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iSommaireLe multiplexage par répartition en fréquenes orthogonales (orthogonal frequeny divisionmultiplexing, soit OFDM) à entrées et à sorties multiples (multiple-input multiple-output,soit MIMO) est maintenant généralement onsidéré omme une tehnologie à préoniserpour les nouveaux systèmes sans �l et eux des générations ultérieures. Le MIMO-OFDMvise à augmenter la limite de apaité Shannon en ombinant l'utilisation d'antennes mul-tiples et la modulation orthogonale multiporteuse. Bien que la possibilité d'atteindre ettelimite soit possible grâe à l'invention de tehniques d'enodage et de déodage atteignantla apaité, en réalité, ette perspetive d'avenir se base en grande partie sur l'existeneet l'utilisation de tehniques d'estimation de voie avanées. Pour failiter l'estimation devoie rapide et �able dans les systèmes MIMO-OFDM, on songe habituellement à l'insertionde symboles pilotes; ependant, la apaité de la voie est grandement réduite par leur in-sertion. L'utilisation d'estimation de voie aveugle �able et à onvergene rapide pour lesMIMO-OFDM semble don être une solution attrayante pour les futurs systèmes sans �l.À ette �n, l'estimation de voie aveugle basée sur des statistiques de deuxième ordre,au lieu des statistiques d'ordre supérieur, est généralement onsidérée omme une an-didate aeptable. Parmi les approhes aveugles basées sur les statistiques de deuxièmeordre, l'estimation basée dans le sous-espae est attrayante, puisque des estimations �-ables peuvent souvent être obtenues de façon simple en optimisant une fontion de oûtquadratique. Néanmoins, la performane des estimateurs de voie aveugles basés dans lesous-espae peut être gravement dégradée dans des onditions instationnaires. Ce prob-lème peut habituellement rendre la performane globalement insatisfaisante, surtout dansles systèmes MIMO-OFDM ave un nombre de sous-porteuses élevé. A�n de ompenserette restrition et d'utiliser ave suès l'estimation de voie basée dans le sous-espae aveles systèmes MIMO-OFDM, il est essentiel de minimiser la longueur de la période de aluldes moyennes sous-jaente.Dans la présente thèse, nous proposons un nouvel estimateur de voie aveugle basédans le sous-espae qui ne néessite qu'une période de alul des moyennes relativementourte. Nous envisageons la oneption d'un tel estimateur diretement dans le domainedes fréquenes, par opposition à la majorité des modèles existants où les estimateurs sontonçus dans le domaine temporel. Notre première ontribution est de proposer et d'étudierun estimateur sous-espae innovateur ave un alul des moyennes réduit en exploitant la



iiorrélation des fréquenes au sein de sous-porteuses adjaentes résidant dans la largeur debande de ohérene des voies à large bande des sénarios MIMO-OFDM typiques. A�n deréduire la grande omplexité informatique réée par la déomposition des valeurs propreset la matrie d'ambigüité assoiée, notre seonde ontribution est de mettre au point uneversion adaptative améliorée de l'estimateur pour augmenter sa apaité dans des onditionsde variation temporelle MIMO. Nous réussissons ela en employant une forme modi�ée del'itération orthogonale permettant un repérage su�sant dans le sous-espae ainsi qu'unetehnique de préodage permettant une rédution de la taille de la matrie d'ambigüité.Les expérienes numériques démontrent que les tehniques proposées peuvent en e�et avoirune meilleure performane que plusieurs des estimateurs de référene dans divers sénariospratiques.



iiiAbstratMultiple-input multiple-output (MIMO) orthogonal frequeny division multiplexing (OFDM)is now widely onsidered as a favored tehnology for emerging and future generation wirelesssystems. MIMO-OFDM aims to ahieve inreased hannel apaity limit by exploiting theuse of multiple antennas in ombination with multi-arrier orthogonal modulation. Whilethe possibility of ahieving this limit is bestowed on the invention of apaity-ahievingoding and deoding tehniques, in reality, this prospet relies heavily on the existeneand use of advaned hannel estimation tehniques. To failitate fast and reliable hannelestimation in MIMO-OFDM systems, pilot symbol insertion is usually onsidered; how-ever, the hannel apaity is greatly redued by inserting those pilot symbols. Therefore,employing fast-onverging and reliable blind hannel estimation for MIMO-OFDM seemsto be an attrative solution for future wireless systems.To this end, blind hannel estimation based on seond order statistis (SOS), insteadof higher order statistis (HOS), has been widely onsidered as a suitable andidate. AmidSOS-based blind approahes, subspae-based estimation is attrative sine reliable esti-mates an often be obtained in a simple form by optimizing a quadrati ost funtion.Nonetheless, the performane of the subspae-based blind hannel estimators may still beseriously degraded under time-varying onditions. This problem an generally make overallperformane unsatisfatory, espeially in MIMO-OFDM systems whose number of subar-riers is large. In order to overome this limitation and suessfully employ subspae-basedhannel estimation in MIMO-OFDM systems, it is essential to minimize the required lengthof the underlying time averaging period.In this thesis, we propose a new subspae-based blind hannel estimator that requiresonly a omparably short time averaging period. We onsider the design of suh an esti-mator diretly in the frequeny domain, as opposed to the majority of existing designs inwhih estimators are developed in the time domain. Our �rst ontribution is to proposeand investigate a novel subspae-based estimator with redued time averaging, by exploit-ing the frequeny orrelation among adjaent subarriers, residing within the oherenebandwidth of the broadband hannels in typial MIMO-OFDM senarios. To redue thehigh omputational omplexity inurred by the eigenvalue deomposition and the assoi-ated ambiguity matrix, our seond ontribution is to develop an improved, adaptive versionof the estimator for enhaning its apability under MIMO time-varying onditions. This



ivis ahieved by employing a modi�ed form of the orthogonal iteration for e�ient subspaetraking along with a preoding tehnique that allows a redution in the size of ambigu-ity matrix. Numerial experiments demonstrate that the proposed tehniques an indeedoutperform several benhmark estimators in various pratial senarios.



vAknowledgmentsI would like to express my deepest gratitude to my supervisor, Prof. Benoît Champagnefor his guidane, enouragement, and support through the ourse of my Ph.D. studies. Ihave no doubt that my thesis ould not have been ompleted without his help and enour-agement. I am also grateful for his �nanial support via researh grants from the NaturalSienes and Engineering Researh Counil of Canada (NSERC). I also aknowledge Prof.Mladen Glavinovi¢ from the Department of Physiology via the MGill work-study program,and l'Aide �nanière aux études of the Québe government, for providing �nanial supportto omplete the researh.Furthermore, I would like to thank Prof. Harry Leib, Prof. Ioannis Psaromiligkos andProf. Frank Ferrie, members of my Ph.D. ommittee, for their feedbak and suggestions. Iowe a great many thanks to Prof. James Nemes, Prof. Jane Everett, my external examiner,Prof. Saeed Gazor from Queen's University, Kingston, and the members of my oral defenseommittee, namely: Pro-Dean, Prof. Amir Shmuel, Prof. Jan Bajsy, Prof. Mark Coates,Prof. Zetian Mi, and Prof. Sonia Aïssa from Institut National de la Reherhe Sienti�que- Énergie, Matériaux et Téléommuniations (INRS-EMT), Université du Québe. I amalso grateful for many dediated faulty and sta� at MGill University, who have on-tributed to teahings and holding various workshops, making this experiene fruitful andmemorable. I am partiularly grateful to my fellow graduate students in Teleommunia-tions and Signal Proessing (TSP) Laboratory and in MGill Taiwanese Graduate StudentAssoiation (MTGSA), for their ompanionship during my studies at MGill University.My speial thanks go to Mr. Kar Lun (Clarene) Wong, Mr. Yongteng (David) Ma, Ms.Zhengyan (Stella) Shi, Ms. Isabel Deslauriers, and Dr. Ping Luo from TSP, and Ms. Pi-YuChiang and Kao-Shen Chung from MTGSA, who enouraged me in any respet during theompletion of this thesis.I am forever indebted to my parents, sister, and other family members for their love,support, and enouragement throughout my life. Last but not least, my deepest gratitudegoes to my feline hildren, kiki and lulumi, for their ompanionship and emotional support.



vi
Contents
1 Introdution 11.1 Channel estimation for wireless ommuniations . . . . . . . . . . . . . . . 31.1.1 Subspae-based blind hannel estimation . . . . . . . . . . . . . . . 41.1.2 Traking time-varying hannels by subspae updating . . . . . . . . 61.2 Researh objetives and methodology . . . . . . . . . . . . . . . . . . . . . 81.3 Contributions and laim of originality . . . . . . . . . . . . . . . . . . . . . 101.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Bakground: MIMO-OFDM system and hannel models 142.1 Introdution to MIMO-OFDM transmission systems . . . . . . . . . . . . . 142.1.1 SISO-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.1.2 MIMO-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.2 The wireless propagation hannel . . . . . . . . . . . . . . . . . . . . . . . 212.2.1 Propagation mehanism . . . . . . . . . . . . . . . . . . . . . . . . 222.2.2 Delay pro�le and impulse response . . . . . . . . . . . . . . . . . . 312.3 Overview of reent wireless hannel simulation models . . . . . . . . . . . . 342.3.1 3GPP spatial hannel model . . . . . . . . . . . . . . . . . . . . . . 342.3.2 COST-207 models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372.3.3 Simpli�ed tapped delay line models . . . . . . . . . . . . . . . . . . 373 Survey of reent developments on MIMO-OFDM hannel estimation 393.1 Motivating the need for hannel estimation . . . . . . . . . . . . . . . . . . 39



Contents vii3.1.1 Coherent, nonoherent, and di�erential detetions . . . . . . . . . . 403.1.2 The need for hannel estimation in oherent detetion . . . . . . . . 413.2 Overview of hannel estimation for wideband MIMO-OFDM . . . . . . . . 443.2.1 Pilot-based hannel estimation . . . . . . . . . . . . . . . . . . . . . 453.2.2 Blind hannel estimation . . . . . . . . . . . . . . . . . . . . . . . . 483.3 Generalized subspae-based blind estimation . . . . . . . . . . . . . . . . . 493.3.1 The mathematial basis of subspae-based blind estimation . . . . . 503.3.2 Overview of reent subspae-based blind approahes . . . . . . . . . 533.3.3 Summary of the notable subspae-based blind approahes . . . . . . 593.4 Limitations of urrent subspae-based blind estimators . . . . . . . . . . . 604 Subspae-based blind hannel estimation with redued time averaging 624.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634.2 Subspae-based blind estimation . . . . . . . . . . . . . . . . . . . . . . . . 644.2.1 Proposed approah . . . . . . . . . . . . . . . . . . . . . . . . . . . 654.2.2 Further omments on the proposed approah . . . . . . . . . . . . . 714.3 Performane analysis on the proposed subspae-based estimator . . . . . . 724.3.1 Identi�ability onditions . . . . . . . . . . . . . . . . . . . . . . . . 724.3.2 Perturbation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 744.3.3 Cramer-Rao bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 775 Subspae traking based on orthogonal iteration: onvergene behavior 805.1 Motivations of using subspae traking . . . . . . . . . . . . . . . . . . . . 815.2 Orthogonal iteration and its appliations . . . . . . . . . . . . . . . . . . . 835.3 Convergene analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845.4 Numerial experiments of orthogonal iteration . . . . . . . . . . . . . . . . 905.5 Summary of the onvergene analysis . . . . . . . . . . . . . . . . . . . . . 956 Blind reursive subspae-based identi�ation of time-varying hannels 976.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986.1.1 Preoded MIMO-OFDM system with subarrier grouping . . . . . . 996.1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016.2 Preoded subspae-based approah . . . . . . . . . . . . . . . . . . . . . . 1026.2.1 Subspae-based identi�ation . . . . . . . . . . . . . . . . . . . . . 102



Contents viii6.2.2 Blind estimation algorithm . . . . . . . . . . . . . . . . . . . . . . . 1046.3 Channel traking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056.3.1 Reursive approah based on orthogonal iteration . . . . . . . . . . 1066.3.2 Convergene properties . . . . . . . . . . . . . . . . . . . . . . . . . 1086.3.3 Proposed blind reursive estimation algorithm . . . . . . . . . . . . 1116.4 Preoder design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117 Numerial experiments and results 1167.1 Time-invariant senarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167.1.2 Comparison with referened shemes . . . . . . . . . . . . . . . . . 1177.1.3 Pratial appliations . . . . . . . . . . . . . . . . . . . . . . . . . . 1227.2 Disussions of time-invariant senarios . . . . . . . . . . . . . . . . . . . . 1267.3 Time-variant senarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1297.4 Disussions of time-variant senarios . . . . . . . . . . . . . . . . . . . . . 1358 Summary and onlusion 1368.1 Summary of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1368.2 Conluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1398.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140A Quadrati ost funtion 142Referenes 144



ix
List of Figures

2.1 A simple illustration of the OFDM modulation. . . . . . . . . . . . . . . . 172.2 A simple illustration of an NT ×NR multiple-input multiple-output hannel. 202.3 3GPP multiple-input multiple-output spatial hannel model. . . . . . . . . 353.1 A generi blind hannel estimation problem. . . . . . . . . . . . . . . . . . 514.1 A shemati of the partitioning of the subarrier index set Ω = {0, 1, · · · , NC−
1} into P disjoint subsets, i.e. Ωp = {ωp,1, ωp,2, · · · , ωp,ζ}, p = 1, 2, · · · , P . . 665.1 (a)Perturbation of the eigenvalues λr+1((Wk)

k) and λr((Wk)
k) due to ‖∆W̄k‖2.(b)Perturbation of the eigenvalues λr+1,k−1(Wk−1) and λr,k−1(Wk) due to ‖∆Wk,1‖2. 885.2 dist(Dr(W),R(Qk)) versus the number of iterations for various σ2's. . . . 915.3 log(dist(Dr(W

′

k),R(Qk))) versus the number of iterations for σ2 = 0 (solidline) and 10−6 (dash-dot lines). . . . . . . . . . . . . . . . . . . . . . . . . 925.4 A sudden hange of W to W
′ at the 50th iteration. . . . . . . . . . . . . . 935.5 prob (|λr,k−1(Wk−1) − λr+1,k−1(Wk−1)| ≤ 2‖∆Wk‖2) versus the forgettingfator α in the time-varying model. . . . . . . . . . . . . . . . . . . . . . . 945.6 dist(Dr(Wk),R(Qk)) versus the number of iterations in the time-varyingmodel with α = 0.98 when SNR = 0dB. . . . . . . . . . . . . . . . . . . . . 955.7 dist(Dr(Wk),R(Qk)) versus the number of iterations in the time-varyingmodel with α = 0.95 when SNR = 0dB. . . . . . . . . . . . . . . . . . . . . 965.8 dist(Dr(Wk),R(Qk)) versus the number of iterations in the time-varyingmodel with α = 0.93 when SNR = 0dB. . . . . . . . . . . . . . . . . . . . . 96



List of Figures x6.1 The preoded MIMO-OFDM system model. . . . . . . . . . . . . . . . . . 1006.2 A demonstration on the rate of onvergene in subspae estimation by usingorthogonal iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107.1 NMSE versus number of OFDM bloks (SNR=20dB). . . . . . . . . . . . . 1197.2 NMSE versus number of OFDM bloks (SNR=20dB). . . . . . . . . . . . . 1207.3 CAB versus number of OFDM bloks (SNR=20dB). . . . . . . . . . . . . . 1217.4 CAB versus number of OFDM bloks (SNR=20dB). . . . . . . . . . . . . . 1227.5 NMSE versus number of OFDM bloks over 3GPP Urban Miro (SNR=20dB).1237.6 NMSE versus number of OFDM bloks over 3GPP Urban Maro (SNR=20dB).1247.7 NMSE versus number of OFDM bloks over 3GPP Suburban Maro (SNR=20dB).1257.8 NMSE versus P (when the number of OFDM symbols Tav = 50). . . . . . 1267.9 Performane of the proposed sheme over various 3GPP-SCM senarios (Tav =

50) as a funtion of SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277.10 BER of proposed sheme over 3GPP-SCM senarios. . . . . . . . . . . . . 1287.11 CDF of the RMS delay spread. . . . . . . . . . . . . . . . . . . . . . . . . 1297.12 NMSE versus preoder oe�ient ν when MS speed is 100km/h (Eb/N0 =14dB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1307.13 NMSE versus forgetting fator β when MS speed is 100km/h (ν = 1 and
Eb/N0 = 14dB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1317.14 NMSE versus number of OFDM symbols when MS speed is 100km/h (nd = 2).1327.15 BER versus preoder parameter ν when MS speed is 100km/h (nd = 2). . . 1337.16 BER versus Eb/N0 when MS speed is 100km/h (nd = 2). . . . . . . . . . . 134



xi
List of Tables

2.1 Parameters of 3GPP-SCM omplex hannel gain. . . . . . . . . . . . . . . 362.2 COST-207 typial urban (TU), bad urban (BU), and hilly terrain (HT) 6-raypower delay pro�le. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.1 Summary of dimensionality for some notable subspae-based blind hannelestimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.1 Computational omplexity of the proposed algorithm. . . . . . . . . . . . . 70



xii
List of Aronyms

3GPP Third Generation Partnership Projet3GPP2 Third Generation Partnership Projet 24G Fourth Generation Mobile Communiation SystemAIE Air Interfae of EvolutionBER Bit Error rateCCSA China Communiation Standardization AssoiationCP Cyli Pre�xCSI Channel State InformationE3G Enhaned 3GEVD Eigenvalue DeompositionFFT Fast Fourier TransformGSM Global System for Mobile ommuniationsHSDPA High Speed Downlink Paket AessITU International Teleommuniation UnionIFFT Inverse Fast Fourier TransformLTE Long Term EvolutionLORAF Low Rank Adaptive FilterMIMO Multiple Input Multiple OutputMITF Mobile IT ForumNGMC Next-Generation Mobile CommitteeNIC Novel Information CriterionNRMSE Normalized Root Mean Square Error



List of Terms xiiiNMSE Normalized Mean Square ErrorOFDM Orthogonal Frequeny Division MultiplexingOPAST Orthogonal Projetion Approximation and Subspae TrakingRF Radio FrequenySC Single CarrierSIMO Single Input Multiple OutputSISO Single Input Single OutputSNR Signal to Noise RatioSOS Seond Order StatistisSVD Singular Value DeompositionTI Time InvariantTV Time VaryingUE User EquipmentUMB Untramobile BroadbandUMTS Universal Mobile Teleommuniation SystemVC Virtual CarriersWCDMA Wideband Code Division Multiple AessWWRF Wireless World Researh Forum



xiv
Notation

⊗ Kroneker produt
⊘ element-wise division
⊙ Hadamard produt
vec (·) Ve operator
E[x] expeted value of the random variable x
In n× n identity matrix
tr(X) trae of the square matrix X

‖X‖ any onsistent matrix norm
‖x‖p p-norms of the vetor x

‖X‖p p-norms of the matrix X

‖X‖F Frobenius norm of the matrix X

X† pseudo-inverse of the matrix X

X = diag(x) a diagonal matrix whose main diagonal is onstruted fromthe entries of the vetor x

R(X) range spae of the matrix X

N(X) null spae of the matrix X

Dr(X) the subspae spanned by the eigenvetors orresponding tothe r largest eigenvalues of the matrix X

λr(X) the rth largest eigenvalue of the matrix X

γr(X) the rth smallest eigenvalue of the matrix X

σr(X) the rth largest singular value of the matrix X



1
Chapter 1
Introdution
Sine the �rst demonstration of radio signaling by Maroni in the late nineteenth entury,the ability to ommuniate with people on the move has hanged dramatially. Partiularlyduring the past deade, the mobile ommuniation tehnologies, fueled by various tehnialahievements, inluding digital and radio frequeny (RF) iruit fabriation, very large-saleiruit integration, and digital swithing tehniques, have made the portable mobile deviesmore a�ordable and reliable [1�3℄.The trend toward a more reliable and a�ordable portable devie not only stimulatedthe rapidly growing number of users but also brought about a fundamental hange on thedesign of wireless systems and networks [4℄. For example, the traditionally voie-enteredservies has been gradually replaed by data-entered ones [5℄. Besides, the data transmis-sion rate has also inreased tremendously, from 9.6 kbps in 1995 on a GSM system [2℄ to2Mbps in 2005 on a WCDMA system [5, 6℄; this represents more than 200 times inrease indata rate within this ten year period. To date, the so-alled "Super-3G" or "Beyond-3G"wireless systems and networks with a peak data transmission rate that an reah as high as500Mbps have been demonstrated in the very reent �eld trials [7℄. Even more ambitious 4G
2010/07/30



1 Introdution 2wireless systems and networks whih are targeting a peak data transmission rate of approx-imately 1Gbps, are also enthusiastially investigated by various national and internationalorganizations [4, 8℄, suh as the International Teleommuniation Union (ITU), EuropeanCommission Framework Program (FP), Wireless World Researh Forum (WWRF), Ko-rean Next-Generation Mobile Committee (NGMC), Japanese Mobile IT Forum (MITF),and China Communiation Standardization Assoiation (CCSA). International standardsorganizations are urrently working on the standardization of the Enhaned 3G (E3G) andthe 4th Generation Mobile Communiation System (4G), inluding the Long Term Evolu-tion (LTE) plan for the 3rd Generation Partnership Projet (3GPP) and the air interfaeof evolution/ultramobile broadband (AIE/UMB) plan of 3GPP2 [9, 10℄.The radio spetrum still being a sare and limited resoure, high spetral e�ieny isruial to support the demand of high transmission rate from future mobile users. The LTEphysial layer is targeted to provide improved radio interfae apabilities between the basestation and user equipment (UE), as ompared to previous ellular tehnologies like Univer-sal Mobile Teleommuniations System (UMTS) [5℄ or High-Speed Downlink Paket Aess(HSDPA) [11℄. Aording to the initial requirements de�ned by the 3GPP (3GPP 25.913)[12℄, the LTE physial layer should support peak data rates of more than 100Mb/s overthe downlink and 50Mb/s over the uplink [13℄. A �exible transmission bandwidth rangingfrom 1.25 to 20MHz will provide support for users with di�erent apabilities [14℄. Theserequirements will be ful�lled by employing new tehnologies for ellular environments, suhas orthogonal frequeny division multiplexing (OFDM) and multiple-input multiple-output(MIMO) shemes (3GPP 36.201) [4, 15℄.



1 Introdution 31.1 Channel estimation for wireless ommuniationsA MIMO system deploys multiple antennas at both ends of a wireless link to inrease thehannel apaity and to mitigate adverse e�ets of the wireless hannel [3, 16℄, while OFDMaims to provide high spetral e�ieny and to eliminate the need for high-omplexity equal-ization algorithms by deomposing the broadband radio hannel into a set of orthogonalparallel sub-hannels [14℄. Therefore, MIMO-OFDM, whih ombines multiple transmitand reeive antennas and the OFDM modulation, has beome a pratial alternative toeither the single-arrier (SC) or the single-input single-output (SISO) transmission [17℄.Three main tehniques an be applied to fully exploit the speial strutures of theMIMO-OFDM systems, namely: diversity [18, 19℄, beamforming [5, 6, 16℄, and spatialmultiplexing [4, 20℄. Diversity tehniques improve the average signal-to-noise ratio (SNR)on the reeiver side by exploiting independent fading hannels, as seen from either spae,time, frequeny, polarization, or a ombination of these domains. In beamforming, signalsare oherently ombined (either in the transmitter or reeiver) so as to enhane the antennaarray response in a preferred diretion. Spatial multiplexing o�ers a linear inrease in thesignaling rate by exploiting the parallel transmission of di�erent information stream fromdi�erent antennas. However, all these tehniques an only ahieve the desired improvementin performane when the hannel state information (CSI) is perfetly known [21℄.There are mainly two ways to obtain the required CSI, i.e., pilot-based versus blindestimation. In pilot-based hannel estimation, known symbols are transmitted to assist thereeiver in determining the CSI. Clearly this an only be done at the expense of a lowerbandwidth e�ieny. So far, pilot-based hannel estimation is still onsidered to supportmost ommuniation systems due to its reliability and low omplexity. Nevertheless, withthe ever inreasing mobile speed requirement, pilot symbols have to be sent frequently



1 Introdution 4to ope with the time-variations of the wireless hannels. Hene, if we insist in usingthe pilot-based hannel estimation, this will greatly redue the bandwidth e�ieny andinevitably lessen the advantages brought by these MIMO tehnologies. In summary, thereis an urgent need for a new blind hannel estimation tehnique in MIMO-OFDM systems,and the researh results on this topi will de�nitely in�uene the development of the futuremobile ommuniation tehnologies.1.1.1 Subspae-based blind hannel estimationAmong reent studies of MIMO-OFDM, blind hannel estimation has reeived great at-tention and has beome a vital area of researh. Existing blind methods an broadly beategorized as statistial or deterministi: The former methods rely on assumptions on thestatistis of the input sequene [22�24℄ while the latter make no suh assumptions [25, 26℄.In the �rst ategory, i.e., statistial approahes, blind hannel estimation using seond or-der statistis (SOS) an potentially ahieve superior estimation performane for a giventime averaging interval than approahes using higher order statistis (HOS) [27�31℄. Theseond ategory, i.e., deterministi methods, is generally favored when the input statistisare unknown, or there may not be su�ient time samples to obtain the hannel estimate.To date, several interesting deterministi methods have been developed by, e.g., employ-ing the maximum likelihood approah [32, 33℄, exploiting null guard intervals [34, 35℄,exploiting zeros of the hannel impulse response [36℄, or by using frational sampling aswell as interpolation [37℄; however, most of them are exlusively for SISO or single-arriertransmissions.Amid SOS-based blind approahes, subspae-based estimation is attrative sine esti-mates an often be obtained in a simple form by optimizing a quadrati ost funtion [38℄.Without employing any preoding at the transmitter, a subspae-based method is proposed



1 Introdution 5for OFDM systems by utilizing the redundany introdued by the yli pre�x (CP) [39, 40℄,and it is further extended for MIMO-OFDM systems in [41℄. Virtual arriers (VCs) aresubarriers that are set to zero with no any information being transmitted. The preseneof VCs provides another useful resoure that an be used for hannel estimation. Suh asheme is proposed for OFDM systems [42℄, and it is further extended to MIMO-OFDMsystems in [43, 44℄.The aforementioned approahes primarily exploit the separability of the noise and sig-nal subspaes by applying the eigenvalue deomposition (EVD) to the orrelation matrixof the reeived signals. In pratie, the orrelation matrix an only be estimated by aver-aging over multiple time samples, given the wireless hannel is time-invariant during thisaveraging period. Sine the quadrati ost funtion is onstruted from the eigenvetors ofthe noise subspae obtained from the EVD, the auray of the eigenvetors obtained fromthe sampled orrelation matrix dominates the performane of the estimation. Hene, in atime-invariant environment, the more time samples are averaged, the better the estimationperformane is.Considering that radio propagation onditions an only be invariant over a limited timeinterval (related to fading onditions, user mobility, et.), it is legitimate to wonder howmany samples are su�ient to obtain a sampled orrelation matrix meeting a ertain levelof auray in the hannel estimate. A basi rule is to assure that the number of the timesamples must be no less than the dimension of the orrelation matrix to make it full rankor invertible. Thus, to ahieve desired estimation auray in the presene of noise, therequired number of time samples for the CP and VC approahes may beome prohibitive.For example, simulation results have shown that at least 500 OFDM symbols are requiredin order to ahieve a normalized root mean square error (NRMSE) of 10−2 on the hannelestimate, when we onsider the number of subarriers in OFDM is 16 and SNR = 20dB



