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Abstract

Single-channel speech enhancement algorithms are used to remove background noise in

speech. They are present in many common devices such as cell phones and hearing aids. In

the Bayesian short-time spectral amplitude (STSA) approach for speech enhancement, an

estimate of the clean speech STSA is derived by minimizing the statistical expectation of

a chosen cost function. Examples of such estimators are the minimum mean square error

(MMSE) STSA, the β-order MMSE STSA (β-SA), which includes a power law parameter,

and the weighted Euclidian (WE), which includes a weighting parameter.

This thesis analyzes single-channel Bayesian STSA estimators for speech enhancement

with the aim of, firstly, gaining a better understanding of their properties and, secondly,

proposing new cost functions and statistical models to improve their performance. In

addition to a novel analysis of the β-SA estimator for parameter β ≤ 0, three new families

of estimators are developed in this thesis: the Weighted β-SA (Wβ-SA), the Generalized

Weighted family of STSA estimators (GWSA) and a family of multi-dimensional Bayesian

STSA estimators.

The Wβ-SA combines the power law of the β-SA and the weighting factor of the WE.

Its parameters are chosen based on the characteristics of the human auditory system which

is found to have the advantage of improving the noise reduction at high frequencies while

limiting the speech distortions at low frequencies. An analytical generalization of a cost

function structure found in many existing Bayesian STSA estimators is proposed through

the GWSA family of estimators. This allows a unification of Bayesian STSA estimators and,

moreover, provides a better understanding of this general class of estimators. Finally, we

propose a multi-dimensional family of estimators that accounts for the correlated frequency

components in a digitized speech signal. In fact, the spectral components of the clean

speech are traditionally assumed uncorrelated in Bayesian STSA estimators, however, this

assumption is inexact since some correlation is present in practice. Objective and subjective

experiments are performed in different noise environments and at several signal-to-noise

ratios (SNR). Results show the superiority of the proposed estimators over benchmark

estimators.
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Sommaire

Les algorithmes de rehaussement de la parole à voie unique sont utilisés afin de réduire le

bruit de fond d’un signal de parole bruité. Ils sont présents dans plusieurs appareils tels que

les téléphones sans fil et les prothèses auditives. Dans l’approche bayésienne d’estimation de

l’amplitude spectrale locale (Short-Time Spectral Amplitude - STSA) pour le rehaussement

de la parole, un estimé de la STSA non bruitée est déterminé en minimisant l’espérance

statistique d’une fonction de coût. Ce type d’estimateurs incluent le MMSE STSA, le β-SA,

qui intègre un exposant comme paramètre de la fonction de coût, et le WE, qui possède un

paramètre de pondération.

Cette thèse étudie les estimateurs bayésiens du STSA avec pour objectifs d’approfondir

la compréhension de leurs propriétés et de proposer de nouvelles fonctions de coût ainsi

que de nouveaux modèles statistiques afin d’améliorer leurs performances. En plus d’une

étude approfondie de l’estimateur β-SA pour les valeurs de β ≤ 0, trois nouvelles familles

d’estimateur sont dévelopées dans cette thèse: le β-SA pondéré (Weighted β-SA - Wβ-

SA), une famille d’estimateur du STSA généralisé et pondéré (Generalized Weighted STSA

- GWSA) ainsi qu’une famille d’estimateur du STSA multi-dimensionnel.

Le Wβ-SA combine l’exposant présent dans le β-SA et le paramètre de pondération du

WE. Ses paramètres sont choisis en considérant certaines caractéristiques du système auditif

humain ce qui a pour avantage d’améliorer la réduction du bruit de fond à hautes fréquences

tout en limitant les distorsions de la parole à basses fréquences. Une généralisation de la

structure commune des fonctions de coût de plusieurs estimateurs bayésiens du STSA est

proposée à l’aide de la famille d’estimateur GWSA. Cette dernière permet une unification

des estimateurs bayésiens du STSA et apporte une meilleure compréhension de cette classe

générale d’estimateur. Finalement, une nouvelle famille d’estimateurs multi-dimensionnels

qui permet de considérer les corrélations présentes entre les composantes fréquentielles

d’un signal numérisé de parole est proposée. En effet, les composantes spectrales du

signal de parole non-bruité sont traditionnellement assumées comme étant non-correlées

dans l’approche d’estimation bayésienne du STSA, toutefois, cette hypothèse est inexacte

puisqu’il existe dans les faits une corrélation entre les différentes composantes spectrales

d’un signal numérique de parole. Des expériences de type subjectif et objectif sont ef-

fectuées pour plusieurs rapports signal-sur-bruit ainsi que différents types de bruit. Les

résultats démontrent la supériorité des estimateurs proposés par rapport à ceux comparés.
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iv

Contents

1 Introduction 1

1.1 Overview of Bayesian estimators in single-channel speech enhancement . . 2

1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Human speech communication 14

2.1 Human speech production system . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Human auditory system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 The peripheral auditory system . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Relevant properties of the auditory system . . . . . . . . . . . . . . 20

2.3 Contamination in speech signals . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Overview of the Bayesian approach for speech enhancement 28

3.1 The single-channel speech enhancement problem . . . . . . . . . . . . . . . 29

3.1.1 Additive noise model . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Frequency domain single-channel speech enhancement . . . . . . . . 30

3.2 Bayesian estimation framework . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Bayesian estimators of the STFT . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Bayesian estimators of the STSA . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 MMSE STSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 MMSE log-STSA (LSA) . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 β-order STSA MMSE (β-SA) . . . . . . . . . . . . . . . . . . . . . 44

3.4.4 Weighted euclidian (WE) . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.5 COSH and weighted COSH (WCOSH) . . . . . . . . . . . . . . . . 48



Contents v

3.4.6 Summary of Bayesian STSA estimators . . . . . . . . . . . . . . . . 50

3.5 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 A priori SNR estimation . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.2 A posteriori SNR and noise variance estimation . . . . . . . . . . . 53

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Further analysis and extension of the β-SA estimator 57

4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 The case β < 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 A normalization interpretation . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Analysis of the β-SA estimator with β < 0 . . . . . . . . . . . . . . 61

4.3 The limiting case β → 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Weighted β-SA estimator with auditory-based parameter values 69

5.1 Problem formulation and motivation . . . . . . . . . . . . . . . . . . . . . 70

5.2 The Wβ-SA family of estimator . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Derivation of the Wβ-SA estimator . . . . . . . . . . . . . . . . . . 72

5.2.2 Analysis of the Wβ-SA estimator . . . . . . . . . . . . . . . . . . . 73

5.3 Choosing the β and α values based on auditory considerations . . . . . . . 75

5.3.1 Choosing appropriate β values . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 Choosing appropriate α values . . . . . . . . . . . . . . . . . . . . . 79

5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Analytical generalization of Bayesian STSA estimators 84

6.1 Similarities between Bayesian STSA estimators . . . . . . . . . . . . . . . 85

6.2 GWSA family of estimators . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.1 A generalized cost function . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.2 Derivation of the GWSA family of estimators . . . . . . . . . . . . 88

6.3 Study of the GWSA family of estimators . . . . . . . . . . . . . . . . . . . 91

6.3.1 Gain versus instantaneous SNR . . . . . . . . . . . . . . . . . . . . 91

6.3.2 High instantaneous SNR gain . . . . . . . . . . . . . . . . . . . . . 93

6.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



Contents vi

7 Multi-dimensional estimators allowing correlated frequency components 96

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Correlation between the frequency components . . . . . . . . . . . . . . . . 99

7.3 Family of multi-dimensional STSA estimators allowing correlated frequency

components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3.1 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3.2 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3.3 Proposed family of estimators . . . . . . . . . . . . . . . . . . . . . 108

7.4 Other considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4.1 Upper and lower bound proximity analysis . . . . . . . . . . . . . . 108

7.4.2 Estimating RX and RW . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 Experimental results 114

8.1 Creating the noisy speech . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.2 Overview of subjective and objective performance measures . . . . . . . . . 116

8.2.1 Subjective measures . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.2.2 Objective measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.3 Evaluation of the extended β-SA estimator . . . . . . . . . . . . . . . . . . 122

8.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.4 Evaluation of the Wβ-SA with auditory-based parameter values . . . . . . 125

8.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.4.2 Objective results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.4.3 Subjective results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.5 Evaluation of the multi-dimensional estimators for correlated frequency com-

ponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.5.2 Informal listening experiments . . . . . . . . . . . . . . . . . . . . . 136

8.5.3 Objective results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



Contents vii

9 Conclusion 143

9.1 Summary of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.3 Final remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A Additional derivations for the multi-dimensional estimator 150

B Harvard sentences used in experiments 155

References 158



viii

List of Figures

2.1 The human speech production system. . . . . . . . . . . . . . . . . . . . . 15

2.2 Time and frequency domain representations of voiced and unvoiced speech. 16

2.3 The structure of the peripheral auditory system. . . . . . . . . . . . . . . . 18

2.4 Structural and anatomical features of the cochlea and basilar membrane. . 19

2.5 Simultaneous masking thresholds. . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Displacement of basilar membrane versus sound pressure level for character-

istic frequency tones recorded at basal cochlear sites. . . . . . . . . . . . . 23

3.1 Additive noise model in single-channel speech enhancement. . . . . . . . . 30

3.2 STFT framework for single-channel speech enhancement. . . . . . . . . . . 32

3.3 Differences in length between STSA and STFT coefficients. . . . . . . . . . 41

3.4 β-SA estimator gain (20log Gk) versus instantaneous SNR, γk−1, for several

β values (ξk = 0 dB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 WE estimator gain (20log Gk) versus instantaneous SNR, γk − 1, for several

p values (ξk = 0 dB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 WCOSH estimator gain (20log Gk) versus instantaneous SNR, γk − 1, for

several q values (ξk = 0 dB). . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 β-SA estimator gain (20log Gk) versus instantaneous SNR, γk−1, for several

values of β < 0 (a) ξk = 0 dB and (b) ξk = 10 dB. . . . . . . . . . . . . . . 62

4.2 Speech distortion η̂SD(Gk) and noise reduction η̂NR(Gk) vs. frequency. . . . 63

5.1 Wβ-SA estimator gain (20 log(Gk)) versus instantaneous SNR, γk −1, for ξk

= 0 dB and (a) α = 0.5 and β ∈ {−1,→ 0, 1/3, 1} (b) α ∈ {0, 0.5, 0.9} and

β = 1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



List of Figures ix

5.2 Wβ-SA estimator gain (20 log(Gk)) versus instantaneous SNR, γk −1, for ξk

= 10 dB and (a) α = 0.5 and β ∈ {−1,→ 0, 1/3, 1} (b) α ∈ {0, 0.5, 0.9} and

β = 1/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Values of βk and β = 1/3 versus frequency. . . . . . . . . . . . . . . . . . . 79

5.4 Values of αk versus frequency. . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 GWSA estimator gain (20 log(Gk)) versus instantaneous SNR, γk − 1, with

ξk = 0 dB for: (a) β = 1 and several α and η values; (b) α = 0 and several

β and η values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 GWSA estimator gain (20 log(Gk)) versus instantaneous SNR, γk − 1, with

ξk = 10 dB for: (a) β = 1 and several α and η values; (b) α = 0 and several

β and η values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.1 Mean sample autocorrelation function |r̄(l)|/|r̄(0)| versus the physical fre-

quency shift fsh = lFs/N in Hz for the vowel part of the male spoken word

“hood”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.1 Average noise spectrum magnitudes versus frequency for white, pink and

cockpit noises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.2 MUSHRA user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.3 Wideband PESQ improvement over noisy signal versus SNR for (a) white

noise, (b) pink noise and (c) aircraft cockpit noise. . . . . . . . . . . . . . . 130

8.4 Comparative subjective results for white, pink and cockpit noises (0 dB). . 132

8.5 LLR values versus SNR for (a) white noise (b) pink noise (c) aircraft cockpit

noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



x

List of Tables

3.1 Cost functions with corresponding gains Gk for several existing Bayesian

STSA estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1 GWSA parameter values (β, α and η) corresponding to several existing

Bayesian STSA estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.1 MOS scale for speech distortion, background noise and overall appreciation. 118

8.2 Estimated correlation coefficient of SNRseg, LLR and PESQ objective mea-

sures with overall quality, signal distortion, and background noise. . . . . . 122

8.3 PESQ results for MMSE STSA, LSA and β-SA (β = −1) estimators for

white, pink and cockpit noises at several SNRs (0 dB, 5 dB and 10 dB). . . 124

8.4 Informal MOS results for MMSE STSA, LSA and β-SA (β = −1) estimators. 124

8.5 SNRseg for several β and α values (white noise, 0 dB). . . . . . . . . . . . . 127

8.6 SNRseg for several β and α values (pink noise, 0 dB). . . . . . . . . . . . . 128

8.7 SNRseg for several β and α values (cockpit noise, 0 dB). . . . . . . . . . . . 128

8.8 LLR for several β and α values (white noise, 0 dB). . . . . . . . . . . . . . 129

8.9 LLR for several β and α values (pink noise, 0 dB). . . . . . . . . . . . . . . 129

8.10 LLR for several β and α values (cockpit noise, 0 dB). . . . . . . . . . . . . 129

8.11 Wideband PESQ results for white, pink and cockpit noises at several SNRs

(10, 15 and 20 dB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



xi

List of Acronyms

ACR Absolute Category Ratings

AMR Adaptive Multi-Rate

β-SA β Spectral Amplitude (β-order STSA MMSE estimator)

dB decibel

dB SPL dB Sound Pressure Level

DCR Degradation Category Ratings

DFT Discrete Fourier Transform

DTFT Discrete-Time Fourier Transform

EVRC Enhanced Variable Rate Codec

GWSA Generalized Weighted family of STSA estimators

IDFT Inverse Discrete Fourier Transform

i.i.d. independent and identically distributed

ITU International Telecommunication Union

KLT Karhunen-Loève Transform
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Chapter 1

Introduction

Speech is one of the predominant means by which humans communicate. The speech

signal is generated by the speech production system of a speaker, is transmitted through a

certain medium, which can be fiber optic cables, copper wires or simply the air, to finally

reach the auditory system of a listener. During this transmission, the speech signal can

be corrupted by different types of noises. One of those, additive noise, occurs when an

undesired background sound adds itself to the desired speech.

In many common applications it is desirable to suppress such background additive noise.

In fact doing so may improve the speech quality, reduce the increased fatigue of the listener

caused by the noise or improve the performance of subsequent processing such as that of

an automatic speech recognition system or a speech coder. That process of removing a

certain amount of background noise in a speech signal is referred to as speech enhancement

or more generally as noise reduction.1 Due to the complex nature of the speech signal, it

has been a challenging problem for the past several decades [1–6].

1While the term speech enhancement can also be used to designate other aspects such as bandwidth
extension of narrow band speech or dereverberation, we will use it here to designate additive background
noise reduction.
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Below we give a brief overview of the speech enhancement problem and of the dif-

ferent schemes for its solution where we focus on one approach of interest in this thesis,

the Bayesian estimation approach. This is followed by a presentation of the different re-

search objectives of this work and the main contributions to the field. Finally, the general

organization of the thesis is briefly explained.

1.1 Overview of Bayesian estimators in single-channel speech

enhancement

Speech enhancement

The general objective in speech enhancement is to remove a certain amount of noise from

a speech signal while keeping the speech components as undistorted as possible. Speech

enhancement has been found useful in many applications such as mobile phones [7–9],

speech coders [10–12], automatic speech recognition systems [13,14] and hearing aids [15–

18]. In many applications, the noisy speech is acquired by a single microphone. While in

some applications, such as hearing aids or hands-free telephony, an array of two or more

microphones are sometimes available, we will not consider those cases in this study. Speech

enhancement with only one recording of the noisy speech signal is usually qualified as

single-channel.

Many single-channel speech enhancement approaches have been proposed over the years.

In time domain approaches, which include Kalman filter based methods [19–21], the speech

enhancement is performed directly on the time domain noisy speech signal via the applica-

tion of enhancement filters (i.e. linear convolution). In the frequency domain approaches, a

short-time Fourier transform (STFT) is typically applied to a time domain noisy speech sig-

nal. The enhancement is then performed by modifying the STFT coefficients which are then
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transformed back to the time domain via an inverse STFT. This class of methods includes,

among others, spectral subtraction [1–3,22–27] and Bayesian approaches [4,6,28–31]. The

enhancement can also be performed in other domains. For example, the so-called subspace

approach [32–36] is obtained by applying a Karhunen-Loève Transform (KLT) to the time

domain signal, performing the enhancement in that domain and finally going back to the

time domain using an inverse KLT operation. In all these approaches, the modification

made to the noisy speech depends on the statistical properties of the desired speech and

contaminating noise, which must be estimated as part of the enhancement process.

It was found in a subjective comparison of many different speech enhancement methods

that the Bayesian approach performed in general better than the other ones [37] in terms

of the overall quality of the enhanced speech, the amount of speech distortion introduced

by the processing and the background noise reduction. Moreover, compared to other tech-

niques, e.g. the subspace or Kalman-based approaches, their computational requirements

are relatively modest. We will concentrate on the Bayesian approach in this thesis.

Bayesian estimation for speech enhancement

In the Bayesian approach for speech enhancement, it is desired to obtain an estimate of the

clean speech signal from the noisy speech signal observations. The estimator of the clean

speech is derived in the frequency domain by minimizing the expectation of a cost function

that penalizes errors in the clean speech estimate. The application of the Bayesian approach

therefore requires choosing beforehand a suitable cost function as well as statistical models

for the clean speech and noise.

Most existing Bayesian estimators in a frequency domain framework assume the complex

STFT coefficients of the clean speech and noise to follow a zero mean complex circular

Gaussian distribution with uncorrelated frequency components. The processing is thus
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performed on each frequency component independently. The use of a Gaussian statistical

model is motivated by the central limit theorem since each Fourier expansion coefficient

can be seen as a weighted sum of random variables resulting from the observed samples [4].

One of the simplest cost function that can be used when estimating the clean speech

STFT components is possibly the squared error between the estimated and actual clean

speech STFT. When combined with Gaussian statistical models with uncorrelated fre-

quency components for the clean speech and noise, this choice results in the widely known

Wiener estimator [38, 39]. The Wiener estimator applied to speech enhancement yields

fairly good results. However, its main disadvantage is that it produces what are called mu-

sical noises. These artifacts are present in the enhanced signal and can be quite annoying

to a human listener.

Instead of estimating the STFT coefficients, it is most common to estimate the short-

time spectral amplitudes (STSA) and combine them with the phase of the noisy speech

to yield an estimate of the STFT. This is justified by the fact that the phase of the

STFT coefficients has been shown to be less perceptually significant than the corresponding

STSA [40]. One well-known Bayesian STSA estimator is the minimum mean square error

(MMSE) of the STSA referred to as the MMSE STSA [4]. It is obtained when the chosen

cost function is the squared error between the estimated and actual clean speech STSA and

Gaussian models with uncorrelated frequency components are assumed. This estimator was

found to produce enhanced speech with a much whiter residual background noise than that

of the Wiener estimator. In fact, this property is one of the main advantage of Bayesian

STSA estimators for speech enhancement.
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Other Bayesian STSA estimators

Many other STSA estimators were proposed over the years. In [28], a more perceptually

significant cost function than the squared difference used in the MMES STSA is proposed,

where the logarithm of the estimated and actual clean speech STSA are considered. The

resulting estimator, which has been termed as log-MMSE STSA (or more conveniently

LSA), indeed takes into account that the ear compresses the amplitude of the speech signal.

A generalization of the MMSE STSA cost function was proposed in [6], in which the

error between the estimated and actual clean speech STSA is weighted by the STSA of

the clean speech raised to an exponent p. Accordingly, the resulting estimator is termed

weighted Euclidian (WE). In particular, the author argues that this estimator with p < 0

takes advantage of some properties of the human ear and is therefore more perceptually

significant.

Another generalization of the MMSE STSA cost function is also proposed in the β-Order

STSA MMSE estimator (which we will denote by β-SA for convenience) [29]. This estimator

applies a power law (i.e. an exponent β > 0) to the estimated and actual clean speech

STSA in the squared error of the cost function. As a particular case, the authors observed

through numerical calculation that in the limit β → 0, the β-SA estimator approaches the

LSA estimator.

The values of the parameter β in the β-SA estimator and p in the WE estimator were

found to control the trade-off between the speech distortion introduced by the enhance-

ment and the background noise reduction. In fact, in single-channel speech enhancement,

reducing the background noise level will invariably produce some speech distortions and a

trade-off between the desired noise reduction and the undesired speech distortions must be

achieved.
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While many speech enhancement estimators have been proposed in the past decades,

the existing estimators are far from ideal and suffer from many problems including speech

distortions at various degrees and some residual noise artifacts. There is thus still much

space for improvement in order to further remove the background noise while limiting the

speech distortions, and indeed there has been significant research efforts in this direction

in recent years.

1.2 Research objectives

The general objective of this research work is to study Bayesian STSA estimators for single-

channel speech enhancement in order to deepen the existing knowledge on such estimators

and improve their performance. This is to be achieved by analyzing existing Bayesian

STSA estimators and proposing more appropriate cost functions and statistical models.

In light of Section 1.1, many improvements over traditional approaches are conceivable.

In particular, we study the following questions in this thesis:

• The starting point of our work is to study the β-SA estimator and the role played

by its parameter β. For example, only the values of β > 0 are considered in [29];

however, it can be shown that the derivation of the estimator allows for values of

β > −2. These negative values of β may reveal some advantages in terms of the

quality of the corresponding enhanced speech over their positive counterparts and

suggest new modifications to the underlying cost function.

• Some parameters such as the exponent β in the β-SA estimator and p in the WE

estimator have auditory or perceptual significations that have not been considered

yet. As discussed in the previous section, the human auditory system can provide

some useful insight that can be used to develop speech enhancement estimators.
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Choosing the values of those parameters based on such considerations could result

in more perceptually significant cost functions and better estimators. One particular

objective of our work will therefore be to study values for such parameters that have

auditory or perceptual significations and to evaluate their effect on the resulting

speech enhancement estimators.

• Most existing Bayesian STSA estimators, including those based on the WE and β-SA

cost functions, have a very similar structure consisting of a weighted squared difference

between a monotonic function of the estimated and actual clean speech STSA. One

particular objective of this work is to combine some of these cost functions into a

more general framework for the derivation of Bayesian STSA estimators; this should

allow a better understanding of this class of estimators.

• Finally, it is always assumed in single-channel Bayesian STSA estimators that the

frequency components of the clean speech and noise are not correlated. Therefore,

each frequency component is treated independently. In practice, however, some of

the frequency components are correlated for reasons explained later and cannot be

treated independently. Improvements in the quality of the enhanced speech could be

obtained by considering this correlation in the cost function and statistical models.

Related objectives of this work are thus to evaluate how such correlation can be

included in clean speech models and develop new Bayesian STSA estimators that

exploit this correlation.

1.3 Main contributions

In this thesis, by pursuing the objectives set forth in the previous section, we extend the

knowledge on Bayesian STSA speech enhancement estimators and propose several new
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estimators that show some advantages over existing ones. The main original contributions

of this research work are summarized below. We first present the different analytical

contributions which are followed by a summary of the experimental results.

Analysis and extension of the β-SA estimator

We first show that negative values of β have a normalization effect on the original β-SA

cost function. Moreover, decreasing β below 0 is found to produce an increase in the noise

reduction and speech distortion, therefore enabling an extension of the trade-off between

speech distortion and noise reduction. We also observe, based on gain curves, that the

β-SA estimator with β < 0 behaves similarly to the WE estimator [6] for negative values

of p. Finally, it is proved analytically that in the limit case β → 0, the β-SA estimator

indeed corresponds to the LSA estimator of [28].

The weighted β-SA estimator and perceptually relevant parameter values

A new Bayesian STSA estimator, that we call the weighted β-SA (Wβ-SA) estimator,

is developed and investigated. This estimator combines the power law in the β-SA cost

function and the weighting of the WE cost function to take advantage of the perceptual

interpretation that can be given to the associated parameters. The values of the parameters

in the corresponding cost function, and therefore of the corresponding estimator gain, are

chosen based on characteristics of the human auditory system namely loudness, masking

and the compressive nonlinearities of the ear. It is found that doing so suggests a decrease

in the gain at high frequencies. This decrease in the gain has the advantage of limiting

the speech distortions at low frequencies, where the main speech energy is located, while

increasing the noise reduction at high frequencies.



1 Introduction 9

Analytical generalization of Bayesian STSA estimators

We show that many existing Bayesian STSA estimators for speech enhancement all have a

similarly structured cost function. On this basis, an analytical generalization of Bayesian

STSA estimators is performed where: (1) a new cost function that unifies existing Bayesian

STSA estimators is proposed and; (2) the corresponding closed-form solution for the opti-

mal clean speech STSA is obtained. The resulting family of estimators, which we term the

Generalized Weighted family of STSA estimators (GWSA), includes many existing estima-

tors as particular cases and approaches a Wiener filter in the limit of high instantaneous

SNR. It also features a new parameter that acts only on the estimated clean speech STSA.

It is found that this new parameter yields an added flexibility in terms of achievable gain

curves when compared to those of existing estimators.

