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Abstract

Multiple-input multiple-output (MIMO)-aided wireless relaying can improve the quality

of the communication links between the source and destination nodes, hence significantly

increasing system throughput, especially in multi-user networks. Relaying strategies can

mainly be classified as amplify-and-forward (AF) and decode-and-forward (DF). The AF

relaying technique imposes lower signal processing complexity and latency; therefore, it

is preferred in many operational applications. In this regard, transceiver design becomes

crucial to fully leverage the benefits of multi-user MIMO relay systems. The primary

objective of this thesis is to develop new transceiver design approaches for multi-user MIMO

relay networks from the perspectives of robustness, energy efficiency and secrecy.

First, we propose new transceiver design approaches for a multi-user MIMO AF relay

network. It is well known that the performance of wireless relaying is significantly deterio-

rated under realistic conditions such as imperfect channel state information (CSI) for radio

links involved in the transmission. To address this issue, two popular CSI error models,

namely, the statistical and norm-bounded models, are considered. Based on these models,

a robust joint transceiver design framework relying on modern convex optimization theory

is proposed. The resulting design algorithms lead to a relaying performance that is notably

less sensitive to different types of CSI errors, as demonstrated by the simulation results.

Then, we address the energy efficient design of a multi-user cooperative relay net-

work. Assuming a flexible centralized network structure where relays can be adaptively

activated/deactivated, we formulate the problem as a quality-of-service (QoS)-based net-

work energy minimization problem that facilitates joint relay selection and transceiver

optimization. An iterative solution based on re-weighted l1-norm minimization along with

a block-coordinate descent (BCD)-type algorithm is proposed and its convergence prop-

erties investigated. The new algorithm is shown to provide a significantly lower energy

consumption of the relay network than that required by a conventional relaying scheme.

Finally, we propose a secure transceiver design approach for an MIMO relay network in

the presence of multiple eavesdroppers. Under a realistic assumption of imperfect knowl-

edge of the eavesdropper channels, we formulate the relay transceiver design as a signal-

to-interference-plus-noise ratio (SINR) maximization subject to robust secrecy constraints.

To solve the resulting non-convex problem, a penalized difference-of-convex (DC) algorithm

is developed and its properties analyzed. Results show that the proposed algorithm can

improve the secrecy of the relay-aided transmission at the physical layer.
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Sommaire

Le relayage sans fil à entrées multiples et sorties multiples (MIMO) peut améliorer la qualité

des liaisons de communication entre les nœuds source et destination, augmentant ainsi con-

sidérablement le débit de transmission, en particulier dans les réseaux multi-utilisateurs.

Les stratégies de relayage peuvent principalement être classifiées comme amplification-et-

transfert (AF) et décodage-et-transfert (DF). La technique de relais AF impose une com-

plexité de traitement du signal et une latence plus faibles; par conséquent, elle est préférée

dans de nombreuses applications pratiques. À cet égard, la conception de l’émetteur-

récepteur devient cruciale pour tirer pleinement parti des avantages des systèmes de relais

MIMO multi-utilisateurs. L’objectif principal de cette thèse est de développer de nou-

velles approches de conception d’émetteurs-récepteurs pour les réseaux de relais MIMO

multi-utilisateurs du point de vue de la robustesse, de l’efficacité énergétique et de la con-

fidentialité.

Nous proposons tout d’abord nouvelles approches de conception d’émetteurs-récepteurs

pour un réseau de relais MIMO AF multi-utilisateurs. Il est bien connu que les perfor-

mances des relais sans fil sont considérablement détériorées dans des conditions réalistes

d’utilisation, par exemple lorsque les informations d’état de canal (CSI) pour les liaisons

radio impliquées dans la transmission sont impreécises. Pour résoudre ce problème, deux

modèles d’erreur CSI, sont pris en compte, à savoir les modèles statistique et normés. Sur

la base de ces modèles, un cadre de conception d’émetteur-récepteur robuste reposant sur

la théorie moderne de l’optimisation convexe est proposé. Les algorithmes de conception

qui en résultent conduisent à une performance de relais notablement moins sensible aux

différents types d’erreurs CSI, comme le démontrent nos résultats de simulation.

Nous abordons ensuite la conception d’un réseau de relais coopératif multi-utilisateurs

utilisateurs du point de vue de l’économie de l’énergie. En supposant une structure de

réseau centralisée souple où les relais peuvent être activés/désactivés de manière adapta-

tive, nous formulons le problème de conception comme celui de la comme un problème de

minimisation d’énergie de réseau avec contrainte sur la qualité de service (QoS) permettant

ainsi la sélection conjointe des relais et l’optimisation de l’émetteur-récepteur. Une solu-

tion itérative basée sur la minimisation de la norme l1 repondérée et l’ algorithme de type

descente de coordonnées par blocs (BCD) est proposée et ses propriétés de convergence

étudiées. Les résultats de simulations montrent que le nouvel algorithm peut fournir une
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consommation d’énergie significativement plus faible du réseau de relais que celle requise

par un schéma de relayage conventionnel.

Enfin, nous proposons une approche de conception d’émetteur-récepteur sécurisé pour

un réseau de relais MIMO en présence de multiples écouteurs clandestins. Sous l’hypothèse

réaliste d’une connaissance imparfaite des canaux de ces écouteurs, nous formulons la

conception de l’émetteur-récepteur relais comme une maximisation du rapport signal-à-

interférence-plus-bruit (SINR) soumise à des contraintes de confidentialité. Pour résoudre

le problème non convexe qui en résulte, un algorithme de différence de convexité (DC)

pénalisé est développé et ses propriétés analysées. Les résultats montrent que l’algorithme

proposé peut améliorer la confidentialité de la transmission assistée par relais au niveau de

la couche physique.
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Chapter 1

Introduction

A conventional wireless cellular network is characterized by the use of multiple non-over-

lapping cells covering a given geographical area such as a city. In each cell, a base station

(BS) is deployed by the network operator to provide cellular coverage and services to all

mobile subscribers within the cell. The use of multiple cells makes it possible to reduce

the transmission power and interference and therefore increase the network capacity (i.e.,

supporting larger number of users). Examples of such cellular networks include third gener-

ation (3G) systems such as Wideband Code Division Multiple Access (WCDMA) and High

Speed Packet Access (HSPA) and fourth generation (4G) Long-Term Evolution (LTE).

Over the past few decades, wireless communication technologies and services have wit-

nessed an explosive growth. Due to the proliferation of mobile devices, and especially smart

phones, there has been an increased demand for ubiquitous data access with enhanced data

rate and quality-of-service (QoS) requirements. In particular, the popularity of advanced

mobile multimedia applications (e.g., video streaming) has brought significant challenges to

the design of next-generation wireless networks. In a typical point-to-point communication

scenario where one wireless transmitter sends data to its receiver, the link performance is

limited by and already quite close to the fundamental capacity limit. To achieve higher

data rates, a relatively high signal-to-noise ratio (SNR) is therefore required from a pure

link budget perspective. In current wireless cellular networks, a natural approach to achieve

higher SNR would be to deploy a denser network infrastructure, i.e., to use smaller cells

where user-to-BS distance is reduced. However, the ultra-dense deployment of BSs leads

to significantly higher deployment and maintenance costs, which may also make it more
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BS Relay Users

Fig. 1.1 A typical wireless relaying scenario.

difficult to transit from existing to next-generation standards.

To address this issue, current LTE-Advanced and emerging standards such as fifth

generation (5G) New Radio (NR) are embracing relaying technologies to extend the network

coverage and improve the throughput in hot spots. Different from traditional or macro BS,

the relay stations may be remote radio heads (RRHs) transmitting at low power levels.

Other benefits of deploying relay stations include low implementation cost and flexible site

acquisition. Below we briefly review the various strategies currently available for wireless

relaying and then expose the main technical challenges brought about by their utilization.

This sets the stage for the presentation of the thesis goals and contributions.

1.1 The Wireless Relaying Concept

Wireless relaying, where one or more intermediate nodes, called relays, assist in forwarding

data from a source node to one or more destination nodes (as depicted in Fig. 1.1), has

been proposed as a cost-effective solution to meet some of the more stringent demands

of LTE-Adavned and 5G NR networks [1]. Indeed, wireless relaying offers many benefits,

either by boosting the performance of traditional cellular networks, or extending their func-

tionality. First, relay stations can be deployed to improve the QoS of users near the cell

boundary (which suffer from higher path loss and interference), or to extend the network

coverage by providing services to out-of-coverage users (as in rural areas). Compared to

the use of additional macro BSs, using relays can save the high costs associated with site

acquisition and backhaul deployment. In this way, uniform broadband experience to users

almost everywhere within the network is provided in a cost-efficient manner. Second, simi-
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lar to the concept of frequency reuses in cellular systems, relay stations can provide better

spatial resolution. Hence, more users can be served simultaneously within the same fre-

quency band, due to the combined effect of reduced transmit-receive distance (hence higher

received signal strength) and smaller co-channel interference from neighboring small cells

served by other relay stations, thereby contributing to a higher system throughput. Third,

in Release 12 of LTE, device-to-device (D2D) communication has been proposed, which

allows two mobile devices in proximity of each other to establish a direct local link as an

underlay mode of operation and thus to bypass the BS [2]. The inherent property of wireless

relaying makes it perfectly suitable for D2D scenarios. For instance, for D2D-based public

safety applications, user equipments (UEs) with better link quality and longer battery life

may serve as relays for destination UEs that are out of coverage of the network. Finally, in

a multi-user scenario, when combined with multiple-input multiple-output (MIMO) tech-

niques, wireless relaying is capable of simultaneously serving multiple users concurrently

over the same physical channel by exploiting the so-called distributed spatial multiplexing,

which also contributes to higher network throughput.

In general, wireless relaying can be classified based on the chosen relaying strategy, du-

plexing mode, transmission mode (i.e., one-way or two-way), number of equipped antennas

and so on. The relaying strategy refers to how the source information is processed and

forwarded to the intended destination by the relay. The two main categories of relaying

strategies are amplify-and-forward (AF) (non-regenerative) and decode-and-forward (DF)

(regenerative). In AF relaying, which is the simplest strategy, the relay amplifies the re-

ceived signal from the source and then transmits the resultant to the destination without

doing any decoding. Ideally, the signal amplification can be represented by a linear trans-

formation: for single-antenna relays, the linear transformation amounts to multiplying the

received signal by a scaling factor while for multi-antenna relays, it amounts to multiplying

the received signal vector by a transformation matrix. In contrast, a relay adopting the

DF strategy first needs to decode the binary information bits received from the source, and

then re-encodes, modulates and finally transmits the resultant signal to the destination.

Compared with AF, the DF strategy suffers higher signal processing complexity and longer

delay. For these reasons, our focus in this thesis will be on the AF relaying strategy1. It is

also worth noting that in the literature, other relaying strategies have been proposed, such

1In this thesis, unless otherwise noted, we use the term “relay transceiver design” to denote transceiver
design for relays adopting AF strategy.
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as compress-and-forward [3] and selective relaying [4]. However, such strategies fall outside

the scope of the present thesis.

Wireless relays can operate in either full-duplex or half-duplex mode. In the half-

duplex mode, orthogonal duplexing is employed to avoid any possible interference between

the receive and transmit functions. In this regard, time duplexing is commonly used,

where the relay receives the signal from the source during a first time slot (hop), and then

retransmits an AF or DF processed signal during the second time slot, etc. In the full-

duplex mode, the relay is allowed to receive and transmit simultaneously, which in general

is difficult to implement since the transmitted signal from the relay can severely interfere

with the co-located receiver [5]. Although the half-duplex constraint impacts negatively on

the theoretical spectral efficiency, the latter can be compensated by the additional capacity

gain. For these reasons, we focus on half-duplex relaying mode in this thesis.

Relays can also be classified based on their transmission modes, i.e., one-way or two-way

communications. In one-way communications, the relay simply forwards the information

from one end-user (the source) to another end-user (the destination) while in two-way

communications, the two end-users simultaneously transmit to the relay in the first time

slot, and the relay then broadcasts the processed signals back to the two end-users in the

second slot [6]. Two-way relaying may improve the network throughput since only two

transmission phases are needed to exchange the information between two end-users while

for one-way relaying, four transmission phases are needed instead. However, technical chal-

lenges such as interference management (mutual interference and self-residual interference)

and synchronization need to be carefully considered in the design and implementation of

the network. In this thesis, we shall limit our attention to the one-way relaying, although

some of the proposed solutions may be extended to the two-way scenario.

Finally, the introduction of MIMO techniques into the relaying framework, through the

use of multiple antennas at the relays and possibly also at the sources and destinations,

brings further performance benefits as compared to the single-antenna configuration. How-

ever, the design and implementation of the transceiver sub-systems for MIMO relaying

becomes significantly more challenging. For DF relaying, transceiver design at the relay is

relatively straightforward since it can be realized in two separate parts: use of an MIMO

receiver in the first hop, and an MIMO transmitter in the second hop. Still, implementation

of these MIMO receiver and transmitter increases complexity, cost and processing delay

at the relays. In contrast, for AF relaying, the transceiver structures can now be repre-
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sented by linear matrix transformation, i.e., both the receive and transmit functions are

now incorporated into a single linear matrix transformation. Compared with single-antenna

configurations, where the transceiver structure can be represented by a single multiplicative

factor (or weight), the shift from scalar to matrix optimization significantly complicates the

transceiver design problem. Note also that in AF relaying, not only the useful signals are

amplified and forwarded, but also are the additive noise components at the relays. There-

fore, a good transceiver design for AF relaying must prevent over-amplification of noise

components while preserving the desired signal components. The transceiver design prob-

lem for MIMO AF relaying is exacerbated in more general multi-user scenarios involving

multiple source-destination pairs or multiple cooperating relays. In these configurations,

in order to achieve optimum performance, the transceivers of all sources, relays and desti-

nations need to be jointly optimized. This type of problems, where the cross interference

between multiple users needs to be carefully handled, is quite mathematically challenging,

especially when considering additional power constraints and other system limitations, as

further discussed in the next section.

Relaying is one of the proposed features for the current LTE standard. In Release

8 [7], AF relays, also referred to as repeaters, were adopted as a tool for handling coverage

holes. Later, Release 10 introduced support for a DF relaying scheme [8]. Main use cases

include extending the coverage to mountainous and sparsely populated regions, providing

temporary coverage when there is an emergency, enhancing throughput in urban/indoor hot

spots and providing services to mobile users in public vehicles to reduce excessive handover.

Motivated by these use cases, the so-called self-backhauling was taken as the basis for the

LTE relaying solution. In LTE, the terms backhaul link and access link are often used to

refer to the BS-relay connection and the relay-terminal connection, respectively. Since the

relay communicates both with the macro cell and terminals served by the relay, interference

between the access and backhaul links must be avoided. Depending on the spectrum used

for access and backhaul links, LTE relaying can be classified into outband and inband types.

Outband relaying implies than the backhaul operates in a spectrum separate from that of

the access link, using the same radio interface as the access link. Provided the frequency

separation between the backhaul and access links is sufficiently large, interference between

the two links can be avoided. Inband relaying implies than the backhaul and access links

operate in the same spectrum and therefore, additional interference avoidance mechanisms

are required. For more details on LTE relaying, including the overall architecture and
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Fig. 1.2 Illustration of imperfect CSI due to channel estimation and quan-
tization errors.

backhaul design for inband relaying, interested readers are referred to [8].

1.2 Technical Challenges Posed by Wireless Relaying

Some prior contributions focus on the performance optimization of wireless cooperative

relaying, for example, maximizing the communication performance of end-users, but with-

out the consideration of some crucial practical constraints. These include the necessary

acquisition of channel state information (CSI) and the resultant effect of possible CSI er-

rors, the possibly high network energy overhead when multiple MIMO relays are involved

in cooperative transmissions, and information security issues posed by malicious users who

can eavesdrop the relay-assisted transmissions. Below, we further examine these challenges

in the design of wireless MIMO relaying networks, which also largely motivate the new

solutions and algorithms developed in this thesis.

It is well known that the efficacy of relay transceiver design largely relies on the avail-

ability and accuracy of the CSI for all radio links involved in the transmission, i.e., from

source to relay as well as relay to destination. In practice, acquiring accurate CSI of these

links is quite challenging due to processing complexity of the channel estimation (espe-

cially in the case of multi-antenna or multi-user MIMO relaying configurations) and the

combined effects of various sources of estimation errors due to noise and radio interference,
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Fig. 1.3 The concept of cooperative wireless relaying (the double-head ar-
rows refer to the exchange of information between the cooperating relays via
dedicated links).

the use of feedback with limited quantization, and in the case of mobile communications,

the possible rapid changes in the channel condition that eventually render the available CSI

obsolete. As an illustrative example, a typical scenario for collecting CSI of all the links in

a relaying network is shown in Fig. 1.2. In the first step, the relay and destination nodes

estimate their corresponding CSI based on the (known) transmitted training sequences. In

the second step, the estimated CSI is further quantized using a limited number of bits and

subsequently fed back to a central node via a dedicated control link. The central node

then performs optimization of the transceivers of all the nodes based on the received CSI

and finally forwards the optimized transceiver parameters to all the nodes as needed. In

the literature, there exist various techniques for channel estimation and quantization. In

general, a more accurate channel estimation scheme, possibly with higher signal process-

ing complexity and a larger number of quantization levels, can provide better quality in

CSI reporting, hence leading to a better performance for the relay-assisted transmission.

Therefore, there is a tradeoff between the level of CSI errors and the resultant relaying

performance. In view of this, robust relay transceiver design, which explicitly takes into

consideration the effects of CSI errors, is an imperative yet challenging task.

Multi-cell cooperation has attracted increasing attention since it has been considered in

current LTE-Advanced standard as a means to improve network capacity [9]. The concept

of multi-cell cooperation has also been considered in the context of wireless relaying, where

multiple relays, which can be BSs or access points serving different cells or RRHs, work co-

operatively to forward the signals transmitted from multiple sources to their corresponding
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Fig. 1.4 An illustrative example of the openness of the wireless medium.

destinations, as depicted in Fig. 1.3. In designing multi-relay networks, a widely-adopted

approach is to maximize the overall performance of the end-users under relay power con-

straints. This approach may lead to a transmission strategy where all relays remain active,

which deviates from the concept of energy efficiency. It is observed that information and

communication technology (ICT) is sadly playing an important role in global greenhouse

gas emissions. This is because the amount of energy consumed by ICT has significantly

increased during the past decades due to the explosive growth in the mobile user population

and service demand requirements. It is reported that the total energy consumed by cellular

network infrastructures, wired communication networks and the Internet backbone cur-

rently takes up more than three percent of the worldwide electric energy consumption [10].

Against this background, designing energy efficient, or green communication networks is

one of the main objectives in the development of future generation of wireless communica-

tion standards. For multi-relay networks, how to use the relays efficiently remains a critical

problem, especially: how many relays are needed for transmission, which subset of relays

shall remain active, and how their corresponding transceivers are optimized? It is therefore

highly desirable to address these problems in a unified framework.

With the proliferation of smart phones storing more sensitive personal data ranging

from social networking to online banking, wireless end-users have become vulnerable tar-

gets of malicious hackers owing to the broadcast nature of signal propagation, as illustrated

in Fig. 1.4. According to a few reports on mobile cyber threats, the number of cyber at-
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tacks to mobile users has been dramatically growing in the past few years [11]. Within this

context, how to ensure information security is becoming a critical issue for wireless ser-

vice providers. Although the classic bit-level encryption technique has been deemed to be

most effective way of achieving this goal, a report by the Washington Post has drawn pub-

lic attention to the potential security risks of wireless technologies, even when advanced

encryption is used2. Against this background, physical layer security is emerging as a

promising design alternative to complement classic encryption and to further enhance the

security of wireless networks. Since Wyner opened this new avenue of security provision by

introducing the notion of secrecy capacity [13], researchers have sought to enhance security

for a wide range of communication channel models [14]. Recently, physical layer security

has attracted increased interest, driven by new applications and network configurations

such as cooperative wireless relaying. Although the diversity advantages gleaned from user

cooperation have been recognized in the context of generic relay-assisted networks, ensuring

secrecy in cooperative information relaying remains a key issue. Specifically, when addi-

tional intermediate nodes assist in forwarding the source messages to their destination, the

information confidentiality may be more readily compromised, unless the relaying scheme is

appropriately designed. In a number of works, the secrecy of relay-assisted communications

has been investigated from physical layer perspective, showing that ingenious transceiver

design can help improve the security level of relay-assisted communications [15]. Still much

work remains to be done, and following this trend, it becomes important to investigate

new signal processing techniques conceived for further improving wireless relaying security

without compromising the QoS levels of the destination users.

1.3 Thesis Objective and Contributions

The primary objective of this thesis is to develop and investigate transceiver design ap-

proaches for applications in multi-user MIMO relay networks. To achieve this goal, we

need to address the aforementioned research challenges by proposing new designs that can

provide robustness to CSI errors, greater energy efficiency, and improved security against

eavesdropping. In this regard, the main research contributions and findings of this thesis

2In [12], it is reported that two German researchers have demonstrated how to exploit the security flaws
in the Signaling System 7 (SS7) to eavesdrop on all incoming and outgoing calls indefinitely from anywhere
in the world. They have shown how to decode the messages by requesting each caller’s carrier to release a
temporary encryption key through the SS7.
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are summarized as follows.

Chapter 3 focuses on linear transceiver design in a multi-user MIMO AF relay network.

The objective of this chapter is to develop linear transceiver structures that maximizes the

QoS at all end-users while making the solutions less sensitive to the errors incurred in the

CSI reporting stage. We consider a scenario, where each source transmits multiple sub-

streams to its corresponding destination with the assistance of multiple relays. Assuming

realistic imperfect CSI of all the source-relay and relay-destination links, we propose a ro-

bust optimization framework for the joint design of the source transmit precoders (TPCs),

relay AF matrices and destination receive filters. Specifically, two well-known CSI error

models are considered, namely the statistical and norm-bounded error models. We first

consider the design problem of minimizing the maximum per-stream mean square error

(MSE) subject to the source and relay power constraints (min-max problem). Then, two

different versions of this problem, which respectively take into account the statistical and

norm-bounded CSI errors, are formulated. Under these two scenarios, algorithmic solutions

having proven convergence and tractable complexity are proposed by resorting to the itera-

tive block coordinate update approach along with matrix transformation and convex conic

optimization techniques. Secondly, we consider the problem of minimizing the maximum

per-relay power subject to the QoS constraints for each substream and the source power

constraints (QoS problem). For this problem, an efficient initial feasibility search algorithm

is proposed based on the relationship between the feasibility check and the min-max prob-

lems. We demonstrate through computer simulations that the proposed joint transceiver

design algorithms can achieve an improved robustness against different types of CSI errors,

when compared to non-robust approaches proposed earlier in the literature.

Having designed CSI error resilient relay transceivers that aim to improve the users’

QoS, Chapter 4 addresses the design of a multi-user relaying network from an energy-

efficient perspective. The objective of this chapter is to develop a relaying strategy that

aims to minimize the total network energy consumption while still providing prescribed QoS

levels to the destination users. We consider a scenario where all the relays are connected

to a centralized processing node with the aid of high bandwidth, low latency fronthaul

links (e.g., the so-called cloud radio access network (C-RAN) proposed for the next gen-

eration cellular standard). Exploiting the flexible centralized processing structure of the

network, where relays can be adaptively activated/deactivated, we formulate the problem

as a QoS-based network energy minimization problem that facilitates joint relay selection



1 Introduction 11

and transceiver optimization. We propose an iterative solution based on the concept of

the re-weighted l1 norm along with a block-coordinate descent (BCD)-type algorithm. The

active relays are then determined in a single attempt by thresholding a group sparsity

pattern associated with the set of all relaying transceiver matrices. To circumvent a po-

tentially undesirable condition, where the selected subset of relays fails to simultaneously

satisfy all the destination users’ prescribed QoS levels, we conceive a user admission control

mechanism for overcoming the associated infeasibility problem. Simulation results demon-

strate the explicit benefits of the proposed design approach, which results in a significantly

lower energy consumption of the relaying network than that required by a conventional

cooperative relaying scheme.

Chapter 5 then shifts the focus of relaying design from user performance and energy

efficiency to communication security. Owing to the vulnerability of relay-assisted com-

munications and its use cases such as D2D communications as mentioned earlier in this

chapter, improving wireless security from a physical layer signal processing perspective is

attracting increasing interest. Hereby we address the problem of secure transmission in a

relay-assisted network, where a pair of legitimate users communicate with the aid of an

MIMO relay in the presence of multiple eavesdroppers. Assuming imperfect knowledge of

the eavesdroppers’ channels, we jointly optimize the power of the source user, the relay

AF transceiver matrix and the covariance of the artificial noise (AN) transmitted by the

relay, in order to maximize the received signal-to-interference-plus-noise ratio (SINR) at

the destination user, while imposing a set of robust secrecy constraints. A globally opti-

mal solution based on a bi-level optimization framework is first proposed, but with high

complexity. Hence, a low-complexity sub-optimal method relying on a newly proposed pe-

nalized difference-of-convex (DC) algorithmic framework is proposed. We show how this

penalized DC framework can be invoked for solving the robust secure relaying problem

with proven convergence. Our extensive simulation results show that both proposed solu-

tions are capable of ensuring the secrecy of the relay-aided transmission and significantly

improving the robustness to the eavesdroppers’ channel uncertainties, as compared to the

non-robust counterparts. It is also demonstrated that the advocated penalized DC-based

method yields a performance close to the globally optimal solution.
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1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 provides a comprehensive liter-

ature survey of prior contributions on wireless MIMO relaying from various perspectives.

Chapter 3 focuses on the design of robust multi-user MIMO relaying transceivers that can

improve the QoSs of destination users in the presence of CSI errors. Chapter 4 investigates

the design of an MIMO relay network from an energy-efficient perspective, where the aim is

to minimize the total network energy consumption while providing predefined QoSs to the

destination users. Chapter 5 considers joint MIMO relay transceiver design problem from

a security perspective, seeking to maximize the QoS, measured by the SINR, at the des-

tination user, subject to a set of robust secrecy constraints. Certain mathematical proofs

and derivations are relegated to the Appendices.

The following notations are used throughout the thesis, unless otherwise noted. Boldface

uppercase (lowercase) letters denote matrices (vectors), while regular font letters denote

scalars; C denotes the set of complex numbers; the superscripts (·)∗, (·)T , (·)H , and (·)−1

denote the conjugate, transpose, Hermitian transpose and inverse, respectively; ‖·‖ repre-

sents the Euclidean norm of a vector, while ‖·‖F denotes the Frobenius norm of a matrix;

Tr(·), vec(·), and ⊗ stand for the matrix trace, vectorization and the Kronecker product,

respectively; CN×M and HM denotes the spaces of (N ×M)-element matrices having com-

plex entries and M ×M Hermitian matrices, respectively; Re{·} denotes the real part of a

complex number.
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Chapter 2

A Survey of Transceiver Design for

MIMO AF Relaying Networks

In this chapter, we provide a literature review of the state-of-the-art approaches available

for the design of MIMO AF relaying networks1; these approaches serve as background

material for the algorithm developments that appear in the subsequent chapters of the

thesis. The presentation is organized as follows: In Section 2.1, we review the transceiver

optimization techniques for one of the most fundamental relaying networks, i.e., the point-

to-point MIMO AF relaying network. In Section 2.3, we extend the review to multi-user

MIMO AF relaying systems. The issues posed by imperfect CSI in the design of relay

transceivers are discussed in Section 2.4. Prior works addressing energy efficiency issues in

designing wireless networks are reviewed in Section 2.5. Methods for improving relaying

transmission secrecy from a physical layer perspective are discussed in Section 2.6. Finally,

some concluding remarks are given in Section 2.7.

2.1 Point-to-Point AF Relaying Networks

The point-to-point MIMO AF relaying network, as shown in block diagram form in Fig. 2.1,

is one of the most fundamental models studied in the MIMO relaying literature. In this

model, a source node transmits its data to a corresponding destination node with the aid

1In practice, a “relaying network” is usually part of a larger wireless network, and as such, it might be
referred to as a sub-network. Some authors also use the expression “relaying systems”. In this thesis, for
consistency, we adopt the former terminology.
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Fig. 2.1 A point-to-point MIMO AF relaying network where F, W and U
denotes the transceiver matrices at source, relay and destination, respectively.

of a relay node. All three nodes are equipped with multiple antennas in order to exploit

additional spatial degrees of freedom, thus improving the relaying transmission reliability.

Suppose that the source, relay and destination employ NS, NR and ND antennas, respec-

tively. The relay operates under the half-duplex protocol, where the data transmission is

completed within two phases. In the first phase, the source transmits its signal to the relay,

whereas in the second phase, the relay processes its received signal using an AF transceiver

structure and forwards the resultant signal to the destination. As in most of the literature

on MIMO AF relaying, the so-called narrow-band flat-fading radio propagation model is

assumed throughout the thesis. In addition, no direct link is available between the source

and destination due to a severe path loss.

Let s ∈ Cd×1 denote the vector of information symbols to be transmitted by the source.

The entries of s, denoted as sk for k ∈ {1, 2, · · · , d} and called substreams in this context,

are modeled as random variables with zero mean and unit variance, i.e., E{|sk|2} = 1. It

is further assumed that the number of substreams satisfies d ≤ min(NS, NR, ND) to allow

the decoding of the transmitted symbols at the destination. Following the application of

a linear transmit precoder (TPC) matrix to s, the signal transmitted by the source during

the first phase is given by

x = Fs. (2.1)

The corresponding signal received by the relay can be expressed as

z = Hx+ nR = HFs+ nR, (2.2)
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where H ∈ CNR×NS denotes the channel matrix between the source and relay antennas, and

nR ∈ CNR×1 is a spatially white additive noise vector with zero mean and covariance matrix

E{nRn
H
R } = σ2

RINR
.

Upon receiving z, the relay applies a linear AF transformation represented by matrix

W ∈ CNR×NR to z, and then forwards the resultant signal

r = Wz = WHFs+WnR (2.3)

to the destination. Hence, during the second phase of the transmission, the received signal

at the destination is given by

y = Gr+ nD

= GWHFs+GWnR + nD, (2.4)

where G ∈ CND×NR denotes the channel matrix between the relay and destination antennas,

and nD denotes a spatially white additive noise vector with zero mean and covariance matrix

σ2
DIND

. To estimate the signal received from the source, the destination applies a linear

receive filter2, represented by matrix U ∈ CND×d to the received signal, i.e., ŝ = UHy. In

light of (2.4), the estimated symbols can further be written as

ŝ = UH GWHFs+UH GWnR +UHnD. (2.5)

The general design problem for the transceiver matrices F, W and U, where the aim

is to maximize the performance of the relaying transmission network in Fig. 2.1, can be

mathematically expressed as

min
F,W,U

U(F,W,U) (2.6a)

s.t. Tr(FFH) ≤ Pmax
S (2.6b)

Tr(WRzW
H) ≤ Pmax

R , (2.6c)

where U(·) denotes the chosen performance metrics or objective function, Pmax
S and Pmax

R

2In general, a nonlinear receiver at the destination such as the decision-feedback receiver can also be
adopted in the relaying network, see, e.g., [16], which leads to a different signal model. In this thesis, the
focus will be on the linear receiver due to its simplicity.
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denote the power budgets of the source and relay, respectively, and Rz = E{zzH} denotes

the covariance matrix of z as introduced in (2.2).

The transceiver optimization problem for the point-to-point MIMO AF relaying model

in Fig. 3.1 has been extensively studied under various design objectives, including, e.g., the

sum MSEs of all substreams, the mutual information between the source and destination,

the worst substream MSE, the worst substream SINR and the product of all substream

SINRs, see, e.g., [6, 17] and the references therein. In fact, the transceiver optimization

problem in the above model is closely related to that in the point-to-point MIMO system

[18, 19], with however some important differences: (1) received signal at the destination

involves the product of source-relay and relay-destination channel matrices, i.e., G and H

(compared to only one channel matrix in the point-to-point MIMO system); (2) the noise

term received at the relay is amplified and forwarded to the destination along with the

source signal; (3) the transceiver matrices at the various nodes are nonlinearly coupled

[c.f. (2.5)] in the estimated signal and need to be jointly designed. These issues make the

transceiver design problem in relaying systems substantially more difficult to solve than

that in the point-to-point MIMO system. In the literature, we distinguish two main classes

of solutions to the relay transceiver design problem (2.6), namely: the semi-closed form

solutions and iterative algorithmic solutions.

The first class of solutions make use of special transceiver structures and subsequently

optimize the underlying system parameters. These structures include zero-forcing (ZF) [20],

minimum MSE (MMSE) [21], singular-value decomposition (SVD) [17], etc. Interestingly,

it has been shown in [17] that the SVD relay transceiver structure, along with properly

selected source TPC and destination receive filter becomes the optimal solution to the

optimization problem (2.6) for a variety of objective functions. For example, for Schur-

concave objective functions such as the sum MSEs, the optimal source TPC F and the relay

AF transceiver matrix W jointly diagonalize the combined source-relay-destination channel

matrix, as illustrated in Fig. 2.2. To gain further insight into this channel diagonalization

scheme, denote by H � UHΛΛΛHV
H
H and G � UGΛΛΛGV

H
G the SVDs of H and G, respectively,

whereUH ∈ CNR×NR andUG ∈ CND×ND are unitary matrices, ΛΛΛH ∈ CNR×NS and ΛΛΛG ∈ CND×NR

are rectangle diagonal matrices, and VH ∈ CNS×NS and VG ∈ CNR×NR are unitary matrices.

