ejω) and

significant aliasing components will generally be created if the critical downsampling factor

M = K is used in the subbands. Thus, an oversampling scheme, i.e., M < K, is often

used in filter banks for subband adaptive filtering so that frequency domain aliasing can

be made acceptably small [127, 128].

In the synthesis bank shown in Figure 6.2, each subband signal is first upsampled by

the factor M and then passed to a common synthesis filter g(n), or equivalently G(z),

which is also a lowpass filter with cutoff frequency ωc = π/K. The output of each filter are

modulated by a proper complex modulating function, which is given by W kn
K for the kth

subband. Finally they are summed to produce the synthesized output x̂(n), which can be

expressed as [16]

x̂(n) =
∞∑

m=−∞
g(n−mM)

1

K

K−1∑
k=0

X̂k(m)W kn
k . (6.5)

Referring to Figure 6.2, the channel signals at the output of the analysis bank can be

written as

Xk(m) =
∞∑

n=−∞
h(mN − n)x(n)W−kn

k , k = 0, 1, · · · , K − 1. (6.6)

When X̂k(m) = Xk(m) for all m, k = 0, 1, · · · , K− 1, it is desired to have x̂(n) = x(n).

This condition leads to the following relation between the analysis filter h(n) and the

synthesis filter g(n) [129]:

∞∑
m=−∞

g(n−mM)h(mM − n+ sK) =

{
1, s = 0

0, otherwise
(6.7)

for all n.
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6.2.2 Prototype filters

Prototype filter designs with better lowpass characteristics and smaller reconstruction er-

rors for a given filter length N can be achieved with computer-aided optimization tech-

niques [130, 131]. One criterion is to minimize an error function E, which is defined as

E = αEs + Er, (6.8)

where α is a real positive weighting factor, while Es and Er are given in [16]:

Es =

∫ π

ωs

|H(ejω)|2dω, (6.9)

Er =

∫ 2π

0

(
K−1∑
k=0

|H(ejωW−k
K )|2 − 1

)2

dω, (6.10)

where ωs(> ωc) is the stopband edge which determines the transition band of H(ejω).

In practice, the error surface E, as a function of the coefficients, has many local minima.

An optimization routine can get trapped in these local minima and fail to reach the global

minimum. Instead of using complex optimization programs, there is a simpler way to

design the prototype filter h(n) for subbanks by performing an I-point interpolation of a

two-channel QMF prototype filter h0(n) (such filters can be found in [16]). The simplicity

of this design procedure makes it well-suited for practical engineering applications.

Traditionally, h(n) can be obtained from the I-point interpolation of h0(n), followed by

anti-imaging lowpass filtering. Although this time-domain method is straightforward and

well-established in theory, it is not easy to implement in practice. Assume that the original

QMF filter has a length of L0 taps, then the new prototype filter has a length of IL0. If

the anti-imaging lowpass filter is N taps long, then the sequence produced by this filter is

IL0 + N − 1 long. The length of the lowpass filter N should be long enough to achieve

high stopband attenuation in order to significantly suppress the interpolation imaging. A

longer analysis/synthesis filter leads to a larger processing delay which should be avoided

in practice. A simple method proposed in [18] reduces the filter length to as short as IL0.

This work proposes a method to obtain an analysis/synthesis filter by interpolating the

QMF filter in the frequency domain, rather than in the time domain. This method, called

the DFT method, is accomplished by exploiting the properties of DFT. First, an L0-point
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Fig. 6.3 Prototype filter

DFT is applied to the coefficients of the QMF filter h0(n), resulting in a sequence of length

L0. Next, this sequence is expanded to length IL0 by padding (I − 1)L0 zeros. Finally,

IL0-point inverse DFT is applied to this sequence, so that the filter h(n) is obtained.

As an example, two prototype filters are obtained by interpolating the QMF filter

16A [16], which has 16 parameters, by a factor I = 8 using both the method in [18] and

the above DFT method. The prototype filters obtained from the two different methods

have the same length, which is 128. The frequency responses of the filters are plotted in

Figure 6.3. It is found that using the DFT method results in a significantly higher stopband

attenuation, by about 10 dB on average.

6.2.3 Reconstruction error

To evaluate the near-PR property of a subband structure, we need to investigate two kinds

of distortion, namely: aliasing and amplitude distortions.

Expressing (6.2) in the frequency domain, the decimated channel signals can be written

as

Xk(e
jω′
) =

1

M

M−1∑
k=0

H(ej(ω
′−2πl)/M)X(ej(ω

′−2πl)/M+2πk/K), (6.11)
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where ω′ denotes the frequency with respect to the decimated sampling rate. Combin-

ing (6.2) and (6.5), the frequency domain input-output relationship for the filter bank is

obtained as

X̂(ejω) = X(ejω)
1

K

K−1∑
k=0

Gk(e
jω)Hk(e

jω)

+
K−1∑
l=1

X(ej(ω−2πl/M))
1

K

K−1∑
k=0

Gk(e
jω)Hk(e

j(ω−2πl/M)),

(6.12)

where Hk(e
jω) and Gk(e

jω) are the transforms of hk(n) = h(n)W kn
k and gk(n) = g(n)W kn

k

respectively.

As is known, the synthesis filter g(n) can be obtained by flipping the analysis filter h(n)

of L taps in the time domain:

g(i) = h(L− i− 1), i = 0, . . . , L− 1. (6.13)

If h(n) is symmetric, the synthesis filter g(n) is then identical to the analysis filter h(n).

Then (6.12) becomes

X̂(ejω) = X(ejω)
1

K

K−1∑
k=0

|H(ejωW−k
K )|2

+
K−1∑
l=1

X(ejωW−l
M )

1

K

K−1∑
k=0

H(ejωW−k
K )H(ejωW−k

K W−l
M ).

(6.14)

Since h(n) is a linear-phase FIR filter, the following conditions must be satisfied for

perfect reconstruction (PR):




1

K

K−1∑
k=0

|H(ejωW−k
K )|2 = 1

K−1∑
k=0

H(ejωW−k
K )H(ejωW−k

K W−l
M ) = 0, l = 1, 2, · · · ,M − 1.

(6.15)

In practice, a near-PR property is sufficient for the filter banks in AEC applications [18].

The magnitude distortion can be measured from the peak ripple of T0(e
jω), where T0(e

jω)
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is given by

T0(e
jω) =

1

K

K−1∑
k=0

|H(ejωW−k
K )|2. (6.16)

The full-band aliasing distortion is given by

Ef (e
jω) =

M − 1

K

√√√√M−1∑
l=1

∣∣∣∣∣
K−1∑
k=0

H(ejωW−k
K )H(ejωW−k

K W−l
K )

∣∣∣∣∣
2

, |ω| ≤ π. (6.17)

According to (6.4), the subband decimation aliasing distortion is defined as

Es(e
jω) =

√√√√M−1∑
l=1

∣∣H(ejω/MW−l
M )
∣∣2, |ω| ≤ π. (6.18)

Note that the absence of the full-band aliasing distortion does not guarantee that there is

no decimation aliasing in the subbands; however, aliasing distortion in the full-band leads

to decimation aliasing in subbbands.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.01

−0.005

0

0.005

0.01

0.015
Magnitude distortion function T0(ejω)

Normalized frequency

M
ag

ni
tu

de
 (

dB
)

Channel: K=16 
Length: L=128 QMF−16A 

Fig. 6.4 Magnitude distortion function T0(ejω)
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As an example, consider the prototype QMF filter 16A in [132]. This filter has 16

symmetrical coefficients and its stopband attenuation is about 60 dB. To design a uniform

DFT subband, shown in Figure 6.2, with K = 16 channels, an analysis/synthesis filter

is obtained by using the DFT method. The length of this filter is therefore 128 taps.

The magnitude distortion (6.16) of the subband using this filter is shown in Figure 6.4.

Apparently, so obtained filter banks inherit the low magnitude distortion of the original

QMF filter banks.

Figure 6.5 shows the full-band aliasing error (6.17) for the same filter banks with dif-

ferent decimation factors. Figure 6.6 shows the corresponding decimation aliasing error in

(6.18). Because the analysis/synthesis filter is not ideal, aliasing errors are unavoidable.