Multi-dimensional extension of Bayesian STSA estimators

In Bayesian STSA estimation for single-channel speech enhancement, the spectral com-

ponents are traditionally assumed uncorrelated. However, this assumption is inexact and

we show, in fact, that there is some correlation between STFT speech coefficients. We

therefore investigate a multi-dimensional Bayesian STSA estimator that assumes corre-

lated frequency components. Since the closed-form solution of this optimum estimator is

not readily available, we alternatively derive simple closed-form expressions for an upper

and a lower bound on the desired estimator. Based on these bounds, we finally propose

a family of speech enhancement estimators that are characterized by a one-dimensional

parameter 0 ≤ γ ≤ 1 with γ = 0 corresponding to the lower bound and γ = 1 to the upper

bound.
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Experimental validation

In this thesis, the validity of the proposed estimators is demonstrated experimentally. To

do so, they are compared with relevant state-of-the art estimators including Wiener [3,41],

MMSE STSA [4], LSA [28], WE [6] and β-SA [29]. This is achieved through the use of

several objective and subjective measures. The former include the segmental SNR (SNRseg)

[42], log-likelihood ratio (LLR) [43] and perceptual evaluation of speech quality (PESQ) [44]

while the subjective ones include informal listening tests, mean opinion scores (MOS) [45]

and the multi-stimulus test with hidden reference and anchor (MUSHRA) [46].

The β-SA with negative values is first evaluated. It is found that with β = −1, its per-

formance is slightly better than the MMSE STSA and LSA estimators in terms of the PESQ

and that the overall MOS appreciation of the β-SA with β = −1 is better than both MMSE

STSA and LSA. Secondly, experimental results show that the Wβ-SA estimator with the

proposed frequency dependent parameter values achieve better enhancement performance

than all compared estimators (i.e. MMSE STSA, LSA and WE (p = −1)) in terms of all

studied measures i.e. SNRseg, LLR, the wideband extension of PESQ and MUSHRA. This

advantage of the proposed estimator is shown to be substantial at low SNR values. We

finally compare the proposed family of multi-dimensional estimators that considers cor-

related STFT components with the traditional Wiener and MMSE STSA estimators (i.e.

which consider uncorrelated frequency components) as well as with an MMSE estimator

of the complex STFT coefficients that assumes correlated frequency components. Informal

listening experiments as well as results using the wideband PESQ and LLR measures all

show that the proposed family of multi-dimensional estimator achieves better performance

than the benchmark estimators for several noise types and SNR conditions.
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Publications

These contributions led to a number of publications in peer-reviewed journals and refereed

conferences. The following is a list from this thesis work:

Journal papers

J-1 E. Plourde and B. Champagne, “Multi-dimensional Bayesian STSA estimators for the

enhancement of speech with correlated frequency components,” IEEE Transactions

on Audio, Speech and Language Processing, submitted, August 2009.

J-2 E. Plourde and B. Champagne, “Generalized Bayesian estimators of the spectral

amplitude for speech enhancement,” IEEE Signal Processing Letters, vol. 16, no. 6,

pp. 485-488, June 2009.

J-3 E. Plourde and B. Champagne, “Auditory based spectral amplitude estimators for

speech enhancement,” IEEE Transactions on Audio, Speech and Language Processing,

vol. 16, no. 8, pp. 1614-1623, November 2008.

Conference papers

C-1 E. Plourde and B. Champagne, “Bayesian spectral amplitude estimation for speech

enhancement with correlated frequencies,” IEEE Workshop on Statistical Signal Pro-

cessing, August 31 - September 3, 2009, Cardiff, Wales, UK.

C-2 E. Plourde and B. Champagne, “Perceptually based speech enhancement using the

weighted β-SA estimator,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal

Processing (ICASSP), March 30 - April 4, 2008, Las Vegas, NV, USA, pp. 4193-4196.
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C-3 E. Plourde and B. Champagne, “Integrating the cochlea’s compressive nonlinearity

in the Bayesian approach for speech enhancement,” in Proc. 15th European Signal

Processing Conf. (EUSIPCO), September 3-7, 2007, Poznan, Poland, pp. 70-74.

C-4 E. Plourde and B. Champagne, “Further analysis of the β-Order MMSE STSA esti-

mator for speech enhancement,” in Proc. 20th IEEE Canadian Conf. on Electrical

and Computer Eng. (CCECE), April 22-26, 2007, Vancouver, BC, Canada, pp. 1594-

1597.

1.4 Thesis organization

Chapters 2 and 3 present background material while the following chapters present the

different contributions.

In Chapter 2, some fundamentals of human speech production and the auditory system

are reviewed and important aspects of noise contamination in speech signals are discussed.

An overview of the Bayesian approach for single-channel speech enhancement along with

different existing estimators are presented in Chapter 3.

In Chapter 4, we analyze the β-SA estimator for β < 0 and also prove analytically

that for β → 0, the β-SA estimator is equivalent to the LSA estimator. The Wβ-SA

estimator is introduced in Chapter 5 where we also propose frequency dependent values

for its parameters that are based on auditory and perceptual considerations. In Chapter 6,

we perform an analytical generalization of several existing estimators. A framework that

considers correlated frequency components in Bayesian STSA estimation is presented in

Chapter 7 along with the proposed family of new estimators.

Finally, in Chapter 8, we present experimental results for the proposed estimators. Some

concluding remarks are presented in Chapter 9.
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Chapter 2

Human speech communication

From a signal processing perspective, a speech communication between two or more indi-

viduals is a highly complex process that involves several elements. First, the speech signal

is produced by the speech production system of the individual who is speaking. This signal

is then transmitted through a certain medium and during its transmission, is subjected

to several forms of modification and noise contamination. This contaminated signal then

arrives at the ears of the other individuals and is processed by their auditory systems.

In Sections 2.1 and 2.2 of this chapter, respectively, we will briefly look at both the

human speech production and auditory systems. Section 2.3 will present possible sources

of speech contamination and discuss applications where it can be useful to remove the

added noise.

2.1 Human speech production system

The speech production system is divided into the organs of phonation and articulation.

The phonatory organs are the lungs and the larynx which includes the vocal cords. They
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Fig. 2.1 The human speech production system (inspired from [47,48]).

create the voice source sounds by initiating the exhaled air pressure and controlling the

vocal cord vibrations. These organs adjust the pitch, loudness and quality of the voice.

The articulatory organs (i.e. jaw, tongue, lips and velum) modulate the voice source sound

and generate some consonants (see Fig. 2.1). The different positioning of those articulatory

organs coupled with the sound source will allow the speaker to produce different phonemes,

i.e. to speak.

Speech production can be modeled by a sound source representing the lung and the

larynx that excites a so-called vocal tract filter where the vocal tract is defined as the oral

cavity from the larynx to the lips and the nasal passage that is coupled to the oral tract by

way of the velum [49]. If the vocal cords vibrate, the source is then periodic and the speech

is qualified as voiced, while if the vocal cord is constricted, the source is noisy and the speech

is qualified as unvoiced [50]. The vocal tract filter amplifies or attenuates certain sound
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Fig. 2.2 (a) Time domain female uttered voiced phoneme (/ε/); (b) Fre-
quency domain representation of (a); (c) Time domain female uttered unvoiced
phoneme (/s/); (d) Frequency domain representation of (c).

frequencies for both voiced and unvoiced source sounds depending on the positioning of

the articulatory organs. The different resonating frequencies of the vocal tract are termed

formants and are labeled as F1, F2, F3, etc. The smallest number indicates a smaller

formant frequency and vice versa.

Speech sounds are classified into different phoneme classes. Among them are vowels,

semi-vowels, consonants, affricates and diphthongs . Vowels are voiced sounds for which the

vocal tract configuration is kept fixed. They are characterized by the value of their formant

frequencies. Consonants can be voiced or unvoiced and include a number of subgroups

of phonemes such as nasals, plosives, fricatives and whispers. Finally, the semi-vowels

(including the liquids and glides subgroups), affricates and diphthongs are transitional

speech sounds [49].
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Fig. 2.2 shows the waveform and energy spectrum of a voiced (/ε/) and an unvoiced

(/s/) speech phoneme uttered by a female speaker. As shown in Fig. 2.2 (a), the voiced

phoneme is periodic in the time domain due to the vocal cord vibrations. Moreover, voiced

speech has a spectra that consists of harmonics of the fundamental frequency of the vocal

cord vibrations. That fundamental frequency is usually termed F0 and corresponds to the

perceived pitch. We can observe in Fig. 2.2 (b), particularly at the lower frequencies, the

different harmonics separated by F0 ≈ 160 Hz for this speaker. We can also identify the

formant frequencies F1, F2 and F3 at approximately 800 Hz, 2100 Hz and 3000 Hz respec-

tively. They correspond to the resonating frequencies of the vocal tract. The frequencies

where formants are located are usually termed spectral peaks while the regions in between

formants are termed spectral valleys. Finally, we notice that the energy of voiced speech is

mostly concentrated at the lower frequencies.

As opposed to voiced speech, we can see from Fig. 2.2 (c) that unvoiced speech does

not show a periodic structure but has a noisy nature. Moreover, we can also observe from

Fig. 2.2 (d) that the energy of unvoiced speech is much less than that of voiced speech and

mostly concentrated at higher frequencies.

2.2 Human auditory system

2.2.1 The peripheral auditory system

At the other end of the human communication system is the auditory system that captures

and interpret the speech signal. The peripheral auditory system, commonly termed the

ear, is composed of three main parts (Figure 2.3):

• Outer ear: composed of the pinna and the ear canal or meatus;
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Fig. 2.3 The structure of the peripheral auditory system (inspired from [50]).

• Middle ear: composed of the eardrum, malleus, incus and stapes;

• Inner ear: composed of the cochlea.

A sound wave first enters the ear through the pinna and progresses through the meatus.

Once it reaches the eardrum, the sound wave produces vibrations of the middle ear bones

(malleus, incus and stapes) which together act as a transducer between the air medium of

the ear canal and the liquid medium of the cochlea. The middle ear bone vibrations are

then carried in the cochlea through the oval window. The cochlea transforms the vibrations

into neuronal impulses which are then carried for further processing in the brain [51].

The cochlea

The cochlea plays an important role in auditory speech processing. It is a fluid-filled tube

which is coiled in a snail-shaped spiral and has a total diameter of approximately 9 mm [51].



2 Human speech communication 19

Fig. 2.4 Structural and anatomical features of the cochlea and basilar mem-
brane (inspired from [50]).

The tube is separated by two membranes of which the basilar membrane has a fairly

important role. When a sound wave hits the oval window, it creates a pressure difference

between both sides of the basilar membrane which makes it oscillates at different locations

depending on the incoming sound frequency.1 In effect, the basilar membrane performs a

frequency analysis of the incoming sound wave. Regions close to the oval window, called

the base of the cochlea, oscillates at higher frequencies while regions towards the end of

the basilar membrane, the apex, oscillates mainly at lower frequencies. The movement of

the basilar membrane is sensed by sensory cells, the hair cells, which activate the firing

of the neurons. Figure 2.4 shows a cross section of the cochlea along with a zoom on the

basilar membrane. As shown, the hair cells, which are of two forms, i.e. inner hair cells

and outer hair cells, are part of the organ of Corti. The inner hair cells are primarily

responsible for the transduction of the basilar membrane movement into neuronal firing.

The outer hair cells, on the other hand, play an important role in cochlear amplification

and are responsible for the active mechanism of the cochlea [53].

1The organization where a position on the basilar membrane corresponds to an associated frequency is
termed tonotopic [52].
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Auditory neurons

The inner hair cells are connected to the auditory nerve which relays the sound information

to the ascending neural pathway in the brain. The auditory nerve is composed of many

neurons each able to sustain a maximum firing rate of 500 spikes per second in response to

bending of the hair cells. This bending of the hair cells alters their electrical conductance

which influences the release of a chemical substance (neurotransmitter) which causes the

corresponding neuron to fire [51].

2.2.2 Relevant properties of the auditory system

The human ear has a remarkable ability to select a desired speech signal among a noisy

background. While doing so, it naturally suppresses a part of the background noise. In

this subsection, we will briefly present some properties of the auditory system that will be

particularly useful in some sections of this thesis. In particular, we will consider auditory

masking and the compressive nonlinearity of the cochlea.

Auditory masking

Auditory masking is the process by which the threshold of audibility of a particular signal is

raised by the presence of another sound (the masker) [54]. Therefore, a noise may naturally

be masked by a speech component, and therefore not be heard. Masking is thought to have

its origins on the basilar membrane and may arise in the process of hair cell firings [50]. Two

distinct types of masking actually occurs: simultaneous masking and temporal masking.

On the one hand, simultaneous masking occurs when the masker is present during

the presentation time of the signal of interest. Masking effects are frequently taken into

account through masking thresholds below which a tone will be masked and therefore not
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Fig. 2.5 Simultaneous masking thresholds. (from [50])

be heard. Figure 2.5 illustrates the masking thresholds in simultaneous masking produced

by a narrow band of noise (365-455 Hz) for different intensities. Among other things, one

notices that there is an asymmetry in simultaneous masking for higher intensities (i.e. 80

dB SPL) which disappears for lower intensities.

Temporal masking, on the other hand, occurs when the signal is presented just before or

after the masker [54]. In fact, successive signals with energy in the same critical band2 can

interfere with one another if the delay between them is sufficiently short. Temporal masking

can be of two kinds: forward masking where for example, a time limited noise signal can

mask a following tone, and backward masking, where the noise masks a preceding tone.

Forward masking can exist for a delay between the noise and the tone of as much as 200

ms; however, backward masking has effects only when the delay is below 20 ms [50].

2The concept of critical bands was proposed by Fletcher who assumed that the part of a noise that
is effective in masking a test tone is the part of its spectrum lying near the tone, i.e. in a surrounding
frequency band called a critical band. The relative powers of the noise and the tone in the entire critical
band determines if the tone is masked or not. [55]
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Compressive nonlinearity of the cochlea

The ear is most sensitive to small signals and grows progressively less responsive as stimula-

tion becomes stronger. This allows us to interpret sounds over a wider range of amplitudes

and is also thought to play a role in the noise suppression capabilities of the auditory sys-

tem [56]. This nonlinearity appears on the basilar membrane and is thought to be frequency

dependent.

A - High frequencies (base of the cochlea): Researchers have noticed a nonlinear be-

havior at the base of the cochlea, which is associated to the processing of high frequencies,

when measuring basilar membrane responses to input tones at several sound pressure lev-

els. Figure 2.6 shows measurements of the basilar membrane displacement versus the input

sound pressure levels performed on several mammals, the characteristic frequencies of the

tones varied from 8 kHz to 33 kHz depending on the species. Equivalent data for humans

is not available other than from cadavers which are known not to retain the compressive

response. However, the existence of a similar behavior in the human auditory system has

been indirectly confirmed through various psychoacoustic measures [57]. Looking at Fig.

2.6, one notices that compared to the linear growth rate, the basilar membrane exhibits a

so-called compressive nonlinearity3. In fact, for high input sound pressure level, the output

is compressed where as for lower levels, the output may be expanded or amplified. We will

use the term compressive nonlinearity to denote the overall phenomenon.

This nonlinearity is thought to be caused by the active mechanism of the outer hair cells

which at lower input amplitudes exhibit an amplification of the basilar membrane vibra-

tion, termed cochlear amplification. As the amplitude increases, however, this amplification

3The growth rate, or compression rate, is defined as the slope of a displacement versus sound pressure
level curve where the displacement is expressed in dB. A compression rate of 1 indicates a linear relationship
and therefore no compression.
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Fig. 2.6 Displacement of basilar membrane versus sound pressure level for
characteristic frequency tones recorded at basal cochlear sites in chinchilla (2),
guinea pig(◦, •), and cat (⋄) – For comparison, the dotted line indicates linear
growth (from [53]).

saturates and, in relative terms, the larger spectral amplitudes become compressed. Com-

pression rates of 0.2 dB/dB were measured for intensities between 40 and 90 dB SPL [53]

(conversational speech is at 60 dB SPL) and they tend to be more linear, i.e. closer to 1

dB/dB, for lower intensities.

B - Low frequencies (apex of the cochlea): The apex of the cochlea is associated to

the processing of low frequencies. While compressive nonlinearity is well documented and

accepted for high frequency signals, there is no real consensus on the degree of cochlear

compressive nonlinearity at lower frequencies. In fact, some results from chinchilla show

a small rate of compression (0.5 - 0.8 dB/dB), while several other results from guinea

pigs and squirrel monkeys fail to show any compressive nonlinearity (i.e. they reported

a rate of compression of 1 dB/dB) and even show an expansion (i.e. rate of compression

greater than 1 dB/dB) [53]. Besides, psychoacoustic experiments in humans report either a

comparable rate of compression at low and high frequencies [58,59] or a smaller but existent

rate of compression at lower frequencies [60]. Since those results are from psychoacoustic
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experiments and not from a specific physiological experiment, one cannot be sure where

in the auditory processing path this compression occurs and it may not be a cochlear

phenomenon but rather a property occurring along the auditory neural pathway [58, 59].

Therefore, it is usually assumed that there is a difference in the cochlear rate of compression

at high and low frequencies [53], but its relative values are still an active debate.

2.3 Contamination in speech signals

While a speech signal would ideally leave the speakers lips and be transmitted unaltered

to the listener’s ears, in reality, this signal is modified by different forms of contamina-

tion during its transmission. Two basic types of contamination can be identified, namely:

convolutive and additive noises.

Reverberation, or convolutive noise, arises when the speech signal propagates through

multiple paths with different transmission times and therefore arrives in delayed versions at

the listener’s ears. In this case, the received signal can be expressed as a mathematical con-

volution between the clean source signal and the unknown transmission impulse response.

The perceived reverberation is particularly important when the ratio of the direct signal

to the echoed signal is small. In this thesis, we consider this ratio to be large enough and

concentrate only on additive noise.

Additive noise occurs when one or more other sound sources are added to the desired

speech signal as the result of a linear superposition in the acoustic medium. The other

sound source can be, for example, a nearby speaker, a car passing by on the street or

background music.

Additive noise contamination can be undesirable for several reasons. In fact, it can af-

fect, for example, different perceptual aspects of the speech signal such as its intelligibility
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and quality. Intelligibility refers to the number of words that can be identified correctly by

a listener or to the likelihood of being correctly understood whereas quality refers to the

clarity, freedom of distortion and ease for listening [50]. The two are not correlated such

that a good quality speech signal can have a poor intelligibility [61]. Apart from affecting

perceptual aspects of speech, noise contamination can also affect the performance of speech

processing applications such as speech coders, teleconferencing or automatic speech recog-

nition. In many common applications, there is thus a motivation to remove such undesired

noise, we discuss some of these applications below.

A - Wireless telephony : One important application in which speech is subjected to

additive noise contamination is cellular or wireless telephony. In fact, with the advent of

portable phones, the environment in which a telephone communication occurs went from

the traditional house or office setting to much diverse environments such as crowded streets,

cars, public transportations, restaurants, etc. These environments can be characterized by

much lower signal-to-noise (SNR) ratios than traditional environments and the quality and

intelligibility of the speech is sometimes greatly diminished by the noise contamination. It

is therefore highly desirable to avoid such degradation, and in fact, much research has been

done to achieve noise reduction in mobile phones [7, 8]. Moreover, speech codecs used in

mobile phones are generally less efficient in the presence of noise. In fact, many codecs, such

as the Enhanced Variable Rate Codec (EVRC) [62] or the codec defined by the G.711.1

standard [63], integrate some noise reduction modules.

B - Teleconferencing : Teleconferencing is typically a hands free application. It allows

many persons in a room to interact with one or many other groups of persons in a different

physical setting through the use of one or more microphones and loudspeakers. Due to its

hands free characteristic, the different listeners in a teleconference will be subject to any

ambient noise entering the system. Efforts have thus been made to remove that noise [64].
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C - Automatic speech recognition: In the past decade, various automatic speech recogni-

tion systems have been incorporated in different applications such as hands free cellphones

or as a substitute to phone operators. These systems are also affected by noise and, in fact,

their performance may decrease significantly when a noisy instead of a clean speech signal

is used as an input to the system. The reduction of noise in such systems has thus also

fostered much research [13,14].

D - Hearing aids : Finally, another application where the reduction of background noise

is useful is in hearing aids. Indeed, persons with hearing deficiencies are generally more

affected by noise than normal hearing persons. This is due in part to their resolution of the

different spectral components of speech which is not as efficient as that of a normal hearing

person. Hearing impaired are thus less capable of discerning noise from speech. Research

has therefore been performed to incorporate in hearing aids some speech enhancement

modules reducing the effect of the noise contamination [15–18].

The next chapter will look more in detail at how this noise reduction can be achieved. In

particular, we will present the speech processing used in single-channel speech enhancement

and the corresponding existing estimators, mainly Bayesian estimators.
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Chapter 3

Overview of the Bayesian approach

for single-channel speech

enhancement

As discussed in the previous chapter, there is a strong motivation in many applications to

remove the additive noise contaminating a speech signal. In order to do so, many speech

enhancement approaches have been derived over the years. In this chapter, we will start

by presenting the single-channel speech enhancement problem, set in the frequency do-

main. Speech enhancement algorithms using the Bayesian approach in a frequency domain

framework were recently found to give the best results among various competing approaches

including subspace and spectral subtraction [37]. We will thus review several algorithms

using the Bayesian approach for single-channel speech enhancement. In particular, we will

present Bayesian estimators of the STFT coefficients as well as Bayesian estimators of the

STSA.

This chapter is organized as follows. In Section 3.1, we present the speech enhancement
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problem in the frequency domain. In Section 3.2, the Bayesian estimation framework is

developed and in Section 3.3 and 3.4, we present Bayesian estimators of the STFT and

STSA respectively. Finally, in Section 3.5, we elaborate on the estimation of the a priori

and a posteriori SNR parameters.

3.1 The single-channel speech enhancement problem

3.1.1 Additive noise model

In some applications, such as hearing aids and multi-channel teleconferencing, several mi-

crophones can be used and therefore many versions of the noisy speech are available si-

multaneously1. However, to limit the system’s constraints, only one microphone is present

in the majority of applications. The process of removing noise when only one source of

the noisy speech is available is referred to as single-channel speech enhancement. Single-

channel speech enhancement algorithms are generally not able to improve the intelligibility

of speech, discussed in the previous chapter, but improve the quality of speech [65].

As mentioned previously, many types of noise can contaminate a speech signal such as

convolutive or additive noises. For reasons explained in Chapter 2, we will concentrate on

additive noises, such as ambient background noise, in this thesis. Let an observed noisy

speech signal be represented by the following additive noise model as illustrated in Fig.

3.1:

y[m] = x[m] + w[m] 0 ≤ m < L (3.1)

where x[m] represents the unknown clean speech, w[m] is the additive noise, m is the

discrete-time index, where uniform sampling is assumed, and L is the total number of

1Some manufacturers are actually offering mobile phones with two microphones. They are used to
perform a basic beamforming function, after which single channel speech enhancement can be applied.
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speech
x[m]

Additive Noise Model

x̂[m]
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w[m]

y[m]
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Enhancement

(See Fig. 3.2)
+

Fig. 3.1 Additive noise model in single-channel speech enhancement.

observed samples. The objective in single-channel speech enhancement algorithms is to

find an estimate x̂[m] of x[m] from the noisy speech observations y[m] as shown in Fig. 3.1.

Two main processing frameworks can be used to obtain the desired estimate: time

domain estimation, where the enhancement is performed directly on y[m] to yield x̂[m]; or

frequency domain estimation where the enhancement is performed on the Discrete Fourier

Transform (DFT) coefficients obtained from y[m]. According to [66], the computational

demand is less for frequency domain algorithms than for time domain algorithms, which

makes the former more attractive for low-power applications. We will consider only the

frequency domain framework in the sequel.

3.1.2 Frequency domain single-channel speech enhancement

We now look in more detail at the frequency domain framework used in single channel

speech enhancement algorithms. Within a short observation interval of about 20-40 ms, a

speech signal x[m] is generally considered to be a realization of a zero mean and wide-sense

stationary random process. It is therefore of common practice to separate the set of L

observed samples into overlapping frames lasting less than 40 ms2:

yi[n] = y[n + iM ] 0 ≤ n < N, 0 ≤ i < Nf (3.2)

2For example, at a sampling rate of 16 kHz, a 32 ms frame would correspond to N = 512 samples.
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where i denotes the frame index, M is the frame advance, N is the frame length with

N ≥ M (N − M is the number of samples that overlap between two successive frames)

and Nf is the total number of frames in the L observed samples. An analysis window

ha[n] is applied on each frame in order to achieve a trade-off between frequency resolution

and sidelobe suppression [67]. Each windowed frame is then transformed in the frequency

domain using a discrete Fourier transform (DFT):

Yk,i =
N−1
∑

n=0

yi[n]ha[n]e−j 2π
N

kn (3.3)

where k ∈ {0, 1, . . . , N − 1} denotes the frequency index3. Yk,i is referred to as the kth

short-time Fourier transform (STFT) coefficient of the noisy speech for the ith frame [49].

With Xk,i and Wk,i denoting in the same way the STFT coefficients of the clean speech

and noise respectively, the additive noise model in the STFT domain thus becomes:

Yk,i = Xk,i + Wk,i. (3.4)

In the STFT domain, the objective is therefore to find an estimate X̂k,i of Xk,i from

Yk,i. Once X̂k,i is obtained, its time-domain counterpart x̂i[n] is derived by applying an

inverse DFT (IDFT) on each frame:

x̂i[n] =
1

N

(

N−1
∑

k=0

X̂k,ie
j 2π

N
kn

)

hs[n] (3.5)

where hs[n] is a proper synthesis window.

3N is often chosen as the nearest power of 2.
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Fig. 3.2 STFT framework for single-channel speech enhancement.

The results for all frames are then combined using an overlap-add reconstruction [67,68]:

x̂[m] =

Nf−1
∑

i=0

x̂i[m − iM ]. (3.6)

The overall process of speech enhancement in the STFT domain is illustrated in Fig. 3.2.

In practice, since the signals under consideration are real valued, the DFT coefficients from

k = N/2 + 1 to k = N − 1 are the complex conjugates of the coefficients from k = N/2− 1

to k = 1 respectively. Furthermore, the different processes are generally considered to be

zero-mean and properly bandlimited, so that the DFT coefficients corresponding to k = 0

and k = N/2 can be taken as 0. Therefore, the different signals can be processed only for

frequencies k = 1 to k = N/2 − 1.