It is assumed that the main diagonal elements of ΛΛΛH and ΛΛΛG, represented by {λF,i}di=1 and

{λW,i}di=1, respective, are arranged in increasing order. The optimal source TPC and relay
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transceiver matrix have the following structure:

Fopt = VH,1ΛΛΛF (2.7)

Wopt = VG,1ΛΛΛWUH
H,1, (2.8)

where ΛΛΛF = diag(λF,i) ∈ Cd×d and ΛΛΛW = diag(λW,i) ∈ Cd×d while VH,1, VG,1 and UH,1

contain the rightmost d columns of VH, VG and UH, respectively, i.e., those corresponding

to the d largest channel singular values . With the above transceiver structures, the original

problem (2.6) with U(·) chosen to be the sum MSEs reduces to the following scalar-variate

problem:

min
{λF,i}di=1,{λW,i}di=1

d∑
i=1

(
1 +

(λG,iλW,iλH,iλF,i)
2

(λG,iλW,i)2 + 1

)−1

(2.9a)

s.t.
d∑

i=1

λ2
F,i ≤ Pmax

S (2.9b)

d∑
i=1

λ2
W,i

(
λ2
H,iλ

2
F,i + 1

)
≤ Pmax

R (2.9c)

λF,i, λW,i ≥ 0, i = 1, · · · , d. (2.9d)

Solving the above problem is challenging since it is non-convex in {λF,i}di=1, {λW,i}di=1;

therefore, a globally optimal solution cannot be efficiently found in general. The use of

numerical methods such as grid-search algorithms based on primal and dual variables was

proposed in [22] and [23], respectively. However, both methods become quite computa-

tionally intensive when an accurate approximation to the global minimum is desired. An

alternating minimization algorithm that guarantees a good tradeoff between complexity

and performance was proposed in [17]. This algorithm solves problem (2.9) in an itera-

tive manner, i.e., with respect to {λF,i}di=1 and {λW,i}di=1, separately, one at a time with

the other fixed. This leads to an iterative optimization procedure that may converge to a

local optimum provided the solution sequence is properly initialized3. Although the con-

cept of relay channel diagonalization has been widely adopted in the literature on MIMO

3Based on the theory of alternating minimization, due to the existence of the power constraint∑d
i=1 λ

2
W,i

(
λ2
H,iλ

2
F,i + 1

)
≤ Pmax

R , where {λF,i}, {λW,i} are nonlinearly coupled, convergence to a local
optimal point cannot be theoretically proved.
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Fig. 2.2 Illustration of the optimal source and relay transceiver structures
jointly diagonalizing the combined source-relay-destination channel.

AF relaying optimization, it has its limitations. For instance, it is does not generalize

easily to the case of multi-user MIMO relaying networks. Indeed, due to the existence of

cross interference between multiple source-destination pairs, the channel matrix between

each source-destination pair cannot in general be simultaneously diagonalized such as in

Fig. 2.2. Furthermore, the extension of the method to practical scenarios where perfect

CSI is not available for relay transceiver design (especially when the norm-bounded CSI

error model is considered) poses additional difficulties.

The second class of solutions to (2.6), i.e., the iterative algorithmic solutions, aim to

solve (2.6) numerically by relying on modern numerical optimization theory. Iterative

algorithms of this type in fact have been adopted to solve a wide range of MIMO relaying

problems, see, e.g., [24–30]. Exploiting the fact that (2.6) is convex in each one of F, W and

U (although it is in general not jointly convex in all its variables), the iterative algorithms

rely on the BCD-type update rule, where F, W and U are updated separately, one at a

time with the others fixed, in a circular manner. Let F(n), W(n) and U(n) denote the values

of the corresponding variables after the nth iteration. Then the destination receive filter

at the n+1 iteration can be computed by equating the gradient of U(·) with respect to U∗

to zero:

∇U∗ U(F(n),W(n),U) = 0. (2.10)

Once U(n+1) is obtained, the source TPC F(n+1) can be updated by solving the following
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sub-problem:

min
F

U(F,W(n),U(n+1)) (2.11a)

s.t. Tr(FFH) ≤ Pmax
S . (2.11b)

Finally, the relay AF transceiver matrix W(n+1) can be updated by solving

min
W

U(F(n+1),W,U(n+1)) (2.12a)

s.t. Tr(WRzW
H) ≤ Pmax

R . (2.12b)

The generic iterative algorithmic solution is summarized in Algorithm 2.1. Different

from the semi-closed form solution, it makes use of well-known results in the numerical

optimization literature [31–35] and directly solves a set of simplified matrix-variate prob-

lems at each iteration. The algorithm needs to be properly initialized, for otherwise its

convergence may be affected. In prior works, initialization strategies based on identity and

random matrices have been employed [24], and lead to similar relaying performance and

convergence rate. Regarding convergence, since each sub-problem can be solved with global

optimality, the sequence of the objective values, i.e., {U(F(n),W(n),U(n)), n = 0, 1, 2, · · · }
is monotonically non-increasing with the iteration index n. Hence, assuming the objective

function is lower bounded, the sequence of the objective values converges by invoking the

monotonic convergence theorem. However, it is important to note that the convergence

of the objective function does not imply the convergence of the obtained solution, i.e.,

{(F(n),W(n),U(n)), n = 0, 1, 2, · · · }. The resultant solution may converge to a local optima

depending on the initialization. As pointed out recently in the context of optimization

theory [35], for problems in the form of (2.6) where some of the optimization variables

are nonlinearly coupled, the obtained solution sequence by an iterative algorithm does not

necessarily converge to a local optimum. Instead, under some mathematical conditions,

that sequence converges to a so-called Nash point [35], which in effect is a weaker result.

2.2 Point-to-Point Cooperative AF Relaying Networks

In past years, the study of transceiver optimization in point-to-point MIMO AF relaying

systems has been extended to cooperative relaying networks, where a set of relays collabo-
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Algorithm 2.1 Iterative Algorithm for Solving (2.6)

Initialization: F(0) and W(0).
repeat
1. Update U(n+1) via (2.10);
2. Update F(n+1) via (2.11);
3. Update W(n+1) via (2.12);
4. Update iteration index: n ← n+ 1.

until Convergence.

rate in forwarding the source signals to the destination, as shown in Fig. 2.3. Let M denote

the total number of relays, andHm andGm denote the channel matrices between the source

and mth relay, and between the mth relay and destination, respectively. In this case, the

input-output relationship between the source and destination can still be expressed in the

form of (2.4) with two key differences: the point-to-point MIMO channel matrices H and G

in (2.4) now take the form of H = [HT
1 ,H

T
2 , · · · ,HT

M ]T and G = [G1,G2, · · · ,GM ], respec-

tively, and W becomes a block diagonal matrix, i.e., W = blkdiag{W1,W2, · · · ,WM}.
In order to fully exploit the so-called distributed array gain provided by the multiple re-

lays, the signals forwarded by different relays should ideally be coherently combined at the

destination.

The joint transceiver optimization problem in cooperative relaying networks becomes

more difficult than its counterpart in single-relay networks. For the semi-closed form so-

lution, the SVD-based method [17] may not be readily extended to the case of multiple

physically separated relays due to the fact that their combined transceiver matrix W now

exhibits a block-diagonal structure. In [36], by relaxing the set of per-relay power con-

straints into a single total relay power constraint, it has been shown that for the problem

of minimizing the sum MSEs, the optimal source TPC and relay AF transceiver matrices

jointly diagonalize the overall channel matrix, i.e.,HHH = GWHF, up to an arbitrary unitary

matrix; however, optimizing this unitary matrix remains a challenging task. In [37], the

relay transceiver matrices were jointly optimized to minimize the total relay transmission

power subject to a set of QoS constraints on each transmitted substream. Similar to the

method presented in [36], a suboptimal solution was obtained by replacing the objective

function with a lower bound, which facilitates the diagonalization of the overall channel ma-

trix. Other semi-closed form solutions assuming specific relay transceiver structures have

been proposed, including e.g., the linear MMSE [38,39], the QR decomposition [40,41], etc.
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Fig. 2.3 A point-to-point cooperative MIMO AF relaying network.

In particular, the authors in [39] derived a closed-form solution to the optimal relay AF

transceiver matrix based on the MMSE criterion under a global relay power constraint. A

brief summary of joint transceiver optimization in cooperative relaying networks can also

be found in [6].

Various iterative algorithmic solutions have also been proposed to solve the joint transce-

iver optimization problem for the cooperative MIMO AF relaying network presented in

Fig. 2.3, see, e.g., [26,42–44]. These methods do not assume specific transceiver structures;

instead, they aim to solve for the optimal transceiver matrices directly by relying on various

numerical optimization techniques. Numerical algorithms of this kind have been proposed

based on different optimization techniques including: BCD [26], gradient descent [42],

gradient projection [43] and other related approaches such as the combination of BCD and

gradient descent [44].



2 A Survey of Transceiver Design for MIMO AF Relaying Networks 22

Relay 1Source 1
… … …

F1 W1

…

Destination 1

U1

Source k

…

Fk

Source K

…

FK

… …

… …

Relay m

Relay M
…

…

Wm

WM

Uk

UK

…
…

…
…

…
…Destination k

Destination K

Fig. 2.4 A multi-user cooperative MIMO AF relaying network.

2.3 Multi-User Cooperative AF Relaying Networks

In a typical multi-user wireless network, the amount of spectral resources available to each

user decreases with an increase in the density of users sharing the resources, hence leading

to a degradation in the QoS for each user. MIMO AF relaying is emerging as a promising

technique for mitigating this fundamental limitation [45]. By exploiting the distributed

array gain at the MIMO-aided relays, it becomes possible for multiple source-destination

pairs to communicate concurrently with an acceptable QoS over the same bandwidth.

In a simplified multi-user framework where each source and destination are equipped

with a single antenna, the relay transceiver matrix optimization has been extensively stud-

ied under different design criteria [46–50]. In general, designing the optimal relay AF matrix

in these configurations is deemed challenging, because the resultant optimization problems
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are generally non-convex. Hence, existing algorithms have mostly relied on convex ap-

proximation techniques, e.g., semidefinite relaxation (SDR) [49, 50] and second-order cone

programming (SOCP) approximation [47, 48], in order to obtain approximate solutions to

the original design problems.

When multiple antennas are simultaneously employed by the sources, relays and desti-

nations, as illustrated in Fig. 2.4, the joint transceiver design problem becomes even more

challenging. In particular, the results in [46–52], which focus on sources and destinations

with single antennas are not readily extendable to this more general case. The literature

on joint transceiver design for multi-user cooperative relaying networks is still relatively

limited in spite of their potential additional performance benefits.

To be specific, in [28], global objective functions such as the sum power of the interfer-

ence received at all the destinations and the sum MSEs of all the estimated substreams,

were minimized by adopting the alternating minimization approach of [53], where only a

single design variable is updated at each iteration based on the SDR technique of [54].

In [29], a similar type of iterative algorithms was proposed to solve the worst substream

MSE minimization problem while in [55], a simplified model, where only one MIMO relay

is used in the transmission, was considered. The authors of [25] proposed an alternative

problem formulation, where the objective is to minimize the total source and relay power

subject to a minimum SINR requirement for each source-destination link. To this end, a

two-level iterative algorithm was proposed, which also involves SDR. Since the main goal

of [25] was to achieve high spatial diversity gain to improve the attainable transmission

integrity, the number of substreams transmitted by each source in this setting is limited to

one. In [56], the authors formulated the joint transceiver optimization problem as a linear

MMSE problem subject to relay power constraints. They showed that the resultant opti-

mization problem belongs to the class of so-called quadratic programming problems, and

proposed an algorithmic framework based on solving a sequence of quadratic matrix pro-

grams. This framework is in fact applicable to a wider range of transceiver design problems

such as multi-cell coordinated systems and multi-user MIMO systems.

For completeness, it is worth noting that in [47], a different formulation was proposed

where the aim is to minimize the total power of received interference plus noise at all

destinations subject to linear distortionless constraints on the desired signals. An adaptive

relaying algorithm based on the Kalman filter was proposed to solve this problem recursively

over time. However, this algorithm suffers from some limitations including the use of single-
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antenna sources and destinations, and use of a suboptimal power control.

2.4 Modeling of CSI Errors

Joint source TPC and relay transceiver matrix optimization is considered as a closed-loop

transmission technique, which often needs to be performed at a central processing node

(e.g., a relay cluster head or the (baseband unit) BBU pool in a C-RAN [57]). Hence, the

CSI of all radio links involved in the transmission (all source-relay and relay-destination

links) is required at the central node. However, as pointed out in Chapter 1 and also il-

lustrated in Fig. 1.2, the available CSI at the central node is often inaccurate due to the

combined effects of various sources of imperfections. To address this issue, the availability

of robust transceiver designs, which explicitly take into account the effects of CSI errors,

becomes crucial. Depending on the assumptions concerning the CSI errors, robust designs

fall into two major categories, namely, the statistically robust [58] and worst-case robust

designs [59]. The former class models the CSI errors as random variables with certain statis-

tical distributions (e.g., Gaussian distributions), and robustness is achieved by optimizing

the average performance over all the CSI error realizations. The latter class assumes that

the CSI errors belong to some predefined bounded uncertainty region in a multi-dimensional

space, such as a norm-bounded region, and optimizes the worst-case performance for all

the possible CSI errors within the region.

Let us represent a general flat fading channel by H ∈ CM×N , where M and N denote

the number of receive and transmit antennas, respectively. When CSI errors are present,

we can express H using the following additive model:

H = Ĥ+ΔH, (2.13)

where Ĥ denotes the estimated CSI while ΔH captures the CSI errors [48, 49]. Below we

briefly review the two aforementioned CSI error models of interest.

(1) Statistical Error Model: In this model, we assume that the elements of ΔH are

zero-mean complex Gaussian random variables. Specifically, based on the Kronecker model
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[58, 60], they can in general be written as

ΔH = ΣΣΣ
1/2
H ΔHWΨΨΨ

1/2
H , (2.14)

where ΣΣΣH ∈ CM×M denotes the row correlation matrix, while ΨΨΨH ∈ CN×N is the column

correlation matrix, both being positive definite. The entries of ΔHW are independently

and identically distributed (i.i.d.) complex Gaussian random variables with a zero mean

and unit variance4. Using the Kronecker property, it can be shown that vec(ΔHT ) ∼
CN (0MN×1,ΣΣΣH⊗ΨΨΨH). In this case, ΔH is said to have a matrix-variate complex Gaussian

distribution with its probability density function (PDF) given by

f(ΔH) =
exp(−Tr(ΔHHΣΣΣ−1

H ΔHΨΨΨ−1
H ))

πMN detM(ΣΣΣH) det
N(ΨΨΨH)

. (2.15)

The expressions of ΣΣΣH and ΨΨΨH in (2.14) depend on the specific channel estimation algorithm

being used. For example, when the algorithm in [61] is adopted, we have ΣΣΣH = RT

and ΨΨΨH = σ2
eRR with RT and RR denoting the transmit and receive antenna correlation

matrices, respectively, and σ2
e denoting the estimation error variance. When channels are

estimated using other algorithms, such as the one in [62], ΣΣΣH and ΨΨΨH can have different

structures. However, since ΣΣΣH and ΨΨΨH represent the second-order statistics of the CSI,

they are generally assumed to be known and remain approximately constant over several

transmission blocks.

Channel quantization errors can also be modeled as the above, assuming however that

ΔH has i.i.d. elements, i.e., ΣΣΣH = IM and ΨΨΨH = σ2
eIN . It has been shown in [63] that using

rate distortion theory, H can be quantized by b bits with a quantization error variance

σ2
e = 2−b/MN . Hence, the feedback overhead associated with H is given by

b = MN log2

(
1

σ2
e

)
. (2.16)

(2) Norm-Bounded Error Model: An alternative way to model the CSI error is to

assume that ΔH is bounded in its Euclidean norm by some known constant [59], as repre-

4The superscript “W” simply refers to the spatially white or uncorrelated nature of these random
variables.
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sented by the set

H � {ΔH : ‖ΔH‖F ≤ η} , (2.17)

where η > 0 specifies the radius of the uncertainty region, thus reflecting the degree of

uncertainties. It should be emphasized that the actual error ΔH is assumed to be unknown

while the corresponding upper bound η can be obtained using the preliminary knowledge

of the type of imperfection and/or coarse knowledge of the channel type and its main

characteristic. Interestingly, the determination of the radius η can also be linked to the

above statistical error model. For instance, given the PDF in (2.15), one can compute η

such that Pr(‖ΔH‖F ≤ η) ≥ α, where α provides a measure of confidence (e.g., 95%). The

reader is referred to [59] for additional discussions regarding the choice of η. The benefits

of the norm-bounded error model have been well justified in the literature on robust relay

optimization (see, e.g., [48, 49, 64]).

2.5 Energy Efficiency in Emerging Networks

A tradeoff between the relaying performance and network energy consumption has been

observed in many prior works, see, e.g., [25, 48, 49, 51, 65–67]. That is, to simultaneously

support multiple destination users with enhanced QoS requirements, more relays and/or

higher relay transmission power are required, which is undesired from the perspective of

energy efficient wireless networking. Understanding how to reduce network energy con-

sumption while providing acceptable QoSs to the destination users therefore becomes an

important challenge in the design of next-generation radio access networks [10].

In the literature, most research efforts devoted to designing energy-efficient relaying

networks have been focusing on minimizing the total relay transmission power while meet-

ing specific QoS requirements on the destination users. For instance, in [65], the source

TPC and relay transceiver matrix were jointly optimized to minimize the relay transmis-

sion power while satisfying the QoS requirements of each substream in terms of the MSE.

Similar to the results of [17], this approach leads to the diagonalization of the source-relay-

destination channel up to a unitary matrix. The idea of channel diagonalization was then

extended to the case of multiple cooperative relaying in [37]. In [66], the authors considered

a single-antenna multi-user relay network and jointly selected the source power levels and
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relay weights to minimize the total transmission power subject to a set of predetermined

QoS constraints. The optimization problem is transformed into a DC program, which is

then solved with local optimality using the constrained concave convex procedure (CCCP).

The CCCP algorithm was subsequently adapted to solve the joint source TPC and relay

transceiver optimization in a downlink (DL) relay scenario [67]. An extension of the model

in [66] was considered in [51], where all the relays are now equipped with multiple anten-

nas. An algorithmic solution relying on SOCP along with grid search was proposed, which

however, leads to higher computational complexity. In [48] and [49], the relay transmission

power minimization problem was considered under the assumption of imperfect CSI; ro-

bust algorithm were developed to solve the formulated non-convex nonlinear optimization

problems. A more general multi-user MIMO relay network, where multiple antennas are em-

ployed by all the nodes, was considered in [25]. A two-tier iterative algorithm, which solves

a sequence of semidefinite programs (SDPs), was proposed to minimize the total source

and relay power subject to a minimum SINR requirement for each source-to-destination

link.

Recently, a novel centralized radio access network architecture, called the C-RAN, has

been proposed for 5G networks in order meet the increasing demand for high data-rate ap-

plications [57, 68]. In this new architecture, traditional BS functionalities are apportioned

between a centralized BBU pool and RRHs. The BBU handles the baseband signal pro-

cessing functions while the RRHs provide wireless connectivity to the mobile subscribers.

Besides reducing the deployment and maintenance costs, C-RAN can improve network

spectral efficiency by exploiting cloud computing to jointly process user data and perform

interference coordination. To this end, low-latency and high-bandwidth optimal transport

links are required to enable the exchange of large amounts of user traffic and control sig-

nals between the BBU pool and RRHs. The use of powerful BBU, multiple RRHs and

high-speed transport links inevitably introduces additional power consumption [57], which

has motivated various research efforts devoted to designing energy-efficient C-RAN.

Energy-efficient transmit solutions for C-RAN have been extensively studied for the

scenarios of DL and uplink (UL) scenarios in cellular networks. For instance, a so-called

group sparse beamforming framework has been proposed for network energy minimization

in a C-RAN DL multicast scenario [69]. Capitalizing on the compressive sensing theory, a

so-called group sparsity pattern is associated with the set of beamforming vectors across

all the RRHs and used for obtaining a sparse solution, where only a subset of the RRHs
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are activated at any instant. The effect of imperfect CSI has been considered in [70]

under the same network setup and a robust version of the group sparse beamforming

solution has also been proposed with the aid of semidefinite relaxation. The joint DL

and UL energy minimization problem for C-RAN has been studied in [71], where the

UL receive-beamforming problem is equivalently translated into an equivalent virtual DL

problem by invoking the well-established UL-DL duality. In [72], sparse beamforming has

been also applied in solving the network utility maximization problem under the nonlinear

constraint posed by finite-capacity fronthaul links. Large-scale optimization methods for

solving various transceiver design problems in C-RAN are surveyed in [73].

While most of the prior contributions focus on coordinated beamforming in both DL

and UL C-RAN scenarios, the exploitation of RRHs as relays for further improving the

network capacity and coverage has remained largely undisclosed. Specifically, in addition

to the relay transmission power, the static power consumption from the RF circuitry, A/D

conversion and optical fronthaul associated with each relay needs to be considered in the

system design. That is, the total power consumption of a relay can now be expressed as

Ptotal = Pc + Pt, where Pc denotes the static power level, which becomes non-negligible

compared to the transmission power Pt, as reported in [57]. Hence, when a relay can be

switched off, both its static and transmission power can be saved. The consideration of

the static power motivates a new design approach of joint relay selection and transceiver

optimization, where the objective is to adaptively select a subset of active relays while

satisfying the QoS constraints at all destination users.

2.6 Physical Layer Security for Wireless Relaying

Relay transceiver structures can be optimized from the perspectives of link performance and

energy efficiency as seen in the previous sections. Another yet important aspect of wireless

relaying design is the secrecy of relayed transmissions. As mentioned in Chapter 1, phys-

ical layer security is emerging as a promising alternative to complement the conventional

encryption provided by the higher layer in the protocol stack. Physical layer security refers

to signal processing techniques that exploit underlying wireless channel characteristics in

order to reduce the ability of malicious attackers, e.g., eavesdroppers, to intercept sensitive

communications, thereby improving security. In this thesis, emphasis will be placed on the

use of physical layer techniques for improving the secrecy of relayed transmissions in the
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Fig. 2.5 Relay-aided signal processing approaches for physical layer security
enhancement in the presence of an eavesdropper.

presence of eavesdroppers. Below we review related works on this research topic.

In the literature, depending on the different roles played by relays and their correspond-

ing signal processing strategies, prior works can be classified into four general classes.

• Secure Beamforming: In this category, one or more multi-antenna relays for-

ward the signal transmitted from the source to the legitimate destination using a

beamforming-aided approach, as sketched in Fig. 2.5 (a). Usually it is assumed that

there is no direct link between the source and destination due to a high path loss. As

in conventional relaying, a relay can adopt either the AF or DF strategy for forward-

ing the source message. For DF relaying, the optimal beamforming weights achieving

the maximum secrecy capacity were derived in [74,75]. Compared to DF, AF relaying

offers its inherent advantages of lower signal processing complexity and latency, and

hence, will be the focus of our attention in this thesis. Intuitively, the motivation

behind the use of AF relaying for improving transmission secrecy is the possibility

to design the AF transceiver matrix such that its main transmit beam is focused
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towards the legitimate destination as much as possible, while steering nulls towards

the eavesdroppers. For instance, the optimal AF relaying weights maximizing the

secrecy capacity of a single-antenna relay network were derived in [76], but without

considering the information leakage from the source to eavesdroppers.

In the case where multiple antennas are employed at both the source and relay, joint

transmit precoding and power allocation relying on the generalized SVD was proposed

in [77]. Joint source precoding and AF relaying was investigated in [78] assuming an

untrusted relay node. In [79], the secure AF relaying was designed for a two-way

MIMO relaying network, as an extension to the one-way MIMO relaying network.

In [80], the relay AF transceiver matrix was optimized to maximize the transmission

reliability, e.g., SINR at the legitimate destination subject to a set of constraints

on the leakage capacity, where a norm-bounded CSI error model is considered for

all eavesdropper channels. In [81], intercept probability-constrained approach was

considered for designing the MIMO AF relaying, where the CSI errors associated

with the eavesdropper channels are assumed to be Gaussian distributed.

• Relay-Aided Jamming: When there exists a direct link between the source and

legitimate destination, relays do not necessarily need to forward the information.

Instead, they can cooperatively transmit AN, which is assumed to be independent of

the confidential information, in order to jam the eavesdroppers (see Fig. 2.5 (b)). A

widely-used jamming strategy is called null space jamming, which aims to transmit

AN such that the latter resides in the null space of the relay-to-destination channel.

By doing so, it can be ensured that the legitimate channel will not be affected by the

AN, which may degrade the quality of the eavesdroppers’ received signals. Null space

jamming is relatively easy to implement but may be suboptimal. In [75] and [82], the

authors considered a single-antenna relay network and developed a one-dimensional

search method to compute an optimal distributed relay beamformer for jamming

under total relay power constraint and per-relay power constraints, respectively.

• Mixed Beamforming and Jamming: This strategy simply combines the above

two approaches by allowing a subset of the relays to cooperatively forward the con-

fidential data to the legitimate destination while the remaining ones act as jammers.

The allocation of relays between beamforming and jamming relays can be either pre-

determined or optimized based on the conditions affecting the different relays such
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as: channel quality, relay locations and transmission power budgets. When the relay

allocation is predetermined, the aforementioned techniques can be applied across the

group of relays as in, e.g., [83, 84]. When the relay allocation is performed jointly

with the beamforming and jamming design, the formulated problem is non-convex

and quite challenging. Some heuristic relay selection methods such as exhaustive

search [85] and convex relaxation [86] have been proposed. For instance, in [86],

a one source, multiple relay and one destination model was considered, where all

nodes are assumed to be single-antenna. The weights for relaying and jamming, and

the relay allocation were jointly optimized to maximize the secrecy rate subject to

a total relay power constraint. To this end, an SDR-based approach was proposed,

which transforms the original problem into a convex SDP by relaxing an underlying

rank-one constraint.

• Joint Beamforming and Artificial Noise Emission: This strategy is the most

general one since it allows all the relays to simultaneously forward legitimate informa-

tion and transmit AN. This approach fully exploits the available degrees of freedom

at each relay when the latter are equipped with multiple antennas. However, owing

to the coupling of the beamformer signal and AN generation at each relay, it is in

general challenging to optimize the beamforming matrix and AN jointly. The litera-

ture on this type of secure relaying design methods is still limited. For example, [87]

considered the problem of secrecy rate maximization by simultaneously optimizing

the AF matrices and the AN covariance matrices at multiple relays. A globally opti-

mal solution was obtained by resorting to a bi-level optimization framework, where

the upper-level problem is tackled by one-dimensional search, while the inner-level

problem is solved by the SDR. One of our focus in this thesis will be on the joint

beamforming and AN design for secure communications in relaying networks.

Many prior works on physical layer security assume perfect knowledge of the eaves-

dropper’s channel state information (ECSI) at the legitimate nodes. In practice, due to

the lack of explicit cooperation between the latter and the eavesdroppers, at best an in-

accurate estimate of the ECSI may be available. In the context of this thesis, this fact

motivates the study of secure relaying designs, which also offers robustness to uncertainties

in the eavesdropper channels. In [80], assuming that the ECSI errors lie in a predefined

norm-bounded region, a secure AF relaying approach that is robust to the ECSI errors was
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proposed to maximize reception quality at the legitimate destination while In [81], knowl-

edge of the distribution of the ECSI errors (e.g., Gaussian) was assumed, and an intercept

probability constrained maximum SINR beamforming scheme was proposed for an MIMO

AF relay network. Assuming that the ECSI errors lie in a predefined norm-bounded region,

a secure AF relaying scheme that is robust to the ECSI errors was proposed to maximize

the reception quality at the legitimate destination while enforcing the information leakage

to the eavesdroppers to fall below a threshold [80]. Under the same ECSI error model,

joint relay beamforming and jamming signal design in a single-antenna relay network was

developed in [86, 88], with the aim of maximizing the worst-case secrecy rate. Extension

of this approach to a more general model where multiple antennas are employed at the

relay was considered in [87, 89]. Minimization of the MSE of the received signal at the

destination, subject to a set of SINR-based secrecy constraints, was considered in [79].

Using the same uncertainty model, the problem of total relaying power minimization was

studied in [90,91] by simultaneously guaranteeing a predefined QoS level at the destination

and a certain secrecy level against eavesdropping. Finally, a distributionally robust design

approach was investigated in [92] under the assumption that the ECSI errors follow some

unknown distributions with the knowledge of the first and second-order statistics.

2.7 Concluding Remarks

In this chapter, we have presented a review of important design approaches in the optimiza-

tion of MIMO AF relay transceivers from the perspectives of user QoS, energy efficiency

and transmission secrecy. In addition, modeling of the CSI errors within this framework

has been addressed. This literature review provides motivations and serves as basis for the

research contributions presented in subsequent chapters of this thesis. More specifically,

Chapter 3 develops robust optimization algorithms for a general multi-user MIMO cooper-

ative relaying network. Chapter 4 studies energy-efficient MIMO relaying algorithms in a

C-RAN. Chapter 5 focuses on the robust secure relaying design in the presence of multiple

eavesdroppers. It is also worth noting that in this thesis, we make excessive use of concepts

and techniques from modern optimization theory. Interested readers are referred to [93] for

the fundamentals of convex optimization and to [94–96] for more specific methods which

are closely related to the algorithm development and analysis in this thesis.
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Chapter 3

Robust Joint MIMO Relay

Transceiver Optimization

As mentioned in Chapters 1 and 2, the efficacy of the joint transceiver design in MIMO re-

laying networks relies on the availability and accuracy of the CSI for all radio links involved

in the relaying transmission. In practice, the CSI available for transceiver optimization at

the central node is often subject to errors. The performance of the conventional relay

transceiver optimization methods may hence be substantially degraded in the presence of

realistic CSI errors. Robust transceiver designs, which explicitly take into account the

effects of CSI errors, are highly desirable.

In this chapter, we study the joint transceiver design in a general MIMO multi-user

relay network, where multiple source (S)-destination (D) pairs communicate with the as-

sistance of multiple relays (R) and each source transmits multiple parallel data streams

to its corresponding destination. Under the realistic assumption of imperfect CSI for all

the S-R and R-D links, we propose a new robust optimization framework for minimizing

the maximum per-stream MSE subject to the source and relay power constraints, which

is termed as the min-max problem. In the proposed framework, we aim for solving both

the statistically robust and worst-case robust versions of the min-max problem, which take

into account either the statistical CSI errors or the norm-bounded CSI errors, respectively,

while maintaining a tractable computational complexity. Furthermore, to strictly satisfy

Parts of the materials in this chapter have been presented at the 2014 IEEE 80th Vehicular Technology
Conference in Vancouver, Canada [97], and published in the IEEE Transactions on Vehicular Technology
[30].
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the QoS specifications of all the data streams, we subsequently consider the problem of

minimizing the maximum per-relay power, subject to the QoS constraints of all the data

streams and to the source power constraints, which is referred to as the QoS problem. The

main contributions of this chapter are threefold:

• The statistically robust min-max problem being non-convex, an algorithmic solution

having a proven convergence is proposed by invoking the iterative block coordinate

update approach of [98] while relying on both matrix transformation and convex

conic optimization techniques. The proposed iterative algorithm successively solves

in a circular manner three sub-problems corresponding to the source TPCs, relay AF

matrices and receive filters, respectively. We show that the receive filter sub-problem

yields a closed-form solution, while the other two sub-problems can be transformed

to convex quadratically-constrained linear programs (QCLPs). Each QCLP can sub-

sequently be reformulated as an efficiently solvable SOCP.

• The worst-case robust min-max problem is both non-convex and semi-infinite1. To

overcome these challenges, we first present a generalized version of the so-called S-
lemma given in [99], based on which, each sub-problem can be exactly reformulated

as an SDP with only linear matrix inequality (LMI) constraints. This results in an

iterative algorithmic solution involving several SDPs.

• The QoS-based transceiver optimization is more challenging than that of the min-

max problem, because it is difficult to find a feasible initialization. Hence, our major

contribution here is to propose an efficient procedure for finding a feasible starting

point for the iterative QoS-based optimization algorithm, provided that there exits

one; otherwise, the procedure returns a certificate of infeasibility.

The rest of the chapter is organized as follows. Section 3.1 introduces the relaying system

and CSI error models. The robust joint transceiver design problems are also formulated

in this section. In Section 3.2 and 3.3, iterative algorithms are proposed for solving the

min-max problem both under the statistical and the norm-bounded CSI error models,

respectively. The QoS problem is dealt with in Section 3.4. Numerical results are reported

in Section 3.5, followed by conclusions in Section 3.6.

1In optimization theory, semi-infinite programming is an optimization problem with a finite number of
variables and an infinite number of constraints or an infinite number of variables and a finite number of
constraints.
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=

= =

=

Fig. 3.1 MIMO multi-user, multi-relay network with each source transmit-
ting multiple data streams to its corresponding destination.

3.1 System Model and Problem Formulation

We consider an MIMO multi-user relaying network, where M AF relay nodes assist the

one-way communication between K S-D pairs, as depicted in Fig. 3.1, where all the nodes

are equipped with multiple antennas. Specifically, the kth S and D, respectively, employ

NS,k and ND,k antennas for k ∈ K � {1, 2, · · · , K}, while the mth R employs NR,m antennas

for m ∈ M � {1, · · · ,M}. All the relays operate under the half-duplex AF protocol, where

the data transmission from the sources to their destinations is completed in two stages. In

the first stage, all the sources transmit their signals to the relays concurrently, while in

the second stage, the relays apply linear processing to the received signals and forward

the resultant signals to all the destinations. We assume that no direct links are available

between the sources and destinations due to severe attenuation.

A narrowband flat-fading radio propagation model is considered, where we denote the

channel matrix between the kth S and the mth R by Hm,k ∈ CNR,m×NS,k and the channel
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matrix between the mth R and the kth D by Gk,m ∈ CND,k×NR,m . Let sk � [sk,1, · · · , sk,dk ]
T

denote the information symbols to be transmitted by the kth S at a given time instant,

where dk ≤ min {NS,k, ND,k} is the number of independent data streams. The symbols

are modeled as independent random variables with a zero mean and unit variance, hence

E
{
sks

H
k

}
= Idk . The kth S applies a linear vector of fk,l ∈ CNS,k×1 for mapping the lth

data stream to its NS,k antennas for l ∈ Dk � {1, · · · , dk}, thus forming a linear TPC of

Fk = [fk,1, · · · , fk,dk ] ∈ CNS,k×dk . The transmit power is thus given by Tr
(
FkF

H
k

)
≤ Pmax

S,k ,

where Pmax
S,k is the maximum affordable power of the kth S. Let nR,m ∈ CNR,m×1 be the

spatially white, additive noise vector at the mth R, with a zero mean and covariance matrix

of E
{
nR,mn

H
R,m

}
= σ2

R,mINR,m .