1 Introdution 6[43℄. If the number of subarriers in OFDM is inreased to 64, the number of requiredOFDM symbols would inrease up to thousands for time averaging [44℄, making thesesubspae-based blind approahes impratial.More reently, variants of the statistis-based methods have been proposed, e.g., by in-serting zero-padding instead of CP for eah OFDM blok [45℄ or by introduing the so-alledrepetition index [46℄ and re-modulation [47℄ on the reeived signal. However, the numberof required time samples is still impliitly proportional to the number of subarriers (or thesize of the IFFT) in the OFDM modulator. We also note that deterministi approahes stillneed to aumulate data samples in order to algebraially obtain hannel estimates, andtheir performane in noise improves as the number of samples inreases. Therefore, as thedimension of the parameter spae is inreased in the MIMO-OFDM ontext, the number ofsamples required for deterministi methods to ahieve an aeptable level of performanewill also inevitably be inreased.1.1.2 Traking time-varying hannels by subspae updatingTraking time-varying (TV) hannels with a large Doppler spread is a ritial task, re-gardless of whether a non-blind or blind approah is used [48℄. A non-blind approah ingeneral requires to employ pilots more frequently sine the hannel estimate beomes ob-solete shortly after the training period ends. On the ontrary, a blind approah eliminatesthe need of large amount of pilot symbols and therefore is favored if omplexity is not themain onern.There are mainly two ategories of blind approahes for traking rapidly time-varyinghannels: (1) using a blok proessing approah to estimate the unknown parameters ofan underlying time-varying hannel model, and (2) using an adaptive proessing algorithmthat is su�iently fast to trak the hannel variations. Among various blind approahes



1 Introdution 7in the �rst ategory, a basis expansion model has been proposed to onvert a TV-SISOhannel into a time-invariant (TI) single input multiple output (SIMO) hannel, followedby a standard SOS-based subspae method for blind hannel estimation [49℄. The idea ofbasis expansion was further extended for a TV-SIMO hannel [50�52℄, and a generalizedOFDM system over a TV-SISO hannel [53℄. Similarly, an interpolation model was alsoproposed to onvert a TV-SISO hannel into �xed parameters in a long-ode ode divisionmultiple aess system [54℄.Reently, there has been muh interest in the searh of new adaptive algorithms inthe seond ategory. A zero padding SISO-OFDM system assoiated with either reursiveleast squares or least mean squares method for blind adaptive hannel estimation wasonsidered in [55℄. It was reported that for an IFFT size of 64 and padding length of 16,the relative hannel estimation error onverges to -27dB in 500 symbols when the maximumDoppler shift is limited to 100Hz and the SNR is 20dB. By properly hoosing the so-alledrepetition index, a yli pre�xing SISO-OFDM system was also proposed in [46℄, whereit was reported that for a 64-point IFFT with a yli pre�x length of 16, the bit errorrate (BER) an reah a level of 10−2 within 12 reeived bloks when the maximum Dopplershift is 50Hz and the SNR ≥ 25dB.While the above adaptive approahes o�er interesting apabilities in traking time-varying hannels with high spetral e�ieny, they may not be adequate for appliationsin future generation of broadband mobile wireless systems, in whih there is a need toprovide high-rate transmission, e.g., a real-time video stream, between a user terminal andan aess node whose relative position may vary rapidly over time [56℄. For example, the3GPP LTE spei�ations all for high performane broadband transmission with mobilespeed up to 120km/h, orresponding to a maximum Doppler shift of 220Hz, and additionalprovision to support muh higher speeds up to e.g. 350km/h (high speed train) [12℄. In



1 Introdution 8the 15 - 120km/h speed range, the targeted data rates are 50Mbps for the uplink, upto 100Mbps for the downlink, with inreased spetral e�ieny of 2-3 times of Release 6enhaned uplink and 3-4 times of Release 6 HSDPA, respetively.Based on these onsiderations, there is a need to further push the apability of adap-tive hannel traking for even faster time-varying hannels. In addition, this goal shouldnot result in the loss of any bandwidth e�ieny, or plaing restritions on the numberof transmit or reeive antennas. We notie that there also exist algorithms for hannelestimation in mobile MIMO-OFDM systems with large Doppler shifts [57�59℄; however,they all require proper preambles or training sequene to work.1.2 Researh objetives and methodologyThe appliability of traditional subspae-based blind estimators and trakers is severelylimited by the requirement of a large time averaging period. The main objetive of thisresearh work is to develop new subspae-based blind estimators and trakers for MIMO-OFDM systems to relieve suh a onstraint. This is mainly ahieved by exploiting thefrequeny orrelation among adjaent subarriers in OFDM transmissions through sub-arrier grouping [60℄, for whih some supportive �eld measurements an also be found in[61℄.In light of the disussions given in Setion 1.1, it an be onluded that a numberof elements in existing subspae-based algorithms for blind hannel estimation in MIMO-OFDM systems an be onsidered for possible improvements. In partiular, the followingtopis are studied in detail in this work:1. Time-invariant blok-based hannel estimation:Subspae-based blind hannel estimators are haraterized by good performane and



1 Introdution 9simple strutures; however, their requirement of a large time averaging period makesthem less appealing for pratial uses. In this thesis, we seek to develop a moree�ient estimation algorithm in order to redue the time averaging period whilemaintaining the same performane. In addition, we will investigate the performane ofthe newly developed algorithms to demonstrate their usefulness in pratial senarios.2. Time-varying adaptive hannel traking:Orthogonal iteration and its variants have been onsidered for subspae traking to alarge extent. On the basis of the orthogonal iteration, we aim to extend the oneptof the aforementioned blok-based MIMO-OFDM hannel estimator to an adaptivehannel traker in time-varying senarios. Although the onvergene properties oforthogonal iteration in stationary ases are well understood, the orresponding prop-erties in non-stationary ones are not. Hene, it requires a better study of di�erentaspet of the onvergene properties of orthogonal iteration in various non-stationarysenarios. With a better understanding of those properties in non-stationary senar-ios, we an develop an orthogonal-iteration-based subspae trakers for MIMO-OFDMsystems over time-varying hannels with large Doppler spread.The proposed subspae-based blind estimator and traker will be studied and omparedusing well-proven analytial and simulation approahes. The simulation experiments willfous on measuring the NMSE of the proposed estimators and the orresponding BERwhen the latter are embedded in a omplete MIMO-OFDM transmission hain.



1 Introdution 101.3 Contributions and laim of originalityIn this work, new subspae-based blind hannel estimation and traking algorithms forMIMO-OFDM systems are proposed. Through analytial studies and numerial simula-tions, the proposed algorithms are shown to ahieve superior performane ompared toexisting algorithms in the literature. The main original ontributions of this researh workan be summarized as follows:
• Generalization of the subspae-based blind estimation for XIXO-OFDM systems overa quasi-stationary wireless hannel (where XIXO denotes the abbreviation of SIMO,MISO, and MIMO on�gurations).
• Development of a novel subspae-based blind estimator for MIMO-OFDM systems,reduing the number of required data samples for time averaging.
• Proof of identi�ability onditions of the proposed subspae-based blind estimator.
• Derivation of asymptotial performane bound and Cramer-Rao bound of the pro-posed subspae-based blind estimator.
• Development of a novel subspae traking algorithm for preoded MIMO-OFDMsystems over a rapidly time-varying wireless hannel.
• Extension of the onvergene analysis of the orthogonal iteration to inlude the non-stationary ases.
• Derivation of a fundamental limitation on the use of orthogonal iteration when it isapplied to fast time-varying hannels.



1 Introdution 11These ontributions have led to a number of publiations in peer-reviewed journals andrefereed onferenes, as listed below:Journal papersJ-1) C. C. Tu and B. Champagne, "Performane analysis of blind subspae-based MIMO-OFDM hannel estimator exploiting frequeny orrelation," (in preparation).J-2) C. C. Tu and B. Champagne, "Blind subspae traking of wideband time-varyingMIMO hannels with large Doppler spread," submitted to IEEE Trans. Wireless Com-mun., Feb. 2010.J-3) C. C. Tu and B. Champagne, "Subspae-based blind hannel estimation for MIMO-OFDM systems with redued time averaging," IEEE Trans. on Veh. Tehnol., vol. 59, No.3, pp. 1539-1544, Marh 2010.Conferene papersC-1) C.-C. Tu and B. Champagne, "On onvergene properties of subspae trakers basedon orthogonal iteration," in Pro. IEEE Pai� Rim Conf. on Commun., Comput. and Sig-nal Proess., Aug. 2009, pp. 65-70.C-2) C.-C. Tu and B. Champagne, "Subspae traking of fast time-varying hannels inpreoded MIMO-OFDM systems," in Pro. IEEE Int. Conf. on Aoust., Speeh and Sig-nal Proess., Apr. 2009, pp. 2565-2568.



1 Introdution 12
C-3) C.-C. Tu and B. Champagne, "Subspae blind MIMO-OFDM hannel estimation withshort averaging periods: performane analysis," in Pro. IEEE Wireless Commun. Network-ing Conf., Mar. 2008, pp. 24-29.C-4) C.-C. Tu and B. Champagne, "Subspae-based blind hannel estimation for MIMO-OFDM systems: reduing the time averaging interval of the orrelationmatrix," in Pro. IEEEInt. Symp. on Pers. Indoor Mobile Radio Commun., Sept. 2007, pp. 1-5.
1.4 Thesis organizationAn introdution to MIMO-OFDM systems is given in Chapter 2, along with an overview ofvarious radio propagation e�ets in the mobile radio hannels. In order to haraterize thehannel parameters to be estimated, a brief review of hannel models that are largely usedto generate hannel parameters for numerial experiments is addressed in a later setion.In Chapter 3, the motivation for hannel estimation in a wireless system is reapitulated.This is aompanied by a disussion on its alternatives, namely the non-oherent anddi�erential tehniques, in whih the CSI is not required at the reeiver side. Then varioushannel estimation methods, inluding pilot- and blind-based approahes for MIMO-OFDMsystems are enumerated and disussed in detail. This hapter is onluded by addressingthe state of the art of blind hannel estimation in terms of its performane and assoiatedlimitations.In Chapter 4, we propose a new subspae-based estimation sheme to improve the afore-mentioned de�ienies. This therefore leads to the �rst ontribution of the thesis, in whih



1 Introdution 13a new subspae-based algorithm relieving the limitation of a subspae-based estimation isproposed. The identi�ability ondition, asymptotial performane bound and Cramer-Raobound of the proposed estimator are also presented.Due to the high omputational omplexity inurred in the eigenvalue deompositionand the need to identify time-varying hannels, the proposed algorithm is further extendedto inorporate the idea of subspae traking, in whih the subspae information is updatedrather than reomputed for a new hannel estimate. In hapter 5, we fous on analyzing theonvergene properties of the so-alled orthogonal iteration method, whih will be employedfor traking the subspae of interest. Then we propose a new time-varying hannel trakingalgorithm in Chapter 6, leading to the seond ontribution of the thesis. Spei�ally, theassumption of the wireless hannel onsidered is further relieved to be only quasi-stationarywithin one OFDM symbol. Numerial results of the proposed algorithms are then presentedin Chapter 7, and onlusions are drawn in Chapter 8.



14
Chapter 2
Bakground: MIMO-OFDM system andhannel models
In this hapter, we �rst introdue the MIMO-OFDM system model under onsideration.Then, an overview of various radio propagation e�ets and their modeling is given. Thisinludes a disussion on the onepts of hannel delay pro�le and hannel oe�ient har-aterization, whih play a entral role in the hannel estimation problem. The hapterends with a brief review of some important wireless hannel models that are widely usednowadays for numerial experiments.2.1 Introdution to MIMO-OFDM transmission systemsDemands for higher apaity in wireless ommuniations, driven by high data rate appli-ations and multimedia servies, are never easing [56℄. However, the available frequenyspetrum is limited and the high apaity needs of these new appliations annot be ful�lledwithout a signi�ant inrease in the ommuniation spetral e�ieny [62℄.With the advanes in hannel oding shemes suh as turbo odes [63℄ or low density



2 Bakground: MIMO-OFDM system and hannel models 15parity hek (LDPC) odes [64℄, Shannon apaity an be approahed with single antenna[18℄. However, the use of MIMO systems an further push the fundamental apaity limitswith the same SNR, ompared to the single antenna systems [62℄. MIMO systems arereated by deploying multiple antennas at both ends of a wireless link, i.e. transmitterand reeiver sides. Using multiple antennas in wireless ommuniations has been proposedto inrease hannel apaity; researh results [65, 66℄ have shown that hannel apaityinreases linearly with the number of antennas deployed at both the transmitter and re-eiver sides under ideal propagation senarios, where hannel oe�ients are modeled asindependent omplex Gaussian random variables. Hene, by suitable oding designs, largegains in apaity over wireless ommuniations are feasible in MIMO systems as omparedto traditional SISO systems; however, if we onsider a broadband ommuniation system,then onventional SC modulation will inevitably inur a high omplexity for the MIMOdetetion.OFDM provides a good solution to this problem. Indeed, by ombining the advantageso�ered by MIMO and OFDM, the broadband frequeny seletive fading MIMO hannel anbe treated as a olletion of multiple independent �at fading MIMO sub-hannels, whihgreatly redues the omplexity of the MIMO detetion. To date, OFDM has been widelyadopted into various standards, inluding the European digital audio broadast (DAB)[67℄ as well as the digital video broadast (DVB) sheme [68℄. It was also seleted as thehigh performane loal area network Type 2 standard (HiperLAN/2) [69℄ as well as partof the IEEE 802.11a/b/g wireless loal area network (WLAN) standard [56℄. Furthermore,it has been inluded in the Super-3G mobile radio standards, and has also being in thestandardization proess of 3GPP LTE [15℄. In the following, we introdue the OFDMsystem model for a SISO hannel �rst, and then extend the onept to MIMO hannels.



2 Bakground: MIMO-OFDM system and hannel models 162.1.1 SISO-OFDMOFDM belongs to a family of transmission shemes alled multi-arrier modulation, andis very attrative for broadband wireless systems whih enounter large delay spread [4℄.Its main idea is to divide the serial input data stream into a number of parallel streamsand then modulate eah stream on separate arriers, and transmit these low-rate parallelstreams simultaneously. By doing so, the delay spread is only a small fration of thesymbol duration, whih onsiderably simplify the task of hannel equalization. A ylipre�x (CP) an be applied to eah OFDM symbol to remove intersymbol interferene(ISI) with a small penalty in hannel apaity [70℄. In addition, these separate arriers,often alled subarriers, are allowed to overlap in the frequeny domain by maintainingorthogonality of their orresponding time domain waveforms over the symbol duration. Asa result, the bandwidth e�ieny of OFDM is very high. Moreover, the CP enables theuse of fast Fourier transform (FFT) for OFDM implementation, and thus greatly reduesthe hardware omplexity [7℄.In the following, we desribe more details regarding the operation of a OFDM transmis-sion hain. To this end, we assume that the hannel impulse response of the SISO hannelunder onsideration is represented as h(l), l = 0, 1, · · · , L−1, where L denotes the hannelorder. In addition, we assume x
def
= [ x[0] x[1] · · · x[NC − 1] ]T denotes a data vetor to betransmitted over the SISO hannel, with E[|x[k]|2] = 1. The OFDM modulation illustratedin Fig. 2.1 an be desribed as follows:The transmitter �rst performs an inverse fast Fourier transform (IFFT) operation onthe data vetor x. Thus, the output of the IFFT operation an be denoted as x̃ = DHx,
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yFig. 2.1 A simple illustration of the OFDM modulation.where D is an NC ×NC matrix with the (m,n)th entry de�ned as

[D]m,n =
1√
NC

exp(−j2π(m− 1)(n− 1)/NC). (2.1)In this thesis, the entries of the matrix D are normalized suh that the latter is unitary,i.e. DDH = I. Then a new data vetor x
′ is onstruted by appending the CP of length

Ncp ≥ L−1, whih onsists of the last Ncp symbols of x̃, to the data vetor x̃ itself. Hene,
x

′ an be written as x
′ def

= [ x̃[NC −Ncp] · · · x̃[NC − 1] x̃[0] · · · x̃[NC − 1] ]T ; this vetor isserially transmitted beginning with the symbol x̃[NC −Ncp].Assuming perfet symbol synhronization, the reeived data vetor y
′, orrespondingto the transmitted sequene x

′ , is of length NC +Ncp +L−1, as a result of the onvolutionof the transmitted sequene onvolved with the hannel impulse sequene of length L. Thereeiver's �rst task is to strip o� the CP from y
′ and then ollets NC samples of thereeived signal to onstrut a new vetor ỹ. The latter satis�es

ỹ = G̃x
′

+ ñ, (2.2)where ñ is the zero mean irularly symmetri omplex Gaussian (ZMCSCG) noise vetor



2 Bakground: MIMO-OFDM system and hannel models 18with ovariane matrix σ2
nINC

, and G̃ is an NC × (NC +Ncp −1) Toeplitz matrix de�ned as
G̃ =















0 · · · 0 h(L− 1) · · · h(0) 0 0 · · · 0

0 0 · · · 0 h(L− 1) · · · h(0) 0 · · · 0... ... . . . ... . . . . . . . . . . . . . . . ...
0 · · · 0 0 · · · 0 h(L− 1) · · · h(0) 0

0 · · · 0 0 · · · 0 0 h(L− 1) · · · h(0)















,

(2.3)where the �rst Ncp − L+ 1 olumns are zeros vetors, resulting from our hoie of the CPsuh that Ncp ≥ L− 1. Sine the �rst Ncp samples of the data vetor x
′ are idential to itslast Ncp samples, (2.2) an be re-written as ỹ = G̃cx̃ + ñ, where
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,

where G̃c is now an NC × NC matrix whose irular struture plays an important role inthe study of OFDM system. Indeed, we �rst observe that G̃c being irulant, its EVD maybe expressed as G̃c = DHΩD, where Ω
def
= diag ( h[0] h[1] · · · h[NC − 1] ) and

h[k] =

L−1∑

l=0

h(l) exp(−j2πlk/NC), k = 0, 1, 2, · · · , NC − 1, (2.4)



2 Bakground: MIMO-OFDM system and hannel models 19with h[k] being the sampled frequeny response of the kth sub-hannel.In order to reover the transmitted symbols, the reeiver performs a fast Fourier trans-form (FFT) on the data vetor ỹ. Thus, the output of the FFT operation an be denotedas y = Dỹ, and re-written by
y = D(G̃cx̃ + ñ) = DDHΩD

︸ ︷︷ ︸

= G̃c

DHx
︸ ︷︷ ︸

= x̃

+Dñ = Ωx + n, (2.5)where we have used the fat that DDH = INC
, and n

def
= Dñ. Note that n is still aZMCSCG noise vetor with ovariane matrix σ2

nINC
.Sine Ω is a diagonal matrix, the kth entry of the vetor y in (2.5) an be expressed by

y[k] = h[k]x[k] + n[k], k = 0, 1, 2, · · · , NC − 1, (2.6)where n[k] denotes the kth entry of the vetor n. Therefore, we observe that the use of aCP in onjuntion with the IFFT and FFT operations at the transmitter and the reeiver,respetively, deouples the wireless hannel into NC parallel sub-hannels.Having disussed the basi priniple of OFDM modulation for SISO hannels, we nowexplain how this modulation shemes may be extended to MIMO hannels.2.1.2 MIMO-OFDMWe now extend the above disussion to a MIMO hannel with NT transmit antennas,
NR reeive antennas. The MIMO hannel is depited in Fig. 2.2. Let the symbol to betransmitted at the qth transmit antenna over the kth subarrier be xq[k], q = 1, 2, · · · , NT .Similar to the ase of SISO-OFDM, the data blok to be transmitted over eah transmitantenna is �rst subjet to an IFFT operation followed by the CP insertion. At eah of the
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NRFig. 2.2 A simple illustration of an NT ×NR multiple-input multiple-outputhannel.reeive antenna, the CP is disarded and then followed by an FFT operation. Therefore,for the onsidered MIMO-OFDM system, the signal reeived at the pth reeive antennaover the kth subarrier is given by
yp [k] =

NT∑

q=1

hp,q[k]xq[k] + np[k], p = 1, 2, · · · , NR, (2.7)where hp,q[k] denotes the hannel gain between the qth transmit antenna and the pthreeive antenna over the kth tone, and np[k] represents the ZMCSCG noise at the pthreeive antenna over the kth subarrier.Let x[k]
def
= [ x1[k] x2[k] · · · xNT

[k] ]T , and x
def
=
[

x[0]T x[1]T · · · x[NC − 1]T
]T bea blok of data transmitted over this MIMO hannel at a given symbol epoh. It fol-lows that the reeived data blok y

def
=
[

y[0]T y[1]T · · · y[NC − 1]T
]T , with y[k]

def
=

[ y1[k] y2[k] · · · yNR
[k] ]T , an be related to x aording to

y = Hx + n, (2.8)where n
def
=
[

n[0]T n[1]T · · · n[NC − 1]T
]T with n[k]

def
= [n1[k] n2[k] · · · nNR

[k] ]T , and
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H

def
= diag (H[0] H[1] · · · H[NC − 1] ), with diagonal bloks de�ned as

H[k] =












h1,1[k] h1,2[k] · · · h1,NT
[k]

h2,1[k] h2,2[k] · · · h2,NT
[k]... ... . . . ...

hNR,1[k] hNR,2[k] · · · hNR,NT
[k]












∈ CNR×NT . (2.9)
If we hoose the subarrier spaing judiiously, MIMO-OFDM deomposes the frequenyseletive hannel of bandwidth B into NC frequeny �at fading MIMO sub-hannels, eahwith bandwidth B/NC . However, due to the CP insertion, (MIMO-)OFDM transmissionin average inurs a loss in spetral e�ieny of Ncp/(NC + Ncp); e.g., in IEEE 802.11astandard for WLAN, the e�ieny loss due to the CP insertion is no more than 20% [71℄.Nevertheless, this loss is negligible if NC ≫ Ncp.To desribe the input-output relationship for the SISO-OFDM system in (2.6) andMIMO-OFDM system in (2.8), we have assumed that the hannel impulse responses or theirorresponding hannel gains, i.e., h[k]'s and hp,q[k]'s, are readily available. Nevertheless, toformulate these quantitative terms from a pratial wireless hannel enompassing variouspropagation e�ets are never trivial. In the following, we give an overview of the mostprominent wireless propagation e�ets, and then present how suitable models of hannelimpulse responses or their orresponding hannel gains an be developed on this basis.2.2 The wireless propagation hannelIn wireless ommuniation systems, information is transmitted from the emitter to thereeiver in the form of radio waves propagating through the so-alled wireless propagationhannel. The hannel distorts the transmitted signal in an unpreditable way, and thus



2 Bakground: MIMO-OFDM system and hannel models 22plaes fundamental limitations on the performane of the wireless ommuniation systems.Hene, the reeiver an only reover the information by employing hannel estimation orequalization tehniques.To haraterize the distortion imposed on the transmitted signal, we need to under-stand the aforementioned propagation environment, whih an be suitably desribed as anidealized phenomenon in whih a signal propagating through the wireless hannel arrivesat the destination along a number of di�erent paths. Exept for the simple line-of-sight,propagation along these paths is severely obstruted by buildings, mountains, and foliage,whih results into sattering, re�etion and di�ration of the radiated energy by objets inthe environment or refration in the medium, and hene an in�uene path loss and fadingmodels di�erently. In addition, as a mobile station moves in spae, the speed of the mobileimpats signi�antly on how rapidly the signal level fades, and therefore ontribute to anextremely random mehanism that do not o�er easy analysis.2.2.1 Propagation mehanismIn general, propagation models an be broadly ategorized as large sale or small sale.A large sale model mainly fouses on prediting the average reeived signal strength at agiven distane from the transmitter, and thus is useful for estimating the radio overage areaof a transmitter. On the other hand, a small-sale model desribes the rapid �utuationsof the reeived signal strength over very short travel distanes or short time duration, andthus is useful for evaluating the performane of a transeiver hain. In the following, weintrodue the large sale and small sale models respetively.



2 Bakground: MIMO-OFDM system and hannel models 23Large sale modelLarge sale model designates the average signal power attenuation over large areas. Thetotal signal attenuation aused by wave propagation along a transmission path is oftenreferred to as path loss. In a free-spae model, the power reeived by a reeive antenna thatis separated from a transmit antenna by a ertain distane d an be alulated by the Friisfree-spae equation [72℄, whih desribed as follows
Pr = Pt

(
λ

4πd

)2

GtGr, (2.10)where Pt, Pr denote the transmitted and the reeived powers respetively, λ is the wave-length, Gt, Gr represents the antenna gains of the transmit and reeive antennas respe-tively. The Friis free-spae equation establishes that the reeived power is redued as afuntion of the square of the distane between the transmitter and the reeiver. However,in a typial ellular wireless hannel, free-spae propagation seldom happens. Besides free-spae propagation loss, re�etion, di�ration, and sattering also a�et propagation. Thesethree mehanisms ontribute to the large sale signal attenuation in di�erent degrees.Re�etion, di�ration, and sattering are main propagation mehanisms whih impatpropagation in a mobile ommuniation system. Re�etion ours when a propagatingeletromagneti wave hits an objet whih has very large dimensions when ompared tothe wavelength of the propagating wave, as in the ase of a radio wave bouning from thesurfae of the earth, buildings, walls, and so on. Re�etion is the major ause of multipathe�et in wireless ommuniation hannels.Di�ration ours when the eletromagneti wave propagation path is obstruted bya surfae that has of many sharp irregularities or edges. The seondary waves resultingfrom the obstruting surfae are present throughout the spae and sometimes behind the



2 Bakground: MIMO-OFDM system and hannel models 24obstale, giving rise to a bending of waves around the obstale, even when a line-of-sightpath does not exist between transmitter and reeiver. Di�ration takes plae less oftenwhen arrier frequeny is higher, as the eletromagneti waves behave more like partilesrather than waves.Sattering ours when the medium through whih the wave travels onsists of objetswith dimensions that are small when ompared to the wavelength of the propagating wave,and where the number of obstales per unit volume is relatively large. Sattered wavesare usually generated by rough surfaes, small objets, or other irregularities in the radiohannel. In pratie, foliage, street sign poles and lamp posts indue sattering in a radiopropagation hannel.Even if line-of-sight transmission does our, the ombination of the signal omponentsfrom the propagation mehanisms above, will prevent the reeived signal from obeying thefree-spae propagation law and will eventually resulting in a larger attenuation than whatis predited by the Friis free-spae equation alone. While di�ult to alulate exatly, theatual path loss is often modeled as a funtion of the distane between the transmitterand the reeiver raised to the path loss exponent. In this ase, the reeived power is nowrepresented as
Pr = Pt

(
λ

4πd

)γ

GtGr, (2.11)with the path loss exponent γ > 2. It should also be pointed out that the aforementionedthree major propagation mehanisms always ome together instead of individually. Theombined e�et of the three propagation mehanisms will make the signal reeived behavelike a random proess.In pratie, the obstales an be very di�erent from one loation to the other. The a-tual path loss measurements may thus vary greatly from the average. Experimental results



2 Bakground: MIMO-OFDM system and hannel models 25suggest that the path loss measured at any loation is random and distributed log-normallyaround a mean path loss value with a given standard deviation. The random variation isoften referred to as log-normal shadowing [72℄. Typial values for the path loss exponentand the log-normal shadowing standard deviation have been tabulated for di�erent envi-ronments, based on experimental measurements; the path loss exponent typially variesbetween 2 to 6 [1℄.Small sale modelThe small sale model, also referred to as small-sale fading, is used to desribe the rapid�utuations in reeived signal strength over a short time interval or travel distane, so thatthe large sale e�ets may be ignored. This phenomenon is aused by two or more imagesof the transmitted signal whih arrive at the reeiver through di�erent paths with slightlydi�erent time delays, amplitudes, and phases. These waves, alled multipath waves, givea resultant signal whih an vary signi�antly in amplitude and phase, depending on thedistribution of the intensity and relative propagation time of the waves, as well as thebandwidth of the transmitted signal [3℄.In urban areas, giving the height of the mobile antennas is normally well below theheight of surrounding strutures, signi�ant fading takes plae sine there is no line-of-sight propagation to the base station. Nevertheless, even when a line-of-sight exists suhas in rural areas, multipath still ours due to re�etions from the ground and surroundingstrutures. The multipath struture, ombined with the motion of the reeiver, transmitteror surrounding objets in the radio hannel, gives rise to variations in reeived signalamplitude as a funtion of time. These variations are usually desribed using standardstatistial models, whose validity is proven through numerial experimental measurementampaigns over years. In the following, we introdue the most prominent properties indued



2 Bakground: MIMO-OFDM system and hannel models 26by the small sale models.Delay spreadThe multipath e�et lengthens the time required for the signal to reah the reeiver, andthus auses serious problems to the signal detetion proess at the reeiver side. To depitthe multipath e�et, an idealized and lassial model is the so-alled double negative ex-ponential model, in whih the delay separation between paths inreases exponentially withpath delay, and the path amplitudes also fall o� exponentially with delay [73℄.In pratie, the path delays as well as path amplitudes may show a onsiderable vari-ability from the lassial model. Nevertheless, we an examine the multipath e�et bymeasuring the quantitative properties of a given multipath intensity pro�le or spetrum
ψDe(τ), i.e., the average power of the hannel output as a funtion of delay τ . Firstly, themaximum exess delay is de�ned to be the time delay during whih multipath energy fallsfrom the maximum to a level xdB below. That is, the maximum exess delay is de�ned as
τx − τ0, where τ0 is the propagation delay of the �rst arrived and τx is the maximum delayat whih a multipath omponent is within xdB of the strongest arriving multipath signal.The value of τx is sometimes alled the exess delay spread, but in all ases it must bespei�ed with a threshold that relates the multipath noise �oor to the maximum reeivedmultipath omponent. Seondly, the average delay spread τ̄ is given by

τ̄ =

∫ τmax

0
τψDe(τ)dτ

∫ τmax

0
ψDe(τ)dτ

, (2.12)where τmax is the maximum path delay, i.e. beyond whih it is reasonable to assume
ψDe = 0. Finally, the root mean square (RMS) delay spread of the hannel, τrms, is de�ned
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τrms =

√∫ τmax

0
(τ − τ̄)2ψDe(τ)dτ
∫ τmax

0
ψDe(τ)dτ

. (2.13)Note that these delays are usually measured relative to the �rst detetable signal arrivingat the reeiver, i.e. assuming τ0 = 0. In addition, they are de�ned from a single multipathintensity pro�le, whih is the temporal or spatial average of impulse response measurementsolleted and averaged over a loal area. In pratie, to determine the statistial range ofmultipath hannel parameters for a mobile ommuniation system, many measurementsare onduted in various loal areas over a large sale area, e.g., three multipath hannels,in terms of low, medium, and high delay spread ase, respetively, are de�ned by IMT-2000for eah environment [72℄.Coherene bandwidthThe oherene bandwidth is another important measure of the mobile wireless hannels,and is related to the multipath struture of the hannel. It is a statistial measure of therange of frequenies over whih the hannel frequeny response an be onsidered nearlyonstant (i.e. "�at") [2℄. It an be pratially de�ned as the maximum frequeny di�erenefor whih two signals transmitted through the mobile wireless hannels remain stronglyorrelated.If the oherene bandwidth Bc is de�ned as the bandwidth over whih the frequenyorrelation funtion is above 0.9, then the oherene bandwidth is approximately Bc ≈

1/(50τrms). If the de�nition is relaxed so that the frequeny orrelation funtion is above0.5, then the oherene bandwidth is approximately Bc ≈ 1/(5τrms) [1℄. It is important tonote that the relationship between oherene bandwidth and RMS delay spread remainsempirial in nature, as Bc an be de�ned in di�erent ways.