Both the full-band and the decimation aliasing errors increase when the decimation rate

increases. From the results, it is found that the decimation factor M = 11 or M = 12 is a

reasonable choice for a 16-channel filter bank.

6.2.4 Realization in weighted overlap-add filter structure

There are two basic structures for realizing DFT filter banks: polyphase structure and

weighted overlap-add structure. The latter is based on an interpretation of the DFT filter

bank in terms of a block-by-block transform analysis (or synthesis) of the signal. It is

more general than the polyphase structure in that it can be more easily applied to cases

where the channel decimation ratio M is unrelated to the number of subbands K. In other

words, there are no restrictions to the relation between M and K. In this thesis, we use

the weighted overlap-add structure.

To develop the weighted overlap-add structure, one starts with the basic filter bank

model as illustrated in Figure 6.2. The output signal Xk(m) (6.6) for the kth channel of

the filter bank analyzer can be expressed as

Xk(m) =W−kmM
K X̃k(m), (6.19)

where

X̃k(m) =
K−1∑
r=0

x̃m(r)W
−kr
K , (6.20)
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and

x̃m(r) =
∞∑

l=−∞
h(−r − lK)x(r + lK +mM), r = 0, 1, , · · · , K − 1. (6.21)

This structure is considerably more efficient than a direct implementation of the DFT

filter bank because of the use of the direct-form decimation structure, of the same windowing

process shared with all the subbands, and of the FFT for the modulation [16]. Similarly,

the reconstructed signal for the synthesizer in (6.5) can be expressed in the form

x̂(r +mM)|m=m0
= g(r)ˆ̃x(r)|m=m0 + (terms for m �= m0), (6.22)

where

ˆ̃xm(r) =
1

K

K−1∑
k=0

ˆ̃Xk(m)W kr
K , (6.23)

and
ˆ̃Xk = X̂k(m)W kmM

k . (6.24)

Just like the analysis structure, the synthesis structure performs the DFT filter bank

synthesis by using efficient interpolation, sharing filter computation among channels, and

using a fast inverse transform algorithm to do the modulation.

As pointed out earlier, the adaptive filter operates in each subband, resulting in a

significant reduction of computational complexity. Moreover, when an adaptive filter is im-

plemented in a uniform DFT subband, the filter bank structure can be simplified. Specifi-

cally (6.19) and (6.24) are no longer needed for certain adaptive filtering algorithms. The

derivation can be found in Appendix A.

Similar to [48], the main steps of modified implementation of the analysis bank are

summarized as follows:

1. At block m in the full-band, input the vector consisting of M consecutive samples of

x(n) (i.e., [x(mM), x(mM − 1), . . . , x(m − 1)M + 1)]) into a shift register of length

L, where L is the length of the analysis filter h(n).

2. Multiply the above vector by the analysis filter h(n), resulting in a windowed sequence

ym(r) = h(r)x(mM − r).

3. Partition ym(r), r = 0, 1, . . . , L− 1 into Nb = L/K blocks of K consecutive samples.
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4. Add these Nb blocks together in order of sequence, resulting in a new sequence x̃m(r)

of K samples. In other words, the first sample of the new sequence is the sum of

the first samples of the Nb blocks, and the second sample is the sum of the second

samples of the Nb blocks, etc.

5. Apply a K-point FFT to the sequence x̃m(r), r = 0, 1, . . . , K − 1, resulting in the

set of subband signals X̃k(m), k = 0, 1, . . . , K − 1. These signals are used as the

excitation signals for the subband adaptive filters.

The procedure of the synthesis bank is almost the reverse of the above steps. The

implementation of the synthesis bank described in (6.22)-(6.23) is stated as:

1. At time m, apply a K-point IFFT to the subband signals ˆ̃Xk(m), k = 0, 1, . . . , K−1,

resulting in a sequence ˆ̃xm(r), r = 0, 1, . . . , K − 1.

2. Extend the sequence ˆ̃xm(r) periodically into a new sequence of L samples, which is

also denoted as ˆ̃xm(r), but with the index r ranging from r = 0 to L− 1.

3. Multiply the new sequence ˆ̃xm(r) by the analysis filter h(n), resulting in ŷm(r) =

ˆ̃xm(r)h(r), r = 0, 1, . . . , L− 1.

4. Perform an overlap-add operation on ŷm(r). Details can be found in [16].

5. Shift the output buffer to the left byM samples, and the resulting block ofM samples

outside is x̂(mM − r), r = 0, 1, . . . ,M − 1.

In AEC applications, all excitation signals are always real-valued so that certain sym-

metry relations hold among the subband signals:

Xk(m) = X∗
K−k(m), k = 1, 2, . . . , K/2− 1. (6.25)

Note that X0(m) and XK/2(m) are real-valued. Because these symmetry relations are

not affected by subband filtering, they can be exploited to further reduce computational

complexity. For instance, as a result of (6.25), the outputs of subbands K/2+1, . . . , K − 1

do not need to be computed any more.
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6.3 Adaptive filter combined with post-filter in subband

The previous chapter showed a combined AEC system that significantly suppresses acoustic

echo in non-linear channels. The main drawback of this system is its high computational

complexity, which is caused by both the computational requirement of the full-band adap-

tive filtering algorithm, and by the use of FFT for transforming the signals between the

time and the frequency domains. In order to reduce the computational complexity for

practical implementation, a combined adaptive filter and post-filtering algorithm employed

in the subband is preferable. A combination of these two components results in significant

computational savings [31].

6.3.1 Nonlinear effects on the subband filter

Before we study the performance of the subband filter in the nonlinear channel, it is im-

portant to understand its behaviour in the conventional linear channel, as depicted in

Figure 6.1.

First, simulations with different excitation signals (both white noise and speech) are

conducted to compare the performance of the subband adaptive filtering algorithm with

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0
Learning Curves

Samples

M
S

E
 (

dB
)

Echo 

Full−band 

Sub−band 

Signal: white noise
ENR: 40dB
Algorithm: NLMS
Sub−band: K=16, M=12 

Fig. 6.7 Learning curves for white noise excitation



6 Computational complexity reduction: subband adaptive filtering 133

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−60

−50

−40

−30

−20

−10

0

Samples

M
S

E
 (

dB
)

Learning Curves 

Echo 

Full−band  Sub−band 
Signal: male speech
ENR: 40dB
Algorithm: NLMS
Sub−band: K=16, M=12 
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its full-band counterpart, where the channel for now is assumed to be linear. The NLMS

algorithm is used for adaptive filtering since it is simple and predictable. For the proposed

subband structure, the number of filter banks used is K = 16, and the decimation rate is

M = 12. The full-band adaptive filter length is L = 300 taps. Accordingly, the subband

adaptive filter length is L/M = 300/12 = 25. The step-size µ is set to 0.9 both in full-band

and subband.

Figures 6.7 and 6.8 respectively display the learning curves with white noise excitation

and with speech excitation. The performance of both the full-band and subband structures

are similar when excited by white noise. When excited by speech, the results were not

as straightforward since the subband NLMS performance depends on the properties of the

speech segment. However, in general, the performance of the subband NLMS is comparable

to that of full-band NLMS in the conventional linear channel.

Secondly, because the NLMS and the AP have their own distinguishing merits (i.e.,

the former has the lowest computational complexity while the latter has the best tracking

property), they are also implemented in the subband structure in order to see if they still

work well with significantly less computational burden. With simulations (where the echo

path is linear) paralleling those in the full-band case in 3.3.2, results shown in Figures 6.9 to
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6.10 imply that the tracking capabilities of both AP and NLMS are worse for the subband

scheme than for the full-band scheme. Accordingly, the performance of the subband scheme

shouldn’t be better than the full-band scheme.
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Fig. 6.9 Tracking properties of AP and NLMS in full/subband
(ENR=40 dB).

The subband algorithms’ poorer tracking capabilities may be explained by the fact

that the signals are downsampled by a factor of M when they are fed into the subbands.

This makes adaptation in the subband slower than in the full-band; therefore the tracking

capabilities of the adaptive filters in the subband structure are degraded. According to the

relation between the tracking capability and the achievable MSE in the nonlinear channel

(see 3.3.2), the acoustic echo canceller in the subband structure has a poorer performance

than its full-band counterpart in the nonlinear channel.