After the first stage of transmission, the signal received at the mth R is given by

zR,m =
K∑
k=1

Hm,kFksk + nR,m. (3.1)

Each R applies a linear matrix Wm ∈ CNR,m×NR,m to zR,m and forwards the resultant signal

rR,m = WmzR,m =
K∑
k=1

WmHm,kFksk +WmnR,m (3.2)

to all the destinations at a power of

PR,m =
K∑
k=1

‖WmHm,kFk‖2F + σ2
R,m‖Wm‖2F . (3.3)

Let nD,k denote the spatially white, additive noise vector at the kth D with a zero mean and

covariance matrix of E
{
nD,kn

H
D,k

}
= σ2

D,kIND,k
. The kth D observes the following signal after

the second stage of transmission

yk =
K∑
q=1

M∑
m=1

Gk,mWmHm,qFqsq +
M∑

m=1

Gk,mWmnR,m + nD,k, (3.4)

where the subscript q is now used for indexing the sources. To estimate the lth data stream

received from its corresponding source, the kth D applies a linear vector uk,l to the received

signal, thus forming a receive filter Uk = [uk,1, · · · ,uk,dk ] ∈ CND,k×dk . Specifically, the
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estimated information symbols are given by ŝk,l = uH
k,lyk, which can be expressed as

ŝk,l = uH
k,l

M∑
m=1

Gk,mWmHm,kfk,lsk,l︸ ︷︷ ︸
desired data stream

+uH
k,l

M∑
m=1

Gk,mWmHm,k

dk∑
p=1,p �=l

fk,psk,p︸ ︷︷ ︸
inter-stream interference

+
K∑

q=1,q �=k

uH
k,l

M∑
m=1

Gk,mWmHm,qFqsq︸ ︷︷ ︸
inter-user interference

+
M∑

m=1

uH
k,lGk,mWmnR,m︸ ︷︷ ︸

enhanced noise from relays

+ uH
k,lnD,k︸ ︷︷ ︸

receiver noise

. (3.5)

In this chapter, we make the following common assumptions concerning the statistical

properties of the signals: (1) the information symbols transmitted from different S are

uncorrelated, i.e., we have E
{
sks

H
m

}
= 0, ∀k,m ∈ K and k �= m; (2) the information

symbols, the relay noise and the receiver noise, sk, nR,m and nD,l, are mutually statistically

independent ∀k, l ∈ K and m ∈ M.

3.1.1 QoS Metric

We adopt the MSE as the QoS metric for each estimated data stream. The major advantage

of using the MSE is to make our design problem tractable, which has been well justified in

the AF relay matrix design literature [17,65] and in the references therein. In fact, the links

between the MSE and other classic criteria such as the bit error rate (BER) and the SINR

have been well established in [17,18]. Specifically, it has been shown that an improvement

in MSE will naturally lead to a reduced BER.

The MSE of the lth estimated data stream received at the kth D is defined as

εk,l = E
{
|ŝk,l − sk,l|2

}
. (3.6)

Substituting (3.5) into (3.6), and using the assumptions A1) and A2), we obtain

εk,l =

∥∥∥∥uH
k,l

M∑
m=1

Gk,mWmHm,kFk − eTk,l

∥∥∥∥2

+
K∑

q=1,q �=k

∥∥∥∥uH
k,l

M∑
m=1

Gk,mWmHm,qFq

∥∥∥∥2

+
M∑

m=1

σ2
R,m

∥∥uH
k,lGk,mWm

∥∥2
+ σ2

D,k ‖uk,l‖2 , (3.7)
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where ek,l ∈ Rdk×1 is a vector with all zero entries but the lth entry, which is equal to one.

3.1.2 CSI Error Model

The two main CSI error models have been introduced in Chapter 2.4. Here, for ease of

reference, we reintroduce these models for the specific model considered in this chapter.

Let us characterize the true but unknown channels as

Hm,k = Ĥm,k +ΔHm,k, Gk,m = Ĝk,m +ΔGk,m, (3.8)

where Ĥm,k and Ĝk,m, respectively, denote the estimated S-R and R-D channels, while ΔHm,k

and ΔGk,m capture the corresponding channel uncertainties [48, 49]. In what follows, we

consider two popular techniques of modeling the channel uncertainties:

1) Statistical Error Model : In this model, we assume that the elements of ΔHm,k

and ΔGk,m are zero-mean complex Gaussian random variables. Specifically, based on the

Kronecker model [58, 60], they can in general be written as

ΔHm,k = ΣΣΣ
1/2
Hm,k

ΔHW
m,kΨΨΨ

1/2
Hm,k

(3.9)

ΔGk,m = ΣΣΣ
1/2
Gk,m

ΔGW
k,mΨΨΨ

1/2
Gk,m

, (3.10)

where ΣΣΣHm,k
and ΣΣΣGk,m

are the row correlation matrices, while ΨΨΨHm,k
and ΨΨΨGk,m

the are

column correlation matrices, all being positive definite. The entries of ΔHW
m,k and ΔGW

k,m

are i.i.d. complex Gaussian random variables with a zero mean and unit variance2. This

model is suitable, when the CSI errors are dominated by the channel estimation errors.

2) Norm-Bounded Error Model : When the CSI is subject to quantization errors due

to the limited-rate feedback, it can no longer be accurately characterized by the above

statistical model. Instead, ΔHm,k and ΔGk,m are considered to assume values from the

following norm-bounded sets [59]

Hm,k � {ΔHm,k : ‖ΔHm,k‖F ≤ ηm,k} (3.11)

Gk,m � {ΔGk,m : ‖ΔGk,m‖F ≤ ξk,m} , (3.12)

2The superscript “W” simply refers to the spatially white or uncorrelated nature of these random
variables.
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where ηm,k > 0 and ξk,m > 0 specify the radii of the uncertainty regions, thus reflecting

the degree of uncertainties. The benefits of such an error model have been well justified in

the literature of robust relay optimization (see, e.g., [48,49,64]). The determination of the

radii of the uncertainty regions has also been discussed in [59].

Throughout the chapter, we assume that the magnitudes of the CSI errors are signifi-

cantly lower than those of the channel estimates, and therefore, terms containing the cross

product of CSI errors, i.e., ΔGk,mWmΔHm,k and ΔGk,mWmΔHm,q are neglected in our

subsequent analysis since these terms have small norm relative to the other terms. We also

introduce in Table 3.1 some useful notations to simplify our exposition.

Substituting (3.8) into (3.7), and applying the above-mentioned assumptions, the per-

stream MSE in the presence of CSI errors can be approximated as (3.13). We now observe

that the per-stream MSE becomes uncertain in ΔHm,k ∀(m, k) ∈ M × K and ΔGk,m

∀m ∈ M. Therefore, we introduce the following compact notations for convenience:

ΔGk � (ΔGk,1, · · · ,ΔGk,M) ∈ Gk � Gk,1 × · · · × Gk,M

ΔH � (ΔH1,1, · · · ,ΔHM,K) ∈ H � H1,1 × · · · × HM,K .

For subsequent derivations, the dependence of εk,l on ΔH and ΔGk is made explicit in

(3.13).

The kth relay’s transmit power in the presence of CSI errors can also be explicitly

expressed as PR,m (ΔHm), where ΔHm � (ΔHm,1, · · · ,ΔHm,K) ∈ Hm � Hm,1×· · ·×Hm,K .

εk,l (ΔH,ΔGk) ≈
∥∥∥∥uH

k,l TTT k,k +
M∑

m=1

uH
k,lΔGk,mWWWm,k Fk +

M∑
m=1

uH
k,lGGGk,m ΔHm,kFk − eTk,l

∥∥∥∥2

+
K∑

q=1,q �=k

∥∥∥∥uH
k,l TTT k,q +

M∑
m=1

uH
k,lΔGk,mWWWm,q Fq +

M∑
m=1

uH
k,lGGGk,m ΔHm,qFq

∥∥∥∥2

+
M∑

m=1

σ2
R,m

∥∥uH
k,lGGGk,m +uH

k,lΔGk,mWm

∥∥2
+ σ2

D,k ‖uk,l‖2 . (3.13)
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Table 3.1 Equivalent Notations Used in the Subsequent Analysis
Notations Definitions

GGGk,m Ĝk,mWm

WWWm,k WmĤm,k

UUUk,m UH
k Ĝk,m

HHHm,k Ĥm,kFk

TTT k,q

∑M
m=1 Ĝk,mWmĤm,qFq

3.1.3 Problem Formulation

In contrast to the prior advances [17, 28, 46–48] found in the relay optimization literature,

where certain global objective functions are minimized subject to power constraints at the

sources and relays, we formulate the following robust design problems under the explicit

consideration of QoS. Let us commence by introducing the following unified operation:

U {f (ΔX)} =

{
EΔX f (ΔX) ΔX is random

max
ΔX∈X

f (ΔX) ΔX is deterministic,
(3.14)

where ΔX ∈ CM×N and f (·) : CM×N → R. Depending on the specific assumptions

concerning ΔX, U {·} either computes the expectation of f (ΔX) over the ensemble of

realizations ΔX or maximizes f (ΔX) for all ΔX within some bounded set X . This notation

will be useful and convenient for characterizing the per-stream MSE of (3.13) and the relay’s

power PR,m (ΔHm) for different types of CSI errors in a unified form in our subsequent

analysis.

Min-Max Problem

For notational convenience, we define F � (F1, · · · ,FK), W � (W1, · · · ,WM), and U �
(U1, · · · ,UK), which collect the corresponding design variables. In this problem, we jointly

design {F,W,U} with the goal of minimizing the maximum per-stream MSE subject to the

source and relay power constraints. This problem pertains to the design of energy-efficient

relay networks, where there is a strict constraint on the affordable power consumption.

Based on the notation in (3.14), it can be expressed in the following unified form, denoted
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as M(PR):

min
F,W,U

max
∀k∈K,l∈Dk

κk,lU {εk,l (ΔH,ΔGk)} (3.15a)

s.t. U {PR,m (ΔHm)} ≤ ρmPR, ∀m ∈ M (3.15b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k , ∀k ∈ K, (3.15c)

where {κk,l > 0 : ∀k ∈ K, l ∈ Dk} is a set of weights assigned to the different data streams

for maintaining fairness amongst them, PR is the common maximum affordable transmit

power of all the relays and {ρm > 0 : ∀m ∈ M} is a set of coefficients specifying the indi-

vidual power of each relay.

QoS Problem

The second strategy, which serves as a complement to the above min-max problem, aims

for minimizing the maximum per-relay power, while strictly satisfying the QoS constraints

for all the data streams as well as all the source power constraints3.

Specifically, this problem, denoted as Q(γ), can be formulated as

min
F,W,U

max
m∈M

1

ρm
U {PR,m(ΔHm)} (3.16a)

s.t. U {εk,l (ΔH,ΔGk)} ≤ γ

κk,l

, ∀k ∈ K, l ∈ Dk (3.16b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k , ∀k ∈ K, (3.16c)

where γ denotes a common QoS target for all the data streams.

The following remark is of interest.

Remark 3.1 (On the problem formulation). The major difference between the min-max

and QoS problems is that solving the QoS problem is not always feasible. This is because the

per-stream MSE imposed by the inter-stream and inter-user interference [c.f. (3.13)] cannot

3In fact, the min-max problem M(PR) and the QoS problem Q(γ) are the so-called inverse problems,
i.e., we have γ = M [Q(γ)] and PR = Q [M(PR)]. The proof follows a similar argument to that of Theorem
3 in [19]. However, as shown in the subsequent analysis, the proposed algorithm cannot guarantee finding
the global optimum of the design problems. Therefore, monotonic convergence cannot be guaranteed which
is formally stated as PR ≥ P ′

R � M(PR) ≤ M(P ′
R) and γ ≥ γ′ � Q(γ) ≤ Q(γ′). Due to the lack of the

monotonicity, a one-dimensional binary search algorithm is unable to solve Q(γ) via a sequence of M(PR)
evaluations. Consequently, a formal inverse problem definition is not stated in the chapter.
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be made arbitrarily small by simply increasing the transmit power. By contrast, solving

the min-max problem is always feasible, since it relies on its “best effort” to improve the

QoS for all the data streams at a limited power consumption. Both problem formulations

are non-convex and in general NP-hard. These issues motivate the pursuit of a tractable,

but suboptimal solution to the design problems considered.

3.2 Statistically Robust Transceiver Design for the Min-Max

Problem

In this section, we propose an algorithmic solution to the min-max problem of (3.15) in the

presence of the statistical CSI errors of Section 3.1. The corresponding statistically robust

version of (3.15) can be formulated as

min
F,W,U

max
∀k∈K,l∈Dk

κk,lεk,l (3.17a)

s.t. P R,m ≤ ρmPR, ∀m ∈ M (3.17b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k , ∀k ∈ K, (3.17c)

where we have

εk,l � EΔH,ΔGk
{εk,l (ΔH,ΔGk)}

P R,m � EΔHm {PR,m(ΔHm)} . (3.18)

To further exploit the structure of (3.17), we have to compute the expectations in (3.18),

which we refer to as the averaged MSE and relay power, respectively. By exploiting the in-

dependence of ΔHm,k and ΔGk,m in (3.13), the per-stream MSE averaged over the channel
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uncertainties can be expanded as

εk,l = uH
k,l

(
TTT k,k TTT H

k,k +Rk

)
uk,l − 2�

{
uH
k,l TTT k,k ek,l

}
+ 1

+
K∑
q=1

M∑
m=1

E
{
uH
k,lΔGk,mWWWm,q FqF

H
q WWWH

m,q ΔGH
k,muk,l

}︸ ︷︷ ︸
I1

+
K∑
q=1

M∑
m=1

E
{
uH
k,lGGGk,m ΔHm,qFqF

H
q ΔHH

m,q GGGH
k,m uk,l

}︸ ︷︷ ︸
I2

+
M∑

m=1

σ2
R,m E

{
uH
k,lΔGk,mWmW

H
mΔGH

k,muk,l

}︸ ︷︷ ︸
I3

, (3.19)

where we have

Rk =
K∑

q=1,q �=k

TTT k,q TTT H
k,q +

M∑
m=1

σ2
R,mGGGk,mGGGH

k,m +σ2
D,kIdk . (3.20)

To compute the expectations in (3.19), we use the property of the Kronecker product

vec(ABC) = (CT ⊗A) vec(B) and obtain

I1 = E
{
vecH(ΔGH

k,m)(u
∗
k,l ⊗WWWm,qFq)(u

T
k,l ⊗ FH

q WWWH
m,q) vec(ΔGH

k,m)
}
. (3.21)

Invoking properties of the Tr(·) operator, the above can be rewritten as

I1 = Tr
(
(uT

k,l ⊗ FH
q WWWH

m,q)E
{
vec(ΔGH

k,m) vec
H(ΔGH

k,m)
}
(u∗

k,l ⊗WWWm,qFq)
)
. (3.22)

Based on the Kronecker model (3.10), i.e., E
{
vec(ΔGH

k,m) vec
H(ΔGH

k,m)
}
= ΣΣΣGk,m

⊗ΨΨΨGk,m
,

I1 can further be expressed as

I1 = Tr
(
(uT

k,l ⊗ FH
q WWWH

m,q)(ΣΣΣGk,m
⊗ΨΨΨGk,m

)(u∗
k,l ⊗WWWm,qFq)

)
. (3.23)
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Finally, using the mixed property of the Kronecker product, i.e, (A⊗B)(C⊗D) = (AC⊗
BD), after some simple manipulations we arrive at

I1 = Tr
(
uT
k,lΣΣΣGk,m

u∗
k,l ⊗ (FH

q WWWH
m,qWWWm,qFq)

)
= (uT

k,lΣΣΣGk,m
u∗
k,l) Tr(F

H
q WWWH

m,qΨΨΨGk,m
WWWm,qFq)

= Tr
(
WWWm,q FqF

H
q WWWH

m,qΨΨΨGk,m

)
uH
k,lΣΣΣGk,m

uk,l. (3.24)

Similarly, I2 and I3 can be simplified to

I2 = Tr
(
FqF

H
q ΨΨΨHm,q

)
uH
k,lGGGk,mΣΣΣHm,q GGGH

k,m uk,l (3.25)

I3 = Tr
(
WmW

H
mΨΨΨGk,m

)
uH
k,lΣΣΣGk,m

uk,l. (3.26)

Based on (3.24)–(3.26), the averaged MSE in (3.19) is therefore equivalent to

εk,l = uH
k,l

(
TTT k,k TTT H

k,k +Rk +ΩΩΩk

)
uk,l − 2�

{
uH
k,l TTT k,k ek,l

}
+ 1, (3.27)

where

ΩΩΩk =
K∑
q=1

M∑
m=1

(
Tr

(
WWWm,q FqF

H
q WWWH

m,qΨΨΨGk,m

)
ΣΣΣGk,m

+ Tr
(
FqF

H
q ΨΨΨHm,q

)
GGGk,mΣΣΣHm,q GGGH

k,m

)

+
M∑

m=1

σ2
R,m Tr

(
WmW

H
mΨΨΨGk,m

)
ΣΣΣGk,m

. (3.28)

After careful inspection, it is interesting to find that εk,l is convex with respect to each

block of its variables F, W and U, although not jointly convex in all the design variables.

The averaged relay power P R,m can be derived as

P R,m =
K∑
k=1

(
Tr

(
FH

k Ĥ
H
m,kW

H
mWmĤm,kFk

)
+ Tr

(
FkF

H
k ΨΨΨHm,k

)
Tr

(
WH

mWmΣΣΣHm,k

) )
+ σ2

R,m Tr
(
WmW

H
m

)
(3.29)

and the convexity of P R,m in each of F and W is immediate.
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3.2.1 Iterative Joint Transceiver Optimization

It is worthwhile noting that the inner point-wise maximization in (3.17a) preserves the

partial convexity of εk,l. Substituting (3.27) and (3.29) back into (3.17), the latter is shown

to possess a so-called block multi-convex structure [98], which, implies that the problem is

convex in each block of variables, although in general not jointly convex in all the variables.

Motivated by the above property, we propose an algorithmic solution for the joint

transceiver optimization based on the block coordinate update approach, which updates

the three blocks of design variables, one at a time while fixing the values associated with

the remaining blocks. In this way, three sub-problems can be derived from (3.17), with each

updating F, W and U, respectively. Each sub-problem can be transformed into a convex

one, which is computationally much simpler than directly finding the optimal solution to

the original joint problem (if at all possible). Since solving for each block at the current

iteration depends on the values of the other blocks gleaned from the previous iteration,

this method in effect can be recognized as a joint optimization approach in terms of both

the underlying theory [53, 98] and the related applications [25, 28]. We now proceed by

analyzing each of these sub-problems.

Receive Filter Design

It can be observed in (3.19) that εk,l in (3.17a) only depends on the corresponding linear

vector uk,l, while the constraints (3.17b) and (3.17c) do not involve uk,l. Hence, for a fixed

F and W, the optimal uk,l can be obtained independently and in parallel for different (k, l)

values by equating the following complex gradient to zero:

∇u∗
k,l
εk,l = 0. (3.30)

The resultant optimal solution of (3.30) is the Wiener filter

uk,l =
(
TTT k,k TTT H

k,k +Rk +ΩΩΩk

)−1 TTT k,k ek,l. (3.31)

Source TPC Design

We then solve our problem for the TPC F, while keeping W and U fixed. For better

exposition of our solution, we can rewrite (3.17) after some matrix manipulations, explicitly
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in terms of F as the following:

min
F

max
∀k∈K,l∈Dk

κk,l

{ K∑
q=1

M∑
m=1

M∑
n=1

Tr
(
FH

q WWWH
m,q UUUH

k,m Ek,lUUUk,nWWWn,q Fq

)

−
M∑

m=1

2�{Tr (Ek,lUUUk,mWWWm,k Fk)}+ ak,l3

+
K∑
q=1

M∑
m=1

Tr
(
FH

q WWWH
m,kΨΨΨGk,m

WWWm,k Fq

)
Tr

(
uH
k,lΣΣΣGk,m

uk,l

)

+
K∑
q=1

M∑
m=1

Tr
(
FH

q ΨΨΨHm,qFq

)
Tr

(
uH
k,lGGGk,mΣΣΣHm,q GGGH

k,m uk,l

)}
(3.32a)

s.t.
K∑
k=1

Tr

(
FH

k

(
ĤH

m,kW
H
mWmĤm,k + Tr

(
WH

mWmΣΣΣHm,k

)
ΨΨΨHm,k

)
Fk

)
≤ ηR,m, ∀m ∈ M

(3.32b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k , ∀k ∈ K, (3.32c)

where Ek,l � ek,le
T
k,l, ηR,m � ρmPR − σ2

R,m Tr
(
WmW

H
m

)
and

ak,l3 � uH
k,l

[ M∑
m=1

σ2
R,m

(
Tr

(
WmW

H
mΨΨΨGk,m

)
ΣΣΣGk,m

+ GGGk,mGGGH
k,m

)
+ σ2

D,kIND,k

]
uk,l + 1. (3.33)

The solution to the problem (3.32) is not straightforward, hence we transform it into a more

tractable form. To this end, we introduce the new variables of fk � vec (Fk) ∈ CNS,kdk×1

∀k ∈ K and define the following quantities which are independent of fk ∀k ∈ K

Ak,l
1,q �

M∑
m=1

Idk ⊗
( M∑

n=1

WWWH
m,q UUUH

k,m Ek,lUUUk,nWWWn,q

+ Tr
(
uH
k,lΣΣΣGk,m

uk,l

)
WWWH

m,kΨΨΨGk,m
WWWm,k

+ Tr
(
uH
k,lGGGk,mΣΣΣHm,q GGGH

k,m uk,l

)
ΨΨΨHm,q

)
(3.34)

ak,l
2 = vec

(
M∑

m=1

WWWH
m,kUUUH

k,m Ek,l

)
(3.35)

Am
4,k = Idk ⊗

(
WWWH

m,kWWWm,k +Tr
(
WH

mWmΣΣΣHm,k

)
ΨΨΨHm,k

)
. (3.36)
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It may be readily verified that Ak,l
1,q and Am

4,k are positive definite matrices. Then we in-

voke the following identities, Tr
(
AHBA

)
= vec (A)H (I⊗B) vec (A) and Tr

(
AHB

)
=

vec (B)H vec (A), for transforming both the objective (3.32a) and the constraints (3.32b)–

(3.32c) into quadratic expressions of fk, and finally reach the following equivalent formula-

tion:

min
f1,··· ,fK ,t

t (3.37a)

s.t.
K∑
q=1

fHq Ak,l
1,qfq − 2�

{
fHk ak,l

2

}
+ ak,l3 ≤ t

κk,l

, ∀k ∈ K, l ∈ Dk (3.37b)

K∑
k=1

fHk Am
4,kfk ≤ ηR,m, ∀m ∈ M (3.37c)

fHk fk ≤ Pmax
S,k , ∀k ∈ K, (3.37d)

where t is an auxiliary variable. Problem (3.37) is a convex separable inhomogeneous QCLP

[54]. This class of optimization problems can be handled by the recently developed parser-

solvers, such as CVX [100] where the built-in parser is capable of verifying the convexity of

the optimization problem (in user-specified forms) and then, of automatically transforming

it into a standard form; the latter may then be forwarded to external optimization solvers,

such as SeduMi [101] and MOSEK [102]. To gain further insights into this procedure, we

show in Appendix A.1 that the problem (3.37) can be equivalently transformed into a

standard SOCP that is directly solvable by a generic external optimization solver based on

the interior-point method. Therefore, the SOCP form bypasses the tedious translation by

the parser-solvers for every problem instance in real-time computation.

Relay AF Matrix Design

In order to solve for the relay AF matrices, we follow a similar procedure to that used

for the source TPC design. However, here we introduce a new variable, which vertically

concatenates all the vectorized relay AF matrices, yielding:

w �

⎡
⎢⎢⎣

w1

...

wM

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

vec (W1)
...

vec (WM)

⎤
⎥⎥⎦ (3.38)
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along with the following quantities, which are independent of w:

[
Bk,l

1

]
m,n

=
K∑
q=1

[(
HHH∗

m,qHHHT
n,q

)
⊗

(
UUUH

k,m Ek,lUUUk,n

)]
(3.39)

bk,l
2,m � vec

(
UUUH

k,m Ek,lHHHH
m,k

)
(3.40)

Bk,l
3,m �

K∑
q=1

[
Tr

(
uH
k,lΣΣΣGk,m

uk,l

)
HHH∗

m,qHHHT
m,q ⊗ΨΨΨGk,m

+ Tr
(
FH

q ΨΨΨHm,qFq

)
ΣΣΣT

Hm,q
⊗UUUH

k,m Ek,lUUUk,m

]
+ σ2

R,m Tr
(
uH
k,lΣΣΣGk,m

uk,l

)
INR,m ⊗ΨΨΨGk,m

+ σ2
R,mINR,m ⊗

(
UUUH

k,m Ek,lUUUk,m

)
(3.41)

bk,l4 � σ2
D,k ‖uk,l‖2 + 1 (3.42)

B5,m �
[
σ2
R,mINR,m +

K∑
k=1

(
HHH∗

m,kHHHT
m,k +Tr

(
FkF

H
k ΨΨΨHm,k

)
ΣΣΣT

Hm,k

)]
⊗ INR,m (3.43)

where Bk,l
1 is a block matrix with its (m,n)th block defined above. Then, using the identities

Tr
(
AHBCDH

)
= vec (A)H

(
DT ⊗B

)
vec (C), Tr

(
AHBA

)
= vec (A)H (I⊗B) vec (A)

and Tr
(
AHB

)
= vec (B)H vec (A), we can formulate the following optimization problem:

min
w,t

t (3.44a)

s.t. wHBk,l
1 w −

M∑
m=1

2�
{
wH

mb
k,l
2,m

}
+

M∑
m=1

wH
mB

k,l
3,mwm + bk,l4 ≤ t

κk,l

, ∀l ∈ Dk, k ∈ K

(3.44b)

wH
mB5,mwm ≤ ρmPR, ∀m ∈ M. (3.44c)

It may be readily shown that Bk,l
1 , Bk,l

3,m, and B5,m are all positive definite matrices and

that (3.44) is also a convex separable inhomogeneous QCLP. Using a similar approach to

the one derived in Appendix A.1, the SOCP formulation of (3.44) can readily be obtained.

The details of the transformation are therefore omitted for brevity.

3.2.2 Algorithm and Properties

We assume that there exists a central processing node, which, upon collecting the channel

estimates {Ĥm,k, Ĝk,m, ∀m ∈ M, k ∈ K}, and the covariance matrices of the CSI errors
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{
ΣΣΣHm,k

,ΣΣΣGk,m
,ΨΨΨHm,k

,ΨΨΨGk,m
, ∀m ∈ M, k ∈ K

}
, optimizes all the design variables, and sends

them back to the corresponding nodes. The iterative procedure listed in Algorithm 3.1

therefore should be implemented in a centralized manner, where
{
F(i),W(i),U(i)

}
and t(i)

represent the set of design variables and the objective value in (3.17a), respectively, at

the ith iteration. A simple termination criterion can be
∣∣t(i) − t(i−1)

∣∣ < ε, where ε > 0 is

a predefined threshold. Below we shall analyze both the convergence properties and the

complexity of the proposed algorithm.

Algorithm 3.1 Iterative Algorithm for Statistically Robust Min-Max Problem

1: Initialization: Set the iteration index i = 0, F
(0)
k =

√
Pmax
S,k INS,k×dk , ∀k ∈ K and

W
(0)
m =

√
ρmPR

Tr(B5,m)
INR,m , ∀m ∈ M

2: repeat
3: Compute u

(i+1)
k,l ∀k ∈ K, l ∈ Dk, using the Wiener filter (3.31) in parallel;

4: Compute F
(i+1)
k ∀k ∈ K by solving the SOCP (A.1);

5: Compute W
(i+1)
m ∀m ∈ M by solving the SOCP (3.44);

6: i ← i+ 1;
7: until

∣∣t(i) − t(i−1)
∣∣ < ε

Convergence

Given a feasible initialization for Algorithm 3.1, the solution to each subsequent sub-

problem is globally optimal. As a result, the sequence of the objective values in (3.17a) is

monotonically non-increasing, as the iteration index i increases. Since the maximum per-

stream MSE is bounded from below (at least) by zero, the sequence of the objective values

must converge by invoking the monotonic convergence theorem. It is worth noting that the

convergence of the objective function does not necessarily imply global convergence of the

obtained solution sequence, i.e., {U(i),W(i),F(i)}. In fact, the convergence of the solution

sequence generated by the block coordinate descent type algorithm has been studied in the

literature, see, e.g., [31–34, 98]. It has been shown that under some mild conditions, every

limit point of the algorithm is either a stationary point or a Nash point. We study the

convergence of a similar iterative algorithm in detail in Chapter 4, Section 4.2.2.
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Complexity

When the number of antennas at the sources and relays, i.e., NS,k and NR,m, have the

same order of magnitude, the complexity of Algorithm 3.1 is dominated by the SOCP of

(A.1) detailed in Appendix A.1, as it involves all the constraints of the original problem

(3.17). To simplify the complexity analysis, we assume that NS,k = NS, and dk = d,

∀k ∈ K. In (A.1), the total number of design variables is Ntotal = N2
SK + 1 +K2d+KM .

The size of the second-order cones (SOCs) in the constraints (A.1b)–(A.1g) is given by

(N2
S + 1)dK(K − 1), (N2

S + 1)dK, (K + 2)dK, (N2
S + 1)KM , (K + 1)M and (N2

S + 1)K,

respectively. Therefore, the total dimension of all the SOCs in these constraints can be

shown to be DSOCP = O(N2
SdK

2 +N2
SMK). It has been shown in [95] that problem (A.1)

can be solved most efficiently using the primal-dual interior-point method at a worst-case

complexity on the order of O(N2
totalDSOCP) if no special structure in the problem data is

exploited. The computational complexity of Algorithm 3.1 is therefore on the order of

O(N6
S ), O(K6) and O(M3) in the individual parameters NS, K and M , respectively. In

practice, however, we find that the matrices Ak,l
1,q and Am

4,k in (3.34) and (3.36), respectively

exhibit a significant level of sparsity, which allows solving the SOCP more efficiently. In our

simulations, we therefore measured the CPU time required for solving (A.1) for different

values ofNS,K andM (the results are not reported) and found that the orders of complexity

obtained empirically are significantly lower than those of the above worst-case analysis.

Empirically, we found these to be around O(N1.6
S ), O(K1.7) and O(M1.3).

3.3 Worst-Case Robust Transceiver Design for the Min-Max

Problem

In this section, we consider the joint transceiver design problem under min-max formulation

of (3.15) and the norm-bounded CSI error model of Section 3.2). To this end, based on

the notation in (3.14), we explicitly rewrite this problem as

min
F,W,U

max
∀k∈K,l∈Dk,∀ΔH∈H,ΔGk∈Gk

κk,lεk,l (ΔH,ΔGk) (3.45a)

s.t. PR,m (ΔHm) ≤ ρmPR, ∀m ∈ M,ΔHm ∈ Hm (3.45b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k , ∀k ∈ K, (3.45c)
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whose epigraph form can be expressed as

min
F,W,U

t (3.46a)

s.t. εk,l (ΔH,ΔGk) ≤
t

κk,l

, ∀k ∈ K, l ∈ Dk,ΔH ∈ H,ΔGk ∈ Gk (3.46b)

PR,m (ΔHm) ≤ ρmPR, ∀m ∈ M,ΔHm ∈ Hm (3.46c)

Tr
(
FH

k Fk

)
≤ Pmax

S,k , ∀k ∈ K, (3.46d)

where t is an auxiliary variable. As compared to the statistically robust version of (3.17),

problem (3.46) now encounters two major challenges, namely the non-convexity and the

semi-infinite nature of the constraints (3.46b) and (3.46c), which render the optimization

problem mathematically intractable. In what follows, we derive a solution to address these

calamities.

3.3.1 Iterative Joint Transceiver Optimization

To overcome the first difficulty, we still rely on the iterative block coordinate update ap-

proach described in Section 3.2; however, the three resultant sub-problems are semi-infinite

due to the continuous but bounded channel uncertainties in (3.46b) and (3.46c). To han-

dle the semi-infiniteness, an equivalent reformulation of these constraints as LMI will be

derived by using certain matrix transformation techniques and by exploiting an extended

version of the S-lemma of [99]. In turn, such LMI will convert each of the sub-problems

into an equivalent SDP [93] efficiently solvable by interior-point methods [103].

Receive Filter Design

In this sub-problem, we have to minimize t in (3.46a) with respect to uk,l subject to the

constraint (3.46b). To transform this constraint into an equivalent LMI, the following

lemma is presented, which is an extended version of the one in [99].

Lemma 3.1 (Extension of S-lemma [99]). Let A(x) = AH(x), Σ(x) = ΣH(x) and

{Dk(x)}Nk=1, and {Bk}Nk=1 be matrices with appropriate dimensions, where A(x), ΣΣΣ(x)
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and {Dk(x)}Nk=1 are affine functions of x. The following semi-infinite matrix inequality

(
A(x) +

N∑
k=1

BH
k CkDk(x)

)(
A(x) +

N∑
k=1

BH
k CkDk(x)

)H

� Σ(x) (3.47)

holds for all ‖Ck‖S ≤ ρk, k = 1, · · · , N if and only if there exist nonnegative scalars

τ1, · · · , τN satisfying the following:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ(x)−
N∑
k=1

τkB
H
k Bk A(x) 0 · · · 0

AH(x) I ρ1D
H
1 (x) · · · ρND

H
N(x)

0 ρ1D1(x) τ1I · · · 0
...