2 Bakground: MIMO-OFDM system and hannel models 28As the typial value of RMS delay spread is less than 0.05µs in �at rural environments,
0.2µs in urban areas, and 2 ∼ 3µs in hilly terrains, respetively, the oherene bandwidthvaries from several MHz to a few hundred kHz, depending on the terrain; nonetheless, fora partiular multipath hannel, its oherene bandwidth aording to a given de�nition isalways �xed.Frequeny �at and seletive fadingA mobile wireless hannel is said to be frequeny �at fading, if the signal bandwidth isomparable to or smaller than the oherene bandwidth of the hannel. On the otherhand, if the signal bandwidth is larger than the oherene bandwidth, the hannel is saidto be frequeny seletive fading.In frequeny �at fading, the mobile wireless hannel has a onstant gain and linearphase response over a bandwidth whih is greater than the signal bandwidth. Therefore,the spetral harateristis of the transmitted signal are preserved at the reeiver, and sothe �at fading hannels are sometimes referred to as narrowband hannels. However, thestrength of the reeived signal may hange over time, due to the �utuation in the gainof the hannel aused by the multipath e�ets. Seen from the time domain, �at fadingours when the symbol duration of the transmitted signal is muh longer than the delayspread of the �at fading hannel and the multipath signal replias are thus "unresolvable".Hene, the intersymbol interferene (ISI) will not happen sine the delayed replias of theurrent symbol will not overlap with the next symbol. Nevertheless, it should be noted thata �at fading hannel an also experiene deep fades from time to time due to destrutivesuperpositions of multipaths, and thus it may require 20 to 30dB more transmitting powerto ompensate the losses due to the deep fades. Therefore, additional proessing tehniquesare neessary to ounterat suh negative e�ets.



2 Bakground: MIMO-OFDM system and hannel models 29Di�erent from �at fading, frequeny seletive fading will ause di�erent attenuations inthe reeived signal at di�erent frequenies, and so the propagation hannels are sometimesreferred to as wideband hannels in this ase. In the time-domain, the hannel impulseresponse has a multipath delay spread whih is greater than the symbol duration of thetransmitted signal. Hene, the reeived signal inludes multiple "resolvable" versions of thetransmitted symbol waveform that are attenuated and delayed in time whose net e�et isto indue ISI at the reeiver side.Doppler spreadDoppler spread is a measure of the spetral broadening aused by the mobility in thehannel, and is de�ned as the range of frequenies over whih the reeived Doppler spetrumis essentially nonzero [2℄. When only a pure sinusoidal tone of frequeny fc is transmitted,the reeived signal spetrum will have omponents in the range fc−fd to fc+fd, where fd isthe Doppler shift, de�ned as fd = (v/λ) cos θ, with v, λ, and θ denoting the relative mobilespeed, the wavelength of the arrier, and the angle between the mobile moving diretionand the LOS from the transmitter to the reeiver, respetively. In this simpli�ed senario,the Doppler spread an be simply expressed by 2fd. Hene, it is lear that the Dopplerspread depends on the relative speed of the mobile v and the angle θ.If the distribution of the Doppler spetrum is available, then this knowledge an be takeninto onsideration when measuring the Doppler spread. Let the Doppler power spetrumbe denoted as ψDo(ν), where ν represents the Doppler frequeny shift. Thus, the Dopplerspread an be omputed by the RMS bandwidth of ψDo(ν), de�ned as
νrms =

√∫

F
(ν − ν̄)2ψDo(ν)dν
∫

F
ψDo(ν)dν

, (2.14)



2 Bakground: MIMO-OFDM system and hannel models 30where ν̄ is the average of the Doppler frequeny given by
ν̄ =

∫

F
νψDo(ν)dν

∫

F
ψDo(ν)dν

, (2.15)and F represents the interval in whih the spetrum is nonzero.Conerning the distribution of the Doppler power spetrum φDo(ν), if one assumes anidealized, uniformly distributed sattering around a terminal with vertial eletromagneti�eld for the reeive and the transmit antennas, then the Doppler spetrum has the lassialU-shaped form and is approximated by the Clarke's model [18, 74℄. However, in reality,the Doppler spetrum an show onsiderable variations from this idealized model.Coherene timeCoherene time is the time domain dual of the Doppler spread and is used to haraterizethe time-varying nature of the mobile wireless hannel. It is a statistial measure of thetime duration over whih the hannel an be onsidered unhanged. In other words, twosignal samples separated by an interval longer than the oherene time an be onsideredindependent to eah other. When this ours, the hannel is onsidered to hange signif-iantly during the transmission of the signal, thus introduing a form of distortion in thereeived signal.Similar to the relationship between the oherene bandwidth and the delay spread, aunique, standard relationship between the oherene time and Doppler spread does notappear to exist. Nevertheless, the oherene time Tc is typially related to the diretinverse of the Doppler spread and an be approximated as Tc ≈ 1/(2fm), where fm is themaximum Doppler shift given by fm = v/λ. If the oherene time is de�ned as the time overwhih the time orrelation funtion is above 0.5, then the oherene time is approximately
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Tc ≈ 9/(16πfm) [75℄. A popular rule of thumb is to de�ne the oherene time as thegeometri mean of 1/(2fm) and 9/(16πfm), i.e. Tc ≈ 0.423/fm [1℄.Slow and fast fadingDepending on how rapidly the transmitted signal hanges as ompared to the rate of hangeof a mobile wireless hannel, a hannel may be ategorized as either slow or fast fading [18℄.Spei�ally, the hannel is slow fading if the symbol duration is smaller than the oherenetime; otherwise, the hannel is fast fading. It should be lear that the relative speed of themobile (or that of objets in the hannel) and the symbol duration determine whether asignal undergoes slow or fast fading.In a slow fading situation, the hannel may be assumed to be stati over one or severalsymbol durations, whih is also alled the blok fading hannel. In the frequeny domain,this implies that the Doppler spread of the hannel is less than the bandwidth of thebaseband signal. In this ase, a partiular deep fade will a�et onseutive symbols, leadingto the so-alled burst errors.In a fast fading hannel, on the other hand, the hannel impulse response hangesrapidly within the symbol duration. This auses frequeny dispersion due to the Dopplerspread, whih may lead to severe signal distortion. Therefore, we an onlude that thefading speed is of great importane to determine the suitable estimation and detetionstrategies in many ommuniation appliations.2.2.2 Delay pro�le and impulse responseThe small sale fading of a mobile wireless hannel an be fully haraterized by the time-varying impulse response of the hannel, where the time variation is due to reeiver ortransmitter motion in spae. One the impulse response of a partiular mobile wireless



2 Bakground: MIMO-OFDM system and hannel models 32hannel is available, it an be used to simulate or analyze any type of radio transmissionsystems through this hannel.In the following, we show that a mobile wireless hannel an be modeled as a linear�lter with a time-varying impulse response; the spei� modeling of the impulse response isdisussed in the next setion for various hannel generation models of interest. Without lossof generality, we onsider that the time variation of the hannel is due stritly to reeivermotion in spae. Therefore, at a ertain position d of the reeiver, the hannel an bemodeled as a linear time invariant passband system, and is expressed by hpb(d, t); this isdue to the fat that the reeived multipath waves are arrived at the reeiver with di�erentpropagation delays, amplitudes, and phases as its spatial loation is hanged. Hene, if
x(t) represents the transmitted signal, the reeived signal y(d, t) at the position d an beexpressed by

y(d, t) = x(t) ∗ hpb(d, t) =

∫ ∞

−∞

x(λ)hpb(d, t− λ)dλ, (2.16)where ∗ denotes the onvolution operation. Sine the position of a moving reeiver is alsofuntion of time t, i.e. d ≡ d(t) and the reeiver moves along at a onstant veloity over ashort time (or distane) interval, we an arrive at [1, p.144℄
y(d(t), t) ≡ y(t) =

∫ ∞

−∞

x(t− τ)hpb(τ, t)dτ = x(t) ∗ hpb(τ, t), (2.17)where hpb(τ, t) represents the impulse response of the passband time-varying multipath han-nel, with the variable t representing the time variation due to motion, and τ representingthe multipath delay for a �xed value of t.1For passband wireless transmission, it is onvenient to represent the signals of interest1The impulse response of a linear time-varying hannel hpb(τ, t) is the hannel output at t in responseto an impulse applied to the hannel at t − τ [76℄.



2 Bakground: MIMO-OFDM system and hannel models 33in terms of a low-pass equivalent representation [77℄. Let c(t) and r(t) denote the omplexenvelope of x(t) and y(t), respetively, de�ned as
x(t) = ℜ{c(t) exp(j2πfct)}, (2.18)
y(t) = ℜ{r(t) exp(j2πfct)}, (2.19)where fc denotes the arrier frequeny. Assuming the multipath hannel is bandlimited,we an then rewrite (2.17) into its omplex envelope representation [1, 3℄, i.e.,

r(t) =
1

2

∫ ∞

−∞

c(t− τ)h(τ, t)dτ =
1

2
c(t) ∗ h(τ, t), (2.20)in whih h(τ, t) represents the omplex baseband impulse response, orresponding to thepassband hannel impulse response hpb(τ, t). By doing so, we an remove the high frequenyvariations aused by the arrier, thus failitating numerial experiments and signal analysis.For omputational and analytial purposes, we an disretize the multipath delay axis

τ of the impulse response into the so-alled exess delay bins, eah with equal time delaysegments of width ∆τ . In pratie, we usually set the time delay of the �rst arrivingmultipath omponent to zero, i.e. τ0 = 0 by negleting the propagation delay betweenthe transmitter and reeiver. The time delay of the ith bin is then spei�ed as τi = i∆τ ,
i = 0, 1, · · · , L− 1, where L represents the total number of delay bins.Sine the reeived signal in a multipath hannel onsists of a series of attenuated, timedelayed, phase shifted versions of the transmitted signal, the omplex baseband impulseresponse an be expressed as

h(τ, t) =

L−1∑

i=0

ai(τ, t) exp[j(2πfcτi + φi(τ, t))]δ(τ − τi), (2.21)



2 Bakground: MIMO-OFDM system and hannel models 34where ai(τ, t) and (2πfcτi + φi(τ, t)) are the real amplitudes and phase shifts, respetively,of the ith multipath omponent at time t. If we fous on a short time (or distane) interval,i.e., employing a proessing window that is smaller than the hannel oherene time, thenthe hannel impulse response an be assumed to be time-invariant, and thus it may befurther simpli�ed as
h(τ) =

L−1∑

i=0

ai exp(−jθi)δ(τ − τi). (2.22)In the following, we brie�y review some well-known hannel models whih are atuallydeveloped on the basis of (2.21) and (2.22) to generate hannel oe�ients.2.3 Overview of reent wireless hannel simulation modelsModeling the radio hannels has been one of the most hallenging tasks of mobile radiosystem design. To exatly desribe a pratial hannel would be very di�ult due to thelarge number of variables involved. Hene, it is typial to resort to a statistial approah,based on measurements made spei�ally for an intended transmission senario or spetrumalloation. In the following, we brie�y review several wireless hannel models that arelargely used in simulations and analyses.2.3.1 3GPP spatial hannel modelThe 3GPP spatial hannel model (SCM), assuming satterers are separated into N = 6lusters, eah with M = 20 satterers, is illustrated in Fig. 2.3 [78, 79℄. In this model,we assume that there are NT transmit antennas at the base station (BS), and NR reeiveantennas at the mobile station (MS). The line of sight (LOS) diretion is denoted by θBS ,referring to the bore-sight of the BS antenna array. The angle between the bore-sight of theMS antenna array and the LOS is represented by θMS . The veloity of the MS is assumed
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Fig. 2.3 3GPP multiple-input multiple-output spatial hannel model.to be ~v with diretion θv.In this model, every satterer orresponds to one path, and therefore paths assoiatedwith the same luster are assumed to have the same average power and path delay. Con-sidering the downlink transmission senario, the mean angle of departure (AoD) and meanangle of arrival (AoA) of paths in luster n are denoted by δD

n and δA
n , respetively; thenthe AoD and AoA of the mth path in luster n are respetively de�ned by

θD
n,m

def
= θBS + δD

n + ∆D
n,m, (2.23)

θA
n,m

def
= θMS + δA

n + ∆A
n,m, (2.24)where ∆D

n,m and ∆A
n,m are the angle o�sets with respet to the mean AoD and mean AoA,respetively.Finally, we an express the hannel impulse response assoiated with the qth transmit
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hp,q(τ, t) =

N∑

n=1

hp,q,n(t)δ(τ − τn(t)), (2.25)where τn(t) denotes the delay spread assoiated with the nth luster at some physial time
t, and hp,q,n(t) represents the omplex hannel gain at time t between the pth reeive andthe qth transmit antenna, assoiated with the nth multipath, and is de�ned as

hp,q,n(t) =

√

Pn

M

M∑

m=1

√

GBS(θD
n,m)

√

GMS(θA
n,m) exp(jkdq sin(θD

n,m))

exp(j[kdp sin(θA
n,m) + Φn,m]) exp(jk‖~v‖ cos(θA

n,m − θv)t), (2.26)and parameters of the omplex hannel gain are de�ned in Table 2.1.Table 2.1 Parameters of 3GPP-SCM omplex hannel gain.
Pn power of the nth path
j square root of -1
k wave number 2π/λ (λ is the arrier wavelength in meters)
dq distane in meters from BS antenna element q to thereferene (q = 1) antenna
dp distane in meters from MS antenna element p to thereferene (p = 1) antenna

Φn,m phase of the mth subpath of the nth path
‖~v‖ magnitude of the MS veloity vetor
θv angle of the MS veloity vetor

GBS(θD
n,m) BS e�etive antenna array gain

GMS(θA
n,m) MS e�etive antenna array gain



2 Bakground: MIMO-OFDM system and hannel models 372.3.2 COST-207 modelsThe COST-207 hannel models were mainly developed for maroellular appliations.Spei�ally, COST-207 introdues tap delay line models to represent the propagation han-nel within the framework of GSM developments [80℄, i.e., for typial hannel harateristisof transmit bandwidths from 10 to 20 MHz, entered around 900MHz.Based on large amounts of measured data, the typial average power delay pro�les ofthese models were de�ned for eah kind of mobile environment. These an be generallyexpressed by
h(τ) =

N−1∑

i=0

ai δ(τ − τi), (2.27)where ai and τi represent the omplex gain and delay assoiated with the ith disretemultipath omponent, respetively, and N denotes the number of multipath omponents.Some notable 6-ray multipath delay pro�les are shown in Table 2.2, inluding the typialurban (TU), bad urban (BU), and hilly terrain (HT) senarios [80℄. Due to the simpliitywith whih it desribes a wireless transmission environment, the onept of the COST-207models has been adopted as a basis for evaluating many other mobile wireless systems,inluding the IMT2000, UMTS, and mobile DVB-T reeption, et.2.3.3 Simpli�ed tapped delay line modelsThe simpli�ed tapped delay line (TDL) models, or transversal �lters, are similar to theprevious COST-207 models, exept that the taps are now symbol-spaed. The transferfuntion of an mth order TDL model an be desribed as follows [81℄:
H(z) = b0 + b1z

−1 + · · · + bmz
−m. (2.28)



2 Bakground: MIMO-OFDM system and hannel models 38Table 2.2 COST-207 typial urban (TU), bad urban (BU), and hilly terrain(HT) 6-ray power delay pro�le.Typial Urban Bad Urban Hilly TerrainDelay (µs) Power pro�le Delay (µs) Power pro�le Delay (µs) Power pro�le0.0 0.189 0.0 0.164 0.0 0.4130.2 0.379 0.3 0.293 0.1 0.2930.5 0.239 1.0 0.147 0.3 0.1451.6 0.095 1.6 0.094 0.5 0.0742.3 0.061 5.0 0.185 15.0 0.0665.0 0.037 6.6 0.117 17.2 0.008A TDL model inludes many adjustable parameters, inluding hoies of the numberof taps as well as tap oe�ients. The tap oe�ients of the TDL models an be eitherorrelated or unorrelated; e.g., it is possible to inorporate spatial orrelation in the TDLmodels for multiple-antenna transmission systems [82℄. Sine the orrelated TDL modelsoften lead to omputational di�ulties, the unorrelated ones are more widely onsideredin numerial experiments.Generally speaking, in the TDL models, tap oe�ients an be haraterized as ZMC-SCG [62℄ random variables. This an be justi�ed by the entral limit theorem on the basisthat fading is aused by the superposition of a large number of independent sattered om-ponents. In the ontext of blind hannel estimation, the TDL models are widely onsideredto generate hannel oe�ients for estimation.
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Chapter 3
Survey of reent developments onMIMO-OFDM hannel estimation
As we stated earlier in Setion 1.1, modern tehnologies suh as diversity tehniques, beam-forming, and spatial multiplexing an be applied to fully exploit the speial strutures ofthe MIMO-OFDM systems when aurate CSI is available. In this hapter, we providefurther motivation to devise suitable hannel estimation tehniques to fully exploit theadvantages brought about by MIMO-OFDM. We then present an overview of existing ap-proahes for hannel estimation in wideband MIMO-OFDM systems with speial emphasison subspae-based blind approahes. We onlude with a disussion of the limitation ofurrent subspae-based blind estimators.3.1 Motivating the need for hannel estimationBefore justifying the signi�ane of CSI in the above mentioned tehniques for MIMO-OFDM, we digress slightly to overview several other detetion tehniques that do notrequire CSI at the reeiver.2010/07/30



3 Survey of reent developments on MIMO-OFDM hannel estimation 403.1.1 Coherent, nonoherent, and di�erential detetionsIn onnetion with the availability of CSI, there are mainly three types of ommuniationparadigms for the design of ommuniation signals and their detetion, namely: oherent,nonoherent, and di�erential.The �rst ategory, i.e. oherent signal detetion, relies on the assumption that an a-urate CSI is available at the reeiver side. However, this assumption may not always besatis�ed, partiularly in mobile environments with relatively fast hanging hannel on-ditions [83�85℄. Hene, the remaining ategories, i.e., nonoherent and di�erential signaldesign and detetion, whih do not rely on this assumption, are suggested as alternativesin suh senarios.The seond ategory, i.e., nonoherent signal detetion, has been suessfully introduedfor several MIMO appliations. For example, an e�ient and systemati onstrutionof full diversity nonoherent spae-frequeny odes was presented in [83℄. However, itsperformane is sensitive to the delay spread and the power delay pro�le. Another exampleis provided by the design and use of the so-alled training odes in MIMO systems [86℄.Although the CSI is not required for signal detetion, one may argue that the ode design"abuses" the terminology of nonoherent, by allowing part of its odeword to be knownto the reeiver before transmission for the purpose of estimating the wireless hannels.Nonetheless, detetion performane based on training odes is generally inferior to that ofoherent detetion.The third ategory, i.e., di�erential signal detetion, has been widely used in pratialellular mobile ommuniation systems, suh as IS-54, the 2nd generation standard digi-tal ellular systems in North Ameria. More reently, various di�erential tehniques havebeen proposed for MIMO systems, inluding a subarrier-reonstrution-based approah



3 Survey of reent developments on MIMO-OFDM hannel estimation 41[87℄, a di�erential spae-time-frequeny modulation [84℄, and a multiple-symbol di�erentialdetetion [85℄. But similar to the ase of nonoherent detetion, a generally worse perfor-mane than that of oherent detetion is observed; moreover, a quasi-stati hannel (i.e.slowly-varying) is also required for a suessful detetion [84, 85, 87, 88℄.Thus, with penalty in ahievable detetion performane, the nonoherent and di�erentialdetetion tehniques are speialized designs suitable for ases in whih no aurate CSI isavailable, a situation often justi�ed on the basis that aurate CSI is di�ult to obtainin a relatively fast time-varying hannel. However, this argument is questionable sineto a great extent, the availability of aurate CSI is mostly a matter of suh resoures(e.g., omputation, bandwidth) the system designer is willing to alloate to the task ofhannel estimation. In addition, as we have seen above, the nonoherent and di�erentialtehniques may be either too restritive for ertain power delay pro�les, or impratialin the requirement of quasi-stati fading hannels. It is therefore questionable whetheror not the nonoherent and di�erential tehniques an replae the oherent ones in theaforementioned senarios.To summarize the above disussion, we an onlude that if an aeptable estimationperformane an be ahieved in the relatively fast time-varying hannel with a�ordableost in resoure, then there is no reason to give up the oherent tehniques. Besides,it is attrative to enjoy the various already well-designed and proven oherent detetionshemes.3.1.2 The need for hannel estimation in oherent detetionThe prospet of operating MIMO-OFDM systems lose to the Shannon apaity, as enabledby the invention of various apaity-ahieving tehniques, relies heavily on the availabilityof advaned hannel estimation tehnique [89℄.