Finally, when vocoders are present along the echo path, the results are plotted in Fig-

ure 6.11. It is observed that the MSE of each subband algorithm is larger than that of

its full-band counterpart, which is consistent with the above analysis. Compared to their

full-band counterparts, the MSE is about 10 dB higher for the subband AP, and 5 dB

higher for the subband NLMS.
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Fig. 6.10 Tracking properties of the AP and the NLMS in full/subband
(enlarged from Figure 6.9).

6.3.2 The structure of the combined AEC system

Figure 6.12 shows the combined AEC in subband, where both the far-end signal x(n) and

the near-end signal d(n) are split into subbands by analysis banks. The adaptive filtering

algorithm is applied in each subband at a decimated rate, and the subband residual echo

signal is further attenuated by individual over-weighted subband Wiener filters before they

are recombined by a synthesis bank to create a full-band output signal ŝ(n) at the original

rate. Since the microphone signal may contain a near-end speech component that will go

through the cascade of an analysis and a synthesis bank prior to its transmission, a near-PR

property is necessary for the filter banks [18].

Uniform DFT filter banks are employed in the combined AEC system since they provide

a simple method for designing filter banks suitable for subband AEC applications. Impor-

tant design requirements include arbitrary oversampling in decimation, near-PR property

of the combined analysis and synthesis banks, low complexity of implementation, and low

processing delay. Additional details can be found in [48, 16].

The NLMS algorithm is very popular in practical AEC applications due to its pre-

dictable robust behaviour, simple implementation and low computational requirement. In

order to compensate for the echo attenuation loss caused by the nonlinearities of the echo
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Fig. 6.11 Performance of the AP and NLMS in full/subband in the presence
of vocoders (ENR=40 dB)

path and to reduce the computational complexity for the use of low-cost real-time DSP

processors, we integrate NLMS and the post-filter in the subband structure. The algorithm

is summarized in Algorithm 8, where all the variables are the components of signals in sub-

band, and the adaptive filter in the kth bank is assumed to have a length of Lk, which may

be different for each bank. The parameters µ, γ and α denote the step-size, the forgetting

factor and the attenuation factor, respectively. A small constant ρ is introduced to prevent

the division from overflow. Note that other adaptive filtering algorithms, e.g., the affine

projection algorithm, may also be employed in the structure shown in Fig. 6.12. However,

more computational capacity may be required.

Note that the subband signals at the output of the uniform DFT analysis banks satisfy

a conjugate symmetric property: the ith subband signal is the complex conjugate of the
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Fig. 6.12 The diagram of the combined AEC in a subband.

(K + 2 − i)th for 1 < i ≤ K/2 (assuming the number of the filter banks, K, is even),

while the signals in the first and the (K/2 + 1)th banks are real. Thus, there are a total

of K/2 + 1 independent subband signals: two real and K/2− 1 complex, which only need

K/2 + 1 adaptive filters running in these subbands. Furthermore, FFT is used to perform

the DFT, resulting in more computational savings.

As before, computational complexity is measured in terms of operations, where one op-

eration is defined as one real multiplication plus one real addition. The total computational

complexity of the proposed AEC system consists of three components: analysis/synthesis

filtering, adaptive filtering, and post-filtering in each subband.

Suppose that the decimation factor is M (M < K) and that the number of taps of all

subband filters is chosen equal to L/M , where L is the length of the full-band adaptive filter,

which is assumed to match the duration of the echo path. Then the operations per every

M input samples for the above three components are respectively 3K(L0/2 + 2 log2K),
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Algorithm 8 NLMS plus post-filtering in a subband

Initialization:

1: Wk(1) = 0, k = 1, 2, . . . , K, where

2: Wk(m) = [W
(1)
k (m),W

(2)
k (m), . . . ,W

(Lk)
k (m)]T

Recursion:

3: for m = 1, 2, . . . do

4: for k = 1, 2, . . . , K do

5: Xk(m) = [Xk(m), Xk(m− 1), . . . , Xk(m− Lk + 1)]T

6: Ŷk(m) =WH
k (m)Xk(m)

7: Ek(m) = Dk(m)− Ŷk(m)

8: Wk(m+ 1) =Wk(m) +
µ

XH
k (m)Xk(m) + ρ

E∗
k(m)Xk(m)

9: S
(k)
ed (m) = γS

(k)
ed (m− 1) + (1− γ)Ek(m)D∗

k(m)

10: S
(k)
ŷŷ (m) = γS

(k)
ŷŷ (m− 1) + (1− γ)|Ŷk(m)|2

11: V̂k(m) =
S

(k)
ed (m)Ek(m)

S
(k)
ee (m) + αS

(k)
ŷŷ (m)

12: end for

13: end for

4(K − 1)L/M and 6(K − 1). Therefore, the computational complexity of the proposed

algorithm (based on NLMS), in common units of operations per sample (OPS), is obtained:

3K(L0/2 + 2 log2K) + 4(K − 1)L/M + 6(K − 1)

M
. (6.26)

We note that the new algorithm achieves remarkable computational savings, if compared

to the full-band counterpart which usually needs 2L + O(Lp) OPS, where Lp denotes the

size of the DFTs, as required in the practical full-band realization of the post-filter (5.46).

Furthermore, the seamlessly integrated post-filter in a subband only requires the slightly

extra computational capacity of 6(K − 1)/M OPS, compared to the pure subband NLMS.
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6.3.3 Experiments

Three AEC algorithms, namely, the subband NLMS, and NLMS plus post-filter, both in

full-band and subband, were tested on a platform where a low-cost loudspeaker played in

a high volume so that the entire echo path presented certain nonlinearity.

In the implementation of the subband adaptive filtering algorithms, the number of filter

banks and the decimation factor were K = 16 and M = 12, respectively. The prototype

filter was obtained by using the DFT method to interpolate the QMF filter 16A [16], which

has L0 = 16 parameters, by a factor K/2 = 8. Hence, the length of the prototype filter

is 128. For simplicity, the adaptive filters in subband were set to the same length, i.e.,

L/M = 300/12 = 25, where L = 300 was the length of the adaptive filter in full-band. The

parameters of α and γ in Algorithm 8 were 5.0 and 0.8, respectively. The step-size µ was

set to 0.9 for all the algorithms.

Under the above conditions, the computational complexity of the proposed algorithm,

as shown in (6.26), can be calculated, resulting in about 200 OPS, that is: about 4%

more than the pure subband NLMS, but only about 1/3 the complexity of its full-band

counterpart (NLMS with post-filtering).

The results shown in Fig. 6.13 reveal that the proposed algorithm outperforms the pure

subband NLMS in terms of significant acoustic echo suppression, and especially when the

nonlinearity of the echo path cannot be neglected. Furthermore, the proposed algorithm

exhibits a level of echo attenuation that is comparable to its full-band counterpart. A little

distortion of the near-end speech is introduced by the use of the post-filtering technique,

both in the full-band and in the subband, when the double-talk occurs. However, the

distortion is not significant, as illustrated in Fig. 6.14, and thus it is almost imperceptible

for the far-end user when he/she is talking at the same time.

As it is shown, the proposed algorithm significantly reduces the computational complex-

ity, compared to its full-band counterpart. However, similarly to other subband adaptive

filtering algorithms, some processing delay is introduced by the proposed scheme, which is

16 ms in the above experimental implementation. We note that this amount of delay is

acceptable in most AEC applications.
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Fig. 6.13 Performance comparison of AEC system (based on NLMS): NLMS
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6.4 Conclusion

Filter banks with oversampling rates in the subbands are suitable for subband adaptive

filtering in AEC. In this chapter, the use of NLMS algorithms with uniform DFT filter banks

has been thoroughly studied. A practical method for prototype filter design is presented

that satisfies the following properties: (a) near-PR property with oversampling; (b) very

simple design procedure. Also, modifications are made to simplify the implementation of

the weighted overlap-add subband structure, where the NLMS or AP algorithm is employed

in the subband. Compared to the full-band AEC system, the subband system reduces

computational complexity by a factor of M2/K (where M is the decimation rate and K is

the number of filter bank channels).

