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Abstract

Multiple-input multiple-output (MIMO) relaying can increase system throughput, over-

come shadowing and expand network coverage more efficiently than its single-antenna

counterpart. Non-regenerative (amplify-and-forward) strategies, in which the relays ap-

ply linear transformation matrices to their received baseband signals before retransmitting

them, are favored in many applications due to low processing delays and implementation

complexity. In this regard, transceiver design is crucial to fulfilling the great potential of

MIMO relay communication systems. In this thesis, we explore this general problem from

two different perspectives: coherent combining and adaptation.

Within the first perspective, we design linear transceivers for a one-source–multiple-

relays–one-destination system in which the source sends information to the destination

through multiple parallel relay stations, such that the signals from these relays are coher-

ently combined at the destination to benefit from distributed array gain. Two approaches

are proposed: a low-complexity structured hybrid framework and a minimum mean square

error (MSE) optimization approach. In the first approach, the non-regenerative MIMO re-

laying matrix at each relay is generated by cascading two substructures, akin to an equalizer

for the backward channel and a precoder for the forward channel. For each of them, we

introduced one-dimensional parametric families of candidate matrix transformations. This

hybrid framework allows for the classification and comparison of all possible combinations

of these substructures, including several previously investigated methods and their gener-

alizations. The design parameters can further be optimized based on individual channel

realizations or on channel statistics; in the latter case, the optimum parameters can be

well approximated by linear functions of the signal-to-noise ratios (SNRs). This hybrid

framework achieves a good balance between performance and complexity. In the second

approach, the relaying matrices are designed to minimize the MSE between the transmit-

ted and received signal symbols. Two types of constraints on the transmit power of the

relays are considered separately: weighted sum and per-relay power constraints. Under

the weighted sum power constraint, we are able to derive a closed-form expression for the

optimal solution, by introducing a complex scaling factor at the destination and using La-

grangian duality. Under the per-relay power constraints, we propose a power balancing

algorithm that converts the problem into an equivalent one with a weighted sum power

constraint. In addition, we investigate the joint design of the MIMO equalizer at the
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destination and the relaying matrices, using block coordinate descent or steepest descent.

The bit-error rate (BER) simulation results demonstrate better performance than previous

methods.

Within the second perspective, we propose a unified framework for adaptive transceiver

optimization for non-regenerative MIMO relay networks. Transceiver designs based on

channel state information (CSI) implicitly assume that the underlying wireless channels

remain almost constant within each transmission block. This implies that both the chan-

nels and the corresponding optimal transceivers evolve gradually across successive blocks.

To benefit from this property, we propose a new inter-block adaptive approach based on

the minimum MSE criterion, in which the optimum from the previous block is used as

the initial search point for the current block. By optimizing the relaying matrices in the

first place, we make this adaptation easy to implement by means of iterative algorithms

such as the gradient descent. In addition, the proposed framework can accommodate vari-

ous network topologies by imposing structural constraints on the system model, and leads

to new and more efficient algorithms with better performance for certain topologies. We

explain in detail how to handle these constraints for different system configurations. Nu-

merical results demonstrate that inter-block adaptation can lead to a significant reduction

in computational complexity.
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Sommaire

Conception Optimale de Transcepteurs pour les Systèmes à Relais

Non-Régénératifs MIMO

Le relayage multi-entrées multi-sorties (MIMO) au moyen de réseaux d’antennes permet

d’accrôıtre la capacité des systèmes sans fil, pallier aux effets d’ombrage et augmenter

la couverture de réseaux plus efficacement que sa contrepartie n’utilisant qu’une seule

antenne. Les stratégies non-régénératives (amplification-et-suivie), dans lesquelles les relais

appliquent des matrices de transformation linéaire à leur signaux d’entrée avant de les

retransmettre, sont préférées dans de nombre d’applications, en raison de leur faibles délai

de traitement et complexité de mise en uvre. À cet égard, la conception de transcepteurs

est cruciale afin de pleinement exploiter le grand potentiel qu’offrent les relais MIMO dans

les systèmes de communications sans fil. Dans cette thèse, nous explorons ce problème

général à partir de deux perspectives différentes: la combinaison cohérente et l’adaptation.

Dans la première perspective, nous concevons des architectures de transcepteur pour un

système de type source-simplerelais-multiplesdestination-simple (1S-MR-1D) dans lequel la

source envoie de l’information à la destination par le biais de plusieurs stations relais en

parallèle, de telle sorte que les signaux en provenance des relais se combinent de manière

cohérente à la destination afin de bénéficier du gain d’un réseau antennes distribuées. cette

fin, deux approches sont proposées : un schème reposant sur une structure hybride à

complexité réduite et une approche d’optimisation basée sur la minimisation de l’erreur

quadratique moyenne (MSE). Dans la première approche, les matrices de transformation

MIMO non-régénératives utilisées à chacun des relais sont obtenues en cascadant deux sous-

structures, qui s’apparentent à un égalisateur pour le canal en réception et à un pré-codeur

pour le canal en transmission, respectivement. Pour chacune de ces sous-structures, nous

introduisons une famille paramétrique uni-dimensionnelle de transformations matricielles.

Ce schème hybride permet la classification et la comparaison de toutes les combinaisons

possibles de ces sous-structures, qui incluent plusieurs méthodes déjà existantes de même

que leur généralisation. Les paramètres de conception peuvent de plus être optimisés, soit

pour des réalisations individuelles des canaux de transmission, soit en se basant sur leurs

statistiques. Dans ce dernier cas, les paramètres optimaux peuvent être approximés par

des fonctions linéaires des rapports signal-sur-bruit. Le schème hybride permet d’atteindre
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un bon équilibre entre la performance et la complexité. Dans la deuxième approche, les

matrices de relayage sont conçues de façon à minimiser la MSE entre les symboles transmis

et reçus. On considère séparément deux types de contraintes sur la puissance en trans-

mission des relais: la contrainte dite de somme pondérée et la contrainte par relais. Sous

la contrainte de somme pondérée, nous développons des expressions mathématiques ex-

plicites pour la solution optimale via l’introduction d’un facteur de gain complexe à la

destination et l’utilisation de la dualité Lagrangienne. Sous la contrainte de puissance par

relais, nous proposons un algorithme de balancement qui permet de convertir le problème

d’optimisation en un problème équivalent avec contrainte de type somme pondérée. De

plus, nous étudions le problème de la conception jointe de l’égalisateur MIMO à la destina-

tion et des matrices de relais, en considérant l’optimisation par descente selon coordonnées

successives ou selon la plus forte pente. Les taux d’erreurs binaires obtenus par simulation

démontrent une performance supérieure à celle de méthodes existantes.