3 Survey of reent developments on MIMO-OFDM hannel estimation 42It an be shown that when the CSI is known to both the transmitter and the reeiver,the so-alled waterpouring or water-�lling algorithm an be employed so that the resultingapaity of the MIMO-OFDM hannel is greater than (or equal to) that available whenthe hannel is unknown to the transmitter [62℄. However, hannel knowledge at the trans-mitter is normally obtained through feedbak from the reeiver or based on the hannelreiproity priniple in a duplex system. Both approahes may be problemati from apratial perspetive. Feedbak of hannel information may onsume exess amount ofbandwidth, espeially for rapidly time-varying hannels. Furthermore, in this latter ase,the hannel information at the transmitter is likely to be outdated beause of transmis-sion and proessing delays. Channel reiproity has a very limited realm of appliations:Reiproity in time is only possible for quasi-stati hannels, while reiproity in frequenyis only appliable to narrow sub-bands within the oherene bandwidth of the wirelesshannel.In this thesis, our interest is in pratial broadband MIMO-OFDM transmission overtime-varying hannels. Therefore, in the following, we mainly fous on the senarios inwhih the CSI is only available at the reeiver and not at the transmitter.Some of the most prominent examples of detetion tehnique that justify the need ofhannel estimation in MIMO systems, inlude various reently proposed diversity and spa-tial multiplexing shemes, suh as spae-time oding [90�92℄, spae-frequeny (SF) oding[93�96℄, spae-time-frequeny (STF) oding [97�100℄, and BLAST systems [101, 102℄. Gen-erally speaking, diversity tehniques provide the reeiver with multiple independent looksor observations at the same transmitted signal, either in the spae, time, frequeny, polar-ization, or a ombination of the above domains. As eah observation represents a diversitybranh, the probability that all branhes experiene a deep fade onurrently is reduedsigni�antly; thus, diversity tehniques improve the link reliability and therefore redue the



3 Survey of reent developments on MIMO-OFDM hannel estimation 43bit error rate. On the ontrary, spatial multiplexing tehniques o�er a linear inrease inthe signaling rate by exploiting the parallel transmission of di�erent information streamsfrom di�erent antennas, without onsidering the link reliability or bit error rate.To better explain the need for hannel estimation in these tehniques, onsider the fol-lowing simpli�ed mathematial formulation. Let xm
q [k] denote a symbol transmitted at the

qth transmit antenna over the kth subarrier and the mth OFDM symbol time; this symbolmay represent part of the odeword that results from the appliation of a ertain diversityor spatial multiplexing tehnique. Without loss of generality, the odeword is assumed tobe blok-based, i.e., it spans over multiple OFDM symbols from m = 1, 2, · · · , NF in thetime domain, multiple transmit antennas from q = 1, 2, · · · , NT in the spatial domain, andmultiple subarriers from k = 0, 1, · · · , NC − 1 in the frequeny domain. Then on the basisof (2.7), we an represent the signal reeived at the pth reeive antenna over the kth toneand the mth OFDM symbol as
ym

p [k] =

NT∑

q=1

hm
p,q[k]x

m
q [k] + nm

p [k], p = 1, 2, · · · , NR. (3.1)Thus, the deision rule for maximum likelihood deoding to reover the transmitted ode-word is equivalent to minimizing the metri
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p,q[k]x

m
q [k]|2 (3.2)over all possible odewords and deiding in favor of the odeword that minimizes the abovesum. To this end, we an see that the CSI, i.e. the knowledge of the hannel gains hm

p,q[k]'sfor all possible values of p, q, m, and k, is essential to implement the above deision rule.Another implement example that justi�es the requirement of hannel estimation is the



3 Survey of reent developments on MIMO-OFDM hannel estimation 44use of various beamforming tehniques [6, 16℄. In reeive beamforming, signals are o-herently ombined with appropriate steering vetors at the reeiver so as to enhane theantenna array response in a preferred diretion. The omputation of the steering vetors isnormally performed by applying the singular value deomposition on a matrix onstrutedfrom the CSI, and hene the latter is ruial to ahieve the omputation.Having justi�ed the importane of hannel estimation in MIMO-OFDM systems, in thefollowing, we review and survey reent advanes on related hannel estimation tehniques.Spei�ally, we fous on the hannel estimation and traking of the MIMO wireless hannelsin a wideband OFDM ontext.3.2 Overview of hannel estimation for wideband MIMO-OFDMThe good performane of MIMO-OFDM depends on its ability to deal with the frequenyand time seletive nature of the wideband propagation hannels [103℄, whih in turn heavilyrelies on the availability of the orresponding CSI, as obtained by means of a hannelestimation tehnique.Generally speaking, hannel estimation an be performed in two di�erent ways, thatis: pilot-based and blind estimation [89℄. In pilot-based hannel estimation, known signalsor symbols are transmitted to assist the reeiver in determining the required CSI. On theother hand, a blind hannel estimation method determines the CSI without the aid ofknown symbols, and thus an ahieve a higher bandwidth e�ieny; however, it generallyomes with a penalty of slower onvergene speed, redued estimation auray, and higherimplementation omplexity [104℄.For the reasons stated above, one might erroneously onlude that there are limiteduses for a blind estimation tehnique in pratie, sine the dynami requirement assoiated



3 Survey of reent developments on MIMO-OFDM hannel estimation 45to the estimation of time-varying mobile hannels further enhanes the demands in termsof onvergene speed and implementation omplexity. However, in many emerging wirelessstandards, the transmission of overhead information suh as these pilot symbols poses amajor burden to the data transmission. In fat, the merits of the high bandwidth e�ienyassoiated with the MIMO-OFDM systems an be greatly o�set by overhead [105℄. Forexample, it has been shown that to maximize the overall transmission rate in a BLAST-MIMO system, half of the available interval is used for training [102℄.Hene, if a blind hannel estimation tehnique an be devised to possess fast onvergenespeed with aeptable performane and a reasonable omplexity, then it an replae pilot-based hannel estimators, and be embraed by future wireless standards for the purposeof meeting the demand of high transmission rate. For ompleteness, both pilot-based andblind hannel estimation tehniques are further reviewed below.3.2.1 Pilot-based hannel estimationPilot-based hannel estimation an be broadly ategorized as employing either ontinuous-time sounding signals, i.e. pilot tones [89, 106�110℄, or a sequene of known symbolsinserted among data symbols, i.e. pilot or training symbols [103, 105, 111�113℄.The �rst ategory of tehnique, i.e. those based on pilot tones, employ a ontinuous-time waveform or tone to alibrate the multipath-indued e�ets in the reeiver side [109℄.For single-arrier systems, one generally needs to suppress the data signal power aroundthe desired pilot frequenies [114℄. In one of the earlier pilot tone tehniques, the so-alledtone alibrated tehnique (TCT), double sideband modulation is transmitted alongside thepilot [106℄. In addition, to make room for the pilot in the presene of Doppler shift, thesidebands of lower frequenies relative to tone frequeny must be shaped so as to have zeroresponse in the neighborhood of the DC signal. Other tehniques, suh as transparent tone-



3 Survey of reent developments on MIMO-OFDM hannel estimation 46in-band (TTIB) [107℄, similarly noth out a spetral gap in the enter of the data spetrumfor the plaement of the pilot. An alternative possibility is the dual-pilot tone alibrationtehnique (DPTCT), in whih a pair of pilots are symmetrially plaed near the edges of thehannel and outside the data spetrum [108℄. For multi-arrier systems suh as in OFDM,not only the plaement of the pilot tones but also the pilot sequenes must be optimizedto obtain the minimal MSE of the least squares (LS) hannel estimate. It has been shownthat the optimal pilot tones should be equipowered, equispaed, and phase-shift orthogonal[89℄. Although pilot-tone tehniques lead to robust and simple reeiver strutures, a largefration of the transmitted power is wasted in these tones, and thus there has been a trendaway from these tehniques in reent wireless standards.In the seond ategory of pilot-based hannel estimation tehnique, i.e. those based onpilot symbols, the reeiver �rst extrats the hannel transfer funtion at those times andfrequenies at whih pilot symbols have been inserted. Then, the missing values of thetransfer funtion between the positions of pilot symbols an be interpolated by means of�ltering [89, 103, 115℄. Note that performane of hannel estimation is highly dependenton the distribution of the pilot symbols in relation to the oherene time and oherenebandwidth of the wireless hannel. Thus, one needs to judiiously plae the pilot symbolsnot only to gain better estimation performane but also to redue the resoures alloatedto training. This is partiularly important in a fast fading hannel where pilots have to beinserted frequently in order to trak hannel variations [113℄.Generally, to obtain aeptable hannel estimation for SISO-OFDM systems, the �rstand the last subarriers are modulated with pilot symbols. Then the other pilot symbolsare inserted at every nf subarriers in the frequeny diretion and every nt OFDM symbolsin the time domain. The insertion periods nf and nt must satisfy the following onditions,



3 Survey of reent developments on MIMO-OFDM hannel estimation 47whih result from the sampling theorem [111, 116℄:
nf <

1

τmax∆f
, nt <

1

2fmT
, (3.3)where ∆f denotes the subarrier spaing, τmax is the maximum path delay, T is the OFDMsymbol duration, and fm is the maximum Doppler shift. The above onditions an be refor-mulated into a more intuitive way, in terms of the oherene bandwidth and the oherenetime, respetively, as given by

nf < Bc/∆f, nt < Tc/T, (3.4)where Bc ≈ 1/τmax represents the oherene bandwidth and Tc ≈ 1/(2fm) represents theoherene time. The bandwidth e�ieny is redued by a fator of approximately 1/(ntnf )due to the insertion of pilots as above. However, to ahieve a reasonable noise redutionby �ltering in the interpolation step, the density of the pilot symbols along both the timeand frequeny axes should be larger than twie the minimum density mentioned from (3.4),so that the hannel transfer funtion is over-sampled. If multiple antennas are employed,then the situation is getting worse sine additional pilot symbols are needed to estimatethe hannel transfer funtion between eah ombination of transmit and reeive antenna.More reently, signi�ant e�orts have been devoted to situations in whih not all sub-arriers are ativated [117℄. In these ases, the loations of the pilot symbols annot beequally spaed due to the so-alled virtual arriers, i.e. subarriers that are set to zero withno any information being transmitted. Therefore, the optimal solution for the ase of allsubarriers are ativated annot be applied diretly. One possible solution was obtained byan iterative method to ahieve minimum mean square error of the least squares estimate



3 Survey of reent developments on MIMO-OFDM hannel estimation 48[118℄. However, in a time-invariant hannel senario (i.e., within one OFDM symbol periodin this ase), the minimum number of pilots with this approah is still nearly twie as largeas the number of unknown hannel oe�ients. A more bandwidth e�ient method wasproposed in [113℄, suh that the minimum number of pilots required is only half of theabove method. However, no less than NTL pilots are still required for a time-invariantbroadband wireless hannel with hannel order L.With respet to a reeiver with ideal CSI, the BER urves typially degrade by no morethan 1.5dB in SNR [111, 112℄, if a arefully designed pilot-based estimator is employed.In the following, we disuss the possibility of ahieving similar or even better system per-formane by using a blind-based hannel estimator, i.e. without employing spei� pilotsymbols.3.2.2 Blind hannel estimationWithout the assistane and the expense of pilot symbols, blind-based hannel estimationpresents a bandwidth e�ient way to aquire the CSI needed for signal detetion. Existingblind estimation methods an be broadly ategorized as deterministi or statistial.Deterministi methods, the �rst ategory of blind approahes, are in general favoredwhen the input statistis are unknown, or there may not be su�ient time samples toobtain suitable estimate of the required statistis. To date, several interesting deterministimethods have been developed by, e.g., employing the maximum likelihood approah [32, 33℄,exploiting null guard intervals [34, 35℄, exploiting zeros of the hannel impulse response [36℄,or by using frational sampling as well as interpolation [37℄. However, most of them are forSISO or single arrier exlusively, and hene are less appliable in the ontext of MIMO-OFDM systems.In the seond ategory, blind approahes an be further sub-divided into two lasses



3 Survey of reent developments on MIMO-OFDM hannel estimation 49as follows: algorithms using higher order statistis (HOS) of the reeived signal, and al-gorithms using only seond order statistis (SOS). In general, HOS-based algorithms areusually not onsidered for moderate to rapidly time-varying wireless hannels, sine a largenumber of reeived samples is needed before the HOS estimates are reliable. Instead, SOS-based algorithms an potentially ahieve superior estimation performane for a given timeaveraging interval than approahes using higher order statistis (HOS) [27�31, 119℄.Amid SOS-based blind approahes, subspae-based estimation is attrative sine han-nel estimates an often be obtained in a simple form by optimizing a quadrati ost funtion[38℄. Without employing any preoding at the transmitter, a noise subspae-based methodis proposed for OFDM systems by utilizing the redundany introdued by the yli pre�x(CP) [39, 40℄, and it is further extended for MIMO-OFDM systems in [41℄. Virtual arri-ers (VC) are subarriers that are set to zero without any information being transmitted.The presene of VC provides another useful resoure that an be used for hannel estima-tion. Suh a sheme is proposed for OFDM systems [42℄, and it is further extended forMIMO-OFDM systems in [43, 44℄.On the basis of the above onsiderations, we onlude that to meet the demands of futurewireless standards based on MIMO-OFDM, subspae-based blind hannel estimation o�ersan attrative solution in terms of both estimation performane and the required number oftime samples (i.e. OFDM symbols) to attain the performane.3.3 Generalized subspae-based blind estimationIn the following, we present the onept of subspae-based blind estimation in mathemat-ial term, and explore the problem of interests in this thesis, whih results from urrentlimitations on the use of these estimators. Then, we overview some examples of subspae-



3 Survey of reent developments on MIMO-OFDM hannel estimation 50based blind hannel estimation methods that have been reently proposed in the signalproessing and ommuniations literature.3.3.1 The mathematial basis of subspae-based blind estimationBlind hannel estimation, whih is based on the exploitation of the struture in the hanneland properties of the input, relies only on multiple observations of the hannel output yto identify the unknown hannel parameters [28℄. Spei�ally, the subspae-based blindestimation problem, whih uses the seond order statistis of the observation, an be for-mulated as follows. Let x ∈ U ⊂ C ds×1 be the input vetor to a linear hannel as shown inFig. 3.1.1 The output of the hannel s ∈ C dc×1 an then be represented by
x 7→ s = Hx, (3.5)where matrix H ∈ C dc×ds (dc > ds) represents a linear transformation [120℄. The image of

U , denoted by V, is the set {s = Hx for some x ∈ U}. Assuming that dim[U ] = ds andmatrix H is full rank, we have dim[V ] = ds. The observation y ∈ W ⊆ C dc×1, whih isthe sum of hannel output s and noise n, an be written as y = s + n.Subspae methods rely on the assumptions that the observation spae, i.e. W, has
dim[W ] = dc > dim[U ]. Only a seond order statistial haraterization of the inputvetor x and noise vetor n is generally involved. Without loss of generality, it is onvenientto assume that x and n have zero mean, i.e., E[x] = 0 and E[n] = 0, where E[·] denotesstatistial expetation. We denote by Rx = E[xxH ] and Rn = E[nnH ] the orrelationmatrix of x and n, respetively.From the struture of the linear signal model in Fig. 3.1, it follows that Ry = E[yyH ],1In pratie, due to the �nite alphabet property, the set U that enompasses all the possible inputvetors x is a proper subset of C ds×1.
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Fig. 3.1 A generi blind hannel estimation problem.the orrelation matrix of the observation, an be expressed as
Ry = HRxHH + Rn. (3.6)Thus, provided that the noise orrelation matrix is a su�iently regular struture (e.g.,

Rn = σ2
n I), it appears that relevant information regarding the hannel parameters an beobtained from the eigenvetors of Ry.Consider a pratial situation in whih several observations (or realizations) of randomvetor y are available, and let y(j) denote the jth observation at some physial time tj. Wean estimate Ry as

R̂y =
1

Tav

Tav∑

j=1

y(j)y
H
(j). (3.7)Under the stationary ondition, R̂y (and R̂n) onverges to Ry = E[yyH ] (and Rn) in themean square sense as the time averaging interval Tav → ∞ [40℄. Note that we an write

Ry = R̂y + ∆Ry, where ∆Ry denotes the di�erene between the true and the sampledorrelation matrix.By applying an eigen-deomposition to Ry, we an obtain the signal and noise subspaesfrom the span of the eigenvetors whih orrespond to its ds largest eigenvalues and dc −ds



3 Survey of reent developments on MIMO-OFDM hannel estimation 52smallest eigenvalues, respetively. Due to the inevitable noise perturbation and insu�ienttime averaging, minimizing the ost funtion C(H) = tr [L(H)T Ψ̂L∗(H)] subjet to aquadrati onstraint, i.e., L(H)LH(H) = I, is usually employed to obtain the hanneloe�ients, where the matrix Ψ̂ is onstruted from the eigenvetors of the perturbed noisesubspae and the matrix L(H) is obtained by re-arranging the non-redundant elements of
H, depending on the dimensionality as well as the formulation of the matrix Ψ̂. The detailsof this step are appliation spei�, i.e. the onstrution of L(H) and Ψ̂.Let Ho be the optimal suh that C(Ho) ≤ C(H) under the hosen onstraint. We have

C(Ho) = min
L(H)L(H)H= I

{

tr [L(H)T Ψ̂L∗(H)]
}

=
r∑

j=1

γj(Ψ̂), (3.8)where γj(Ψ̂) represents the jth smallest eigenvalue of Ψ̂ and r depends on spei� algo-rithms. To disuss the asymptoti behaviors of C(Ho) as ‖∆Ry‖ → 0 and ‖Rn‖ → 0,let γj(Ψ̂) and γj(Ψ) be the jth smallest eigenvalue of Ψ̂ = Ψ − ∆Ψ and Ψ, respetively,where Ψ is onstruted (in a similar way as Ψ̂) from the error free noise eigenvetors of
Ry. In this ase, Ψ is perturbed by the amount ∆Ψ due to an insu�ient time averaginginterval. Sine Ψ̂ and Ψ are Hermitian in the subspae-based problems, we have [121℄

|γj(Ψ̂) − γj(Ψ)| ≤ ‖∆Ψ‖2. (3.9)First onsider the ase ‖∆Ry‖ > 0 and ‖Rn‖ = 0, whih orresponds to a noise-freesituation with �nite time averaging; that is, Ψ is perturbed by the amount ∆Ψ due toan insu�ient time averaging interval. Here, sine γj(Ψ) = 0, j = 1, 2, · · · , r, we have
C(Ho) =

∑r
j=1 γj(Ψ̂) =

∑r
j=1 |γj(Ψ̂) − γj(Ψ)| ≤ r‖∆Ψ‖2. While the exat relationshipbetween ∆Ψ and ∆Ry depends on the perturbation of the matrix Ψ̂ in a given problem,



3 Survey of reent developments on MIMO-OFDM hannel estimation 53we an generally show for many ases of interest that ‖∆Ψ‖2 ≤ α‖∆Ry‖2, where α > 0is a salar. Therefore, C(Ho) ≤ rα‖∆Ry‖2 and the estimation performane is determinedby the loseness of the estimated orrelation matrix to the true one.Alternatively, onsider the ase ‖∆Ry‖ = 0 and ‖Rn‖ > 0, orresponding to a noisysituation but with in�nite time averaging (Tav → ∞); that is, Ψ is perturbed by the amount
∆Ψ due to the noise. Hene, we an also arrive at C(Ho) ≤ α

′‖Rn‖2, where α′

> 0 isa salar. In the spei� ase of Rn = σ2
n I, we an arrive at C(Ho) ≤ α

′‖R̂n‖2 = α
′

σ2
n.Therefore, in this ase, when there is su�ient time averaging, the estimation performaneis determined by the noise variane. In both ases above, we onlude that C(Ho) → 0 as

‖∆Ry‖ → 0 and ‖Rn‖ → 0.In general, the performane of the hannel estimator obtained from (3.8) largely dependson our ability to disriminate between the ds largest eigenvalues of R̂y and its dc−ds smallest(noise) eigenvalues. Sine wireless hannels are in general non-stationary, we annot hoosean arbitrarily large Tav to estimate the orrelation matrix. Nonetheless, this an be ensuredby requiring that Tav ≥ dc in a pratial senario, i.e., ‖∆Ry‖ > 0 and ‖Rn‖ > 0.3.3.2 Overview of reent subspae-based blind approahesTo date, several interesting subspae-based blind hannel estimation methods have beenproposed. Conerning the linear transformation H in (3.5), it not only haraterizes theinput-output relationship of a subspae-based blind problem, but also plays an importantrole in the performane of the orresponding subspae-based blind hannel estimator. In-deed, the number of rows in H, i.e. dc, is equal to the dimension of the orrelation matrix
R̂y, whih is diretly related to the minimum required time samples to estimate the orre-lation matrix. The linear transformation matrix H of some notable subspae-based blindhannel estimators are brie�y reviewed below.



3 Survey of reent developments on MIMO-OFDM hannel estimation 54a) SISO/SIMO systems [38℄This seminal work proposed a subspae-based blind estimation approah either by means ofoversampling the reeived signal ompared to the information data rate, or by using severalsensors. Although several other approahes using SOS had been proposed beforehand, thisapproah is omputationally more e�ient, and an ahieve a omparably or even betterstatistial performane.In [38℄, two possible senarios are onsidered as explained below.(1) Oversampling a single sensor: This senario onsiders a SISO system, with anunderlying ontinuous-time hannel impulse response h(t) assumed to have �nite support.The hannel output vetor is obtained by oversampling the ontinuous-time output at therate M/T , where T is the symbol period and M is the oversampling fator.Assuming a temporal observation window of length NFT , the sampled output of theSISO hannel an be arranged in a vetor s suh that (3.5) is satis�ed with a suitablede�nition of H. Spei�ally, de�ne the polyphase impulse response by
hi

l
def
= h(t0 − i (T/M) − lT ); 0 ≤ i ≤M − 1, 0 ≤ l ≤ L− 1, (3.10)where L denotes the hannel order and t0 is an appropriate referene time. The orre-sponding linear transformation of the blind estimation problem an thus be haraterizedas
H =

[

H(0)TH(1)T · · ·H(M−1)T
]T

∈ CMNF×(NF +L−1), (3.11)where H(i) is de�ned as
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H(i) def

=















hi
L−1 · · · hi

0 0 · · · · · · 0

0 hi
L−1 · · · hi

0 0 · · · 0... . . . . . . . . . . . . . . . ...
0 · · · 0 hi

L−1 · · · hi
0 0

0 · · · · · · 0 hi
L−1 · · · hi

0















∈ CNF×(NF +L−1). (3.12)
(2) Multiple sensors: This senario onsiders a SIMO system where M now denotesthe number of sensors or reeiving antennas and hi(t), i = 1, 2, · · · ,M are the ontinuous-time impulse responses of the propagation hannel between the input and the ith sensoroutput. Then the orresponding linear transformation also follows (3.11)-(3.12), exeptthat hi

l
def
= hi(t0 − lT ), 0 ≤ l ≤ L− 1, meaning that the ith sensor reeives a signal that hastraveled through the ith propagation hannel.b) OFDM systems with yli pre�x [39℄It an be shown that ylostationarity in the reeived signal allows the reeiver to blindlyidentify the hannel impulse response using only seond order statistis [29℄. In partiular,by exploiting the ylostationarity embedded at the transmitter due to the insertion of ayli pre�x in eah symbol, a subspae-based blind hannel identi�ation was proposedfor SISO-OFDM systems in [39℄.In the notation of [39℄, the disrete-time impulse response of the SISO hannel is denotedas hl, 0 ≤ l ≤ L − 1. The output vetor s onsists of the sequene of time samples from

NF onseutive OFDM symbols, with eah OFDM symbol of size NC +Ncp, where NC isthe IFFT size and Ncp is the length of yli pre�x (See Setion 2.1 for details). Then the
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H =















hL−1 · · · h0 0 · · · · · · 0

0 hL−1 · · · h0 0 · · · 0... . . . . . . . . . . . . . . . ...
0 · · · 0 hL−1 · · · h0 0

0 · · · · · · 0 hL−1 · · · h0















, (3.13)
whih is also a Toeplitz matrix of size (NF (NC +Ncp) − L+ 1) ×NF (NC +Ncp).) OFDM systems without yli pre�x [122℄Motivated by the multihannel signal model in single-arrier systems [38℄, another notableblind approah for hannel estimation was proposed in the ontext of OFDM systems[122℄. The method distinguishes itself from [39℄ mainly by eliminating the use of the CPfor hannel estimation. Two possible senarios are onsidered as follows:(1) Oversampling a single sensor: In this ase, the ontinuous-time hannel h(t) isassumed to be of �nite support. If M and L denote the oversampling fator in the OFDMsystem and the hannel order, respetively, then for some referene time t0, the disrete-time impulse response of interests are given as in [39℄ by

hi
l

def
= h(t0 − i (T/M) − lT ); 0 ≤ i ≤M − 1, 0 ≤ l ≤ L− 1, (3.14)where T represents the duration of the NC +Ncp individual time samples omprising eahOFDM symbol. The orresponding linear transformation of this blind estimation problem
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H =

[

H(0)TH(1)T · · ·H(M−1)T
]T

∈ CM(NC−L+1)×NC , (3.15)where H(i) is de�ned in (3.12) but now has dimension (NC − L + 1) × NC . Note that inthis approah only the non-ISI orrupted time samples are used in the onstrution of s,whih explains the di�erent size of H(i).(2) Multiple sensors: If M now denotes the number of sensors in a SIMO-OFDM sys-tem, then by olleting only non-ISI orrupted OFDM time samples at eah sensor andstaking them, we an onstrut another multihannel signal model. The orrespondinglinear transformation also follows the above ase with hi
l

def
= hi(t0 − lT ), 0 ≤ l ≤ L− 1.d) MIMO-OFDM systems [44℄With the growing popularity of MIMO-OFDM systems, an eminent subspae-based ap-proah was proposed in [44℄. Two possible senarios are addressed as follows:(1) MIMO-OFDM systems with NR ≥ NT : In this ase, let the temporal windowof observations be NF and hp,q(t) denotes the ontinuous-time hannel impulse responsebetween the qth transmit antenna and the pth reeive antenna. The orresponding lineartransformation of the blind estimation problem an be formulated as

H =















h(L− 1) · · · h(0) 0 · · · · · · 0

0 h(L− 1) · · · h(0) 0 · · · 0... . . . . . . . . . . . . . . . ...
0 · · · 0 h(L− 1) · · · h(0) 0

0 · · · · · · 0 h(L− 1) · · · h(0)















, (3.16)
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= NC +Ncp,

h(l)
def
=












h11(l) h12(l) · · · h1NT
(l)

h21(l) h22(l) · · · h2NT
(l)... ... . . . ...

hNR1(l) hNR2(l) · · · hNRNT
(l)












∈ CNR×NT , (3.17)
and hp,q(l)

def
= hp,q(t0 − lT ), 0 ≤ l ≤ L− 1, where T denotes the OFDM sampling period.(2) MIMO-OFDM systems with NT > NRIn this ase, an oversampling fator M is applied at the reeiver with M ≥ ⌈NT/NR⌉.With h(i)

p,q(l)
def
= hp,q(t0 − i (T/M) − lT ), 0 ≤ i ≤ M − 1, 0 ≤ l ≤ L − 1, the lth lag of theoversampled-MIMO hannel is represented as

h̃(l) =
































h
(0)
1,1(l) h

(0)
1,2(l) · · · h

(0)
1,NT

(l)... ... . . . ...
h

(M−1)
1,1 (l) h

(M−1)
1,2 (l) · · · h

(M−1)
1,NT

(l)

h
(0)
2,1(l) h

(0)
2,2(l) · · · h

(0)
2,NT

(l)... ... . . . ...
h

(M−1)
2,1 (l) h

(M−1)
2,2 (l) · · · h

(M−1)
2,NT

(l)... ... . . . ...
h

(0)
NR,1(l) h

(0)
NR,2(l) · · · h

(0)
NR,NT

(l)... ... . . . ...
h

(M−1)
NR,1 (l) h

(M−1)
NR,2 (l) · · · h

(M−1)
NR,NT

(l)
































. (3.18)
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H =















h̃(L− 1) · · · h̃(0) 0 · · · · · · 0

0 h̃(L− 1) · · · h̃(0) 0 · · · 0... ...
0 · · · 0 h̃(L− 1) · · · h̃(0) 0

0 · · · · · · 0 h̃(L− 1) · · · h̃(0)















, (3.19)
whih is of size M(NFQ−L+1)NR ×NFQNT . Here, oversampling is introdued to ensurethat H is a tall matrix (i.e. full olumn rank), a ondition needed in the appliation of asubspae approah.3.3.3 Summary of the notable subspae-based blind approahesFor future referene, we brie�y summarize the above representative subspae-based esti-mators [38, 39, 44, 122℄ in Table 3.1, in terms of the dimension of the signal subspae ds,the dimension of the noise subspae dc − ds, the size of the linear transformation matrix
H, and the dimension of the orresponding orrelation matrix R̂y, respetively.2Table 3.1 Summary of dimensionality for some notable subspae-based blindhannel estimators.Estimator ds dc − ds size of H dimension of R̂ySISO (oversampling) [38℄ NF + L − 1 MNF − NF − L + 1 MNF × (NF + L − 1) MNFSIMO (multiple sensors) [38℄ NF + L − 1 MNF − NF − L + 1 MNF × (NF + L − 1) MNFSISO-OFDM (with CP) [39℄ NF NC NF Ncp − L + 1 (NF (NC + Ncp) − L + 1) × NF (NC + Ncp) NF (NC + Ncp) − L + 1SISO-OFDM (without CP) [122℄ NC M(NC − L + 1) − NC M(NC − L + 1) × NC M(NC − L + 1)SIMO-OFDM (without CP) [122℄ NC NR(NC − L + 1) − NC NR(NC − L + 1) × NC NR(NC − L + 1)MIMO-OFDM (NR ≥ NT ) [44℄ NF DNT (NF Q − L + 1)NR − NF DNT (NF Q − L + 1)NR × NF QNT (NF Q − L + 1)NRMIMO-OFDM (NR < NT ) [44℄ NF DNT M(NF Q − L + 1)NR − NF DNT M(NF Q − L + 1)NR × NF QNT M(NF Q − L + 1)NR2The parameter D in [44℄ denotes the number of useful subarriers in the OFDM systems.