The performance of the subband AEC system and its full-band counterpart is com-
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Fig. 6.14 Spectrograms: (a) output of combined subband system; (b) out-
put of combined full-band system; (c) original (clean) near-end speech (The
beauty of the view stunned the young boy).

pared. It is observed that in the nonlinear channels, the full-band adaptive filter has better

performance in terms of a lower MSE because of its better tracking capability.

A combined subband AEC system proposed in this chapter significantly attenuates

acoustic echo in the nonlinear channels. Furthermore, the proposed AEC system seamlessly
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integrates the post-filtering technique with the adaptive filtering technique in subband,

resulting in a much higher echo attenuation with only a small increase in computational

complexity compared to conventional AEC systems.

Similarly to other subband adaptive filtering algorithms, some processing delay is in-

troduced by the proposed scheme, which is 16 ms in our experimental implementation.

However, we note that this amount of delay is acceptable in most AEC applications.
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Chapter 7

Psychoacoustic approach in the AEC

system

Various post-filtering techniques used in AEC have been discussed in Chapter 5. A post-

filter combined with a conventional acoustic echo canceller can significantly suppress the

acoustic echo in nonlinear channels. However, Wiener-type post-filters introduce undesir-

able musical noise. In order to alleviate this problem, masking properties of the human

ear can be exploited in speech enhancement [133]. This psychoacoustic approach attempts

to minimize distortion by attenuating the audible components and smoothing the peaks of

the enhanced signal by spectral and temporal averaging. This chapter proposes a combined

AEC scheme that incorporates a robust post-filter to exploit the masking properties of the

human ear. The new AEC system has the following advantages: significant acoustic echo

suppression, no perceptual musical residual, and low perceptual distortion in nonlinear

channels.

7.1 The human auditory system

The human ear converts sound waves into nerve impulses, and these impulses are interpreted

by the brain as sound. The ear can perceive sounds in the range of 20 to 20,000 Hz. While

the human auditory system has many functions, this work only focuses on the masking

property of the ear as applicable to AEC.

The human ear consists of three parts: the outer ear, the middle ear, and the inner

ear, as illustrated in Figure 7.1. The outer ear channels sound waves through the ear canal
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to the eardrum. The eardrum is a thin membrane stretched across the inner end of the

canal. Air pressure changes in the ear canal cause the thin membrane to vibrate. These

vibrations are transmitted to three small bones called ossicles. The ossicles are located

in the air-filled middle ear and conduct the vibrations across the middle ear to another

thin membrane called the oval window. The oval window separates the middle ear from

the fluid-filled inner ear. The inner ear houses the cochlea, a spiral-shaped structure that

contains the Organ of Corti - the most important component of hearing. The Corti sits

in an extremely sensitive membrane called the basilar membrane. Whenever the basilar

membrane vibrates, small sensory hair cells inside the Corti are bent, which stimulates the

sending of nerve impulses to the brain.

Fig. 7.1 The structure of the peripheral auditory system [134].

The outer ear includes two parts: an external part called the pinna, and the ear canal

called the external auditory meatus [135]. The pinna funnels the sound, and by its asym-

metric shape makes the ear more receptive to sounds in front of the head than behind. The

external auditory meatus acts as a quarter wave resonator to boost the high frequencies
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of the sound it receives. The length of a male adult’s canal is approximately 2.5 cm, and

thus the first resonance is about 3440 Hz. A female or child’s ear canal would probably be

shorter than 2.5 cm, resulting in resonance at higher frequencies. This resonance amplifies

sounds in the 3-5 kHz range by up to 15 dB [136]. High frequency emphasis provided by

the outer ear is helpful for perception of sounds that have important information in the

frequency range above 2 kHz (e.g., fricatives).

The eardrum, called the tympanic membrane, marks the beginning of the middle ear

that contains three ossicles, namely: malleus, incus and stapes. These ossicles are connected

to one another, forming the ossicular chain. The eardrum is responsive to small pressure

variations across a wide range of frequencies. On the internal side of the eardrum is the

ossicular chain which bridges the space between the eardrum and the cochlea in the inner

ear. The major function of the middle ear is to efficiently transfer sound from the air to

the fluids in the cochlea. In other words, the middle ear acts as an impedance-matching

device, which is accomplished mainly by the difference in effective areas of the eardrum

and the oval window, as well as the level action of the ossicles [137].

The most important part of the ear is the cochlea located in the inner ear. It is a tube

filled with incompressible fluids and has bony rigid walls. The cochlea is divided along its

length by two membranes, namely, the Reissner’s membrane and the basilar membrane.

One end of the cochlea where the oval window is situated is called the base, while the other

end, called the apex, is the inner tip. A small opening called the helicotrema between the

basilar membrane and the walls of the cochlea at the apex ensures that the fluid can flow

between the two main chambers of the cochlea. Pressure variations applied by the stapes

rocking in the oval window are translated into pressure variations within the fluids of the

cochlea, resulting in displacements of the basilar membrane. On the basilar membrane lies

the Organ of Corti, which contains rows of sensory hair cells. When hairs at the top of the

hair cells are bent by the movement of the basilar membrane, nerve impulses are stimulated

in the nerve fibers, and then transmitted to the brain via the auditory nerves.

The behaviour of the basilar membrane is of primary interest to this work. The change

in stiffness from the base to the apex of the basilar membrane creates a mechanical sound

analyzer. As shown in Figure 7.2, high frequency sound causes the narrow base end of the

membrane to vibrate; medium frequencies cause the membrane in the middle cochlea to

vibrate; low frequencies cause the whole membrane to vibrate. The cochlea is able to map

frequencies onto certain locations on the basilar membrane. The sensation of pitch is a
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function of the vibration location on the basilar membrane.

Fig. 7.2 The diagram of the basilar membrane with maximum amplitude of
response to different frequencies in Hz. [135]

Each point on the basilar membrane can be regarded as a bandpass filter with a cer-

tain centre frequency and bandwidth. Experiments in hearing indicate that this band-

width is not constant across all the points, but increases in proportion with the centre fre-

quency [138]. The basilar membrane behaves like a Fourier analysis that breaks a complex

sound into its sinusoidal components when the frequency differences of these components

are large enough [137]. However, when the component frequencies are too close, the basilar

membrane is no longer able to distinguish them. The frequency separation necessary for

the resolution of two tones is proportional to the centre frequency.

7.2 Masking

Masking is a very important phenomenon where the perception of one sound, known as the

maskee, is obscured by the presence of another, known as the masker [50]. For example,

low volumes are sufficient for conversations in quiet environments, but not in noisy environ-

ments. This is because strong noises mask the sounds. Two types of masking effects have

been identified: simultaneous masking and temporal masking [134]. The former occurs

when two sounds are simultaneously present, while the latter occurs when a short interven-
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ing delay is introduced between the two sounds. Simultaneous masking is more prominent,

but temporal masking is also considered in sophisticated perceptual models [139].

7.2.1 Critical bands

Critical bands were originally introduced by Fletcher [140]. This concept explains the

masking of a narrow band (sinusoidal) signal by a wideband noise source. Based on the

basilar membrane behaviour (i.e., each location on the basilar membrane responds to a

limited range of frequencies), Fletcher suggested that the peripheral auditory system can

be considered as a bank of non-uniform bandpass filters. The human ear groups the received

sounds into bands of frequencies, and sounds within a critical band blur together.

A large number of experiments have all confirmed similar estimations for both the

absolute width of a critical band and the way the critical band varies as a function of

frequency [134]. Critical bandwidth approximately corresponds to 1.3 mm spacing along

the whole length of the 32 mm basilar membrane. 24 critical bands can model the basilar

membrane well, covering the audible frequency range to 16 kHz. To convert acoustic

frequency resolution to perceptual frequency resolution, the Bark scale (also called the

critical band rate) is introduced, where one Bark covers one critical bandwidth. Table 7.1

indicates the measured critical bandwidths and the corresponding critical band rates.