Dans la deuxième perspective, nous proposons un cadre unifié d’optimisation des tran-

scepteurs adaptatifs pour les réseaux de relais MIMO non-régénératifs. La conception de

transmetteur basée sur l’information de l’état du canal (CSI) suppose implicitement que

les canaux sans fil demeurent constants durant chaque bloc de transmission. Cela implique

que les canaux et les transcepteurs optimaux correspondants évoluent graduellement au

passage des blocs. Afin de bénéficier de cette propriété, nous proposons une nouvelle ap-

proche d’adaptation inter-bloc basée sur le critère de minimisation de la MSE. Dans cette

approche, la solution obtenue du bloc précédent est utilisée comme point de départ dans

la recherche d’une solution optimale pour le bloc actuel. Fortuitement, il est possible

d’optimiser les matrices de relayage de façon analytique en premier lieu, ce qui facilite

grandement l’adaptation des paramètres restants au moyen d’algorithmes itératifs tels que

celui de la descente de gradient. De plus, le cadre d’optimisation que nous proposons

peut être adapté à des topologies de réseau variées par l’imposition de contraintes struc-

turelles sur le modèle. Nous expliquons en détail comment réaliser de telles contraintes pour

différentes configurations de système. Les résultats de simulations numériques démontrent

que l’adaptation inter-bloc peut conduire à une réduction importante de la complexité

numérique.
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Chapter 1

Introduction

Emerging applications such as multimedia and cloud computing are putting very stringent

requirement of very high data transmission rates on mobile wireless devices. Since spec-

tral efficiency for point-to-point transmissions is already close to the theoretical limit, the

quest for faster wireless communications has shifted focus to novel heterogeneous network

topologies. Wireless relays using multiple-input multiple-output (MIMO) technology are

indispensable components of these networks, and the optimization of their transceiver sub-

systems is crucial to fulfilling the great potential of MIMO relay communications. There-

fore, in this thesis, we explore two important aspects of transceiver design for MIMO relay

systems: combining and adaptation. The former stands for coherent combining at the des-

tination, of signals transmitted from multiple relays, in order to benefit from a distributed

array gain; the latter refers to appropriate exploitation of time-domain properties of wire-

less channels to reduce algorithmic complexity. This chapter presents the background,

rationale and objectives of our research, together with a summary of our contributions.

1.1 The Pursuit of High Transmission Rates

The wireless telecommunication industry has been benefitting from tremendous growth in

transmission rates and constant reduction in device size and power consumption, which

in turn has enabled sophisticated multimedia applications on mobile devices. On the one

hand, thanks to Moore’s law, we can “fabricate” state-of-the-art digital signal processing

technologies into chips with smaller die area, less power consumption, lower production cost

and higher computational capability. On the other hand, limited spectrum resources, re-
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2 Introduction

ceiver noises and time-varying wireless channels are constantly challenging mathematicians

and engineers to develop new coding schemes, communication architectures, and signal

processing algorithms to improve performance of communication systems. In addition, ad-

vances in battery capacity, antenna technology and radio frequency (RF) circuit design,

although not quite as revolutionary, have been contributing as well.

Within the modern wireless paradigm, increasing system throughput remains as the

central problem of communication system design. Mobile subscribers, service providers

and telecommunication engineers all want higher data rates in a cost-effective manner.

Transmitting over wider frequency bands is a straightforward solution but licensed spectrum

resources are extremely scarce and expensive. This leads to a natural approach of making

the most of available frequency bands, namely, to develop communication architectures

with high spectral efficiency. However, similar to bandwidth, spectral efficiency cannot go

to infinity as well: it is upper bounded by the well-known Shannon limit. To make things

worse, Turbo codes and low density parity check (LDPC) codes have come very close to

this limit [1].

With not so much room left for channel coding schemes to accomplish towards the

Shannon limit, a new spatial dimension was introduced by deploying multiple antennas

at either side of a communication link. The use of transmit or receive beamforming con-

tributes to an array gain — M -fold improvement in signal-to-noise ratio (SNR). MIMO

technology goes further by equipping both the transmitter and the receiver with multiple

antennas, which is arguably the most significant breakthrough in communication theory

and technology during the last two decades. It can bring diversity gain, array gain and

spatial-multiplexing gain.

• MIMO improves the reliability of a communication link through spatial diversity [2].

There is a high probability that one of the antennas is not in deep fading. Unlike time

diversity and frequency diversity, spatial diversity improves link reliability without

wasting time or bandwidth. By using proper space-time coding, one can almost

always obtain a diversity gain [3].

• MIMO benefits from an array gain in SNR due to coherent combing of signals across

multiple antennas. This requires knowledge of the channel state information (CSI)

at the transmitter or the receiver.

• MIMO provides a spatial-multiplexing gain attributable to the additional degrees of
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freedom [3, 4]. This is done by simultaneously transmitting multiple independent

symbol streams that can be efficiently separated by the receiver.

It is worth mentioning that these three gains cannot be maximized at the same time.

The limited number of available degrees of freedom is the reason for the fundamental

trade-off between diversity and multiplexing [5]. In the last two decades, various theoretic

limits, coding schemes, transceiver architectures (linear and nonlinear), channel estimation

and feedback algorithms have been investigated exhaustively to achieve capacity and/or

increase reliability of MIMO communications [6]. MIMO has been widely deployed in state-

of-the-art systems such as Long Term Evolution (LTE) and 802.11n/ac wireless local area

network (WLAN).

Apart from improving spectral efficiency for point-to-point communications, a parallel

evolution at the network level is also under way. First and foremost, arguably the most

important invention in wireless system architectures is the concept of a “cell”. Cellular

networks allow frequency reuse across neighbouring cells, which makes it possible to increase

spectral efficiency per unit area indefinitely (in theory) by using smaller and smaller cells [2].

However, this requires a large number of complex and expensive base stations. Instead,

emerging standards such as LTE-Advanced are embracing heterogeneous networks that use

a mix of macro, pico, femto and relay base stations. Macro base stations typically transmit

at high power level, whereas pico, femto and relay nodes transmit at substantially lower

power levels. The low-power nodes are deployed to extend coverage and improve capacity

in hot spots. They have smaller physical size and therefore offer flexible site acquisitions.

The bottom line is that heterogeneous networks enable flexible and low-cost deployments

while providing a uniform broadband experience to users anywhere within the network [7].

Spectral efficiency can be further improved by allocating the whole frequency spectrum

among different communication systems dynamically and efficiently. Licensed frequency

bands may not be used during certain periods by their owners and secondary users may

use them. This dynamic spectrum detection and allocation strategy, which falls into the

topic of cognitive radio, “squeezes” some additional bits out of the crowded frequency

spectrum.
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1.2 MIMO Wireless Relaying

As indispensable components of heterogeneous networks, wireless relays may serve differ-

ent purposes [8]. To begin with, wireless relaying can overcome the impairments caused by

multipath fading, shadowing and path losses in cellular communication systems. The de-

ployment of relays can extend coverage and improve the Quality-of-Service (QoS) of those

users near the cell boundary effectively and economically. This is critical for providing

uniform broadband experience to users anywhere within the network, thereby increasing

spectral efficiency per unit area. Another advantage is that relay stations provide better

spatial resolution because they are closer to the users than base stations. Consequently,

co-channel interferences are lower and more users can be served simultaneously using the

same time slots and frequency bands, contributing to higher system throughput. In co-

operative communications, user equipments with better link quality and longer battery

life can serve as relays for those with weaker links or in deep fading [9]. In addition, in

wireless sensor networks, multiple distributed sensors can serve as relay nodes for a source-

destination pair, thereby reducing power consumption, increasing data rates or extending

coverage [10]. These aspects of wireless relaying are summarized in Fig. 1.1.

Performance of a wireless relay network depends on two major factors — network con-

figuration and relaying strategy. Network configuration refers to how many sources, relays

and destinations are involved in the communication process (network topology), how many

antennas each node has, and how the wireless propagation environment evolves with time

and space. An entire cellular network can be regarded as a collection of smaller-scale

primitive subnetworks with simple topologies. Only by studying these primitives can the

more complicated networks be understood with insights. For notational convenience, we

describe primitive network layouts using the number of sources, relays and destinations.

For example, 1S-MR-1D refers to one-source–multiple-relays–one-destination.