...
...

. . .
...

0 ρNDN(x) 0 · · · τNI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0. (3.48)

A simplified version of Lemma 3.1, which considers only a single uncertainty block, i.e.,

N = 1, can be traced back to [104], while a further related corollary is derived in [99,

Proposition 2]. Lemma 3.1 extends this result to the case of multiple uncertainty blocks,

i.e., N > 1; the proof follows similar steps as in [99] and therefore is omitted.

Upon using Lemma 3.1, the QoS constraint (3.46b) can equivalently be reformulated as

follows.

Proposition 3.1. There exist τττ gk,l ∈ RM×1
+ and τττhk,l ∈ RKM×1

+ capable of ensuring that the

semi-infinite constraint (3.46b) is equivalent to the following matrix inequality:

Qk,l �

⎡
⎢⎢⎢⎢⎣

t
κk,l

− 1Tτττ gk,l − 1Tτττhk,l θθθk,l 01×ND,kNR
01×NSNR

θθθHk,l Id+NR+ND,k
ΘΘΘ

H

k,l ΦΦΦ
H

k,l

0ND,kNR×1 ΘΘΘk,l diag
(
τττ gk,l

)
∗ IND,kNR

0ND,kNR×NSNR

0NSNR×1 ΦΦΦk,l 0NSNR×ND,kNR
diag

(
τττhk,l

)
∗ INSNR

⎤
⎥⎥⎥⎥⎦ � 0,

(3.49)

where we have NR �
∑M

m=1 NR,m, NS �
∑K

k=1 NS,k and the operator (∗) denotes the Khatri-

Rao product (block-wise Kronecker product) [105]. In (3.49), ΘΘΘk,l and ΦΦΦk,l are defined
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as

ΘΘΘk,l �

⎡
⎢⎢⎣

ξk,1ΘΘΘ
k,l
1

...

ξk,MΘΘΘk,l
M

⎤
⎥⎥⎦ , ΦΦΦk,l �

⎡
⎢⎢⎣

η1,1ΦΦΦ
k,l
1,1

...

ηM,KΦΦΦ
k,l
M,K

⎤
⎥⎥⎦ , (3.50)

while ΘΘΘk,l, ΦΦΦk,l and θθθk,l are defined in Eq. (A.10) of Appendix A.2.

Proof: See Appendix A.2.

Using (3.49), the sub-problem formulated for uk,l can be equivalently recast as

min
t,uk,l,τττ

g
k,l,τττ

h
k,l

t s.t. Qk,l � 0. (3.51)

With fixed F and W, (3.49) depends affinely on the design variables
{
t,uk,l, τττ

g
k,l, τττ

h
k,l

}
.

Therefore, (3.51) is a convex SDP of the LMI form [93], which is efficiently solvable by

existing optimization tools based on the interior-point method. Since the uk,l for different

values of (k, l) are independent of each other, they can be updated in parallel by solving

(3.51) for different k and l.

Source TPC Design

We now have to solve problem (3.46) for F by fixing U and W. The solution is formulated

in the following proposition.

Proposition 3.2. The sub-problem of optimizing the TPCs F can be formulated as the

following SDP:

min
t,F,τττgk,l,τττ

h
k,l,τττ

p
m

t (3.52a)

s.t. Qk,l � 0, ∀k ∈ K, l ∈ Dk (3.52b)

Pm � 0, ∀m ∈ M (3.52c)[
Pmax
S,k fHk
fk INS,kdk

]
� 0, ∀k ∈ K, (3.52d)
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where we have

Pm �

⎡
⎢⎣ ρmPR − 1Tτττpm tHm 01×NSNR,m

tm I Tm

0NSNR,m×1 T
H

m diag (τττpm) ∗ I

⎤
⎥⎦ � 0 (3.53)

with τττpm ∈ RK×1, Tm(F) �
[
TT

m,1, · · · ,TT
m,K

]T
and

tm �

⎡
⎢⎢⎢⎢⎢⎣

vec
(
WmĤm,kF1

)
...

vec
(
WmĤm,KFK

)
σR,m vec (Wm)

⎤
⎥⎥⎥⎥⎥⎦ , (3.54)

Tm,k �

⎡
⎢⎢⎣

0∑k−1
q=1 dqNR,m×NS,kNR,m

FT
k ⊗Wm

0(
∑K

q=k+1 dqNR,m+N2
R,m)×NS,kNR,m

⎤
⎥⎥⎦ . (3.55)

Proof: Since F is involved in all the constraints of the original problem (3.46), below

we will transform each of these constraints into tractable forms.

First, note that (3.46b) has already been reformulated as (3.49), which is a trilinear

function of F, W and U. By fixing the values of W and U, it essentially becomes an LMI

in F.

Then, to deal with the semi-infinite constraint of the relay power (3.46c), we can express

PR,m as follows based on the definitions in (3.54)

PR,m =
∥∥∥tm +

K∑
k=1

Tm,khm,k

∥∥∥2

. (3.56)

Substituting (3.56) into (3.46c) and again applying Lemma 3.1, (3.46c) can be equivalently

recast as the matrix inequality (3.52c), whose left-hand side is bilinear in Wm and F, which

is hence an LMI in F, when Wm is fixed.

Finally, (3.46d) can be expressed as ‖fk‖2 ≤ Pmax
S,k , which can be equivalently recast as

(3.52d) by using the Schur complement rule of [93]. The SDP form (3.52) is then readily

obtained.



3 Robust Joint MIMO Relay Transceiver Optimization 55

Relay AF Matrix Design

Since the constraint (3.52d) is independent of the relay AF matrices W, this sub-problem

is equivalent to

min
t,W,τττgk,l,τττ

h
k,l,τττ

p
m

t s.t. (3.52b), (3.52c). (3.57)

The above problem becomes a standard SDP in W by noting that Qk,l and Pm in (3.52b)

and (3.52c), respectively, are LMIs in W, provided that the other design variables are kept

fixed.

The convergence analysis of the overall iterative algorithm, which solves problems (3.51),

(3.52) and (3.57) with the aid of the block coordinate approach, is similar to that in

Section 3.2.B and therefore omitted for brevity. One slight difference from Algorithm 3.1

is that we initialize F
(0)
k =

√
Pmax
S,k INS,k×dk , ∀k ∈ K and U

(0)
k = Idk×NS,k

, ∀k ∈ K, and

the iterative algorithm will start by solving for the optimal W
(1)
m . Solving (3.52) imposes

a worst-case complexity on the order of O(N2
totalDSDP), where DSDP represents the total

dimensionality of the semidefinite cones in constraints (3.52b)–(3.52d). Similar to the

complexity analysis of Algorithm 3.1, we assume that NS,k = NR,m = ND,k = N , and

dk = d, ∀k ∈ K, m ∈ M. In (3.52), the total number of design variables is Ntotal = N2K+

1 + K2d + KM . After some simplifications, we find that the computational complexity

of the iterative algorithm for the norm-bounded CSI errors is on the order of O(N8) and

O(K7) and O(M5), respectively. Comparing the SDP formulation of (3.52) for the norm-

bounded CSI errors and the SOCP formulation in (A.1) deduced for the statistical CSI

errors, the total dimensionality of (3.52) is seen to be significantly larger than that of (A.1)

as given in the complexity discussions in Section 3.2.

3.4 Transceiver Design for the QoS Problem

In this section, we turn our attention to the joint transceiver design for the QoS problem

(3.16). Following the same approaches as in Sections 3.2 and 3.3, the solution to the QoS

problem can also be obtained by adopting the block coordinate update method. Since

the derivations of the corresponding subproblems and algorithms are similar to those in

Sections 3.2 and 3.3 deduced for the min-max problem, we hereby only present the main

results.
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3.4.1 QoS Problem under Statistical CSI Errors

Receive Filter Design:

An optimal uk,l can be obtained by minimizing εk,l (ΔH,ΔGk) with respect to uk,l, which

yields exactly the same solution as the Wiener filter in (3.31).

Source TPC Design

The specific sub-problem of finding the optimal F can be solved by the following QCLP:

min
f1,··· ,fK ,t

t (3.58a)

s.t.
K∑
q=1

fHq Ak,l
1,qfq − 2�

{
fHk ak,l

2

}
+ ak,l3 ≤ γ

κk,l

, ∀k ∈ K, l ∈ Dk (3.58b)

K∑
k=1

fHk Am
4,kfk ≤ η′R,m, ∀m ∈ M (3.58c)

fHk fk ≤ Pmax
S,k , ∀k ∈ K, (3.58d)

where η′R,m � ρmt− σ2
R,m Tr(WmW

H
m).

Relay AF Matrix Design

The optimal W can be found by solving

min
w,t

t (3.59a)

s.t. wHBk,l
1 w −

M∑
m=1

2�
{
wH

mb
k,l
2,m

}
+

M∑
m=1

wH
mB

k,l
3,mwm + bk,l4 ≤ γ

κk,l

, ∀k, l (3.59b)

wH
mB5,mwm ≤ ρmt, ∀m ∈ M. (3.59c)

3.4.2 QoS Problem under Norm-Bounded CSI Errors

1) Receive Filter Design: The optimal uk,l can be obtained from (3.51).

2) Source TPC Design: The optimal F can be obtained as the solution to the following
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SDP:

min
t,F,τττgk,l,τττ

h
k,l,τττ

p
m

t (3.60a)

s.t. Q′
k,l � 0, ∀k ∈ K, l ∈ Dk (3.60b)

P′
m � 0, ∀m ∈ M (3.60c)[
Pmax
S,k fHk
fk INS,kdk

]
� 0, ∀k ∈ K, (3.60d)

where Q′
k,l is obtained from Qk,l in (3.49) upon replacing t by γ in the top-left entry (1, 1).

Similarly, P′
m can be obtained by substituting PR with t in the (1, 1)th entry of Pm in (3.53).

3) Relay AF Matrix Design: The optimal relay AF matrices are obtained by solving

min
t,W,τττgk,l,τττ

h
k,l

t s.t. (3.60b), (3.60c). (3.61)

3.4.3 Initial Feasibility Search Algorithm

An important aspect of solving the above QoS problem is to find a feasible initial point.

Indeed, it has been observed that if the iterative algorithm is initialized with a random

(possibly infeasible) point, the algorithm may fail at the first iteration. Finding a feasible

initial point of a non-convex problem, such as our QoS problem (3.16), is in general NP-

hard. All these considerations motivate the study of an efficient initial feasibility search

algorithm, which finds a reasonably “good” starting point for the QoS problem of (3.16).

Motivated by the “phase I” approach in general optimization theory [93], we formulate

the feasibility check problem for the QoS problem as follows

min
F,W,U

s (3.62a)

s.t. κk,lU {εk,l (ΔH,ΔGk)} ≤ s, ∀k ∈ K, l ∈ Dk (3.62b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k , ∀k ∈ K, (3.62c)

where s is a slack variable, which represents an abstract measure for the violation of the

constraint (3.16b). The above problem can be solved iteratively using the block coordinate

approach, until the objective value s converges or the maximum affordable number of
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iterations is reached. If at the (i+ 1)th iteration, s(i+1) is less than the QoS target γ, then

the procedure successfully finds a feasible initial point; otherwise, we claim that the QoS

problem is infeasible. In this case, it is necessary to adjust γ or to drop the services of

certain users by incorporating an admission control procedure, which, however, is beyond

the scope of this thesis.

Interestingly, (3.62) can be reformulated as

min
F,W,U

max
∀k∈K,l∈Dk

κk,lU {εk,l (ΔH,ΔGk)} (3.63a)

s.t. U {PR,m (ΔHm)} ≤ ρmP
∞
R , ∀m ∈ M (3.63b)

Tr
(
FH

k Fk

)
≤ Pmax

S,k , ∀k ∈ K, (3.63c)

where we have P∞
R → ∞, which is equivalent to removing the constraint on the relay’s

transmit power. In fact, (3.63) becomes exactly the same as the min-max problem of

(3.15) upon setting PR = P∞
R . We therefore propose an efficient iterative feasibility search

algorithm, which is listed as Algorithm 3.2, based on the connection between the feasibility

check and the min-max problems.

Algorithm 3.2 Iterative Initial Feasibility Search Algorithm for the QoS problems
1: repeat
2: Solve one cycle of the problem (3.63) and denote the current objective value by γ̂(i+1);
3: Verify if γ̂(i+1) ≤ γ, and if so, stop the algorithm;
4: i ← i+ 1;
5: until Termination criterion is satisfied, e.g.,

∣∣γ̂(i) − γ̂(i−1)
∣∣ ≤ ε; or the maximum allowed

number of iteration is reached.

Based on the definition of U {·} in (3.14), Algorithm 3.2 is applicable to the QoS prob-

lems associated with both types of CSI errors considered. Furthermore, Algorithm 3.2

indeed provides a feasible initial point for the QoS problem if it exists. Otherwise, it pro-

vides a certificate of infeasibility if γ̂(i+1) > γ after the algorithm terminates. Then the

QoS problem is deemed infeasible in this case and the admission control procedure may

deny the access of certain users.
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3.5 Simulation Experiments and Discussions

This section presents our Monte Carlo simulation results for verifying the resilience of the

proposed transceiver optimization algorithms against CSI errors. In all simulations we

assume that there are K = 2 S-D pairs, which communicate with the assistance of M = 2

relays. Each node is equipped with NS,k = NR,m = ND,k = 3 antennas, ∀k ∈ K,m ∈ M.

Each source transmits 2 independent quadrature phase-shift keying (QPSK) modulated

data streams to its corresponding destination, i.e., dk = 2, ∀k ∈ K. Equal noise variances

of σ2
D,k = σ2

R,m are assumed. The maximum source and relay transmit power is normalized

to one, i.e., we have Pmax
S,k = 1, ∀k ∈ K and ρmPR = 1, ∀m ∈ M. Equal weights of

κk,l are assigned to the different data streams, unless otherwise stated. The channels are

assumed to be flat-fading, with the coefficients given by i.i.d. zero-mean unit-variance

complex Gaussian random variables. The signal-to-noise ratios (SNRs) at the relays and

the destinations are defined as SNRR,m � Pmax
S

NR,mσ2
R,m

and SNRD,k � Pmax
R

ND,kσ
2
D,k
,respectively. The

optimization solver MOSEK [102] is used for solving each optimization problem.

3.5.1 Performance Evaluation under Statistical CSI Errors

We first evaluate the performance of the iterative algorithm proposed in Section 3.2 under

statistical CSI errors. The channel correlation matrices in (3.9) and (3.10) are obtained

by the widely-employed exponential model of [61]. Specifically, their entries are given by[
ΣΣΣHm,k

]
i,j

=
[
ΣΣΣGk,m

]
i,j

= α|i−j| and
[
ΨΨΨHm,k

]
i,j

=
[
ΨΨΨGk,m

]
i,j

= σ2
eβ

|i−j|, i, j ∈ {1, 2, 3},
where α and β are the correlation coefficients, and σ2

e denotes the variance of the CSI

errors. The available channel estimates Ĥm,k and Ĝk,m are generated according to Ĥm,k ∼
CN

(
0NR,m×NS,k

, 1−σ2
e

σ2
e
ΣΣΣHm,k

⊗ΨΨΨT
Hm,k

)
and Ĝk,m ∼ CN

(
0ND,k×NR,m ,

1−σ2
e

σ2
e
ΣΣΣGk,m

⊗ΨΨΨT
Gk,m

)
, re-

spectively, such that the entries of the true channel matrices have unit variances. We

compare the robust transceiver design proposed in Algorithm 3.1 to the: (i) non-robust

design, which differs from the robust design in that it assumes ΣΣΣHm,k
= ΣΣΣGk,m

= 0 and

ΨΨΨHm,k
= ΨΨΨGk,m

= 0, i.e., it neglects the effects of the CSI errors; (ii) perfect CSI case,

where the true channel matrices Hm,k and Gk,m are used instead of the estimates Ĥm,k

and Ĝk,m in Algorithm 3.1 and there are no CSI errors, i.e., we have ΣΣΣHm,k
= ΣΣΣGk,m

= 0

and ΨΨΨHm,k
= ΨΨΨGk,m

= 0. The curves labeled “Optimal MSE” correspond to the value of

the objective function in (3.17a) after optimization by Algorithm 3.1. In all the simulation

figures, the MSEs of the different approaches are calculated by averaging the squared error
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σ

Fig. 3.2 Convergence behavior of the proposed iterative algorithm with sta-
tistical CSI errors.

between the transmitted and estimated experimental data symbols over 1000 independent

CSI error realizations and 10000 QPSK symbols for each realization.

As a prelude to the presentation of our main simulation results below, the convergence

behavior of Algorithm 3.1 is presented for different CSI error variances. It can be observed

in Fig. 3.2 that in all cases, the proposed Algorithm 3.1 can converge within a reasonable

number of iterations. Therefore, in our experimental work we set the number of iterations

to a fixed value of 5 and the resultant performance gains will be discussed below.

Experiment A.1 (MSE/BER performance): In Fig. 3.3 (a), the maximum per-

stream MSE among all the data streams is shown as a function of the SNR for different

values of CSI error variance. It is observed that the proposed robust design approach

achieves a better resilience against the CSI errors, than the non-robust design approach.

The performance gains become more evident in the median to high SNR range. For the

non-robust design, degradations are observed because the MSE obtained at high SNRs is
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(b)

Fig. 3.3 MSE performance of different design approaches versus SNR: (a)
Maximum per-stream MSE; (b) Sum MSE (SNRR,m = SNRD,k = SNR, α =
β = 0.5).
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σ

σ

σ

Fig. 3.4 BER performance of different design approaches versus SNR

dominated by the interference, rather than by the noise. Therefore, the relays are confined

to relatively low transmit powers in order to control the interference. This, in turn, leads

to a performance degradation imposed by the CSI errors. In contrast, the proposed robust

design is capable of compensating for the extra interference imposed by the CSI errors,

thereby demonstrating its superiority over its non-robust counterpart. Furthermore, we

observe that the “Optimal MSE” and our simulation results tally well, which justifies the

approximations invoked in calculating the per-stream MSE in (3.13). In addition to the

per-stream performance, the overall system performance 4 quantified in terms of the sum

MSE of different approaches is examined in Fig. 3.3 (b), where a similar trend to that of

Fig. 3.3 (a) can be observed.

4Please note that the objective of portraying the sum MSE performance is to validate whether the
proposed robust design approach can also achieve a performance gain over the non-robust approach in
terms of its overall performance. In fact, the sum MSE performance can be optimized by solving a design
problem with the sum MSE being the objective function.
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Fig. 3.5 Per-stream MSE performance with the optimized codebook based
on the GLA-VQ. (B = 8 corresponds to σ2

e = 0.334 and B = 12 corresponds
to σ2

e = 0.175.)

The BER performance of different design methods is compared in Fig. 3.4 for different

values of the CSI error variances. It is seen that similar to the results in Fig. 3.3, the

proposed robust method significantly outperforms the non-robust one. It also becomes

evident that the MSE and BER performance are positively correlated, i.e., a lower MSE

leads to a lower BER.

The MSE performance associated with a limited number of feedback bits is also studied.

To this end, we assume that each user is equipped with a codebook that is optimized using

the generalized Lloyd algorithm of vector quantization (GLA-VQ) [63]. Each user then

quantizes the channel vector and the corresponding codebook index is fed back to the central

processing unit. The results presented in Fig. 3.5 illustrate that the proposed algorithm

significantly outperformed the non-robust one for the different number of quantization bits

considered.
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Fig. 3.6 Comparison of the per-stream MSEs of the robust and non-robust
design approaches (SNRR,m = SNRD,k = 15dB, α = β = 0.5).

Experiment A.2 (Data stream fairness): Next we examine the accuracy of the

proposed robust design in providing weighted fairness for the different data streams. To

this end, we set the weights for the different data streams to be κ1,1 = κ2,1 =
1
3
and κ1,2 :

κ2,2 = 1
6
. Fig. (3.6) depicts the MSE of each data stream for different values of the error

variance. Comparing the two methods, the robust design approach results in a significantly

better weighted fairness than the non-robust one. In particular, the MSEs obtained are

strictly inversely proportional to the predefined weights. This feature is specially desirable

for multimedia communications, where the streams corresponding to different service types

may have different priorities.

Experiment A.3 (Effects of channel correlation): The effects of channel corre-

lations on the MSE performance of the different approaches are investigated in Fig. 3.7.

It can be observed that the performance of all the approaches is degraded, as the cor-

relation factor α increases. While the robust design shows consistent performance gains



3 Robust Joint MIMO Relay Transceiver Optimization 65

α

σ

σ

σ

(a)

α

σ

σ

σ

(b)

Fig. 3.7 MSE performance of different design approaches versus correla-
tion factor of the source-relay channels. (a) per-stream MSE; (b) sum MSE
(SNRR,m = SNRD,k = 10dB, β = 0.45).
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over its non-robust one associated with different α and σ2
e , the discrepancies between the

two approaches tend to become less significant with an increase in α. This is because the

achievable spatial multiplexing gain is reduced by a higher channel correlation and there-

fore the robust design can only attain a limited performance improvement in the presence

of high channel correlations.

3.5.2 Performance Evaluation under Norm-Bounded CSI Errors

In this subsection, we evaluate the performance of the proposed worst-case design approach

in Section 3.3 for the min-max problem under norm-bounded CSI errors. Similar to the

previous subsection, we compare the proposed robust design approach both to the non-

robust approach and to the perfect CSI scenario. We note that the power of each relay is

a function of ΔHm. According to the worst-case robust design philosophy, the maximum

relay transmit power has to be bounded by the power budget, while the average relay

transmit power may become significantly lower than that of the non-robust design. To

facilitate a fair comparison of the different approaches, we therefore assume the absence of

CSI errors for the S-R links, i.e., we have ΔHm,k = 0. For the R-D links, we consider the

uncertainty regions with equal radius, i.e., we have ξk,m = r, ∀k ∈ K,m ∈ M. In order to

determine the worst-case per-stream MSE, we generate 5000 independent realizations of the

norm-bounded CSI errors. In each realization, the entries of the CSI error matrix ΔGk,m

are first generated using independent complex circular Gaussian random variables with zero

mean and unit variance. In the case that ‖ΔGk,m‖F > r, the entries are scaled down by a

factor of c, i.e., 1
c
‖ΔGk,m‖F = r. For each realization, we evaluate the maximum per-stream

MSE averaged over 1000 QPSK symbols and random Gaussian noise. Then the worst-case

per-stream MSE is obtained by selecting the largest one among all the realizations.

Experiment B.1 (MSE performance): The worst-case per-stream MSE and the

worst-case sum MSE are reported in Fig. 3.8 as a function of the SNR. Three sizes of the

uncertainty region are considered, that is: r = 0.05, r = 0.1 and r = 0.15. Focusing on

the first case, it can be seen that the performance achieved by our robust design approach

first monotonically decreases as the SNR increases, and then subsequently remains approx-

imately constant at high SNR values. This is primarily because at low SNR, the main

source of error in the estimation of the data streams is the channel noise. At high SNR,

the channel noise is no longer a concern and the MSE is dominated by the CSI errors.
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(a)

(b)

Fig. 3.8 MSE performance of different design approaches versus SNR. (a)
worst-case per-stream MSE; (b) worst-case sum MSE.
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γ

Fig. 3.9 Maximum relay transmit power versus QoS targets with different
uncertainty sizes of the CSI errors.

Observe also in Fig. 3.8 that for r = 0.1 and r = 0.15, the MSE is clearly higher, although

it presents a similar trend to the case of r = 0.5. The performance gain achieved by the

robust design also becomes more noticeable for these larger sizes of the uncertainty regions.

Experiment B.2 (Relay power consumption): Next we investigate the perfor-

mance of the approach proposed in Section 3.4 for the QoS problem under the norm-

bounded CSI errors. The maximum per-relay transmit power is plotted in Fig. 3.9 as a

function of the QoS target γ for different sizes of uncertainty regions. As expected, it

can be observed that the relay power for all cases decreases as the QoS target is relaxed.

An important observation from this figure is that when the size of uncertainty region is

large, the required relay transmit power becomes significantly higher than the perfect CSI

case. From an energy-efficient design perspective, this is not desirable, which motivates the

consideration of the min-max design in such applications.

Experiment B.3 (Distribution of per-stream MSE): Finally, we evaluate how
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γ

Fig. 3.10 CDFs of per-stream MSEs using the robust and non-robust ap-
proaches for SNR=5dB.

consistently the QoS constraints of all the data streams can be satisfied by the proposed

design approach for the QoS problem. In this experiment, the CSI errors of both the S-R

and R-D links are taken into consideration and generated according to the i.i.d. zero-mean

complex Gaussian distribution with a variance of σ2
e = 0.001. Then the probability that

the CSI errors are bounded by the predefined radius r can be formulated as [49, Section

IV-C]

Pr
{
‖hm,k‖2 ≤ r2

}
= Pr

{
‖gk,m‖2 ≤ r2

}
=

1

Γ
(
N2

2

)γ (
N2

2
,
r2

σ2
e

)
, (3.64)

where Γ(·) and γ(·, ·), respectively, denote the complete and lower incomplete Gamma

functions. Given the required bounding probability of, say 90% in the simulation, the radius

r can be numerically determined from (3.64). Fig. 3.10 shows the cumulative distribution

functions (CDFs) of the MSE of each data stream using both the robust and non-robust
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design methods. As expected, the proposed robust method ensures that the MSE of each

data stream never exceeds the QoS target shown as the vertical black solid line in Fig. 3.10.

By contrast, for the non-robust design, the MSE frequently violates the QoS target, namely

for more than 60% of the realizations. Based on these observations, we conclude that the

proposed robust design approach outperforms its non-robust counterpart in satisfying the

QoS constraints for all the data streams.

3.6 Conclusions

In this chapter, jointly optimized source TPCs, AF relay matrices and receive filters were

designed by considering two different types of objective functions with specific QoS consid-

eration in the presence of CSI errors in both the S-R and R-D links. To this end, a pair of

practical CSI error models, namely, the statistical and the norm-bounded models were con-

sidered. Accordingly, the robust transceiver design approach was formulated to minimize

the maximum per-stream MSE subject to the source and relay power constraints (min-max

problem). In order to solve the non-convex optimization problems formulated, an iterative

solution based on the block coordinate update algorithm was proposed, which involves a

sequence of convex conic optimization problems. The proposed algorithm generated a con-

vergent sequence of objective function values. The problem of relay power minimization

subject to specific QoS constraints and to source power constraints was also studied. An

efficient feasibility search algorithm was proposed by studying the link between the feasi-

bility check and the min-max problems. Our simulation results demonstrate a significant

enhancement in the performance of the proposed robust approaches over the conventional

non-robust approaches.



71

Chapter 4

Centralized Energy Efficient Relaying

in Next-Generation RANs

In this chapter, we investigate the minimization of energy consumption of a multi-user

relaying network operating within a C-RAN cluster. Specifically, we consider a network,

where multiple source and destination pairs (also termed UE in LTE) communicate with

each others by relying on the assistance of multiple cooperative RRHs connected to the

BBU pool. Taking into account both the static (fixed circuitry) and dynamic (RF trans-

mission) components of the RRHs power [107], a joint RRH selection as well as AF matrix

design problem is formulated, whereby the total power consumption is minimized over the

relaying network while maintaining a predefined QoS level at each destination UE. The

main contributions of this chapter are summarized as follows.

• To solve the resultant non-convex problem and to arrive at a sparse solution, an

iterative approach relying on the concepts of re-weighted l1 norm minimization [96]

along with a BCD-type update [53] is proposed. Following this optimization, the

subset of active RRHs selected for relaying the transmission is determined in a single

instance by thresholding the recovered group sparsity pattern vector.

• We thoroughly analyze the convergence properties of the proposed algorithm. Specif-

ically, we show that the proposed algorithm is equivalent to a modified block-type

Part of the materials in this chapter has been published in the IEEE Transactions on Vehicular Tech-
nology [106].
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majorization minimization (MM) algorithm [108], and prove that the generated solu-

tion sequence converges to a so-called Nash point, which is a generalized concept of

a stationary point.

• To overcome a potentially undesired scenario, where the relaying network fails to

simultaneously satisfy all the destination UEs’ QoS levels with the aid of only the

selected subset of RRHs, we propose an iterative user admission control scheme.

Explicitly, in this proposed scheme, specific destination UEs exhibiting a high “infea-

sibility indicator” will be excluded from the optimization procedure by the network

for the sake of maintaining the QoS of all the other users.

• The quantitative benefits of the proposed joint RRH selection and transceiver opti-

mization algorithm and the UE admission control scheme are demonstrated by com-

puter simulations.

The rest of the chapter is organized as follows. The relaying system model under the

C-RAN is introduced in Section 4.1. In Section 4.2, we formulate and solve the network

energy minimization problem. Furthermore, an iterative UE admission control mechanism

is proposed for overcoming the potential infeasibility issue as mentioned above. Simulation

results quantifying the benefits of the proposed algorithms are provided in Section 4.3.

Finally, the chapter is concluded in Section 4.4.

4.1 System Model

Consider a multi-user relaying network within a C-RAN, consisting of L multi-antenna

RRHs and K pairs of single-antenna source UEs (SUEs) and destination UEs (DUEs), as

depicted in Fig. 4.1 (a). The L RRHs work collaboratively under the C-RAN umbrella,

relaying the messages of the SUEs to their corresponding DUEs. It is assumed that each

SUE only communicates with its paired DUE. The RRHs and SUE–DUE pairs are indexed

by the sets L � {1, 2, · · · , L} and K � {1, 2, · · · , K}, respectively. For each l ∈ L, RRH-l
is equipped with Nl antennas and operates in a half-duplex AF mode. It is assumed that

no direct links are available between the SUEs and DUEs due to a high pathloss.

We consider a narrowband flat-fading channel model, where hl,k ∈ CNl×1 specifies the

channel between SUE-k and RRH-l, while gk,m ∈ CNl×1 denotes the Hermitian transpose of
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Fig. 4.1 Multi-user multi-relay network within a C-RAN and illustration of
the interference scenario within the relaying network.

the channel between RRH-l and DUE-k. Let sk denote the information symbol transmitted

by SUE-k at a specific time instance, which is modeled as a zero-mean unit-variance complex

random variable. During the first transmission phase, RRH-l receives the following signal:

rl =
K∑
k=1

hl,ksk + nR,l, l ∈ L, (4.1)

where nR,l(n) denotes the spatially white, additive noise vector at RRH-l with zero mean

and covariance matrix σ2
R,lINl

. During the second phase, for each l ∈ L, RRH-l applies a

linear transformation matrix Wl ∈ CNl×Nl to rl and forwards the resultant signal to all

DUEs. The signal received by DUE-k can be expressed as

yk =
L∑
l=1

gH
k,lWlrl + nD,k

=
L∑
l=1

gH
k,lWlhl,ksk︸ ︷︷ ︸

Desired Signal

+
L∑
l=1

K∑
m=1,
m �=k

gH
k,lWlhl,msm

︸ ︷︷ ︸
Multi-User Interference

+
L∑
l=1

gH
k,lWlnR,l + nD,k︸ ︷︷ ︸
Noise Terms

, k ∈ K, (4.2)

where nD,k denotes the additive white noise at DUE-k with zero mean and a variance of σ2
D,k.
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The above expression indicates that the signal received at each DUE is a superposition of

the desired signal component, the multi-user interference (co-channel interference) arriving

from the other SUEs as well as the noise contributions from the RRHs and the DUE. This

general interference scenario, which is illustrated in Fig. 4.1 (b), is often referred to as the

relay-aided interference channel in the literature of relaying optimization [25,28,30,97,109]

and of interference alignment [110,111].

We rely on the mean-square MSE as the QoS metric for the received signal of each

DUE. After DUE-k applies an equalizer gain uk to its received signal yk, resulting in the

soft estimate ŝ, i.e., ŝk = u∗
kyk, the MSE at DUE-k can be expressed as

MSEk(uk, {Wl}) = E
{
|u∗

kyk − sk|2
}

=
K∑
q=1

∣∣∣ L∑
l=1

gH
k,lWlhl,q

∣∣∣2|uk|2 −
L∑
l=1

2Re
{
u∗
kg

H
k,lWlhl,k

}

+
L∑
l=1

σ2
R,l‖gH

k,lWl‖22|uk|2 + σ2
D,k|uk|2 + 1. (4.3)

The transmission power required for AF relaying at RRH-l is given by

Pt,l = Tr
(
Wl

(
σ2
R,lINl

+
K∑
k=1

hl,kh
H
l,k

)
WH

l

)
. (4.4)

In addition to the transmission power, we also consider the static power consumption

associated with each RRH, including that of the RF circuitry, A/D converion and optical

fronthaul. This power, which is non-negligible, can be saved when the associated RRH is

switched off [69–71]. Denoting the static power level of RRH-l by Pc,l, the total relaying

network power consumption is given by

P =
L∑
l=1

I
(
‖Wl‖2F

)
Pc,l +

L∑
l=1

Pt,l, (4.5)

where I(·) denotes the indicator function, i.e., I(x) = 1 if x �= 0 and I(x) = 0, otherwise.

Based on (4.3) and (4.5), we then formulate the energy minimization problem with QoS

constraints in the next section.
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Fig. 4.2 The overall flow of the proposed algorithm.

4.2 Energy Minimization Design and UE Admission Control

In this section, we first develop an energy-efficient multi-user relaying solution for C-RAN

by jointly optimizing the relay AF matrices {Wl} at all RRHs and performing RRH selec-

tion. To circumvent the undesirable condition where the DUEs’ QoS levels cannot all be

simultaneously satisfied by the selected subset of RRHs, we will also propose a UE admis-

sion control mechanism for overcoming the associated infeasibility problem. The overall

flow of the proposed solution is depicted in Fig. 4.2, which consists of the following main

steps:

1) Optimize the AF relaying matrices across all RRHs by introducing a sparsity-inducing

l1-norm.