3 Survey of reent developments on MIMO-OFDM hannel estimation 603.4 Limitations of urrent subspae-based blind estimatorsIn pratie, to obtain the eigenvetors orresponding to the noise subspae in a subspae-based problem, the orrelation matrix Ry must be estimated through time averaging overmultiple reeived samples y(j), j = 1, 2, · · · , Tav. To this end, the unknown hannel mustremain time-invariant throughout the averaging proess, whih may pose a serious problemin pratial appliations.Clearly, to obtain a sampled orrelation matrix with full rank, the number of timesamples required must be no less than the dimension of the orrelation matrix. Similaronsiderations an be found in the literature, spei�ally in the ontext of minimum vari-ane beamformers [123℄, large dimensional random matries [124℄, and the persistene ofexitation assumption [25, 40℄. Hene, when we onsider the time invariane requirement ofa pratial MIMO-OFDM system with a large number of OFDM subarriers, e.g., NC = 128or more, the traditional subspae-based methods require extremely large number of timesamples for obtaining a good time-averaged orrelation matrix, making them impratial.Indeed, as an simply observe from the last olumn of Table 3.1, the dimension of theorrelation matrix in any one of the method in [39, 44, 122℄ is diretly proportional to NC ,i.e. the number of OFDM subarriers.More reently, variants of the statistis-based blind hannel estimation methods havebeen proposed, e.g., by inserting zero-padding instead of CP for eah OFDM blok [45℄, orby introduing the so-alled repetition index [46℄ and re-modulation [47℄ on the reeivedsignal. However, the number of time samples required with these methods is still impliitlyproportional to the size of the IFFT, i.e. NC . Regarding deterministi approahes, wenote that they still need to aumulate time samples in order to obtain hannel estimatesalgebraially, and their performane in noise improves as the number of time samples



3 Survey of reent developments on MIMO-OFDM hannel estimation 61inreases.Therefore, as the time averaging interval Tav is the major limitation on the quality ofthe sampled orrelation matrix, any subspae-based blind algorithm whih uses a smallerdimension of the orrelation matrix may ahieve a better estimation performane for a given
Tav. Equivalently, aiming at any reasonable estimation performane, a subspae-basedalgorithm whih uses a orrelation matrix of smaller dimension generally requires a shortertime average interval. In Chapter 4, to meet the demands of future wireless standards, wepropose a novel subspae-based algorithm for blind hannel estimation in MIMO-OFDMsystems, in whih the required dimension of orrelation matrix an be signi�antly lessthan those of the previously reported algorithms (that is, for the same system setup andparameter values). This will be ahieved mainly by exploiting the frequeny orrelationamong adjaent subarriers in the MIMO-OFDM systems.
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Chapter 4
Subspae-based blind hannel estimation withredued time averaging for MIMO-OFDM
In this hapter, to relax the time invariane requirement in pratial MIMO-OFDM sys-tems, we propose a novel subspae-based blind hannel estimation algorithm with reduedtime averaging. This is ahieved by exploiting the frequeny orrelation among adjaentsubarriers in OFDM transmissions through subarrier grouping [60℄, for whih some sup-portive �eld measurements an also be found in [61℄. The resulting gain in performaneomes at the ost of an ambiguity matrix with larger dimensions; however, this dimensionan be easily redued to the normal one when preoding is applied [125℄ (see also Setion6.3) or when the ratio of oherene bandwidth to the hannel bandwidth is large.In Chapter 7, through simulations over 3GPP-SCM wireless hannels, the proposedapproah is shown to outperform the approah from [47℄. In partiular, it an ahieve anormalized mean square error (NMSE) of 10−4 on the hannel estimates within only 50time samples (when the SNR=15dB), whih is also very ompetitive over the deterministiapproahes designed exlusively for SISO and single-arrier transmissions.



4 Subspae-based blind hannel estimation with redued time averaging 63In a nutshell, the ontribution of this work is not only to show that the proposedblind approah an work with a small number of time samples but that it may ome withimproved performane and robustness over existing statistial and deterministi methods.The hapter is organized as follows. Setion 4.1 is devoted to the problem formula-tion, inluding a desription of the system under onsideration. We introdue the proposedsubspae-based blind algorithm in Setion 4.2. Identi�ability onditions as well as perfor-mane analysis of the proposed algorithm are given in Setion 4.3.4.1 Problem formulationWe onsider a MIMO-OFDM system with NT transmit and NR reeive antennas, em-ploying NC subarriers, as depited in Fig. 2.2. Let the mth OFDM symbol transmit-ted over the kth subarrier be denoted as xm[k]
def
=
[
xm

1 [k] xm
2 [k] · · · xm

NT
[k]
]T , where

xm
q [k] is the symbol transmitted at the qth transmit antenna. Then the mth OFDMsymbol transmitted over the NC subarriers an be written in a onatenated form as

xm def
=
[

xm[0]T xm[1]T · · · xm[NC − 1]T
]T . The input vetor, whih represents an OFDMblok in our system setup, is assumed to onsist of NF OFDM symbols and thus an bewritten as x =

[

x1T
x2T · · · xNF

T
]T .At the reeiver, let the mth reeived OFDM symbol over the kth subarrier be denotedas ym[k]

def
=
[
ym

1 [k] ym
2 [k] · · · ym

NR
[k]
]T , where ym

p [k] is the symbol reeived at the pth re-eive antenna. Then themth OFDM symbol reeived over NC subarriers an be written as
ym def

=
[

ym[0]T ym[1]T · · · ym[NC − 1]T
]T , and y =

[

y1T
y2T · · · yNF

T
]T representsthe observation. In addition, let n represent the additive noise strutured in a similar way.In the following, we assume that: (1) the length of the CP appended to eah OFDMsymbol is longer than the maximum exess delay of the hannel; (2) the hannel is time-



4 Subspae-based blind hannel estimation with redued time averaging 64invariant at least over eah OFDM blok; and (3) the average power of the transmit symbolalphabet is normalized: E [|xm
q [k]|2] = 1. Under these assumptions, the input-output rela-tion of the MIMO-OFDM system may be expressed ompatly by

y = Hx + n, (4.1)where the matrix H is de�ned as
H def

= INF
⊗ diag(H[0] · · ·H[NC − 1]) (4.2)with size (NRNCNF ) × (NTNCNF ) and the de�nition of diagonal bloks is given in (2.9).In this hapter, our interest lies in the blind, SOS-based estimation of the hanneloe�ients, i.e. {hp,q[k]}, diretly from multiple observations of random vetors y's.4.2 Subspae-based blind estimationIn the ase of SOS-based blind approahes, the main onern is to estimate the orrelationmatrix Ry = E[yyH ] while meeting a ertain level of on�dene, and over a time averaginginterval as short as possible. We �rst brie�y omment on the time averaging requirement inthe traditional approahes: For subspae-based algorithms that apply hannel estimationin the time domain and assuming NR ≥ NT (see e.g., [41, 44℄), the hannel matrix is blokToeplitz and an be written as Htd =
∑L−1

l=0 Bl ⊗ H(l), where L represents the hannelorder, B is an [(NC +Ncp)NF −L+1]× (NC +Ncp)NF bakward shift matrix [121℄ with Ncpdenoting the length of the yli pre�x, and H(l)
def
= (1/NC)

∑NC−1
k=0 H[k] exp(j2πkl/NC),i.e. the MIMO hannel impulse response of the lth tap.Then, the dimension of the orrelation matrix of the observations is [(NC +Ncp)NF −
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L+ 1]NR, whih an be approximated by NCNFNR if NC ≫ Ncp and NCNF ≫ L. On thebasis of these onsiderations, we an onlude that in the ontext of MIMO-OFDM, we needto hoose the number of time samples Tav ≥ NCNFNR to ahieve aeptable performanefor these time-domain approahes. As NC is normally hosen between 128 and 2048 soas to alleviate the adverse e�ets from the frequeny-seletive hannels, we an see thatthese algorithms require an extremely large Tav for obtaining an aeptable time-averagedorrelation matrix. Below, we develop an improved proedure that exploits orrelation overthe frequeny domain to relax suh a requirement.4.2.1 Proposed approahIn the ontext of MIMO-OFDM, although a pilot-based subspae method in the frequenydomain was proposed in [126℄, a blind one onstruted diretly from (4.1) has seldom beenonsidered, mainly beause there are a large number NTNRNC ≥ NTNRL of unknownsto be estimated (reall that L represents the hannel order). Nevertheless, the number ofunknowns an be redued by exploiting the frequeny orrelation among adjaent OFDMsubarriers with some loss in the estimation performane. In return, the dimension of theorrelation matrix and hene the number of time samples required for time averaging anbe redued signi�antly. The details are given below for the ase NR > NT ; however, ifoversampling is used at the reeiver, the ase NR ≤ NT is also possible.Let the frequeny span of P adjaent subarriers reside inside the oherene band-width of the wireless hannel, de�ned here as the range of frequenies over whih thefrequeny response matrix of the MIMO hannel does not hange appreiably [127℄. Let
Ω

def
= {0, 1, · · · , NC − 1}, i.e. the index set of the NC subarriers, be partitioned into

P disjoint subsets (assuming ζ
def
= NC/P ∈ Z+) with eah subset denoted as Ωp

def
=

{ωp,1, ωp,2, · · · , ωp,ζ}, where ωp,i
def
= p − 1 + (i − 1)P , i = 1, 2, · · · , ζ for p = 1, 2, · · · , P



4 Subspae-based blind hannel estimation with redued time averaging 66(see Fig 4.1 for details). Note that Ω1 ∪ Ω2 ∪ · · · ∪ ΩP = Ω, and Ωi ∩ Ωj = ∅, where ∅denotes the empty set.PSfrag replaements

0 1 P − 1 P P + 1 2P − 1 (ζ − 1)P NC − 1

ω1,1 ω2,1 ωP,1 ω1,2 ω2,2 ωP,2 ω1,ζ ωP,ζ

1st subset (p = 1) P th subset (p = P )

Fig. 4.1 A shemati of the partitioning of the subarrier index set Ω =
{0, 1, · · · , NC − 1} into P disjoint subsets, i.e. Ωp = {ωp,1, ωp,2, · · · , ωp,ζ},
p = 1, 2, · · · , P .De�ne xp = [x1

p
T
x2

p
T · · ·xNF

p
T
]T , yp = [y1

p
T
y2

p
T · · ·yNF

p
T
]T , np = [n1

p
T
n2

p
T · · ·nNF

p
T
]T ,where

xm
p

def
= {xm[k] | k ∈ Ωp } = [ xm[ωp,1]

T
xm[ωp,2]

T · · · xm[ωp,ζ]
T ]T (4.3)and ym

p and nm
p are de�ned in a similar way. These vetors are obtained from the ompleteinput vetor x, observation vetor y, and noise vetor n above by retaining only the fre-queny omponent of the pth subset Ωp. Then (4.1) an be re-written for the pth subset
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yp = Hp xp + np, p = 1, 2, · · · , P, (4.4)where

Hp
def
= INF

⊗ diag(H[ωp,1] · · ·H[ωp,ζ]) (4.5)is assumed to be of full rank with size (NRNF ζ) × (NTNF ζ). The identi�ation of Hp anthen be ahieved based on Ryp
= E [ypy

H
p ], whih an be re-written as

Ryp
= HpRxp

HH
p + Rnp

, (4.6)where Rxp

def
= E [xpx

H
p ] is assumed to be of full rank, and Rnp

def
= E [npn

H
p ] = σ2

n I. Sinethe P adjaent subarriers are assumed to reside inside the oherene bandwidth, the sub-hannel matries Hp, p = 1, 2, · · · , P an be approximated1 by denoting H̄ def
= H1 = H2 =

· · · = HP .An estimate of the orrelation matrix in (4.6) an be obtained as
R̂ȳ =

1

PTav

Tav∑

j=1

P∑

p=1

yp (j)y
H
p (j), (4.7)where yp (j) ∈ C(NRNF ζ)×1 denotes the jth observation of yp at some physial time tj .Therefore, the number of the time samples Tav required an be signi�antly redued sinethe dimension of the orrelation matrix is redued by a fator of P , and an averaging over

P subsets is applied at eah time epoh, whih is equivalent to the frequeny averaging.By applying the eigenvalue deomposition (EVD) to Ryp
, we an express (4.6) as1In pratie, there are always small variations of the sub-hannel matries over the assumed oherenebandwidth. The e�ets of suh small variations on the estimation performane are onsidered and analyzedin Setion 4.3.
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Ryp

= UΛUH , where U is a matrix whose olumns are the orthonormal eigenvetors ofRyp
,and whih an be partitioned as U = [Us |Un ] = [u1 · · ·uds

|uds+1 · · ·uds+dn
]. The signalsubspae an thus be denoted as R(Us), while its orthogonal omplement, the noise sub-spae, an be denoted as R(Un), with ds

def
= rank (H̄) = NTNF ζ and dn

def
= (NR −NT )NF ζ .

Λ is a diagonal matrix onsisting of the orresponding eigenvalues of Ryp
, and is denoted as

Λ = diag (λ1, λ2, · · · , λds+dn
) with λmax = λ1 ≥ λ2 ≥ · · · ≥ λds

> λds+1 = · · · = λds+dn

def
=

λmin ≥ 0. Under the assumption of white noise with non-zero variane, i.e., λmin = σ2
n > 0.Sine H̄ and Us share the same range spae and are orthogonal to the range spae of Un,we an arrive at the following orthogonality relationship

uH
j H̄ = 0, j = ds + 1, · · · , ds + dn. (4.8)Although H̄ an be solved from the set of homogeneous linear equations, due to the use ofa �nite time averaging interval, only an estimate of the noise subspae Un is available inpratie. In this ase, by denoting ûj as the perturbed version of uj, obtained by applyingthe EVD to the sample orrelation matrix R̂ȳ in (4.7), we may obtain the hannel estimateby minimizing a quadrati ost funtion given by, e.g.,2

C(H̄) =

ds+dn∑

j=ds+1

‖ûH
j H̄‖2

2. (4.9)The trivial solution H̄ = 0 an be avoided by introduing a suitable onstraint as disussedbelow.At this point, it is onvenient to reformulate the quadrati ost funtion (4.9) in a formthat is more onvenient for its optimization over the unonstrained parameters in matrix H̄.2Ideally, we should measure how lose is ûH
j H̄ to the all zero vetor 01×NT NF ζ . To this end, we are notrestrited to the ost funtion in (4.9).



4 Subspae-based blind hannel estimation with redued time averaging 69Let us �rst partition ûj into NF segments of equal dimension as ûj =
[
ûT

j,1û
T
j,2 · · · ûT

j,NF

]T ,and then de�ne matrix V̂j
def
= [ûj,1ûj,2 · · · ûj,NF

], where ûj,i ∈ CNRζ×1 for i = 1, 2, · · · , NF .For a �xed but arbitrarily seleted integer ρ ∈ [1, P ], let us de�ne
H̄′ def

= H̄′

ρ =









H[ωρ,1]...
H[ωρ,ζ]









= [hρ
1 h

ρ
2 · · · h

ρ
NT

], (4.10)
where eah olumn hρ

q is obtained by onatenating the orresponding olumns of H[ωρ,k],
k = 1, · · · , ζ , that is,

hρ
q

def
= [h1,q[ωρ,1] · · · hNR,q[ωρ,1] · · · h1,q[ωρ,ζ] · · · hNR,q[ωρ,ζ]]

T (4.11)for q = 1, 2, · · · , NT . Then the ondition C(H̄) = 0 in (4.9) implies that C ′

(H̄′

) = 0, inwhih the latter is de�ned as (see Appendix A for details)
C

′

(H̄′

) = tr
(

H̄′T Ψ̂H̄′∗
)

, (4.12)and the matrix Ψ̂ is de�ned as
Ψ̂

def
=

ds+dn∑

j=ds+1

V̂∗
jV̂

T
j ∈ C(NRζ)×(NRζ). (4.13)We now proeed to obtain the hannel estimate by minimizing the quadrati ost funtionin (4.12) as follows. Let the eigenvalues of Ψ̂ be ordered as γmin = γ1(Ψ̂) ≤ γ2(Ψ̂) ≤

· · · ≤ γ(NRζ)(Ψ̂) = γmax. Then from the Rayleigh-Ritz theorem [121℄, we know that for all
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Q ∈ C (NRζ)×r,

γ1(Ψ̂) + · · · + γr(Ψ̂) = min
QHQ=I

tr (QHΨ̂Q), (4.14)where r is a given integer with 1 ≤ r ≤ NRζ . The optimal solution Q̂o ∈ C (NRζ)×r is amatrix whose olumns are hosen to be orthonormal eigenvetors orresponding to the rsmallest eigenvalues of Ψ̂. Therefore we an arry on the minimization on the RHS of (4.14)to �nd Q̂o and obtain the desired solution of (4.12) by
H̄′

o = Q̂∗
oA, (4.15)where A ∈ Cr×NT an be seen as an ambiguity matrix. To ensure that enough basisfuntions are available for the adequate representation of the unknown hannel matrix, rshould be hosen so that r = dim [R(Q̂∗

o)] ≥ dim [R(H̄o)]/NF = NT ζ ; in our ase, wesimply hoose r = NT ζ .Table 4.1 Computational omplexity of the proposed algorithm.Main Step Complexity (�ops)1. Compute R̂ȳ. 3
2
(PTav)(NRNF ζ)

22. Given ds = NTNF ζ and dn = (NR −NT )NF ζ ,�nd eigenvetors ûj , j = ds + 1, · · · , ds + dn, whihorrespond to the dn smallest eigenvalues of R̂ȳ. O((NRNF ζ)
3)3. Partition ûj =

[
ûT

j,1û
T
j,2 · · · ûT

j,NF

]T and form the matries
V̂j=[ûj,1ûj,2 · · · ûj,NF

] from ûj , j = ds + 1, · · · , ds + dn. 04. Form the matrix Ψ̂ from the V̂j's. dn(NF + 1)(NRζ)
25. Find Q̂o, whose olumns are the eigenvetorswhih orrespond to the NT ζ smallest eigenvalues of Ψ̂. O((NRζ)

3)6. Obtain hannel estimate H̄′

o. 2(NT ζ)(NRζ)NT



4 Subspae-based blind hannel estimation with redued time averaging 714.2.2 Further omments on the proposed approahThe main proessing steps for the proposed algorithm are summarized in Table 4.1, alongwith their omputational omplexities in terms of the number of required (omplex) �ops.To meet the minimum requirement of time averaging in onnetion with (4.7), i.e., to avoidrank de�ieny, we need PTav ≥ NRNF ζ , or equivalently, Tav ≥ NRNFNC/P
2. Therefore,the redution in the averaging time Tav is proportional to the square of the number of sub-sets, P . Assuming PTav = NRNF ζ is hosen (i.e. the dimension of the orrelation matrix),the total omputational omplexity of the proposed algorithm is given as O((NRNF ζ)

3),inluding the two EVD operations. Although the steps of matrix omputations are similarto those found in the traditional approahes, the omplexity of the �rst EVD operationis in general muh lower. A redution by P 3 ≈ 104.5 �ops in the EVD operation an beexpeted for a typial value of P = 32.The ambiguity matrix A, inherent in all subspae-based blind hannel estimation meth-ods due to the seond-order problem formulation, is required in order to obtain a �nal han-nel estimate in Step 6 (see also (4.15) for details). While the estimation of the ambiguitymatrix for subspae methods is a general problem on its own that falls outside the sopeof this thesis, several approahes are available in pratie to implement this step, inludingthe use of higher order statistis or the insertion of a limited number of pilot symbols (re-sulting in the so-alled semi-blind approah). Conerning the size of the ambiguity matrixin the urrent problem, a simple preoding tehnique is presented in Chapter 6 to redue itto NT ×NT , whih is the size of the ambiguity in the orresponding time-domain subspaeproblems.
2010/07/30



4 Subspae-based blind hannel estimation with redued time averaging 724.3 Performane analysis on the proposed subspae-basedestimatorIn this setion, we analyze the performane of the newly proposed algorithm in Setion4.2. We �rst investigate its identi�ability onditions, and then derive expressions for itsasymptoti performane and assoiated Cramer-Rao bound. In Chapter 7, these analysisresults will be used in onjuntion with Monte Carlo numerial simulations to show that theproposed algorithm indeed ahieves a better estimation auray than previous reportedalgorithms within a reasonable time averaging interval.4.3.1 Identi�ability onditionsIn subspae-based blind estimation problems, the study of identi�ability onditions aims toexplore the struture of the hannel and properties of the input suh that we an uniquelydetermine the hannel oe�ients up to a ertain degree of ambiguity [128℄. The studyis normally onduted expliitly from the viewpoint of the signal-noise orthogonality rela-tionship, assuming that the time averaging interval is su�ient long to neglet estimationerror of the sample orrelation matrix; that is: assuming R̂ȳ = Ryp
. As a result, we andetermine not only the type of hannels that a spei� blind algorithm an identify, butalso the way that system parameters should be hosen.In the following, assuming the dimensions of the signal and noise subspaes are known,we investigate to what extent the hannel is still identi�able, i.e. hannel oe�ients anbe uniquely determined up to a ertain degree of ambiguity. First, let us express theorthogonality relationship in (4.8) in terms of the noise subspae eigenvetor matrix Un by

UH
n H̄ = 0, (4.16)



4 Subspae-based blind hannel estimation with redued time averaging 73whih is a homogeneous linear system.Sine H̄ is assumed to be of full rank, i.e. rank(H̄) = NTNF ζ = ds, (4.16) also implies
R(H̄) = N(UH

n ).The general solution of the system (4.16) is given as
H̄ =

(

I−
(
UH

n

)†(
UH

n

))

Y

=
(
I −UnU

H
n

)
Y

= PR(Un)⊥Y (4.17)for some arbitrary matrix Y with PR(Un)⊥
def
= I − UnU

H
n [129, p.140℄, where the seondequality follows from the fat that Un is a full olumn rank matrix with orthonormalolumns. Therefore, we an always avoid the trivial solution H̄ = 0 sine UnU

H
n 6= I. Let

H̄′

= Q∗
oA denote a solution to (4.14) onstruted from the exat Qo with orresponding

H̄.3 In addition, let H̄′

1 = H̄′

B = (Q∗
oA)B = Q∗

oA1 where B is a square matrix ofdimension NT . Then, it an be veri�ed that the orresponding H̄1 = H̄ (Iζ ⊗ B), whihis also of the form PR(Un)⊥Y1, with Y1 = Y (Iζ ⊗ B). This shows that H̄′ is uniquelydetermined up to the ambiguity matrix A (
def
= A1B

−1).In the following, let us determine the su�ient ondition for the hannel to be iden-ti�able. Reall that the dimension of the solution spae of a homogeneous linear system
Am×nXn×p = 0m×p equals p dim[N(A)]; the dimension of the solution spae for H̄ in (4.16)is then given as ds dim[N(UH

n )]. Sine H̄ is a blok diagonal matrix with dsNR nonzerosentries, a su�ient (but not neessary) ondition for the hannel to be identi�able an thusbe written as ds dim [N(UH
n )] ≥ dsNR, or simply ds ≥ NR. We an rearrange the aboveinequality and arrive at NF ζ ≥ (NR/NT ).3As per the formating transformation H̄ ↔ H̄′ de�ned in Setion 4.2.



4 Subspae-based blind hannel estimation with redued time averaging 74Therefore, NF = 1 is possible for the proposed algorithm as long as ζ ≥ (NR/NT ),meaning that the aforementioned algorithm and identi�ability onditions an be derivedfor the ase of single-symbol proessing, i.e., one OFDM input symbol at a time. However,our results an easily be extended to the general ases where the OFDM system operateson bloks of multiple OFDM symbols at a time, as is neessary with many traditionalapproahes [41, 44℄.4.3.2 Perturbation analysisBy denoting Hp = H̄ + ∆Hp, the orrelation matrix Ryp
in (4.6) an be re-written as

Ryp
= H̄Rxp

H̄H + R∆Hp
+ Rnp

, (4.18)where we de�ne
R∆Hp

= ∆Hp Rxp
H̄H + H̄Rxp

∆HH
p + ∆Hp Rxp

∆HH
p . (4.19)In Setion 4.2, an identi�ation of H̄ was obtained by assuming ‖∆Hp‖ → 0, ∀p. In thefollowing, the asymptoti performane of the proposed algorithm under high SNR andsu�iently large time averaging interval is studied.Under the ondition of stationarity and ergodiity, the estimate of the orrelation matrixin (4.7) onverges to:

Rȳ = H̄Rx̄H̄H

︸ ︷︷ ︸

def
= RH̄

+R∆H + Rn̄ as Tav → ∞, (4.20)where Rx̄
def
= (1/P )

∑P
p=1 Rxp

, R∆H
def
= (1/P )

∑P
p=1 R∆Hp

and Rn̄
def
= (1/P )

∑P
p=1 Rnp

.



4 Subspae-based blind hannel estimation with redued time averaging 75Sine Rȳ = RH̄ +R∆H +Rn̄ an be seen as a perturbed data matrix with R
′

n

def
= R∆H +Rn̄being the perturbation soure, we have the �rst order perturbation of the noise subspae[122, 130℄ denoted by

∆Un,H̄ = −Us,H̄Σ−1
s,H̄

UH
s,H̄(R

′

n)HUn,H̄, (4.21)assuming the EVD of RH̄ is written as
RH̄ = [ Us,H̄ | Un,H̄ ]






Σs,H̄

0











UH
s,H̄

UH
n,H̄




 . (4.22)Furthermore, by partitioning the jth olumn of Un,H̄ and ∆Un,H̄ into NF segments of equaldimension, we de�ne new matries Vj

def
= [U j,1

n,H̄
U

j,2

n,H̄
· · ·U j,NF

n,H̄
] and ∆Vj

def
= [∆U

j,1

n,H̄
∆U

j,2

n,H̄

· · ·∆U
j,NF

n,H̄
], where U

j,i
n,H̄

and ∆U
j,i
n,H̄

denote the ith segment of the jth olumn of Un,H̄and ∆Un,H̄, respetively. Similar to (4.13), Ψ
def
=
∑dn

j=1 V∗
jV

T
j is then onstruted for theHermitian matrix Qo (note that Qo is the un-perturbed version of Q̂o). The EVD of Ψan be written as

Ψ = [ Us,Ψ | Un,Ψ ]






Σs,Ψ

0











UH
s,Ψ

UH
n,Ψ




 , (4.23)where we identify Qo = Un,Ψ and hene Q̂o = Qo + ∆Qo with

∆Qo = −Us,ΨΣ−1
s,ΨUH

s,Ψ(∆Ψ)HQo, (4.24)where ∆Ψ
def
=
∑dn

j=1 V∗
j∆VT

j +∆V∗
jV

T
j +∆V∗

j∆VT
j . By assuming that H̄′ = [hρ

1 h
ρ
2 · · · h

ρ
NT

]for known, but arbitrary value of ρ ∈ [1, P ], we an obtain the ambiguity matrix from
A = (Q̂∗

o)
†H̄′ . Therefore, the asymptoti hannel estimate and asymptoti estimation
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H̄′

o,a = (Q̂∗
o)(Q̂

∗
o)

†H̄′

, (4.25)
∆H̄′

o,a =
[

I − (Q̂∗
o)(Q̂

∗
o)

†
]

H̄′

. (4.26)Note that sine (Q̂∗
o)(Q̂

∗
o)

† = P
R(Q̂∗

o) and I−(Q̂∗
o)(Q̂

∗
o)

† = P
R(Q̂∗

o)⊥ [131, 132℄, eah olumn ofthe estimated hannel matrix H̄′

o,a an be seen as the projetion of the orresponding olumnof H̄′ on the range of Q̂∗
o. Hene, as long as R(H̄′

) * R(Q̂∗
o), we have H̄′

o,a = P
R(Q̂∗

o)H̄
′ 6= H̄′and ∆H̄′

o,a = P
R(Q̂∗

o)⊥H̄
′ 6= 0.To quantify the estimation performane, let us de�ne the ν-distane δν(Γ,Σ) betweentwo matries Γ and Σ of the same dimension in a linear spae by

δν(Γ,Σ) = ‖vec (Γ− Σ) ‖ν (4.27)for any real number ν ≥ 1. The normalized mean square error (NMSE) and hannel averagebias (CAB) of the hannel estimate an then be onveniently expressed by
NMSE = E

[
P∑

p=1

δ2
2(H̄

′

o, H̄
′

p)

]

/E

[
P∑

p=1

‖H̄′

p‖2
F

]

, (4.28)
CAB =

1

NTNRNC

E

[
P∑

p=1

δ1(H̄
′

o, H̄
′

p)

]

, (4.29)where H̄′

o is given either by (4.15) for evaluating the hannel estimate or by (4.25) for theasymptoti hannel estimate, and H̄′

p is de�ned in Setion 4.2.1.4Here asymptoti error refers to a situation where SNR is large and time averaging interval is su�ientlylong.