Since our research focuses on narrow-band speech signals, only critical bands up to

4 kHz are listed in Table 7.1. It can be shown that the critical bandwidth, denoted BW(f)

where f is the frequency, is approximated by the following expression:

BW(f) =

{
100 Hz, f < 500 Hz

0.2f Hz, f ≥ 500 Hz
(7.1)

Similarly, conversion between the Bark frequency scale and real frequencies can be

approximated using the analytical expression [134]

z = 13arctan(0.00076f) + 3.5arctan((f/7500)2), (7.2)

where z is frequency in Bark and f is frequency in Hertz.
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Table 7.1 Critical band rate, Centre frequencies and Bandwidths [134].

Critical band rate (Bark) Centre frequencies (Hz) Critical Bandwidths (Hz)

1 50 100
2 150 100
3 250 100
4 350 100
5 450 110
6 570 120
7 700 140
8 840 150
9 1000 160
10 1170 190
11 1370 210
12 1600 240
13 1850 280
14 2150 320
15 2500 380
16 2900 450
17 3400 550
18 4000 700

7.2.2 Masking effects

As explained earlier, masking effects consist of simultaneous masking and temporal mask-

ing. Classical experiments that measure masking have explored all combinations of maskers

and maskees (tone or noise), where the tone could be a pure tone or a complex tone, and

the noise could be broadband, narrowband or low/highpass.

Properties of simultaneous masking are summarized as follows:

• Lower frequencies tend to mask higher frequencies at high levels; this is called the

upward spread of masking [141]. This behaviour is reversed at low levels.

• A narrow band noise masker is more effective than a tonal masker, which can be

explained by the rate of intensity fluctuation [142].

• The tonal masker and the narrow band noise masker have different masking patterns:

for the tonal masker, the slope at lower frequencies becomes more steep with increas-



7 Psychoacoustic approach in the AEC system 149

ing masker level, whereas the narrow band noise masker has relatively invariant low

frequency slopes.

Temporal masking (also called nonsimultaneous masking) consists of postmasking and

premasking. Postmasking occurs when the maskee follows the masker, while premasking

occurs when the maskee precedes the masker. The prominence of nonsimultaneous masking

is affected by the following factors [137]:

• The delay between the masker and the maskee.

The shorter this delay is, the more amount of masking occurs. Furthermore, non-

simultaneous masking mostly occurs within about ±100 ms of the masker onset or

termination.

• The frequencies of the signals.

Similar to simultaneous masking, nonsimultaneous masking is also influenced by the

relation between the frequencies of the masker and the maskee.

• The duration of the masker.

The amount of masking increases with longer masker duration within the range 1 ∼
20 ms, but beyond this range it is approximately independent of the masker duration.

In addition, if the time interval between masker and maskee is very short, more postmasking

than premasking occurs. Moreover, increasing the masker intensity does not produce a

corresponding increase in the amount of nonsimultaneous masking; this is different from

the case of simultaneous masking.

7.2.3 Masking threshold

Below the masking threshold, the maskee would become inaudible in the presence of the

masker. Masking models of the human ear are used to calculate the masking threshold.

Some perceptual models, such as the Johnston model [143], only take simultaneous masking

into account since it is more prominent. More sophisticated perceptual models, such as the

PEAQ model [139], consider both simultaneous and nonsimultaneous masking.

In the context of speech coding, a more sophisticated model usually results in a better

performance in terms of perception. However, in the application of AEC, we prefer to

start with a simple model, i.e., the Johnston model, due to its easy implementation. Later,
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more perceptual models will be employed in AEC for comparison. Here, we describe the

calculation of the masking threshold based on the Johnston model as follows:

a) Frequency analysis in the Bark scale

Let v(n) be the masker signal. Its complex spectrum, denoted V (k;m), is obtained by

performing DFT analysis (FFT is used in practice) where k and m represent the indices in

the frequency domain and the time domain. Next, the energy spectrum, i.e., |V (k;m)|2,
is added up in each critical band, where the number of the frequency bins for each critical

band is determined by Table 7.1. Hence, the energy in each critical band is

Bi(m) =

k
(u)
i∑

k=k
(l)
i

|V (k;m)|2, (7.3)

where Bi(m) is the energy in critical band i, and k
(l)
i and k

(u)
i are the lower boundary and

the upper boundary of critical band i, respectively. The specific values of k
(l)
i and k

(u)
i

depend on the length of the DFT. A typical case can be found in [133].

b) Masking between different critical bands

In addition to signals being masked by other signals within the same critical band, the

effect of masking across critical bands also needs to be taken into account. This can be

performed by convolving the critical band energy with a spread function SFij, resulting in

the spread critical band spectrum

Ci(m) = SFij ∗Bi(m), (7.4)

where ∗ denotes the convolution operation. At intermediate speech levels, the lower skirt

of the spread function has a slope of of +25 dB per critical band, and the upper skirt has

a slope of -10 dB per critical band. The spread function can be analytically expressed

as [144]:

10 log10 SFij = 15.81 + 7.5(|i− j|+ 0.474)− 17.5
√
1 + (|i− j|+ 0.474)2, (7.5)

where i is the bark frequency of the masker, and j is the bark frequency of the maskee.

For wide-band audio, SFij is calculated for |i − j| ≤ 25, while for narrow-band speech,

|i− j| ≤ 18.
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c) Spread masking threshold

The masking effects of tone masking noise and noise masking tone are different. The

former is estimated to be (14.5+i) dB below the spread critical band spectrum Ci(m) [144],

while the latter is about 5.5 dB less than Ci(m) [142]. Other cases fall between these two

situations (i.e., neither entirely tonelike nor completely noiselike). To deal with all cases,

an offset for the masking energy in critical band i is introduced by Johnston [143]:

Oi(m)(dB) = α(14.5 + i) + (1− α)5.5, (7.6)

where α ∈ [0, 1] is a weight for different signals: α = 0 for noise masking a tone, and α = 1

for tone masking noise; other values of α indicate signals in between.

Since noise has a flat spectrum while tone has a peak-shaped spectrum, the Spectral

Flatness Measure (SFM) can be used to determine if the signal is noiselike or tonelike:

SFM(dB) = 10 log10

Gm

Am
, (7.7)

where Gm and Am denote the geometric mean and the arithmetic mean of the power

spectrum, respectively. Hence, the coefficient α can be defined as

α = min(
SFM

SFMmax

, 1), (7.8)

where SFMmax is set to -60 dB. The spread masking threshold in critical band i is obtained

by subtracting the offset from the spread critical band spectrum:

Ti(m) = 10log10(Ci(m))−Oi(m)/10. (7.9)

d) Renormalization

The spread masking threshold must be deconvolved back to the Bark domain. In prac-

tice, renormalization is used instead of deconvolution since the spread function increases

the energy estimates in each band due to spreading. The renormalized masking threshold

is obtained by multiplying each Ti(m) with the inverse of the energy gain, assuming that

each band has uniform energy.

Figure 7.3 illustrates the signal power of a speech segment and the corresponding thresh-
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old calculated using the Johnston model. The speech signal is quantized with 16 bits at an

8kHz sampling rate. The length of the FFT windows was 256 samples.
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Fig. 7.3 Example of masking threshold for a segment of speech.

The simple perceptual model described here provides the basis for more sophisticated

ear models such as the MPEG perceptual model [145] and the PEAQ model [139]. Both

models have also been studied in our research.

7.3 Exploiting masking properties with post-filtering

As discussed earlier, a weak signal is inaudible when it is masked by a strong signal. This

suggests that the near-end signal can be used to mask the nonlinear acoustic echo, as

long as the echo power spectral density (PSD) is lower than the masking threshold. In

other words, it is only necessary to suppress the part of the echo with a higher PSD until

it falls below the masking threshold. Therefore, the post-filter can multiply the input

signal spectrum by a set of variable gains, where the values of the gains are determined by

both the masking threshold and the PSD of the acoustic echo. Figure 7.4 illustrates the

psychoacoustic post-filter used in AEC.

Let Sδδ(k;m) denote the PSD of δ(n), which is the residual echo as defined in (5.3),

where k is the index of frequency bins, and m is the index of frames in the time domain.
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Fig. 7.4 Psychoacoustic post-filter in AEC.