2) Perform RRH selection by exploiting the group sparsity pattern obtained from the

first step.

3) If the above-mentioned infeasibility problem is observed, involve the UE admission

control algorithm.

4.2.1 Iterative algorithm

We first aim for minimizing the total energy consumption of the relaying network by simul-

taneously designing the AF matrices {Wl}l∈L for all the RRHs and the equalizer gains {uk}
for all the DUEs, while still maintaining a predefined QoS level at each DUE. To connect

this problem to the vast body of literature on sparse signal recovery [112], we express the
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indicator function I(·) in (4.5) in terms of the l0-norm ‖·‖0. The design problem can then

be mathematically expressed as 1

min
u,{Wl}

L∑
l=1

∥∥‖Wl‖2F
∥∥
0
Pc,l +

L∑
l=1

Pt,l + ‖u‖22 (4.6a)

s.t. MSEk(uk, {Wl}) ≤ γk, ∀k ∈ K (4.6b)

Pt,l ≤ Pl,max, ∀l ∈ L, (4.6c)

where γk denotes the predefined target MSE of DUE-k and u = [u1, · · · , uK ]
T .

To overcome the non-convexity issues of (4.6a) due to the l0-norm, we follow a similar ap-

proach as in [96] and use the so-called re-weighted l1-norm minimization for approximating

the non-convex l0-norm. Specifically, this approach yields
∥∥‖Wl‖2F

∥∥
0
≈ μ

‖W(n−1)
l ‖2F+ε

‖Wl‖2F ,

where W
(n−1)
l denotes the value of Wl obtained from the previous iteration (with index

n− 1), μ is a positive constant (to be specified later) and ε > 0 is a small positive constant

ensuring numerical stability. Using the latter approximation, (4.6) can be reformulated as:

min
u,{Wl}

L∑
l=1

μ

‖W(n−1)
l ‖2F + ε

‖Wl‖2FPc,l +
L∑
l=1

Pt,l + ‖u‖22 (4.7a)

s.t. MSEk(uk, {Wl}) ≤ γk, ∀k ∈ K (4.7b)

Pt,l ≤ Pl,max, ∀l ∈ L . (4.7c)

However, after this approximation, the above problem still remains non-convex due to the

fact that the variables {uk} and {Wl} are nonlinearly coupled in the QoS constraints (4.7b).

Then, a further inspection of the MSE expression (4.3) reveals that it has a so-called bi-

convex structure, i.e., it is convex with respect to one block of variables when the other

is fixed. Based on this property, we can solve the problem by employing the BCD-type

algorithm of [98], which makes it possible to update the two blocks of variables one at a

time while fixing the values of the other. In this way, (4.7) can be solved iteratively with

1The addition of the term ‖u‖22 in the objective function (4.6a) makes the latter strongly convex in
u. This modification does not affect the feasibility of the problem, i.e., the feasible set F = {(u, {Wl}) :
(4.6b), (4.6c)} remains unchanged. More importantly, the strong convexity of (4.6a) is useful in ensuring
the convergence of the algorithm derived subsequently.
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respect to u and {Wl} in Gauss-Seidel fashion. Below, we formulate the two sub-problems

and derive their corresponding solutions.

Updating u

With fixed AF relaying matrices {Wl}, the sub-problem solution of finding the optimal

uopt can be expressed as

min
u

‖u‖22 (4.8a)

s.t. MSEk(uk) ≤ γk, ∀k ∈ K. (4.8b)

Noting the separable structure of the above problem with respect to u1, · · · , uK , it can be

further decomposed into K parallel sub-problems given by:

min
uk

|uk|2 (4.9a)

s.t.
K∑
q=1

∣∣∣ L∑
l=1

gH
k,lWlhl,q

∣∣∣2|uk|2 −
L∑
l=1

2�
{
u∗
kg

H
k,lWlhl,k

}

+
L∑
l=1

σ2
R,l‖gH

k,lWl‖22|uk|2 + σ2
D,k|uk|2 + 1 ≤ γk. (4.9b)

Below we show that the optimal solution uopt
k of (4.9) in fact can be obtained as a scaled

version of the MMSE filter uMMSE
k . Observe that (4.9) is a strictly convex quadratic problem,

which is also strictly feasible, i.e., Slater’s constraint qualification holds [93]. Therefore,

there exists a unique globally optimal solution of (4.9), which can be obtained by evaluating

the Karush-Kuhn-Tucker (KKT) conditions of (4.9), which are sufficient conditions in this

case. First, the Lagrangian function of (4.9) can be written as

L(uk, μk) = |uk|2 + μk

( K∑
q=1

∣∣∣ L∑
l=1

gH
k,lWlhl,q

∣∣∣2|uk|2 −
L∑
l=1

2�
{
u∗
kg

H
k,lWlhl,k

}

+
L∑
l=1

σ2
R,l‖gH

k,lWl‖22|uk|2 + σ2
D,k|uk|2 + 1− γk

)
, (4.10)
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where μk ≥ 0 denotes the dual variable associated with (4.9b). The first-order KKT

condition can then be formulated as

∂L(uk, μk)

∂u∗
k

= uk

(
μk

K∑
q=1

∣∣∣ L∑
l=1

gH
k,lWlhl,q

∣∣∣2 + μk

L∑
l=1

σ2
R,l‖gH

k,lWl‖22

+ μkσ
2
D,k + 1

)
− μk

L∑
l=1

gH
k,lWlhl,k = 0. (4.11)

Re-arranging the above, we obtain uopt
k as

uopt
k =

μk

L∑
l=1

gH
k,lWlhl,k

μk

(
K∑
q=1

∣∣∣∣ L∑
l=1

gH
k,lWlhl,q

∣∣∣∣2 + L∑
l=1

σ2
R,l‖gH

k,lWl‖22 + σ2
D,k

)
+ 1

. (4.12)

Meanwhile, the MMSE filter can be obtained by setting the partial derivative of MSEk(uk)

in (2.1) to zero, yielding, ∂ MSEk(uk)
∂u∗

k
= 0, whose solution is

uMMSE
k =

L∑
l=1

gH
k,lWlhl,k

K∑
q=1

∣∣∣∣ L∑
l=1

gH
k,lWlhl,q

∣∣∣∣2 + L∑
l=1

σ2
R,l‖gH

k,lWl‖22 + σ2
D,k

. (4.13)

Upon dividing (4.13) by (4.12), we obtain

uMMSE
k

uopt
k

=
C + 1

μk

C , (4.14)

where C =
∑K

q=1

∣∣∣∑L
l=1 g

H
k,lWlhl,q

∣∣∣2 +∑L
l=1 σ

2
R,l‖gH

k,lWl‖22 + σ2
D,k is a positive constant given

fixed {Wl}. Upon defining κk = 1 + 1
Cμk

> 1, we now recognize that uopt
k can be found by
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Fig. 4.3 Illustration of how to obtain the optimal u∗k from the MMSE solu-
tion uMMSE

k .

scaling down the MMSE filter uMMSE
k by κk as follows:

uopt
k =

uMMSE
k

κk

=
1

κk

L∑
l=1

gH
k,lWlhl,k

K∑
q=1

∣∣∣∣ L∑
l=1

gH
k,lWlhl,q

∣∣∣∣2 + L∑
l=1

σ2
R,l‖gH

k,lWl‖22 + σ2
D,k

. (4.15)

To gain more insights into the computation of uopt
k , we illustrate the relationship between

uopt
k and the MMSE filter uMMSE

k in Fig. 4.3, where for simplicity, we assume that uk is

real-valued. Since MSEk(uk) is a quadratic function in uk, we can first compute the global

minimum, i.e., the MMSE solution uMMSE
k , and then simply scaling it down by a factor κk

while still satisfying the MSE constraint (4.8b), i.e., letting MSEk(uk) = γk.

Updating {Wl}

We then proceed to solve the sub-problem for {Wl} when u is fixed. To this end, we define

the concatenated weight vectors wl � vec(Wl) for all l, as well as the following matrices
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and vectors, which are independent of {wl}:

Qk
l,m =

K∑
q=1

(
h∗
l,quku

∗
kh

T
l,q ⊗ gq,lg

H
q,l

)
(4.16)

ΨΨΨl = σ2
R,lIN2

l
+ INl

⊗
K∑
k=1

hl,kh
H
l,k (4.17)

ΘΘΘk,l = σ2
R,1I⊗ (gk,1uku

∗
kg

H
k,1) (4.18)

qk,l = h∗
l,k ⊗ gk,l. (4.19)

Then, by exploiting the useful properties of the Kronecker product, i.e., Tr
(
AHBCDH

)
=

vec (A)H
(
DT ⊗B

)
vec (C), Tr

(
AHBA

)
= vec (A)H (I⊗B) vec (A) and Tr

(
AHB

)
=

vec (B)H vec (A), we arrive at the following convex quadratically-constrained quadratic

problem (QCQP):

min
w

L∑
l=1

μ

‖w(n−1)
l ‖22 + ε

‖wl‖22Pc,l +
L∑
l=1

wH
l ΨΨΨlwl (4.20a)

s.t.
L∑
l=1

L∑
m=1

wH
l Q

k
l,mwm −

L∑
l=1

2�
{
wH

l qk,l

}
+

L∑
l=1

wH
l ΘΘΘk,lwl + qk ≤ γk, ∀k ∈ K

(4.20b)

wH
l ΨΨΨlwl ≤ Pl,max, ∀l ∈ L . (4.20c)

The class of problems in the above form can be equivalently transformed into an SOCP

using the techniques introduced in [95]. To elaborate further, we first recast (4.20b) as

wHQkw − 2�{wHqk}+wHΘΘΘw + qk − γk ≤ 0, (4.21)

where qk � [qT
k,1, · · · ,qT

k,L]
T , ΘΘΘ � blkdiag{ΘΘΘ1, · · · ,ΘΘΘL} and Qk is a block matrix with its

(l,m)th blocked given by Qk
l,m. With the aid of (4.21), (4.20) can further be reformulated
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as

min
w,t1,t2,t3,t4

L∑
l=1

μPc,l

‖w(n−1)
l ‖22 + ε

t1,l +
L∑
l=1

t2,l (4.22a)

s.t. t23,k + t24 − qkQ
−1
k qk + qk − γk ≤ 0, ∀k ∈ K (4.22b)

t2,l ≤ Pl,max, ∀l ∈ L (4.22c)

‖wl‖22 ≤ t1,l, ∀l ∈ L (4.22d)

‖ΨΨΨ1/2
l wl‖22 ≤ t2,l, ∀l ∈ L (4.22e)

‖Q1/2w −Q
−1/2
k ‖2 ≤ t3,k, ∀k ∈ K (4.22f)

‖ΘΘΘ1/2w‖2 ≤ t4, (4.22g)

where t1 = [t1,1, · · · , t1,L]T , t2 = [t2,1, · · · , t2,L]T , t3 = [t3,1, · · · , t3,K ]T and t4 are auxiliary

variables. It is observed that the objective function (4.22a) and the constraint (4.22c) are

linear while (4.22f)–(4.22g) are in the form of SOCs. The remaining difficulties in solving

(4.22) lie in (4.22b), (4.22d) and (4.22e), which are the so-called hyperbolic constraints [95].

To handle these constraints, we observe that for vector x ∈ CN and real scalars y, z ≥ 0:

‖x‖22 ≤ yz ⇐⇒
∥∥∥∥∥
[

2x

y − z

]∥∥∥∥∥
2

≤ y + z. (4.23)

As a direct application of (4.23), (4.22b), (4.22d) and (4.22e) can be respectively reformu-

lated as ∥∥∥∥∥∥∥
⎡
⎢⎣ 2t3,k

2t4

γk − qk + qkQ
−1
k qk − 1

⎤
⎥⎦
∥∥∥∥∥∥∥
2

≤ γk − qk + qkQ
−1
k qk + 1 (4.24)

∥∥∥∥∥
[

2wl

t1,l − 1

]∥∥∥∥∥
2

≤ t1,l + 1 (4.25)∥∥∥∥∥
[

2ΨΨΨ
1/2
l wl

t2,l − 1

]∥∥∥∥∥
2

≤ t2,l + 1. (4.26)

Substituting the above inequalities back into (4.22), the latter becomes a standard SOCP,

which can then be efficiently solved by interior-point methods. To this end, one can rely
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Algorithm 4.1 Re-weighted iterative algorithm for energy minimization using BCD update

Initialization: w
(0)
l and βl =

1

‖w(0)
l ‖22+ε

for all l ∈ L
repeat

1) Update u
(n)
k for all k in parallel via (4.15) given fixed Wl = dvec(w

(n−1)
l ) for all l

2) Update w
(n)
l by solving the SOCP (4.22) with fixed uk = u

(n)
k for all k

3) Update the weight βl =
1

‖w(n)
l ‖22+ε

for all l.

until convergence;
Output: (w̄, ū)

on state-of-the-art external software tools, see, e.g. [113].

With the aid of (4.15) and (4.22), the resultant iterative algorithm relying on the BCD

and re-weighted l1-norm approximation can be now summarized as seen in Algorithm 4.1,

where dvec(·) denotes the matrix-vector reshaping. The computational complexity of Al-

gorithm 4.1 is dominated by solving the SOCP (4.22). It is known that an SOCP can be

solved at a worst-case complexity on the order of O(N2
totalDtotal), where Ntotal denotes the

total number of optimization variables while Dtotal denotes the total dimension of all the

SOC constraints. To simply the analysis, let us assume that Nl = N for all l. Hence, in

(4.22), the total number of variables is N2L + 2L + K + 1 and the total dimensions of

(4.22b)–(4.22g) are 4K, L, (N + 2)L, (N + 2)L, (N + 1)K and N + 1, respectively. Using

the above results and further assuming that N , L and K have the same order of magnitude,

we can obtain the complexity of Algorithm 4.1 as O(N5L3 +N5L2K), i.e., the complexity

of the algorithm increases on the order of O(N5), O(L3) and O(K) when considered in

terms of its individual system parameters.

Remark 4.1 (Comparison with prior works in the literature). The design approach con-

sidered for our multi-user relay network is conceptually similar to that of [69] conceived for

multi-cell downlink network, based on the QoS-constrained network power minimization.

However, apart from the consideration of the different network topologies, the main differ-

ence between [69] and the present work is the choice of QoS metric, which inevitably leads

to different solution approaches. In [69], the SINR-based constraints are imposed for the

sake of guaranteeing a specific QoS level for each destination user. The SINR constraints

can be equivalently written as an SOC constraint by applying a phase rotation, see, [69, eq.

(10)] and therefore, the sub-problem at each iteration of the iterative algorithm is a convex

SOCP. By contrast, in this work, we adopt the MSE (2.1) as our QoS metric, which is not



4 Centralized Energy Efficient Relaying in Next-Generation RANs 83

jointly convex in (u, {W}l). This fundamental difference subsequently leads to a different

iterative algorithm from that of [69], i.e., the so-called block coordinate re-weighted l1-norm

minimization. Furthermore, in the context of the energy minimization problem considered,

the convergence results of the conventional BCD algorithm [31–35, 114] are not directly

applicable to the proposed algorithm. In view of this, as an additional contribution, we

show below the convergence properties of the newly proposed algorithm by relying on a

proposition, which has only been discovered with the advent of recent advances in the

non-convex optimization theory [98]. �

4.2.2 Convergence Behavior

Since the original energy minimization problem of (4.6) is non-convex, it is necessary to

analyze the convergence properties of Algorithm 4.1. Before proceeding further, let us take

a closer look at the problem (4.6) in order to gain further insights into the proposed iterative

algorithm. Similarly to the compressive sensing literature [96], a close approximation to

the l0-norm term of (4.6a) is the following concave function:

L∑
l=1

∥∥‖Wl‖2F
∥∥
0
Pc,l =

L∑
l=1

∥∥‖wl‖22
∥∥
0
Pc,l

≈ λd

L∑
l=1

log
(
1 + ‖wl‖22ε−1

)
Pc,l︸ ︷︷ ︸

�F(w)

(4.27)

where w = [wT
1 , · · · ,wT

L ]
T and λd =

1
log(1+ε−1)

. Then consider the following problem instead

of (4.6):

min
(w,u)∈Ω

F ′(w,u) � F(w) +
L∑
l=1

wH
l ΨΨΨlwl + uHu, (4.28)

where for notational simplicity, we have Ω = {(w,u) : (4.6b), (4.6c)}. Since F(·) is con-

cave in ‖wl‖22, an efficient technique of solving (4.28) is the so-called MM algorithm [108].

The idea behind the MM algorithm is to first find a convex surrogate function, which ma-

jorizes the objective function and subsequently solves the original problem iteratively via

a sequence of “convexified” sub-problems.
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In (4.28), F(·) is the only non-convex part, whose majorization function can simply be

constructed from its first-order (i.e., linear) Taylor series expansion around a solution point

w(n−1) obtained from the previous iteration, i.e.,

F̃(w;w(n−1)) = F(w(n−1)) + λd

L∑
l=1

‖wl‖22 − ‖w(n−1)
l ‖22

‖w(n−1)
l ‖22 + ε

Pc,l ≥ F(w). (4.29)

Then a modified block-type MM algorithm can be obtained for (4.28) by solving the

following pair of sub-problems in a circular manner:

Step 1) : w(n) = arg min
w∈Ω(n)

w

F̃ (w;w(n−1)) +
L∑
l=1

wH
l ΨΨΨlwl (4.30)

Step 2) : u(n) = arg min
u∈Ω(n)

u

uHu (4.31)

where for notational simplicity, we define the projection of Ω onto each design block at the

nth iteration as Ω
(n)
w = {w : (w,u(n−1)) ∈ Ω} and Ω

(n)
u = {u : (w(n),u) ∈ Ω}. In Step

1), if we neglect the terms independent of w in F̃(·; ·) and let λd = μ, we observe that

(4.30) becomes equivalent to the QCQP of (4.20). Furthermore, the solution to (4.31) is

given by (4.15). Now we recognize that the proposed iteratively re-weighted algorithm in

Algorithm 4.1 is essentially the above block-type MM algorithm, which solves the original

optimization problem (4.6), however, with the aid of an approximated log-sum objective

function.

Having established the above connection, we are ready to prove the convergence of

Algorithm 4.1. To begin, let us first introduce the definition of the Nash point [98].

Definition 4.1. A point (w̄, ū) is called a Nash point or block coordinate-wise minimizer

of (4.28), if it satisfies the following Nash equilibrium conditions of (4.28):

F ′(w̄, ū) ≤ F ′(w, ū), ∀w ∈ Ω̄w (4.32a)

F ′(w̄, ū) ≤ F ′(w̄,u), ∀u ∈ Ω̄u, (4.32b)

where Ω̄w � {w : (w, ū) ∈ Ω} and similarly, Ω̄u � {u : (w̄,u) ∈ Ω}.

Remark 4.2 (On Nash point). In general, the Nash point of a non-convex optimization

problem is a generalization of a stationary point. If the feasible set Ω is separable, i.e., Ω
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is a Cartesian product given by Ω = Ωw × Ωu where Ωw and Ωu are two convex subsets,

then the above Nash equilibrium conditions become equivalent to the first-order optimality

conditions [93], and subsequently (w̄, ū) becomes a stationary point. In view of this, the

Nash equilibrium conditions are in general weaker than the first-order optimality conditions.

For problem (4.28), a stationary point must be a Nash point, but a Nash point is not

necessarily a stationary point. �

With the above definition, the convergence properties of Algorithm 4.1 are formulated

in the following theorem:

Theorem 4.1. Let
{(

w(n),u(n)
)}

be the solution sequence generated by Algorithm 4.1.

Then any limit point of
{(

w(n),u(n)
)}

is a Nash point of problem (4.28), hence, satisfying

the Nash equilibrium condition of (4.32).

Proof: The proof follows two steps. Firstly, we show that limn→∞‖u(n)−u(n−1)‖2 = 0

and limn→∞‖w(n) −w(n−1)‖2 = 0, the proof of which can be found in Appendix B.1. Then

invoking [98, Theorem 2.3], it is readily shown that any limit point (w̄, ū) of
{(

w(n),u(n)
)}

is a Nash point of (4.36).

Before concluding this subsection, the following remark is of interest.

Remark 4.3 (On convergence, optimality and uniqueness of the solution). In the current

state-of-the-art of the BCD algorithm [31–34, 98], there are in general two classes of non-

convex problems that this algorithm can efficiently solve, which are described below2. The

first problem, denoted by (P0) assumes the following form:

(P0) : min
x

f(x1,x2) s.t. x = (x1,x2) ∈ X � X1 ×X2,

where f : Cm1 × Cm2 → R is a continuously differentiable function, and Xi ⊆ Cmi , i = 1, 2

are closed, nonempty convex subsets. Let {x(n)} denote the sequence of intermediate

solutions generated by the BCD algorithm. Then it has been proved in [31–34] that every

limit point of {x(n)} is a stationary point of (P0).

Let us now proceed to a more general class of non-convex problems, which our energy

2To simplify the analysis, we limit our discussions on problems with two optimization variable blocks,
i.e., x1 and x2. However, all the results and discussions can be extended to the case of multi-block variables.
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minimization problem belongs to:

(P1) : min
x

f(x1,x2) s.t. x ∈ X ,

where X ⊆ Cm1+m2 is a closed and block multi-convex subset, i.e., X is convex with respect

to each of x1 and x2, but not jointly convex in x. In contrast to (P0), now x1 and x2 are

nonlinearly coupled in the constraints and therefore the feasible set X can no longer be

expressed as a Cartesian product. The convergence behavior of the BCD algorithm for

(P1) has not been thoroughly investigated until very recently [98]. It has been proved that

every limit point of {x(n)} is a Nash point of (P1), provided that f(·) is strongly convex

with respect to each of x1 and x2 [98].

Despite the elegant convergence properties of the BCD algorithm, it is worth noting

that due to the non-convex nature of both (P0) and (P1), there may exist many stationary

or Nash points. At the time of writing, the question whether the algorithm converges to

a unique stationary/Nash point remains an open issue in both the theoretical field of non-

convex optimization [31–34,53,98] and in terms of its engineering applications [24,35,114].

Additionally, the local optimality of the solution obtained is not guaranteed. This is because

for (P0), by the definition of a stationary point, it can either be a locally optimal point or a

saddle point. For (P1), the current best effort is to prove the results in Theorem 4.1, where

a Nash point is not necessarily a locally optimal point (see Definition 4.1). �

4.2.3 RRH Selection and UE Admission Control

Upon the convergence of Algorithm 4.1, when a solution (w̄, ū) is obtained, the group spar-

sity pattern associated with the set of RRHs’ weight vectors can be retrieved by computing

the squared norm of each RRH’s weight vector, yielding:

SSS = [S1, · · · ,SL] = [‖w̄1‖22, · · · , ‖w̄L‖22], (4.33)

where Sl � ‖wl‖22 is used as a sparsity indicator for RRH-l. In contrast to prior works

[69,70], hereby we determine the subset A consisting of the active RRHs in a single attempt

by thresholding the sparsity indicator associated with each RRH. Specifically, we assume

that when the sparsity indicator Sl of RRH-l falls below a small threshold τ > 0, RRH-l is
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switched off for the sake of energy efficiency, and vice versa. In this way, we obtain:

A = {l : Sl ≥ τ, l ∈ L} . (4.34)

Due to the reduced number of active RRHs participating in the relay-aided transmission,

we have a reduced distributed diversity gain. Hence, the QoS constraints (4.6b) might

be violated at some DUEs after deactivating selected RRHs. This infeasibility issue can be

verified by reformulating (4.6) as a feasibility check problem. Specifically, only the subset A
of active RRHs is now involved in (4.6) instead of all the L RRHs and again, we can apply

the concept of BCD update to solve the feasibility check problem. If a feasible solution

is obtained, we subsequently further minimize the total transmission power of the active

RRHs according to

min
w,u

∑
l∈A

Pt,l (4.35a)

s.t. MSEk(uk,w) ≤ γk, ∀k ∈ K (4.35b)

Pt,l ≤ Pl,max, ∀l ∈ A (4.35c)

wl = 0, ∀l /∈ A. (4.35d)

Otherwise, if we fail to find a feasible solution, it becomes necessary to incorporate a mech-

anism which dynamically performs admission control for the end-users. A user admission

control mechanism has been introduced in [115] for a multi-cell downlink scenario within

a C-RAN, where the SINR is adopted as the QoS metric for each end-user. Following

a similar design philosophy, hereby we propose a user admission control method for the

multi-user relaying network within C-RAN.

To this end, we introduce a real-valued vector z = [z1, · · · , zK ]T , where zk is an abstract

measure of the extent to which the QoS constraint at DUE-k is violated. Motivated by

the so-called phase-one method in [93], we can formulate the user admission control as the
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Algorithm 4.2 Iterative UE admission control algorithm

Initialization: K = {1, 2, · · · , K}
while 1T z̄ > 0 do

1) Solve the feasibility problem (4.36) considering the QoS constraints (4.36b) for k ∈ K
and obtain z̄ as its solution
2) Set K = K\k where k corresponds to the largest z̄k among {z̄1, · · · , z̄K}

end

following feasibility problem:

min
u,w,z

1Tz (4.36a)

s.t.
∑
l∈A

∑
m∈A

wH
l Q

k
l,mwm −

L∑
l∈A

2�
{
wH

l qk,l

}
+

∑
l∈A

wH
l ΘΘΘk,lwl + q′k ≤ zk, k ∈ K (4.36b)

wH
l ΨΨΨlwl ≤ Pl,max, l ∈ A (4.36c)

z ≥ 0, (4.36d)

where q′k = qk − γk. The above problem is always feasible and can be reformulated as

a convex SOCP. The infeasibility indicator zk = 0 reveals that the kth QoS constraint is

satisfied, while zk > 0 indicates the opposite. Therefore, all QoS constraints are satisfied if

and only if 1Tz = 0. Based on these observations, we then propose an iterative procedure

to jointly check the feasibility and perform admission control, which is described by Algo-

rithm 4.2. Specifically, at each iteration, we remove the specific DUE which has the highest

infeasibility indicator, i.e., whose QoS constraint is the most “difficult” one to satisfy. The

procedure is repeated, until the QoS constraints for all the remaining DUEs are satisfied.

This admission control procedure can be readily incorporated into the RRH relaying design

at the BBU pool, which essentially solves the inherent infeasibility issue associated with

the RRH selection.

4.3 Simulation Results

We evaluate the performance of the joint RRH selection and AF relay optimization al-

gorithms proposed in Section 4.2 based on computer simulations. In all simulations, we

assume that the channel coefficients are generated as i.i.d. complex circular Gaussian vari-



4 Centralized Energy Efficient Relaying in Next-Generation RANs 89

2 3 4 5 6
0.5

1

2

3

4

Number of UE pairs

A
ve

ra
ge

 T
ot

al
 N

et
w

or
k 

P
ow

er

Target SINR=6dB
Target SINR=8dB
Target SINR=10dB

2 3 4 5 6
0.5

1

2

3

4

Number of UE pairs

A
ve

ra
ge

 T
ot

al
 N

et
w

or
k 

P
ow

er

2 4 6
4

4.02

4.04

4.06

2 4 6
4

4.005

4.01

4.015

Fig. 4.4 Comparison of power consumption of the relaying network using
Algorithm 4.1 and of the one without RRH selection. Left subfigure: Nl = 3
∀l. Right subfigure: Nl = 4 ∀l.

ables having a zero mean and a unit variance. For simplicity, all the RRHs are equipped

with the same number of antennas Nl while the static power consumption Pc,l and transmit

power budget Pt,l are both set to 0.5. The noise variances at the RRHs and the DUEs are

respectively set to σ2
R,l = 10−3 and σ2

D,k = 10−2. The MSE target γk in (4.6) is defined in

terms of the target SINR ρ, i.e., we have γk = 1
ρ+1

for all k ∈ K. Based on the obser-

vation that Algorithm 4.1 converges in about 10–15 iterations in all cases, Algorithm 4.1

is terminated after 20 iterations and ε = 10−10 is adopted to avoid numerical instability.

Each optimization problem in the form of (4.20) that is involved in Algorithms 4.1 and

4.2 is solved using the MATLAB-based interface YALMIP [116] along with the external solver

MOSEK [102]. Each point or number in the subsequent figures and tables is obtained by aver-
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aging the results of 200 independent realizations. The above simulation parameters remain

fixed unless otherwise stated. We compare the performance of the following algorithms:

1. The proposed joint RRH selection and relay optimization, which is labeled as “RRH

Selection” (“RRH Sel.”);

2. The conventional collaborative relaying approach operating without RRH selection

labeled as “w/o RRH Selection” (“w/o RRH Sel.”), whose objective is to minimize

the total transmission power of all the RRHs in the absence of sparsity-inducing

l0-norm [c.f. (4.6a)]. Mathematically, this problem can be written as

min
u,{Wl}

L∑
l=1

Pt,l (4.37a)

s.t. MSEk(uk, {Wl}) ≤ γk, ∀k ∈ K (4.37b)

Pt,l ≤ Pl,max, ∀l ∈ L. (4.37c)

We consider two simulation scenarios, namely, a generic relay network and a heterogeneous

network (HetNet).

4.3.1 Generic Relay Network

In Fig. 4.4, we show the total relaying network’s power dissipation for the different methods

as a function of the number of UE pairs K. There are a total number of 8 RRHs in this

scenario.A pair of multi-antenna settings, namely, one in which Nl = 3 for all l and one in

which Nl = 4 for all l, are considered under three different target SINRs at the DUEs. Our

results reveal that in general it is inefficient to allow all the RRHs to transmit data because

this requires a significant amount of static power. However, the proposed algorithm is

capable of adaptively selecting the most appropriate RRHs for relaying by exploiting the

knowledge of the spatial channel at a given time instance. To gain a deeper insight into

this approach, we calculate the average number of RRHs that are switched off during the

iterative procedure for different setup, i.e., different K and Nl. The efficacy of the proposed

algorithm becomes more evident from the corresponding results presented in Fig. 4.5, where

on average 3 to 7 RRHs can be switched off for the sake of energy-efficient transmission.

Next, we examine the performance of the proposed DUE admission control mechanism
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Fig. 4.5 Average number of inactive RRHs with different number of UE pairs
K and target SINR ρ. Top subfigure: Nl = 3. Bottom subfigure: Nl = 4.

Table 4.1 Number of non-scheduled DUEs for different K and target SINR

Number of UE pairs K 6 8
Target SINR ρ (dB) 6 8 10 6 8 10
Average number of excluded DUEs 0.06 0.32 0.34 1.06 1.20 1.83

in Algorithm 4.2. Hereby we adopt a more aggressive energy-efficient design method, where

only a limited number of “dominant” RRHs remain active. To achieve this, upon recovering

the sparsity pattern of the RRH weight vectors, i.e., SSS in (4.33), we compute the average

of the sparsity indicators, that is, S̄ =
∑L

l=1 Sl/L, and then determine the set of active

RRHs as A = {l : Sl ≥ ηS̄, l ∈ L}, where η is set to η = 0.75 in the simulations. In this

way, the selected subset of active RRHs may not be capable of simultaneously maintaining

an acceptable QoS at all DUEs. Then Algorithm 4.2 is invoked for iteratively removing

the QoS constraints of specific DUEs from the optimization procedure. In Table 4.1, the

average number of non-scheduled (excluded) DUEs is listed for different number of UE pairs

K and the target SINR ρ. It is clearly observed that the number of non-scheduled DUEs

increases when more UEs requiring a higher QoS level are involved in the relay-assisted
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Fig. 4.6 Layout of the HetNet considered in the simulations.

transmission.

4.3.2 HetNet Setup

In this subsection, we compare the performance of different methods in a HetNet setup,

whose layout is sketched in Fig. 4.6. We consider a total of L = 10 RRHs, with two

of them being macro-cell RRHs having a high power and the remaining ones are femto-

cell RRHs having a relatively low power. A total of K SUEs are randomly deployed in

the upper dashed line rectangle, while the corresponding K DUEs are randomly placed in

the lower dashed line rectangle, based on the uniform distribution. The specific system

parameters characterizing the HetNet are summarized in Table 4.2, where asymmetric

pathloss models are considered for different types of RRHs. The performance of different

methods is compared in terms of the average total network power and the number of

inactive RRHs.
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Table 4.2 Simulation Parameters in the HetNet
Parameter Value
Pathloss between macro-cell RRH and UE
at distance d (km)

128.1 + 37.6 log10(d)

Pathloss between femto-cell RRH and UE
at distance d (km)

140.7 + 36.7 log10(d)

Small-scale fading hl,k and gk,l Rayleigh fading
Noise power σ2

R and σ2
D −102dBm

Static power Pc,l 5W for macro RRHs; 3W for femto RRHs
Relay power budget Pl,max 5W for all RRHs
Antenna gain 3dBi

Table 4.3 Average number of inactive (silent) RRHs for different schemes

Num. of UE Pairs K
Alg. 2 4 6 8

R
el
a
y
A
n
t.

N
u
m
.
N

l 3
RRH Sel. 8.31 8 6.38 3.64

w/o RRH Sel. 0 0 0 0

4
RRH Sel. 8.80 8.40 7.96 6.11

w/o RRH Sel. 0 0 0 0

In Fig. 4.7, the average network power consumption is shown as a function of the

number of UE pairs K. Two different antenna array configurations are considered at the

RRHs, namely, Nl = 3 and Nl = 4 for all l ∈ L. It is observed that the proposed RRH

selection achieves a significantly better energy efficiency than the conventional approach

operating without RRH selection. Specifically, the performance gap is more evident, when

the number of UEs is relatively small. When more UEs are involved in the transmission, the

gap between the two approaches is reduced. This is because a large portion of the spatial

diversity gain provided by the multiple RRHs’ antenna arrays must be exploited to serve

the additional end-users, hence more RRHs remain active in the relay-aided transmission.