4 Subspae-based blind hannel estimation with redued time averaging 774.3.3 Cramer-Rao boundTo determine whether the proposed algorithm is e�ient or not spei�ally in the highSNR regime, we evaluate the unbiased Cramer-Rao bound (CRB) for the problem underonsideration. Let θ = [σ2
n , vec(H̄′

)T ]T be the olumn vetor of nonrandom parameters tobe estimated from the observations. The Fisher information matrix (FIM) for the omplexvalued parameter vetor θ an be obtained by [133℄
Jθθ = Eyp| θ

(
∂ ln f(yp| θ)

∂θ

)(
∂ ln f(yp| θ)

∂θ

)H

, (4.30)where the observation an be haraterized by the omplex probability density funtionof yp. On the basis of entral limit theorem, the latter is assumed to be of ZMCSCGdistribution , i.e.N (0,Ryp
), where the ovariane matrix is de�ned as Ryp

= σ2
sH̄H̄H +σ2

nI.We an estimate the real vetor given by θR = [ℜ(θT ),ℑ(θT )]T , where ℜ(·) and ℑ(·)denote the real and imaginary part of a omplex vetor, respetively. The real FIM JθRθRan thus be determined from Jθθ by
JθRθR

= M






Jθθ Jθθ∗

J ∗
θθ∗ J ∗

θθ




MH , (4.31)where

M =
1

2






I I

−iI iI




 , θR =






ℜ(θ)

ℑ(θ)




 = M






θ

θ∗




 . (4.32)
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[Jθθ]i,j = tr

{

R−1
yp

(
∂Ryp

∂θ∗i

)

R−1
yp

(
∂Ryp

∂θ∗j

)H
}

, (4.33)
[Jθθ∗]i,j = tr

{

R−1
yp

(
∂Ryp

∂θ∗i

)

R−1
yp

(
∂Ryp

∂θ∗j

)}

. (4.34)Note that we still use Ryp
instead of R̂ȳ in (4.33)-(4.34), beause perturbations amongadjaent hannel oe�ients inside the oherene bandwidth may exist. However, in idealases when these perturbations an be negleted, we an replae Ryp

by R̂ȳ with su�ienttime averaging and obtain the minimum onstrained CRB [134℄ from PTav independentand identially distributed (i.i.d.) observations as
Var(θ̂Ri

) ≥ [(PTavJθRθR
)†]i,i, (4.35)where θ̂Ri

denotes the ith entry of θ̂R. Combining the CRB of the real and imaginary partsof the ith entry of the omplex parameter vetor θ, we an arrive at
Var(θ̂i) ≥

1

PTav

{
[JθRθR

)†]i,i + [JθRθR
)†]i+Nb,i+Nb

}
, (4.36)

i = 1, 2, · · · , Nb, where Nb = NTNRζ + 1 denotes the length of the nonrandom vetor θ.Reall that θ1 = σ2
n and θi, i = 2, · · · , Nb represent the hannel oe�ients of interests.Hene, for any hannel oe�ient of interests, we an apply the following lower bound

Var(ĥp,q[k]) ≥ min
i

1

PTav

{
[JθRθR

)†]i,i + [JθRθR
)†]i+Nb,i+Nb

}
, (4.37)for i = 2, · · · , Nb.



4 Subspae-based blind hannel estimation with redued time averaging 79Sine above expression (4.37) gives a lower bound on the variane of deterministiunknowns, it an be used to determine the lower bound on the variane of the hanneloe�ients if the hannel is �xed. However, in order to determine the lower bound onthe variane of the hannel oe�ients when the latter as drawn from a given probabilitydistribution, we an run a series of experiments and determine the lower bound by
Var(ĥp,q[k]) = lim

j→∞
inf Var(ĥ(j)

p,q[k]), (4.38)where Var(ĥ
(j)
p,q[k]) represents the lower bound evaluated for (i.e. onditioned on) the jthhannel realization. In Chapter 7, the above formulas for the CRB will be evaluated numer-ially and used as a benhmark in the performane evaluation of the proposed estimatorsvia Monte Carlo simulations.
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Chapter 5
Subspae traking based on orthogonaliteration: onvergene behavior
As a �rst step toward the development of adaptive subspae-based hannel estimator forMIMO-OFDM systems, this hapter studies onvergene properties of subspae trakersusing orthogonal iteration. In the ontext of blind estimation of a time-varying hannel,orthogonal iteration and its variants have been widely onsidered for traking the hannelparameters by updating the EVD of an exponentially weighted orrelation matrix. Itis well known that when orthogonal iteration is applied to a �xed matrix, it onvergesexponentially to the EVD (or dominant subspae) of the matrix with arbitrary non-zeroinitial onditions. However, orthogonal-iteration-based subspae trakers an only inheritthese merits when the hannels onsidered undergo extremely slow time-variations. Inthis hapter, we extend the traditional (i.e. �xed subspae) onvergene analysis of theorthogonal iteration to inlude non-stationary situations as well. We use the results toinvestigate the onvergene behavior of subspae trakers based on orthogonal iterationunder slow, moderate and rapid time-variations of the underlying subspae. In the latter
2010/07/30



5 Subspae traking based on orthogonal iteration: onvergene behavior 81ase, we expose a fundamental limitation of the orthogonal iteration, i.e. pratial limit onsubspae variations to ensure e�etive traking.15.1 Motivations of using subspae trakingSubspae deomposition has proved to be an important tool in various signal proessingappliations. To this end, a straightforward approah is simply to employ either an eigen-value deomposition (EVD) or singular value deomposition (SVD). These approahes,whih belong to the family of diret or blok proessing tehniques, are haraterized asomputationally demanding proedures and unsuitable for online proessing due to theirlak of repetitive struture [55℄. Furthermore, they are often implemented in a bath mode,using an estimated orrelation matrix obtained by olleting time samples over a su�ientlylong observation interval. Therefore, these approahes, whih rely on the assumption ofstatistial stationarity of the data, annot be used in situations where the harateristis ofthe reeived signals hange with time [135℄. Computationally e�ient and sequential algo-rithms that produe an exat or approximate EVD or SVD at eah time step are generallyfavored in signal proessing appliations.Thus, a onsiderable e�ort has gone into the development of sequential adaptive algo-rithms, also known as subspae trakers. To date, several signal-subspae trakers havebeen proposed for non-stationary environments. Instead of reomputing the EVD or SVDfrom srath with every update, these algorithms attempt to reursively update these de-ompositions so as to minimize the amount of omputations involved (see e.g. [135�138℄and referenes therein). While there are many more signal-subspae trakers than noise-1While most fast subspae trakers with low omplexity assume a rank one update, they are not ap-pliable to the adaptive subspae-based hannel estimator that will be proposed in the next hapter. Wethus fous on the orthogonal iteration that is more general and suitable for our design.



5 Subspae traking based on orthogonal iteration: onvergene behavior 82subspae trakers in the literature [139℄, nonetheless, in the appliations of blind hannelestimation, we an transform the noise-subspae problems into signal-subspae ones with-out muh e�ort [38℄.Orthogonal iteration is a simple tehnique that an be used to ompute higher-dimensionalinvariant subspaes [140℄. It is shown to have a global and exponential onvergene prop-erty under a mild assumption on the distribution of eigenvalues, with arbitrary initialonditions [141℄. In addition, it is suitable for real-time proessing beause it is well stru-tured [136℄. Therefore, orthogonal iteration and its variants have been onsidered for blindadaptive hannel estimation to a great extent. Existing subspae traking algorithms anbe broadly ategorized as whether or not they are based on orthogonal iteration. Forthe orthogonal-iteration-based subspae trakers, their variants inlude the low rank adap-tive �lter (LORAF) [136℄, the orthogonal projetion approximation and subspae traking(OPAST) [142℄, the Oja's method, and the novel information riterion (NIC) [143℄. Re-ently, improvements on these existing approahes an also be found in [139, 144, 145℄.In this hapter, given that numerous subspae trakers in the literature are fundamen-tally derived from the onept of orthogonal iteration, we �rst investigate the onvergeneproperties when orthogonal iteration is applied in non-stationary senarios. Spei�ally,we are interested in the distane between the true and the orthogonal-iterated subspaes.Then we study a fundamental limitation on the appliation of orthogonal-iterated subspaetrakers in time-varying senarios. Our results will be useful for better understanding thebehavior of subspae trakers based on orthogonal iteration when applied to estimate time-varying MIMO hannels in the next hapter.



5 Subspae traking based on orthogonal iteration: onvergene behavior 835.2 Orthogonal iteration and its appliationsGiven a tall, olumn orthonormal matrix Q0 ∈ CN×r, the so-alled method of orthogonal it-eration generates a sequene of matries Qm, whose olumn span is assumed to approximatethe span of the r− dimensional dominant subspae of the matrix W ∈ CN×N , aordingto the following reurrene:
Am = WQm−1, m = 1, 2, · · ·

QmRm = Am, (5.1)where Qm and Rm denote the QR deomposition of the matrix Am at the mth iteration.If W does not hange over time, one an show that the subspae R(Qm) onverges to
Dr(W) at a rate proportional to |λr+1(W)/λr(W)|m [140℄. Therefore, the usefulness ofthe method depends on this ratio, sine it determines the rate of onvergene. Note thatwhen r = 1, (5.1) is just the well-known power method [146℄.In several appliations of interest in signal proessing and ommuniations, however, theassumption on the stationarity of W is usually not valid. Instead, a time-varying sequene
{Wm}∞m=1 is often used, whih is updated reursively as in e.g.:

Wm = αWm−1 + (1 − α)zmzH
m, (5.2)where m now represents the disrete-time index, α ∈ [0, 1] represents the forgetting fator(typially lose to 1), and zm ∈ CN×1 denotes an observation vetor at time m, oftenmodeled as an i.i.d. sequene of random vetors. In this ase, we may sequentially trakthe r− dimensional dominant subspae of the time-varying sequene {Wm}∞m=1 simply byreplaing the stationary matrix W in (5.1) with Wm [147℄.



5 Subspae traking based on orthogonal iteration: onvergene behavior 845.3 Convergene analysisIn order to motivate the method and to derive its onvergene properties in non-stationarysenarios, we follow the analysis as well as the notation for the stationary ase given in[140℄, and generalize the orthogonal iteration as follows.To begin, let us onsider k iterations of the reurrene in (5.1) and use indution toexpress it by
WkWk−1 · · ·W1
︸ ︷︷ ︸

def
= W̄k

Q0 = QkRkRk−1 · · ·R1, (5.3)where W1, · · · ,Wk represent matries of interest over the �rst k time iterations, respe-tively. Assume that
ŪH

k W̄kŪk = Λ̄k = diag(λ̄i,k) (5.4)is an EVD of W̄k with λ̄1,k ≥ λ̄2,k ≥ · · · ≥ λ̄N,k ≥ 0 and ŪH
k Ūk = I. Partition Ūk and Λ̄kas follows:

Ūk =
[
Ū1,k Ū2,k

]
, Λ̄k =






Λ̄1,k 0

0 Λ̄2,k




 , (5.5)where Ū1,k ∈ CN×r, Ū2,k ∈ CN×(N−r), Λ̄1,k ∈ Cr×r, and Λ̄2,k ∈ C(N−r)×(N−r). Then we anarrive at






Λ̄1,k 0

0 Λ̄2,k











ŪH
1,kQ0

ŪH
2,kQ0




 =






ŪH
1,kQk

ŪH
2,kQk




 (RkRk−1 · · ·R1) . (5.6)
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ŪH

k Ql =






ŪH
1,kQl

ŪH
2,kQl






def
=






Vl

Yl




 , l = 0, 1, · · · , k, (5.7)then

Yk = Λ̄2,kY0V
−1
0 Λ̄−1

1,kVk (5.8)an be obtained by using (5.6) and (5.7). We an de�ne the distane between the twosubspaes Dr(W̄k) and R(Qk) aording to [140℄
dist (Dr(W̄k),R(Qk)) = ‖ŪH

2,kQk‖2 = ‖Yk‖2. (5.9)By invoking (5.8), we an obtain
‖Yk‖2 ≤ ‖Λ̄2,k‖2‖Y0‖2‖V−1

0 ‖2‖Λ̄−1
1,k‖2‖Vk‖2. (5.10)Let θ̄k ∈ [0, π/2] be de�ned to provide another measure of the loseness of the two subspaes

Dr(W̄k) and R(Q0), aording to
cos (θ̄k) = min

u∈Dr(W̄k), v∈R(Q0)

|uHv|
‖u‖2‖v‖2

. (5.11)Then cos (θ̄k) = σr(Ū
H
1,kQ0) = σr(V0) and ‖Y0‖2 = sin(θ̄k), where σr(V0) denotes the rthlargest singular value of the matrix V0 [140℄. Combining with (5.9)-(5.11), we an �nallyarrive at

dist(Dr(W̄k),R(Qk)) ≤ tan(θ̄k)

(
λ̄r+1,k

λ̄r,k

)

. (5.12)In the following, we ategorize the non-stationary senarios into three main ases and showhow the result in (5.12) an be used to study the onvergene properties in eah ase.



5 Subspae traking based on orthogonal iteration: onvergene behavior 86Case 1: Very small time variationsIn general, we an express Wk−i = Wk + ∆Wk,i for i = 1, 2, · · · , k − 1. Therefore, W̄kin (5.3) an be re-written as
W̄k = WkWk−1 · · ·W1

= Wk(Wk + ∆Wk,1) · · · (Wk + ∆Wk,k−1)

= (Wk)
k + ∆W̄k, (5.13)where ∆W̄k = W̄k − (Wk)

k omprises produts of Wk and ∆Wk,i i = 1, 2, · · · , k− 1. Letus further assume that
UH

k WkUk = Λk = diag(λi,k) (5.14)with λ1,k ≥ λ2,k ≥ · · · ≥ λN,k ≥ 0. If ∆W̄k → 0, then W̄k an be approximated by (Wk)
kalone. Hene, we an rewrite (5.12) as

dist(Dr(Wk),R(Qk)) ≤ tan(θ̄k)

(
λr+1,k

λr,k

)k

. (5.15)We may interpret the above result as follows: Given very small variations of Wi for i =

1, 2, · · · , k, the distane between Dr(Wk) and R(Qk) onverges to zero with a rate equalto (
λr+1,k

λr,k
)k (assuming λr,k > λr+1,k), whih is the well-known property of the subspae-traking algorithms using orthogonal iteration.Case 2: Moderate time variationsFor moderate variations of Wi over i = 1, 2, · · · , k, however, the above property generallydoes not hold anymore. We �rst notie from (5.12) that the orthogonal iteration attempts



5 Subspae traking based on orthogonal iteration: onvergene behavior 87to onverge to Dr(W̄k), whih may be largely di�erent from Dr(Wk). Apart from this, wealso wonder how the onvergene rate is a�eted by the time variation in Wk. To answerthis question, it is of interest to view the e�et ∆W̄k in (5.13) as a perturbation to thematrix (Wk)
k. Therefore, the orresponding perturbation in the eigenvalues of (Wk)

k anbe desribed aording to
∣
∣λi(W̄k) − λi((Wk)

k)
∣
∣ ≤ ‖∆W̄k‖2, (5.16)assuming (Wk)

k is normal, whih is the ase in appliations of general interests. Fig. 5.1(a)illustrates the possible loation of the perturbed eigenvalues λr+1(W̄k) and λr(W̄k), whihare bounded by a irle of radius ‖∆W̄k‖2, with enters loated at λr+1((Wk)
k) and

λr((Wk)
k), respetively. Therefore, the ratio (

λ̄r+1,k

λ̄r,k
) in (5.12) governing the onvergenerate is now bounded by

λr+1((Wk)
k) − δ

λr((Wk)k) + δ
≤
(
λ̄r+1,k

λ̄r,k

)

≤ λr+1((Wk)
k) + δ

λr((Wk)k) − δ
, (5.17)where δ def

= ‖∆W̄k‖2 ≥ 0. This implies that the onvergene rate may be slightly inreasedor dereased, depending on the spei� nature of the perturbation soure ∆W̄k.Case 3: Large time variationsFor large variations of Wi over i = 1, 2, · · · , k, we an generally assume that Dr(W̄k) an besigni�antly di�erent from Dr(Wk), potentially making the subspae traking ine�etual.It is therefore natural to ask, to what extent an we still trak the subspae by orthogonaliteration, given the matries Wi are rapidly hanging. In other words, we seek to knowwhat is the maximum allowable time-variation of Wi.
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Fig. 5.1 (a)Perturbation of the eigenvalues λr+1((Wk)
k) and λr((Wk)k)due to ‖∆W̄k‖2. (b)Perturbation of the eigenvalues λr+1,k−1(Wk−1) and

λr,k−1(Wk) due to ‖∆Wk,1‖2.



5 Subspae traking based on orthogonal iteration: onvergene behavior 89One possible approah is to restrain the variation from Wk−1 to Wk to at most halfthe distane between the rth and (r + 1)th eigenvalues of Wk−1, i.e.,
‖∆Wk,1‖2 <

1

2
|λr,k−1(Wk−1) − λr+1,k−1(Wk−1)|. (5.18)Fousing on the kth iteration alone, i.e. WkQk−1 = QkRk, we an re-state the problemfrom the viewpoint of initial ondition Qk−1 with one-step iteration. On the basis of earlierdisussions, we know that

dist(Dr(Wk),R(Qk)) ≤ tan(θk−1)

(
λr+1,k(Wk)

λr,k(Wk)

)

,where θk−1 ∈ [0, π/2] is de�ned aording to
cos (θk−1) = min

u∈Dr(Wk), v∈R(Qk−1)

|uHv|
‖u‖2‖v‖2

. (5.19)We an then learly see that the distane between the (r + 1)th and the rth eigenvalue ofthe matrix Wk should be maximized in order to minimizing the ratio (
λr+1,k(Wk)

λr,k(Wk)
), implyingthat the boundaries of the perturbed eigenvalue as illustrated in Fig. 5.1(b) should not betouhing eah other.SummaryOur main observations regarding the onvergene of the orthogonal iteration are summa-rized below:1. Very small time variations: The orthogonal iteration onverges toward to Dr(W̄k)at the rate given by (5.15).



5 Subspae traking based on orthogonal iteration: onvergene behavior 902. Moderate time variations: For moderate time variations, the onvergene rate maybe inreased or dereased aording to (5.17).3. Large time variations: To ensure e�etive traking, the rate of hange in the under-lying subspae should not exeed the fundamental limit provided by (5.18).5.4 Numerial experiments of orthogonal iterationIn order to support the above laims, we provide numerial results as follows. We startby onstruting a �xed Hermitian matrix W ∈ C16×16. We �rst show that when a noisysampleW
′ is used instead ofW in the orthogonal iteration, the algorithmmay onverge to asubspae that is very di�erent from Dr(W). In this experiment, W′ remains onstant but ismodeled as W+∆W where eah entry of ∆W is a realization of an i.i.d. Gaussian r.v. withzero mean and variane σ2. The experimental results for r = 2 and σ2 = 0, 10−3, 10−2, 10−1are shown in Fig. 5.2, where the distane between Dr(W) and R(Qk), i.e.,

d
def
= dist(Dr(W),R(Qk)), (5.20)is plotted versus the iteration index k (eah urve is averaged over 200 independent runs).As we an observe in the steady-state, the distane between Dr(W) and R(Qk) inreasesas σ2 is inreased, simply beause the orthogonal iteration onverges to Dr(W

′

) instead of
Dr(W). In the ontext of subspae traking a wireless hannel, this situation ours whenan estimated orrelation matrix is atually employed for the algorithm. The estimationerrors an be due mainly to: insu�ient time samples for the orrelation matrix averaging,fast time-varying nature of the wireless hannel, improper hoies of parameters for theexponential or retangular windowing, or even a ombination of the above. In suh ases,
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Fig. 5.2 dist(Dr(W),R(Qk)) versus the number of iterations for various
σ2's.we are inevitably falling into the above situation.Next, we want to show that the onvergene rate in Case 2 might be slightly inreasedor dereased in aordane with (5.17). To this end, we onsider a �xed W and severalrealizations of ∆W with σ2 = 10−6 for W

′

= W + ∆W. In eah ase, we ompare theonvergene urves (whih are now ontrolled by the rate fator λr+1(W
′

)/λr(W
′

) ) withthat of the unperturbed ase (i.e., σ2 = 0). With suh a perturbation on the matrix W,we an observe the onvergene rates ranging from below to above that of the ideal ase,as learly shown in Fig. 5.3. Note that we also show the urve ρk along with the upper andlower bounds ρk
u and ρk

l , respetively, in the logarithmi sale for referene, where
ρ

def
=
λr+1(W)

λr(W)
. (5.21)
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Fig. 5.3 log(dist(Dr(W
′

k),R(Qk))) versus the number of iterations for σ2 =
0 (solid line) and 10−6 (dash-dot lines).and ρl, ρu are obtained as in (5.17), i.e.

ρl
def
=
λr+1(W) − δ

λr(W) + δ
, ρu

def
=
λr+1(W) + δ

λr(W) − δ
, (5.22)with δ being the maximal 2-norm of the realizations of ∆W.Finally, let us verify (5.18) by introduing another �xed Hermitian matrix ∆W. In thisexperiment, W′

= W+β∆W, where β ∈ R+ and ‖∆W‖2 = ‖W‖2. Given λr(W) = 7.16,
λr+1(W) = 6.61 and ‖∆W‖2 = 9.67, we need to have

β ≤ |λr(W) − λr+1(W)|
2‖∆W‖2

≈ 0.028. (5.23)to restrain the variations. We onsider a sudden hange from W to W
′ at the 50th iteration
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Fig. 5.4 A sudden hange of W to W
′ at the 50th iteration.for various β's. As an be observed in Fig. 5.4, we an see that for ases with β > 0.028,this sudden hange substantially enlarges the distane between Dr(W

′

) and R(Qk).For pratial onerns, we also onsider the popular time-varying model as mentionedin (5.2), with zm ∈ C16×1 given by
zm = Hxm + nm, (5.24)where H ∈ C16×16 is a �xed hannel matrix with rank(H) = 2, xm is an i.i.d. randomvetor from a QAM onstellation, i.e., with entries randomly seleted from (1/

√
2)(±1± j)with equal probability, and nm is an i.i.d. Gaussian random vetor with zero mean andvariane σ2

n. We hoose W0 = (1/500)
∑500

j=1 zjz
H
j as our initial ondition. Fig. 5.5 shows theprobability p def

= prob (|λr,k−1(Wk−1)−λr+1,k−1(Wk−1)| ≤ 2‖∆Wk,1‖2) versus the forgetting
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Fig. 5.5 prob (|λr,k−1(Wk−1) − λr+1,k−1(Wk−1)| ≤ 2‖∆Wk‖2) versus theforgetting fator α in the time-varying model.fator α for di�erent SNR's, where SNR def
= 10 log10(1/2σ

2
n). For the ase SNR = 0dB, wean observe that the probability p = 0.5, 0.15, and 0 when α = 0.93, 0.95, and 0.98,respetively. Indeed, when α is lose to one, the rate of hange in Wm in (5.2) is verysmall, and therefore the probability of ‖∆Wk,1‖2 exeeding the limit (5.18) is lose to 0.As we inrease the SNR, smaller value of α an be used at a given p level, that is, thetraking ability is improved.To see how the forgetting fator α a�ets the traking proess, Fig. 5.6 - 5.8 presentsome realizations of d versus the number of iterations, when the above mentioned values

α's are onsidered. From these �gures, we an onlude that orthogonal iteration an onlyahieve satisfatory performane when the probability p is small. Hene, (5.18) an serve asa fundamental limitation to determine whether or not orthogonal iteration an be applied



5 Subspae traking based on orthogonal iteration: onvergene behavior 95in a rapidly time-varying senario.5.5 Summary of the onvergene analysisIn this hapter, we extended the onvergene analysis of orthogonal iteration from station-ary ases to non-stationary ones. In partiular, we investigated ertain properties of or-thogonal iteration when it is applied to subspae traking of pratial wireless time-varyinghannels. In the ontext of blind subspae traking problems, we an onlude that theperformane of blind hannel estimation using orthogonal iteration is mainly determinedby whether we an obtain a good estimate of the time-varying orrelation matrix. In thease of moderate time variations, we showed that the rate of onvergene may be inreasedor dereased, depending on the nature of the perturbation soure. We also disussed afundamental limitation on the use of orthogonal iteration over rapidly time-varying wire-less hannels. In the following, on the basis of the onlusions arrived, we present a blindsubspae traking algorithm suitable for time-varying MIMO wireless hannels.
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Fig. 5.6 dist(Dr(Wk),R(Qk)) versus the number of iterations in the time-varying model with α = 0.98 when SNR = 0dB.
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Fig. 5.7 dist(Dr(Wk),R(Qk)) versus the number of iterations in the time-varying model with α = 0.95 when SNR = 0dB.
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Fig. 5.8 dist(Dr(Wk),R(Qk)) versus the number of iterations in the time-varying model with α = 0.93 when SNR = 0dB.



97
Chapter 6
Blind reursive subspae-based identi�ationof time-varying wideband MIMO hannels
In this hapter, we present a blind reursive algorithm for traking rapidly time-varyingwireless hannels in preoded MIMO-OFDM systems. Subspae-based traking is normallyonsidered for slowly time-varying hannels only. Thanks to the frequeny orrelationof the wireless hannels, the proposed sheme is able to ollet data not only from thetime but also from the frequeny domain to speed up the update of the required seondorder statistis. After eah suh update, the subspae information is reomputed using theorthogonal iteration, and then a new hannel estimate is obtained. We also investigatethe hoie of preoder, in terms of the trade-o� between the symbol reovery apabilityand the hannel estimation performane, and demonstrate the onvergene properties ofour approah. In Chapter 7, the proposed algorithm will be evaluated in a 3GPP-SCMSuburban Maro senario, in whih a mobile station is allowed to move at a speed up to100km/h. Then it will be shown that the NMSE of the hannel estimates an onverge toa very low level within less than 5 OFDM symbols.
2010/07/30



6 Blind reursive subspae-based identi�ation of time-varying hannels 98To avoid the need of training sequene in the estimation of rapidly TV hannels, thesubspae-based blind estimation exploiting frequeny orrelation in MIMO-OFDM systemover TI hannels, that we developed in Chapter 4 (see also [148, 149℄), is extended to thease of TV senarios. While this approah in the TI ase requires a larger dimension of theambiguity matrix and a high-omplexity singular value deomposition, these limitations areoverome in the TV ase by using a preoder at the transmitter side, and a omputationallye�ient orthogonal iteration for subspae traking at the reeiver side, respetively. Theresulting approah an trak a fast time-varying MIMO hannel in whih the wirelesshannels may be hanging at eah OFDM symbol time. In addition, it o�ers the �exibilityin hoosing the number of transmit as well as reeive antennas used (i.e. NT ≥ NR is alsopossible), with bandwidth e�ieny approximately given by NT log2 |A| bps/Hz, where NTdenotes the number of transmit antennas and |A| denotes the size of symbol alphabet used.For a 256-point IFFT, the proposed algorithm will be evaluated in Chapter 7. Oursimulation results will show that the NMSE an onverge to a very low level within 5OFDM symbols even when the maximum Doppler shift is about 230Hz, whih outperforms[46, 55℄ in terms of estimation performane.6.1 Problem formulationIn this setion, we introdue the preoded MIMO-OFDM system model under onsiderationand formulate the problem of interest, i.e., the blind subspae-based estimation and trakingof the TV-MIMO hannels.