To ensure that the combined analysis and synthesis windowing process does not intro-

duce unwanted modifications to the speech signal, the analysis and synthesis windows need
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to satisfy the following perfect reconstruction condition [67]:

Nf−1
∑

i=0

ha[m − iM ]hs[m − iM ] = 1 ∀m. (3.7)

In this thesis, this condition will be met by choosing ha[n] as a raised-cosine window and

hs[n] as a rectangular window, i.e.

ha[n] =







































1
2

+ 1
2
sin
(

π
M ′+1

(

n − M ′−1
2

))

0 ≤ n < M ′

1 M ′ ≤ n < M

1
2
− 1

2
sin
(

π
M ′+1

(

n − M − M ′−1
2

))

M ≤ n < M + M ′

0 otherwise

(3.8)

hs[n] = 1, 0 ≤ n < N (3.9)

where the length of the tapered window is M + M ′.

According to [69], any linear modification to the signal Yk,i within the STFT framework

of Fig. 3.2, i.e. X̂k,i = GkYk,i where Gk is a complex gain, is equivalent to linear filtering

in the time domain via circular convolution. This filtering increases the length of the time

domain signal and can result in time aliasing due to its circular nature. To limit time

aliasing, we can increase the length of the window ha[n] by appending some Nz − 1 zeros

to it in which case we have N = M + M ′ + Nz − 1. This is referred to as zero-padding and

increases the length of the DFT [69].

The Spectral Enhancement block in Fig. 3.2 can be realized by means of several fre-

quency domain approaches among which the best known are the spectral subtraction,

Wiener and Bayesian STSA approaches.

Spectral subtraction [1–3,22–27] has been intensively studied over the past forty years.
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It attempts to estimate the spectral amplitude of the clean speech by subtracting an es-

timate of the noise spectral amplitude from that of the observed noisy speech. Different

means are used to ensure that the spectral amplitude estimator resulting from the subtrac-

tion does not have a negative value. Finally, the estimated amplitude is combined with the

phase of the noisy speech to produce the desired estimate of the clean speech STFT. In

the power spectral subtraction variant, an estimate of the spectral amplitude of the clean

speech is obtained by subtracting an estimate of the noise power spectrum from that of the

noisy speech and applying a square root to the resulting estimator. The phase is handled

in the same way as in the spectral subtraction scheme.

The major drawback in spectral subtraction techniques is the musical nature of the resid-

ual noise. Musical noises are characterized by tones at different frequencies that randomly

appear and disappear. They can be extremely annoying to a human listener. Many ver-

sions of the spectral subtraction approach have been proposed over the years [1–3,24,25,27],

most of which attempted to reduce the amount of musical noise in the resulting estimator.

In the Wiener filter approach [3,41,70,71], which will be discussed more in detail in the

next subsection, the estimator of the clean speech STFT is simply the MMSE estimator

when considering Gaussian distributed clean speech and noise. In that case, the phase

of the resulting estimate turns out to be that of the noisy speech. As for the spectral

subtraction approach, the speech enhanced based on the Wiener filter is also characterized

by residual musical noises.

We will concentrate on the Bayesian STSA approach [4,6,28,30,36,39,72–76] in this the-

sis which has the strong advantage of producing mostly white residual noise. The Bayesian

STSA approach along with recent related developments are explained in detail in the fol-

lowing section. The interested reader may consult [48,77] for a review of alternative speech

enhancement approaches, including the above spectral subtraction and Wiener filtering as
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well as other approaches such as the subspace [32–35] or Kalman-based [19–21] approaches.

3.2 Bayesian estimation framework

In the sequel, we will often consider the processing of a single frame and therefore omit

the frame index i. The speech enhancement problem can be formulated as a statistical

estimation problem in which the clean speech, the noise and the noisy speech spectral coef-

ficients Xk, W k and Y k are represented as random variables4. In the Bayesian estimation

approach [78] for speech enhancement, we wish to estimate the value of the clean speech

spectrum Xk as a function of the noisy speech spectrum Y k. To do so, we define a distance

metric, or cost function, between Xk and its estimator X̂k ≡ X̂k(Y k) and try to minimize

the risk R defined as the expectation of the chosen cost function [78]:

R , E{C(Xk, X̂k)} =

∫ ∫

C(Xk, X̂k)fXk,Y k
(Xk, Yk)dXkdYk (3.10)

where E denotes statistical expectation, C(Xk, X̂k) ≥ 0 is the cost function and

fXk,Y k
(Xk, Yk) is the joint probability density function (PDF) of Xk and Y k. The inte-

gral limits are not indicated in (3.10) but are with respect to the domains of the real and

imaginary parts of Xk and Yk which are from −∞ to ∞. Furthermore, we can write R as

R =

∫

fY k
(Yk)

∫

C(Xk, X̂k)fXk|Y k
(Xk|Yk)dXkdYk (3.11)

where

fXk|Y k
(Xk|Yk) ,

fXk,Y k
(Xk, Yk)

fY k
(Yk)

=
fY k|Xk

(Yk|Xk)fXk
(Xk)

fY k
(Yk)

(3.12)

4In the remainder of this chapter, for clarity of presentation, random variables will be distinguished by
an underline. However, following a common practice in the speech processing literature, this distinction
will not be made in subsequent chapters.
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is the conditional PDF of Xk given Y k = Yk and fXk
(Xk) and fY k

(Yk) are the marginal PDF

of Xk and Y k respectively. In the Bayesian formalism, one often refers to fXk|Y k
(Xk|Yk) as

the a posteriori (i.e. after observing Y k) PDF and to fXk
(Xk) as the a priori PDF. From

(3.11), we have that:

R ≥
∫

fY k
(Yk) min

X̂k

{∫

C(Xk, X̂k)fXk|Y k
(Xk|Yk)dXk

}

dYk (3.13)

where the minimum is taken over all possible estimates X̂k(Yk). For a given Yk, we therefore

only need to minimize the inner expectation in (3.13) to obtain the desired estimator. The

Bayesian estimate X̂k is thus obtained as:

X̂k = arg min
X̂k

{∫

C(Xk, X̂k)fXk|Y k
(Xk|Yk)dXk

}

. (3.14)

Two elements need to be chosen in Bayesian estimation: firstly, the cost function C(Xk, X̂k)

to quantify the similarity between the clean speech and its estimate; and secondly, the

statistical models used to characterize the various signals.

In the frequency domain framework, the complex STFT coefficients of the clean speech

and noise at a given frequency k are generally modeled as statistically independent, iden-

tically distributed random variables with zero-mean and complex circular Gaussian distri-

butions:

fXk
(Xk) =

1

πσ2
X,k

e−|Xk|2/σ2
X,k (3.15)

fW k
(Wk) =

1

πσ2
W,k

e−|Wk|2/σ2
W,k (3.16)

where

σ2
X,k = E{|Xk|2} = E{X 2

k}; σ2
W,k = E{|W k|2} (3.17)
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denotes the corresponding variances respectively. Moreover, Fourier coefficients of the clean

speech or noise taken at different frequencies are assumed to be independent, which in the

Gaussian framework is equal to

E{XkX
∗
l } = E{WkW

∗
l } = 0 (3.18)

for k 6= l.

The use of a Gaussian statistical model is motivated by the central limit theorem since

each Fourier expansion coefficient can be seen as a weighted sum of random variables re-

sulting from the observed samples [4]. Other distributions were also proposed for the real

and imaginary parts of the STFT coefficients [31,39], the STSA coefficients [31,79] and the

complex STFT coefficients [80,81]. While it has been proposed that the Fourier expansion

coefficients of speech signals may not be Gaussian-distributed, those assumptions are usu-

ally motivated by long-term averages of the speech signal which may not be applicable to

specific short-time utterances. Moreover, many estimators using a Gaussian distribution

do not have an analytical counterpart when using other distributions [48]. Therefore, we

will consider only Gaussian distributed complex STFT coefficients in this thesis.

Finally, we note that as a consequence of (3.15), it can be shown [38] that the amplitude

and phase of Xk, i.e. X k = |Xk| and θk = ∡Xk, are independent with Rayleigh and uniform

distributions respectively, i.e.

fXk,θk
(Xk, θk) =

Xk

πσ2
X,k

e−X 2
k /σ2

X,k . (3.19)
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3.3 Bayesian estimators of the STFT

A simple cost function is the magnitude squared error between the complex STFT coeffi-

cients Xk and X̂k:

C(Xk, X̂k) = |Xk − X̂k|2. (3.20)

This cost function applied in (3.14) leads to the minimum mean squared error (MMSE)

estimate of Xk which is well known to be [38]:

X̂k = E {Xk|Yk} . (3.21)

i.e. the conditional expectation of Xk given the observation Y k = Yk. Under the Gaus-

sian statistical models presented previously, the MMSE estimator of X̂k is the well-known

Wiener estimator [48]:

X̂Wiener
k =

σ2
X,k

σ2
X,k + σ2

W,k

Yk. (3.22)

In (3.22), the gain applied to Yk is real and positive and the phase of X̂Wiener
k is therefore

the phase of the noisy signal Yk. The Wiener estimator (3.22) attenuates the frequency

coefficients of the noisy speech with low signal-to-noise ratio, i.e. SNRk , σ2
X,k/σ

2
W,k ≪

1, while frequency components with high SNRk are essentially unchanged. The use of

Wiener filter in speech enhancement generally introduces little speech distortion, however,

as mentioned earlier, it produces much musical noise.

3.4 Bayesian estimators of the STSA

It has been shown that the spectral amplitude is perceptually more relevant than the phase

in speech processing [40,82]. It seems therefore more appropriate to find the estimate of the
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spectral amplitude rather than that of the complex spectrum. In this section, we present

Bayesian estimators of the STSA instead of the STFT.

The STFT of the noisy speech, clean speech and noise can be decomposed into their

amplitude and phase components as:

Yk = |Yk| ej∡Yk , (3.23)

Xk = Xke
jθk , (3.24)

Wk = |Wk| ej∡Wk . (3.25)

where the notation Xk , |Xk| and θk , ∡Xk is introduced for convenience. Since Yk, Xk

and Wk are STFT coefficients which are taken on finite windowed portion of the signal,

the corresponding magnitude values |Yk|, Xk and |Wk| are commonly given the special

terminology of short-time spectral amplitude (STSA) [3, 4]. Proceeding as in Section 3.2,

the Bayesian estimator of the STSA, X̂k, can be expressed as:

X̂ o
k = arg min

X̂k

∫ ∞

0

C(Xk, X̂k)fXk|Y k
(Xk|Yk)dXk. (3.26)

This estimator will be combined with the phase of the noisy speech to obtain the estimate

of the corresponding STFT coefficient:

X̂o
k = X̂ o

k ej∡Yk . (3.27)

In [4], Ephraim and Malah studied the estimation of the complex exponential phase

factor ejθk of the clean speech. Using a constrained MMSE approach, they show that the

optimal estimator of θk is the noisy phase of the clean speech, i.e. ∡Yk, itself. This justifies
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the use of ∡Yk in (3.27).

Let us now look at specific cost functions and the corresponding STSA estimators (3.26)

obtained when considering the Gaussian statistical model discussed in Section 3.2 for the

clean speech and noise.

3.4.1 MMSE STSA

Ephraim and Malah [4] proposed as cost function the squared error between the clean

speech STSA and its estimate:

C(Xk, X̂k) = (Xk − X̂k)
2. (3.28)

One could wonder what is the difference between the cost function (3.28) and the one

given by (3.20). This is illustrated in Fig. 3.3, which shows the length of the difference

between the STFT coefficients, i.e. lXk
, Xk − X̂k, versus the length difference between

the corresponding STSA, i.e. lXk
= Xk − X̂k. It can be observed that lXk

≥ lXk
.

Using (3.28) in (3.26), it can be shown that:

X̂ o
k = E{X k|Yk} (3.29)

=

∫ ∫

|Xk|fXk|Y k
(Xk|Yk)dXk (3.30)

Using Bayes rule, this can be expanded as:

X̂ o
k =

∫ ∫

|Xk|fY k|Xk
(Yk|Xk)fXk

(Xk)dXk
∫ ∫

fY k|Xk
(Yk|Xk)fXk

(Xk)dXk

(3.31)

This expression can be evaluated in closed form by considering the statistical model pre-

sented previously. Because the noise is additive (i.e. Y k = Xk + W k) and independent
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Fig. 3.3 Differences in length between STSA and STFT coefficients.

from the clean speech, it follows that:

fY k|Xk
(Yk|Xk) = fW k

(Yk − Xk) (3.32)

and therefore

X̂ o
k =

∫ ∫

|Xk|fW k
(Yk − Xk)fXk

(Xk)dXk
∫ ∫

fW k
(Yk − Xk)fXk

(Xk)dXk

(3.33)

Substituting the complex circular Gaussian PDF (3.15) and (3.16) into (3.33) and making

a change of coordinates from rectangular to polar (i.e. Xk = Xke
jθk) yields the MMSE

STSA estimator [4]:

X̂MMSE
k = Gk |Yk| (3.34)

Gk =

√
πυk

2γk

exp

(−υk

2

)

[

(1 + υk) I0

(υk

2

)

+ υkI1

(υk

2

)]

(3.35)

where Gk is the gain applied to the spectral amplitudes of the noisy speech, I0(·) and I1(·)
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are the modified Bessel functions of zero and first order respectively [83] and

υk =
ξk

1 + ξk

γk, ξk =
σ2

X,k

σ2
W,k

, γk =
|Yk|2
σ2

W,k

. (3.36)

The parameters ξk and γk in (3.36) are respectively interpreted as the a priori and a

posteriori Signal-to-Noise Ratio (SNR). The a priori SNR, ξk, acts as a long term estimator

of the SNR whereas an instantaneous SNR can be defined as:

γk − 1 =
|Yk|2 − σ2

W,k

σ2
W,k

. (3.37)

One can notice that the gain Gk (3.35) in the MMSE STSA estimator is a function of γk

and ξk only. Therefore, only these two values need to be evaluated to compute the estimate.

The estimation of these two parameters will be discussed in Section 3.5. Fig. 3.4 on p.45

shows the gain Gk of the MMSE STSA estimator (under the case β = 1)5 as a function

of the instantaneous SNR, γk − 1, for ξk = 0 dB. It is important to note that a smaller

gain Gk will remove more background noise but will also introduce more speech distortion.

Combined with the decision-directed approach to estimate ξk, which we will discuss later

in Subsection 3.5.1, the MMSE STSA estimator has a residual noise that is much whiter

than that of the Wiener estimator [4].

As observed from (3.35), the MMSE STSA estimator requires the computation of Bessel

functions which can be updated by table look-up and/or interpolation techniques. How-

ever, some computationally efficient alternatives to the MMSE STSA estimator have been

proposed in [84] that do not make use of Bessel functions. They are based on either max-

imum a posteriori (MAP) or MMSE estimation of the spectral power and lead to gains

5Parameter β will be explained in Subsection 3.4.3.
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similar to the ones obtained with the MMSE STSA estimator while having much simpler

expressions. The authors of [84] report an enhancement in speech quality similar to the one

obtained by the MMSE STSA estimator but with a much reduced computational demand.

3.4.2 MMSE log-STSA (LSA)

Based on the assumption that the human auditory system performs a logarithmic com-

pression of the STSA, and therefore that the logarithm of the STSA is more perceptually

relevant than the STSA [85], the MMSE of the logarithm of the STSA was proposed in [28].

Its associated cost function is given by:

C(Xk, X̂k) = [logz(Xk) − logz(X̂k)]
2 (3.38)

where logz(·) is the logarithm to some base z. When (3.38) is used in (3.26), we obtain:

X̂ o
k = exp[E{lnX k|Yk}]. (3.39)

which is independent of the base z chosen in (3.38) and where ln(·) is the natural logarithm.

Solving (3.39) with the previously mentioned statistical model leads to the MMSE log-STSA

estimator, referred to as LSA in this thesis, for which the associated gain is given by:

Gk =
υk

γk

exp







1

2

∞
∫

υk

e−t

t
dt







. (3.40)

Fig. 3.4 also shows the gain Gk of the LSA estimator (under the case β → 0+) as a

function of the instantaneous SNR, γk−1, for ξk = 0 dB. This estimator results in a slightly

higher speech distortion but lower residual noise than MMSE STSA. This can be explained
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by the higher suppression (i.e. smaller gain) provided by the LSA estimator [28] as can be

observed in Fig. 3.4. As for the MMSE STSA, the residual noise of the LSA estimator is

white when combined with the decision-directed approach to estimate ξk.

which we will discuss later in Subsection 3.5.1, the MMSE STSA estimator has a residual

noise that is much whiter than that of the Wiener estimator [4].

3.4.3 β-order STSA MMSE (β-SA)

The MMSE STSA estimator was generalized under the β-order STSA MMSE estimator

in [29], denoted by β-SA in this thesis6. The β-SA cost function is given by:

C(Xk, X̂k) = (X β
k − X̂ β

k )2 (3.41)

where the exponent β is a real parameter whose purpose is to control the associated esti-

mator gain function and, consequently, the trade-off between speech distortion and noise

reduction. Only the case β > 0 was considered in [29].

With (3.41) in (3.26), we have:

X̂ o
k =

β

√

E{X β
k |Yk}. (3.42)

for which the gain of the corresponding β-SA estimator is expressible as:

Gk =

√
υk

γk

[

Γ

(

β

2
+ 1

)

M

(

−β

2
, 1;−υk

)]1/β

(3.43)

6An equivalent estimator for the power spectra of the clean speech, X̂ 2

k
, was also derived in [30] and

termed Generalized MMSE.
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Fig. 3.4 β-SA estimator gain (20log Gk) versus instantaneous SNR, γk − 1,
for several β values (ξk = 0 dB).

In this expression, Γ(h) is the gamma function [83]

Γ(h) =

∫ ∞

0

th−1e−tdt (3.44)

and M(a, b; z) is the confluent hypergeometric function [83]

M(a, b; z) = 1 +
a

b

z

1!
+

a(a + 1)

b(b + 1)

z2

2!
+

a(a + 1)(a + 2)

b(b + 1)(b + 2)

z3

3!
+ ... (3.45)

As can be readily observed from (3.41), the β-SA estimator is equivalent to the MMSE

STSA estimator when β = 1. Furthermore, it was observed in [29] based on gain curve

analysis, that when β → 0+, the β-SA estimator corresponds to the LSA estimator. There-

fore, the MMSE STSA and LSA estimators appear to be subsets of the more general β-SA

estimator.

Fig. 3.4 shows the gain Gk as a function of the instantaneous SNR, γk −1, for the β-SA

estimator with several values of β and for the Wiener estimator (3.22) with ξk = 0 dB. As

can be observed, the β-SA estimator tends to the Wiener estimator when the instantaneous
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SNR is large. Moreover, when β decreases towards 0, the gain decreases and therefore the

estimator inevitably removes more noise but at the same time produces also more speech

distortion. You et al. [29] proposed adapting the value of β according to each frame’s SNR.

They assigned smaller values of β to frames having smaller SNRs, therefore reducing more

noise, and larger values of β to frames having larger SNRs, therefore limiting the speech

distortion for those frames. They argued that their method outperforms many existing

estimators including the MMSE STSA and LSA estimators.

Moreover, You et al. [86] have tried to render the cost function (3.41) more perceptually

significant by exploiting the masking properties of the ear. In fact, they proposed to modify

the values of β in the β-SA estimator according to both the values of the masking threshold

for each frequency and the frame SNR as given by the following empirical function:

βk,i = τ0 + τ1SNRi + τ2Ak,i + τ3SNRiAk,i (3.46)

where as before, k is the frequency index, i is the frame index, SNRi is the SNR for frame

i, Ak,i takes account for the masking threshold and τa, a ∈ {0, 1, 2, 3}, are empirically

determined coefficients. On the one hand, if the masking threshold is high, a large value

of β is chosen to limit the amount of speech distortion introduced; on the other hand, if

the masking threshold is low, they choose a low value of β to further reduce the noise.

As previously, they also choose a larger value of β for a frame with high SNR and vice

versa. In addition, the β values in [86] are constrained between 0.001 and 4. The resulting

estimator is found to surpass the LSA estimator.
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3.4.4 Weighted euclidian (WE)

Some speech distance measures, such as the well known Itakura-Saito measure, have been

known for a long time to be more perceptually relevant than others [87]. Loizou [6] studied

the use of several perceptually meaningful distance measures such as the weighted likeli-

hood ratio, the Itakura-Saito distance measure and one of its variants, the COSH distance

measure, which were used as cost functions in a Bayesian estimation setting. Additionally

he proposed a cost function that is based on the perceptually-weighted error criterion used

in speech coding which he termed weighted Euclidian (WE). We describe the WE estimator

here and the COSH in the next subsection.

Let us first look at the WE estimator whose cost function has the following form:

C(Xk, X̂k) = X p
k

(

Xk − X̂k

)2

(3.47)

where p is a real parameter. This cost function corresponds to the one of the MMSE STSA

estimator when p = 0. When (3.47) is used in (3.26), the latter reduces to:

X̂ o
k =

E{X p+1
k |Yk}

E{X p
k|Yk}

(3.48)

This expression can be evaluated in closed-form and the corresponding WE estimator has

the following gain:

Gk =

√
υk

γk

Γ
(

p+1
2

+ 1
)

Γ
(

p
2

+ 1
)

M
(

−p+1
2

, 1;−υk

)

M
(

−p
2
, 1;−υk

) . (3.49)

which is valid for p > −2.

The WE estimator takes advantage of the masking properties of the ear. In fact, for

p < 0, the cost function in (3.47) forces a better clean speech estimation in regions where

the STSA is smaller, and therefore less likely to mask noise remaining in the clean speech
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Fig. 3.5 WE estimator gain (20log Gk) versus instantaneous SNR, γk − 1,
for several p values (ξk = 0 dB).

estimate. Similarly to β in the β-SA estimator, p was also found to control the trade-off

between speech distortion and noise reduction [6].

Fig. 3.5 plots the gain Gk as a function of the instantaneous SNR, γk − 1, for the WE

estimator with several values of p and for the Wiener estimator (ξk = 0 dB). It can be

observed that a smaller value of p will produce a smaller gain and therefore more noise

reduction but also greater speech distortion. The value of p = −1 has been suggested

in [6] as a good compromise between the desired noise reduction and the speech distortion

introduced. It can also be seen in Fig. 3.5 that, as for the β-SA, the WE estimator tends

to the Wiener estimator for large instantaneous SNR; this was formally proven in [6].

3.4.5 COSH and weighted COSH (WCOSH)

The COSH distance measure is a variant of the well-known Itakura-Saito distortion measure

which, as opposed to the latter, is symmetric in the sense that C(Xk, X̂k) = C(X̂k,Xk). It

was also proposed in [6] as a cost function to be used in a speech enhancement Bayesian
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estimator. Its associated cost function is:

C(Xk, X̂k) =
1

2

(

Xk

X̂k

+
X̂k

Xk

)

− 1. (3.50)

A generalization of the COSH cost function, the weighted COSH (WCOSH), was also

proposed in [6] for which the cost function is:

C(Xk, X̂k) =

(

Xk

X̂k

+
X̂k

Xk

− 1

)

X q
k (3.51)

where q is a real parameter. The associated WCOSH estimator is obtained when using

(3.51) in (3.26) and is given by:

X̂ o
k =

√

√

√

√

E{X̂ q+1

k |Yk}
E{X̂ q−1

k |Yk}
. (3.52)

with the gain of the corresponding estimator being [6]:

Gk =

√
υk

γk

√

Γ
(

q+3
2

)

M
(

− q+1
2

, 1,−υk

)

Γ
(

q+1
2

)

M
(

− q−1
2

, 1,−υk

) (3.53)

which is valid for q > −1. In the case q = 0, the resulting estimator is identical to the

COSH estimator.

Fig. 3.6 shows the gain Gk of the WCOSH estimator as a function of the instantaneous

SNR, γk − 1, for several values of q and for ξk = 0 dB. Again, we can see that q will control

the trade-off between speech distortion and noise reduction since a smaller q will produce

a smaller gain Gk. As the β-SA and WE estimators, the WCOSH estimator also tends to

Wiener’s for large instantaneous SNR.
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Fig. 3.6 WCOSH estimator gain (20log Gk) versus instantaneous SNR, γk−
1, for several q values (ξk = 0 dB).

One major conclusion of the study in [6] was that the estimators which over-emphasized

the spectral peaks in the cost function, such as the MMSE STSA or WE with p > 0,

performed the worst. According to [6], this is due to the fact that those estimators produced

a small estimation error at spectral peaks where the noise is more likely masked while they

produced larger estimation errors in the spectral valleys. It was also noticed in [6] that the

estimators that emphasized spectral valleys, such as the WE with p < 0, performed the

best. In fact, these estimators implicitly exploit the auditory masking properties of the ear

since in this case, the large estimation errors near the spectral peaks are properly masked.

Among all studied estimators in [6], only the WE with a proposed value of p = −1, which

therefore emphasized the spectral valleys, outperformed the LSA estimator.

3.4.6 Summary of Bayesian STSA estimators

Table 3.1 summarizes the different Bayesian STSA cost functions discussed in this section

along with their corresponding gains Gk, the MMSE STSA gain Gk is expressed in Table

3.1 in a form equivalent to (3.35) where the Bessel functions are replaced by gamma and
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Table 3.1 Cost functions with corresponding gains Gk for several existing
Bayesian STSA estimators.