For a similar reason, the power consumption becomes lower, when additional antennas are

employed at the RRHs, yielding a saving of about 35% for the case of K = 6 and 40% for

the case of K = 8. The numbers of inactive RRHs in the HetNet using the two different

approaches are shown in Table 4.3. For the case of Nl = 3, our proposed method yields a

range of 3–8 inactive RRHs, while the numbers become 6–9 for the case of Nl = 4.

In summary, all the simulation results demonstrate the benefits of the proposed joint

AF relaying optimization and RRH selection algorithm. In both generic relaying and
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Fig. 4.7 Average network power consumption versus the number of UE pairs
in a HetNet.

heterogeneous network scenarios, the proposed method yields a significantly higher level of

energy efficiency than that of its counterpart operating without RRH selection.

4.4 Conclusions

In this chapter, the problem of joint RRH relay selection and AF matrices design was in-

vestigated from a network energy minimization perspective for a multi-antenna multi-user

relaying network within a C-RAN. Relying on the so-called re-weighted l1 minimization

and BCD-type methods, an iterative algorithm having a proven convergence was proposed

for solving the original non-convex optimization problem. Based on the recovered group

sparsity pattern associated with the RRHs’ AF matrices, the set of active RRHs involved

was then determined. To overcome the inherent infeasibility issue of the RRH selection, an

iterative end-user admission control algorithm was proposed, which can be readily incorpo-
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rated into the relaying optimization at the BBU pool. Our simulation results demonstrated

the efficacy of the proposed algorithms, which significantly reduced the energy consumption

of the C-RAN over that of a conventional cooperative relaying approach.
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Chapter 5

Joint Secure Relaying and Artificial

Noise Optimization

In this chapter, we consider a general wireless communication scenario, where a source (S)

transmits its confidential data to a destination (D), assisted by a multi-antenna AF relay

(R). Although a similar system model was studied in [87], the present thesis assumes that

both phases of the two-hop transmission are overheard by a set of independent eavesdrop-

pers (eves), as opposed to [87], where only the information leakage from the relays was

considered. The power of S, the AF relaying matrix and the covariance matrix of the AN

emitted by R have to be jointly optimized for protecting the message confidentiality. As

an alternative to most of the prior contributions [74–77, 86–89], where the main focus has

been on the maximization of the (worst-case) secrecy rate when either perfect or imper-

fect eavesdropper channel state information (ECSI) is available, we investigate the secrecy

problem in MIMO relaying network from a practical communication performance perspec-

tive. Specifically, assuming that the ECSI errors reside in a predefined spherical region, we

aim for maximizing the received SINR at D, subject to power constraints, while satisfying a

set of robust secrecy constraints at eves. The main contributions of this chapter are listed

below.

• The formulated optimization problem can be represented as a nonlinear non-convex

SDP with a bilinear equality constraint due to the joint nature of the optimization

Parts of the materials in this chapter have been presented at the 2015 IEEE International Conference
on Communications in London, U.K. [80], and published in IEEE Access [117].
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variables. Such a class of problems are in general difficult to solve with tractable com-

putational complexity. Towards this end, we propose a new penalized DC algorithmic

framework specifically designed for the class of nonlinear non-convex SDP with bilin-

ear equality constraints. One of the features of the proposed penalized DC algorithm

is that it eliminates the need for a non-trivial feasible initialization as required by

the conventional iterative algorithm [118] since finding such an initialization for a

non-convex problem is in general a difficult task.

• We thoroughly investigate various aspects of the proposed penalized DC algorithm

including its initialization, termination criteria, update rule of the penalty parameter

and the convergence properties. Specifically, we explicitly prove that the solution

sequence generated by the algorithm converges to a stationary point of the original

problem.

• We further solve the secrecy constrained relaying problem by the proposed algorithm

efficiently. To benchmark our solution approach, we also derive an upper bound for

the secrecy constrained relaying problem by relying on the SDR technique along with

an one-dimensional search algorithm. We show by numerical simulations that our

proposed penalized DC algorithm is capable of achieving a performance close to the

upper bound, however, at a significantly reduced complexity.

The rest of the chapter is organized as follows. Section 5.1 introduces the relay system

model and formulates the secrecy-constrained robust relaying problem. In Section 5.2, we

propose a new penalized DC algorithmic framework and characterize its convergence. We

then invoke the proposed framework for solving the secure relaying problem in Section 5.3.

In Section 5.4, a benchmarker relying on the SDR and one-dimensional exhaustive search

is derived for comparison purposes. The performance of the proposed solution is quantified

via numerical simulations in Section 5.5. Finally, we conclude in Section 5.6.

5.1 System Model and Problem Formulation

Consider a wireless network as depicted in Fig. 5.1, where source S communicates with

destination D, assisted by a trusted AF relay R operating in a half-duplex mode. The

signals transmitted during the S → R and R → D hops are overheard by K independent
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Source User Dest. User
Relay

Independent Eves

h1 hH
2

g1k gH
2k

…

…

Fig. 5.1 MIMO relay network in the presence of multiple single-antenna
eves.

eves, Ek for k ∈ K � {1, 2, · · · , K}. We assume that S, D and Ek, ∀k ∈ K are single-antenna

UEs having limited signal processing capabilities and low power budgets. By contrast, R is

equipped with NR ≥ 2 antennas. It is assumed that no direct link is available between S–D

due to the severe pathloss.

A narrowband flat-fading channel model is considered, where we denote the S–R channel

by h1 ∈ CNR×1 and the Hermitian transpose of the R–D channel by h2 ∈ CNR×1. Let s denote

the S information symbol, modeled as a zero-mean Gaussian random variable with a power

of σ2
S ≤ PS, where PS denotes the S power budget. During the first transmission slot, the

signal received at R is given by

z = h1s+ nR, (5.1)

where nR is a zero-mean additive noise vector with covariance of σ2
RINR

. Then R applies

a linear AF transformation matrix W ∈ CNR×NR to the received signal, and superimposes

an AN vector onto the linearly processed signal. Hence, the signal to be forwarded to D is

given by

r = Wz+ v = Wh1s+WnR + v, (5.2)

where v denotes the AN vector with zero mean and covariance of E{vvH} = ΨΨΨ � 0 to be
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optimized. The relay R has the power constraint of σ2
S‖Wh1‖2 + σ2

R‖W‖2F + Tr(ΨΨΨ) ≤ PR,

where PR denotes its power budget. During the second transmission slot, D receives the

following signal:

yD = hH
2 Wh1s+ hH

2 WnR + hH
2 v + nD, (5.3)

where nD is an additive noise with zero mean and a variance of σ2
D.

We adopt, as a metric of transmission reliability, the received SINR at D given by

SINRD =
σ2
S|hH

2 Wh1|2
σ2
R‖hH

2 W‖2 + hH
2 ΨΨΨh2 + σ2

D

. (5.4)

During the transmission, each Ek is potentially capable of overhearing the signals transmit-

ted both from S and R. Let g1k and g2k ∈ CNR×1, respectively, denote the S–Ek channel and

the Hermitian transpose of the R–Ek channel. Then the signals observed by Ek from S and

R, respectively, are given by

ySE,k = g1ks+ nE,1k (5.5)

yRE,k = gH
2kWh1s+ gH

2kWnR + gH
2kv + nE,2k, (5.6)

where nE,1k and nE,2k are additive noise terms with zero mean and a variance of σ2
E,k. In

our work, it is reasonable to assume that Ek, for k ∈ K, relies on selection combining (SC)

of ySE,k and yRE,k for the sake of simpler exposition (However, our work can be extended to

the case of maximum ratio combining (MRC), see Remark 5.4 for more justifications.). On

this basis, the mutual information leakage to each Ek can therefore be expressed as

CE,k(σS,W,ΨΨΨ) =
1

2
max

{
log2

(
1 +

σ2
S|g1k|2
σ2
E,k

)
, log2

(
1 +

σ2
S|gH

2kWh1|2
σ2
R‖gH

2kW‖2 + gH
2kΨΨΨg2k + σ2

E,k

)}
,

(5.7)

where the coefficient 1
2
is due to the fact that the relay-assisted transmission requires a pair

of orthogonal time slots in half-duplex mode.

In practice, due to the lack of explicit cooperation between the legitimate UEs and eves,

only imperfect estimates of the ECSI may be available at the legitimate UEs. Like most of

the prior contributions in the robust transceiver design literature, we model the unknown
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ECSI by taking into account the error terms Δg1k and Δg2k, yielding:

g1k = ĝ1k +Δg1k, g2k = ĝ2k +Δg2k, (5.8)

where ĝ1k and ĝ2k denote the imperfect ECSI estimates, while again, Δg1k and Δg2k rep-

resent the corresponding uncertainties. Hereby we assume that the ECSI errors lie in some

predefined bounded sets, yielding:

G1k �
{
Δg1k : |Δg1k|2 ≤ ε1k

}
(5.9)

G2k �
{
Δg2k : ‖Δg2k‖2 ≤ ε2k

}
, (5.10)

where εik, i = 1, 2 denotes the radius of the uncertainty region. The above bounded error

model has been extensively used in robust MIMO transceiver optimization literature to

capture the effects of channel estimation errors or quantization errors due to the finite-

rate feedback, see, e.g., [59] for more details. The above error model is also applicable

in some secure communication scenarios. A notable example is the D2D discovery and

communication defined in 3GPP LTE Rel. 12 [2]. Each UE (including the potential

eves) periodically broadcasts its own beacon signals and listens to others using a subset

of resources reserved for D2D operations. In this way, each UE is able to discover the

presence of other UEs (including potential eves in its proximity) and subsequently infers

an imprecise ECSI estimate based on the channel reciprocity. In this case, the bounded

error model can be invoked to quantify the channel estimation errors.

In a practical communication system, S can operate at a fixed data rate of Rd with

specific modulation and coding scheme (MCS), i.e., during a specific scheduling period

in LTE. The objective of the secure relaying design is to jointly optimize σS, W and ΨΨΨ,

subject to the power constraints, in order to maximize the received SINR at the legitimate

end-user D, while satisfying a set of robust secrecy constraints at the eves. Mathematically,
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this problem can be formulated as

max
σS,W,ΨΨΨ

SINRD (5.11a)

s.t. CE,k(σS,W,ΨΨΨ;Δg1k,Δg2k) ≤ κRd,

∀Δg1k ∈ G1k,Δg2k ∈ G2k, k ∈ K (5.11b)

σ2
S‖Wh1‖2 + σ2

R‖W‖2F + Tr(ΨΨΨ) ≤ PR (5.11c)

σ2
S ≤ PS, ΨΨΨ � 0. (5.11d)

In the above formulation, (5.11b) denotes the so-called robust secrecy constraints, which

aims to guarantee the secrecy for all possible realizations of the ECSI errors Δg1k and Δg2k

within uncertainty regions as defined in (5.9) and (5.10), respectively. The parameter κ is

used to introduce more flexibility in controlling the security level of the communication.

Before leaving this section, two important remarks are presented:

Remark 5.1 (On the assumption of eves’ receive combining). It is worth pointing out

that in contrast to prior contributions, hereby we assume information leakage during both

the two-hop relay-assisted transmission. This more general assumption grants the eves the

opportunities of enhancing their quality of reception via diversity combining. Two popular

diversity combing schemes are available, namely, SC and MRC. The implement of MRC

requires an accurate estimate of the phases of the received signals during the two stages

of relay-assisted transmission. When channel estimation errors are in general invoked, the

performance of MRC would significantly deteriorate. Additionally, to coherently combine

the signals from the two-stage transmission, eves’ clocks need to be perfectly synchronized

to that of the legitimate network, which is quite challenging if the eves are not part of the

legitimate network. It is observed in [119] that the MRC with two branches only yields

marginal performance gain over the SC, however, at the expense of higher complexity.

Hence, to bypass the aforementioned requirements, it is reasonable to assume that eves

adopt the SC, also for the sake of lower hardware complexity. However, to better appreciate

the generality of our proposed algorithm, in Remark 5.4 of Section IV, we will elaborate

on how the proposed algorithm can be applied to solve the secure relaying problem when

the MRC is employed by eves. �

Remark 5.2 (On the problem formulation). In the literature, another popular approach

for improving the transmission secrecy is to maximize the secrecy capacity of the relay-
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assisted network from the perspective of information theory. The latter in general relies

on the underlying assumption that there exists a capacity-achieving coding scheme based

on non-constructive random coding theorem. Such design approach is therefore useful as

a benchmark from system design viewpoint. In practical communication systems whereby

specific MCSs are used, e.g., 3GPP LTE-Advanced, it is better to consider a physical layer

design approach, which can be readily incorporated into on-going standards. The proposed

design approach well suits several use cases in LTE-Advanced such as the D2D broadcast

scenarios. Specifically, by enforcing the mutual information leakage CE,k to fall below the

data rate of the legitimate UE, i.e., CE,k < κRd, eves are impossible to perfectly decode

the confidential messages from the legitimate UEs. �

5.2 Theory: Penalized DC Algorithmic Framework

In this section, we propose a new penalized DC algorithmic framework, which aims to

solve a class of nonlinear non-convex SDPs. Following some preliminary, we first present

the framework, which can be considered as an evolutionary variant of the conventional

DC framework [120]. However, the results of convergence analysis in the literature of

conventional DC algorithm are not directly applicable to the proposed framework. Hence as

a further contribution, we explicitly state the convergence properties of this new framework.

5.2.1 Preliminary

We first provide some definitions which will be used throughout the subsequent derivations

of the algorithm.

Definition 5.1 (Positive Semi-Definite (PSD)-Convex Mapping). A matrix-valued map-

ping FFF(·) : Cn → Hp is called PSD-convex on a convex subset Ω ⊆ Cn, if for all x,y ∈ Ω

and θ with 0 ≤ θ ≤ 1, we have

FFF (θx+ (1− θ)y) � θFFF(x) + (1− θ)FFF(y). (5.12)

The PSD-convex mapping is a generalization of a convex function by noting that any

convex function with f(·) : Cn → R is PSD-convex in conjunction with p = 1. The

derivative of a matrix-valued mapping FFF(·) at a point x is defined as a linear mapping

DFDFDF : Cn → Cp×p given by
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Definition 5.2 (Directional Derivative of Matrix-Valued Mapping [121]). The directional

derivative of a matrix-valued mapping FFF at x is a linear mapping DFDFDF : Cn → Cp×p, which

is defined by

DFDFDF(x)h =
n∑

i=1

hi
∂FFF
∂xi

(x), ∀h ∈ Cn. (5.13)

For a given convex subset Ω ⊆ Cn, the matrix-valued mapping FFF(·) is said to be differ-

entiable on Ω if its directional derivative DFDFDF exits at every x ∈ Ω. For ease of discussion,

we assume that all the functions and matrix-valued mappings are twice differentiable on

their corresponding domains throughout the chapter.

The first-order condition for a PSD-convex mapping is given in the following proposition:

Proposition 5.1 (First-Order Condition). A mapping FFF is PSD-convex if and only if for

all x,y ∈ Cn, the following inequality holds

FFF(y) � FFF(x) +DFDFDF(x)(y − x). (5.14)

Now we can proceed to the definition of a PSD DC mapping.

Definition 5.3 (PSD DC Mapping). A matrix-valued mapping HHH(·) is called a PSD DC

mapping if HHH can be represented as a difference of two PSD-convex mappings, i.e.,

HHH(x) = FFF(x)−GGG(x). (5.15)

Note that the concept of the PSD DC mapping generalizes the conventional scalar-

valued DC function, i.e., h(x) = f(x)− g(x).

5.2.2 Optimization of a PSD DC Program with Bilinear Matrix Equality

Constraint

To simplify the exposition, in this subsection let us use matrixX as an optimization variable

instead of using vector x. The reason is that in the problem formulation of our interest,

there exists a bilinear matrix equality constraint, as will seen below. However, it should

be pointed out that any matrix variable X ∈ Cm×n can be equivalently expressed in the

vector form, i.e., x ∈ Cmn×1 via x = vec(X). Since the vectorization is a linear operation,

the aforementioned PSD-convexity is preserved under linear operation.
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We are interested in solving the following problem:

min
X

f0(X)− g0(X) (5.16a)

s.t. FFF i(X)−GGGi(X) � 0, i = 1, 2, · · · , I − 1 (5.16b)

X2 = X0X1 (5.16c)

X ∈ Ω, (5.16d)

where the optimization variable X is defined as a tuple, X = (X0,X1,X2, · · · ,XN−1) with

Ω is a non-empty, closed convex set, f0(·), g0(·) are convex functions on Ω, and FFF i(·),
GGGi(·) are PSD-convex mappings on Ω. For the ease of presentation, we use (5.16c) to

represent that some of the optimization variables are nonlinearly coupled in the bilinear

form. However, it can be conveniently extended to the case of Xi = XjXk for i, j, k ∈
{0, 1, · · · , N − 1}.

Next, we rely on the following lemma to show that (5.16) can be equivalently rewritten

as a PSD DC program.

Lemma 5.1 (Lemma 1 of [67]). Given X0, X1 and X2 of appropriate dimensions, which

satisfy the following relation:

X2 = X0X1, (5.17)

then the above matrix equality is equivalent to the following two constraints:

⎡
⎢⎣ Y1 X2 X0

XH
2 Y2 XH

1

XH
0 X1 I

⎤
⎥⎦ � 0 (5.18)

Tr (Y1)− Tr
(
X0X

H
0

)
≤ 0 (5.19)

where Y1 and Y2 are auxiliary matrix variables with appropriate dimensions. �

It is observed that (5.18) is an LMI constraint and (5.19) is a DC constraint. Therefore,

we can conveniently embed (5.18) into the convex subset Ω and its convexity remains

unaffected. Additionally, since the DC function in (5.19) is a special case of the PSD DC

mapping with p = 1, we can incorporate (5.19) into (5.16b), and re-express (5.16) as a
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standard PSD DC program, which is defined as follows:

Definition 5.4 (PSD DC Program). A PSD DC program assumes the form of

min
x

ϕ( x) � f0(x)− g0(x) (5.20a)

s.t. FFF i(x)−GGGi(x) � 0, i ∈ I � {1, 2, · · · , I} (5.20b)

x ∈ Ω, (5.20c)

where x is a tuple, which collectively denotes all the optimization variables and auxiliary

variables with appropriate linear transformation, i.e., x � (vec(X), vec(Y1), vec(Y2)).

The above PSD DC program represents a generalization of the conventional DC program

[118], where the DC inequality constraint, e.g., fi(x) − gi(x) ≤ 0 is now extended to the

generalized inequality � on the PSD cone. If the convex subset Ω is a polyhedral (which

is true for most MIMO-aided transceiver optimization problems), the formulation in (5.20)

can properly represent several classes of optimization problems:

• If at least one of f0, g0, FFF i and GGGi for i ∈ I is nonlinear, then (5.20) is a nonlinear

SDP;

• If g0 and GGGi for i ∈ I are linear, then (5.20) subsequently becomes a convex nonlinear

SDP

• If at least one of g0 and GGGi for i ∈ I are nonlinear, (5.20) represents a general nonlinear

non-convex SDP.

5.2.3 Issues with the Conventional DC Algorithm

Since (5.20) can be considered as a direct extension of a conventional DC program involving

only scalar-valued functions, a natural question arises as to whether the conventional DC

algorithm developed in [118] is applicable to solving (5.20). Following the line of [118],

an iterative algorithm can be developed for (5.20), where the key ingredient is to find a

local linear approximation of the non-convex parts of the objective function (5.20a) and the

PSD DC constraints (5.20b), i.e., −g0(·) and −GGGi(·), around the solution x(n−1) obtained

in the previous iteration, such that the resultant sub-problem becomes a convex SDP.

The original non-convex problem can then be iteratively solved by a sequence of these
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“convexified” SDPs. Assuming that x(n) is a solution obtained at the nth iteration, the

linearized sub-problem is then given by

min
x

f0(x)− g0(x
(n))−∇gT0 (x

(n))(x− x(n)) (5.21a)

s.t. FFF i(x)−GGGi(x
(n))−DGDGDGi(x

(n))(x−x(n)) � 0, i ∈ I (5.21b)

x ∈ Ω. (5.21c)

Since f0 and FFF i are convex function and mapping in x and the remaining terms are linear

in x, the above problem is a convex (nonlinear) SDP. The iterative algorithm therefore

generates a sequence of intermediate solutions {x(n)}∞n=0. Before proceeding to analyze the

feasibility of {x(n)}, we first define the feasible set of the original PSD DC program in (5.20)

as

D � {x ∈ Ω : FFF i(x)−GGGi(x) � 0, i ∈ I}, (5.22)

and the relative interior of D as

ri(D) � {x ∈ ri(Ω) : FFF i(x)−GGGi(x) ≺ 0, i ∈ I}. (5.23)

In order to guarantee that the obtained solution sequence {x(n)} lies in the feasible set

D, a strictly feasible initialization, i.e., x(0) ∈ ri(Ω) is required by the conventional DC

algorithm1. Hence, the following requirements are necessary for the conventional DC algo-

rithm:

Requirement 5.1. A strictly feasible initialization x(0) ∈ ri(D) is required by the conven-

tional DC algorithm.

Subsequently, it is straightforward to have

Requirement 5.2. The relative interior of the feasible set is nonempty, i.e., ri(D) �= ∅.

We now explain the practical difficulties in satisfying the above requirements. As men-

tioned earlier, since D is a non-convex set, finding a strictly feasible initialization within a

1This is due to the fact that the first-order Taylor series expansion of the concave function −GGGi(·) is its
upper bound, such that we have Fi(x)−GGGi(x) � Fi(x)−GGGi(x

(n))−DGDGDGi(x
(n))(x−x(n)) � 0 for all x ∈ Ω.
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non-convex set corresponds to the following non-convex feasibility search problem

Find x s.t.x ∈ D, (5.24)

which in principle is not a simple task. Otherwise, if the algorithm starts with an infeasible

point, then it can lead to further infeasibility issues during the successive iterations.

Additionally, the following claim also prevents the direct application of the conventional

DC algorithm to (5.20).

Claim 5.1. The relative interior of the feasible set of (5.20) is empty, i.e., ri(D) = ∅.

Proof: We show by contradiction. Recall that a strictly feasible solution to (5.20)

has to satisfy

Tr(Y1)− Tr(X0X
H
0 ) < 0. (5.25)

By applying the Schur complement to (5.18), we have[
Y1 X2

XH
2 Y2

]
−

[
X0

XH
1

] [
XH

0 X1

]
� 0

⇐⇒
[

Y1 X2

XH
2 Y2

]
−

[
X0X

H
0 X0X1

XH
1 X

H
0 XH

1 X1

]
� 0

=⇒ Y1 � X0X
H
0 , (5.26)

which obviously contradicts (5.25). Therefore, we must have

Tr(Y1)− Tr(X0X
H
0 ) = 0, (5.27)

which implies that ri(D) = ∅.
Based on the above analysis, it is known that both requirements of the conventional DC

algorithm cannot be satisfied. Motivated by the latter, we shall propose a new approach

where the concept of penalized DC algorithm is developed for the considered PSD DC pro-

gram. The proposed penalized DC algorithm, which can be considered as an evolutionary

variant of the conventional DC algorithm, can solve a wider range of PSD DC programs.

In particular, it eliminates the requirements of a non-trivial initialization and of a feasible
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set with non-empty relative interior.

5.2.4 Penalized PSD DC Algorithmic Framework

Instead of solving (5.21), hereby we introduce a set of matrix auxiliary variables {Si}Ii=1

and penalize (5.21a) with a linear regularization term, i.e.,

min
x,S

ϕ̂(n)(x,S;x(n))

� f0(x)− g0(x
(n))−∇gT0 (x

(n))(x− x(n)) + τ (n)
I∑

i=1

Tr(Si) (5.28a)

s.t. FFF i(x)−GGGi(x
(n))−DGDGDGi(x

(n))(x− x(n)) � Si (5.28b)

Si � 0, i ∈ I (5.28c)

x ∈ Ω, (5.28d)

where τ (n) ≥ 0 denotes the weight associated with the penalty term at the nth iteration

and S collectively denotes S � (S1, · · · ,SI). The auxiliary variable Si ∈ Hpi can be viewed

as an abstract measure of the extent to which the ith constraint in (5.21b) is violated.

Specifically, Tr(Si) = 0 reveals that the ith constraint is satisfied while Tr(Si) > 0 indicates

the opposite. Therefore, a feasible solution x ∈ Ω is found if

I∑
i=1

Tr(Si) = 0. (5.29)

With the introduction of the penalized sub-problem (5.28), we now develop an iterative

procedure for solving the PSD DC program (5.20). The rationale of the proposed penalized

DC algorithm is that it starts with an arbitrary point within the convex subset Ω, i.e.,

x(0) ∈ Ω, as opposed to x(0) ∈ ri(D) (hence possibly infeasible), and a small penalty τ

such that it facilitates a fast descent of the objective function at the beginning while the

constraints are temporarily allowed to be violated, i.e, Si � 0. As iterations evolve, the

value of τ gradually increases according to some designed rule in order to enforce the

solution to be closer to and finally lie in the feasible region D.

The penalized DC algorithm, which iteratively solves a sequence of sub-problems (5.28)

with a specifically designed updating rule of τ is then described as Algorithm 1. Below we
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Algorithm 5.1 Penalized DC Algorithm

Initialization: An initial point x(0) ∈ Ω, τ (0) > 0, δ1 > 0 and δ2 > 0. Set n = 0.
repeat
1. Convexify : Compute the first-order approximates

g0(x) ≈ g0
(
x(n)

)
+∇gT0

(
x(n)

) (
x− x(n)

)
GGGi (x) ≈ GGGi

(
x(n)

)
+DGDGDGi

(
x(n)

) (
x− x(n)

)
2. Solve: Compute x(n+1) by solving (5.28)

3. Update τ : Obtain the dual variable ΦΦΦ
(n+1)
i associated with (5.28b) and set

τ (n+1) =

{
τ (n) if τ (n) ≥ r(n)

τ (n) + δ2 if τ (n) < r(n)
(5.30)

where

r(n) � min

{
‖x(n+1) − xn‖−1, λmax

[ I∑
i=1

ΦΦΦ
(n+1)
i

]
+ δ1

}

4. Update iteration: n ← n+ 1
until Termination criterion is satisfied or a maximum number of iterations are reached
Output: The optimized x∗.

discuss a few important implementation aspects of Algorithm 1.

1) Initialization: Instead of finding an initialization within the relative interior of a non-

convex feasible set [c.f. (5.23)], i.e., x(0) ∈ ri(D), Algorithm 1 can now be initialized with a

point x(0) ∈ Ω, which corresponds to a more computationally efficient convex feasible search

problem. For implementation, one may rely on the general-purpose optimization solvers

to find x(0). More importantly, in many practical problems, x(0) can be easily found by

exploiting the specific structure of the convex subset Ω in that problem, (see the considered

secure relaying design problem in Section 5.3).

2) Termination Criterion: In practical implementation, Algorithm 1 needs to be ter-

minated within a maximum of number iterations. Thus, a reasonable termination criterion

is that the successive difference in the solution becomes small, i.e., ‖x(n+1)−x(n)‖ ≤ δ and

x(n) is (nearly) feasible, i.e.,
∑I

i=1 Tr(Si) ≈ 0. If the criterion cannot be satisfied within a

maximum number of iterations, we claim that the algorithm fails to find a feasible solution

given a limited time frame.

3) On the Updating Rule (5.30): The updating rule of τ is motivated by the theory of
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exact penalty function methods for nonlinear optimization problem [122,123]. The theory

suggests that if the penalty τ is larger than all the dual variables {ΦΦΦi} associated with

(5.28b) (in our case, it is in the form of PSD ordering), i.e., τI � ΦΦΦi for all i, then (5.28)

and (5.21) become equivalent. Also from the definition of r(n) below (5.30), we see that the

unboundness of {τ (n)} leads to the unboundness of {ΦΦΦ(n)
i } and ‖x(n+1) − xn‖ → 0. This

key property will be exploited later in proving the convergence of Algorithm 5.1.

4) Solving the Convex Sub-Problem (5.28): As mentioned earlier, (5.28) is a general

nonlinear convex SDP, which can be solved by a general interior-point method. To our

best knowledge, the external solvers supporting a general nonlinear SDP are still limited,

i.e., some widely-used solvers such as SeDuMi and MOSEK do not support nonlinear SDPs

at the current stage while PENLAB is the only public nonlinear SDP solver. However, many

MIMO transceiver optimization problems exhibit some common structures. Specifically:

1. The convex subset Ω can be represented by a finite number of LMIs, i.e.,

Ω � {x :AAAl(x) +Cl � 0, l = 1, · · · , L}, (5.31)

where AAAl(x) is a linear mapping of x.

2. The mappings FFF i(x) for i ∈ I are so-called Schur PSD-convex mappings, which

assumes the form of

FFF i(x) � SSS i(x)RRR−1
i (x)SSSH

i (x)−QQQi(x), (5.32)

where RRRi = RRRH
i , QQQi(x) = QQQH

i (x) and SSS i(x)SSSH
i (x) are linear mappings of x and

RRRi � 0;

3. The function f0(x) in the objective function is quadratic in x:

f0(x) = xH Bx+2Re{bH x}+ c. (5.33)

Below we show that the sub-problem (5.20) with the above structure can be equivalently

transformed into a standard SDP, which can be efficiently solved by state-of-the-art op-

timization tools. The transformation simply invokes the Schur complement and the in-

troduction of auxiliary variables. In this case, one can transform (5.28) into a standard
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SDP:

min
x,S,

t,{Ti}
t−∇gT0 (x

(n))x+τ (n)
I∑

i=1

Tr(Si) (5.34a)

s.t. Ti −GGGi(x
(n))−DGDGDGi(x

(n))(x− x(n))− Si � 0 (5.34b)

AAAl(x) +Cl � 0, l = 1, · · · , L (5.34c)[
QQQi(x) +Ti SSS i(x)

SSSH
i (x) RRRi

]
� 0, i ∈ I (5.34d)

[
x

1

]H [
B b

bH c− t

][
x

1

]
� 0, (5.34e)

where t and {Ti} are auxiliary variables.

5.2.5 Convergence Analysis of the Penalized DC Algorithm

Since Algorithm 5.1 is designed to start with a possibly infeasible initialization, the iterative

procedure may admit an infeasible final solution to the original PSD DC program (5.20).

Therefore, two important aspects regarding the convergence of Algorithm 5.1 need to be

examined:

1. whether the solution generated by Algorithm 1 is feasible to the PSD DC program

(5.20).

2. whether the convergence properties of conventional DC algorithm still hold for the

penalized DC algorithm.

In this subsection, the convergence properties of Algorithm 1 are analytically established.

Let x̄ be a point within the convex subset Ω, i.e., x̄ ∈ Ω. The PSD DC constraint (5.20b)

at x̄ is called inactive if the strict inequality holds, that is, FFF i(x̄)−GGGi(x̄) ≺ 0. Otherwise,

the PSD DC constraint is called active, i.e., FFF i(x̄) −GGGi(x̄) ⊀ 0. Let us denote the set of

active constraints at x̄ by

U(x̄) �
{
i ∈ I

∣∣FFF i(x̄)−GGGi(x̄) ⊀ 0
}
. (5.35)
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We call a vector h ∈ cone(Ω− x̄) a feasible direction to (5.20) at x̄ if we have

(DFDFDF i(x̄)−DGDGDGi(x̄))h ≺ 0, ∀i ∈ U(x̄). (5.36)

We now make our first assumption, which is called the extended Mangasarian-Fromovitz

constraint qualification (MFCQ) [124]:

Assumption 5.1. For any x̄ ∈ Ω, there exists a feasible direction h ∈ cone(Ω − x̄) to

(5.20).

The extended MFCQ is a quite common constraint qualification in nonlinear optimiza-

tion theory such that it guarantees the KKT necessary conditions to hold at a local point2.

A geometric interpretation of the extended MFCQ can be described as follows. The gradi-

ents of the active inequality constraints (recall that FFF i(x̄)−GGGi(x̄) ⊀ 0) at x̄ form a pointed

cone, and there exists a feasible direction in this cone that is tangent to the surface formed

by active inequality constraints.

In addition, we also make the following common assumptions:

Assumption 5.2. Ω is bounded and the objective function ϕ(x) = f0(x)−g0(x) is bounded

from below on Ω.

Assumption 5.2 is a mild assumption from practical perspective. Specifically, Ω is

bounded due to the power constraints imposed in the design problem, while the objective

function is usually a performance metric such as the SINR or MSE, which is lower-bounded

by zero.

Before formally stating the convergence theorem, we first present the following lemma,

which shows that Δx(n) � x(n+1) −x(n) is a descent direction of the PSD DC program

(5.20). The latter is a key property in proving the convergence of Algorithm 5.1.

Lemma 5.2. Let us denote the penalized objective function by ϕ̂(n)(x,S) � f0(x)−g0(x)+∑I
i=1 τ

(n) Tr(Si). Suppose that {x(n), n = 0, 1, · · · } is a sequence of solutions generated by

Algorithm 5.1. Then we have:

2A similar example in convex optimization theory is that the Slater condition guarantees that the
sufficient KKT conditions hold at some points for a convex problem.
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1. The following inequality holds for n ≥ 0:

ϕ̂(n)(x(n),S(n))− ϕ̂(n)(x(n+1),S(n+1)) ≥ ρf + ρg
2

‖x(n+1) − x(n)‖2, (5.37)

where ρf and ρg denote the convexity parameters of f0 and g0, respectively, i.e.,

ρf , ρg > 0 if f0 and g0 are strongly convex function and ρf , ρg = 0 otherwise.

2. If either f0 or g0 is strongly convex, i.e., ρf +ρg > 0, then Δx(n) is a sufficient descent

direction of (5.20) for all n ≥ 0.

Proof: Please see Appendix C.1.

Subsequently, we assume that

Assumption 5.3. Either f0(·) or g0(·) is strongly convex.