6 Blind reursive subspae-based identi�ation of time-varying hannels 996.1.1 Preoded MIMO-OFDM system with subarrier groupingConventional subspae-based blind estimators are in general not favored when a fast time-varying hannel is onsidered, sine there may not be su�ient data samples to obtain therequired statistis. The situation beomes even worse in the ontext of a MIMO-OFDMsystem, where a large dimension of the orrelation matrix (up to thousands) is normallyrequired. In Chapter 4, we have shown that the TI requirement in subspae-based blindhannel estimation for MIMO-OFDM systems an be signi�antly relaxed, by making useof the subarrier grouping to exploit the frequeny orrelation among adjaent subarriers.However, this redution in time averaging period omes at the prie of a higher dimensionof the ambiguity matrix. In order to overome this problem, we onsider here a preodedMIMO-OFDM system as desribed below.The system under onsideration employs NC subarriers, NT transmit and NR reeiveantennas, as per the blok diagram shown in Fig. 6.1. To exploit the frequeny orrela-tion through the onept of subarrier grouping, we assume that the frequeny span of Padjaent subarriers reside inside the oherene bandwidth of the wireless hannel, de�nedhere as the range of frequenies over whih the frequeny response matrix of the MIMOhannel does not hange appreiably [127℄. As in Chapter 4, let Ω
def
= {0, 1, · · · , NC − 1},i.e. the index set of the NC subarriers. We partition Ω into P disjoint subsets (assum-ing NC/P = ζ ∈ Z+) with the pth subset denoted as Ωp

def
= {ωp,1, ωp,2, · · · , ωp,ζ}, where

ωp,i
def
= p − 1 + (i − 1)P , i = 1, 2, · · · , ζ for p = 1, 2, · · · , P (see Fig. 4.1). Let xm

p
def
=

[xm
1,p

T xm
2,p

T · · ·xm
NT ,p

T ]T , where
xm

j,p
def
= [ xm

j [ωp,1] x
m
j [ωp,2] · · · xm

j [ωp,ζ] ]T , (6.1)with xm
j [k] denoting the signal transmitted at the kth subarrier, the jth transmit an-
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Fig. 6.1 The preoded MIMO-OFDM system model.tenna and the mth OFDM symbol. In addition, let ym
p

def
=
[
ym

1,p
T ym

2,p
T · · · ym

NR,p
T
]Tand nm

p
def
=
[
nm

1,p
T nm

2,p
T · · · nm

NR,p
T
]T , where ym

i,p
def
= [ym

i [ωp,1] ym
i [ωp,2] · · · ym

i [ωp,ζ]]
T ,

nm
i,p

def
= [nm

i [ωp,1] n
m
i [ωp,2] · · · nm

i [ωp,ζ]]
T , with ym

i [k] and nm
i [k] denoting the signal andnoise reeived at the kth subarrier, ith reeived antenna and the mth OFDM symbol,respetively. In the following, we assume that: (1) the length of the yli pre�x (CP)appended to eah OFDM symbol is longer than the maximum exess delay of the hannel;(2) the average power of the transmit symbol alphabet is normalized to unity: E [|xm

q [k]|2]= 1.Suppose that eah input vetor xm
j,p in (6.1) is preoded by the matrix Ψ ∈ Cζ×ζ (thehoie of the non-redundant preoder matrix Ψ is onsidered in Setion 6.4). Then the



6 Blind reursive subspae-based identi�ation of time-varying hannels 101input-output relationship for the pth frequeny subset an be written as
ym

p = Hm
p (INT

⊗ Ψ)xm
p + nm

p , (6.2)with the hannel matrix Hm
p de�ned as

Hm
p =












Hm
1,1,p Hm

1,2,p · · · Hm
1,NT ,p

Hm
2,1,p Hm

2,2,p · · · Hm
2,NT ,p... ... . . . ...

Hm
NR,1,p Hm

NR,2,p · · · Hm
NR,NT ,p












. (6.3)
Note thatHm

i,j,p = diag(hm
i,j,p), where hm

i,j,p
def
= [hm

i,j [ωp,1], h
m
i,j[ωp,2] , · · · , hm

i,j[ωp,ζ]]
T , with hm

i,j [k]representing the equivalent frequeny response between the ith reeive and the jth transmitantenna, over the kth subarrier and the mth OFDM symbol. In this hapter, sine the fre-queny span of the P adjaent subarriers have been assumed to reside inside the oherenebandwidth, we shall assume that the variations in the hannel matries Hm
p aross these Psubarriers are negligible. Aordingly, we an de�ne a new representative hannel matrix

Hm def
= Hm

1
∼= Hm

2
∼= · · · ∼= Hm

P , and drop the index p for all hannel related quantities,inluding Hm
i,j,p and hm

i,j,p.6.1.2 Problem statementAs the future generation of wireless systems aim at providing high-apaity transmissionfor high-mobility users, there is a strong need to further push the apability of adaptivehannel traking for wideband TV-MIMO hannels, without extensively using pilot signals.In this hapter, our �rst interest lies in the blind estimation/traking of rapidly TV-MIMO hannels with normalized Doppler frequenies that may reah signi�ant values,



6 Blind reursive subspae-based identi�ation of time-varying hannels 102e.g. up to 2% or more [150℄, and for whih the hannel matrix Hm is allowed to hange ateah OFDM symbol time. To this end, we seek to develop a subspae-based blind hannelestimator Ĥm, whih is a funtion of the observed data up to the urrent symbol time
m, i.e., {yl

p}, p = 1, 2, · · · , P ; l = 1, 2, · · · , m, and whih an be reursively updated in aomputationally e�ient manner. In other words, our objetive is to propose an e�ientupdating algorithm φ(·) in whih the hannel estimate at the mth symbol time an berepresented as Ĥm = φ( Ĥm−1, {ym
p }P

p=1). In addition, as the preoder is plaed at thetransmitter side without having any feedbak of the hannel knowledge from the reeiverside, our seond interest lies in determining the optimal preoder oe�ients to furtherenhane the estimation performane.6.2 Preoded subspae-based approahIn this setion, we �rst introdue a blok-based subspae hannel estimation approah thatexploits the frequeny orrelation among the adjaent subarriers in the preoded MIMO-OFDM system. This approah is then extended to reursive subspae-based identi�ationfor TV hannels in Setion 6.3.6.2.1 Subspae-based identi�ationFor simpliity in notation, let us temporarily drop the time-index m of all the hannelrelated oe�ients. On the basis of (6.2) and under the assumption that hannel variationsover P adjaent subarriers are negligible, the orrelation matrix Ry
def
= E[y1y

H
1 ] = · · · =

E[yPyH
P ] an be written as

Ry = H
(
INT

⊗ ΨΨH
)
HH + σ2

nIζNR
, (6.4)
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H
p ] = σ2

nIζNR
, and E[xpx

H
p ] =

IζNT
. Similar to [151℄, by partitioning Ry into sub-matries of size ζ × ζ , we may expressits (u, v)th sub-matrix as

Ry,uv =

NT∑

j=1

Hu,jΨΨHHH
v,j + δuvσ

2
nIζ (6.5)

=

(
NT∑

j=1

hu,jh
H
v,j

)

⊙
(
ΨΨH

)
+ δuvσ

2
nIζ, u, v ∈ {1, 2, · · · , NR} (6.6)where δuv = 1 if u = v and zero otherwise. Let

Wuv
def
=
[
Ry,uv − δuvσ

2
nIζ

]
⊘ ΨΨH (6.7)be the (u, v)th sub-matrix of a new matrix W. Then from (6.6) we an arrive at

W = HHH , (6.8)where
H

def
=












h1,1 h1,2 · · · h1,NT

h2,1 h2,2 · · · h2,NT... ... . . . ...
hNR,1 hNR,2 · · · hNR,NT












. (6.9)
Assuming H ∈ C(ζNR)×NT has full olumn rank, we an thus express the hannel oe�ientsby means of

H = QA, (6.10)



6 Blind reursive subspae-based identi�ation of time-varying hannels 104where the olumns of the matrix Q ∈ C(ζNR)×NT are obtained from the eigenvetors of thematrix W orresponding to the NT largest eigenvalues, and A ∈ CNT×NT is an ambiguitymatrix.1 As it has been shown in [151℄ for a similarly strutured subspae problem, thematrix of interest H is identi�able as long as it is is a tall matrix, i.e. ζNR > NT . Therefore,this approah indeed o�ers the �exibility in hoosing the number of transmit and reeiveantennas sine ζ > 1 is normally ful�lled, meaning that NT ≥ NR is also appliable.6.2.2 Blind estimation algorithmIn pratie, the hannel estimate Ĥ an be obtained from Ĥ = Q̂A, where Q̂ denotes thematrix whose olumns are the eigenvetors orresponding to the NT largest eigenvaluesof an estimated matrix Ŵ, with its (u, v)th sub-matrix denoted Ŵuv. The latter an beobtained as
Ŵuv =

[

R̂y,uv − δuvσ̂
2
nIζ

]

⊘ ΨΨH , (6.11)where R̂y,uv denotes the (u, v)th sub-matrix of the sampled orrelation matrix R̂y, and σ̂2
nis an estimate of the noise variane. Therefore, the auray of the hannel estimate largelydepends on the estimation performane of the orrelation matrix and the noise variane,i.e. R̂y and σ̂2

n, respetively.In general, to ahieve satisfatory performane in the hannel estimation step, i.e.,
Ĥ = Q̂A, the time averaging period Tav for the above estimation of the orrelation matrix
R̂y must be larger than ζNR, i.e. Tav ≥ ζNR, sine R̂y is of size ζNR × ζNR [149, 152℄.However, by exploiting the onept of frequeny averaging within the oherene bandwidth,the required Tav an be e�etively redued by a fator P 2, i.e. Tav ≥ ζNR/P

2. Spei�ally,1While the estimation of the ambiguity matrix for subspae methods is a general problem on its ownthat goes beyond the sope of this thesis, several approahes are available in pratie to implement thisstep, inluding the use of higher order statistis or the insertion of a limited number of pilot symbols(resulting in the so-alled semi-blind approah).



6 Blind reursive subspae-based identi�ation of time-varying hannels 105the estimate of the orrelation matrix Ry an be obtained by
R̂y =

1

PTav

Tav∑

n=1

P∑

p=1

yn
py

n
p

H . (6.12)The merits of this approah in pratial MIMO-OFDM systems are demonstrated in Chap-ter 7 (see also [149℄).In Algorithm 1, we brie�y summarize the above preoded subspae-based estimation,whih will serve a basis in the derivation of the proposed hannel traking algorithm. Notethat without employing the preoders Ψ's at the transmitter side, the dimension of theambiguity matrix in [148℄ is ζNT × NT with ζ > 1. While here, the use of the preodermatrix Ψ makes it possible to redue this dimension to NT × NT . The design of Ψ isaddressed in Chapter 6.4.Algorithm 1 Blind blok-based subspae estimation of TI-MIMO hannelsStep 1: Use the observed data to ompute the estimates of R̂y and σ̂2
n, and thenonstrut Ŵ by using (6.11).Step 2: Form the matrix Q̂, whose olumns are the eigenvetors whih orresponds tothe NT largest eigenvalues of Ŵ.Step 3: Obtain the hannel estimate Ĥ = Q̂A, where A is an ambiguity matrix.

6.3 Channel trakingWe now onsider a fast time-varying senario in whih the MIMO wireless hannel ould behanging at eah OFDM symbol time. Aordingly, we shall reintrodue the time-index mfor all the hannel related quantities, inluding those assoiated to the above blok-basedsubspae estimation. Clearly, the matrix Qm, i.e., Q in (6.10) at the mth symbol time,



6 Blind reursive subspae-based identi�ation of time-varying hannels 106needs to be updated as new data samples beome available to properly re�et hanges inthe unknown hannel. Instead of applying an EVD on Wm at eah time step, we anreursively update the EVD via an e�ient subspae traking algorithm so as to minimizethe amount of omputations involved. We notie that most fast subspae trakers with lowomplexity assume a rank one update [137, 138℄, and hene are not appliable here. Onthe basis of (6.10), we propose a new algorithm that ombines the well-known orthogonaliteration with a joint time-frequeny averaging to trak the above mentioned time-varyinghannel, without inurring EVD operations repeatedly.6.3.1 Reursive approah based on orthogonal iterationOrthogonal iteration and its variants have been onsidered for blind adaptive estimation toa great extent (see [55, 145℄ and referenes therein). To trak the fast time-varying hannel
Hm with low omplexity, we also onsider to reursively update Qm by employing orthog-onal iteration, whih is known to onverge exponentially with arbitrary initial onditions[140℄, and suitable for real-time proessing beause it is well strutured. However, the mainhallenge still lies in whether we an estimate the required seond order statistis within asu�iently short proessing window.Sine the frequeny response matries of the MIMO hannel an be related by Hm ∼=

Hm
p , an estimate of the time-varying orrelation matrix at the mth OFDM symbol timean be obtained by ombining traditional window-based time averaging with frequenyaveraging over the P frequeny subsets Ωp, for p ∈ {1, · · · , P}. This results into

R̂m
y =

m∑

n=m−l+1

P∑

p=1

βm−nyn
py

n
p

H (6.13)
= βR̂m−1

y +
P∑

p=1

ym
p ym

p
H −

P∑

p=1

βlym−l
p ym−l

p

H
, (6.14)



6 Blind reursive subspae-based identi�ation of time-varying hannels 107where l ∈ N and 0 ≤ β ≤ 1 denotes the window length and the forgetting fator, re-spetively. Considering a senario in whih no windowing is applied, i.e. l = 1, we anstill ollet {ym
p }, p = 1, 2, · · · , P at the mth OFDM symbol time, without referring tothe OFDM symbols of the previous time instanes, i.e. yn

p for n < m. Hene, we anonlude that it is possible to trak the fast time-varying hannel provided P > ζNR. Inpratie, this ondition is not stringent, e.g. the hoies (P, ζNR) = (32, 24) and (64, 12),both ful�lling P > ζNR, were reported in [149℄, where both the WiMAX spei�ation andthe 3GPP Spatial Channel Model (SCM) are onsidered. Of ourse, the window length lan be inreased if the ondition is not met or if it is desired to obtain better smoothing ofthe hannel estimate. The hoie of the parameter β and l is further disussed along withthe presentation of our simulation results in Chapter 7.Let Ŵm be an estimate of the matrix Wm, with its (u, v)th sub-matrix given as
Ŵm

uv
def
=
[

R̂m
y,uv − δuvσ̂

2
nIζ

]

⊘ ΨΨH . (6.15)In this work, we propose to reursively update the prinipal eigenvetors of Ŵm usingorthogonal iteration and use them to estimate the unknown hannel matrix Ĥm by
Ĥm = Q̂m

nd
Am. (6.16)In (6.16), the olumns of Q̂m

nd
are the approximate prinipal eigenvetors of Ŵm resultingfrom the appliation of the ndth orthogonal iteration at the mth OFDM symbol time, and

Am represents the orresponding ambiguity matrix. The details of iteration proess aresummarized as follows.Given a tall, olumn orthonormal matrix Q̂m
0 ∈ CζNR×NT at the mth OFDM symbol



6 Blind reursive subspae-based identi�ation of time-varying hannels 108time, the method of orthogonal iteration generates a sequene of matries Q̂m
µ , whose olumnspan is assumed to approximate the span of the NT -dimensional dominant subspae of thematrix Ŵm ∈ CζNR×ζNR, aording to the following reurrene:

Ẑm
µ = ŴmQ̂m

µ−1, µ = 1, 2, · · · , nd, (6.17)
Q̂m

µ R̂m
µ = Ẑm

µ (QR decomposition). (6.18)Note that in pratie we hoose Q̂m
0 = Q̂m−1

nd
exept when m = 0 (the initial ondition). Onthe basis of orthogonal iteration, we also notie that estimation of the dominant subspaeof a slowly time-varying orrelation matrix was onsidered in [147℄; here we extend the useof orthogonal iteration by allowing nd ≥ 1 for traking a time-varying MIMO hannel.6.3.2 Convergene propertiesTo motivate the use of the proposed reursive method in a fast time-varying wireless han-nel, we investigate its onvergene properties as follows. Let us �rst assume that

UmHŴmUm = Λm = diag(λm
i ) (6.19)is an EVD of Ŵm with λm

1 ≥ λm
2 ≥ · · · ≥ λm

ζNR
≥ 0 and UmHUm = UmUmH = I. If Umis partitioned as Um = [Um

1 Um
2 ], where Um

1 ∈ CζNR×NT and Um
2 ∈ CζNR×(ζNR−NT ), we ande�ne the distane between the two subspaes DNT

(Ŵm) and R(Q̂m
µ ) aording to [140℄ by

dist (DNT
(Ŵm),R(Q̂m

µ )) = ‖(Um
2 )HQ̂m

µ ‖2. (6.20)



6 Blind reursive subspae-based identi�ation of time-varying hannels 109Let the angle θm ∈ [0, π/2] be de�ned to provide a measure of the loseness of the twosubspaes DNT
(Ŵm) and R(Q̂m

0 ) by means of (see also (5.11) for details)
cos (θm)

def
= min

u∈DNT
(Ŵm), v∈R(Q̂m

0 )

|uHv|
‖u‖2‖v‖2

, (6.21)where Q̂m
0 represents the initial ondition at the mth OFDM symbol time. Then frompreeding as in Chapter 5, we an similarly arrive at

dist(DNT
(Ŵm),R(Q̂m

µ )) ≤ tan(θm)

(
λm

NT +1

λm
NT

)µ

, µ = 1, 2, · · · , nd. (6.22)Aording to (6.22), as long as the ratio (λm
NT +1/λ

m
NT

) < 1, the iterated subspae R(Q̂m
µ )onverges to DNT

(Ŵm) exponentially with an arbitrary initial ondition Q̂m
0 = Q̂m−1

nd
(ex-ept when m = 0, i.e. the initial ondition); this ruial fator indeed allows the trak-ing of a fast time-varying hannel. The onvergene behavior of the orthogonal iterationsheme (6.17)-(6.18) as a funtion of µ is well predited by (6.22) in the urrent appliation.To illustrate this point, Fig. 6.2 shows a plot of the subspae distane (6.20) as a funtionof µ when the orthogonal iteration (6.17)-(6.18) is used to approximate the 2-dimensionaldominant subspae of a partiular matrix Ŵm ∈ C12×12, appearing at a given symbol time

m in one of our simulations; we also show a plot of (λ3(Ŵ
m)/λ2(Ŵ

m))µ for referene.Although the estimation performane an be improved by inreasing nd in a generalsense, the iterated subspae atually onverges to DNT
(Ŵm) instead of DNT

(Wm). There-fore, the performane largely depends on whether or not we an obtain a good estimateof Wm at eah OFDM symbol time. Thanks to the use of additional frequeny domainsamples as shown in (6.13)-(6.14), we an meet the requirement of the minimum numberof data samples (i.e., the dimension of the orrelation matrix) even in a fast time-varying
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Fig. 6.2 A demonstration on the rate of onvergene in subspae estimationby using orthogonal iteration.



6 Blind reursive subspae-based identi�ation of time-varying hannels 111wireless hannel, as will be demonstrated in Chapter 7. Otherwise, the orthogonal iterationmay onverge exponentially to a wrong subspae.6.3.3 Proposed blind reursive estimation algorithmWe brie�y summarize the preoded subspae-based traking algorithm in Algorithm 2. Inpratie, to aquire the ambiguity matrix Am needed at the mth OFDM symbol time, wean employ another estimation proess inluding the use of higher order statistis or pilotsymbols (resulting in the so-alled semi-blind approah). Note that for moderate hoiesof the number of transmit and reeive antennas, the omputational omplexity (�ops) ofthe proposed traking algorithm for eah iteration is O(ζ4). This �gure is generally smallerthan that of the blind adaptive hannel estimators using either the least mean squares orthe reursive least squares adaption, developed for SISO-OFDM [55℄.
6.4 Preoder designTo simplify the notation for the following disussions, let us de�ne Γ

def
= ΨΨH and let ψi,jand γi,j denote the (i, j)th entry of matries Ψ and Γ, respetively. On the basis of (6.15),the hoie of Ψ does not appear to be restrited, exept for the trivial onstraint that theentries of Γ annot be zeros, i.e., γi,j 6= 0, ∀i, j. However, we an hoose the preodermatrix judiiously to simplify the hannel estimator and optimize its performane.First, we note that if the diagonal entries of Γ are idential, i.e., γi,i is a onstant for

i = 1, 2, · · · , ζ , then the additional estimation of the noise variane in (6.15) an be avoided.To be more spei�, let us de�ne a new matrix T̂m with its (u, v)th sub-matrix given as
T̂m

uv
def
= R̂m

y,uv ⊘ Γ, u, v ∈ {1, 2, · · · , NR}. (6.23)



6 Blind reursive subspae-based identi�ation of time-varying hannels 112Algorithm 2 Blind reursive subspae-based identi�ation of TV-MIMO hannelsInitialization: Q̂l−1
nd

= I(:, 1 : NT ), R̂0
y = 0, R̃0

y = 0for m = 1, 2, · · · doInput vetor: ym
1 , · · · ,ym

P

R̃m
y =

∑P
p=1 ym

p ym
p

Hif m < l then
R̂m

y = βR̂m−1
y + R̃m

yelsê
Rm

y = βR̂m−1
y + R̃m

y − βlR̃m−l
y

Ŵm
uv =

[

R̂m
y,uv − δuvσ̂

2
nI
]

⊘ ΨΨH

Q̂m
0 = Q̂m−1

ndfor µ = 1, 2, · · · , nd do
Ẑm

µ = ŴmQ̂m
µ−1

Q̂m
µ R̂m

µ = Ẑm
µ (QR fatorization on Ẑm

µ )end for
Ĥm = Q̂m

nd
Amend ifend forThen we an arrive at T̂m = Ŵm + ρ I (for some ρ ∈ R). Sine T̂m has the same invariantsubspaes as Ŵm, we an simply apply T̂m instead of Ŵm in the Algorithm 2 to eliminatethe noise variane estimation.Seond, letting ∆Rm

y denote the di�erene between the estimated and the true orrela-tion matrix, i.e. R̂m
y = Rm

y + ∆Rm
y , we may express T̂m

uv as follows
T̂m

uv = Rm
y,uv ⊘ Γ

︸ ︷︷ ︸

def
= Tm

uv

+ ∆Rm
y,uv ⊘ Γ

︸ ︷︷ ︸

def
= ∆Tm

uv

. (6.24)Then it beomes lear that the hoie of the preoder should fous on eliminating the errorterm ∆Tm
uv in (6.24).The matrix ∆Rm

y,uv in (6.24) has a random nature resulting from the e�ets of the



6 Blind reursive subspae-based identi�ation of time-varying hannels 113time-varying hannels, additive noise, and insu�ient number of data samples. Let
J(Ψ)

def
=
∑

u,v

E‖∆Tm
uv‖2

F =
∑

u,v

E‖∆Rm
y,uv ⊘ ΨΨH‖2

F . (6.25)Given that ⊘ is an element-wise division, the minimization of J(Ψ) is equivalent to max-imizing (in a weighted sense) the entries of Γ = ΨΨH . Nevertheless, the hoie of apreoder is subjet to a �xed transmit power and thus annot be arbitrarily large; theentries of Γ should therefore be maximized based on the statistis of ∆Rm
y and subjet toa normalization fator.In summary, we suggest that the hoie of the preoder be optimized via the objetivefuntion

min
Ψ

J(Ψ), (6.26)subjet to the following onstraints:(C1) To guarantee that the element-wise division in (6.15) and (6.23) is feasible, the pre-oder must ful�ll the trivial ondition: γi,j 6= 0, ∀i, j.(C2) To normalize the average transmit power, we require that ∑j |ψi,j|2 = 1, ∀ i. Notethat this onstraint also implies that γi,i = 1, ∀ i, meaning that the diagonal entriesof Γ are idential, and hene there is no need for noise variane estimation.In the absene of a more spei� model, we onsider a worst ase situation and assume thatthe entries of ∆Rm
y are i.i.d. random variables with zero mean and equal variane; thishoie is further supported by our numerial observations. Based on this assumption, theobjetive funtion in (6.26) beomes a standard optimization problem and an be solvedby using Lagrange multiplier. Aordingly, the optimal preoder assuming γi,j ∈ R+ isobtained as Ψ0 = (1/

√
ζ)1ζ×ζ, that is Γ = 1ζ×ζ, where 1ζ×ζ denotes a ζ × ζ matrix of all



6 Blind reursive subspae-based identi�ation of time-varying hannels 114ones. Note that this result oinides with the optimal hoie of the preoder in terms ofestimation performane, obtained from numerial results in [125℄.Nevertheless, the above preoder Ψ0 has rank 1 (ondition number = ∞), and thus isnot a good hoie from the perspetive of symbol reovery. To make Ψ0 non-singular whilekeeping the estimation performane lose to the optimum, we an perturb the entries of
Ψ0 in the following manner: Ψ0 → Ψ, where the diagonal entries of Ψ now slightly exeedthe o�-diagonal ones. This approah is motivated by the following fat: a loose bound on
rank(Ψ) is provided by [153, Setion 4.10℄ as

rank(Ψ) ≥
ζ∑

i=1

|ψi,i|/bi, (6.27)where bi def
=
∑ζ

j=1 |ψi,j|. This implies that given the onstraint (C2), we an inrease
rank(Ψ) from 1 by boosting the ratios |ψi,i|/bi. Here we propose to use a simple Toeplitzmatrix to aomplish this goal. That is, we de�ne

Ψ = Ψ(ν)
def
=

1
√

1 + (ζ − 1)ν2












1 ν · · · ν

ν 1
. . . ...... . . . . . . ν

ν · · · ν 1












ζ×ζ

, (6.28)
where ν (0 < ν ≤ 1) an be seen as the ommon perturbed value of the o�-diagonal entriesof Ψ0. The ondition number of Ψ(ν) is given by κ = (1 + (ζ − 1)ν)/(1− ν) [154℄. We annow impose some onstraint on the ondition number, e.g., κ ≤ κ∗ for some pratial but�nite κ∗ and relate the hoie of ν to κ∗ as ν ≤ (κ∗ − 1)/(ζ − 1 + κ∗).Intuitively, there exists an optimal trade-o� in terms of ν between the symbol reovery



6 Blind reursive subspae-based identi�ation of time-varying hannels 115(ν < 1) and hannel estimation performane (ν = 1) for a given SNR. However, the analysisfor determining an optimal value of ν for this ombined objetive appears di�ult. In thefollowing hapter, we shall approah this problem from an experimental perspetive usingsimulations. Note that a similar struture was employed for a blok-based hannel estimationsenario in [151℄ (i.e. quasi-stationary over several OFDM symbols). Our analysis expliitlyshows that the optimal estimation performane is ahieved when ν = 1 and we provideinsight into the trade-o� among various hoies of ν's.
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Chapter 7
Numerial experiments and results
In this hapter, we present and disuss the results of numerial experiments aimed at eval-uating the performane of the proposed algorithms developed earlier. Both time-invariantand time-variant wireless hannels are onsidered in the evaluations.7.1 Time-invariant senarios7.1.1 MethodologyNumerial evaluations of the performane of the proposed algorithm over blok fading han-nels are presented in this setion. A omparison of the proposed and referened algorithmsover a simpli�ed TDL model will be given in the �rst plae. Having demonstrated thatbetter performane an readily be ahieved by the proposed sheme under suh a ondition,we will then explore the performane of the proposed algorithm over pratial senarioswhere both WiMAX spei�ation [70℄ and 3GPP Spatial Channel Model (SCM) [79℄ areonsidered. We refer the reader to Setion 2.3 for further details on these hannel models.For eah 3GPP-SCM senario, after identifying the best value of the parameter P (i.e. thenumber of frequeny subsets for averaging) in the proposed algorithm presented in Ta-2010/07/30



7 Numerial experiments and results 117ble 4.1, we will ompare their NMSEs with the orresponding CRBs. In our experiments,the NMSE of the hannel estimate is de�ned by
NMSE =

1

NTNRNC

∑

i,j,k

E[|hi,j[k] − ĥi,j [k]|2]
E[|hi,j [k]|2]

, (7.1)where we onsider ĥi,j[ω1,i] = · · · = ĥi,j [ωP,i], i = 1, 2, · · · , ζ (see Fig. 4.1 for more details).Note that the asymptoti performane of one of the most reent algorithms [47℄ will alsobe given over these pratial senarios for omparisons.Throughout this setion, we onsider a MIMO-OFDM system with 2 transmit (NT = 2)and 3 reeive antennas (NR = 3). The number of subarriers used in the OFDM systemis 256 (NC = 256). For eah time epoh, the inoming symbol streams are independentand identially distributed (i.i.d.) QPSK symbols. The SNR is de�ned as the ratio of thesignal power to the noise power on a subarrier basis. By referring to (3.1), we an alsoexpress it by 10 log10[Es(σ
2
h/σ

2
n)], where σ2

h denotes the variane of the hannel oe�ients.All simulation results are obtained by averaging over 200 independent Monte Carlo runsexept when evaluating the BER and CRBs, in whih the latter are obtained by averagingover 107 independent Monte Carlo runs instead. In addition, the wireless hannel is as-sumed to remain stationary over the time averaging intervals, and we employ A = (Q̂∗
o)

†H̄′from (4.15) to obtain the ambiguity matrix, assuming H̄′ is known.7.1.2 Comparison with referened shemesNumerial results of the proposed as well as the referened subspae-based methods from[44℄, inluding the CP and VC approahes for MIMO-OFDM systems, are presented inthis part. For eah time epoh, the inoming QPSK symbols are hosen to span 2 OFDMsymbols (NF = 2) in order to ful�ll the identi�ability ondition of the referened shemes.