For a particular configuration, system performance then depends on how information is

retransmitted at the relays. Relaying strategies can be classified in different ways. Firstly,

they can be non-regenerative such as amplify-and-forward (AF), or regenerative such as

decode-and-forward (DF) [11]. Non-regenerative AF relaying applies linear processing to

the received signals and then send the transformed signals to the destination(s). This linear

processing is usually represented by scalars for single-antenna relays, or matrices for multi-

antenna arrays. In contrast, a DF relay decodes binary bits from its received signals, and
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Fig. 1.1 Benefits of wireless relaying

then encodes, modulates and retransmits to the destination(s). Regenerative strategies are

more sophisticated but suffer from longer delays, higher overall costs (especially for MIMO

relays) and security problems. Therefore, we concentrate on non-regenerative relaying

strategies in this thesis.

Secondly, relay stations can work in full-duplex or half-duplex mode. A half-duplex

relay receives in the first time slot and transmits in the next one; full-duplex relays are

generally difficult to implement because high-power transmitted signals from the relays

would saturate the co-located receivers. The penalty in the overall spectral efficiency due

to half-duplex relaying can be well compensated by the capacity gains obtained by wireless

relaying. Thirdly, relaying can be one-way or two-way. In the latter approach, the source

and the destination simultaneously transmit to the relay in the first hop, and the relay
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broadcast signals back in the second hop [12]. In this thesis, we consider half-duplex one-

way relaying.

The introduction of MIMO technology into the relaying framework, through the use of

multiple antennas at the sources, relays or destinations, brings further advantages in terms

of achievable performance [13], yet creates new challenges for system designers. For DF, op-

timal transceiver design for a relay station are separated into two parts: the MIMO receiver

for the first hop transmission and the MIMO transmitter for the second hop. Implementa-

tion of these MIMO decoder and encoder increases complexity, cost and processing delay at

the relays. For AF, relaying strategies are now represented by matrices, and this shift from

scalars to matrices complicates transceiver design significantly. Compared with MIMO sys-

tems without relay, there now exist two independent noise components, the additive noise

induced at the relays after the first hop, and the additive noise at the destination after the

second hop. The former is affected by the relay processing matrices and a good relaying

strategy must prevent over-amplification of this noise component. In the past few years,

MIMO relaying has been attracting considerable interest among researchers and engineers.

1.3 Objectives and Contributions

1.3.1 Rationale and Objectives

In non-regenerative MIMO relay communication systems, wireless channels and additive

noises and interferences are uncontrollable factors that affect the performance of the com-

plete data link. Therefore, the goal of physical layer system design is to choose various

processing modules of the whole relay communication system, in order to optimize some

suitable performance criterion which takes into account the random and time-varying na-

tures of the channels, noises and interferences. This design problem is complicated by the

existence of both linear and nonlinear processing modules along the transmission chain.

The former include components as source precoders, relay processing matrices and destina-

tion equalizers, whereas the latter include modulation, channel coding, space-time coding,

interleaving, nonlinear precoding and hard/soft-decision decoding. To optimize all these

components simultaneously is almost impossible and does not provide many insights as

well. Furthermore, in case of slight changes in the radio environment (e.g. channel or noise

properties), the entire system may need to be redesigned at the great expense.
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A more popular and efficient approach, instead, is to break the complete physical layer

communication link into so-called sub-layers and optimize these sub-layers individually.1

Fig. 1.2 illustrates the sub-layers of a typical non-regenerative MIMO relay system. At the

source user, data bits to be sent are processed by a pipeline of nonlinear processing mod-

ules such as channel coder, space-time coder (including interleaver) and modulator.2 The

resulting multiple symbol streams are mapped by a linear precoder, and then transmitted

via multiple antennas to the relay. After propagating through the backward (source-to-

relay) wireless channel, these signals are linearly processed by the relay and retransmitted

to the destination through the forward (relay-to-destination) channel. At the destination,

the received signals go through a reverse pipeline of linear equalizer and nonlinear modules

including demodulator, space-time decoder and hard/soft-decision decoder. We may view

this communication system as an overlay of different sub-layers, with the interfaces be-

tween them well defined. The innermost linear processing sub-layer includes linear MIMO

precoding, linear relay processing and linear MIMO equalization, interfacing with the next

outer sub-layer via symbol vectors. The next sub-layer consists of the modulator and de-

modulator modules, which interfaces with the next outer sub-layer via the exchange of

binary data. The two outermost sub-layers are the space-time coder/decoder sub-layer

1In telecommunication engineering, the term “layer” usually refers to the seven layers of the Open
System Interconnection (OSI) model, to which the physcal layer belongs [14]; we use the term sub-layers
to avoid confusion with the OSI terminology.

2For simplicity, some trivial steps such as serial-to-parallel (S/P) conversion are not shown.
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and the channel coder/decoder sub-layer, where all interactions now take place through

binary interfaces.3 In fact, discrete source coding/decoding, quantizer/table lookup and

sampler/analog filter are nonlinear operations which could define several new sub-layers.4

These components are well understood and pose few new challenges within the context of

wireless relaying. Therefore, we do not consider these components as parts of the relay

communication system and assume that the input and output are both bit streams.

The ultimate goal of this research is to improve performance of non-regenerative MIMO

relay systems by designing transceiver architectures with low complexity. In particular, we

concentrate on the design of the linear processing sub-layer, namely, the transformation

matrices for the precoder, relay and equalizer. Channel coding, space-time coding and

nonlinear transceiver architectures can improve system performance further and their de-

signs have been extensively studied in the last decade. In addition, even though optimized

linear components alone cannot guarantee global optimality, considering all sub-layers si-

multaneously would significantly complicates the problem at hand and provides few in-

sights. Instead, we will turn to numerical simulations of the complete link including those

nonlinear components to verify real-time performance.

To optimize the linear transceiver, one needs to choose a relevant performance measure

in the first place. This objective function can be of an information-theoretic nature, such

as mutual information or system throughput, or derived from statistical signal processing

perspectives, e.g., mean square error (MSE), signal-to-interference plus noise ratio (SINR)

and bit-error rate (BER). The transceiver maximizing the mutual information requires

impractical Gaussian codes to achieve this maximum rate. Instead, statistical measures

such as MSE and BER are more representative of real-time system performance. With this

in mind, we shall emphasize the latter category of objective functions, MSE in particular.

In this thesis, we are particularly interested in two specific research goals: combining

and adaptation. The first goal stands for coherent combining at the destination, of signals

transmitted from multiple relays, in order to benefit from a distributed array gain. For

the one-source–multiple-relays–one-destination (1S-MR-1D) system shown in Fig. 1.3, this

combining is of utmost importance, which is different from the one-source–one-relay–one-

destination (1S-1R-1D) system. In the latter, the optimal transceiver is well established in

3If schemes such as trellis-coded modulation (TCM) are used, the boundaries between some of these
layers may be blurred and some layers may even merge together.

4In fact, some information such as a packet sent over a network is inherently digital and hence these
components are unnecessary.
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terms of various performance criteria [15]. Interestingly, a majority of these criteria lead

to a common singular value decomposition (SVD) structure. This SVD scheme, however,

does not extend to the former 1S-MR-1D system since, due to the physically separated na-

ture of the multiple relays, their combined transformation matrix inherits a block-diagonal

form. Therefore, we shall study optimal design of the multiple relaying matrices for such

combining-type 1S-MR-1D systems, aiming for the previously mentioned coherent combing

but without over-amplifying the noises induced at the relay receivers. The existence of

multiple antennas makes it difficult to balance these two aspects and henceforth we denote

a majority part of this thesis to this research goal.