The above assumption is needed to ensure Δx(n) is a sufficient descent direction of (5.20)

for all n ≥ 0. To justify this assumption, let us consider a DC function f(x) = f1(x)−f2(x),

then it is trivial to observe that f(x) = (f1(x) +
ρ
2
‖x‖2) − (f2(x) +

ρ
2
‖x‖2) for any given

ρ > 0. Therefore, without loss of generality, we can always find a DC decomposition f1, f2

where both f1 and f2 are strongly convex.

The following theorem states the convergence properties of Algorithm 5.1:

Theorem 5.1. Let
{
x(n)

}
be the solution sequence generated by Algorithm 1. Suppose

(5.20) is feasible and Assumptions 5.1–5.3 hold for (5.20), then one of the following scenarios

applies:

1) Algorithm 5.1 terminates after a finite number of n̆ iterations and x(n̆) is a stationary

point of (5.20);

2) Algorithm 5.1 generates an infinite sequence every limit point of {x(n)} is a stationary

point of (5.20)3.

Proof: Please see Appendix C.2.

Based on the above theorem, we can further state that the sequence of the objective

function
{
ϕ(x(n))

}
of (5.20) obtained by Algorithm 5.1 is also convergent.

3In order to perform asymptotic analysis on the algorithm, here we assume that the algorithm will only
terminate if the criteria ‖x(n+1) −x(n)‖ = 0 and

∑I
i=1 Tr(Si) = 0 are satisfied.
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5.3 Application: Secure MIMO AF Relaying Optimization

In this section, we apply the proposed penalized DC algorithm in the previous section to the

secure MIMO AF relaying optimization problem (5.11). We first show that the latter can

be reformulated as a PSD DC program (5.20) by exploiting the so-called S-procedure and

by performing changes of variables. Subsequently, the penalized DC algorithm is adapted

to solve the transformed optimization problem.

5.3.1 Transformation of the Secure Relaying Problem into a PSD DC

Program

The robust secure relaying optimization (5.11) can be equivalently written as the following

after substituting (5.4) and (5.7) into (5.11),

max
σS,W,ΨΨΨ

σ2
S|hH

2 Wh1|2
σ2
R‖hH

2 W‖2 + hH
2 ΨΨΨh2 + σ2

D

(5.38a)

s.t. max
Δg1k∈G1k

σ2
S|g1k|2
σ2
E,k

≤ γ, k ∈ K (5.38b)

max
Δg2k∈G2k

σ2
S|gH

2kWh1|2
σ2
R‖gH

2kW‖2 + gH
2kΨΨΨg2k + σ2

E,k

≤ γ, k ∈ K (5.38c)

σ2
S‖Wh1‖2 + σ2

R‖W‖2F + Tr(ΨΨΨ) ≤ PR (5.38d)

σ2
S ≤ PS, ΨΨΨ � 0, (5.38e)

where γ = 22κRd − 1. Constraint (5.38b) can be equivalently rewritten as the following by

exploiting the Cauchy-Schwarz inequality:

σS ≤ min
k∈K

{
γσ2

E,k∣∣|ĝ1k|+√
ε1k

∣∣2
}
. (5.39)

Then to tackle the infiniteness associated with (5.38c), after some manipulations, we

can rewrite (5.38c) as

ΔgH
2kΘΘΘ(W,ΨΨΨ)Δg2k + 2Re

{
ĝH
2kΘΘΘ(W,ΨΨΨ)Δg2k

}
+ ĝH

2kΘΘΘ(W,ΨΨΨ)ĝ2k − γσ2
E,k ≤ 0, ∀Δg2k ∈ G2k (5.40)
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where we have defined ΘΘΘ(W,ΨΨΨ) � W
(
σ2
Sh1h

H
1 − γσ2

RINR

)
WH − γΨΨΨ. As a popular tech-

nique of tackling the infiniteness in the robust optimization theory, we invoke the so-called

S-Procedure [93] for equivalently recasting (5.40) as

PH
k ΘΘΘ(W,ΨΨΨ)Pk −ΛΛΛk(ρk) � 0, (5.41)

where we have ΛΛΛk(ρk) = blkdiag(ρkINR
, γσ2

E,k−ε2kρk) and Pk = [INR
, ĝ2k] with blkdiag(·, ·)

denoting the construction of a block diagonal matrix from the input arguments.

To further transform (5.38) into a PSD DC program in the form of (5.20), let us

introduce an auxiliary variable t. Plugging (5.40) and (5.41) back into (5.38), we obtain

max
σS,W,ΨΨΨ

σ2
S|hH

2 Wh1|2
t

(5.42a)

s.t. σ2
R‖hH

2 W‖2 + hH
2 ΨΨΨh2 + σ2

D ≤ t (5.42b)

σS ≤ min
k∈K

{
γσ2

E,k∣∣|ĝ1k|+√
ε1k

∣∣2
}

(5.42c)

PH
k ΘΘΘ(W,ΨΨΨ)Pk −ΛΛΛk(ρk) � 0, k ∈ K (5.42d)

σ2
S‖Wh1‖2 + σ2

R‖W‖2F + Tr(ΨΨΨ) ≤ PR (5.42e)

σS ≤
√

PS, ΨΨΨ � 0. (5.42f)

Observe that in the above formulation, the source power σS and relay AF matrix W are

nonlinearly coupled in the objective (5.42a) and constraints (5.42d) and (5.42e). To trans-

form (5.42) into a more convenient form, we introduce a new optimization variable U,

which is related to σS and W via the following bilinear matrix equality:

U = σSW. (5.43)

With the aid of (5.43), (5.42) can then be expressed as a PSD DC program with bilinear
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matrix equality constraint as defined in (5.16), i.e.,

max
x

|hH
2 Uh1|2
t

(5.44a)

s.t. PH
k ΘΘΘ(W,ΨΨΨ)Pk −ΛΛΛk(ρk) � 0, k ∈ K (5.44b)

U = σSW (5.44c)

x ∈ Ω, (5.44d)

where x collectively denotes all the optimization variables (including both the original and

auxiliary variables), i.e.,

x � [σS, vec(U)T , vec(W)T , vec(ΨΨΨ)T , ρρρT , t]T , (5.45)

and Ω is a compact convex subset defined as

Ω � {x : (5.42b), (5.42c), (5.42e), (5.42f)}, (5.46)

which can easily be represented as a finite number of LMIs by exploiting the techniques

introduced in [94].

To tackle the bilinear matrix equality constraint (5.44c), we follow the procedure pro-

posed in the previous section, i.e., exploit the results in Lemma 5.1, and conveniently

convert (5.44c) into

⎡
⎢⎣ Y1 U σSINR

UH Y2 WH

σSINR
W INR

⎤
⎥⎦ � 0 (5.47)

Tr(Y1)− Tr(σ2
SINR

) ≤ 0, (5.48)

where Y1 and Y2 are auxiliary matrix variables with appropriate dimensions, (5.47) is an

LMI, and (5.48) is a DC constraint (special case of PSD DC constraint with dimension one).

Therefore, we can now embed the LMI (5.47) into Ω while preserving its convex structure.

Additionally, the collection of optimization variables represented by x is augmented with

the new auxiliary variables Y1 and Y2.

Finally, note that the matrix inequality constraint (5.44b) can be expressed as a PSD
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DC constraint as follows:

PH
k Uh1h

H
1 U

HPk −ΛΛΛk(ρk)− γPH
k ΨΨΨPk︸ ︷︷ ︸

FFFk(·)

− γσ2
RP

H
k WWHPk︸ ︷︷ ︸
GGGk(·)

� 0, k ∈ K, (5.49)

where both FFFk(·) and GGGk(·) are PSD-convex mappings.

Based on the above derivations, we arrive at the following PSD DC program:

min
x

− |hH
2 Uh1|2
t

(5.50a)

s.t. PH
k Uh1h

H
1 U

HPk −ΛΛΛk(ρk)− γPH
k ΨΨΨPk

− γσ2
RP

H
k WWHPk � 0, k ∈ K (5.50b)

Tr(Y1)− Tr(σ2
SINR

) ≤ 0 (5.50c)

x ∈ Ω. (5.50d)

5.3.2 Penalized PSD DC Algorithm for Secure Relaying Design

For simplicity, let us denote

g0(U, t) = −|hH
2 Uh1|2
t

(5.51)

g1(σS) = Tr(σ2
SINR

) = NRσ
2
S. (5.52)

The algorithm designed for (5.50) is described as Algorithm 5.2, where ĝ0(·; ·), ĝ1(·; ·)
and ĜGGk(·; ·) denote the first-order approximations of their corresponding functions/mapping

around a solution from the previous iteration:

ĝ0(U, t;U(n),t(n)

) =

∣∣hH
2 U

(n)h1

∣∣2
t(n)

−
∣∣hH

2 U
(n)h1

∣∣2
(t(n))2

(
t− t(n)

)
+

1

t(n)
2Re

{
hH
2 U

(n)h1h
H
1

(
U−U(n)

)H
h2

}
(5.53)

ĝ1(σS; σ
(n)
S ) = NR(σ

(n)
S )2 − 2NRσ

(n)
S

(
σS + σ

(n)
S

)
(5.54)

ĜGGk(W;W(n)) = γσ2
RP

H
k W

(n)
(
W(n)

)H
Pk + 2γNRRe

(
PH

k W
(n)

(
W −W(n)

)H
Pk

)
.

We now briefly analyze the theoretical complexity of solving each sub-problem in (5.55).
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Algorithm 5.2 Penalized PSD DC Algorithm for Secure Relaying Design

Initialization: An initial point x(0) ∈ Ω, τ (0) > 0, δ1 > 0 and δ2 > 0. Set n = 0.
repeat
Compute x(n+1) by solving the convex sub-problem:

min
x

− ĝ0(U, t;U(n), t(n)) + τ (n)(s+
K∑
k=1

Tr(Sk)) (5.55a)

s.t. Fk −ĜGGk(W,W(n)) � Sk, k ∈ K (5.55b)

Tr(Y1)− ĝ1(σS, σ
(n)
S ) ≤ s (5.55c)

x ∈ Ω. (5.55d)

Update τ via (5.30);
Update iteration: n ← n+ 1

until Termination criterion is satisfied or a maximum number of iterations are reached

Since (5.55) is a standard SDP, its complexity mainly depends on the number of optimiza-

tion variables and the number of semidefinite cone constraints. It is not difficult to verify

(5.55) involves on the order of O(N2
R +NR +K +1) optimization variables and K semidef-

inite cone constraints of dimension (NR + 1)2 Therefore, as analyzed in [94], (5.55) can be

solved at a worst case complexity, which is on the order of O((N2
R +NR+K+1)2(NR+1)2.

Before leaving this section, the following remarks are of interests:

Remark 5.3 (On the initialization of Algorithm 5.2). Since Ω defined in (5.46) is a compact

convex subset, we are able to efficiently exploit its bounded structure, and conveniently

select a feasible initialization, e.g.,

σ
(0)
S = min

{√
PS,min

k∈K

{
γσ2

E,k∣∣|ĝ1k|+√
ε1k

∣∣2
}}

− ε

W(0) =

(
PR

(σ
(0)
S )2‖h1‖2 + σ2

RNR

) 1
2

INR

U(0) = σ
(0)
S W(0).

where ε is a small positive number. �

Remark 5.4 (Extension to the case of MRC). We show that the proposed penalized

DC algorithm is also applicable to the case where eves adopt a more complicated receive
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MRC scheme for decoding the messages from the legitimate UEs. With MRC, the mutual

information leakage to the eves can now be given by

CE,k(σS,W,ΨΨΨ) =
1

2
log2

(
1 +

σ2
S|g1k|2
σ2
E,k

+
σ2
S|gH

2kWh1|2
σ2
R‖gH

2kW‖2 + gH
2kΨΨΨg2k + σ2

E,k

)
. (5.56)

We adopt a rate-splitting approach, i.e., we introduce a pair of weights (γ1, γ2) with γ1+γ2 =

γ as defined below (5.38), and the robust secrecy constraint can be subsequently formulated

as ⎧⎨
⎩

max
Δg1k∈G1k

σ2
S |g1k|2
σ2
E,k

≤ γ1, k ∈ K

max
Δg2k∈G2k

σ2
S |gH

2kWh1|2
σ2
R‖gH

2kW‖2+gH
2kΨΨΨg2k+σ2

E,k
≤ γ2, k ∈ K

. (5.57)

It can be observed that in the case of MRC, the robust secrecy constraints have a similar

form to that of the SC by prefixing a pair of weights (β, 2Rd−β). Therefore, given different

values of β, we can obtain a set of solutions (σS,W,ΨΨΨ) using Algorithm 5.2. Within such

set of solution, the best solution can be achieved by the one that attains the maximum

SINRD in the objective function. �

5.4 Benchmarker: SDR-Based Exhaustive Search Method

To benchmark the proposed penalized DC algorithm, in this section we derive an SDR-

based approach that yields an upper-bound for the robust secrecy problem (5.11), however,

at the expense of higher computational complexity.

It is in general challenging to jointly optimize the tuple of (σS,W,ΨΨΨ) due to its non-

convex nature and therefore, we can consider a sub-problem of (5.11) solving for the optimal

pair (W,ΨΨΨ), while temporarily fixing the value of σS. Substituting the expression of CE,k

in (5.7) into (5.11b) and neglecting the terms independent of (W,ΨΨΨ), we arrive at the
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following sub-problem:

τ(σS) � max
W,ΨΨΨ
0

σ2
S|hH

2 Wh1|2
σ2
R‖hH

2 W‖2 + hH
2 ΨΨΨh2 + σ2

D

(5.58a)

s.t. log2

(
1 +

σ2
S|gH

2kWh1|2
σ2
R‖gH

2kW‖2 + gH
2kΨΨΨg2k + σ2

E,k

)
≤ κRd, ∀Δg2k ∈ G2k, k ∈ K

(5.58b)

σ2
S‖Wh1‖2 + σ2

R‖W‖2F + Tr(ΨΨΨ) ≤ PR, (5.58c)

where τ(σS) denotes its objective value, which depends on the value of σS. With the aid of

(5.58), the original problem (5.11) can equivalently be expressed as

max
σS

τ(σS) s.t. 0 ≤ σS ≤ σ̄S, (5.59)

where σS is lower bounded by zero, while its upper bound σ̄S is given by [c.f. (5.39)]

σ̄S = min

{√
PS,min

k∈K

{
γσ2

E,k∣∣|ĝ1k|+√
ε1k

∣∣2
}}

. (5.60)

The reformulated problem in (5.59) leads to a simpler single-variable optimization problem

defined over the interval [0, σ̄S]. Assuming that τ(σS) can be evaluated at any feasible

σS, a one-dimensional exhaustive search procedure can be invoked for finding the global

optimum of (5.59)4. Let us now focus our attention on computing τ(σS) for a given feasible

σS, which however requires solving the non-convex sub-problem (5.58). The solution to

(5.58) will be addressed in the following.

Recall that the infiniteness of the constraint in (5.58b) can be tackled by the S-procedure
[c.f. (5.40), (5.41)], which leads to the following equivalent reformulation:

ΛΛΛk(ρk)−PH
k ΘΘΘ(W,ΨΨΨ)Pk � 0. (5.61)

Replacing (5.58b) by (5.61), the sub-problem in (W,ΨΨΨ) of (5.58) can now be rewritten in

4Another widely-used search approach in optimization is the line search, which leads to significantly
lower complexity than the exhaustive search. Note that the line search strategy requires the computation
of a descent direction and a step size. In the case of (5.58), the optimized W and ΨΨΨ will implicitly depend
on σS such that a descent direction for the objective function τ(σS) (e.g., the gradient) will be difficult to
find. Therefore, we focus on the exhaustive search in this section.
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a finite form:

max
W,ΨΨΨ

σ2
S|hH

2 Wh1|2
σ2
R‖hH

2 W‖2 + hH
2 ΨΨΨh2 + σ2

D

(5.62a)

s.t. σ2
S‖Wh1‖2 + σ2

R‖W‖2F + Tr(ΨΨΨ) ≤ PR (5.62b)

ΛΛΛk(ρk)−PH
k ΘΘΘ(W,ΨΨΨ)Pk � 0, k ∈ K (5.62c)

ΨΨΨ � 0. (5.62d)

The above transformed formulation is still non-convex and to proceed, we have to transform

it into an appropriate formulation, where the SDR is applicable. Let us define w = vec(W)

and X = wwH . Interestingly, after some tedious matrix manipulations, which have been

relegated to Appendix C.5, we are now able to rewrite (5.62) in a form, which only involves

the linear terms of X and ΨΨΨ. The results are summarized in the following proposition:

Proposition 5.2. Define

Q0 = σ2
S(h

∗
1h

T
1 )⊗ (h2h

H
2 ) (5.63)

Q1 = σ2
RINR

⊗ (h2h
H
2 ) (5.64)

Q2 = σ2
S(h

∗
1h

T
1 )⊗ INR

+ σ2
RIN2

R
(5.65)

Q3(X,ΨΨΨ) = σ2
SH1XHH

1 − γσ2
R

NR∑
l=1

ElXEH
l − γΨΨΨ, (5.66)

where Q3(·) is a linear mapping of X and ΨΨΨ with H1 = hT
1 ⊗ INR

and El is defined as

El =
[
0NR×(l−1)NR

, INR
,0NR×(NR−l)NR

]
. Then problem (5.62) can equivalently be rewritten in

the following form:

max
X,ΨΨΨ,ρρρ

Tr(Q0X)

Tr(Q1X) + Tr(h2hH
2 ΨΨΨ) + σ2

D

(5.67a)

s.t. Tr(Q2X) + Tr(ΨΨΨ) ≤ PR (5.67b)

ΛΛΛk(ρk)−PH
k Q3(X,ΨΨΨ)Pk � 0, k ∈ K (5.67c)

X � 0, ΨΨΨ � 0, Rank(X) = 1. (5.67d)

Upon neglecting the non-convex rank-one constraint in (5.67d), (5.67) is relaxed to a

so-called fractional SDP, which can further be transformed into a standard SDP via the
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Charnes-Cooper transformation [125]. Specifically, by introducing an auxiliary variable

s > 0, and defining X = sX, ΨΨΨ = sΨΨΨ and ρρρ = sρρρ, (5.67) is conveniently recast as

max
X,ΨΨΨ,ρρρ,s>0

Tr(Q0X) (5.68a)

s.t. Tr(Q1X) + Tr(h2h
H
2 ΨΨΨ) + sσ2

D ≤ 1 (5.68b)

Tr(Q2X) + Tr(ΨΨΨ) ≤ sPR (5.68c)

ΛΛΛk(ρk)−PH
k Q3(X,ΨΨΨ)Pk � 0, k ∈ K (5.68d)

X � 0, ΨΨΨ � 0. (5.68e)

Interestingly, (5.68) now becomes a convex SDP, which is efficiently solvable by generic

optimization tools such as SeDuMi [101] and MOSEK [102] relying on interior-point methods

[103]. We remark that (5.68) and the rank-relaxed version of (5.67) are equivalent in the

sense that the optimal solution X∗ to (5.67) after rank-one relaxation can be retrieved by

the optimal solution (X
∗
, s∗) to (5.68), i.e., X∗ = X

∗

s∗ , and the resultant objective values of

the two problems are equivalent.

After obtaining the rank-relaxed solution X∗, a natural question arises as to how good

a solution is X∗, i.e., does it satisfy the rank-one optimality condition of (5.67)? Answer-

ing these questions directly from the formulation of (5.68) is still an open problem in the

literature5. To overcome this difficulty, we follow an approach similar to [87]. Specifi-

cally, denoting the objective value of (5.68) by τ ∗relax(σS), we consider the following power

minimization problem:

min
X,ΨΨΨ,ρρρ

Tr(Q2X) (5.69a)

s.t.
Tr(Q0X)

Tr(Q1X) + Tr(h2hH
2 ΨΨΨ) + σ2

D

≥ τ ∗relax(σS) (5.69b)

Tr(Q2X) + Tr(ΨΨΨ) ≤ PR (5.69c)

ΛΛΛk(ρk)−PH
k Q3(X,ΨΨΨ)Pk � 0, k ∈ K (5.69d)

X � 0, ΨΨΨ � 0. (5.69e)

5Note the methods developed in [126, 127] can be used to obtain an optimal rank-one solution to an
SDP similar to (5.68), however, with only a limited number of constraints. In our case, since the number
of eves can be arbitrarily large, we proceed with an alternative method by solving an inverse problem to
(5.68).
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Observe that (5.69) is also a standard SDP and therefore it is readily solvable by existing

optimization tools. Furthermore, its specific structure allows us to obtain the following

useful results, based on which we are able to retrieve an optimal rank-one solution of

(5.67).

Proposition 5.3. Let us denote the optimal solution of (5.69) by (Xo,ΨΨΨo, ρρρo). Assuming

suitable constraint qualification of (5.69), (Xo,ΨΨΨo, ρρρo) is also an optimal solution of (5.67),

i.e., Xo must be of rank one.

Proof: Please see appendix C.6.

In summary, obtaining an optimal solution of (5.59) now consists of two steps: 1) solve

the rank-relaxed SDP (5.68) and obtain the largest τrelax(σS) by exhaustive search over σS;

2) solve the power minimization problem (5.69) based on τrelax(σS). Since the rank-one

optimality condition of Xo is guaranteed, the optimal AF matrix Wo can be retrieved by

the rank-one decomposition of Xo, i.e., Xo = xo(xo)H and subsequently converting xo to

Wo via the vector-matrix reshaping.

We should point out that solving (5.59) requires performing an exhaustive search for

σS over [0, σ̄S]. In each step, we have to solve the SDP (5.68), which involves on the

order of O(N4
R + N2

R + 1) optimization variables and K semidefinite cone constraints of

dimension (NR + 1)2. Therefore, it can be solved at a worst-case complexity, which is on

the order of O (K(N4
R +N2

R + 1)2(NR + 1)2) [94]. As compared to the complexity of the

proposed penalized DC algorithm (see, e.g., analysis below Algorithm 5.2), The associated

computational cost escalates significantly faster as the size of the relay antenna array and

the number of eves increase, which may become computationally prohibitive in practical

problems.

5.5 Numerical Examples

The efficacy of the proposed solutions to the robust secure relaying problem is verified by

a few numerical examples. In all simulations, all the coefficients of the legitimate channels

h1 and h2, and the estimated eves’ channels {ĝ1,k} and {ĝ2,k} are generated following

i.i.d. complex circular Gaussian distribution with zero-mean and unit-variance. Equal

radii are assumed for all Δg1,k and for all Δg2,k, i.e., ε1,k = ε1 and ε2,k = ε2 for all k.

The power budget of S is normalized to one and we set higher power budget for R with
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PR = 2. It is also assumed that an antenna array of size NR = 3 is employed by R. The

noise variances are σ2
R = 0.05, σ2

D = 0.05 and σ2
E,k = 0.01 ∀k. The above parameters are

fixed unless otherwise explicitly stated. In all figures, we denote the proposed penalized DC

algorithm in Section 5.3 by “Proposed P-DCA” and the derived benchmarker in Section 5.4

by “SDR+Search”.

Convergence

We first study the convergence behavior of Algorithm 1. We simulate 200 channel real-

izations and among which, two classes of behaviors are observed. A representative case

for each class is then plotted in the left and right parts of Fig. 5.2. In each case, the top

sub-figure shows the convergence of the achieved SINR at D while the bottom sub-figure

plots the evolution of the FI. The first case shows a behavior similar to conventional DC

algorithm. The second example shows a more interesting behavior where the algorithm

begins with an infeasible point and in the first few iterations, the algorithm targets finding

a region (still infeasible) with larger objective function. As the penalty terms gradually

play more important roles, more emphasis will be on finding a feasible point near the above

located region. Therefore, the value of objective function drops since the feasibility has to

be enforced now. Finally, the SINR remains approximately the same because a stationary

point is achieved. The convergence behavior is consistent with the discussions and proof

in Section 5.3.

Secrecy

To evaluate the secrecy of relaying transmission achieved by the proposed solutions, i.e., how

consistently the robust secrecy constraints (5.11b) can be satisfied, we follow a probabilistic

approach similar to [30, Section VI–B]. In this example, the coefficients of Δĝ1k and Δĝ2k

are generated by i.i.d. zero-mean complex circular Gaussian distribution with variance

σ2
h = 0.05. The radii of uncertainty regions in (5.9) and (5.10) are then determined by ε1 =

σ2
h×gammaincinv(Pr, 0.5) and ε2 = σ2

h×gammaincinv(Pr, 0.5N2
R ) where gammaincinv(·) is

the inverse of incomplete gamma function defined in MATLAB and Pr is a predefined bounding

probability, say, Pr = 95%, c.f. [30, (61)]. The empirical CDFs of mutual information

leakage at both eves are shown in Fig 5.3. Both the proposed solutions ensures that the

mutual information leakage never exceeds the data rate of legitimate UEs while the non-
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Fig. 5.2 Convergence behavior of Algorithm 1. Left set of sub-figures: The
first case. Right set of sub-figures: The second case.
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Fig. 5.3 Empirical CDFs of mutual information leakage at eves. The legit-
imate S is transmitting at Rd = 2 bps/Hz.
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robust design leads to a frequent violation of the secrecy constraints, namely for more than

20% of the realizations. Considering the practical MCS with finite coding block length, a

proper selection of κ would lead to sufficiently high block error rate at eves. Although the

proposed method can prevent the eves from perfectly decoding the information signals, we

need to point out the use of the secrecy constraints does not guarantee perfect secrecy from

the information theoretical perspective. However, we can view our design as a means to

cause additional confusion to eves.

Reliability

Having verified the secrecy of the proposed solutions, we now compare the transmission

reliability in terms of the achieved SINR at D. In Fig. 5.4, SINRD for a set of 50 independent

experiments are plotted. The curve labeled “Nullspace Beamforming” refers to the method

where R first nullifies eves’ reception by first projecting its received signal onto the null

space of [ĝ2,1, · · · , ĝ2,K ] and then performs AF relaying. Therefore, the method is only

applicable when NR > K. Two cases K = 2 and K = 4 are considered. In both cases,

we observe that the performance of the proposed penalized DC algorithm is very close to

the SDR-based benchmarker. In the case of K = 2, the proposed solution significantly

outperforms the nullspace beamforming method.

We then study how different system configurations impact the achieved SINR by dif-

ferent approaches. In the left sub-figure of Fig. 5.5, the achieved SINR of the proposed

solutions and the nullspace beamforming is plotted as a function of the number of antenna

elements employed at R. Two sizes of uncertainty regions are considered with ε1 = ε2 = 0.1

and ε1 = ε2 = 0.2. In both scenarios, the achieved SINR monotonically increases as NR

increases due to the higher diversity one can exploit from the antenna array. Again, both

the proposed solutions consistently exhibit better performance than the nullspace beam-

forming. Notice also when more channel uncertainties are now present (ε1 = ε2 = 0.2),

the legitimate UEs are confined to relatively low transmission power to satisfy the robust

secrecy constraints, leading to lower received SINR at D. In the right sub-figure of Fig. 5.5,

the impact of different number of eves on the achieved SINR is assessed. The SINR mono-

tonically decreases when there are more eves around and therefore, the legitimate UEs

have to lower their transmission power to prevent the information leakage more carefully.

For completeness, in Fig. 5.6, we also investigate how robustly the proposed solutions can
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behave against the ECSI errors by varying the sizes of the channel uncertainty regions.

Again, the results are as expected and showing the superiority of our proposed solutions.

Computational Complexity

Last but not least, we need to justify the lower complexity of the proposed penalized

DC algorithm as compared to the SDR-based benchmarker proposed in Section 5.4. The

averaged solver time over 100 independent realizations is shown in Table 5.1 for different

values of NR and K. It is observed that the solver time for the SDR approach scales very

fast with increases in NR and K, which is consistent with the worst-case complexity analysis

in Section 5.4. In the meantime, the solver time of the proposed penalized DC algorithm
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Table 5.1 Average solver time (in seconds) for different algorithms

Num. of Relay Ant. NR

Alg. 2 3 4 5 6

N
u
m
.
of

e
v
e
s
K

2
SDR 1.31 4.44 22.44 111.26 553.11

P-DCA 0.69 1.42 2.58 4.73 8.38

3
SDR 1.59 5.95 28.61 141.54 680.90

P-DCA 0.88 1.80 3.45 6.52 11.31

4
SDR 1.83 7.14 33.29 165.29 798.69

P-DCA 1.05 2.24 4.60 8.01 14.09

5
SDR 2.19 8.38 41.23 203.20 924.32

P-DCA 1.20 2.66 5.43 9.95 17.12

increases more slowly.

5.6 Conclusions

In this chapter, robust design of secure MIMO relaying in the presence of multiple eves was

studied. We jointly optimized the power of S, the AF matrix and covariance of AN at R to

maximize the received SINR at D while imposing a set of mutual information leakage-based

secrecy constraints. With only imperfect ECSI, the resultant problem has been shown to

be non-convex and challenging. A computationally efficient sub-optimal solution relying

on the new penalized DC algorithmic framework was developed. This algorithm is capable

of finding a stationary solution to a general non-convex SDP representable by a PSD DC

program. The latter can be efficiently solved by the penalized DC algorithm without finding

a non-trivial feasible initialization. To benchmark the proposed scheme, an SDR-based

approach was also proposed, which yields an upper bound of the secure MIMO relaying

problem, however, with significantly higher complexity. We compared the performance of

the proposed algorithm and the benchmarking schemes using a few numerical examples. It

shows that the proposed solutions yield a significantly better performance than the non-

robust and null-space beamforming methods. In addition, the penalized DC algorithm

often reaches performance close to the SDR-based approach.
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Chapter 6

Concluding Remarks

6.1 Summary

Wireless MIMO relaying can improve the QoS of destination users in multi-user interference-

limited networks. To fully leverage the performance benefits provided by multiple antennas,

MIMO transceivers employed by the sources, relays and destinations need to be carefully

designed. This thesis focused on the joint linear MIMO AF transceiver design for multi-

user relaying networks by taking into consideration some crucial practical constraints such

as imperfect CSI, network energy consumption and transmission secrecy. Specifically, the

main contributions of the thesis are summarized as follows.

In Chapter 3, we considered the problem of MIMO AF relaying for multi-user networks,

where each source transmits multiple substreams to its corresponding destination with the

assistance of multiple relays. Assuming realistic imperfect CSI of all the source-relay and

relay-destination links, we proposed a robust optimization framework for the joint design of

the source TPCs, relay AF transceiver matrices and destination receive filters. Specifically,

two well-known CSI error models were considered, namely the statistical and the norm-

bounded error models. We considered the first design problem of minimizing the maximum

per-stream MSE subject to the source and relay power constraints (min-max problem).

The statistically robust and worst-case robust versions of this problem, which respectively

take into account the statistical and norm-bounded CSI errors, were formulated. Both

the resultant optimization problems are non-convex and therefore, numerical algorithms

were proposed by resorting to the iterative BCD-type update along with optimization

techniques such as SDP and SOCP. We then considered the second design problem of
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minimizing the maximum per-relay power subject to the QoS constraints for each substream

and the source power constraints (QoS problem). The proposed algorithms for the min-

max problem can correspondingly be adapted to solve the QoS problem. However, finding

a proper initialization for the QoS problem is a difficult task and therefore, an efficient

initial feasibility search algorithm was proposed based on the relationship between the

feasibility check and the min-max problems. Numerical results showed that the proposed

algorithms converge in around 30 iterations. The robust transceiver design approach can

achieve an improved robustness against different types of CSI errors compared to non-

robust approaches, which treat the estimated CSI as the true CSI and ignore the effects of

CSI errors.

In Chapter 4, we addressed the design of a multi-user relaying sub-network within a

C-RAN from an energy-efficient perspective. In the relaying sub-network, multiple source-

destination pairs communicate with the assistance of multiple RRHs serving as relays,

which are connected to a centralized processing node, i.e., the BBU pool. Exploiting the

flexible centralized processing structure of C-RAN, where RRHs can be adaptively acti-

vated/deactivated, we formulated the problem as a QoS-based network energy minimiza-

tion problem via joint RRH selection and relaying matrix optimization. Since the resultant

optimization problem is non-convex and mathematically challenging, we proposed an it-

erative solution based on the concept of the re-weighted l1-norm along with a BCD-type

algorithm. Analysis showed that the proposed algorithm converges to a so-called Nash

point as opposed to a local optimal point. Based on the outputs of the algorithm, the

subset of active RRHs was then determined in a single attempt by thresholding a group

sparsity pattern associated with the set of all RRH relaying matrices. To circumvent a po-

tentially undesirable condition, where the selected subset of RRHs fails to simultaneously

satisfy all the destination users’ QoS levels, we conceived a UE admission control mech-

anism for overcoming the associated infeasibility problem. The proposed energy-efficient

relaying scheme was compared with the conventional relaying scheme under a generic relay-

ing subnetwok and a HetNet. In both scenarios, it has been showed that the proposed joint

RRH selection and optimization approach leads to a small number of active RRHs. For

example, to support 6 source-destination UE pairs, on average 6 out of a total of 10 RRHs

can be switched off, yielding a saving of about 35% of the network energy consumption.

In Chapter 5, we designed a secure relay transmission strategy in a network, where a pair

of legitimate UEs communicate with the aid of an MIMO relay in the presence of multiple
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eavesdroppers. The relay adopts AF scheme to forward the confidential information from

the source to the legitimate destination while emitting AN to degrade the reception quality

of the eavesdroppers. Assuming that the ECSI errors reside in a predefined spherical region,

we jointly optimized the power of the source UE, the relay AF matrix and the covariance of

the AN transmitted by the relay, in order to maximize the received SINR at the destination,

while imposing a set of robust secrecy constraints at the eavesdroppers. The formulated

optimization problem can be represented as a nonlinear non-convex SDP with a bilinear

equality constraint. Such a class of problems are in general difficult to solve with tractable

computational complexity. To this end, we proposed a new penalized DC algorithm, which

is specifically designed for solving this class of non-convex SDPs. One of the features of the

proposed algorithm is that it eliminates the need for a non-trivial feasible initialization as

required by the conventional DC algorithm [118]. We explicitly proved that the solution

sequence generated by the algorithm converges to a stationary point of the original non-

convex SDP. We further showed how this penalized DC framework can be invoked for

solving the robust secure relaying problem. To benchmark the proposed algorithm, we

subsequently proposed an SDR-based exhaustive search approach, which yields an upper

bound of the secure relaying performance, however, with significantly higher complexity.