Given the masking threshold T (k;m), the gain of the post-filter is

G(k;m) = min

(√
T (k;m)

Sδδ(k;m)
, 1

)
. (7.10)

The residual echo is then attenuated by passing the signal through the post-filter, resulting

in a echo-suppressed signal given by

Ep(k;m) = G(k;m)E(k;m), (7.11)

where E(k;m) is the DFT of e(n), the residual signal as shown in Figure 7.4. Finally,

Ep(k;m) is transferred back to the time domain and sent to the far-end user.

Ideally, the masking threshold is calculated from the near-end speech signal, but the

exact near-end speech ν(n) and the PSD of the residual echo δ(n) are unknown. However,

the information can be estimated from the available data. Here we propose to use the

estimated near-end speech for the computation of both the masking threshold and PSD of
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Fig. 7.5 Flow chart of psychoacoustic post-filter scheme.

the residual echo. Figure 7.5 shows the flow chart of the psychoacoustic post-filter scheme.

The important steps are explained as follows.

a) Estimation of the near-end speech

As explained earlier, the estimated near-end speech is obtained by passing the residual

signal through the optimal filter in (5.46), i.e.,

V̂ (k;m) = H(k;m)E(k;m). (7.12)

Since most perceptual models are established in the frequency domain, V̂ (k;m) does not

need to be transferred back to the time domain at this stage.
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b) Calculation of the masking threshold

The Johnston model [143] is chosen here to compute the masking threshold for its sim-

plicity, but more sophisticated auditory models can also be employed for this application

as well. The masking threshold T (k;m) is obtained with the input of V̂ (k;m).

c) Estimation of the PSD of the residual echo

Due to the echo path nonlinearities, estimating the PSD of the residual echo by con-

ventional means for linear systems [146] is inaccurate. However, the estimated near-end

speech signal can be used to find an approximation of the PSD Sδδ(k;m).

Using (5.13) and neglecting the background noise, See(k;m) is given by

See(k;m) = Sνν(k;m) + Sδδ(k;m). (7.13)

Replacing Sνν(k;m) by its estimation yields

Ŝδδ(k;m) = See(k;m)− Ŝνν(k;m). (7.14)

In fact, this procedure is the power spectral subtraction algorithm. Similar to (5.20), the

PSD of ν(n) is computed as

Ŝνν(k;m) = γŜνν(k;m− 1) + (1− γ)V̂ (k;m)V̂ ∗(k;m) (7.15)

d) Reduction of masking distortion

Since the residual signal e(n) contains significant amounts of nonlinear and linear acous-

tic echo, the echo should be aggressively attenuated by choosing a large attenuation factor

α in (5.46). On the other hand, the shape difference between Sŷŷ(k;m) and Sδδ(k;m)

caused by the vocoder nonlinearity may over-attenuate the near-end speech, resulting in

distortion.

The perceptual post-filter uses spectral and temporal averaging to smooth the residual

signal, which effectively reduces the saliency of musical noise. Unfortunately, this may also

impair the intelligibility of the near-end speech, because both the masking threshold and

the PSD of residual echo are computed based on the estimated “clean” near-end speech

which could be distorted by the optimal filter (5.46), as pointed out above, due to the

over-attenuation. In order to reduce this masking distortion, a psychoacoustic post-filter is
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proposed that stops attenuating the residual acoustic echo a few decibels above the masking

threshold. Consequently, the signal spectrum will be shaped to improve intelligibility. The

modified post-filtering gain is

G(k;m) = min

(√
10P/10T (k;m)

Sδδ(k;m)
, 1

)
, (7.16)

where P (in dB) is the relaxation factor that depends on the attenuation factor µ: a larger

µ results in a larger P . Experimental results show that P may be chosen between 0 and

10.

7.4 Results

To compare the performance of the proposed psychoacoustic post-filter with that of a

Wiener-type post-filter (5.46) and other psychoacoustic post-filters such as [146] in the

nonlinear channel, experiments were conducted based on the platform shown in Figure 7.4,

where G.729 was chosen to be the vocoder. The performance was evaluated in terms of

both objective and subjective criteria.

For the tests, two segments of real speech were used as the near-end speech and far-

end signal. The LEM system of the test platform was simulated to represent the inside

of a vehicle. The impulse response was about 40 ms long, corresponding to 300 taps at

a sampling rate of 8 kHz. The linear acoustic echo estimator used the modified adaptive

cross-spectral algorithm [27]. Other parameters were set as µ = 40 and P = 5 dB.

For a realistic scenario, three situations were considered, namely: far-end single-talk,

double-talk and near-end single talk. Fig. 7.6 displays the waveforms of the signals in these

situations. The near-end signal d(n) that consists of y(n) and v(n) is shown in Fig. 7.6(a).

We note that the real v(n) cannot be obtained in the double-talk situation when y(n) and

v(n) are mixed, due to the non-linearities of the vocoder. However, d(n) is a reasonable

approximation of v(n) when the acoustic echo is absent, which is plotted in Fig. 7.6(d).

The echo-suppressed signal ep(n), shown in Fig. 7.6(c), is the output of the proposed

AEC system. Because the estimation of the residual echo plays the key role in the per-

formance of the psychoacoustic post-filter, Sδδ(k;m) was also estimated by the approach

in [146] for comparison. This led to a different echo-suppressed signal erp(n), which is dis-
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Fig. 7.6 Waveforms of signals: (a) near-end signal d(n), (b) echo-suppressed
signal erp(n), (c) echo-suppressed signal ep(n), (d) approximate near-end speech
v(n).

played in Fig. 7.6(b). Comparing ep(n) and e
r
p(n) with the approximate ν(n) in Fig. 7.6,

one can find that, in the presence of vocoders, the proposed AEC has advantages in terms

of higher echo suppression and of less distortion to the near-end speech during the DT

period. Moreover, we note that the psychoacoustic post-filter has very similar performance

in terms of ERLE, compared to the Wiener-type post-filter.

Furthermore, informal listening tests were also conducted. The Wiener-type post-filter

produced strong musical noise, although it remarkably suppressed the residual echo. On

the contrary, the musical noise produced by the proposed psychoacoustic post-filter was

almost imperceptible. A listening comparison between ep(n) and e
r
p(n) was also done. It
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was found that ep(n) has better quality in terms of less residual echo, less musical noise

and less distortion to the near-end speech during the DT period.

We note that the proposed AEC still brought somewhat perceptual distortion to the

near-end speech, although it did not affect the intelligibility. This distortion can also be

observed in the spectrograms shown in Fig. 7.7. However, in the practical scenario, this

may not be a critical issue since the far-end user is not sensitive to the speech quality of

the near-end user when he/she is speaking.
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Fig. 7.7 Spectrograms of signals during the double-talk period: (a) original
near-end speech, (b) echo-suppressed signal.

In this chapter, only the results with the Johnston perceptual model have been shown.

However, some sophisticated perceptual models, e.g., PEAQ, which consider the temporal

masking as well as the spectral masking, were also tested in our research. We note that

no obvious improvement has been observed for the advanced models in this application.

Therefore, the Johnston model is more suitable for the AEC since it has a simpler structure

and lower computational complexity than those sophisticated models.
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7.5 Conclusion

Based on the masking effect of the human auditory system, a new AEC system has been

presented that combines a psychoacoustic post-filter with a conventional echo estimator

for echo suppression over nonlinear channels, where codecs are cascaded along the echo

path. Compared to the post-filters discussed in Chapter 5, the psychoacoustic post-filter

significantly mitigates musical noise while achieving a similar amount of echo suppression.

Simulation results and informal listening tests show that the proposed AEC achieves sig-

nificant echo attenuation with little distortion to the near-end speech.



160

Chapter 8

Conclusion

This thesis studied the performance of AEC systems over nonlinear channels, where the

channel nonlinearities are contributed by vocoders and loudspeakers. While this work

mostly focused on the vocoder nonlinearities, the loudspeaker nonlinearities were also ex-

amined. This chapter provides a summary of the research done and gives directions for

future work.