C(Xk, X̂k) Gk

MMSE STSA [4] (Xk − X̂k)
2

√
υk

γk
Γ(1.5)M (−0.5, 1;−υk)

LSA [28] (logXk − log X̂k)
2 υk

γk
exp

{

1
2

∫∞
υk

e−t

t
dt
}

COSH [6] 1
2

(

Xk

X̂k
+ X̂k

Xk

)

− 1
√

υk

γk

√

1
2

M(−0.5,1;−υk)
M(0.5,1;−υk)

β-SA [29] (X β
k − X̂ β

k )2
√

υk

γk

[

Γ(β
2

+ 1)M
(

−β
2
, 1;−υk

)]1/β

WE [6] X p
k (Xk − X̂k)

2
√

υk

γk

Γ( p+1
2

+1)
Γ( p

2
+1)

M(− p+1
2

,1;−υk)
M(− p

2
,1;−υk)

WCOSH [6]

(

Xk

X̂k
+ X̂k

Xk
− 1
)

X q
k

√
υk

γk

√

Γ( q+3
2 )M(− q+1

2
,1;−υk)

Γ( q+1
2 )M(− q−1

2
,1;−υk)

confluent hypergeometric functions.

3.5 Parameter estimation

The Bayesian estimators of the STSA presented in the previous section are function of two

common parameters: the a priori SNR ξk and the a posteriori SNR γk. In Subsection

3.5.1, we present methods to estimate ξk, while in Subsection 3.5.2, we present methods

for the estimation of γk.

3.5.1 A priori SNR estimation

We note from (3.36) and (3.37) that ξk can be obtained by either ξk = σ2
X,k/σ

2
W,k or

ξk = E{γk−1}. Accordingly, Ephraim and Malah [4] proposed a decision-directed approach
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to estimate ξk that combines these two alternative expressions:

ξ̂k,i = τ
X̂ 2

k,i−1

σ2
W,k,i−1

+ (1 − τ) max [γk,i − 1, 0] (3.54)

where X̂k,i−1 represents the STSA estimate at frequency k from a previous frame, σ2
W,k,i−1

is the variance of the noise at frequency k from a previous frame, γk,i is the a posteriori

SNR for the current frame and τ is a weighting parameter with typical values in the range

0.95 ≤ τ < 1. The max[·, ·] operator is introduced to remove the possibility of negative

values in the instantaneous SNR, i.e. γk,i − 1. This nonlinear smoothing procedure has

the great advantage of eliminating large variations across successive frames and therefore

reducing the musical noise [88]. However, it will respond slowly to an abrupt increase in

the instantaneous SNR. In fact, for the large values of τ typically used, ξ̂k,i is not well

estimated during the onset of speech. If the actual SNR varies quickly, ξ̂k,i will not be able

to adapt accordingly.

The decision-directed approach depends greatly on the STSA estimation of the previous

frame X̂k,i−1. The resulting bias, towards the STSA of the previous frame instead of that

of the current one, produces an annoying reverberation artifact in the STSA estimation

which is especially prominent when the overlap between frames is of 50% instead of the 75%

overlap used in [4]. In order to overcome this problem, Plapous et al. in [89] proposed a

two-step noise reduction approach were a gain function is first evaluated using the decision-

directed approach, this gain is then used to compute an estimation of the power spectral

density of the speech E{X 2
k,i} that is used to compute the a priori SNR ξk.

Other improvements to the decision-directed approach were also proposed in [27] and

[74]. In [27], the parameter τ in (3.54) is optimally derived by minimizing E{(ξ̂k,i −

ξ
k,i

)2|ξ̃k,i−1} where ξ̃k,i−1 = X̂ 2
k,i−1/σ

2
W,k,i−1. The authors report better speech enhance-



3 Overview of the Bayesian approach for speech enhancement 53

ment results than when using the original decision-directed approach. In [74], a noncausal

estimator of the a priori SNR is proposed. This estimator has access to subsequent noisy

speech samples. This added knowledge gives the estimator the advantage of being able to

better discriminate between speech onsets and noise irregularities than the decision-directed

approach in [4]. It demands however that the application can tolerate a certain amount of

delay.

3.5.2 A posteriori SNR and noise variance estimation

As given by (3.36), the a posteriori SNR is equal to γk = |Yk|2/σ2
W,k. Since |Yk|2 is the known

observation, only σ2
W,k needs to be estimated. The noise variance estimate is particularly

important in most single-channel speech enhancement approaches and not only in the

Bayesian approach.

If the noise is stationary, its statistics can simply be evaluated from any speech free

frame. The most straightforward method to evaluate the noise statistics is to identify a

time frame when only noise is present and estimate the noise statistics from that frame.

In order to identify frames where there is only noise, a voice activity detector (VAD) can

be used [90–93]. VAD’s are present in many speech codecs such as the EVRC [62].A VAD

detects the presence of speech in a noisy speech signal. One common assumption in VAD’s

is that the energy of the input signal will be higher when there is speech than when there is

only background noise. The energy can therefore be estimated and a threshold is set over

which it is decided that speech is present. VAD’s are therefore less accurate when the SNR

is low.

Alternatively, for non-stationary noises, the noise statistics need to be more frequently

updated. In that regard, many algorithms have also been proposed that use a soft-decision

approach where the noise is updated continually, i.e. whether speech is present or not,
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therefore not needing a VAD to detect speech-free periods. Some soft-decision approaches

[94,95] are based on the observation that the power spectral density estimate, even during

speech presence, frequently drops to values that are representative of the noise power level.

The associated algorithms therefore assume that the speech energy is close to or equal

to zero during speech pauses or in between words or syllables. Furthermore, since the

minimum value considered here will necessarily be smaller than the mean of the noise

power, the estimator is biased. A compensation scheme is therefore introduced in the

estimator to obtain an unbiased noise estimator.

In [96], the noise estimate is obtained by averaging past spectral power values and using

a smoothing parameter that is adjusted by the signal presence probability in subbands. The

presence of speech in subbands is determined by a minimum energy scheme similar to the

one in [94, 95]. This method is further improved in [97] where a two iteration procedure

is adopted. In the first iteration, a rough voice activity detection is performed in each

frequency band, then, smoothing in the second iteration is used to exclude relatively strong

speech components, making the minimum tracking during speech activity robust.

According to [98], both the methods of [95] and [97] use a finite temporal window that

can be quite long. This introduces some delay in the tracking of the noise statistics and

has the effect of introducing a slow response to rapidly increasing noise level under non-

stationary noise conditions. The authors of [98] propose an approach that does not suffer

from this drawback and where the noise variance estimate, σ̂2
W,k,i, is updated recursively

with the MMSE estimate of the current noise power:

σ̂2
W,k,i = τwσ2

W,k−1,i + (1 − τw)Di,k (3.55)

where Di,k is the MMSE estimate of |W k,i|2. They claim to adequately track fast changes
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in noise power levels up to 10 dB/s.

3.6 Summary

In this chapter, we presented an overview of the Bayesian approach for speech enhancement

with an emphasis on Bayesian STSA estimators in the frequency domain. In particular,

we exposed several Bayesian estimators of the STSA including the MMSE STSA, LSA,

β-SA, WE, COSH and WCOSH estimators. In order to gain a better understanding of

the properties of the class of Bayesian STSA estimators and, more importantly, to improve

their performance, new estimators will be presented in the remainder of this thesis that

extend and build upon those reviewed in this chapter.
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Chapter 4

Further analysis and extension of the

β-SA estimator

While providing insight into the operation of the β-SA estimator, the analysis in [29] only

considered the case β > 0 and relied on empirical observations in establishing a link between

the β-SA and LSA estimators. In this chapter, we extend the scope of the analysis in [29]

to address the above limitations.

In Section 4.1, we briefly recapitulate the underlying assumption and cost function of

the β-SA estimator for convenience to the reader. In Section 4.2, we first show that the

expression obtained for the β-SA estimator remains, in fact, valid for β > −2. We then

provide an interpretation and analysis of the estimator for β values in the range −2 < β < 0.

In Section 4.3, we provide an original formal mathematical proof of the equivalence between

the special case β → 0+ and the LSA estimator.
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4.1 Problem formulation

We start by reviewing briefly some elements of the β-SA estimator introduced in Section

3.4.3. In this chapter, and also in Chapters 5 and 6, we assume the additive noise model in

the STFT domain introduced in Section 3.1.2, which can be formulated for a given frame

as:

Yk = Xk + Wk (4.1)

where Yk, Xk and Wk denote the STFT coefficients of the noisy speech, clean speech and

noise respectively. As in Section 3.4, we wish to find the estimator X̂o
k = X̂ o

k ej∡Yk where

X̂ o
k is the estimator of the STSA coefficient of Xk and ∡Yk is the phase of Yk. In the

Bayesian formalism, X̂ o
k is obtained as the minimum solution to E{C(Xk, X̂k)}. The β-SA

cost function C(Xk, X̂k), defined in (3.41), is given by the following:

C(Xk, X̂k) = (X β
k − X̂ β

k )2 (4.2)

where the exponent β is a real parameter whose purpose is to control the associated esti-

mator gain function and, consequently, the trade-off between speech distortion and noise

reduction. For example, a value of β close to 1 will produce a gain Gk closer to 1 and there-

fore less noise reduction and speech distortion than a value close to 0 which will produce a

smaller gain.

The β-SA estimator was originally proposed in [29] where it was analyzed for values

of β > 0. However, it can be shown that the expression obtained therein for the β-SA

estimator remains valid for β > −2. These values of β may reveal some advantages in

terms of the quality of the corresponding enhanced speech over their positive β value

counterparts. Moreover, the special case β → 0+ was empirically shown to correspond to
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the LSA estimator (Subsection 3.4.2) in [29] through the comparison of gain curves. A

formal mathematical proof of that equivalence is missing.

4.2 The case β < 0

Let us start by showing that the expression for the β-SA gain given by (3.43) remains valid

for β > −2. To obtain the β-SA estimator, one needs to evaluate (3.42), repeated here for

convenience:

X̂ o
k =

β

√

E{X β
k |Yk}. (4.3)

Considering the statistical model described in Section 3.2, in which Xk obeys a Rayleigh

distribution, a general expression for the expectation appearing in (4.3) is obtained in [29]

as:

E{X β
k |Yk} =

∫∞
0

X β+1
k exp{−X 2

k /ςk}Io(2Xk

√

υk/ςk)dXk
∫∞

0
Xk exp{−X 2

k /ςk}Io(2Xk

√

υk/ςk)dXk

(4.4)

where Io(·) is the modified Bessel function of order zero, υk is defined in (3.36) and ςk =

(1/σ2
W,k + 1/σ2

X,k)
−1. To solve (4.4) requires the following relation as given by (6.631.1)

in [83]:

∫ ∞

0

xae−bx2

Jc(mx)dx =
mcΓ(a/2 + c/2 + 1/2)

2c+1b(a+c+1)/2Γ(c + 1)
M

(

a + c + 1

2
, c + 1;−m2

4b

)

(4.5)

where m > 0, a ∈ C, b ∈ C, c ∈ C and Jc(mx) is a Bessel function of the first kind with

Jc(jx) = jcIc(x). Eq. (4.5) is valid for ℜ(b) > 0 and ℜ(a + c) > −1 where ℜ(x) indicates

the real part of x.

It is shown in [29] that using (4.5) in both the numerator and denominator of (4.4) with
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appropriate parameter values, one can solve (4.4) and therefore obtain the β-SA estimator:

X̂ o
k = Gk|Yk| (4.6)

Gk =

√
υk

γk

[

Γ

(

β

2
+ 1

)

M

(

−β

2
, 1;−υk

)]1/β

(4.7)

where Γ(·) is the gamma function defined in (3.44), M(u, t; z) is the confluent hyperge-

ometric function defined in (3.45) and γk is defined in (3.36). In particular, to evaluate

the integral in the numerator of (4.4) requires the following parameter values in (4.5):

a = β +1, b = 1/ςk and c = 0. This implies that (4.7) is valid firstly for ℜ(1/ςk) > 0, which

is always true, and secondly for ℜ(β + 1) > −1 or equivalently β > −2. However, only

the range β > 0 was considered in [29]. In fact, there is no mention of possible negative β

values and, furthermore, the analysis and evaluation of the β-SA estimator was only done

for values of β > 0. Therefore, the study of the β-SA estimator for the case −2 < β ≤ 0

remains an open issue and will be the subject of the remainder of this chapter.

4.2.1 A normalization interpretation

For negative β values, we have that β = − |β| and the β-SA cost function (4.2), explicitly

expressed as a function of β, becomes:

C(Xk, X̂k; β) =

(

1

X |β|
k

− 1

X̂ |β|
k

)2

=

(

X̂ |β|
k −X |β|

k

X |β|
k X̂ |β|

k

)2

=
C(Xk, X̂k; |β|)
(

XkX̂k

)2|β| (4.8)
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From (4.8), we observe that using a negative value of β amounts to normalizing the cost

function for positive β, i.e. C(Xk, X̂k; |β|), by
(

XkX̂k

)2|β|
.

The denominator in (4.8) can be thought of as an approximation of the power spectrum

of the desired speech, E{X 2
k }, to which is applied an exponent 2 |β|. This normalization

thus penalizes the estimation error more heavily when the power spectrum is small, which

corresponds to spectral valleys, than when it is large, i.e. corresponding to spectral peaks.

More noise will likely be audible in the speech spectral valleys than in the speech spectral

peaks where it will more likely be masked by the speech. The β-SA estimator with β < 0

can therefore take advantage of the masking properties of the human ear by favoring a more

accurate estimation of the speech in the spectral valleys. This behavior is thus similar to

the one of the WE estimator with p < 0 (see Subsection 3.4.4).

4.2.2 Analysis of the β-SA estimator with β < 0

In this subsection, we first analyze the behavior of the gain in the β-SA estimator for β < 0

and then proceed with a study of the noise reduction and speech distortion introduced by

the corresponding estimator.

Gain versus instantaneous SNR

Fig. 4.1 (a) and (b) shows numerical plot of the β-SA gain (4.7) versus the instantaneous

SNR, γk − 1, for several values of β (β → 0, β = −0.5,−1 and −1.5) and for ξk = 0 dB

and ξk = 10 dB respectively. In connection with Fig. 3.4 for the case β > 0, we already

observed that the gain Gk always decreases as β decreases. From Fig. 4.1, we note that

this trend continues for negative values of β as well. However, while for β > 0 the gain is a

monotonically decreasing function of γk−1, it is not so anymore for β < 0. Furthermore, it

was noted in [29] that the β-SA gain Gk exceeded but converged to the Wiener filter gain
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Fig. 4.1 β-SA estimator gain (20log Gk) versus instantaneous SNR, γk − 1,
for several values of β < 0 (a) ξk = 0 dB and (b) ξk = 10 dB.

as the instantaneous SNR increased. We see that it is still the case for β < 0; however, the

β-SA gain can now become less than the Wiener filter’s gain.

Noise reduction versus speech distortion

As observed in Fig. 4.1, the gain of the β-SA estimator decreases as β decreases. Therefore,

for smaller β values, more noise reduction, but also more speech distortion should be

expected. In order to study the speech distortion and noise reduction properties of the

β-SA estimator over the extended range β > −2, we use the following speech distortion

metric, ηSD(Gk), and noise reduction metric, ηNR(Gk), in the frequency domain1:

ηSD(Gk) =
E
{

[Xk − GkXk]
2}

E{X 2
k }

(4.9)

ηNR(Gk) =
E{|Wk|2}

E
{

[Gk |Wk|]2
} (4.10)

1These metrics are adapted from their time domain counterparts in [70].
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Fig. 4.2 (a) Speech distortion η̂SD(Gk) vs. frequency (0 - 1000 Hz) (b) Noise
reduction η̂NR(Gk) vs. frequency (0 - 4000 Hz) (white noise, SNR = 0 dB).

where the clean speech and noise variances, σ2
X,k and σ2

W,k respectively, are given by (3.17).

In (4.9), ηSD(Gk) measures the normalized clean speech distortion energy and, therefore,

its value increases for increasing speech distortions. In (4.10), ηNR(Gk) computes the ratio

of the original noise power to the power of the residual noise in the enhanced speech, its

value increases for increasing noise reduction.

Fig. 4.2 plots estimations of ηSD(Gk) and ηNR(Gk), respectively η̂SD(Gk) and η̂NR(Gk),

versus the frequency in Hz for several β values (white noise, SNR = 0 dB). These estimations

were obtained by, firstly, computing the β-SA gain for each frame of 30 different sentences

and, secondly, performing an average of the arguments of the expectations in (4.9) and

(4.10) over all frames of the 30 sentences. As expected, we observe that both the speech

distortion and noise reduction increase as β is decreased from β = 1 ( corresponding to the

MMSE STSA estimator) to the extended case β = −1. The case β → 0 (corresponding to

the LSA estimator) exhibits an intermediate behavior.

The use of negative β thus enables an extension of the trade-off between speech distor-
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tion and noise reduction as compared with the strictly positive β case.

4.3 The limiting case β → 0

In [29] it is argued that the β-SA estimator with β → 0+ is equivalent to the LSA estimator

(see Subsection 3.4.2). However, this is based solely on the empirical comparison of gain

curves versus instantaneous SNR obtained from the LSA estimator on the one hand and

from the β-SA estimator with a value of β close to zero on the other hand. In this section,

we provide an original mathematical proof that the β-SA estimator with β → 0 is indeed

equivalent to the LSA estimator.

We begin by expressing the β-SA estimator gain (4.7) in the form:

Gk =

√
υk

γk

exp

{

1

β
ln

[

Γ

(

β

2
+ 1

)

M

(

−β

2
, 1;−υk

)]}

. (4.11)

Using (8.342.1) from [83]:

ln Γ(z + 1) = −γz +
∞
∑

l=2

(−1)l z
l

l
ζ(l), |z| < 1 (4.12)

where γ is Euler’s constant and ζ(l) is Weierstrass’s zeta function (see (8.17) in [83]), we

have that:

Gk =

√
υk

γk

exp

{

−γ

2
+

1

β

∞
∑

l=2

1

l

(−β

2

)l

ζ(l) +
1

β
ln M

(

−β

2
, 1;−υk

)

}

. (4.13)
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Therefore,

lim
β→0

Gk =

√
υk

γk

e−γ/2 lim
β→0

exp

{

ln M
(

−β
2
, 1;−υk

)

β

}

(4.14)

=

√
υk

γk

e−γ/2 exp

{

lim
β→0

∂
∂β

M
(

−β
2
, 1;−υk

)

M
(

−β
2
, 1;−υk

)

}

(4.15)

where L’Hopital’s rule has been used. Using the power series definition of the confluent

hypergeometric function in (3.45), it can be shown that

lim
β→0

M

(

−β

2
, 1;−υk

)

= 1 (4.16)

and also (see [28]) that

lim
β→0

∂

∂β
M

(

−β

2
, 1;−υk

)

= −1

2

∞
∑

r=1

(−υk)
r

r!

1

r
. (4.17)

Substituting (4.16) and (4.17) in (4.15), we obtain:

lim
β→0

Gk =

√
υk

γk

exp

{

−γ

2
− 1

2

∞
∑

r=1

(−υk)
r

r!

1

r

}

. (4.18)

Using (8.214.1) from [83] which states that

−
∞
∫

a

e−t

t
dt = γ + ln(a) +

∞
∑

r=1

(−a)r

r!

1

r
, a > 0 (4.19)



4 Further analysis and extension of the β-SA estimator 66

(4.18) becomes:

lim
β→0

Gk =

√
υk

γk

exp







1

2



ln(υk) +

∞
∫

υk

e−t

t
dt











(4.20)

=
υk

γk

exp







1

2

∞
∫

υk

e−t

t
dt







(4.21)

which is the LSA gain as given by (3.40).

4.4 Concluding remarks

In this chapter, we extended the analysis of the β-SA estimator, originally presented in [29]

for the case β > 0, to negative values of β, i.e. β > −2. We showed that negative values

of β had a normalization effect on the original β-SA cost function. Moreover, decreasing

β below 0 was found to produce an increase in the noise reduction and speech distortion,

therefore enabling an extension of the trade-off between speech distortion and noise reduc-

tion. Finally, we proved mathematically that the case β → 0 indeed corresponds to the

LSA estimator.

It will be seen in Section 8.3 that the β-SA estimator with β = −1 slightly outperforms

the well known MMSE STSA and LSA estimators in terms of the Perceptual Evaluation of

Speech Quality (PESQ) and that the corresponding overall informal Mean Opinion Score

(MOS) is found to be better than both MMSE STSA and LSA for white noise.

It is to be noted that there might be alternate closed-form solutions for β ≤ −2.

However, based on the experimental results in Section 8.3, it would seem that those values

would not be interesting for speech enhancement. In fact, the speech distortion increases

as the value of β decreases and values of −2 < β < −1.5 already produce much speech
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distortions.

The work in Section 4.2 was presented in [99], while the proof in Section 4.3 appeared

as a part of [100].
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Chapter 5

Weighted β-SA estimator with

auditory-based parameter values

As described in Chapter 3, the WE estimator [6] incorporates a weighting factor while the

β-SA estimator [29] incorporates a power law. The parameters accounting for these effects

can be given perceptual interpretations that were not considered in [6,29]. In this chapter,

we first derive and analyze a new family of Bayesian STSA estimators that combines the

power law of the β-SA estimator and the weighting factor of the WE estimator, which we

call the weighted β-SA family of estimators (Wβ-SA). We then present an original frequency

dependent selection of the corresponding parameters based on perceptual considerations.

In Section 5.1, we briefly review the assumptions and cost functions of the β-SA and WE

estimators and provide some motivation for the work performed in this chapter. In Section

5.2 we derive and analyze the proposed Wβ-SA family of estimators while in Section 5.3,

the choice of perceptually significant parameter values is discussed.
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5.1 Problem formulation and motivation

In this chapter we use the additive noise model in the STFT domain described in Section

3.1.2. The noisy speech is given by Yk = Xk + Wk where Xk and Wk denote the STFT

coefficients of the clean speech and noise respectively. As in Section 3.4, we wish to find

the estimator X̂o
k = X̂ o

k ej∡Yk where X̂ o
k is the estimator of the STSA coefficient of Xk and

∡Yk is the phase of Yk. In the Bayesian formalism X̂ o
k is obtained as the minimum solution

to E{C(Xk, X̂k)}.

A possible avenue for choosing an appropriate cost function C(Xk, X̂k), and one that

we will explore in this chapter, is to consider the human hearing mechanism. As discussed

in Subsection 3.4.1, the MMSE STSA estimator is obtained when the chosen cost function

is the squared error between the estimated and actual clean speech STSA [4]. Based on

the assumption that the human auditory system performs a compression of the speech

signal amplitude [85], the MMSE of the logarithm of the STSA (MMSE log-STSA or LSA)

is proposed in [28]. Moreover, in [101, 102], masking thresholds are introduced in the

Bayesian estimator’s cost function to make it more perceptually significant while in [6],

several perceptually relevant distortion metrics are considered as cost functions.

One of the estimators which was found to yield the best result in [6] is based on a

perceptually-weighted error criterion used in speech coding. In this approach, the error

spectrum is weighted by a filter which is the inverse of the original speech spectrum. To

this end a generalization to the MMSE STSA cost function is proposed [6], i.e.:

C(Xk, X̂k) = X p
k

(

Xk − X̂k

)2

(5.1)

which is the WE cost function defined in (3.47) and repeated here for convenience. In (5.1),
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the parameter p controls the trade-off between speech distortion and noise reduction; the

solution for the corresponding WE estimator is valid for p > −2 [6].

The β-SA estimator is another generalization of the MMSE STSA. Its cost function,

repeated below for convenience,

C(Xk, X̂k) = (X β
k − X̂ β

k )2 (5.2)

and associated gain were studied in detail in Chapter 4. Based on this analysis, in particu-

lar, the range of the parameter β is taken as β > −2. While it was not interpreted as such

in [29], the exponent β can be seen as performing a nonlinear compression on the STSA.

It is known that the human ear performs a dynamic range compression [54] and, in fact,

power laws have been used in auditory models to account for that compression [103].

To take advantage of the perceptual or auditory interpretation that can be given to

both the parameters p and β, we propose here a new family of Bayesian STSA estimators

that combines the weighting factor of the WE estimator and the power law of the β-SA

estimator which we call the Weighted β-SA family of estimators (Wβ-SA). Moreover, we

propose appropriate frequency dependent values for the parameters entering in the Wβ-SA

cost function, i.e. β and α (the latter is related to the WE estimator parameter p). They

are based on characteristics of the human auditory system among which are the compressive

nonlinearities of the cochlea, the perceived loudness and the ears masking properties. The

experimental evaluation of the new estimator will be addressed in Chapter 8.

5.2 The Wβ-SA family of estimator

In this section, we derive the Wβ-SA family of estimator. To do so, we seek to combine

the β-SA and WE cost functions (respectively (5.2) and (5.1)) into a single cost function.
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5.2.1 Derivation of the Wβ-SA estimator

The proposed cost function combining the desirable features of the cost functions in β-SA

and WE is:

C(Xk, X̂k) =

(

X β
k − X̂ β

k

X α
k

)2

(5.3)

where we used α = −p/2 for convenience and β and α are real parameters whose ranges

are discussed below.