Simulation results showed that the proposed solution can ensure the secrecy of the relay-

aided transmission and significantly improving the robustness towards the ECSI errors

compared to the non-robust counterparts. It was also demonstrated that the proposed

penalized DC algorithm yields a performance close to the upper bound at a significantly

reduced complexity.

6.2 Potential Future Works

In this section, we discuss some potential future works, which are closely related to the

contributions presented in this thesis.

In Chapter 3, the proposed joint transceiver optimization algorithms for multi-user

MIMO relaying networks take into account two types of CSI error models, namely, sta-

tistical (Gaussian) and norm-bounded models. As mentioned in Chapter 1, one main

source that causes CSI errors during the channel reporting stage is the quantization er-

ror. For example, CSI can be quantized using channel direction information (CDI) and

channel magnitude information (CMI). To report the CDI, a pre-selected codebook can be
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used, which can be constructed from random vector quantization (RVQ) [128–130], discrete

Fourier transform (DFT) [131] or Grassmannian manifold [132, 133]. For instance, when

RVQ is used, the statistical properties of the CSI quantization errors have been analyzed

in [129,130]. It may be possible to develop a new statistically robust transceiver optimiza-

tion approach for the case of RVQ. The idea behind this new approach would be similar

to the one proposed in Section 3.2, e.g., the objective would be to minimize the expected

MSE under the CSI quantization errors subject to power constraints. However, instead of

assuming that the CSI errors are Gaussian distributed [c.f. Section 3.2], new statistical

properties of the CSI errors due to the RVQ quantization [129, 130] need to be exploited,

which may lead to different problem formulations and solutions.

In Chapter 4, the joint relay selection and transceiver optimization in a C-RAN was

developed under the assumption of perfect CSI for all links between UEs and RRHs. How-

ever, as mentioned in Sections 2.4 and 3.1, the CSI collected at the BBU pool in a C-RAN

is subject to various sources of imperfections such as the estimation errors at the receiver

side, the quantization errors due to the finite-rate feedback and the feedback delay. There-

fore, it is desirable to take into the consideration the effects of CSI error in the design of

energy efficient relaying. For example, assuming that the statistical properties of the CSI

errors are known [c.f. Section 3.2], a robust version of the energy efficient relaying problem

in 4.6 may be expressed as

min
u,{Wl}

L∑
l=1

∥∥‖Wl‖2F
∥∥
0
Pc,l + E

{
L∑
l=1

Pt,l

(
{Δhl,k}Kk=1

)}
+ ‖u‖22 (6.1a)

s.t. E
{
MSEk

(
uk, {Wl} ; {Δgk,l}Ll=1, {Δhl,k}

)}
≤ γk, ∀k ∈ K (6.1b)

E
{
Pt,l

(
{Δhl,k}Kk=1

)}
≤ Pl,max, ∀l ∈ L, (6.1c)

where Δhl,k and Δgk,l denote the CSI errors and the expectations are computed with

respect to the CSI errors. A robust version of the block coordinate re-weighted l1-norm

minimization algorithm [c.f. Algorithm 4.1] may be developed with the aid of convex

approximation techniques depending on the forms of the computed expectations. Another

possible extension of the works in Chapter 4 may be the consideration of other CSI error

models, e.g., norm-bounded and RVQ quantization, in the design of energy efficient relaying.

In Chapter 5, the secure relaying strategies were designed for a network model con-

sisting of one source, one relay, one destination and multiple eavesdroppers. It may be
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desirable to also consider multi-user networks, which may bring additional challenges. Se-

cure relaying with improved performance needs to be designed to tackle the additional

information leakage due to the concurrent transmission from multiple users. Furthermore,

as we discussed in Chapter 5, the proposed penalized DC algorithm is a general scheme,

which can solve a large class of non-convex SDPs. In addition to the robust secure relaying

problem formulated in Section 5.3, it may be useful to exploit the possibility of apply-

ing the penalized DC algorithm to solve various optimization problems appearing in other

applications/disciplines.
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Appendix A

Appendices of Chapter 3

A.1 Transformation of the QCLP into a standard SOCP

By exploiting the separable structure of (3.37) and the properties of quadratic terms, the

problem can be recast as

min
t,{fk},

{λλλk,l},{θθθm}

t (A.1a)

s.t.

∥∥∥∥(Ak,l
1,q

)1/2

fq

∥∥∥∥ ≤ λk,l
q , ∀q, k ∈ K, q �= k, l ∈ Dk (A.1b)∥∥∥∥(Ak,l

1,k

)1/2

fk −
(
Ak,l

1,k

)−1/2

ak,l
2

∥∥∥∥ ≤ λk,l
k , ∀k ∈ K, l ∈ Dk (A.1c)

∥∥λλλk,l
∥∥2 − (ak,l

2 )H(Ak,l
1,k)

−1ak,l
2 + ak,l3 ≤ t

κk,l

, ∀k ∈ K, l ∈ Dk (A.1d)∥∥(Am
4,k)

1/2fk
∥∥ ≤ θmk , ∀k ∈ K,m ∈ M (A.1e)

‖θθθm‖ ≤ √
ηR,m, ∀m ∈ M (A.1f)

‖fk‖ ≤
√

Pmax
S,k , ∀k ∈ K, (A.1g)

where λλλk,l = [λk,l
1 , · · · , λk,l

K ]T , θθθm = [θm1 , · · · , θmK ]
T and t are auxiliary variables. The main

difficulty in solving this problem is with (A.1d), which is a so-called hyperbolic constraint

[95], while the remaining constraints are already in the form of SOC.



A Appendices of Chapter 3 136

To tackle (A.1d), we observe that for any x and y, z ≥ 0, the following equation holds

‖x‖2 ≤ yz ⇐⇒
∥∥∥∥∥

[
2x

y − z

]∥∥∥∥∥ ≤ y + z. (A.2)

We can apply (A.2) to transform (A.1d) into

∥∥∥∥∥∥
⎡
⎣ 2λλλk,l

t
κk,l

+
(
ak,l
2

)H (
Ak,l

1,k

)−1

ak,l
2 − ak,l3 − 1

⎤
⎦
∥∥∥∥∥∥ ≤ t

κk,l

+
(
ak,l
2

)H (
Ak,l

1,k

)−1

ak,l
2 − ak,l3 + 1.

(A.3)

Therefore, substituting (A.1d) by (A.3), we can see that (A.1) is in the form of a standard

SOCP.

A.2 Proof of Proposition 3.1

First, we define TTT k � [TTT k,1, · · · ,TTT k,K ] and GGGk � [σR,1GGGk,1, · · · , σR,M GGGk,M ]. We exploit the

fact that for any vectors {ak}Nk=1, the following identity holds:

N∑
k=1

‖ak‖2 =
∥∥[aT

1 , · · · , aT
N

]∥∥2
. (A.4)

The per-stream MSE (3.13) can subsequently be expressed as

εk,l =
∥∥∥uH

k,l TTT k +
M∑

m=1

uH
k,lΔGk,m [WWWm,1 F1, · · · ,WWWm,K FK ]

+
K∑
q=1

M∑
m=1

[
01×∑q

t=1 dt
,uH

k,lGGGk,m ΔHm,qFq,01×∑K
q+1 dt

] ∥∥∥2

+
∥∥∥ M∑

m=1

[
01×∑m−1

p=1 NR,p
,uH

k,lΔGk,mWm,01×∑M
p=m+1 NR,p

]
uH
k,lGGGk

∥∥∥2

+ σ2
D,k‖uk,l‖2 (A.5)
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Upon applying the identity vecT (ABC) = vec (B)T
(
C⊗AT

)
to (A.5), we arrive at:

εk,l =
∥∥∥uH

k,l TTT k −eTk,l +
M∑

m=1

gT
k,mC

k,l
1,m +

∑
m,q

hT
m,qD

k,l
m,q

∥∥∥2

+
∥∥∥uH

k,lGGGk +
M∑

m=1

gT
k,mC

k,l
2,m

∥∥∥2

+
∥∥σD,kuH

k,l

∥∥2
, (A.6)

where hm,k � vec (ΔHm,k) and gk,m � vec (ΔGk,m) denote the vectorized CSI errors,

ek,l �
[
01×∑k−1

t=1 dt
, eTk,l,01×∑K

t=k+1 dt

]T
, and the following matrices have also been introduced:

Ck,l
1,m �

[
(WWWm,1 F1)⊗ u∗

k,l, · · · , (WWWm,K FK)⊗ u∗
k,l

]
(A.7)

Ck,l
2,m �

[
0ND,kNR,m×∑m−1

p=1 NR,p
,Wm ⊗ u∗

k,l,0ND,kNR,m×∑M
p=m+1 NR,p

]
(A.8)

Dk,l
m,q �

[
0NS,qNR,m×∑q−1

t=1 dt
,Fq ⊗

(
GGGT

k,m u∗
k,l

)
,0NS,qNR,m×∑K

t=q+1 dt

]
. (A.9)

Again, by exploiting the property in (A.4), we can write (A.6) in a more compact form as

follows:

εk,l =
∥∥∥ [

uH
k,l TTT k −ek,l,u

H
k,lGGGk, σD,ku

H
k,l

]︸ ︷︷ ︸
θθθk,l

+
M∑

m=1

gT
k,m

[
Ck,l

1,m,C
k,l
2,m,0ND,kNR,m×ND,k

]︸ ︷︷ ︸
ΘΘΘk,l

m

+
M∑

m=1

K∑
q=1

hT
m,q

[
Dk,l

m,q,0NR,mNS,q×NR+ND,k

]︸ ︷︷ ︸
ΦΦΦk,l

m,q

∥∥∥2

. (A.10)

Substituting (A.10) into (3.46b), we can express (3.46b) as

(
θθθk,l +

M∑
m=1

gT
k,mΘΘΘ

k,l
m +

M∑
m=1

K∑
q=1

hT
m,qΦΦΦ

k,l
m,q

)H(
θθθk,l +

M∑
m=1

gT
k,mΘΘΘ

k,l
m +

M∑
m=1

K∑
q=1

hT
m,qΦΦΦ

k,l
m,q

)
≤ t

κk,l

,

(A.11)



A Appendices of Chapter 3 138

where the uncertain blocks hm,k and gk,m should satisfy ‖hm,k‖S = ‖hm,k‖ ≤ ξm,k and

‖gk,m‖S = ‖gk,m‖ ≤ ηk,m, respectively. Through a direct application of Lemma 3.1, (A.11)

can readily be recast as (3.49) where the nonnegativity of τττ gk,l and τττhk,l has been implicitly

included in the positive semidefinite nature of Qk,l.
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Appendix B

Appendices of Chapter 4

B.1 Proof of the First Step in Theorem 4.1

We have to show that the sequence
{
(w(n),u(n))

}
is a square summable sequence such that

limn→∞‖w(n) −w(n−1)‖22 = 0 and limn→∞‖u(n) − u(n−1)‖22 = 0. Based on the majorization

relation in (4.29), we have

F(w(n)) +
L∑
l=1

w
(n)
l

H
ΨΨΨlw

(n)
l + u(n)Hu(n)

≤ F̃(w(n);w(n−1)) +
L∑
l=1

w
(n)
l

H
ΨΨΨlw

(n)
l + u(n)Hu(n)

≤ F(w(n−1)) +
L∑
l=1

w
(n−1)
l

H
ΨΨΨlw

(n−1)
l + u(n−1)Hu(n−1)

− τ(w)

2
‖w(n) −w(n−1)‖22 −

τ(u)

2
‖u(n) − u(n−1)‖22, (B.1)

where the first inequality is due to the majorization relation in (4.29) while the sec-

ond inequality results from F(w(n−1)) = F(w(n−1);w(n−1)) and the strong convexity of∑L
l=1 w

H
l ΨΨΨlwl and uHu with parameters τ(w) > 0 and τ(u) > 0, respectively. Then
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summing the above inequality over n from 0 to n̄, we arrive at

F(w(0)) +
L∑
l=1

w
(0)
l

H
ΨΨΨlw

(0)
l + u(0)Hu(0)

−
(
F(w(n̄)) +

L∑
l=1

w
(n̄)
l

H
ΨΨΨlw

(n̄)
l + u(n̄)Hu(n̄)

)

≥
n̄∑

n=0

(
τ(w)

2
‖w(n) −w(n−1)‖22 +

τ(u)

2
‖u(n) − u(n−1)‖22

)
. (B.2)

It is not difficult to observe that the objective function in (4.28) is monotonically decreasing

after each iteration and lower bounded at least by zero, so that the left-hand side of the

above equation is a finite positive number. Upon letting n̄ → ∞, we therefore conclude

that limn→∞‖w(n) −w(n−1)‖22 = 0 and limn→∞‖u(n) − u(n−1)‖22 = 0.
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Appendix C

Appendices of Chapter 5

C.1 Proof of Lemma 5.2

From Step 2 of Algorithm 5.1, we obtain (x(n+1),S(n+1) is an optimal solution of the convex

sub-problem (5.28) and ΦΦΦ
(n+1)
i � 0,Z

(n+1)
i � 0 for i ∈ I are the corresponding Lagrange

multipliers. Since (5.28) is convex and strictly feasible, i.e., the Slater’s constraint qualifi-

cation holds, the optimal primal-dual pair must satisfy the following sufficient generalized

KKT conditions:

0 ∈ ∇f0(x
(n+1))−∇g0(x

(n)) +
I∑

i=1

((
DFDFDF i(x

(n+1))−DGDGDGi(x
(n))

)
∗ΦΦΦ(n+1)

i

)
+N (Ω,x(n+1))

(C.1a)

τ (n)I−ΦΦΦ
(n+1)
i − Z

(n+1)
i = 0, i ∈ I

(C.1b)

FFF i(x
(n+1))−GGGi(x

(n))−DGDGDG(x(n))(x(n+1) − x(n)) � S
(n+1)
i , i ∈ I

(C.1c)

Tr
(
ΦΦΦ

(n+1)
i

(
FFF i(x

(n+1))−GGGi(x
(n))−DGDGDG(x(n))(x(n+1) − x(n))− S

(n+1)
i

))
= 0, i ∈ I

(C.1d)

x(n+1) ∈ Ω, S
(n+1)
i � 0, ΦΦΦ

(n+1)
i � 0, Z

(n+1)
i � 0, Tr(S

(n+1)
i Z

(n+1)
i ) = 0, i ∈ I,

(C.1e)
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where A∗ denotes the adjoint operator of A =
∑n

i=1 xiAi with Ai ∈ Hp for i = 1, · · · , n,
i.e., A ∗ Z = [Tr(A1Z), · · · ,Tr(AnZ)]

T for any Z ∈ Hp. N (Ω,x) denotes the normal cone

of Ω at x defined as:

N (Ω,x) � {w ∈ Cn|wH(x−y) ≥ 0, ∀y ∈ Ω}

To simply the notation, let us define ϕ̂(n)(x,S) = ϕ(x) + +
∑I

i=1 τ
(n) Tr(Si) = f0(x)−

g0(x) +
∑I

i=1 τ
(n) Tr(Si).

First multiplying the both sides of (C.1a) by (x(n) −x(n+1))T and re-arranging the con-

sequence, we obtain

(
∇fT

0 (x
(n+1))−∇gT0 (x

(n))
)
(x(n) −x(n+1))

+
I∑

i=1

[(
DFDFDF i(x

(n+1))−DGDGDGi(x
(n))

)
∗ΦΦΦi

]T
(x(n) −x(n+1)) ≥ 0 (C.2)

By the assumption of convexity of f0(·) and g0(·), we have

f0(x
(n)) ≥ f0(x

(n+1)) +∇fT
0 (x

(n+1))(x(n) −x(n+1)) +
ρf
2
‖x(n+1)−x(n)‖2 (C.3)

g0(x
(n+1)) ≥ g0(x

(n)) +∇gT0 (x
(n))(x(n+1)−x(n)) +

ρg
2
‖x(n+1)−x(n)‖2, (C.4)

where we recall that ρf ≥ 0 and ρg ≥ 0 are the convexity parameters.

Combining (C.3) and (C.4) and rearranging the consequence, we further obtain

(
∇fT

0 (x
(n+1))−∇gT0 (x

(n))
) (

x(n) −x(n+1)
)
≤ ϕ(x(n))− ϕ(x(n+1))− ρf + ρg

2
‖x(n+1) −x(n)‖2.

(C.5)

By the PSD-convexity of FFF i(·), we obtain

FFF i(x
(n)) � FFF i(x

(n+1)) +DFDFDF i(x
(n+1))(x(n) −x(n+1)), (C.6)
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which further lead to

[
DFDFDF i(x

(n+1))−DGDGDGi(x
(n))

]
(x(n) −x(n+1))

� FFF i(x
(n))−GGGi(x

(n))−
[
FFF i(x

(n+1))−GGGi(x
(n))−DGDGDGi(x

(n))(x(n+1) −x(n))
]
. (C.7)

For simplicity, let us denote the second term on the right hand side of (C.7) by A. Multi-

plying the both sides of (C.7) by ΦΦΦ
(n+1)
i � 0 leads to

Tr
(
ΦΦΦ

(n+1)
i

[
DFDFDF i(x

(n+1))−DGDGDGi(x
(n))

]
(x(n) −x(n+1))

)
� Tr

(
ΦΦΦ

(n+1)
i

[
FFF i(x

(n))−GGGi(x
(n))

])
+ Tr

(
ΦΦΦ

(n+1)
i A

)
(C.8)

Noting that

Tr
(
ΦΦΦ

(n+1)
i

[
DFDFDF i(x

(n+1))−DGDGDGi(x
(n))

]
(x(n) −x(n+1))

)
=

[(
DFDFDF i(x

(n+1))−DGDGDGi(x
(n))

)
∗ΦΦΦi

]T
(x(n) −x(n+1)) (C.9)

Substituting the results of (C.8), (C.9) and (C.1d) into (C.7), we have

[(
DFDFDF i(x

(n+1))−DGDGDGi(x
(n))

)
∗ΦΦΦi

]T
(x(n) −x(n+1))

≤ Tr
(
ΦΦΦ

(n+1)
i

[
FFF i(x

(n))−GGGi(x
(n))

])
− Tr

(
ΦΦΦ

(n+1)
i S

(n+1)
i

)
. (C.10)

Observing that FFF i(x
(n)) − GGGi(x

(n)) � S
(n)
i and τ (n)I � ΦΦΦ

(n+1)
i [c.f., (C.1b)], (C.10) can

further be derived as

[(
DFDFDF i(x

(n+1))−DGDGDGi(x
(n))

)
∗ΦΦΦi

]T
(x(n) −x(n+1))

≤ Tr
(
ΦΦΦ

(n+1)
i

(
S
(n)
i − S

(n+1)
i

))
≤ τ (n) Tr(S

(n)
i )− τ (n) Tr(S

(n+1)
i ). (C.11)

Combining (C.2), (C.5) and (C.11), we have reached:

ϕ̂(n)(x(n),S(n))− ϕ̂(n)(x(n+1),S(n+1)) ≥ ρf + ρg
2

‖x(n+1) − x(n)‖2. (C.12)

The above inequality is indeed (5.37), which therefore proves the item 1). If either f0 or g0
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is strongly convex, i.e., ρf + ρg > 0, then the statement in item 2) follows directly from the

above inequality, i.e., for Δx(n) = x(n+1) −x(n) �= 0, ϕ̂(n)(x(n+1),S(n+1)) < ϕ̂(n)(x(n),S(n)).

C.2 Proof of Theorem 5.1

We first prove scenario 1). If Algorithm 5.1 terminates after a finite number of n̆ iterations,

it follows from the termination criterion that x(n̆+1) = x(n̆) and S
(n̆+1)
i = 0 for all i, i.e., x̆

is a feasible solution to (5.20). Letting n = n̆ and substituting the above relations into the

generalized KKT conditions (C.1), we obtain the following:

0 ∈ ∇f0(x
(n̆))−∇g0(x

(n̆)) +
I∑

i=1

((
DFDFDF i(x

(n̆))−DGDGDGi(x
(n̆))

)
∗ΦΦΦ(n̆)

i

)
+N (Ω,x(n̆)) (C.13a)

FFF i(x
(n̆))−GGGi(x

(n̆)) � 0, i ∈ I (C.13b)

Tr
(
ΦΦΦ

(n̆+1)
i

(
FFF i(x

(n̆))−GGGi(x
(n̆))

))
= 0, i ∈ I (C.13c)

x(n̆) ∈ Ω, ΦΦΦ
(n̆+1)
i � 0. (C.13d)

A careful examination reveals the equivalence between (C.13) and the KKT conditions of

(5.20). Therefore, it is proved that (x(n̆), {ΦΦΦ(n̆)
i } is a KKT point of (5.20), where x(n̆) is

called a stationary point of (5.20) and {ΦΦΦ(n̆)
i } are the corresponding Lagrange multipliers.

We now proceed to prove scenario 2). The key ingredients of the proof are to show

that any limit point of {x(n)}, say, x̄, is feasible to (5.20) and the sequence of dual variable

{ΦΦΦ(n)
i } is bounded such that there exists limit points Φ̄ΦΦi of {ΦΦΦ(n)

i }. Then we show that any

primal-dual pair of the limit point (x̄, {Φ̄ΦΦi}) satisfies the KKT conditions of (5.20).

To prove that any limit point x̄ is a feasible point of (5.20), we will need to rely on the

following claims, whose proof can be found in Appendices C.3 and C.4, respectively:

Claim 1. There exists a finite iteration index ñ such that

τ (n) = τ (ñ), ∀n ≥ ñ. (C.14)

Claim 2. The sequence of intermediate solutions {x(n)} satisfies

lim
n→∞

‖x(n+1) − x(n)‖ = 0. (C.15)
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As indicated by the updating rule (5.30), we have

τ
(ñ)
i ≥ λmax[ΦΦΦ

(ñ+1)
i ] + δ1, i ∈ I (C.16)

or equivalently, τ (n)I � ΦΦΦ
(n+1)
i +δ1I for all n ≥ ñ. Then in view of the complementary slack-

ness (C.1b), it straightforwardly follows that Z
(n+1)
i � 0. By (C.1e), we obtain S

(n+1)
i = 0

for all n ≥ n̆, which means that x(n) is a feasible point of (5.20) for all n ≥ ñ. Without loss

of generality, considering a subsequence {x(nj)} of {x(n)}, its limit point limj→∞ x(nj) = x̄

is feasible to (5.20). Furthermore, (C.16) implies that the subsequence {ΦΦΦ(nj)
i } is bounded,

and therefore we can assume that

lim
j→∞

ΦΦΦ
(nj)
i = Φ̄ΦΦi, i ∈ I. (C.17)

Now what remains to show is that any primal-dual pair of the limit point (x̄, {Φ̄ΦΦi}) a
KKT stationary point of (5.20). Let us replace n with nj in (C.1) and let j → ∞. By

noting that x(nj) and x(nj+1) are asymptotically close as indicated by Claim 2, we obtain

0 ∈ ∇f0(x̄)−∇g0(x̄) +
I∑

i=1

(
Φ̄ΦΦi ∗ (DFDFDF i(x̄)−DGDGDGi(x̄))

)
+N (Ω, x̄) (C.18a)

FFF i(x̄)−GGGi(x̄) � 0, Φ̄ΦΦi � 0, i ∈ I (C.18b)

Tr
(
(FFF i(x̄)−GGGi(x̄)) Φ̄ΦΦi

)
= 0, i ∈ I (C.18c)

x̄ ∈ Ω (C.18d)

which is exactly the KKT conditions of the PSD DC problem (5.20). Noting the boundness

of {x(n)} assumed in A.2), it readily follows that there exists at least one limit point of

{x(n)} and by (C.18), any limit point of
{
x(n)

}
is a KKT stationary point of (5.20).

C.3 Proof of Claim 1

We argue by contradiction. Assume the contrary, i.e., limn→∞ τ (n) = +∞. From the

updating rule (5.30), it follows, without loss of generality, that there exists infinitely many
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indices j such that

τ (nj) < λmax

[ I∑
i=1

ΦΦΦ
(nj+1)
i

]
+ δ1, (C.19)

and

τ (nj) < ‖x(nj+1) − x(nj)‖−1. (C.20)

By possibly restricting to a subsequence of {nj}, without loss of generality, we can further

assume that there exists at least some i ∈ SI , where SI denotes a subset of I, i.e., SI ⊆ I
such that

lim
j→∞

λmax[ΦΦΦ
(nj+1)
i ] = +∞ ⇔ lim

j→∞
‖ΦΦΦ(nj+1)

i ‖F = +∞, i ∈ SI (C.21)

and

lim
j→∞

‖x(nj+1) − x(nj)‖ = 0. (C.22)

Let limj→∞ x(nj) = x̄, and then we will show that

FFF i(x̄)−GGGi(x̄) ⊀ 0, i ∈ SI . (C.23)

Again we show by contradiction. If we assume that FFF i(x̄)−GGGi(x̄) ≺ 0, then we must have,

for sufficiently large j,

FFF i(x
(nj+1))−GGGi(x

(nj))−DGDGDG(x(nj))(x(nj+1) − x(nj))− S
(nj+1)
i ≺ 0. (C.24)

This is due to (C.1b) and subsequently

lim
j→∞

(
FFF i(x

(nj+1))−GGGi(x
(nj))−DGDGDG(x(nj))(x(nj+1) − x(nj))− S

(nj+1)
i

)
= FFF i(x̄)−GGGi(x̄).

(C.25)

By the complementary slackness condition (C.1d), it readily follows that when j becomes

sufficiently large, ΦΦΦ
(nj+1)
i = 0 for i ∈ SI , which contradicts the previous result of (C.19).



C Appendices of Chapter 5 147

Therefore, we must have FFF i(x̄)−GGGi(x̄) ⊀ 0 for i ∈ SI .

Now let us assume, without loss of generality, that

lim
j→∞

ΦΦΦ
(nj+1)
i∑I

i=1‖ΦΦΦ
(nj+1)
i ‖F

= Φ̂ΦΦi � 0. (C.26)

and it is easy to observe that Φ̂ΦΦi = 0 for i ∈ I\SI and Φ̂ΦΦi �= 0 for i ∈ SI . We now replace

n with nj in (C.1a). Dividing the both sides of (C.1a) by
∑I

i=1‖ΦΦΦ
(nj+1)
i ‖F , taking the limit

as j → ∞ and using the result of (C.24), we obtain

0 ∈
∑
i∈SI

(DFDFDF i(x̄)−DGDGDGi(x̄)) ∗ Φ̂ΦΦi +N (Ω, x̄). (C.27)

Multiplying the both sides of the above by (y − x),y ∈ Ω yields

∑
i∈SI

Tr
(
Φ̂ΦΦi (DFDFDF i(x̄)−DGDGDGi(x̄)) (y − x̄)

)
≥ 0. (C.28)

However, the MFCQ in Assumption 5.1 indicates that there exists some feasible direc-

tion h ∈ cone(Ω− x̄) such that

(DFDFDF i(x̄)−DGDGDGi(x̄))h ≺ 0, ∀i ∈ U(x̄), (C.29)

where we recall that U(x̄) is the set of active constraints at x̄:

U(x̄) �
{
i ∈ I

∣∣FFF i(x̄)−GGGi(x̄) ⊀ 0
}
. (C.30)

Considering Φ̂ΦΦi � 0, it is obvious (C.28) contradicts the MFCQ in Assumption 5.1.

Therefore, we can assume that there exists an finite index ñ such that

τ (n) = τ (ñ), ∀n ≥ ñ. (C.31)
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C.4 Proof of Claim 2

Following directly from Lemma 5.2, we have

ϕ̂(n)(x(n),S(n))− ϕ̂(n)(x(n+1),S(n+1)) ≥ ρf + ρg
2

‖x(n+1) − x(n)‖2. (C.32)

Then we evaluate the summation of (C.32) over n from 0 to n̄ and we obtain

n̄∑
n=0

ρf + ρg
2

‖x(n+1) −x(n)‖2

≤
ñ∑

n=0

(
ϕ̂(n)(x(n),S(n))− ϕ̂(n)(x(n+1),S(n+1))

)
+ ϕ̂(ñ)(x(ñ),S(ñ))− ϕ̂(n̄)(x(n̄+1),S(n̄+1))

(C.33)

where ñ is a finite index as defined in (C.31), such that τ (n) = τ (ñ), ∀n ≥ ñ, i.e., the value

of τ remains constant for all indices n ≥ ñ. By Assumption 5.2, ϕ(x) is bounded from

below and hence ϕ̂(n)(·) is also lower-bounded. Taking the limit as n̄ → ∞ on both sides

of (C.33), we obtain

∞∑
n=0

ρf + ρg
2

‖x(n+1) −x(n)‖2

≤
ñ∑

n=0

(
ϕ̂(n)(x(n),S(n))− ϕ̂(n)(x(n+1),S(n+1))

)
+ ϕ̂(ñ)(x(ñ),S(ñ))− ϕ̂(∞)(x̄, S̄). (C.34)

The right hand side of the above inequality must be of finite value. Therefore, it must hold

that

lim
n→∞

‖x(n+1)−x(n)‖ = 0. (C.35)
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C.5 Proof of Proposition 5.2

Firstly, expanding all the quadratic terms of W in (5.62a) and (5.62b), and invoking the

identities

Tr
(
AHBCDH

)
= vec (A)H

(
DT ⊗B

)
vec (C) (C.36)

Tr
(
AHBA

)
= vec (A)H (I⊗B) vec (A) , (C.37)

(5.62a) and (5.62b) can be recast as (5.67a) and (5.67b), respectively, with X = wwH .

Next, we transform (5.62c). Recall that ΘΘΘ(W,ΨΨΨ) = σ2
SWh1h

H
1 W

H − γσ2
RWWH − γΨΨΨ,

and its first term on the right hand side is equivalent to

σ2
SWh1h

H
1 W

H = σ2
S(h

T
1 ⊗ INR

)wwH(hT
1 ⊗ INR

)H , (C.38)

by using vec(ABC) = (CT ⊗ A) vec(B). To transform the second term, we express

W = [www1, · · · ,wwwl, · · · ,wwwNR
], where wwwl denotes the lth column of W. Then WWH can be

equivalently expressed as

WWH =
NR∑
l=1

wwwlwww
H
l (C.39)

By establishing the connection between wwwl and w by wwwl = Elw, (C.39) can further be

written as

WWH =
NR∑
l=1

ElwwHEH
l . (C.40)

Using (C.38) and (C.40), ΘΘΘ(W,ΨΨΨ) is equivalent to

ΘΘΘ(W,ΨΨΨ) = σ2
SH1wwHHH

1 − γσ2
R

NR∑
l=1

ElwwHEH
l − γΨΨΨ. (C.41)

Invoking X = wwH and Rank(X) = 1, (5.62) is readily re-expressed as (5.67).

C.6 Proof of Proposition 5.3

We prove the rank-one optimality of the solution to (5.69) by examining its KKT condi-

tions. Let y1, y2 and Yk denote the Lagrange multipliers associated with (5.69b)–(5.69d),
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respective, and let Z1 and Z2 denote the Lagrange multipliers associated with X � 0 and

ΨΨΨ � 0, respectively. The Lagrangian function of (5.69) can then be written as

L = Tr (Q2X) + y1(Tr(Q2X) + Tr(ΨΨΨ))− y2
(
Tr(Q0X)− τ ∗ Tr(Q1X)− τ ∗ Tr(h2h

H
2 ΨΨΨ)

)
+

K∑
k=1

Tr
(
PH

k Q3(X,ΨΨΨ)PkYk

)
− Tr(XZ1)− Tr(ΨΨΨZ2), (C.42)

where we have neglected the terms, which are independent of X and ΨΨΨ. Now we exploit

the first-order KKT conditions with respect to X and ΨΨΨ, which can be given by

∂L
∂X

= Q2 + y1Q2 − y2Q0 + y2τ
∗Q1

+
K∑
k=1

σ2
SH

H
1 PkYkP

H
k H1

− γσ2
R

K∑
k=1

NR∑
l=1

EH
l PkYkP

H
k El − Z1 = 0 (C.43)

∂L
∂ΨΨΨ

= y1I+ y2τ
∗h2h

H
2 −

K∑
k=1

γPkYkP
H
k − Z2 = 0 (C.44)

Re-arranging (C.44) and using the associativity of the Kronecker product, we obtain

I⊗ Z2 = y1I+ y2τ
∗I⊗ (h2h

H
2 )− I⊗

K∑
k=1

γPkYkP
H
k . (C.45)

A simple calculation reveals that the right hand side of (C.45) is equivalent to

I⊗ Z2 = y1I+ y2τ
∗Q1/σ

2
R − γ

K∑
k=1

NR∑
l=1

EH
l PkYkP

H
k El. (C.46)

Substituting the above relation into (C.43), we further obtain

Q2 + y1Q2 + σ2
RZ2 +

K∑
k=1

σ2
SH

H
1 PkYkP

H
k H1︸ ︷︷ ︸

�ΘΘΘ

−y2Q0 = Z1. (C.47)
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SinceQ2 � 0, ΘΘΘ must be a positive definite matrix, which has full rank, i.e., Rank(ΘΘΘ) = N2
R .

It is further implied by (C.47) that

Rank(Z1) ≥ Rank(ΘΘΘ)− Rank(Q0), (C.48)

where Rank(Q0) = 1. Then it is clear that the rank of Z1 is either N2
R or N2

R − 1. If

Rank(Z1) = N2
R , we must have X = 0 due to the complementary slackness condition

Tr(XZ1) = 0. However, it is obvious that X = 0 is not the optimal solution. Then the

rank of Z1 must be N2
R − 1 and in this case, X must lie in the nullspace of Z1, whose

dimension is one. Therefore, X must be of rank one.
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