8.1 Summary of research contributions

This thesis first investigated the effects of vocoder nonlinearities on the performance of AEC

systems. The AEC systems under study consisted of a full-band transversal finite impulse

response (FIR) filter structure with their coefficients adjusted by means of several popular

algorithms. Two common coding schemes were considered as part of the communication

channel, namely CS-ACELP (G.729) and GSM. Simulations verified that these codecs

produced similar nonlinear effects on AEC. Furthermore, it was found that the codec

nonlinearities significantly reduce the achievable ERLE by 10 to 20 dB. However, closer

investigation revealed that an adaptive echo canceller can achieve higher ERLE than a

fixed echo canceller that has an impulse response identical to the LEM system’s impulse

response. Further simulation and analysis indicated that the codec nonlinearities caused

the adaptive filter to drift away from the true echo path of the LEM. This may cause the

echo residual to be larger than the original echo when the adaptation of the acoustic echo

canceller is frozen, which is the case during DT in traditional AEC systems. In order to

avoid this situation during DT in nonlinear channels, the AEC should be stopped (i.e., no
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cancellation) instead of simply freezing the adaptation of the AEC coefficients.

The adaptive filter behaviour led to the adoption of a local linearized model for analyzing

the nonlinear echo path. Using this model, the AEC performance was linked to the tracking

capabilities of the employed adaptive filtering algorithms: the faster an algorithm can track

changes in the system response, the lower MSE it achieves. Comparative evaluation of

some popular adaptive filtering algorithms showed that the AP algorithm (in its full-band

version) achieves the lowest MSE in the presence of codecs. Furthermore, a projection

order of two or three is sufficient for AP (in fact, no improvement was observed with higher

orders). To further reduce the computational cost, the FAP algorithm can be used.

A saturation phenomenon was observed with the behaviour of ERLE versus the adaptive

filter length. With codecs present, the largest gain in ERLE occurred at about 60% of the

filter length. Therefore, there is no need to use a long adaptive filter in nonlinear channels.

This is consistent with the theoretical analysis which showed that longer adaptive filters

have worse tracking capabilities.

DT presents a more serious problem in nonlinear channels than in linear ones, hence it

is important to find a solution for echo suppression during double-talk periods in nonlinear

channels. For this purpose, the adaptive cross-spectral technique was investigated since

it can exploit the correlation between the far-end signal and the acoustic echo, and it is

robust to strong disturbances in the local region. Using this technique, a new variable

step-size adaptive cross-spectral algorithm (VSS-ACS) was derived that employs a finite

state machine to control the step-size. Simulation results showed that the new algorithm

can suppress echo during DT without the need for a DT detector. However, similar to

other adaptive filtering algorithms, this algorithm’s effectiveness is degraded by the channel

nonlinearities so that the echo suppression is insufficient.

In order to sufficiently suppress acoustic echo in nonlinear channels, post-filtering tech-

niques were extensively studied in this research. Combined with VSS-ACS or conventional

adaptive filters, post-filters can further reduce the residual echo by using the following

approaches.

The Wiener-type post-filter: based on the MMSE criteria, we derived a Wiener-type

post-filter with the aim of minimizing the near-end speech distortion while suppressing

the processed residual echo to a predefined level. Experiments showed that the proposed

post-filter remarkably compensated the insufficient echo attenuation of the adaptive filters

caused by channel nonlinearities.
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The spectral subtraction method: apart from speech enhancement, we explored the

spectral subtraction method, which is based on the ML criteria, in the application of

AEC. The performance of this method was analyzed in the viewpoint of post-filtering, and

evaluated experimentally.

The subspace approach: we introduced the subspace method in the context of AEC,

where the microphone signal is decomposed into an echo subspace and a near-end sig-

nal plus echo (mixed) subspace. The acoustic echo is suppressed by eliminating the echo

subspace and attenuating the non-signal components in the mixed subspace. The corre-

sponding structure and algorithm was proposed and tested. Significant echo attenuation

was achieved.

The pitch extraction method: based on an auditory property, i.e., people are more

sensitive to voiced speech than to unvoiced speech, we proposed a new post-filter. This post-

filter exploits the speech analysis technique, namely pitch extraction from the residual echo,

to further suppress the residual echo produced by the linear adaptive filter. Experiments

showed that the residual acoustic echo was remarkably suppressed, especially during DT.

Among these post-filters, the Wiener-type filter and the spectral subtraction are easy

to implement, while the subspace approach and the pitch extraction method need more

computational capacity. The Wiener-type filter and the subspace method achieve more

echo attenuation and bring in less distortion of the near-end speech.

This thesis also investigated using subband adaptive filters to reduce computational

complexity. An improved design of the uniform DFT filter bank was proposed. In nonlinear

channels, the performance of subband algorithms is not as good as full-band ones since

subband algorithms have lesser tracking capabilities. To overcome this drawback, a Wiener-

type post-filter was seamlessly integrated into the filter bank. Experimental results showed

that this combination not only significantly suppresses the acoustic echo resulting from the

channel nonlinearities, but it also greatly reduces computational complexity.

Finally, a psychoacoustic approach was explored to mitigate musical noise resulting

from post-filtering. It was found that the psychoacoustic post-filter only needs to suppress

the echo signal component that is at a higher level than the masking threshold, since

any echo component below the masking threshold cannot be perceived by human ear. This

approach was shown to significantly reduce near-end speech distortion while achieving good

echo suppression.
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8.2 Future research directions

This section presents future research directions on acoustic echo cancellation over nonlinear

channels. The main issues to be considered include reducing computational complexity, im-

proving acoustic echo attenuation, and reducing near-end speech distortion. Also, attention

should be placed on studying new types of channel nonlinearities.

One interesting possibility is to investigate how the side information of vocoders may be

used to improve the acoustic echo control system. New mechanisms could be developed to

increase ERLE and reduce the computational complexity of echo cancellation algorithms.

Specific issues to be investigated in the future include the following:

• In the present AEC setup, decorrelation is used to increase the convergence rate of

adaptive filters. Instead of trying to decorrelate the reconstructed signal at the output

of the codec, it might be better to use the vocal tract excitation signal generated

internally by the decoding algorithm (e.g., from the codebook) as the input to an

NLMS adaptive filter.

• The vocal tract shaping filter, which uses parameters available from the codec, could

be exploited in AEC. One possible approach is to use a secondary (or modified) error

signal for adapting the transversal filter coefficients. This secondary error signal could

be obtained by subtracting the adaptive filter output from a filtered version of the

microphone signal. The filtering applied to the microphone signal could be derived

from (and matched to) the vocal tract shaping of the loudspeaker signal. This way,

any unwanted signal components originating from the local site (e.g, local noise or

near-end talker) could be removed. This approach is motivated by the fact that the

acoustic echo signal picked up by the microphone preserves many of the spectral and

temporal attributes of the original loudspeaker signal.

• The use of psychoacoustic perceptual models in AEC brings in two issues, namely:

significantly increased computational complexity and difficulty in effectively evalu-

ating the performance. There are two possible ways to reduce this complexity: one

approach is to develop a subband ear model suitable for AEC (an approximate model

may be acceptable); another approach is to find a simple way to design a non-uniform

(Bark scale) subband structure with low computational complexity, so the perceptual

post-filter can be integrated with the adaptive filter in the subband. For the second
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issue, the method of perceptual evaluation of speech quality (PESQ) [147] may be

investigated for the use of the AEC testing.

• Blind separation (ICA) techniques may be explored to separate acoustic echo and

near-end speech, so that only the near-end speech is sent out. Some results of this

approach have been presented for linear echo paths. However, reducing ICA’s high

computational complexity and adapting it for nonlinear channels remain challenging.

Moreover, applications of internet communications such as voice over IP from a personal

computer are rapidly growing. For these applications, research on low-cost real-time imple-

mentations for general-purpose CPUs is very important. Today’s PCs have processors that

are powerful enough to handle a complete AEC system. In this case, various sources of non-

linearities need to be considered, such as loudspeakers, microphones, non-ideal A/D and

D/A converters, audio amplifiers, and speech codecs. Furthermore, nonlinearities resulting

from packet loss in voice over IP could be investigated.