By using (5.3) in (3.26), repeated here for convenience:

X̂ o
k = arg min

X̂k

∫ ∞

0

C(Xk, X̂k)fXk|Yk
(Xk|Yk)dXk (5.4)

we obtain:

X̂ o
k =

(

E{X β−2α
k

∣

∣Yk}
E{X−2α

k

∣

∣Yk}

) 1
β

. (5.5)

Using the Gaussian statistical model introduced in Section 3.2 where the clean speech and

noise STFT coefficients are i.i.d. complex circular Gaussian random variables with zero

mean, we know from [28] and Appendix A in [6] that:

E
{

Xm
k

∣

∣Yk

}

=
υ

m/2
k

γm
k

Γ
(m

2
+ 1
)

M
(

−m

2
, 1;−υk

)

|Yk|m (5.6)

where m > −2. As in previous chapters, Γ(a) and M(a, b; z) are the gamma and confluent

hypergeometric function, respectively defined in (3.44) and (3.45), and γk and υk are defined

in (3.36). Using (5.6) in (5.5) with the appropriate values of the parameter m (i.e. m =

β − 2α for the numerator and m = −2α for the denominator), we can show that:

X̂ o
k = Gk|Yk|
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where

Gk =

√
υk

γk

(

Γ
(

β
2
− α + 1

)

M
(

α − β
2
, 1;−υk

)

Γ (−α + 1) M (α, 1;−υk)

)1/β

(5.7)

for β > 2(α−1), α < 1. We will denote this new family of estimators as the Weighted β-SA

(Wβ-SA). To ensure that this estimator corresponds in fact to a minimum of E{C(Xk, X̂k)}

we verified that the second derivative of the integral in (5.4) at X̂ o
k is indeed positive, which

is the case.

5.2.2 Analysis of the Wβ-SA estimator

Gain versus instantaneous SNR

The Wβ-SA estimator gain, Gk, in (5.7) depends on the parameters of the cost function

(i.e. β and α) as well as on the a posteriori SNR, γk, and the a priori SNR, ξk, since υk is

a function of γk and ξk (see (3.36)). Fig. 5.1 and Fig. 5.2 present gain curves as a function

of the instantaneous SNR, γk − 1, for several β and α values and for ξk = 0 dB and ξk =

10 dB respectively.

As can be observed, the estimator’s gain decreases when α increases and increases when

β increases. The gain of the Wβ-SA estimator thus behaves similarly as that of the β-SA

and WE estimators. Since the proposed estimator generalizes both the β-SA and WE

estimators, the gains of the later can, in fact, be obtained by setting α = 0 for β-SA and

β = 1, α = −p/2 for WE.

High instantaneous SNR gain

It was shown in [6] that the WE estimator tends to a Wiener estimator as the instantaneous

SNR, γk − 1, tends to infinity. In fact, the more general Wβ-SA estimator also tends to a

Wiener filter in that case.
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Fig. 5.1 Wβ-SA estimator gain (20 log(Gk)) versus instantaneous SNR, γk−
1, for ξk = 0 dB and (a) α = 0.5 and β ∈ {−1,→ 0, 1/3, 1} (b) α ∈ {0, 0.5, 0.9}
and β = 1/3.
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Fig. 5.2 Wβ-SA estimator gain (20 log(Gk)) versus instantaneous SNR, γk−
1, for ξk = 10 dB and (a) α = 0.5 and β ∈ {−1,→ 0, 1/3, 1} (b) α ∈ {0, 0.5, 0.9}
and β = 1/3.

As γk → ∞, we have from (3.36) that υk → ∞ and from (13.1.5) in [104] that:

lim
υk→∞

M(−m

2
, 1;−υk) =

υ
m/2
k

Γ(m
2

+ 1)
. (5.8)
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In the limit γk → ∞, using (5.8) in (5.7) with the appropriate values of the parameter m,

we thus have:

lim
γk→∞

Gk =
ξk

1 + ξk

(5.9)

which is a Wiener filter gain. Interestingly, since a Wiener filter results from the MMSE

estimator of the STFT components as noted in Section 3.3, the use of the Wβ-SA cost

function, as that of the WE and β-SA, is therefore equivalent to C(Xk, X̂k) = (Xk − X̂k)
2

for a high instantaneous SNR.

5.3 Choosing the β and α values based on auditory

considerations

The parameter values of speech enhancement algorithms have traditionally been chosen

based on frame SNR such that a higher gain is obtained for higher SNR and vice versa [1,29].

This had the effect of removing less noise at higher SNR to prevent speech distortion and

more noise at low SNR.

Rather than focusing on the frame’s SNR, we choose to consider the human auditory

system to motivate the selection of appropriate values for β and α; in which case β and α will

be fixed for all frames. In the first part of this section, we will present two different choices

for β according to, firstly, the perceived loudness of sound and, secondly, the compressive

nonlinearities of the cochlea. In the second part of this section, we will choose values of α

considering the masking properties of the human auditory system. These different values

will be compared through experimental results in Section 8.4 to assess their relevance in

speech enhancement.
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5.3.1 Choosing appropriate β values

A) Loudness considerations

In the LSA estimator, the logarithm of the spectral amplitude was considered. This was

based on the fact that the MMSE of the logarithm of the spectral amplitude was thought to

be more perceptually relevant than the spectral amplitude itself. By its very definition [54],

loudness is more perceptually relevant than the sound’s intensity. Therefore, a cost function

which would consider the difference in terms of the perceived loudness would seem preferable

to cost functions which consider the difference in terms of the sound intensity. Power

laws have been used in the past to model the nonlinear relation between the intensity of

sound and its perceived loudness [105,106]. An exponent of 1/3 (i.e. cubic root) has been

used in [106] to approximate the nonlinear transformation between intensity and perceived

loudness. An appropriate value for the exponent β in the Wβ-SA cost function (5.3) would

therefore be β = 1/3. This value will be further assessed experimentally in Section 8.4.

B) Compressive nonlinearities

An important factor that plays a role in the perception of loudness is the dynamic range

compression performed by the ear [54]. This dynamic range compression is thought to be

due to many factors among which are the cochlea’s compressive nonlinearities. As men-

tioned in Subsection 2.2.2, compression rates of approximately 0.2 dB/dB were measured

at the base of the mammalian cochlea (i.e. for high frequencies1) for intensities between 40

and 90 dB SPL [53]2. These compression rates can be easily incorporated in the proposed

Bayesian cost function (5.3). In fact, β can be directly interpreted as a compression rate,

1The characteristic frequencies of the tones in the corresponding studies varied from 8 kHz to 33 kHz
depending on the species [53].

2As a comparison, conversational speech is at 60 dB SPL.
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in dB/dB, of the input spectral amplitudes and thus set to corresponding physiologically

meaningful values. Therefore, instead of motivating the value of β strictly in terms of

loudness perception, we can also look at the physiology of the cochlea, which can explain

to some extent the loudness perception of the human auditory system, and propose other

relevant values for this parameter.

The cochlea’s compressive nonlinearities are well documented and accepted at high fre-

quencies, however, there is no consensus on the degree of nonlinearity at lower frequencies,

i.e. at the apex of the cochlea [53, 54]. There would seem to be less compression at lower

frequencies than at higher frequencies. In fact, some research even fail to show any com-

pression at low frequencies, i.e. they observe a compression rate of 1 dB/dB, or even show

an expansion, i.e. a compression rate > 1 dB/dB [53]. Here, we will assume no compressive

nonlinearity at the low frequency limit. Since the compression rates will be different at low

and high frequencies, the values of β will therefore be frequency dependent, which will be

denoted by adding the subscript k to β, i.e. βk.

To propose adequate values for the βk’s, we need to define the cochlea’s rate of compres-

sion for every frequency k. Since for low frequency we consider the absence of compressive

nonlinearity, we will choose βk at the low frequency limit as βlow = 1. As indicated pre-

viously, the compressive nonlinearity at high frequencies is thought to have a compression

rate of approximately 0.2 dB/dB. For high frequencies, it therefore seems plausible to set

the high frequency limit of the βk value as βhigh = 0.2.

Physiological experiments on the cochlear rate of compression at intermediate frequen-

cies, i.e. between the apex and the base of the cochlea, are extremely scarce [54]. Therefore

we propose to interpolate βk for intermediate frequencies based on the following approach.

We consider the fact that each frequency corresponds to a position on the basilar membrane

following the so-called tonotopic mapping [53]. One such tonotopic mapping, proposed
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in [107], is given by:

dk =
1

ρ
log10

(

fk

A
+ 1

)

, k = 1 . . .
N

2
− 1 (5.10)

where dk is the position on the basilar membrane in mm, ρ = 0.06 mm−1 is an empirical

scaling constant that depends on the basilar length, and is thus specific to a species, and

A = 165.4 Hz is a scaling parameter allowing for the frequency to be expressed in Hz [107].

Moreover, fk, in (5.10), is the frequency in Hz corresponding to spectral component k, i.e.

fk = kFs/N where Fs is the sampling frequency set to 16 kHz in this study and N is the

DFT size typically set to 512 here if no zero padding is used.

We will therefore consider the compression rate to vary linearly with respect to the

position dk on the basilar membrane, corresponding to frequency fk as given by the tono-

topic mapping. In fact, the compressive nonlinearity is thought to be caused by the active

process of the outer hair cells and it is known that the hair cells follow a tonotopic or-

ganization where they are optimally sensitive to a particular frequency according to their

position on the basilar membrane [51]. The complete set of βk values are thus derived by

linearly interpolating between βlow and βhigh according to dk:

βk = dk
(βhigh − βlow)

1
ρ
log10

(

Fs

2A
+ 1
) + βlow. (5.11)

Fig. 5.3 represents the different values of βk as a function of the frequency.

C) Discussion

In the first part of this section we proposed the use of an exponent value β = 1/3 as a simple

model for approximating the nonlinear transformation between intensity and perceived
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Fig. 5.3 Values of βk and β = 1/3 versus frequency.

loudness. In the second part, we proposed frequency dependent β values based on the

compressive nonlinearities of the cochlea. These are plotted in Fig. 5.3.

As can be seen from the gain curves in Fig. 5.1 and Fig. 5.2, the chosen values of βk

in Fig. 5.3, results in a decrease in the estimator’s gain for high frequencies. This will

therefore have for effect to limit the speech distortions at lower frequencies by keeping a

higher gain and increasing the noise reduction at higher frequencies by decreasing the gain

value.

It is interesting to note that more elaborate loudness models lead to a pattern of com-

pression similar to the one described in the second part of this section. In fact, in the

loudness model presented in [108], an exponent of 0.2 is used at high frequencies to per-

form compression while it is increased for lower frequencies.

5.3.2 Choosing appropriate α values

The WE estimator takes advantage of the masking properties of the human ear. In fact, one

of the motivations for deriving the WE estimator was to favor a more accurate estimation
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of smaller STSA since they are less likely to mask noise remaining in the clean speech

estimate. This was done by choosing a fixed value of p that increased the weight of smaller

STSA in the cost function (e.g. p = −1).

Since most of the speech energy is located at lower frequencies [109], higher frequencies

should contain mainly small STSA. Therefore, it would be relevant to further increase the

weights of the smaller STSA in the cost function for higher frequencies. This can be done

by increasing α for higher frequencies, or equivalently decreasing p since α = −p/2. We

therefore propose, instead of using a fixed value of α as in [6], to modify α as a function of

frequency, which we will denote by αk, increasing its value for higher frequencies.

To do so, we need to choose appropriately the values of αk for each frequency. In [6], the

value of p = −1, corresponding here to α = 0.5, has been suggested as a good compromise

between the desired noise reduction performed by the estimator and the speech distortion

introduced. This value can also be regarded as being a good compromise between increasing

the weight of smaller STSA while keeping an appropriate estimation error for larger STSA.

Since the main part of the speech energy, which will contain most of the larger STSA,

is approximately located below 2000 Hz [109] (which also includes most of the first two

formants [50]), we will choose the value of α = 0.5 up to 2000 Hz. For higher frequencies,

we want to further increase the weights of smaller STSA. Since, on average, the total speech

energy decreases as frequency increases, we therefore propose to linearly increase the value

of α as a function of the frequency. The Wβ-SA estimator restricts α to α < 1, based on

experimentations, we choose α = 0.9 as the high frequency limit. Choosing higher values

(e.g. α = 0.99) did not introduce significant noise reduction while unnecessarily distorting
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Fig. 5.4 Values of αk versus frequency [Hz].

the speech. Therefore αk will be given by:

αk =











αlow fk ≤ 2 kHz

(fk−2000)(αhigh−αlow)

Fs/2−2000
+ αlow else

(5.12)

where αlow = 0.5 and αhigh = 0.9. This relation is sketched in Fig. 5.4.

As can be seen again from the gain curves in Fig. 5.1 and Fig. 5.2, the chosen values

of αk in Fig. 5.4, results in a decrease in the estimator’s gain for high frequencies, as does

the βk values.

5.4 Concluding remarks

In this chapter, we proposed a new family of Bayesian STSA estimators for speech enhance-

ment, the Wβ-SA, where the cost function includes both a power law and a weighting factor.

The corresponding estimator’s gain parameters (i.e. β and α) were chosen according to

characteristics of the human auditory system. It is found that choosing the parameters in
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this way results in a decrease of the estimator gain at high frequencies. This frequency

dependence of the gain improves the noise reduction while limiting the speech distortion.

Relevant experiments were conducted to evaluate the new Wβ-SA family of estimators

with the proposed choices for β and α; the results are presented in Section 8.4. In particular,

it will be shown, using both objective and subjective performance measures, that the new

estimators achieve better enhancement performance, especially at low SNR values, when

compared to existing Bayesian STSA estimators such as the MMSE STSA, LSA and WE

estimator.

The work in this Chapter appeared as a journal paper in [100] and was presented in

part in [110] and [111].
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Chapter 6

Analytical generalization of Bayesian

STSA estimators

The different cost functions presented in the previous chapters all have a structure involving

a weighted squared difference between a monotonic function of the estimated and actual

clean speech STSA. In this chapter, we perform an analytical generalization of existing

Bayesian STSA estimators and develop a general family of Bayesian STSA estimators.

This will allow for a unification of several existing Bayesian STSA estimators and will also

provide a better understanding of this class of estimators.

In Section 6.1, we briefly review the problem framework and expose the similarities

between existing cost functions. In Section 6.2, we develop and present the Generalized

Weighted family of STSA estimators (GWSA) and in Section 6.3, we investigate some of

its features.
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6.1 Similarities between Bayesian STSA estimators

In this section, we examine the different cost functions that have been proposed recently,

in the context of Bayesian STSA estimation, in order to reveal their similar structure.

First let us briefly review the problem formulation. We use again here the additive noise

model in the STFT domain described in Section 3.1.2 where the noisy speech is given by

Yk = Xk + Wk; Xk and Wk denoting the STFT coefficients of the clean speech and noise

respectively. We wish to find the estimator X̂o
k = X̂ o

k ej∡Yk where ∡Yk is the phase of Yk and

X̂ o
k is the estimator of the STSA coefficient of Xk. The latter is obtained as the minimum

solution to E{C(Xk, X̂k)} where C(Xk, X̂k) is a suitably chosen cost function.

The β-SA (see Subsection 3.4.3) and WE (see Subsection 3.4.4) estimators were pro-

posed as generalizations of the MMSE STSA estimator. Their cost functions (respectively

(3.41) and (3.47)) have the following forms1:

Cβ-SA(Xk, X̂k) , (X β
k − X̂ β

k )2 (6.1)

CWE(Xk, X̂k) , X p
k (Xk − X̂k)

2 (6.2)

where β > −2 and p > −2 respectively. In Chapter 5, the WE and β-SA estimators were

combined in the Wβ-SA estimator for which the cost function is given by (5.3), repeated

here for convenience:

CWβ-SA(Xk, X̂k) ,

(

X β
k − X̂ β

k

X α
k

)2

. (6.3)

where β > 2(α − 1), α < 1.

A variant of the well-known Itakura-Saito distortion measure, the COSH measure, was

1In this chapter, for ease of reading, we identify each cost function by a subscript denoting the corre-
sponding estimator.
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proposed in [6] as a cost function for Bayesian STSA estimation (see Subsection 3.4.5). This

cost function can be shown to have a similar structure as the cost functions enumerated

above. In fact, we have from (3.50) that:

CCOSH(Xk, X̂k) ,
1

2

(

Xk

X̂k

+
X̂k

Xk

)

− 1 =
(Xk − X̂k)

2

2XkX̂k

. (6.4)

Moreover, a generalization of the COSH cost function, the WCOSH, was also proposed

in [6] and is given by (3.51) which is repeated here:

CWCOSH(Xk, X̂k) ,

(

Xk

X̂k

+
X̂k

Xk

− 1

)

X q
k . (6.5)

where q > −1. The WCOSH cost function can also be expressed in a similar form as the

previous cost functions. In fact, we can modify the WCOSH cost function in the following

form:

C ′
WCOSH(Xk, X̂k) = CWCOSH(Xk, X̂k) −X q

k =
(Xk − X̂k)

2

X 1−q
k X̂k

(6.6)

without any modification on the final estimator since the cost function will be minimized

with respect to X̂k in (3.26) to obtain the Bayesian STSA estimator. In fact, the term

X q
k subtracted from CWCOSH(Xk, X̂k) will contribute the constant term E{X q

k

∣

∣Yk} to the

Bayesian objective function in (3.26).

In all the cost functions presented above, a similar structure can be highlighted. It

involves a squared difference between a monotonic power function of Xk and X̂k, this

difference being further weighted by a function of either Xk or X̂k or both.
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6.2 GWSA family of estimators

In this section, we generalize the common structure of the cost functions highlighted above

and derive the corresponding closed-form solution.

6.2.1 A generalized cost function

We propose the following cost function:

CGWSA(Xk, X̂k) =

(

X β
k − X̂ β

k

X α
k X̂

η
k

)2

(6.7)

where the squared difference (X β
k − X̂ β

k )2 is now normalized by both X−2α
k and X̂−2η

k ; β, α

and η are all real parameters for which the domains will be specified in the next subsection.

The Bayesian family of STSA estimators obtained by minimizing the cost function (6.7)

will be called the Generalized Weighted family of STSA estimators (GWSA).

The MMSE STSA, LSA, COSH, WE, β-SA, Wβ-SA and WCOSH estimators will then

be all particular cases of the GWSA family of estimators with parameter values α, β and

η as given in the corresponding columns of Table 6.1. We note that, in contrast to the

existing cost functions, the cost function in (6.7) features a new parameter, η, that acts

only on the estimated clean speech STSA, X̂k.
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Table 6.1 GWSA parameter values (β, α and η) corresponding to several
existing Bayesian STSA estimators.

Estimator Reference β α η

MMSE STSA [4], Subsection 3.4.1 1 0 0

LSA [28], Subsection 3.4.2 → 0 0 0

COSH [6], Subsection 3.4.5 1 0.5 0.5

β-SA [29], Subsection 3.4.3 β 0 0

WE [6], Subsection 3.4.4 1 −p/2 0

WCOSH [6], Subsection 3.4.5 1 (1 − q)/2 0.5

Wβ-SA Section 5.2 β α 0

6.2.2 Derivation of the GWSA family of estimators

The Bayesian estimator corresponding to the cost function in (6.7) is obtained by finding

the X̂k that minimizes the expectation of that given cost function, i.e.

X̂ o
k = arg min

X̂k

E{CGWSA(Xk, X̂k)} (6.8)

= arg min
X̂k

∫ ∞

0

(

X β
k − X̂ β

k

X α
k X̂

η
k

)2

fXk|Yk
(Xk|Yk)dXk (6.9)

where (6.7) has been used. Evaluating the first derivative of the integral in (6.9) with

respect to X̂k and setting the result equal to zero, we get:

(2η − β)X̂ β−1−2η
k E{X β−2α

k

∣

∣Yk} + (β − η)X̂ 2β−1−2η
k E{X−2α

k

∣

∣Yk}

− ηX̂−1−2η
k E{X 2β−2η

k

∣

∣Yk} = 0. (6.10)
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We notice that (6.10) has a quadratic form in X̂ β
k :

X̂−1−2η
k (aX̂ 2β

k + bX̂ β
k + c) = 0 (6.11)

where the constants

a = (β − η)E{X−2α
k

∣

∣Yk} (6.12)

b = (2η − β)E{X β−2α
k

∣

∣Yk} (6.13)

c = −ηE{X 2β−2η
k

∣

∣Yk}. (6.14)

Eq. (6.11) has trivial solutions at X̂ o
k = 0 or X̂ o

k → ∞, depending on the values of η and

β, and two non-trivial solutions obtained as the roots of aX̂ 2β
k + bX̂ β

k + c:

X̂ o
k =

(−b ±
√

b2 − 4ac

2a

)1/β

. (6.15)

We discard the trivial solutions, which are not interesting for the current problem, and

consider the solutions in (6.15).

Using the Gaussian statistical model introduced in Section 3.2, where the clean speech

and noise STFT coefficients are i.i.d. complex circular Gaussian random variables with zero

mean, we know from [28] and Appendix A in [6] that:

E
{

Xm
k

∣

∣Yk

}

=
υ

m/2
k

γm
k

Γ
(m

2
+ 1
)

M
(

−m

2
, 1;−υk

)

|Yk|m (6.16)

where m > −2. As in previous chapters, Γ(a) and M(a, b; z) are the gamma and confluent

hypergeometric function, respectively defined in (3.44) and (3.45), and the SNR parameters

γk and υk are defined in (3.36). Using (6.16) in (6.12) - (6.14) and solving for the two
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non-trivial solutions in (6.11), we finally obtain the following expression for the Bayesian

estimator corresponding to the proposed GWSA cost function (6.7):

X̂ o
k = Gk|Yk| (6.17)

Gk =

√
υk

γk

(−b′ ±
√

b′2 − 4a′c′

2a′

)

1
β

(6.18)

where the parameters:

a′ = (β − η)Γ(−α + 1)M(α, 1;−υk) (6.19)

b′ = (2η − β)Γ

(

β

2
− α + 1

)

M

(

α − β

2
, 1;−υk

)

(6.20)

c′ = −ηΓ(β − α + 1)M(α − β, 1;−υk). (6.21)

From the restriction on m in (6.16), we have that α < 1 and β > 2(α − 1), and since a′

cannot be equal to 0 in (6.18), we also have that β 6= η. Moreover, we need b′2−4a′c′ ≥ 0 to

avoid complex gains. Similar restrictions may also apply to the term inside the parenthesis

in (6.18)2, depending on the value of β.

We evaluated the second derivative of the integral in (3.14) with respect to X̂k to verify

that the solutions in (6.18) are minimums. The result showed that the positive sign solution

of (6.18) is a minimum if β > 0 and the negative sign solution is a minimum if β < 0. The

chosen value of β therefore determines which of the positive or negative sign solution of

(6.18) is appropriate.

2In fact, e.g. for β = 2, we need to have (−b′ ±
√

b′2 − 4a′c′)/2a′ > 0.
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6.3 Study of the GWSA family of estimators

In this section, we perform an analysis of the GWSA gain (6.18). We first analyze the

behavior of the gain when plotted versus the instantaneous SNR, γk − 1, and then derive

its value for high instantaneous SNR.

6.3.1 Gain versus instantaneous SNR

The GWSA gain depends on the parameters of the cost function (i.e. β, α and η) as well

as on the parameters common to the previous Bayesian STSA estimators, namely the a

posteriori SNR γk and the a priori SNR ξk, previously defined in (3.36).

Fig. 6.1 presents gain curves as a function of the instantaneous SNR, γk − 1, for a fixed

ξk = 0 dB while in Fig. 6.2, ξk = 10 dB. In Fig. 6.1 (a) and Fig. 6.2 (a) we set β = 1

and show the gain curves for several α and η values while in Fig. 6.1 (b) and Fig. 6.2 (b)

we set α = 0 and show the gain curves for several β and η values. The case where η = 0

corresponds to the Wβ-SA estimator for which similar gain curves can be found in Fig. 5.1

and Fig. 5.2.

As can be observed in Fig. 6.1 and Fig. 6.2, the gain decreases when α increases,

increases when η increases and generally increases when β increases. In fact, for some

parameter values, the gain rather decreases as β increases (e.g. α = 0 and η = 0.8 in

Fig. 6.1 (b) and Fig. 6.2 (b)). Contrary to the existing estimators discussed previously,

which all lead to a similar set of gain curves, the GWSA family of estimators provides with

more flexibility in terms of achievable gain curves through the parameter η. In fact, with

carefully chosen parameters, a steeper transition from high to low instantaneous SNR (e.g.

Fig. 6.1 (b) and Fig. 6.2 (b) with α = 0, β → 0, η = 0.8) or an increase in the gain between

γk − 1 = −5 dB and 10 dB (e.g. Fig. 6.1 (b) and Fig. 6.2 (b) with α = 0, β = 0.79,
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Fig. 6.1 GWSA estimator gain (20 log(Gk)) versus instantaneous SNR, γk−
1, with ξk = 0 dB for: (a) β = 1 and several α and η values; (b) α = 0 and
several β and η values.
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Fig. 6.2 GWSA estimator gain (20 log(Gk)) versus instantaneous SNR, γk−
1, with ξk = 10 dB for: (a) β = 1 and several α and η values; (b) α = 0 and
several β and η values .

η = −0.65) can be obtained. Care must be taken when choosing the parameters since an

appropriate set of parameters for a given ξk may result in a complex gain for another value

of ξk.
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6.3.2 High instantaneous SNR gain

It was shown in Section 5.2 that the Wβ-SA estimator tends to the Wiener filter when the

a posteriori SNR γk tends to infinity. In fact, all estimators belonging to the GWSA family

converge to the Wiener filter in the limit γk → ∞. Indeed, under this condition, we have

from (3.36) that υk → ∞ and from from (13.1.5) in [104] that

lim
υk→∞

M(−m

2
, 1;−υk) =

υ
m/2
k

Γ(m
2

+ 1)
. (6.22)

In the limit γk → ∞, using (6.22) in (6.19) - (6.21), (6.18) becomes:

lim
γk→∞

Gk =

√
υk

γk

[

υ
β/2
k

(

(β − 2η) ±
√

β2

2β − 2η

)] 1
β

. (6.23)

Using (3.36), (6.23) for both the positive sign solution (with β > 0) and negative sign

solution (with β < 0, i.e. β = −|β|) can easily be shown to simplify to:

lim
γk→∞

Gk =
ξk

1 + ξk

(6.24)

which is the well-known Wiener filter gain.