The second goal, adaptation, refers to appropriate exploitation of time-domain prop-

erties of wireless channels to reduce algorithmic complexity. Optimal transceiver design

generally requires knowledge of the underlying wireless channels. In practice, the entire

transmission period is divided into blocks. In each block, the channels are estimated and

then used for transceiver optimization, followed by the actual data transmission. The block

length is selected such that the channels stay almost constant within each block. Other-

wise, model mismatch would deteriorate performance significantly. This implies that both

the channels and the corresponding optimal transceivers evolve gradually across succes-

sive blocks. This property has been overlooked in previous development and evaluation
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of transceiver designs for MIMO relay systems. Our purpose is to exploit it in order to

simplify iterative algorithms that seemed complex when the successive blocks are viewed

in isolation. This is especially important for multiuser MIMO relay networks because al-

most all the existing works turn to iterative numerical algorithms. In the following, we

summarize the main contributions of this thesis.

1.3.2 Main Contributions

Transceiver design for combining-type relaying

We propose two different transceiver design approaches in order to leverage the distributed

array gain for combining-type 1S-MR-1D systems.

In Chapter 3, we shall propose a low-complexity hybrid framework in which the MIMO

relaying matrix at each relay is generated by cascading two substructures, akin to an

equalizer for the backward channel and a precoder for the forward channel. For each of

these two substructures, we introduce two one-dimensional parametric families of candidate

matrix transformations. The first family, non-cooperative by nature, depends only on the

backward or forward channel of the same relay. Specifically, this family includes zero-

forcing (ZF), linear minimum mean square error (MMSE) and matched filtering (MF)

as special cases, as well as other intermediate situations, thereby providing a continuous

trade-off between interference and noise suppression. The second family, this one of a

cooperative nature, makes use of additional information derived from the channels of other

relays. This hybrid framework allows for the classification and comparison of all possible

combinations of these substructure, including several previously investigated methods and

their generalizations. The design parameters can be optimized based on individual channel

realizations or on channel statistics; in the latter case, the optimum parameters can be well

approximated by linear functions of the SNRs. We show that the optimal parameters differ

significantly from those corresponding to the ZF, MF and linear MMSE. The proposed

methods achieve a good balance between performance and complexity: they outperform

existing low-complexity strategies by a large margin in terms of both capacity and BER, and

at the same time, are significantly simpler than previous near-optimal iterative algorithms.

In Chapter 4, we shall propose an MMSE-based optimization approach. The purpose

is to minimize the MSE between the transmitted signals from the source and the received

signals at the destination. Two types of constraints on the transmit power of the relays
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are considered separately: 1) a weighted sum power constraint, and 2) per-relay power

constraints. As opposed to using general-purpose interior-point methods, we exploit the

inherent structure of the problems to develop more efficient algorithms. Under the weighted

sum power constraint, the optimal solution is expressed as a function of a Lagrangian

parameter. By introducing a complex scaling factor at the destination, we derive a closed-

form expression for this parameter, thereby avoiding the need to solve an implicit nonlinear

equation numerically. Under the per-relay power constraints, we show that the optimal

solution is similar to that under the weighted sum power constraint if particular weights

are chosen. We then propose an iterative power balancing algorithm to compute these

weights. In addition, under both types of constraints, we investigate the joint design of

a MIMO equalizer at the destination and the relaying matrices, using block coordinate

descent or steepest descent iterations. The above optimal designs do not require global

CSI availability: each relay only needs to know its own backward and forward channel,

together with a little extra information. BER simulation results demonstrate that all the

proposed designs, under either type of constraints, with or without the equalizer, perform

much better than previous methods and the hybrid methods. Our work also provides an

interesting insight: under the per-relay power constraints, the optimal strategy sometimes

does not use the maximum power at some relays. Forcing equality in the per-relay power

constraints would result in loss of optimality. Another interesting point is that, no matter

how low the SNR is at a particular relay, this relay does not have to be turned off completely.

A unified framework for adaptive transceiver design

In Chapter 5, we shall propose a unified framework for adaptive transceiver optimization

which is applicable to a wide variety of MIMO relay networks. It leads to new and more ef-

ficient algorithms with better performance for certain network topologies. This framework

also makes it convenient to exploit the above mentioned relationship between successive

transmission blocks via inter-block adaptation. First, we formulate a general system model

which can accommodate various network topologies by imposing appropriate structural con-

straints on the source precoder, the relaying matrix and the destination equalizer. Next,

we derive the optimal MMSE relaying matrix as a function of the other two matrices,

thereby removing this matrix and its associated power constraint from the optimization

problem. This is the common step for point-to-point and multiuser systems. Subsequently,
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we study optimization of either the precoder or the equalizer under different structural

constraints and propose an alternating algorithm for the joint design. In this algorithm,

the optimal equalizer from the previous block is chosen as the initial search point for the

current block. This inter-block adaptation speeds up convergence and henceforth reduces

computational complexity significantly. The proposed framework is further explained and

validated numerically within the context of different system configurations. For example,

for relay-assisted broadcast channel (BC) with single-antenna users, the proposed frame-

work leads to a new diagonal scaling scheme which provides more flexibility by allowing

different users to apply their own amplitude scaling and phase rotation before decoding.
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1.4 Organization and Notation

The organization of this thesis is as follows. Chapter 2 provides a comprehensive liter-

ature survey of previous works on MIMO relaying. The hybrid relaying framework and

the MMSE-based transceiver optimization for combining-type 1S-MR-1D systems are de-

veloped in Chapter 3 and Chapter 4, respectively. Chapter 5 presents the inter-block

adaptive transceiver design, followed by the conclusions in Chapter 6.

The following notations are used throughout this thesis. Italic, boldface lowercase

and boldface uppercase letters represent scalars, vectors and matrices; superscripts (̄),

()T , ()H and ()† denote conjugate, transpose, Hermitian transpose and Moore-Penrose

pseudo-inverse, respectively; tr() refers to the trace of a matrix; ‖ · ‖2 (‖ · ‖F) stands for the

Euclidean (or Frobenius) norm of a vector; col() stacks many column vectors into a single

vector, vec() stacks the columns of a matrix into a vector and unvec() is its inverse operator;

diag() forms a diagonal (or block-diagonal) matrix from multiple scalars (or matrices); ⊗
represents the Kronecker product; In is an identity matrix of dimension n; E{} refers to

mathematical expectation; R and C denote the sets of real and complex numbers; R() and

N () are the column space and the null space of a matrix; dim() is the dimension of a space;

� and � represent positive semidefinite ordering of matrices.
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Chapter 2

Literature Survey

The idea of wireless relaying dates back to the three-terminal relay channel model pro-

posed in the 1970s [11, 16, 17]. However, it did not receive much attention until the new

millennium, when relay-based heterogeneous cellular networks were becoming indispens-

able. In this chapter, we attempt to provide a comprehensive survey of previous works on

non-regenerative MIMO relaying. For convenience and clarity, we first discuss in Sec. 2.1

the guidelines of classifying these works, together with background information that can

be helpful to understanding the following literature review. 1S-1R-1D, 1S-MR-1D and

multiuser MIMO relaying are then reviewed in Sec. 2.2, 2.3 and 2.4, respectively.