In order to simplify the design and implementation of hands-free user terminals, more

and more AEC devices are being implemented in a base station or a central station. To

improve efficiency, however, signals will no longer be decoded in the base or central sta-

tions in the near future. Only bit-streams will be available to AEC devices. Exploiting

information from these bit-streams will pose a new challenge for AEC.
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Appendix A

Simplified structure of adaptive filter

in subband

Intuitively, (6.19) and (6.24) in Chapter 6 may be removed so that the structure of the

adaptive filter in subband can be simplified, resulting in reduced computational complexity.

Here, rigorous proofs are given in the case of the NLMS algorithm and the AP algorithm,

respectively. Two sets of symbols are used to be consistent with Chapter 6. Namely,

symbols with “∼” represent the signals without the multiplications in (6.19) and (6.24);

while symbols without “∼” represent the signals after the operations of (6.19) and (6.24).

A.1 NLMS in the DFT subband

Recap NLMS shown in Algorithm 1 in Chapter 2 as the more general expression (complex

value) in the filter bank k:

ek(m) = dk(m)−wH
k (m)uk(m) (A.1)

wk(m+ 1) = wk(m) +
µ

uH
k (m)uk(m) + δ

e∗k(m)uk(m) (A.2)

where the superscripts H and ∗ denote the Hermitian transpose and complex conjugate,

respectively. In order to distinguish the input signal of the adaptive filter from the signal
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in the time domain, uk(m) is used to denote the vector of the input signal, defined by

uk(m) = [Xk(m), Xk(m− 1) · · · , Xk(m− L+ 1)]T (A.3)

where the superscript T indicates the transpose, and L denotes the length of the adaptive

filter in subband.

Referring to (6.19), the vector of input signal uk(m) can be written as

uk(m) =
[
W−kmM

K X̃k(m),W
−k(m−1)M
K X̃k(m− 1), · · · ,W−k(m−L+1)M

K X̃k(m− L+ 1)
]T

= W−kmM
K Λkũk(m) (A.4)

where

ũk(m) = [x̃k(m), x̃k(m− 1) · · · , x̃k(m− L+ 1)]T (A.5)

Λk = diag
[
1,W kM

K , · · · ,W k(L−1)M
K

]
(A.6)

Similarly, the desired signal dk(m) can be expressed as

dk(m) = W−kmM
k d̃k(m) (A.7)

Referring to (6.24), we also have

ẽk(m) = W kmM
k ek(m) (A.8)

Then (A.1) becomes

W−kmM
K ẽk(m) =W−kmM

k d̃k(m)−wH(m)W−kmM
K Λkũk(m) (A.9)

or

ẽk(m) = d̃k(m)− (ΛH
k w)

Hũk(m) (A.10)



A Simplified structure of adaptive filter in subband 167

It is easy to derive from (A.4) that

uH
k (m)uk(m) =

[
W−kmM

K Λkũk(m)
]H [

W−kmM
K Λkũk(m)

]
= ✘✘✘✘W kmM

K ũH
k (m)✚

✚ΛH
k ✚✚Λk✘✘✘✘✘W−kmM

k ũk(m)

= ũH
k (m)ũk(m) (A.11)

where we have used the fact that ΛH
k = Λ−1

k , then (A.2) becomes

wk(m+ 1) = wk(m) +
µ

ũH
k (m)ũk(m) + δ

ẽ∗k(m)Λkũk(m) (A.12)

or

ΛH
k wk(m+ 1) = ΛH

k wk(m) +
µ

ũH
k (m)ũk(m) + δ

ẽ∗k(m)ũk(m) (A.13)

Replacing ΛH
k wk(m) by w̃k(m), (A.10) and (A.13) are written as

ẽk(m) = d̃k(m)− w̃H
k (m)ũk(m) (A.14)

w̃k(m+ 1) = w̃k(m) +
µ

ũH
k (m)ũk(m) + δ

ẽ∗k(m)ũk(m) (A.15)

Obviously, (A.14) and (A.15) are equivalent to (A.1) and (A.2), respectively. In other

words, if uk(m) is replaced by ũk(m) and dk(m) is replaced by d̃k(m), the output ek(m)

should be substituted by ẽk(m). Therefore, (6.19) and (6.24) can be discarded when the

NLMS algorithm is implemented in the uniform DFT subband.

A.2 AP in the DFT subband

The original AP algorithm needs to be modified when it is used in subband because of

the complex signals. Referring to Algorithm 3 in Chapter 2, the complex version of AP is

expressed as [148]:

ek(m) = dk(m)−Uk(m)w∗
k(m) (A.16)

wk(m+ 1) = wk(m) + µU+
k (m)e∗k(m) (A.17)
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where Uk(m), as defined in Chapter 2, is the excitation signal matrix consisting of input

signal vectors, and U+
k (m) is the conjugate of the pseudo-inverse of Uk(m) [39], defined as

U+
k (m) =

{
UH

k (m)
[
Uk(m)UH

k (m)
]−1

}∗
(A.18)

Using (A.4), we have

Uk(m) =




uT
k (m)

uT
k (m− 1)

...

uT
k (m− p+ 1)


 =




W−kmM
K ũT

k (m)Λk

W
−k(m−1)M
K ũT

k (m− 1)Λk

...

W
−k(m−p+1)M
K ũT

k (m− p+ 1)Λk




= W−kmM
K ΨkŨk(m)Λk (A.19)

where p is the projection order; Ũk(m) and Ψk are respectively defined as

Ũk(m) = [ũk(m), ũk(m− 1), · · · , ũk(m− p+ 1)]T (A.20)

Ψk = diag
[
1,W kM

K , · · · ,W k(p−1)M
K

]
(A.21)

By the similar procedure, the vectors dk(m) and ẽk(m) are obtained from (6.19) and (6.24),

respectively

dk(m) = W−kmM
K Ψkd̃k(m) (A.22)

ẽk(m) = W kmM
K Ψ∗

kek(m) (A.23)

where, d̃k(m) and ẽk(m) are the vectors of the desired signal and the error signal, respec-

tively defined as

d̃k(m) = [d̃k(m), d̃k(m− 1) · · · , d̃k(m− L+ 1)]T (A.24)

ẽk(m) = [ẽk(m), ẽk(m− 1) · · · , ẽk(m− L+ 1)]T (A.25)

Note that ΨH
k = Ψ∗

k = Ψ−1
k , and replace Uk(m), dk(m) and ek(m) by (A.20), (A.22)

and (A.23), then (A.16) can be written as

ẽk(m) = d̃k(m)− Ũk(m)Λkw
∗
k(m) (A.26)
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From (A.19), one can derive that

U+
k (m) =

{
UH

k (m)
[
Uk(m)UH

k (m) + δI
]−1

}∗

=

{[
W kmM

K ΛH
k Ũ

H
k (m)ΨH

k

] [
✘✘✘✘✘W−kmM

K ΨkŨk(m)✚✚Λk✘✘✘✘W kmM
K ✚

✚ΛH
k Ũ

H
k (m)ΨH

k + δI
]−1

}∗

=

{
W kmM

K ΛH
k Ũ

H
k (m)✚

✚✚ΨH
k ✚✚Ψk

[
Ũk(m)ŨH

k (m) + δI
]−1

Ψ−1
k

}∗

= W−kmM
K ΛkŨ

+
k (m)Ψk (A.27)

where we have used the facts that ΛH
k = Λ−1

k and ΨH
k = Ψ−1

k , and a small positive δ is

added to the diagonal elements in case of the inverse of an ill-conditioned matrix.

Hence, (A.17) becomes

ΛH
k wk(m+ 1) = ΛH

k wk(m) + µŨ+
k (m)ẽ∗k(m) (A.28)

Similar to the procedure in A.1, substitute w̃k(m) for ΛH
k wk(m), (A.26) and (A.28) can

be written as

ẽk(m) = d̃k(m)− Ũk(m)w̃∗
k(m) (A.29)

w̃k(m+ 1) = w̃k(m) + µŨ+
k (m)ẽ∗k(m) (A.30)

Comparing (A.29) and (A.30) with (A.16) and (A.17), one can find that when uk(m)

and ũk(m) are respectively replaced by dk(m) and d̃k(m), the output ek(m) should be

substituted by ẽk(m). Therefore, (6.19) and (6.24) can be discarded when the AP algorithm

is implemented in the uniform DFT subband.
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