All the members of the proposed GWSA family of Bayesian estimators, which include

the β-SA, WE, WCOSH and Wβ-SA estimators, share the following common features:

• they span a wide range of gains at low instantaneous SNR depending on the different

values of their respective parameters,

• they converge to the Wiener estimator for larger instantaneous SNR’s.

While specific values of the η parameter could yield some advantage in terms of speech
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enhancement in some environments, the main contribution of this chapter is more in the

unification of the different Bayesian STSA estimators and the theoretical analysis that can

be derived from it.

6.4 Concluding remarks

In this chapter, we first noted that several existing Bayesian STSA cost functions for speech

enhancement are similarly structured. We therefore proposed an analytical generalization

of the corresponding estimators as the GWSA family of estimators. The latter incorporates

the parameters present in other existing estimators (e.g. α and β) but also features a new

parameter: η. These parameters control the shape of the estimator’s gain curve as a

function of the instantaneous SNR. In contrast to the other parameters, η acts only on

the estimated clean speech STSA. It is found that, for appropriate parameter values, η

yields an added flexibility in terms of achievable gain curves when compared to existing

Bayesian STSA estimators. Finally, we also showed that all the estimators belonging to

the new estimator family tend to a Wiener filter for high instantaneous SNR. This work

thus allowed a unification of several existing Bayesian STSA estimators and, moreover,

also provided a better understanding of this general class of estimators. The work in this

chapter appeared in [112].



95



96

Chapter 7

Multi-dimensional Bayesian STSA

estimators allowing correlated

frequency components

In the traditional Bayesian STSA estimation approach used in the previous chapters,

the spectral components are assumed uncorrelated. However, this assumption is inex-

act since some correlation is present in practice. In this chapter, we investigate a multi-

dimensional Bayesian STSA estimator that assumes correlated frequency components in

digitized speech. Since the closed-form solution of this optimum estimator is not readily

available, we alternatively derive closed-form expressions for an upper and a lower bound on

the desired estimator. Using these bounds, we propose a new family of speech enhancement

estimators.

In Section 7.1, we provide some motivation for the estimators developed in this chapter.

In Section 7.2 we elaborate on the correlation that exists between the frequency components

of digitized speech. Section 7.3 presents the desired multi-dimensional STSA estimator that



7 Multi-dimensional estimators allowing correlated frequency components 97

allows for correlated frequency components and develops the above mentioned lower and

upper bounds as well as the proposed family of estimators. Section 7.4 studies the prox-

imity between the upper and lower bounds and addresses the estimation of the associated

correlation matrices.

7.1 Motivation

In the previous chapters, we considered an additive noise model

Yk = Xk + Wk. (7.1)

for a particular frame where Yk, Xk and Wk denoted the STFT of the noisy speech, clean

speech and noise respectively. We also defined Xk = Xke
jθk where Xk > 0 is the STSA

and θk ∈ [−π, π) is the associated phase. The goal in that traditional approach used in

the previous chapters is then to obtain the estimator of the STSA, X̂k, as a function of the

noisy observations Yk, which minimizes the expectation of a given cost function C(Xk, X̂k):

X̂ o
k = argmin

X̂k

E{C(Xk, X̂k)}. (7.2)

This estimator is then combined with the phase of the noisy speech, ∡Yk, to yield the

estimator of the complex STFT X̂k = X̂ke
j∡Yk .

The estimators of the STSA obtained through (7.2) have shown some advantages over

estimators of the STFT such as the well known Wiener filter (3.22) [37]. In fact, one

desirable feature of Bayesian STSA estimators, when combined with the decision-directed

approach for the estimation of ξk, is to produce a residual background noise that is whiter

than the residual musical noise produced by the traditional Wiener estimator [88].
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In traditional Bayesian STSA estimation approaches, it is always assumed that the dif-

ferent spectral components of the clean speech STFT are uncorrelated so that the different

frequency components of the noisy speech can be processed independently as in (7.2). This

assumption is however inexact as there are some sources of correlation between the spectral

components [113]. Firstly, the fundamental frequency of voiced speech has harmonics that

are inherently correlated. Secondly, the finite temporal extension of the analysis window

used in short-time processing introduces some correlation between adjacent frequencies.

A multi-dimensional MMSE estimator of the complex STFT coefficients that assumes

correlated frequency components has recently been studied in [113]. This work focuses on

obtaining an accurate estimation of the clean speech correlation matrix which is required

in the solution of the underlying MMSE estimation problem. The resulting estimator

is shown to be advantageous over several existing estimators, including a Wiener filter

assuming uncorrelated frequency components.

On the one hand, Bayesian estimators of the STSA have been found to yield some

advantages over Bayesian estimators of the complex STFT components. On the other hand,

STFT estimators considering correlated frequency components yield better results than

estimators not considering such correlation. Therefore, it appears that the consideration of

correlated frequency components in Bayesian STSA estimation might lead to even superior

performance. However, this avenue has apparently not been considered in the recent speech

and audio literature.

In this chapter, we first investigate a multi-dimensional Bayesian STSA estimator that

considers the spectral components of digitized speech to be correlated. Since a closed-form

solution for such an estimator is not readily available, we alternatively develop closed-form

expressions for a lower and an upper bound on the desired estimator. Based on those

bounds, we propose a family of speech enhancement estimators being characterized by a
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scalar parameter 0 ≤ γ ≤ 1, with γ = 0 corresponding to the lower bound and γ = 1 to

the upper bound. Knowledge of the clean speech and noise correlation matrices is needed

to implement the proposed estimators. Since digitized speech has some correlation that is

present only in voiced parts, we also modify the clean speech correlation matrix to give it

a full structure in voiced sections and a diagonal structure in unvoiced sections.

The following notation is used in this chapter: for any vector A = [ak] ∈ R
N×1 and any

positive real b, we define A[b] = [ab
k]; for any vector A ∈ C

N×1, we define |A| = [|ak|]; for

any matrix A ∈ C
N×N we define diag{A} as the column vector containing the diagonal

elements of matrix A; IN is the N × N identity matrix.

7.2 Correlation between the frequency components

In practice, and in contrast with the traditional assumptions used in the development of

the estimators presented in the previous chapters, there is correlation between the different

short-time spectral components of a speech signal. This correlation is due to different

factors including:

• Use of window in frame-based processing : Indeed, the use of a finite analysis window

function ha[n] in the computation of the STFT in (3.3) introduces some correlation

between adjacent frequency components. This is due to the spectral smearing phe-

nomenon which is a known effect of the windowing process [49].

• Harmonic structure of voiced speech: Voiced speech is characterized by the vibration

of the vocal cords at a fundamental frequency F0 and has several harmonics at mul-

tiples of F0 [50] (see Section 2.1 for a brief review of the human speech production

system). The frequencies corresponding to these different harmonics will therefore be

inherently correlated.
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Fig. 7.1 Mean sample autocorrelation function |r̄(l)|/|r̄(0)| versus the phys-
ical frequency shift fsh = lFs/N in Hz for the vowel part of the male spoken
word “hood”.

To illustrate some of the correlation that exists between the spectral components in

a speech signal, we conducted some experiments using several utterances at a sampling

frequency of Fs = 16000 Hz, using two different frame lengths (N = 128, N = 512) and a

75% overlap between frames. For each frame i, the following sample correlation function

was computed:

ri(l) =
1

N − l

N−1−l
∑

k=0

(Xk,i − X̄i)(Xk+l,i − X̄i)
∗ (7.3)

where l ∈ {0, 1, . . . , N − 1} and X̄i = 1
N

∑N−1
k=0 Xk,i is the sample mean. The mean sample

correlation

r̄(l) =
1

Nf

Nf−1
∑

i=0

ri(l) (7.4)

where Nf is the total number of frames in the studied utterance was further evaluated.

In Fig. 7.1, we show |r̄(l)|/|r̄(0)| versus the physical frequency shift fsh = lFs/N in

Hz for the vowel part of the male spoken word “hood” obtained from [114]. We observe

that correlation is higher for lower values of l, i.e. between nearby frequencies. In the case
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N = 512 (for which the resolution in frequency is finer) we can also observe correlations

at multiples of ∼ 125 Hz, which corresponds to the fundamental frequency of the speaker

in this experiment. We also noticed, through a different set of experiments not shown

here, that evaluating correlations for the STSA instead of the STFT yielded an even higher

degree of correlation.

Based on these observations, we see that the different spectral components are indeed

correlated. The estimators following the traditional uncorrelated approach are thus sub-

optimal.

7.3 Family of multi-dimensional STSA estimators allowing

correlated frequency components

In this section, we proceed to obtain a multi-dimensional clean speech STSA estimator that

assumes correlated frequency components. Defining Y = [Y0 Y1 · · · YN−1]
T , it follows from

(7.1) that:

Y = X + W, (7.5)

where X = [X0 X1 · · · XN−1]
T and W = [W0 W1 · · · WN−1]

T are respectively the clean

speech vector and the noise vector of the corresponding STFT coefficients. We also define

the STSA vector X = [X0 X1 · · · XN−1]
T and the phase vector θ = [θ0 θ1 · · · θN−1]

T . We

assume that X and W are independent, zero-mean and circular Gaussians with probability

density functions:

fX(X) = 1
πN det(RX)

e−XHRX
−1X, (7.6)

fW(W) = 1
πN det(RW)

e−WHRW
−1W. (7.7)
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In these expressions RX = E{XXH} and RW = E{WWH} are the correlation matrices

of the clean speech and of the noise respectively, superscript H indicates the conjugate

transpose and RW > 0 (positive definite) is assumed. In the previous chapters, it is assumed

that RX and RW are diagonal matrices, i.e. the spectral components are uncorrelated. In

this chapter, we do not enforce such diagonality constraint. Our model therefore considers

possible frequency correlations in the clean speech and noise.

We want to evaluate the MMSE estimator of X :

X̂
o

= argmin
X̂

E{‖X − X̂‖2} (7.8)

where the minimum is over all possible functions X̂ ≡ X̂ (Y) of the observation vector Y.

We note that the cost function in (7.8), i.e. C(X , X̂ ) , ‖X − X̂‖2, considers all the STSA

frequency components jointly. Using matrix calculus, we can show that (7.8) leads to:

X̂
o

= E{X |Y} (7.9)

i.e. the N -dimensional conditional expectation of X given the complete vector of observa-

tions Y. This estimator can then be combined with the phase of the noisy speech, for each

frequency, to yield the estimator of X:

X̂o = [X̂ o,s
0 ej∡Y0 , · · · , X̂ o,s

N−1e
j∡YN−1 ]T . (7.10)

where superscript s is used to distinguish these STSA estimators from those obtained using

(7.2).

Unfortunately and in contrast to the scalar case, a closed-form expression for (7.9) is

not readily available. Since the X̂ o,s
k are positive real quantities, we approach the problem
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of finding a realizable approximation to (7.9) by first obtaining tractable upper and lower

bounds, X̂ o
U,k and X̂ o

L,k respectively, such that X̂ o
L,k < X̂ o,s

k < X̂ o
U,k. Based on the obtained

bounds, we will then propose a parameterized family of estimators.

7.3.1 Lower bound

Using the triangle inequality for integration [115], we can show that:

|E{Xk|Y}| ≤ E{Xk|Y}. (7.11)

As a lower bound on the desired estimator (7.9), we therefore propose X̂ o
L,k = |E{Xk|Y}|

or equivalently:

X̂
o

L = |E{X|Y}| (7.12)

where the X̂ o
L,k’s are the elements of the N -dimensional column vector X̂

o

L. Under the

Gaussian statistical model for the clean speech and noise presented previously, the term

E{X|Y} is the MMSE estimator of X, which is known to be equal to [113]:

E{X|Y} = X̂MMSE = GMMSEY (7.13)

where the MMSE gain matrix GMMSE is:

GMMSE , RX(RX + RW)−1. (7.14)



7 Multi-dimensional estimators allowing correlated frequency components 104

For future reference, it is also convenient to express GMMSE in the following form, which

can be obtained by the application of the matrix inversion lemma [116]:

GMMSE , (RX
−1 + RW

−1)−1RW
−1. (7.15)

A lower bound on the desired estimator is therefore:

X̂
o

L =
∣

∣GMMSEY
∣

∣. (7.16)

Note that in the special case of uncorrelated frequency components (i.e. the traditional

framework), RX and RW in (7.14) are diagonal matrices. In that case, combining (7.16)

with the phase of the noisy speech yields:

X̂k =
σ2

X,k

σ2
X,k + σ2

W,k

Yk (7.17)

where σ2
X,k = [RX]kk = E{X 2

k } and σ2
W,k = [RW]kk = E{|Wk|2}. The processing of each

frequency is therefore decoupled and the corresponding operation amounts to a standard

Wiener filter as in (3.22).

7.3.2 Upper bound

Using Jensen’s inequality [117], we have for a real convex function ϕ(·) that:

ϕ(E{Xk|Y}) ≤ E{ϕ(Xk)|Y}. (7.18)
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If we set ϕ(a) = a2, we obtain E{Xk|Y}2 ≤ E{X 2
k |Y} and,

E{Xk|Y} ≤
√

E{X 2
k |Y} (7.19)

which is also a special case of Lyapunov’s inequality [38]. As an upper bound on the desired

estimator (7.9), we therefore propose X̂ o
U,k =

√

E{X 2
k |Y} or equivalently:

X̂
o

U = E{X [2]|Y}[1/2] (7.20)

where the X̂ o
U,k’s are the elements of the N -dimensional column vector X̂

o

U . We next derive

a closed-form expression for E{X 2
k |Y}.

Using a Bayesian formalism we have:

E{X 2
k |Y} =

∫

· · ·
∫

|Xk|2fY(Y|X)fX(X)dX
∫

· · ·
∫

fY(Y|X)fX(X)dX
. (7.21)

We observe from (7.5) that:

fY(Y|X) = fW(Y − X). (7.22)

Using (7.6), (7.7) and (7.22) in (7.21) we obtain:

E{X 2
k |Y} =

∫

· · ·
∫

|Xk|2e{YHRW
−1

X+XHRW
−1

Y−XH(RW
−1+RX

−1)X}dX
∫

· · ·
∫

e{YHRW
−1

X+XHRW
−1

Y−XH(RW
−1+RX

−1)X}dX
(7.23)

To evaluate (7.23), we need to transform the multiple integrals into products of single

integrals. To do so, we make use of the following eigenvalue decomposition:

UΛUH = RW
−1 + RX

−1 (7.24)
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where U is the unitary matrix of eigenvectors, i.e. UHU = IN , and Λ is the diagonal

matrix containing the corresponding eigenvalues. Furthermore, we perform the following

change of variables: V = UHX. Since U is unitary, the associated Jacobian is equal to 1

and (7.23) thus becomes:

E{X 2
k |Y} =

∫

· · ·
∫

|UkV|2e{ỸHV+VHỸ−VHΛV}dV
∫

· · ·
∫

e{ỸHV+VHỸ−VHΛV}dV
(7.25)

where we define Uk as the kth line of U and

Ỹ , UHRW
−1Y. (7.26)

Since UkV is a scalar, we have:

UkV =
N−1
∑

r=0

UkrVr (7.27)

where Ukr is the krth entry of matrix U and Vr is the rth entry of vector V. Using (7.27),

we can now write (7.25) in a form comprising only scalars:

E{X 2
k |Y} =

∑N−1
r=0

∑N−1
t=0 U∗

ktUkr

∫

· · ·
∫

V ∗
t Vr

∏N−1
m=0[g(Vm)dVm]

∏N−1
m=0

∫

g(Vm)dVm

(7.28)

where we define the positive real scalar function g(Vm) = eỸ ∗

mVm+V ∗

mỸm−|Vm|2λm for compact-

ness and λm is the mth diagonal element of matrix Λ.

Using (6.631.1), (8.411.1) and (9.212.1) from [83], we can evaluate the integrals in (7.28)
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and obtain (see Appendix A):

E{X 2
k |Y} =

N−1
∑

r=0

N−1
∑

t=0

U∗
ktUkr

Ỹ ∗
t Ỹr

λtλr

+
N−1
∑

p=0

|Ukp|2
λp

. (7.29)

This last equation can also be equivalently written as:

E{X 2
k |Y} = UkΛ

−1ỸỸHΛ−1UH
k + UkΛ

−1UH
k . (7.30)

which, in turn, using the notation introduced previously, can be expressed in a more com-

pact form as:

E{X [2]|Y} = diag{UΛ−1ỸỸHΛ−1UH + UΛ−1UH}. (7.31)

Using (7.24) and (7.26) along with the fact that diag{AAH} = |A|[2] for any A ∈ C
N×1,

we have:

E{X [2]|Y} = |(RW
−1 + RX

−1)−1RW
−1Y|[2] + diag{(RW

−1 + RX
−1)−1}. (7.32)

In light of (7.15), we notice that the entries of the first term in (7.32) are equal to the

squared magnitudes of the entries of X̂MMSE in (7.13) and that the second term is sim-

ply diag{GMMSERW}. Finally, using (7.20), the desired upper bound is obtained as the

following simple expression:

X̂
o

U = (|GMMSEY|[2] + diag{GMMSERW})[1/2]
. (7.33)

Since the upper bound includes the lower bound and an additional positive term, it will

obviously be greater than the lower bound.
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7.3.3 Proposed family of estimators

The true estimator X̂ o,s
k is smaller than X̂ o

U,k and greater than X̂ o
L,k. Based on the expressions

of the derived bounds X̂ o
L,k in (7.16) and X̂ o

U,k in (7.33) we therefore propose the following

family of estimators:

X̂
o

γ = (|GMMSEY|[2] + γ diag{GMMSERW})[1/2] (7.34)

where 0 ≤ γ ≤ 1. We have that X̂
o

L ≤ X̂
o

γ ≤ X̂
o

U with the limit cases:

X̂
o

γ =











X̂
o

U if γ = 1

X̂
o

L if γ = 0.

(7.35)

As in (7.10), the spectral amplitude estimators X̂
o

L, X̂
o

U and X̂
o

γ are then combined with

the phase of the noisy speech to obtain the corresponding complex spectrum estimators

X̂o
L, X̂o

U and X̂o
γ respectively.

7.4 Other considerations

7.4.1 Upper and lower bound proximity analysis

In this section, we study the proximity between the lower and upper bounds. Since X̂ o
U,k

and X̂ o
L,k are both positive terms and X̂ o

U,k > X̂ o
L,k, we consider the vector

B = (X̂
o

U

[2] − X̂
o

L

[2]
)./ diag{RX} (7.36)

as a proximity measure where ./ indicates an element-wise division. Each element Bk of

vector B is therefore a difference of squared values normalized by σ2
X,k = E{X 2

k }. From
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(7.14), (7.16) and (7.33), we have :

B = diag{GMMSERW}./ diag{RX} (7.37)

= diag{RX(RX + RW)−1RW}./ diag{RX}. (7.38)

Therefore, the second term in (7.33) dictates how tight are the bounds. Interestingly, this

term does not depend on Y (however, in practice, the estimation of RX does).

Uncorrelated frequencies

To gain some insight into the behavior of the proximity vector B, let us first consider

uncorrelated frequency components. In that case, the kth entry of B reduces to:

Bk =
σ2

W,k

σ2
X,k + σ2

W,k

=
1

1 + SNRk

(7.39)

where SNRk = σ2
X,k/σ

2
W,k. For a high SNRk, we have Bk → 0, while for a low SNRk Bk → 1.

Therefore, the bounds will be tighter as the SNRk gets higher.

Correlated frequencies

We next consider the case of correlated frequency components. B can be written in a form

resembling (7.39):

B = diag{RX(IN + RW
−1RX)−1}./ diag{RX} (7.40)

Observe that RX(IN +RW
−1RX)−1 = RX(RW

1/2(RW
−1/2RXRW

−1/2 + IN)RW
1/2)−1RW

and let µmax = µN ≥ · · · ≥ µ1 = µmin denote the eigenvalues of RW
−1/2RXRW

−1/2. On the

one hand, if µmin >> 1 (high SNR), then B → diag{RW}./ diag{RX} while on the other
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hand, if µmax << 1 (low SNR), then B → 1N×1, where 1N×1 denotes an N -dimensional

column vector of ones. Therefore, again, the bounds will be tighter as the SNR gets higher.

7.4.2 Estimating RX and RW

To compute X̂
o

L (7.16), X̂
o

U (7.33) or X̂
o

γ (7.34), one needs an estimation of matrices RX

and RW. We shall denote the estimates of RX, RW and RY for the ith frame by R̂X,i,

R̂W,i and R̂Y,i respectively.

In this work, we use a decision-directed type of approach similar to [4] to estimate RX.

Since RX = E{XXH} and RX = RY −RW for uncorrelated X and W, we have for frame

i:

R̂X,i = τX̂i−1X̂
H
i−1 + (1 − τ)ρ(R̂Y,i − R̂W,i) (7.41)

where X̂i−1 is given by (7.10) for frame i − 1, 0 ≤ τ ≤ 1 is a forgetting factor and ρ(·) is

a thresholding function of its matrix argument. In fact, the terms on the diagonal of R̂X

should be positive, for an N × N matrix A, we therefore define the lmth element of ρ(A)

as:

[ρ(A)]lm =











max([A]lm, 0) if l = m

[A]lm else
(7.42)

The max(·, ·) operator is therefore applied only on the main diagonal of matrix R̂Y,i −

R̂W,i. This approach may result, in practice, in a non-negative definite R̂X,i. A more

formal approach, based on eigenvalue decomposition where the eigenvalues are forced to be

positive, was also experimented to enforce a non-negative definite constraint. In practice,

it was observed that this approach gives similar results to the proposed simplified approach

(7.41)-(7.42), however, at a much higher computational cost.

In addition to the estimator R̂X,i (7.41), we also experimented with a modified structure
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for the estimation of RX,i that takes into account the nature of the current frame, i.e.

voiced vs. unvoiced. Indeed, since the correlation due to the harmonics of the fundamental

frequency is only present in the voiced parts of speech, it would be appropriate to consider

a diagonal R̂X,i in unvoiced parts and a full (i.e. unconstrained) R̂X,i in voiced parts. A

similar approach was used in [113] where a hard threshold is used to distinguish between

voiced and unvoiced speech sections. Here, we propose a soft threshold approach in which

the constrained estimator of RX,i, denoted R̂δi

X,i, is computed as:

R̂δi

X,i = δiR̂X,i + (1 − δi) diag{R̂X,i}. (7.43)

where R̂X,i is given by (7.41) and 0 ≤ δi ≤ 1 is a soft threshold parameter accounting for

voiced or unvoiced frames. We use the zero-crossing rates (ZCR) in yi[n] to distinguish

between voiced and unvoiced parts since voiced parts are primarily low frequencies and

unvoiced parts are primarily high frequencies [50]. A ZCR voiced threshold tv is used,

below which the frame is judged to be voiced and δi is set to 1. A ZCR unvoiced threshold

tu > tv is also used, above which the frame is judged to be unvoiced and δi is set to 0. For

ZCR between tu and tv, intermediate values of δi are used. Specifically, the value of δi is

evaluated as follows:

δi =



























1 ZCR ≤ tv

tu−ZCR
tu−tv

tv < ZCR < tu

0 ZCR ≥ tu.

(7.44)

The clean speech estimators using R̂δi

X,i (7.43) to estimate RX,i will be denoted by the

additional subscript δ, i.e. X̂δMMSE, X̂o
δL, X̂o

δU and X̂o
δγ , otherwise, the estimator will use

R̂X,i (7.41). We refer to R̂δi

X,i as the soft threshold structured estimator as opposed to the

unstructured R̂X,i.
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To compute X̂
o

L (7.16), X̂
o

U (7.33) or X̂
o

γ (7.34), we also need to estimate RW,i. To do

so, we first obtain a time-domain correlation matrix, R̂w,i = MH
w,iMw,i where Mw,i is a

matrix whose columns are shifted versions of the time-domain noise data vector (see (8.20)

of [118]). Using the N × N Fourier transform matrix F, we then obtain:

R̂W,i = FR̂w,iF
H . (7.45)

Note that while R̂w,i is a Toeplitz matrix, R̂W,i will not be Toeplitz in general. RY,i is

estimated similarly.

7.5 Concluding remarks

In this chapter we considered a multi-dimensional Bayesian STSA estimator for speech

enhancement that assumes correlated frequency components. Since its closed-form solution

is not readily available, we approached the problem of finding approximations to that

estimator from a bounding perspective. We obtained convenient upper and lower bounds

and proposed a family of estimators based on these bounds that is parameterized by 0 ≤

γ ≤ 1.

In Section 8.5, results are presented for wideband PESQ, LLR and informal listening

experiments. They demonstrate noticeable advantages, especially at high SNR, of the pro-

posed estimators over existing estimators that consider uncorrelated frequency components,

such as the MMSE STSA and Wiener, as well as than an MMSE estimator of the complex

STFT coefficients that assumes correlated frequency components. In particular, X̂o
δγ offers

a good compromise between speech quality and background noise quantity and whiteness.

The work in this chapter was submitted as a journal paper [119] and presented in part

in [120].
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Chapter 8

Experimental results

In this chapter, we evaluate the estimators developed in this thesis using subjective and

objective experimental approaches and compare them with existing relevant estimators.

The subjective evaluations include informal listening experiments as well as MOS and

MUSHRA measures, while the objective measures include segmental SNR, LLR and PESQ.