2.1 General Classifications

Thanks to its great potential, wireless relaying has been attracting strong interest in the re-

cent literature. Researchers are looking at almost all the facets — from theoretical limits to

practical implementations. Existing publications target dissimilar network configurations,

make different assumptions about systems and channels, choose distinct performance mea-

sures and employ various mathematical methodologies. This richness makes it difficult to

present a cohesive and insightful survey. Therefore, it is important to first present some

background information and guidelines that can help to classify these works and build

connections among them.

The literature survey is organized by network topology on the top level. As explained

in Sec. 1.2, network topology refers to the numbers of sources, relays and destinations

involved in the communication process. In conventional terminology, network topology can

2013/10/30
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also mean point-to-point or multiuser networks, depending on the numbers of sources and

destinations. More specifically,

• A point-to-point link connects one source and one destination with the help of a single

relay (1S-1R-1D).

• A point-to-point link can also be assisted by multiple parallel relays (1S-MR-1D), cf.

Fig. 1.3.

• Relay-assisted multiuser networks come in different forms:

– In a multiple access channel (MAC), multiple source users are simultaneously

sending information to a single destination (MS-1R-1D and MS-MR-1D).

– In a broadcast channel (BC), a single source transmits to multiple users through

the aid of a single or multiple relays (1S-1R-MD, 1S-MR-MD).

– In an interference channel (IC), multiple sources communicates with multiple

destinations simultaneously (MS-1R-1D and MS-MR-MD).

Since the above network topologies raise different challenges for system design, all of them

have been studied to some extent in the literature and are reviewed in Sec. 2.2, 2.3 and

2.4, respectively. It is worth mentioning that additional topologies exist when the direct

source-destination link is not negligible or the communication is assisted by multiple relays

in a multi-hop fashion. These networks were also investigated but in this thesis, we consider

only two-hop relaying without direct link.

In the literature survey, we may also refer to other aspects of system configurations

such as the number of antennas and transmission bandwidth. A single-input single-output

(SISO) relay system deploys a single antenna at each of its nodes, including the sources,

relays and destinations. In a MIMO relay system, each node is equipped with multiple an-

tennas. For simplicity, we also include in this category those systems with single-antenna

sources or destinations. Source precoding, non-regenerative relaying and destination equal-

ization are all represented by complex scalars in SISO systems, or by matrices in MIMO

systems. Consequently, transceiver design for the latter is more challenging. Our focus is

on these MIMO relay systems and we will refer to selected papers on SISO only if they are

closely related to the corresponding MIMO problems.
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In terms of bandwidth, communication systems can be narrowband or broadband, cor-

responding to frequency non-selective and frequency selective fading channels, respectively.

In the latter scenario, the channels are represented by linear time-varying channel response

functions. Multi-carrier communication architectures, such as orthogonal frequency divi-

sion multiplexing (OFDM), are commonly used to split the wide spectrum into multiple

narrow frequency bands, which makes it possible to view the channel experienced by each

carrier as frequency non-selective. In this sense, transceiver design for narrowband systems

can be readily applied to broadband systems by treating each subcarrier independently.

A carrier-cooperative approach further allocates power between these subcarriers and per-

forms slightly better [15,18].

Within each individual network topology, we can organize the literatures in terms of

research goals and methodologies. Various aspects of MIMO relaying have been explored

to some extent, including theoretical limits, transceiver design, practical implementations

and supporting mechanisms such as channel estimation, CSI feedback and synchronization.

Here, we briefly explain these facets to help the readers to understand the following sections

more easily.

(1) Theoretical limits. For any communication system, it is always important to deter-

mine the capacity of the underlying channel. This theoretical limit is the maximum

rate at which data can be transmitted with asymptotically low probability of error.

The introduction of relay stations makes it much more difficult to obtain the maxi-

mum transmission rate because the relay(s) can operate in many different ways. As

a result, most theoretical limits are derived by first assuming a certain relaying strat-

egy. Other than channel capacity, one may also be interested in asymptotic measures,

such the diversity order, or capacity scaling law when the number of relays becomes

very large.

(2) Transceiver design. In MIMO relay systems, after choosing specific signal constel-

lations and coding schemes for the multiple symbol streams, it is then necessary to

optimize the transceiver architecture to improve the link quality for each stream.

A linear transceiver for MIMO relay systems includes precoders, relaying matrices

and equalizers. Nonlinear transceiver architectures, such as decision feedback equal-

izer (DFE), Thomlinson-Harashima precoding (THP) and dirty paper coding (DPC),

provide additional performance gain in single-hop and relay-assisted MIMO systems
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at the price of higher complexity. Transceiver optimization are usually explored from

two different approaches. One approach optimizes a certain performance measure un-

der appropriate power constraints imposed on the sources and relays. This objective

function can be either an information-theoretic quantity such as the mutual informa-

tion, or a statistical measure such as the MSE, SINR or BER. The other approach,

power control, minimizes a power-related function subject to QoS requirements that

are usually expressed in terms of SINRs.

(3) Practical implementations. Full channel knowledge and centralized processing are the

most common assumptions for transceiver design. However, they are never perfect in

practice and some works explicitly take these aspects into consideration.

a) Robust design against channel uncertainty. CSI knowledge can be obtained only

through channel estimation at the receivers, and through channel reciprocity (in

a time-duplex division system) or channel feedback at the transmitters. Con-

sequently, estimation errors, feedback quantization, and fast fading often cause

model mismatch and performance degradation. Designing practical transceiver

architectures that are robust to channel uncertainty is therefore important in ful-

filling the theoretical potential of MIMO relaying. Robustness against channel

mismatch can be interpreted and pursued from two different perspectives. The

Bayesian approach assumes knowledge of the probability distribution function

of the CSI errors, and optimizes the mathematical expectation of a proper per-

formance measure. The min-max approach, instead, optimizes the worst-cast

performance among all possible channel realizations. This approach is more

useful when dependability is of significant importance.

b) Transceiver design with channel distribution information (CDI). Under fast

fading channels, channel estimation may be very difficult and optimal transceiver

design is done based on CDI such as channel mean and covariance.

c) Distributed implementation. A centralized transceiver design is carried out at

a fusion center which usually leads to some communication overhead because

of the resulting information exchange between the source, relay and destination

nodes. Distributed implementations emphasize the use of local CSI, and possibly

additional shared information (but not full CSI), with the purpose of trading
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marginal performance loss for lower implementation complexity.

(4) Supporting mechanisms. Channel estimation, limited feedback, codebook design and

synchronization are indispensable to a MIMO relay system. These components have

also been widely studied in the literature.

Now that necessary background information and guidelines have been provided, we

present a survey of the literature on non-regenerative MIMO relaying in the following

sections. Specifically, our presentation is organized into three parts that review recent

works on point-to-point (1S-1R-1D), combining-type (1S-MR-1D) and multiuser MIMO

relaying, respectively.

2.2 Point-to-Point Communications: 1S-1R-1D

The simplest network topology is 1S-1R-1D, in which a point-to-point communication link

is assisted by a single relay. Several theoretical upper and lower bounds were derived in [19]

on the capacity of a MIMO relay channel with direct link. More often, the direct source-to-

destination link is hindered by high level of attenuation and can be neglected. In this case,

the overall channel capacity is upper bounded by that of the backward channel and that of

the forward channel. The fact that the relay(s) can operate in many different ways makes

it extremely difficult to derive the this channel capacity, which is still an open problem.

Most existing information-theoretic works assume a certain relay processing scheme. For

example in [20], ergodic capacity is studied when the relay uses the simplistic AF strategy

which merely amplifies the signals.