7 Numerial experiments and results 118For the proposed method, we onsider P = 2, 8, 32, and 64.In order to save simulation time and overome the issue of an aurate hannel-orderestimation [155℄ for the referened shemes, we onsider a simpli�ed TDL model with 2taps. Therefore, the exess delays are given as τn = (n− 1)T , where T denotes the OFDMsampling time interval. The tap oe�ients are assumed to be i.i.d., ZMCSCG randomvariables with unit variane for both the real and imaginary parts. Under these onditions,there are 10 subarriers residing inside the oherene bandwidth (P=10) if the latter isde�ned as the bandwidth over whih the frequeny orrelation funtion is above 0.9, whilethere are 100 subarriers residing inside the oherene bandwidth (P=100) if the de�nitionis relaxed so that the frequeny orrelation funtion is above 0.5.1Fig. 7.1 shows the NMSEs of the proposed and referened methods as a funtion of thenumbers of OFDM bloks, employed to obtain a sampled orrelation matrix (eah OFDMblok is onstituted of 2 OFDM symbols) when SNR = 20dB. As expeted, the estimationperformane generally improves when the number of the OFDM bloks is inreased for timeaveraging. An exeption to this is when the proposed method is with P = 32 and 64 asshown in Fig. 7.2, in whih ases the frequeny responses of the P sub-hannels are not �atin any sense.For eah referened method, we onsider a dimension of the noise subspae equals toeither 8 or 16.2 When omparing a spei� referened method with di�erent dimensionof the noise subspae, either the CP or VC method with a larger dimension of the noisesubspae outperforms the same method with a smaller dimension of the noise subspae.1Under this senario, the RMS delay spread τrms an be alulated as T/2 from (2.13). Sine theOFDM subarrier spaing ∆f = 1/(NCT ) = 1/(256T ), we an arrive at Bc ≈ 1/(5τrms) = 0.4/T ≈ 100∆fwhen the frequeny orrelation funtion is above 0.5, and Bc ≈ 1/(50τrms) = 0.04/T ≈ 10∆f when thefrequeny orrelation funtion is above 0.9, respetively.2For the CP method, the dimension of the noise subspae is equal to the size of the yli pre�x. Forthe VC method, the dimension of the noise subspae is equal to the sum of the size of the yli pre�x andthe size of nulls.
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Fig. 7.1 NMSE versus number of OFDM bloks (SNR=20dB).When omparing two referened methods with the same dimension of the noise subspae,the CP method outperforms the VC method sine the dimension of the CP's eigenvetorsis larger, imposing additional onstraints on the hannel estimate [42, 43℄.Within the given time averaging intervals, we note that the proposed method outper-forms the referened ones with any given dimension of the noise subspae. We an alsoobserve from Fig. 7.1 and Fig. 7.2 that the number of the time samples required (i.e., thedimension of the orrelation matrix) is redued when P is inreased. However, the esti-mation results also deteriorate sine the proposed algorithm is based on the assumptionthat the hannel oe�ients of the adjaent P subarriers are similar. On the ontrary, thenumber of the time samples required is inreased when P is dereased. Nevertheless, theestimation results also improve. To ahieve the best tradeo�, we onlude that P should
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Fig. 7.2 NMSE versus number of OFDM bloks (SNR=20dB).be hosen to restrit the frequeny spans of the P adjaent subarriers to reside inside theoherene bandwidth, for whih the frequeny orrelation funtion is above 0.9, i.e. P ≈ 10in this ase.Fig. 7.1 and 7.2 also inlude asymptoti performane of the proposed sheme, as de�nedin (4.28). We do not evaluate the CRB here sine the simpli�ed TDL model is a lesspratial senario. To evaluate the asymptoti bound for di�erent values of P , an estimateof Rȳ in (4.20), with a su�ient time averaging and at a high SNR is employed to obtain asu�iently good approximation to the true orrelation matrix. For P = 8, we an see thatthe asymptoti performane losely mathes the simulation result for Tav ≥ 50. In orderto reah the asymptoti performane for P = 2, the required number of OFDM bloksis inreased to Tav > 210 OFDM bloks. Note that the auray of the bounds relies on
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Fig. 7.3 CAB versus number of OFDM bloks (SNR=20dB).the assumption that ‖∆Hp‖ is small. Otherwise, R∆H in (4.20) beomes signi�ant andis equivalent to a low SNR ondition. Therefore, asymptoti performane for P = 32 and64 an only serve to indiate that whether or not the proposed sheme has met a ertainlevel of on�dene. Aordingly, we an onlude that the proposed algorithm reahes itsasymptoti performane for Tav ≥ 10 OFDM bloks when P = 32 and 64.Fig. 7.3 and 7.4, whih show the orresponding CABs as de�ned in (4.29), lead to thesame onlusions as above. It should be noted that the error �oor of the performane ofthe proposed algorithm is due to the variations aross oherene bandwidth (see Setion4.3.2 for details). However, it an be eliminated by inreasing the value of NC (i.e., the sizeof FFT/IFFT) when the hannel bandwidth is �xed.
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Fig. 7.4 CAB versus number of OFDM bloks (SNR=20dB).7.1.3 Pratial appliationsWe have shown that the proposed algorithm an ahieve better performane than the ref-erened approahes within reasonable time averaging intervals. The superior performanerelies on hoosing the maximum allowable P for the purpose of minimizing the dimensionof the orrelation matrix without a�eting the estimation performane. While the abovesimpli�ed TDL model is useful for omparing various algorithms, it has limitations so thatit is di�ult to infer what happens in pratial wideband situations. Therefore, in order todetermine the maximum ahievable P in pratial senarios, we onsider to adapt part ofthe Mobile WiMAX OFDMA-PHY [70℄ for our OFDM system and to simulate it over the3GPP-SCM [79℄.In our OFDM system setup, the subarrier spaing is hosen as 10.94kHz, given the
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Fig. 7.5 NMSE versus number of OFDM bloks over 3GPP Urban Miro(SNR=20dB).OFDM useful symbol duration is 91.4µs and the yli pre�x length is 11.4µs [70℄. Sine weonsider NC = 256, the hannel bandwidth is approximately 2.5MHz. For eah time epoh,the inoming QPSK symbols are hosen only to span over 1 OFDM symbol (NF = 1), andeah Mobile WiMAX frame onsists of 48 OFDM symbols. In the 3GPP-SCM setup, thearrier frequeny is 2.5GHz. Base station antenna spaing is 10λ and MS antenna spaingis λ/2, where λ is the wavelength at the arrier frequeny. The hannel oe�ients of eah3GPP-SCM senario are generated aording to the implementation in [79℄. We also presentthe asymptoti performane of the approah given in [47℄ (as indiated by "F. Gao et al."in the legends of the simulation �gures), tailored into our system setup for omparisons.Note that aurate hannel-order estimation is also assumed for this referened algorithm.Fig. 7.5 - 7.7 show the NMSE versus number of OFDM bloks over the 3GPP UrbanMiro, Urban Maro, and Suburban Maro models [79℄, respetively. Note that SNR =
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Fig. 7.6 NMSE versus number of OFDM bloks over 3GPP Urban Maro(SNR=20dB).20dB is onsidered for all the senarios. We observe that with a suitable hoie of P , theproposed algorithm an reah NMSE ≤ 3 × 10−5 in all the ases within 50 OFDM bloks(or approximately 1 Mobile WiMAX frame). We also present NMSE versus the hoie of Pof the proposed algorithm over the Urban Maro and Suburban Maro models in Fig. 7.8,and we an observe that the best hoie of P for these models should fall between 32 and
64. To determine the e�ieny of the proposed algorithm, we evaluate the assoiated CRBover eah 3GPP-SCM senario. Spei�ally, we evaluate the CRBs as given in (4.38) byonsidering the adjaent P hannel oe�ients are the same (i.e., H̄′

1 = H̄′

2 = · · · = H̄′

P ),whih onstitutes the optimal ondition of the proposed algorithm. Fig. 7.9(a) - 7.9()show the NMSE and the orresponding CRB over 3GPP Urban Miro, Urban Maro, andSuburban Maro models, respetively. From the results, we an observe that there is about
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Fig. 7.7 NMSE versus number of OFDM bloks over 3GPP Suburban Maro(SNR=20dB).
3−6dB gap between the NMSE urve and the orresponding CRB bound over eah senariowhen SNR ≥ 20dB. We also observe in these experiments that the referened algorithm[47℄ does not show advantages over our approah, sine the dimension of its orrelationmatrix is given as NR(NC + Ncp) > NRNC = 768, as ompared to NRNC/P ≤ 24 in ourapproah. We stress again that these referened urves in Fig. 7.9(a) - 7.9() representthe ideal, asymptoti performane of the algorithm proposed in [47℄. In other words, thereferened algorithm ould not reah the asymptoti performane at suh a small numberof time samples and low SNRs.Finally, we present the BER urves of the proposed algorithm over Urban Maro andSuburban Maro senario in Fig. 7.10(a) and 7.10(b), respetively. For SNR ≥ 15dB, wean onlude that the proposed algorithm employing only 50 time samples an reah the
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Fig. 7.8 NMSE versus P (when the number of OFDM symbols Tav = 50).same performane as if perfet CSI is known at the reeiver. However, more than 210 timesamples are required for hannel estimation if SNR ≤ 15dB.7.2 Disussions of time-invariant senariosOur �rst ontribution is in developing and analyzing a new sheme to overome somefundamental limitation of the subspae-based blind approah when applied to MIMO-OFDM transmission over time-varying hannels. Spei�ally, when onsidering the timeinvariane requirement of a pratial MIMO-OFDM system with a large number of OFDMsubarriers, e.g., 128 or more, the traditional subspae-based methods require extremelylarge number of time samples for obtaining a good time-averaged orrelation matrix, makingthem impratial. By exploiting the frequeny orrelation among adjaent subarriers (i.e.,
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(a) 3GPP Urban Miro

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

SNR (dB)

N
M

S
E

proposed scheme (P=32)
CRB
F. Gao  et al.

(b) 3GPP Urban Maro
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() 3GPP Suburban Maro.Fig. 7.9 Performane of the proposed sheme over various 3GPP-SCM se-narios (Tav = 50) as a funtion of SNR.
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(b) 3GPP Suburban MaroFig. 7.10 BER of proposed sheme over 3GPP-SCM senarios.within the oherene bandwidth) through the onept of subarrier grouping, we proposeda novel subspae-based estimation method whih requires a signi�antly smaller number oftime samples. The above simulation results showed that the proposed method ould ahievea better estimation auray than existing benhmark approahes within a reasonable timeaveraging interval.To explain why the proposed algorithm generally performs better in the SuburbanMaro senario than in the Urban Maro one, the umulative distribution funtions (CDFs)of the RMS delay spread (DS), i.e., Pr{τRMS ≤ absissa}, of these senarios are shown inFig. 7.11. From this �gure, we an learly see that the orresponding RMS delay spread ofthe Suburban Maro senario is muh smaller than that of the Urban Maro one, meaningthat the oherene bandwidth of the Suburban Maro senario is muh larger than thatof the Urban Maro one. It thus implies that our approah is better suited for the 3GPPSuburban Maro ase.It should be noted that unlike the traditional approahes whih require expliit hannel-order information for estimating the hannel matrix, the proposed algorithm requires only
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Suburban MacroFig. 7.11 CDF of the RMS delay spread.an upper bound of the hannel order to determine the range of the parameter P . Therefore,the proposed algorithm is less sensitive to the hannel modeling errors.7.3 Time-variant senariosThe MIMO system under onsideration onsists of NT = 2 transmit and NR = 3 reeiveantennas. The number of subarriers NC used in the OFDM modulation is set to 256. Foreah time epoh, the inoming symbol streams are independent and identially distributed(i.i.d.) QPSK symbols. The OFDM useful symbol duration is 91.4µs and the yli pre�xlength is 11.4µs, resulting in a subarrier spaing of 10.94kHz. Sine we onsider NC =256, the hannel bandwidth is approximately 2.5MHz.Modeling of the time-varying MIMO hannel is also based on the 3GPP-SCM setup;
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Fig. 7.12 NMSE versus preoder oe�ient ν when MS speed is 100km/h(Eb/N0 = 14dB).we refer the reader to [79℄ for additional details. To evaluate our algorithm, we onsidera Suburban Maro senario with the arrier frequeny fc = 2.5GHz, where the mobilestation (MS) is allowed to travel in a random diretion at a onstant speed of 100km/h.Hene, the maximum Doppler shift is 231.48Hz and the normalized Doppler frequeny is0.02. Experimentally, we have found that a suitable value of P in this given senario is 64.To obtain the ambiguity matrix Am needed at the mth OFDM symbol time, we employ
Am = (Q̂m

nd
)
†
Hm

⌈P/2⌉ in the simulations. This type of approah is ommon in the literatureon subspae-based blind hannel identi�ation.Considering a retangular window (i.e. β = 1) of length l = 1 and 5, we �rst inves-tigate the hoie of the preoder oe�ient ν from the perspetive of hannel estimationperformane. In our experiments, the NMSE for the mth hannel estimate is de�ned here



7 Numerial experiments and results 131

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

10
0

β

N
M

S
E

n
d
 = 5

n
d
 = 2

Fig. 7.13 NMSE versus forgetting fator β when MS speed is 100km/h (ν =
1 and Eb/N0 = 14dB).as

NMSE =
∑

i,j,k

E[|ĥm
i,j [k] − hm

i,j[k]|2]/
∑

i,j,k

E[|hm
i,j[k]|2], (7.2)and the ensemble average is taken over 200 independent realizations of the random proess.Fig. 7.12 shows the NMSE of the hannel estimates versus ν when a hundred OFDMsymbols are observed and the Eb/N0 (i.e. SNR per bit) is 14dB, where Eb and N0 denotethe energy per bit, and the one-sided noise power spetral density, respetively. We are notsurprised to see that hoosing the window length l = 1 gives the best performane sinethe wireless hannel is hanging so rapidly in this ase. In partiular, we observe that theNMSE reahes its minimum, i.e. 2.5× 10−4 when ν = 1, whih oinides with our analysisin Setion 6.5.
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Fig. 7.14 NMSE versus number of OFDM symbols when MS speed is100km/h (nd = 2).In Fig. 7.13, we investigate the hoie of the forgetting fator β, when an exponentialwindow of in�nite length is onsidered under the same ondition as above. We an see thatthe NMSE reahes a minimum (a value omparable to that of the retangular window with
l = 1) around NMSE = 2×10−4 when β ∈ [0, 0.1], meaning that previous data samples areof little use for the estimation of the urrent hannel statistis for this rapidly TV hannel.Thus, employing an exponential window annot gain additional estimation performane inthis senario. We also notie that there is no signi�ant improvement in the estimationperformane when nd is inreased from 2 to 5 in both �gures. Hene, we simply assign
nd = 2 and employ a retangular window of length l = 1 in the following.Fig. 7.14 presents the NMSE of the hannel estimates versus the number of OFDMsymbols reeived when ν = 1 and 0.7 at the Eb/N0 = 14, 34dB. We an see that the
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Fig. 7.15 BER versus preoder parameter ν when MS speed is 100km/h(nd = 2).proposed algorithm an trak the fast time-varying hannel in less than 5 OFDM symbolsin all the ases, and maintain its performane over time despite the rapid variations in thehannel oe�ients. These results show in partiular that adjusting the trade-o� betweenestimation performane and symbol reovery in these ases (e.g., ν is dereased from 1to a smaller value) will not a�et the onvergene rate. In addition, we observe that theestimation performane of the ase ν = 1.0 at Eb/N0 = 14dB outperforms that of the ase
ν = 0.7 at Eb/N0 = 34dB, implying that hoosing a proper preoder oe�ient is ratherimportant.In Fig. 7.15, we show the BER versus the preoder oe�ient ν for various Eb/N0's.We onsider both the least squares (LS) and the total least squares (TLS) [120℄ estimationfor symbol reovery. We �rst notie that for a given ν, a higher Eb/N0 in general gives a
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Fig. 7.16 BER versus Eb/N0 when MS speed is 100km/h (nd = 2).better BER. We also observe that the higher the Eb/N0, the larger the optimal hoie of ν,and hene the lower the BER. This an be explained as follows: For a less noisy senario,a shorter distane between any pair of the preoder outputs is allowed, and thus we aninrease the value of ν to gain better estimation performane and so ahieving a lower BER.Furthermore, we observe that for a given Eb/N0, the TLS estimation (solid lines) generallyoutperforms the LS estimation (dash-dot lines) estimation, sine the TLS estimation takesthe hannel estimation errors into aount while performing the symbol reovery.Fig. 7.16 demonstrates the BER versus the Eb/N0 for various ν's, onsidering both theLS estimation (dash-dot lines) and the TLS estimation (solid lines) estimation for symbolreovery. We an see that when ν = 0.4, the proposed algorithm performs the best inthe low Eb/N0 region due to its largest distane between any pair of the preoder outputs;



7 Numerial experiments and results 135however, it performs the worst in the high Eb/N0 region beause the most inauratehannel information is used. The ase ν = 0.9 yields the worst performane for almost all
Eb/N0 values due to its extremely short distane between any pair of the preoder outputs,even though the best estimation performane is ahieved. A good hoie of ν should fallbetween 0.6 to 0.7 when the Eb/N0 is moderate to high, and a 1−2dB gain an be ahievedby using the TLS instead of the LS estimation at the Eb/N0 = 19dB.7.4 Disussions of time-variant senariosTo estimate wideband time-varying hannels with large Doppler shift, one typially resortsto pilot plaements at onseutive OFDM symbol times over spei� subarriers, followed bydi�erent interpolation shemes; this is beause blind hannel estimation normally requiresa long observation interval and tends to exhibit a slow onvergene rate, making it di�ultto apply on these hannels. Our seond main ontribution is in developing a new shemeto blindly trak a wideband time-varying wireless hannel whih may be hanging at eahOFDM symbol time, without using any preambles or training sequene. In partiular, ourapproah o�ers the �exibility in hoosing the number of transmit as well as reeive antennas,and o�ers high bandwidth e�ieny and low omplexity. In a realisti mobile wirelesshannel environment in whih the maximumDoppler shift is 231.48Hz, the numerial resultsshowed that our approah an ahieve a BER at the level of 10−2 when the Eb/N0 ≥ 14dB.
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Chapter 8
Summary and onlusion
In this thesis, we analyzed existing subspae-based blind hannel estimators and high-lighted some of their limitations. Subsequently, we proposed novel estimators of this typefor broadband MIMO-OFDM systems that exploit hannel orrelation over the oherenebandwidth, to improve the onvergene speed while maintaining satisfatory estimationperformane. In this hapter, we summarize the main results and ideas developed in thethesis, and then present some onluding remarks that may lead to some possible avenuesfor future researh.8.1 Summary of the workOver many years, pilot-based hannel estimation has been widely employed in various om-muniation systems to aquire the CSI, as needed in several apaity-ahieving tehniques,suh as (frequeny-)spae-time oding and spatial multiplexing. To take advantage of theblind hannel estimation, i.e., aquiring the CSI without using pilots, it is essential tomitigate the slow onvergene rate assoiated with blind hannel estimators. Fortunately,several blind approahes using seond order statistis have been proposed that an ahieve
2010/07/30



8 Summary and onlusion 137a reasonable onvergene rate for a time-invariant hannel. This inludes the subspaemethods, whih are partiularly attrative due to their good performane and moderateomplexity.In the subspae-based estimation approah, hannel estimates an often be obtainedin a simple form by optimizing a quadrati ost funtion. In Chapter 3, we explainedthat to guarantee an aeptable estimation performane for a time-varying hannel, thedimension of the orrelation matrix of the reeived signal annot be too large. Nevertheless,most existing subspae-based approahes were employed in the time domain, inludingappliations for OFDM-based systems. This design leads to the inherent property that thedimension of the orrelation matrix is a multiple of the number of OFDM subarriers. Thus,the aforementioned subspae-based approahes lead to extremely unfavorable onditions forthese systems, sine 256 to 2048 OFDM subarriers are normally onsidered.These observations motivated the development in Chapter 4, i.e., a new subspae-basedblind hannel estimator for MIMO-OFDM systems that an exploit the frequeny orrela-tion among adjaent hannel oe�ients within the oherene bandwidth, for the purposeof dramatially reduing the dimension of the orrelation matrix. It was found that, givensome rough knowledge of the RMS delay spread of the wireless hannel, the proposed esti-mator also avoids the need of hannel order estimation, and thus yield an added �exibilityin terms of estimation performane and robustness. We further studied the identi�abilityondition of this new estimator along with its performane measures, inluding perturbationand Cramer-Rao bound analysis.In Chapter 5, to redue the omputational omplexity assoiated with eigenvalue de-omposition in the proposed method, we also investigated the onvergene properties (overnon-stationary senarios) of a simple yet powerful subspae traking approah, namely,orthogonal iteration. Then in Chapter 6, by inorporating the subspae traking approah



8 Summary and onlusion 138in our estimator, we developed a fully reursive algorithm to update the signal subspaeneeded in the estimate of time-varying hannels. This approah is omputationally e�ientsine it avoids re-omputing the subspae from srath at every time iteration. To furtherredue the omplexity assoiated with the ambiguity matrix in our proposed estimator, apreoder was also introdued at the transmitter.To omplete the study, the hoie of the preoder was also derived and analyzed. We�rst showed that a preoder matrix whose entries are all 1's results in the best estimationperformane; however, its ondition number beomes in�nity, and hene the transmittedsymbols annot be reovered at the reeiver. We then showed mathematially that byproperly perturbing the o�-diagonal entries of the preoder matrix, we an derease itsondition number to a reasonable value.Finally, in order to assess the performane of the proposed algorithms, we presentednumerous omputer simulations in Chapter 7. When we onsider a blok fading hannel, itwas shown that the proposed method requires a signi�antly shorter time-averaging periodthan the benhmark methods, partiularly when the wireless hannels are haraterized bysmaller RMS delay spread. We also on�rmed that the proposed traking algorithm indeedoutperforms the benhmark algorithm, and is apable of properly traking time-varyinghannels with the maximum Doppler shift up to 230Hz. Regarding the preoder design, weshow empirially that the best trade-o� between hannel estimation and symbol detetionperformane is ahieved when the ratio of its o�-diagonal to diagonal entries is on the orderof 0.6 − 0.7.



8 Summary and onlusion 1398.2 Conluding remarksThe IEEE 802.11n PHY layer standard, whih aims at providing an 11-fold inrease intransmission speed over 802.11g, or a 55-fold inrease in transmission speed over 802.11a,an be regarded as one of the prominent examples of wireless ommuniation systems nowa-days: Combining the MIMO-OFDM tehniques, it uses training or pilot signals embeddedin transmitted data streams to failitate hannel estimation and synhronization in thesystem. The presene of pilot signals implies that data throughput is dereased, e.g. atleast 6% loss in apaity is expeted in the IEEE 802.11n systems. Spei�ally, for a time-varying hannel where mobile is expeted to travel with a high speed, the throughput lossdue to the periodi insertion of training or pilot signals is huge. Therefore, employing afast-onverging and reliable blind hannel estimation in the design of future wireless systemseems to be an attrative solution.Nevertheless, blind hannel estimation has not been employed or onsidered in any ofthese ommuniation systems yet, inluding the latest proposals of wireless standards suhas IEEE 802.11n, WiMAX, and 3GPP LTE. We may wonder, given that numerous worksin blind hannel estimation have demonstrated superior performane of their methods, forwhat reasons do people still not embrae these apparently apaity-saving tehniques?Similar question was raised by Z. Ding and Y. Li in the prefae of [156℄ about a deadeago, and the reasons, aording to the authors, may be attributed to: (1) the inadequateunderstanding about the problem itself and various proposed blind estimation shemes bymany pratiing engineers, (2) a reliable blind estimation algorithm is yet to be establishedthat an guarantee speedy onvergene, and with reasonable omplexity. Spei�ally, thealgorithm should not be very sensitive to parameters suh as the estimated hannel order.A deade later, many more pratiing engineers may have aquainted the problem itself



8 Summary and onlusion 140and several new blind estimation shemes have been proposed; however, in the ontextof MIMO-OFDM systems, a large number of di�erent blind approahes that have beenproposed to date still su�er from various shortomings, inluding the slow onvergene rateand sensitivity to the estimated hannel order.The work in this thesis led to many interesting developments in subspae-based blindhannel estimation and traking algorithms. Spei�ally, the proposed algorithms, whihexploit orrelation in the frequeny hannel oe�ients within the oherene bandwidth,have shown signi�ant improvement in the onvergene speed, while maintaining satis-fatory estimation performane. In addition, they do not require exat knowledge of thewireless hannel order, and the requirement of their omputations is lower than that of thebenhmark approahes. We hope that the small step taken in the thesis toward a simple,reliable, and fast blind hannel estimation algorithm, may eventually lead to widespread ofblind hannel estimation approahes in future wireless standards.8.3 Future workSeveral promising avenues for future researh have emerged based on the work presentedin this thesis. They are summarized brie�y below:1. In Chapter 4 and 7, estimating the ambiguity matrix is treated as a separate problem.It would be interesting to investigate how the estimation of ambiguity matrix an bee�etively inorporated into the proposed algorithms. This an possibly be ahievedwith the help of an HOS approah, the use of a training sequene (resulting in theso-alled semi-blind approah that ombines the blind and the non-blind approahes),or other new signal proessing approahes.2. As spae-time blok oding is onsidered in IEEE 802.11n wireless networking stan-



8 Summary and onlusion 141dard, it would thus be of interest to further investigate the senario in whih a orre-lated input sequene, e.g. Alamouti's spae-time blok ode, is applied at the trans-mitter side. We have assumed that the input sequene of the OFDM modulator isi.i.d. throughout this thesis. Therefore, a good starting point would be to onsideran interleaver, for the purpose of srambling the enoder output.3. In Chapter 4, the asymptoti performane and the Cramer-Rao bound of the pro-posed algorithm are studied but the results remain in the form of somewhat general,whih an only be evaluated through numerial omputations. It would be relevantto generalize these bounds in terms of parameters suh as noise variane, dimensionof the eigenvetors, et., in order to gain more insights on how the estimation per-formane is a�eted by these parameters. Suh results would provide an even betterunderstanding of the proposed subspae-based estimators.4. It will be hallenging to onsider an even higher Doppler rate, in whih the wirelesshannel may be hanging within an OFDM symbol time. In this ase, a subspae-based blind hannel estimator will be in no doubt very attrative for future wirelessstandards if aeptable performane an be ahieved.5. It would be interesting to further extend the proposed blind hannel estimation/trakingalgorithms from single user senarios to multi-user ones. In the multi-user ase, itis expeted that the proposed approahes may be a�eted by the interferene fromother users, resulting in worse estimation/traking performane. Another interestingresearh avenue would be to explore the e�ets on the performane of the proposedalgorithms when a degenerate hannel ondition is ourred.
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Appendix A
Quadrati ost funtion
From (4.8), we an arrive at

uH
j,i diag(H[ωρ,1] · · ·H[ωρ,ζ]) = 01×NT ζ , i = 1, · · · , NF . (A.1)By further partitioning uj,i into ζ segments of equal dimension, with the kth segmentdenoted as uj,i,k ∈ CNR×1, k = 1, 2, · · · , ζ , we an obtain from the above that

uH
j,i,kH[ωρ,k] = 01×NT

, k = 1, · · · , ζ. (A.2)Therefore, we an arrive at
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′

= 01×NT
. (A.3)

In pratie, only an estimate of the noise eigenvetor uj is available, denoted here as ûj .Based on (A.3), we an de�ne a new ost funtion that is more onvenient to perform the
2010/07/30
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,whih gives exatly (4.12). Note that by employing the new ost funtion in (A.4), we nowmeasure how lose is ûH
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′ to 01×NT
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I want to dediate this work to the Frenh omposer and pianist Erik Satie (1866-1925)for his masterpiee:

Gymnopédies"The melodies of the piees use deliberate, but mild, dissonanes against the harmony,produing a piquant, melanholy e�et that mathes the performane instrutions, whihare to play eah piee slowly, dolorously or gravely" - Wikipedia