In Section 8.1, we explain the methodology used to create the noisy speech signals

to which the speech enhancement estimators will be applied. In Section 8.2, we present

the MOS and MUSHRA subjective measures as well as the segmental SNR, LLR and

PESQ objective measures. Experimental results for the extended β-SA estimator with

β > −2 (Chapter 4), the Wβ-SA estimator with auditory-based parameter values (Chapter

5) and the multi-dimensional STSA estimator allowing for correlated frequency components

(Chapter 7) are presented in Section 8.3, 8.4 and 8.5, respectively.
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8.1 Creating the noisy speech

The noisy speech signals used in the evaluation of the proposed estimators were constructed

by adding noise to clean speech sentences following the additive model presented in Chapter

3. Results using three types of noises from the Noisex database [121], representative of

different situations, are presented in this chapter: a so-called white noise, a pink noise and

an aircraft cockpit (buccaneer-1) noise. These were available at a sampling frequency of

20kHz and downsampled to either 8kHz or 16kHz, depending on the experiment, using the

Matlab function resample. The average spectrum magnitudes of those different noises are

shown in Fig. 8.1. As can be observed, the white noise has a somewhat flat magnitude,

the pink noise magnitude is higher at low frequencies while the cockpit noise is somewhat

similar to pink noise but has a significant peak around 2800 Hz. We considered these noises

to be quasi-stationary. We chose not to use babble noise and other highly non-stationary

noises since the performance of the speech enhancement algorithms would then highly rely

on the noise statistics estimation which is not the main topic of this thesis.
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Fig. 8.1 Average noise spectrum magnitudes [dB] versus frequency [Hz] for
white, pink and cockpit noises (16 kHz sampling frequency).
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Thirty (30) Harvard sentences [122] were used in the experiments (3 males, 3 females,

5 sentences each); see Annexe B for a complete listing of the sentences. These clean speech

sentences had an original sampling frequency of 48kHz and, depending on the experiment,

were either downsampled at 8kHz or 16kHz, using again the Matlab function resample.

We added some zero padding at the beginning and end of each sentences to simulate silence

periods of 0.75 sec; the total sentences lengths were approximately 4 sec.

The noisy speeches were constructed by adding the scaled samples of the selected noise

to the desired clean speech Harvard sentences. The noise level was adjusted to obtain

the desired SNR which was evaluated based on the clean speech’s “active speech level”

according to ITU-T P.56 [123, 124]. In fact, the active speech level takes into account the

silence periods of the clean speech and therefore allows the experimenter to adjust the noise

power to obtain a more accurate SNR.

8.2 Overview of subjective and objective performance measures

In order to evaluate the performances of speech enhancement estimators, several approaches

can be used. In this thesis, we use both subjective and objective approaches. In the former,

individuals listen to the enhanced speech and rate them according to different criteria. In

objective approaches, the rating is performed by an algorithm that yields a score that is

then interpreted to give some indication on the quality of the enhancement.

8.2.1 Subjective measures

We will use different types of subjective evaluations in this chapter, namely, informal lis-

tening experiments as well as MOS and MUSHRA measures.

In informal listening experiments, the experimenter, or other participants, listen to the
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enhanced speech and give their opinion on different aspects of this audio experience, e.g.

the amount of background noise and/or speech distortions. Tests resulting in a quantitative

rating of the enhanced speech can also be performed. Those include the family of Absolute

Category Ratings (ACR) tests and that of Degradation Category Ratings (DCR) tests [125].

In an ACR test, listeners rate the enhanced audio files using a five level impairment scale.

After obtaining individual scores, the mean opinion of all listeners for each audio file is

calculated. To achieve reliable results, those tests are performed with a large pool of

listeners and under controlled conditions. In DCR tests, listeners hear the reference and

the test signals sequentially, and are asked to compare them.

According to [125], major conceptual differences between ACR and DCR tests are that

in ACR even an original signal can receive low grade, since listeners compare with their in-

ternal model of “clean speech”, while DCR tests provide a quality scale of higher resolution,

due to comparison of the distorted signal with one or more reference/anchor signals. DCR

tests are more common in audio quality assessment [21, 22], while speech coding systems

are typically assessed by an ACR test. MOS is a widely used ACR test while MUSHRA is

a DCR test.

MOS

MOS (ITU-T P.800 [45]) is a widely used ACR test to evaluate the overall speech quality.

It is a five level scale where the listener assigns a value from 1 to 5 to each listened

sentence according to Table 8.1 (Overall). The mean of all listeners for each sentence is

then evaluated and the final Mean Opinion Score is obtained. As suggested in ITU-T

P.835 [126], MOS results can include a separate assessment of the speech distortion where

the subject only concentrates on the perceived speech distortion and rates it according to

Table 8.1 (Speech). Moreover, it can also include a separate assessment of the background
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Table 8.1 MOS scale for speech distortion, background noise and overall
appreciation [126].

Scale Overall Speech Background

5 Excellent Not distorted Not noticeable
4 Good Slightly distorted Slightly noticeable
3 Fair Somewhat distorted Noticeable but not intrusive
2 Poor Fairly distorted Somewhat intrusive
1 Bad Very distorted Very intrusive

noise perception where the subject only concentrate on the perceived background noise and

rates it according to Table 8.1 (Background).

MUSHRA

In the MUlti Stimulus test with Hidden Reference and Anchor (MUSHRA) (ITU-R BS.1534-

1 [46]), the subjects are provided with the test utterances plus one reference and one hidden

anchor and are asked to rate the different signals on a scale of 0 to 100, 100 being the best

score. The rating is performed with the use of slides from a computer user interface (see

Fig. 8.2). The hidden anchor is used to provide an indication of how the enhanced files

compare to well-known audio quality levels. As the hidden anchor, one may use a signal

having an SNR of 5 dB less than the noisy signal to be enhanced, as e.g. in [127]. MUSHRA

was originally developed to assess intermediate quality level of coding systems.

8.2.2 Objective measures

Many objective measures are available to assess speech enhancement algorithms [43,77,129].

They are more or less correlated with subjective measures such as MOS. In this thesis, we

will use three objective measures, namely the SNRseg, LLR and PESQ measures.
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Fig. 8.2 MUSHRA user interface from [128].

SNRseg

The segmental SNR (SNRseg) measure can be expressed as [42]:

SNRseg =
1

Nf

Nf−1
∑

i=0

10 log10

‖xi‖2

‖xi − x̂i‖2 (8.1)

where xi and x̂i are the N -dimensional column vectors comprising of the clean and enhanced

speech samples for frame i, respectively, and Nf is the number of frames in the speech signal

as before. As proposed in [42], each frame SNR is thresholded by a -20 dB lower bound

and a 35 dB higher bound. This is necessary since an SNR above 35 dB does not reflect

large perceptual differences while large negative SNRs do not truly reflect the perceptual

contribution of the corresponding signal either [130]. A higher value of SNRseg indicates a

better performance.
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LLR

The Log-Likelihood Ratio (LLR) measure is based on the dissimilarity between all-pole

models of the clean speech and the enhanced speech waveforms. It can be expressed for a

particular frame i as [43]:

LLRi = log

(

âT
i Rx,iâi

aT
i Rx,iai

)

(8.2)

where ai is the (p+1)×1 vector consisting of the linear predictive coding (LPC) coefficients

of the original clean speech signal for some order p, âi is the corresponding LPC coefficient

vector of the enhanced speech signal and Rx,i is the autocorrelation matrix of the original

clean speech signal in the time domain for frame i, xi[n]. The lmth elements or Rx,i are

defined as [43]:

rx,i(|l − m|) =

N−|l−m|
∑

n=1

xi[n]xi[n + |l − m|], for |l − m| = 0, 1, . . . , p. (8.3)

The mean LLR for all frames is evaluated from the different LLRi. To remove unrealistically

high distortion levels, the frames with LLR greater than five times the standard deviation

of all LLRi are ignored in the averaging process [130] (this corresponded typically to less

than 1% of the frames). A lower LLR score indicates a better performance (e.g. a score

of 0 is obtained for identical clean and enhanced speech). The LLR was computed in this

thesis using algorithms made available by the Robust Speech Processing Laboratory of

Duke University1.

1These files were originally obtained from http://cslr.colorado.edu/rspl/rspl software.html in
July 2006 but are not available anymore.
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PESQ

PESQ [44] aims at predicting the perceived quality of a test sentence if it was evaluated

in a subjective listening test such as MOS and is designed to yield a score from 1 to

4.5. It was originally intended for automatically measuring the quality of narrow band

telephone signals, but its realm of applications has been extended since then. To predict

the subjective score, the PESQ algorithm uses the clean speech signal, i.e. without any

noise component, along with the enhanced speech signal. The two signals are processed

by a perceptual model and the final score is derived using the perceptual representation of

the clean and enhanced speech signal. While the PESQ measure has not been approved to

assess speech enhancement algorithms, it has lately been widely used to do so [21,29,127].

The original PESQ measure was developed for 8 kHz sampled speech. In order to

extend the application of PESQ to systems such as wideband telephony and speech codecs,

a wideband extension to the PESQ measure has also been proposed in ITU-T P.862.2 [131].

A study of the correlation between MOS and some objective measures was presented in

[132]. Results showed that the SNRseg measure is poorly correlated with the overall quality

of the enhanced speech (see Table 8.2) and signal distortion but better correlated with the

background noise. Moreover, the LLR measure was found to be correlated with both overall

quality and speech distortion and a little less correlated with the noise reduction. Finally,

the PESQ measure was found to be well correlated with all three aspects. Therefore, a

fairly small difference in terms of PESQ (e.g. ±0.05) or LLR (e.g. ±0.05) between two

enhanced speech should most likely correspond to a significant perceivable difference as if

it would be measured by MOS.
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Table 8.2 Estimated correlation coefficient of SNRseg, LLR and PESQ
objective measures with overall quality, signal distortion, and background
noise [133].

Overall Signal Background
Quality Distortion Noise

SNRseg 0.36 0.22 0.56
LLR 0.85 0.88 0.51

PESQ 0.89 0.81 0.76

8.3 Evaluation of the extended β-SA estimator

In this section, we present evaluation results for the β-SA estimator with negative values of

β as discussed in Chapter 4. We present comparative results for three estimators: MMSE

STSA (or β-SA with β = 1), LSA (or β-SA with β → 0) and β-SA with β = −1. It

was found through informal listening experiments that the value of β = −1 offered a

good compromise between noise reduction and speech distortion; however, serious speech

distortions were introduced when β became smaller than −1.5. This motivated the choice

of β = −1 for comparisons.

8.3.1 Methodology

In our experiment, the sampling rate was set to 8kHz. As explained in Section 8.1, thirty

Harvard sentences [122] (3 men and 3 women each speaking 5 sentences) were used as

the clean speech. These were corrupted by additive noise, i.e. white, pink and cockpit

noises [121], scaled to obtain the desired SNR (i.e. 0 dB, 5 dB and 10 dB). For each

combination of SNR and noise type, the noisy sentences were processed with the MMSE

STSA (β-SA with β = 1), LSA (β-SA with β → 0) and β-SA with β = −1 and the

enhanced files were evaluated using the PESQ objective measure and the MOS subjective

measure.
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In our implementation of the STSA estimators, the frame duration was set to N = 256

samples (32ms). The overlap-add method with a 50% overlap between adjacent frames

was used to synthesize the enhanced speech. All algorithms in this subsection, and also in

Subsection 8.4, used the decision-directed approach for the estimation of ξk (3.54). In fact,

its the most widely used method to estimate ξk encountered in the literature and, more

specifically, the one used in [29]. The voice activity detector (VAD) proposed in [90] was

used in the evaluation of the noise variance.

Referring to the β-SA gain in (4.7), the confluent hypergeometric function, M(a, b; z),

was implemented using the chgm function from [134] which was converted to the Matlab

language. For values of υk > 700, we implemented an approximation to the confluent

hypergeometric function as given by (13.1.5) from [104]. This was necessary to avoid NaN

and Inf output from the chgm function. This approximation is also used in the next

sections of this thesis.

8.3.2 Results and discussion

Table 8.3 presents the PESQ results for the three types of noises at SNRs of 0 dB, 5 dB

and 10 dB. As can be observed, the β-SA with β = −1 slightly outperforms MMSE STSA

and LSA except for pink noise at a 10 dB SNR, where LSA shows a slight advantage, and

for cockpit noise at 10 dB, where both approaches show an equivalent performance. These

results indicate that the β-SA estimator with β = −1 is advantageous at lower SNR.

Since the PESQ values of the LSA and β-SA (β = -1) are close in Table 8.3, a subjective

assessment needs to be performed in order to identify if the differences are significant. In

order to support the results obtained with PESQ, we performed informal MOS subjective

listening tests on 6 subjects using a subset of 4 sentences from the initial 30, each spoken

by a different individual (2 men, 2 women). Therefore, the average for each final MOS
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Table 8.3 PESQ results for MMSE STSA, LSA and β-SA (β = −1) esti-
mators for white, pink and cockpit noises at several SNRs (0 dB, 5 dB and 10
dB).

Noisy MMSE LSA β-SA

speech STSA (β = −1)

white

0 dB 1.29 1.39 1.44 1.47
5 dB 1.37 1.60 1.70 1.72

10 dB 1.58 1.83 1.95 1.96

pink

0 dB 1.35 1.54 1.64 1.68
5 dB 1.50 1.78 1.91 1.94

10 dB 1.79 2.00 2.14 2.13

cockpit

0 dB 1.29 1.46 1.53 1.57
5 dB 1.44 1.67 1.78 1.81

10 dB 1.67 1.91 2.03 2.03

Table 8.4 Informal MOS results for MMSE STSA, LSA and β-SA (β = −1)
estimators (SNR = 0dB).

Noisy MMSE LSA β-SA

speech STSA (β = −1)

white

Speech 3.9 2.4 2.9 2.8
Background 1.2 2.2 2.5 2.9

Overall 1.7 2.1 2.5 2.7

cockpit

Speech 3.7 2.8 3.1 2.8
Background 1.2 2.4 2.8 2.9

Overall 1.8 2.4 2.8 2.5

score is made over 24 scores. As suggested by ITU-T P.835 [126], MOS tests included an

assessment of the speech distortion (5 = Not distorted, 1 = Very distorted), background

noise (5 = Not noticeable, 1 = Very intrusive) and overall speech quality (5 = Excellent, 1

= Bad). Tests were performed in an isolated acoustic room using high quality beyerdynamic

DT880 headphones.

Table 8.4 presents the informal MOS test results. When comparing the LSA and β-
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SA with β = −1, we see that the latter demonstrated more speech distortion but also

more noise reduction than the former for both noises, as expected from Subsection 4.2.2.

However, the overall perception was not the same for both noises. In fact, β-SA with

β = −1 was thought to be better than LSA for white noise but the inverse was found

for cockpit noise. Also, based on Fig. 4.2, MMSE STSA should have yielded less speech

distortion (i.e. higher score for Speech in Table 8.4) than the other two estimators, however,

this is not what we have observed. This could be due to the fact that, when a frame overlap

of 50% is used, a perceivable echo is present in the MMSE STSA enhanced signal which is

quite less perceivalble in LSA and β-SA and may not have been well taken into account by

(4.9).

In summary, we showed that, when setting β = −1 in the β-SA estimator, the latter

achieves better results in terms of PESQ than the MMSE STSA and LSA estimators for

low SNR values. Also, the overall MOS appreciation for the β-SA estimator with β = −1

is found to be better for white noise but inferior than the LSA estimator for the cockpit

noise.

8.4 Evaluation of the Wβ-SA with auditory-based parameter

values

In this section, we present the experimental results for the Wβ-SA estimator with the

proposed auditory-based choice of β and α values as developed in Chapter 5. We will com-

pare it to the MMSE STSA, LSA and WE estimators using both objective and subjective

measures.
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8.4.1 Methodology

The same three types of noises as before are used in these experiments: a white noise and

two colored noises, that is a pink noise and an aircraft cockpit noise [121]. Other noise

types were considered during our experimentation and lead to the same conclusions as the

ones drawn below. The number of noisy sentences used respectively in the objective and

subjective evaluations will be specified in the corresponding subsections below.

All speech signals were sampled at 16 kHz in this section and a raised-cosine window [67]

was used (512 samples, 32ms) in the STSA computation. A 75% overlap was used in the

overlap-add synthesis method as in [4] to limit the reverberation effect in the MMSE STSA

estimator noted in the previous section. As in the previous subsection, all algorithms used

the decision-directed approach [4] for the estimation of the a priori SNR ξk (3.54), its the

most widely used method to estimate ξk encountered in the literature and, more specifically,

the one used in [6, 29]. The VAD algorithm proposed in [90] was used in the evaluation of

the noise spectral amplitude variance.

The noisy speech files were processed with the proposed Wβ-SA estimator, as well as

with the MMSE STSA, LSA and WE estimators. The value of p in the WE estimator was

set to p = −1 as proposed in [6]. We do not consider explicitly the β-SA estimator for

comparison, however, we note that the case α = 0 in the Wβ-SA corresponds to the β-SA

estimator.

As mentioned in Subsection 3.1.2, the STFT framework for speech enhancement pro-

duces some time domain aliasing. To limit the latter, we can append zeros at the end of the

window function ha[n] in (3.8). When doing so with the proposed Wβ-SA estimator, we

noticed that perceptible discontinuities between two adjacent frames could occur depend-

ing on the gain difference between the two frames. To limit these discontinuities, instead
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of appending N zeros at the end of each frame, we appended N/2 zeros at the beginning

and N/2 zeros at the end. This amounts to shifting the original time-domain zero-padded

signal by N/2 samples and is similar to the approach in [25] (also known as a causality

delay). It had the effect of limiting greatly the discontinuities between adjacent frames.

Results in this section are presented for the MUSHRA subjective measure as well as

for the SNRseg, LLR and wideband PESQ objective measures. Since the SNRseg is poorly

correlated with the overall quality of the enhanced speech (see Table 8.2), we use it here

mainly for discussion regarding the noise reduction of the estimators.

8.4.2 Objective results

Tables 8.5, 8.6 and 8.7 present the SNRseg results for white, pink and cockpit noises,

respectively, at an SNR of 0 dB. All SNRseg, LLR and PESQ results are averages obtained

from 30 Harvard sentences (3 males, 3 females, 5 sentences each) [122]. The columns and

lines of the tables are structured in somewhat decreasing β and increasing α order, where

0.2 ≤ βk ≤ 1 refers to the auditory-based selection in (5.11) and 0.5 ≤ αk ≤ 0.9 refers to

the choice in (5.12).

Table 8.5 SNRseg for several β and α values (white noise, 0 dB).

β = 1 β = βk β = 1/3 β → 0

α = 0 -0.43 0.56 0.70 1.12
(MMSE STSA) (LSA)

α = 0.5 2.06 2.41 2.39 2.57
(WE p = −1)

α = αk 2.46 2.73 2.78 2.97

As reported in [6] for the WE estimator and in [29] for the β-SA estimator, we can

observe that the SNRseg generally increases for a decreasing β and an increasing α. This

result is easily explained since for a decreasing β and an increasing α, the gain function
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Table 8.6 SNRseg for several β and α values (pink noise, 0 dB).

β = 1 β = βk β = 1/3 β → 0

α = 0 -1.04 -0.65 -0.26 0.01
(MMSE STSA) (LSA)

α = 0.5 0.52 0.62 0.68 0.78
(WE p = −1)

α = αk 0.56 0.63 0.73 0.84

Table 8.7 SNRseg for several β and α values (cockpit noise, 0 dB).

β = 1 β = βk β = 1/3 β → 0

α = 0 -1.41 -0.98 -0.74 -0.50
(MMSE STSA) (LSA)

α = 0.5 -0.04 0.11 0.11 0.20
(WE p = −1)

α = αk 0.01 0.14 0.16 0.26

of the estimator, Gk, decreases (see Fig. 5.1 and Fig. 5.2). In turn, this produces more

noise reduction and, as we mentioned previously, the SNRseg is better correlated with noise

reduction. The best result is therefore obtained for the smallest β (i.e. β → 0) and biggest

α (i.e. α = αk).

We present LLR results in Tables 8.8, 8.9 and 8.10 for white, pink and cockpit noises,

respectively, at an SNR of 0 dB. For the white noise case, the best results (smallest LLR)

were obtained for α = αk. For the colored noises, the best results were obtained for β = βk,

α = 0.5. Setting α = αk reduces greatly the noise at high frequency since it decreases the

gain, but it simultaneously introduces some speech distortions, especially when combined

to smaller β values. Those high frequency speech distortions were less perceptible in white

noise which has a high frequency content. However, for the colored noises used here, which

have a small high frequency content, the speech distortions became more perceptible.

We next compare the wideband PESQ results of the proposed Wβ-SA estimator with

auditory-based parameters αk and βk, with those of the MMSE STSA, LSA and WE
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Table 8.8 LLR for several β and α values (white noise, 0 dB).

β = 1 β = βk β = 1/3 β → 0

α = 0 1.96 1.76 1.85 1.82
(MMSE STSA) (LSA)

α = 0.5 1.75 1.62 1.73 1.71
(WE p = −1)

α = αk 1.37 1.41 1.37 1.61

Table 8.9 LLR for several β and α values (pink noise, 0 dB).

β = 1 β = βk β = 1/3 β → 0

α = 0 1.38 1.25 1.33 1.30
(MMSE STSA) (LSA)

α = 0.5 1.28 1.20 1.27 1.27
(WE p = −1)

α = αk 1.22 1.53 1.40 1.71

Table 8.10 LLR for several β and α values (cockpit noise, 0 dB).

β = 1 β = βk β = 1/3 β → 0

α = 0 1.43 1.31 1.39 1.38
(MMSE STSA) (LSA)

α = 0.5 1.37 1.30 1.38 1.38
(WE p = −1)

α = αk 1.34 1.60 1.50 1.75

(p = −1) estimators at noisy speech SNR’s between -5 and 5 dB. Fig. 8.3 (a), (b) and

(c) show the wideband PESQ improvements2 over the noisy speech signal wideband PESQ

values for the given estimators as a function of SNR, for white noise, pink noise and aircraft

cockpit noise respectively. The noisy speech wideband PESQ values were 0.94 at -5 dB and

1.52 at 5 dB (evaluated as averages of all three noise types). For clarity purposes, only the

β = βk, α = αk case is plotted.

The Wβ-SA estimator with auditory-based parameters βk, αk was found to be consis-

tently better than the MMSE STSA, LSA and WE (p = −1) estimators in terms of PESQ.

2i.e. the wideband PESQ of the enhanced speech minus the wideband PESQ of the noisy speech.
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Fig. 8.3 Wideband PESQ improvement over noisy signal versus SNR for (a)
white noise, (b) pink noise and (c) aircraft cockpit noise.

While the results are not presented here, the Wβ-SA estimators with β = βk, α = 0.5

and β = 1, α = αk where found to be better overall than the WE (p = −1) and LSA

estimators but not as good as the Wβ-SA with β = βk, α = αk. The Wβ-SA estimator

with β → 0, α = αk and β = 1/3, α = αk performed better than LSA and WE (p = −1)

at an SNR of −5 dB but worst at higher SNRs. In fact, while the case β → 0, α = αk

had the highest SNRseg score, it introduces significant speech distortion (as identified by
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the LLR results) and shows a poor wideband PESQ value, in particular at higher SNRs.

The best compromise is therefore obtained with the auditory-based parameter values, i.e.

β = βk, α = αk.

While the results for male and female spoken utterances are grouped together in the

previous tables and figures, an analysis was performed where the results were separated

according to the speaker’s gender. Results in terms of LLR where similar for both male

and female while SNRseg results from the sentences spoken by males were approximately

1 dB inferior to the ones spoken by females; however, the conclusions did not change

when comparing the different estimators in each gender group. Wideband PESQ values

were found to be slightly inferior for females when compared to males for all estimators.

Again, the same ordering of the different estimators was obtained in each group. The only

exception was for the cockpit noise and male utterances where the LSA estimator was found

to be better than WE for all SNRs and also better than Wβ-SA (β = βk, α = αk) for an

SNR of 5 dB.

8.4.3 Subjective results

As a subjective measure, we used a test setup similar to the MUSHRA test as implemented

in [128]. A total of 8 listeners (7 males, 1 female aged in the mid 20’s to low 30’s with a

background in either speech processing or telecommunications) participated in the test of

which half where judged to be experienced listeners. The listeners were allowed to listen to

each sentence several times and always had access to the clean signal reference. A subset

of two sentences (one male speaker, one female speaker) were chosen randomly3 from the

sentences used previously for the objective evaluation. These two sentences were corrupted

3A numerical value from 1 to 15 was assigned to each of the sentences in both the female and male
uttered sets and the Matlab function 15*rand was used to select the chosen sentence in each set.
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Fig. 8.4 Comparative subjective results for white, pink and cockpit noises
(0 dB).

by the same three noise types as before and enhanced using several estimators, the same

two sentences were used for all subjects. Tests were performed in an isolated acoustic room

using beyerdynamic DT880 headphones. The average duration of a test was approximately

30 minutes per subject.

Fig. 8.4 presents the comparative subjective results for the MMSE STSA, LSA and WE

estimators along with those of the Wβ-SA estimator with proposed values β = 1, α = αk,

β = 1/3, α = αk and β = βk, α = αk. As can be observed, the sentences enhanced using

the Wβ-SA estimator were rated higher than those enhanced by the other estimators for all

noise types. Two-tailed paired t-tests [135] revealed the advantage of the Wβ-SA estimator

with the proposed values (β = 1, α = αk ; β = 1/3, α = αk ; β = βk, α = αk) over the WE

(p = −1) to be statistically significant for all three noise types within a 95% confidence

interval.