Linear transceiver design for 1S-1R-1D systems is highly related to MIMO transceiver

design. The major difference lies in the existence of two channel matrices and the amplifica-

tion of the noise term from the relay. Existing works belong to two different categories. The

first class of approaches assume special transceiver structures and optimize the underlying

parameters. These structures are usually borrowed from the optimal transceiver architec-

tures of point-to-point MIMO systems, such as ZF [21], MMSE [22] and SVD [23–25]. For

example, as shown in Fig. 2.1, the SVD-based relaying matrix diagonalizes the middle part

of the overall channel. With proper precoder and equalizer, the transceiver design prob-

lems are scalarized so that they can be readily solved using the powerful tools of convex



20 Literature Survey

SVD-based linear relaying matrix Forward channel in SVD form

UnitaryUnitary UnitaryUnitary

Backward channel in SVD form

UnitaryUnitary

SourceRelayDestination

Cancel with each other Cancel with each other

Fig. 2.1 SVD-based relaying structure. From right to left are the SVDs of
the backward channel, the relaying matrix and the forward channel.

optimization. This channel diagonalization scheme can be further generalized to multi-hop

relaying [26] and broadband multicarrier case [15,25].

The other category of works do not assume any predefined structure. Instead, they

formulate and solve appropriate optimization problems based on matrix theory [27]. Inter-

estingly, for 1S-1R-1D, the previously mentioned SVD relaying structure is optimal in terms

of a wide variety of performance measures, including mutual information [28–30], MSE [31]

and pairwise error probability [23]. In fact, most of these performance measures are related

with each other through an MSE matrix. This matrix is defined as the covariance matrix

of the estimation error between the equalizer output and the precoder input [15,18]. More

specifically, a majority of objective functions are essentially additively Schur-concave or

Schur-convex functions of the diagonal entries of the MSE matrix, so that they can be

considered in a unified framework [15]. For example, the mutual information, the product

of the substream MSEs, the sum of the substream SINRs and the product of the SINRs are

Schur-concave functions; the sum of the MSEs, the maximum MSE, the harmonic mean of

the SINRs and the minimum of the SNRs are Schur-convex. The optimal relaying matri-

ces for both categories are in the SVD form and the difference lies in the optimal source

precoder. For Schur-concave objective functions, the optimal precoder is the product of

the conjugate transpose of the rightmost unitary matrix in Fig. 2.1 and a diagonal power

allocation matrix. This leads to scalarization of the problem and the remaining power

allocation problem is discussed in [15, 23–25, 29–31] for various performance criteria. For

Schur-convex functions, the optimal precoder has to preprocess the symbol vector using an

additional unitary matrix. This matrix is chosen such that the diagonal entries of the MSE
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matrix are all equal. When the number of streams is a power of two, the discrete Fourier

transform matrix or a Walsh-Hadamard matrix can be used [15]. It is worth mentioning

that the optimal transceiver for the power control problem has exactly the same structure.

The only difference is that the unitary matrix is chosen such that the diagonal entries of

the MSE matrix are equal to the QoS requirements for the substreams [32,33].

In single-hop MIMO systems, nonlinear architectures such as DFE and THP are known

to provide additional performance gain with respect to linear transceivers. Similar conclu-

sions hold for two-hop MIMO relay systems [34, 35]. DFE is based on the multiplicative

majorization theory and the equal-diagonal QR decomposition method from [36].

As discussed before, transceiver optimization requires explicit knowledge of the wireless

channels which often comes with estimation errors. MMSE-based robust design against CSI

mismatch in the statistical Bayesian sense is addressed in [37] for flat-fading channels, and

in [38] for an OFDM system with frequency-selective channels. These results are extended

to additively Schur-concave and Schur-convex functions in [39]. Simulation results in these

works have shown that robust designs provide better performance than non-robust designs.

For fast-fading channels, channel estimation may even be impossible and transceiver design

must turn to the first-order and second-order channel statistics, namely, the CDI. This

aspect was investigated in [40–43] when either the backward or the forward channel is

under fast fading.

Channel acquisition at the receivers of the relay and the destination can be done using

the same methods as for point-to-point MIMO channels [44]. Algorithms that are tai-

lored for MIMO relay systems are also studied in previous works. For example, both the

backward and the forward channels can be estimated at the destination using the pilot-

based schemes proposed in [45, 46] and the parallel factor analysis method from [47]. CSI

at the transmitters of the source and the relay can be obtained via channel reciprocity

for time-division duplex (TDD) systems, and via feedback for both TDD and frequency-

division duplex (FDD) systems. The design of appropriate codebooks for limited feedback

is considered in [48].

To sum up, 1S-1R-1D systems are well understood from different perspectives. However,

as discussed in the following sections, this is not the case with combining-type 1S-MR-1D

systems and multiuser relay systems.
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2.3 Combining-Type Relaying: 1S-MR-1D

The optimal schemes for 1S-1R-1D can be extended to 1S-MR-1D systems through the use

of a selection-type operation, whereby the source signals are forwarded through the single

relay that offers the best link quality [49,50]. A more meaningful approach in the 1S-MR-

1D case is to use all the relays (or a subset of them) simultaneously in order to benefit

from distributed array gain [13, 51]. This multi-relay configuration leads to a logarithmic

capacity scaling with the number of relays [51,52]. The ergodic capacity with the simplistic

amplify-and-forward (SAF) relaying strategy is studied in [20].

Transceiver design is of paramount importance in fulfilling the potential of combining-

type 1S-MR-1D systems. In particular, the SVD-based relaying for 1S-1R-1D does not

readily extend to this case because, due to the physically separated nature of the multiple

relays, their combined transformation matrix inherits a block-diagonal form. The essential

feature of an appropriate relaying strategy is that the signals from different relays should

be coherently combined at the destination [13, 51]. This coherent combining can easily

be guaranteed for single-antenna relays because each relay simply compensates for the

phases of the backward and forward scalar channels [10, 53, 54]. For multiantenna relays,

however, the channels are represented by matrices, which complicates the transceiver design

significantly.

For the purpose of coherent combining, some heuristic strategies have been proposed

that “borrow” ideas from MIMO transceiver design, including MF [13], ZF [55], linear

MMSE [13] and QR decomposition [56–58]. These heuristic methods, although structurally

constrained, has been shown to perform much better than SAF which only amplifies the

signals.

A more comprehensive approach is to formulate the collaborative design of the relaying

matrices as an optimization problem with power constraints [59–63]. The objective can be

to maximize the achievable rate [59] or to minimize the MSE [60,61]. However, most works

either assume special structures on the matrices [59], or rely on numerical algorithms such

as gradient descent [60], bisection [61] and iterative schemes [60–62] to obtain the optimal

solution. For these methods, this lack of closed-form expressions generally leads to high

implementation complexity, which in turn limits their potential feasibility.

For completeness, it is worth mentioning that explicit formulas were derived in [64–66]

when the power constraints are enforced on the signals received at the destination. However,
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these results do not carry over to the case when the constraints are imposed on the transmit

power of the relays [63]. In fact, this thesis was largely motivated by the lack of efficient

transceiver design algorithms for combining-type 1S-MR-1D systems.

2.4 Multiuser MIMO Relaying

Most research results on multiuser MIMO relaying have their counterparts in multiuser

MIMO. In general, these works either consider information-theoretic aspects such as ca-

pacity region, or focus on signal processing problems such as transceiver design, power

allocation and robust design. In the following paragraphs, we summarize previous works

on the three classes of relay-assisted networks, namely, MAC, BC and IC.