We observe that listeners in the previous experiment preferred an enhanced speech

having more high frequency noise reduction than one having less high frequency speech
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distortion. It was observed in [133] that listeners seem to be more sensitive to speech

distortion than noise reduction when participating in a subjective evaluation of enhanced

speech. This conclusion was based on experiments with sampled speech at 8 kHz whereas

we used a 16 kHz sampling rate in our experiments. Therefore, the conclusions of [133]

only applies to the lower frequency portion of the spectrum considered in our work. Based

on our experimental work with 16 kHz sampling and the result in [133], it would seem that

the high frequency speech distortion is less important in subjective evaluations than the

low frequency speech distortion.

Additional subjective tests (not shown here), using a smaller subset of the previous

subjects, were also performed for an SNR of 5 dB. The Wβ-SA algorithms still received

higher scores than all the other algorithms. However, while a substantial advantage of the

Wβ-SA estimators was still found over LSA, the difference between the Wβ-SA estimators

and the WE (p = −1) estimator was found to be narrower than for the 0 dB case. Moreover,

an analysis where the results were grouped according to the speaker’s gender was also

performed for the subjective results. No differences were observed in the comparative

results except that the ranking of the three Wβ-SA estimators (i.e. β = 1, α = αk ;

β = 1/3, α = αk and β = βk, α = αk) were interchanged for the cockpit noise and male

spoken utterances.

8.4.4 Discussion

The human ear is more sensitive between 3 kHz and 4 kHz, as can be observed from an

equal loudness curve [54], and will therefore perceive weaker sounds in that frequency band.

Therefore, it would seem advantageous to improve the estimation of those weaker sounds in

the frequency band between 3 and 4 kHz. Additional experiments where conducted where

we locally increased the value of α for those frequencies, therefore giving more importance
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to weaker sounds. We compared this approach with the approach using the proposed αk

values. A slight improvement was observed in terms of wideband PESQ for the white noise

as well as in terms of LLR for the colored noise cases; all SNRseg values as well as the other

wideband PESQ and LLR values showed no significant differences. Moreover, informal

listening experiments revealed marginal differences between the two approaches.

We chose the Wβ-SA estimator parameters based on characteristics of the human au-

ditory system. It turn out that, both the approaches using βk and αk produce a decrease

in the gain Gk at high frequencies compared to lower frequencies (as can be observed from

the gains in Fig. 5.1 and Fig. 5.2 with the values of βk and αk as in Fig. 5.3 and Fig. 5.4

respectively). This decrease in Gk generates more noise reduction at high frequencies but

has the simultaneous effect of producing more speech distortions. The speech distortions

are however minimized at low frequencies, where the main speech energy is located, by

keeping β high and α low therefore producing a higher gain. The proposed βk and αk val-

ues will therefore be more advantageous when the noise has high frequency content, such

as white noise, in which case more noise will be removed while speech distortions will be

less perceptible. This explains why the proposed algorithms obtained the best performance

in white noise.

Moreover, the distortions of the high frequency contents of speech, such as fricatives, will

be less perceptible in heavy noise (i.e. low SNRs) but they could become more perceptible

in regions or sentences where the noise is weak. This could explain why the estimators are

more advantageous at smaller SNRs, as observed. It is important to note, however, that

the gain is mostly decreased for low instantaneous SNRs. In fact, for high instantaneous

SNRs, all the estimator gains tend toward the Wiener gain therefore reducing the speech

distortions. For low instantaneous SNRs, the heavy noise will mask the speech signal; since

these cannot be restored, the estimator will apply a small gain which will remove much of
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the noise.

In summary, improvements over existing Bayesian estimators such as the MMSE STSA,

LSA and WE estimators were reported, both in terms of objective (SNRseg, LLR and

wideband PESQ) and subjective measures particularly for noise having high frequency

content and at low SNRs. Choosing β = βk and α = αk was found to yield good overall

results.

8.5 Evaluation of the multi-dimensional estimators for correlated

frequency components

In this section, we present experimental results for the multi-dimensional estimators that

allow for correlated frequency components developed in Chapter 7. They are compared with

conventional Wiener and MMSE STSA, i.e. that both consider uncorrelated frequency com-

ponents, as well as with an MMSE estimator of the complex STFT coefficients that assumes

correlated frequency components. We choose to compare the proposed multi-dimensional

estimators with other MMSE estimators4 and not with ones that use more elaborate cost

functions such as the proposed Wβ-SA. In fact, more elaborate cost functions could also be

implemented in the multi-dimensional framework and the corresponding estimators could

then be compared with their equivalent uncorrelated counterparts.

8.5.1 Methodology

As for the previous experimental results, we use three types of noise from the Noisex

database [121]: a white noise and two colored noises, that is a pink noise and an aircraft

cockpit noise (buccaneer-1). Noisy speech signals were created according to ITU-T standard

4As mentioned in Section 3.3, the Wiener estimator is the MMSE estimator of the STFT assuming
uncorrelated frequency components.
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P.56 [123]. Thirty noisy sentences (15 from 3 different female speakers and 15 from 3

different male speakers) were used in the evaluations. All speech signals were sampled at

16 kHz and a raised-cosine window [67] was used (N = 512 samples, 32ms) in the STSA

computation. A 75% overlap was used in the overlap-add synthesis method as in [4]. For

the value of simplicity, RW was estimated from the first five frames of the noisy speech

signal which did not contain any speech signal and its value was kept constant for all

subsequent frames.

The value of γ = 0.5 will be considered in the X̂o
γ and X̂o

δγ estimators. Also, we identified

through experimentation the following ZCR thresholds to be used in (7.44): tv = 3500

crossings/sec and tu = 6000 crossings/sec. Since ZCR are affected when the SNR is very

low, R̂δ
X,i (7.43) was only used if the power of the current frame was 1.5 times the estimated

power of the noise, otherwise we used R̂X,i (7.41). We also set the forgetting factor in (7.41)

to τ = 0.98.

Results in this section are presented for informal listening experiments as well as for

the LLR and wideband PESQ objective measures.

8.5.2 Informal listening experiments

Informal listening experiments were first conducted to evaluate the qualitative merits of

the proposed estimators. The following observations were made:

• The overall difference between X̂MMSE and X̂o
L was found to be quite small except for

some little background clicks that were sometimes present in X̂MMSE but not in X̂o
L.

This similarity was expected since only the phase differs between the two estimators

(respectively (7.13) and (7.10, 7.16)).

• The traditional Wiener and MMSE STSA estimators exhibit some small perceptible
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reverberations that are not present in the novel multi-dimensional estimators consid-

ering full correlation matrices i.e. X̂MMSE, X̂o
L, X̂o

U and X̂o
γ .

• The processed speech in X̂MMSE, X̂o
L, X̂o

U and X̂o
γ sounds a little bit more muffled

than the one obtained by Wiener or MMSE STSA. By allowing a better model for

the unvoiced speech parts, the estimators X̂δMMSE, X̂o
δL, X̂o

δU and X̂o
δγ better preserve

the fricatives and have a less muffled speech.

• The background noise in MMSE STSA, X̂o
U , X̂o

γ, X̂o
δU and X̂o

δγ is whiter than the

one of the other estimators which is more musical. Moreover, X̂o
U has always more

background noise than X̂o
L, however it is whiter, and MMSE STSA has much more

background noise than all other estimators.

• The best estimator overall is found to be the X̂o
δγ estimator. In fact, it has whiter

background noise than Wiener’s, less background noise than MMSE STSA and less

speech distortions than the unconstrained full matrix equivalent X̂o
γ .

8.5.3 Objective results

Table 8.11 presents wideband PESQ results for the MMSE STSA, Wiener, X̂MMSE and the

proposed estimators. As can be observed, the best results for all cases are obtained by

one of the proposed estimators. The algorithms that used the soft threshold structured

estimator R̂δi

X,i for the clean speech correlation matrix estimation (i.e. X̂δMMSE, X̂o
δL, X̂o

δU

and X̂o
δγ) gave better results than the ones using the unstructured R̂X,i (i.e. X̂MMSE, X̂o

L,

X̂o
U and X̂o

γ) for white noise while they were found more or less equivalent for colored noises.

X̂o
δγ mostly gave better results than X̂o

δL and X̂o
δU while the advantage of X̂o

γ over X̂o
L and

X̂o
U was case dependent.
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Fig. 8.5 LLR values versus SNR for (a) white noise (b) pink noise (c) aircraft
cockpit noise.

Fig. 8.5 presents LLR results for the best estimators identified in Table 8.11, i.e.,

Wiener, X̂MMSE, X̂o
γ and X̂o

δγ for white, pink and aircraft cockpit noises. As can be observed,

the comparison between the existing and the proposed algorithms were quite different

between white and colored noises (i.e. pink and cockpit). In fact, for white noise with

an SNR of 20 dB, the proposed estimators gave the best results while for the 10 dB case,

the Wiener and X̂MMSE were slightly better than the proposed estimators. For the colored
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noise cases, the proposed estimators were always better.

8.5.4 Discussion

As mentioned previously, only the phase differs between X̂MMSE (7.13) and X̂o
L (7.10, 7.16).

While X̂MMSE has an optimal phase in the sense of the MMSE estimator of X, X̂o
L uses

the phase of the noisy speech. The phase of the noisy speech was found to be an optimal

estimator of the clean speech phase for the uncorrelated frequency component case [4]. We

computed for several utterances the differences between the phase of X̂MMSE and the clean

speech phase and also between the phase of X̂o
L (which is the phase of the noisy speech)

and the clean speech phase. We found that on average the phase of the noisy speech is

closer to the phase of the clean speech than the phase of X̂MMSE. Therefore, X̂o
L should be

a better estimator of the clean speech than X̂MMSE as observed in Table 8.11. Nevertheless,

only small perceptual differences were identified in the informal listening experiments.

We also experimented with shorter window lengths (i.e. N = 128 and N = 256) for

white noise at 20 dB. The results showed that the advantages of the proposed estimators

over the existing ones were slightly less for these shorter windows than for N = 512. More-

over, the use of the soft threshold structured estimator R̂δ
X,i did not yield any advantage

over the use of the unstructured R̂X,i for these shorter window lengths. It is not straightfor-

ward to identify what causes those different results as the estimation of RX is also greatly

affected by a shorter window which in return affects the quality of the associated estimator.

Only results for the value of γ = 0.5 in the X̂o
γ and X̂o

δγ estimators were reported.

However, we also performed experiments with other values of γ. As expected, the results

indicated that choosing values for γ closer to 0 yielded an enhanced speech closer to the

one obtained with X̂o
L while choosing a value closer to 1 yielded an enhanced speech closer

to X̂o
U .
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Wideband PESQ and LLR results were presented here for the 10 dB, 15 dB and 20 dB

cases. However, experiments were also conducted for the 0 dB case for which the results

are not presented here. For the white and pink noises, the Wiener estimator was found to

be superior to the proposed estimators for both LLR and wideband PESQ. However, for

the aircraft cockpit noise, the proposed estimator remained better than Wiener for both

measures.

In summary, results of informal listening experiments, wideband PESQ and LLR demon-

strate noticeable advantages of the proposed estimators over existing ones such as Wiener

and MMSE STSA especially at higher SNR values. In particular, the estimator X̂o
δγ offers

a good compromise between speech quality and background noise quantity and whiteness.
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Chapter 9

Conclusion

9.1 Summary of the work

There are several systems where the removal of background additive noise in a speech

signal is desirable. These include mobile phones [7–9], speech coders [10–12], automatic

speech recognition systems [13, 14] and hearing aids [15–18]. Over the years, many speech

enhancement approaches have been proposed to remove additive noise including the spectral

subtraction [2, 24, 25, 27], Wiener [3, 41, 70], subspace [33–36, 136] and Bayesian STSA [4,

6, 28–31] approaches. The latter was found, in a subjective comparison of these different

speech enhancement methods, to perform in general better than the other ones [37] in terms

of the overall quality of the enhanced speech, the amount of speech distortion introduced

by the processing and the background noise reduction.

In the Bayesian estimation approach for single-channel speech enhancement, an estimate

of the clean speech is derived, in the frequency domain, by minimizing the expectation of

a cost function that penalizes errors in the clean speech estimate. The well known MMSE

STSA estimator is obtained when the chosen cost function is the squared error between the
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estimated and actual clean speech STSA [4]. Variants of this estimator were also proposed

including the LSA [28], β-SA [29] or WE [6] estimators. This thesis analyzed existing single-

channel Bayesian STSA estimators for speech enhancement with the aim of proposing new

cost functions and statistical models to improve the performance of such estimators and to

gain better understanding of their properties.

The analysis of the β-SA estimator performed in [29] provided insight into its operation

but only considered the case where the parameter β is positive. Moreover, it relied on

empirical observations in establishing a link between the β-SA and LSA estimators. In

Chapter 4, we extended the scope of the analysis in [29] to address the above limitations.

We first showed that negative values of β had a normalization effect on the original β-

SA cost function, therefore resulting in a behavior similar to the WE estimator with its

parameter p < 0. Moreover, decreasing β below 0 was found to produce an increase in

the noise reduction and speech distortion, therefore enabling an extension of the trade-off

between speech distortion and noise reduction, as compared to the strictly positive β case

of [29]. Finally, we proved mathematically that the case β → 0 indeed corresponds to the

LSA estimator. The β-SA estimator with negative β values in the range of −2 < β < 0

was evaluated experimentally. It was shown that the β-SA estimator with β = −1 slightly

outperforms the well known MMSE STSA and LSA estimators in terms of PESQ while the

overall informal MOS appreciation was found to be better than both MMSE STSA and

LSA for white noise.

As described in Chapter 3, the WE estimator [6] incorporates a weighting factor while

the β-SA estimator [29] incorporates a power law. The parameters accounting for these

effects can be given perceptual interpretations that were not considered in [6,29]. In Chapter

5, we first derived and analyzed a new family of Bayesian STSA estimators, referred to as the

Wβ-SA estimators, that combined the power law of the β-SA estimator and the weighting
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factor of the WE estimator. The parameters (i.e. β and α) entering in the gain function

of the Wβ-SA estimator were chosen according to characteristics of the human auditory

system, namely, the compressive nonlinearities of the cochlea, the perceived loudness and

the ear’s masking properties. It was found that choosing the parameters in this way results

in a decrease of the estimator gain at high frequencies. This frequency dependence of

the gain improved the noise reduction while limiting the speech distortion. The Wβ-SA

family of estimators, with the proposed frequency dependent selection of its parameters,

was evaluated and compared against existing estimators. In particular, it was shown, using

both objective and subjective performance measures, that the new estimators achieved

better enhancement performance, especially at low SNR values, when compared to existing

Bayesian STSA estimators such as the MMSE STSA, LSA and WE estimator.

In Chapter 6, we noted that the different cost functions presented in Chapters 3 through

5 all had a structure involving a weighted squared difference between a monotonic func-

tion of the estimated and actual clean speech STSA. We therefore proposed an analytical

generalization of the corresponding estimators which we termed the GWSA family of esti-

mators. The latter incorporates the parameters present in other existing estimators (e.g.

α and β) but also features a new parameter denoted as η. These parameters control the

shape of the estimator’s gain curve as a function of the instantaneous SNR. In contrast

to the other parameters, η acts only on the estimated clean speech STSA. It was found

that, for appropriate parameter values, η yields an added flexibility in terms of achiev-

able gain curves when compared to existing Bayesian STSA estimators. Also, we showed

that all the estimators belonging to the new estimator family tend to a Wiener filter for

high instantaneous SNR. This work thus allowed a unification of several existing Bayesian

STSA estimators and, moreover, provided a better understanding of this general class of

estimators.
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In the Bayesian STSA estimators of Chapters 3 through 6, the spectral components are

always assumed uncorrelated. However, this assumption is inexact since some correlation is

present in practice. In Chapter 7, we thus investigated a multi-dimensional Bayesian STSA

estimator that assumed correlated frequency components. Since the closed-form solution

of this optimum estimator is not readily available, we alternatively derived closed-form

expressions for an upper and a lower bound on the desired estimator. Using these bounds,

we proposed a new family of speech enhancement estimators that are characterized by a

scalar parameter 0 ≤ γ ≤ 1, with γ = 0 corresponding to the lower bound and γ = 1 to

the upper bound. We compared the proposed estimators with the traditional Wiener and

MMSE STSA estimators, i.e. that both consider uncorrelated frequency components, as

well as with an MMSE estimator of the complex STFT coefficients that assumes correlated

frequency components. Results using the wideband extension of the PESQ and LLR mea-

sures as well as informal listening experiments showed that the proposed estimators can

achieve better performances than benchmarked estimators for several noise types and SNR

conditions.

9.2 Future research

Promising avenues for future research have emerged based on the work presented in this

Thesis. These are summarized briefly below:

1. Frame-based adaptive β value: As mentioned in Chapter 3, it was proposed in [29]

to adapt the value of β, in the β-SA estimator, according to each frame’s SNR.

In Chapter 5, we proposed another approach were β is chosen based on auditory

considerations. It would be interesting to investigate how these two approaches can

be combined to find optimal values of β. This may indeed result in still better
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enhancement performance.

2. Improved phase estimation in the multi-dimensional STSA estimator allowing for cor-

related frequency components : In Chapter 7, the noisy phase was used as an estimator

of the clean speech phase and combined with the multidimensional STSA estimator to

obtain an estimator of the STFT coefficients. We could alternatively find an optimal

multi-dimensional phase estimator that allows for correlated frequency components.

It could be that, as in the scalar case [4], the optimal phase estimator is indeed the

noisy phase.

3. Multi-dimensional estimator allowing for correlated STSA but considering uncorre-

lated phase: In Chapter 7, we mentioned that the STSA were observed to be more

strongly correlated than the STFT. It would therefore be relevant to investigate an

estimator that would consider the STSA as correlated but the phase as uncorrelated.

This kind of estimator may yield better results than the family of estimators presented

in Chapter 7 which considered the complex STFT components as correlated.

4. Frame-based selection of parameter γ in the multi-dimensional STSA estimator al-

lowing for correlated frequency components: In the multi-dimensional Bayesian STSA

estimator of Chapter 7, the parameter γ allows to adjust the relative weights of the

upper and lower bounds in the proposed family of STSA estimator. In our work, a

fixed value of γ = 0.5 was used. One interesting research avenue would be to choose γ

adaptively for each frame, e.g. based on SNR considerations, to obtain an estimator

closer to the desired one as given by (7.9).

5. Auditory based generalization of the multi-dimensional STSA estimator : It would

be relevant to derive multi-dimensional Bayesian STSA estimators, such as those
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in Chapter 7 that allow for correlated frequency components but, moreover, that

make use of more general forms of cost functions, similar to the β-SA or WE cost

functions used in the scalar case. It should then be possible to incorporate auditory

based features in the multi-dimensional STSA estimator. As in the scalar case, it is

expected that this type of approach may result in superior enhancement performance.

9.3 Final remark

The work in this thesis has led to many interesting developments in speech enhancement.

The different estimators proposed showed significant performance improvements over ex-

isting estimators. However, the level of improvement varied depending on the noise types

and SNR levels of the noisy speech. A well engineered solution to the problem of speech

enhancement will therefore most likely be formed of many different approaches and not of

one single elusive scheme.
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Appendix A

Additional derivations for the

multi-dimensional estimator

In this appendix, we develop the solutions to the integrals in (7.28) and show that it yields

(7.29). We start by solving for the numerator of (7.28), which we denote by Nk. The latter

can be written as a product and sum of single integrals

Nk =
N−1
∑

r=0

N−1
∑

t=0
r 6=t

U∗
ktUkr

N−1
∏

m=0
m6=r,t

(∫

g(Vm)dVm

)∫

V ∗
t g(Vt)dVt

∫

Vrg(Vr)dVr

+
N−1
∑

p=0

|Ukp|2
N−1
∏

m=0
m6=p

(∫

g(Vm)dVm

)∫

|Vp|2g(Vp)dVp (A.1)

We need to evaluate four different integrals in (A.1). In order to integrate on real

variables instead of complex ones, we will perform the following change of variables : Vl =

vle
jβl . The Jacobian associated with that change of variable is J = vl. Let us evaluate the
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first integral in (A.1):

∫

g(Vm)dVm =

∫

e{Ỹ
∗

mVm+V ∗

mỸm−|Vm|2λm}dVm

=

∫ ∞

0

vme−v2
mλm

∫ π

−π

e2ỹmvm cos(βm−∡Ỹm)dβmdvm

= 2π

∫ ∞

0

vme−v2
mλmJ0(−2jỹmvm)dvm

= πλ−1
m M(1, 1; ỹ2

m/λm)

(A.2)

where Ỹm = ỹmej∡Ỹm , Jn(·) is a Bessel function of the first kind, M(a, b; c) is the confluent

hypergeometric function [83] and (6.631.1) of [83] was used in the last line. The second

integral can be evaluated similarly as:

∫

V ∗
t g(Vt)dVt =

∫

V ∗
t e{Ỹ

∗

t Vt+V ∗

t Ỹt−|Vt|2λt}dVt

=

∫ ∞

0

v2
t e

−v2
t λt

∫ π

−π

e−jβt+2ỹtvt cos(βt−∡Ỹt)dβtdvt

= 2πje−j∡Ỹt

∫ ∞

0

v2
t e

−v2
t λtJ1(−2jỹtvt)dvt

= πỸ ∗
t λ−2

t M(2, 2; ỹ2
t /λt).

(A.3)

The third integral is the complex conjugate of (A.3) and can be similarly shown to be:

∫

Vrg(Vr)dVr = πỸrλ
−2
r M(2, 2; ỹ2

r/λr). (A.4)

The first integral of the second summation in (A.1) is already given by (A.2) while the
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second integral of the second summation can be evaluated as:

∫

|Vp|2e{Ỹ
∗

p Vp+V ∗

p Ỹp−|Vp|2λp}dVp =

∫ ∞

0

v3
pe

−v2
pλp

∫ π

−π

e2ỹpvp cos(βp−∡Ỹp)dβpdvp

= 2π

∫ ∞

0

v3
pe

−v2
pλpJ0(−2jỹpvp)dvp

= πλ−2
p M(2, 1; ỹ2

p/λp).

(A.5)

We can therefore replace (A.2), (A.3), (A.4) and (A.5) in (A.1) to get:

Nk = πN

N−1
∑

r=0

N−1
∑

t=0
r 6=t

U∗
ktUkr

N−1
∏

m=0
m6=r,t

(

λ−1
m M(1, 1; ỹ2

m/λm)
) Ỹ ∗

t Ỹr

λ2
t λ

2
r

M(2, 2; ỹ2
t /λt)M(2, 2; ỹ2

r/λr)

+ πN

N−1
∑

p=0

|Ukp|2
N−1
∏

m=0
m6=p

(

λ−1
m M(1, 1; ỹ2

m/λm)
)

λ−2
p M(2, 1; ỹ2

p/λp)

(A.6)

Using (9.212.1) from [83], i.e.:

M(α, γ; z) = ezM(γ − α, γ;−z) (A.7)

and the fact that M(0, γ; z) = 1, we get:

Nk = πN

N−1
∏

m=0

(

λ−1
m M(1, 1; ỹ2

m/λm)
)









N−1
∑

r=0

N−1
∑

t=0
r 6=t

U∗
ktUkr

Ỹ ∗
t Ỹr

λtλr

+
N−1
∑

p=0

|Ukp|2
λp

M(−1, 1;−ỹ2
p/λp)









(A.8)

Now using the fact that M(−1, 1;−ỹ2
p/λp) = ỹ2

p/λp + 1 in the last line, we get:

Nk = πN

N−1
∏

m=0

(

λ−1
m M(1, 1; ỹ2

m/λm)
)

(

N−1
∑

r=0

N−1
∑

t=0

U∗
ktUkr

Ỹ ∗
t Ỹr

λtλr

+
N−1
∑

p=0

|Ukp|2
λp

)

(A.9)
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Next let us evaluate the denominator in (7.28). We notice that the integral in the latter

is identical to (A.2), therefore:

N−1
∏

m=0

∫

g(Vm)dVm = πN

N−1
∏

m=0

λ−1
m M(1, 1; ỹ2

m/λm). (A.10)

Combining (A.9) and (A.10) in (7.28), we get the following:

E{X 2
k |Y} =

N−1
∑

r=0

N−1
∑

t=0

U∗
ktUkr

Ỹ ∗
t Ỹr

λtλr

+
N−1
∑

p=0

|Ukp|2
λp

which is (7.29).
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Appendix B

Harvard sentences used in

experiments

The following Harvard sentences were used in the different experiments included in this

thesis [122]. The list and sentence numbers refer to the ones of [122]. Each list was spoken

by a different individual, therefore, 3 males and 3 females spoke each 5 sentences.

Male spoken utterances:

• List 7

1. We talked of the side show in the circus.
2. Use a pencil to write the first draft.
3. He ran half way to the hardware store.
4. The clock struck to mark the third period.
5. A small creek cut across the field.

• List 13

1. Type out three lists of orders.
2. The harder he tried the less he got done.
3. The boss ran the show with a watchful eye.
4. The cup cracked and spilled its contents.
5. Paste can cleanse the most dirty brass.
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• List 19

1. Acid burns holes in wool cloth.
2. Fairy tales should be fun to write.
3. Eight miles of woodland burned to waste.
4. The third act was dull and tired the players.
5. A young child should not suffer fright.

Female spoken utterances:

• List 1

1. The birch canoe slid on the smooth planks.
2. Glue the sheet to the dark blue background.
3. It’s easy to tell the depth of a well.
4. These days a chicken leg is a rare dish.
5. Rice is often served in round bowls.

• List 25

1. On the islands the sea breeze is soft and mild.
2. The play began as soon as we sat down.
3. This will lead the world to more sound and fury.
4. Add salt before you fry the egg.
5. The rush for funds reached its peak Tuesday.

• List 31

1. Slide the box into that empty space.
2. The plant grew large and green in the window.
3. The beam dropped down on the workmen’s head.
4. Pink clouds floated with the breeze.
5. She danced like a swan, tall and graceful.
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