MAC typically models the uplink of a cellular communication system, with a fixed relay

between the mobile users and the base station (BS). If the mobile users all have a single

antenna, the system is equivalent to a 1S-1R-1D system with a multi-antenna source [31,67].

In this case, the sources simply transmit their corresponding maximum allowable power,

and joint design of the relay forwarding matrix and the destination equalizer is done in the

same way as in 1S-1R-1D systems [29,31]. If the users are equipped with multiple antennas,

finding the source precoders, the relaying matrix and the destination equalizer to maximize

a system performance is generally a difficult task. For example, iterative algorithms are

proposed in [68] to solve the rate maximization problem with power constraints, and the

power minimization problem subject to rate constraints. The MMSE-based design was

studied in [69,70], which is also based on iterative algorithms.

BC is usually found in the downlink of a cellular system. For single-antenna users, sev-

eral lower bounds on the achievable sum rate are established in [71] by employing ZF DPC

and imposing several different structures on the source precoder and the relaying matrix.

These performance bounds have motivated the development of implementable transceiver

designs. For example, a nonlinear transceiver with THP at the base station, linear pro-

cessing at the relay and adaptive modulation is proposed in [71]. A linear transceiver

architecture is optimized to maximize the achievable sum capacity under fixed transmit

power constraints in [72]. This nonconvex optimization problem is solved by being con-

verted to standard convex quadratic programming problems in an iterative manner. Specif-

ically, this is done by approximating the non-convex functions locally by their low-order

counterparts with reasonable accuracy, leading to convex sub-problems. An interesting
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discovery is that the optimal precoding and relaying matrices almost diagonalize the com-

pound channel at high SNRs, which motivates a simplified transceiver design based on

channel diagonalization [72]. An MMSE-based design is considered in [67] based on al-

ternating algorithms. Ref. [73] takes a different power control perspective by minimizing

the weighted sum-power consumption of the base station and the relay to support a set

of minimum-SINR requirements at user terminals. Two practical solutions are proposed:

SINR balancing via second-order cone programming (SOCP), and channel-inversion based

on the SVD structures and geometric programming (GP).

Multiple antennas at the mobile users bring further gains in system throughput for BC

[74], though at the price of more challenging transceiver design. Most existing works either

assume special structures for the design matrices [75,76], or iterate through the precoders,

the relaying matrices and the equalizers multiple times [68, 70, 77–81]. An example of

the special processing structures is block diagonalization (BD), which is a generalization

of ZF. In BD, the signals are transmitted in appropriate subspaces such that the co-

channel interferences are zero at the mobile users [82]. In [75], BD is used at the relay

without a linear precoder at the source; while in [76], the two hops are designed separately:

MMSE transceiver is used for the first hop and BD or geometrical mean decomposition

(GMD) are used for the second hop. The iterative (or alternating) methods are essentially

block coordinate descent: they optimize each of the design matrices one at a time until

convergence. This idea is used to solve the MMSE problems in [70, 77–79], the sum rate

problems in [68,80], the power control problems in [68,81] and the limited feedback problems

in [83,84].

In IC, multiple source-destination pairs are assisted by a single or multiple parallel re-

lays. Previous works mostly focus on the power control problems. The optimal relaying

matrices are generally obtained by applying semidefinite relaxation and solving SOCP or

semidefinite programming (SDP) problems. For single-antenna users, the sum power mini-

mization problem subject to QoS constraints is considered in [85,86] and the corresponding

robust design is studied in [87, 88]. A different formulation minimizes the total interfer-

ence and noise power subject to distortionless constraint on the desired signals [86, 89].

An adaptive and decentralized version based on Kalman filter is proposed in [90]. For

multi-antenna users, the power control problem is studied in [91] using a two-tier iterative

algorithm which itself solves a sequence of SDP subproblems. Due to the high complexity

of IC with relays, it may be more meaningful to explore structured approaches such as
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BD [57] and interference alignment [92].

Unlike 1S-1R-1D, transceiver design for multiuser MIMO relay systems usually leads to

complex iterative algorithms that may require solving SOCP or SDP subproblems. Fortu-

nately, some of these algorithms may be endowed with good initial search points when the

neighbouring transmission blocks are considered together, as we pointed out in Chapter 1.

This should be kept in mind in the development and evaluation of new iterative algorithms.
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Chapter 3

A Low-Complexity Hybrid

Framework for Combining-Type

Relaying

Combining-type 1S-MR-1D systems can benefit from distributed array gain if the signals

retransmitted from different relays are superimposed coherently at the destination. In

this chapter1, we propose a low-complexity hybrid relaying framework in which the non-

regenerative MIMO relaying matrix at each relay is generated by cascading two parametric

substructures. This hybrid framework allows for different combinations of substructure

candidates and further optimizations of the underlying parameters, thereby achieving a

good balance between performance and complexity. The introduction in Sec. 3.1 explains

the background and motivation. Sec. 3.2 describes the system model and the underly-

ing assumptions. Sec. 3.3 presents the new hybrid framework along with the proposed

non-cooperative and cooperative matrix substructures. Suitable performance criteria and

methodology for choosing their design parameters are developed in Sec. 3.4. The numerical

results and further discussions are included in Sec. 3.5, followed by a brief summary in

Sec. 3.6.

1Parts of Chapter 3 have been presented at the 2010 International Conference on Wireless Communi-
cations and Signal Processing (WCSP) in Suzhou, Jiangsu, China [93], and published in Wireless Personal
Communications [94].

2013/10/30
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3.1 Introduction

As discussed in Sec. 2.3, for the 1S-1R-1D configuration, the optimal MIMO relaying ma-

trix is well established in terms of various performance criteria [15, 22, 28, 29, 31, 95, 96].

Interestingly, a majority of these criteria lead to a common SVD structure, which can

scalarize the problems so that they can be readily solved using convex optimization. These

optimal schemes can be extended to 1S-MR-1D systems through the use of a selection-type

operation, whereby the source signals are forwarded through the single relay that offers the

best link quality [49].

Another approach in the 1S-MR-1D case is to use all the relays (or a subset of them)

simultaneously in order to benefit from distributed array gain [13,51]. However, the result-

ing problem of designing optimal transformation matrices with constraints on the transmit

power of the relays remains largely unsolved. In particular, the SVD approach does not

readily extend to this case since, due to the physically separated nature of the multiple

relays, their combined transformation matrix inherits a block-diagonal form. By imposing

the power constraint on the received signals at the destination, instead of the transmitted

signals from the relays, one can circumvent this difficulty [64, 65]. However, this cannot

guarantee any optimality under the original transmit power constraints. Other existing

optimal designs either consider only a total power constraint across the relays [97], or em-

ploy iterative approaches with relatively high complexity [60, 98]. As an alternative to

the optimization approach, some heuristic strategies have been proposed which “borrow”

ideas from MIMO transceiver design, including MF, ZF, linear MMSE [13, 64] and QR

decomposition [56]. These methods achieve the distributed array gain and perform well in

1S-MR-1D systems [93].

In theory, the relaying matrices should be chosen so that the retransmitted signals

combine coherently at the destination. To this end, we introduce a low-complexity hybrid

framework in which the transformation matrix of each relay is obtained by cascading two

substructures or factors, akin to an equalizer for the backward channel and a precoder

for the forward channel. For each of these two substructures, we propose two different

one-dimensional parametric families whose members serve as candiates. The first family,

non-cooperative by nature, depends only on the backward or forward channel corresponding

to the same relay. This family includes ZF, linear MMSE and MF as special cases [13].

The second (cooperative) parametric family, inspired by [64, 99], also makes use of infor-
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mation derived from the channels of other relays. This hybrid framework allows for the

classification and comparison of all possible combinations of these substructure, including

several previously investigated methods and their generalizations.

Within this hybrid relaying framework, the design parameters of the matrix factors can

be further optimized. This can be done on-line after each update of the channel matrices,

or off-line based on a priori knowledge of channel statistics. In the latter case, the optimum

parameters can be well approximated by linear functions of the SNRs, which reduces the

implementation complexity significantly. Through simulations, we show that the capacity

of selected hybrid schemes (with optimized parameters) comes within 1bits/s/Hz of the

upper bound achieved by the nearly capacity-optimal iterative method in [60]. In the mid-

to-high SNR range, the BER performance of one hybrid method even exceeds that of the

MSE-optimal iterative method. In summary, the proposed hybrid methods achieve a good

balance between performance and complexity: they outperform existing low-complexity

strategies by a large margin, and at the same time, are significantly simpler than previous

near-optimal iterative algorithms.

3.2 System Model

Fig. 3.1 illustrates a 1S-MR-1D MIMO relaying system in which the source forwards its

message to the destination through M parallel relays. The source, destination and individ-

ual relays are equipped with NS, ND and NR antennas, respectively, where we assume that

NS = ND.2 The relays work in a half-duplex mode: their antennas are used for either trans-

mitting or receiving purposes during different time slots. We neglect the presence of the

direct source-to-destination link which is typically hindered by high levels of attenuation.

We assume that the wireless channels undergo flat (frequency non-selective) block fading

[2]. For now, CSI is assumed to be available globally. After introducing the structures

of the relaying matrices, we will be able to discuss in detail how much information is

needed at each node. In this work, we assume perfect synchronization between the source,

relay and destination nodes. Channel estimation and timing/frequency synchronization

are important topics in their own rights, but fall outside the scope of this work. For more

details, we refer the reader to [46,100,101] and the references therein.

2For simplicity, each relay is equipped with the same number of antennas; however, generalization to
different numbers of antennas at the relays, i.e. NR,k, is straightforward.
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The signals, noises and channels are all modeled in terms of their equivalent discrete-

time complex baseband representations. That is, standard operations of demodulation,

down-conversion, filtering and A/D conversion are assumed at the transmitters of the

sources and the relays, with dual operations applied at the receivers of the relays and the
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destinations, as shown in Fig. 3.2.

The received signal vector xk ∈ CNR×1 at the k-th relay can be expressed as

xk = Hks + wk, k = 1, . . . ,M (3.1)

where s ∈ CNS×1 is the source symbol vector comprised of multiple independent streams,

Hk ∈ CNR×NS is the backward channel matrix between the source and relay k, and wk ∈
CNR×1 is an additive noise term. The signal and noise terms, s and {wk} for k = 1, . . . ,M ,

are modeled as independent, circularly symmetric complex Gaussian random vectors with

zero mean and covariance matrices Rs = E{ssH} = σ2
sI and Rwk

= E{wkw
H
k } = σ2

wI,

respectively, where σ2
s is the average transmit power per antenna at the source and σ2

w is

the average noise power induced at the individual relay antennas.

The k-th relay multiplies its received noisy signal xk by a linear processing matrix

Fk ∈ CNR×NR to obtain the retransmitted signal

yk = Fkxk. (3.2)

The received signal vector at the destination, denoted by r ∈ CND×1, takes the form of 3

r =
M∑

k=1

GkFkHks +
M∑

k=1

GkFkwk + n, (3.3)

where Gk ∈ CND×NR is the forward channel matrix from relay k to the destination and

n ∈ CND×1 is the noise term induced at the destination receiver. This noise term is assumed

independent from s and {wk}, and modeled as a circularly symmetric complex Gaussian

random vector with zero mean and covariance matrix Rn = E{nnH} = σ2
nI, where σ2

n is

the average noise power received at the individual destination antennas. Eq. (3.3) can also

be expressed in a “block-diagonal” form as

r = GFHs + GFw + n, (3.4)

where we have defined G = [G1, . . . ,GM ], H = [HT
1 , . . . ,H

T
M ]T , w = [wT

1 , . . . ,w
T
M ]T and F

is a block-diagonal matrix with F1, . . . ,FM as main diagonal blocks. When M = 1, this

3The reader may also refer to Fig. 4.1.
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signal model reduces to the 1S-1R-1D case.

For convenience, we introduce two important SNR parameters. The first SNR ρ1 de-

scribes the link quality of the backward channels and is defined as the ratio of the average

transmit power per source antenna to the noise power per relay antenna, i.e., ρ1 = σs
2/σ2

w.

The second SNR parameter ρ2 characterizes the forward channels. Let the total transmit

power of the relays be P and ρ2 is defined as the ratio of average transmit power per re-

lay antenna to the power of the noise induced at the individual destination antennas, i.e.,

ρ2 = P/(MNRσ
2
n). Note that P is consumed by the relays to transmit both the desired

signal component s and the additive relay noise terms {wk}. We emphasize that if one of

these two SNR parameters is fixed, the system performance is upper bounded due to the

corresponding noise term, even if the other SNR goes to infinity.

Note that the above signal model is applicable to a much broader scope than multi-

antenna 1S-MR-1D systems. For example, since broadband channels for single-antenna

systems can also be represented by matrices, the relaying framework in this chapter applies

immediately to broadband single-antenna 1S-MR-1D relaying systems.

3.3 The Unified Hybrid Framework

The focus of this chapter is to design the relay matrices {Fk} for 1S-MR-1D systems, based

on the knowledge of the instantaneous channel matrices. One immediate option is to solve

for matrices Fk that collaboratively optimize a suitable performance criterion. However,

the block-diagonal matrix F in (3.4) complicates this problem significantly. Instead, we

propose a sub-optimal, yet highly flexible hybrid framework as explained below.

One may contemplate the process of designing the relaying matrices Fk in (3.2) as that

of selecting the equivalent channel

GFH =
M∑

k=1

GkFkHk, (3.5)

with the purpose of maximizing the power of the received signal vector GFHs, without

over-amplifying the noise terms wk in (3.3). Intuitively, this requires a coherent signal

combining of the M parallel transmissions at the destination, i.e., the matrix terms on

the right-hand side of (3.5) are superimposed constructively, thereby leading to an M -fold
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distributed array gain.

Although the SVD-based canonical structure is the optimal relaying matrix form for 1S-

1R-1D systems under a wide variety of criteria [15,29,31], its optimality cannot be extended

to 1S-MR-1D relaying systems. On the one hand, one might compute F = VGΛUH
H from

the SVD’s of the stacked channel matrices G = UGΣGVH
G and H = UHΣHVH

H in (3.4),

but this approach would violate the structural constraint on F as a block-diagonal matrix,

as shown in Fig. 3.3. On the other hand, one could form the relaying matrix for the k-th

relay, Fk = V2kΛkU
H
1k, from the SVD’s of the corresponding backward and forward channel

matrices, namely, Hk = U1kΣ1kV
H
1k and Gk = U2kΣ2kV

H
2k, which would result into the

following equivalent channel

GFH =
M∑

k=1

U2kΣ2kΛkΣ1kV
H
1k. (3.6)

The matrices V1k tend to be statistically independent for different k (with a similar argu-

ment holding for the U2k), due to the spatially distributed nature of the wireless relays.

Consequently, the signal components transmitted from different relays would then add in

a random and non-constructive way at the destination.

Motivated by this interpretation, we propose a unified hybrid framework in which the

individual relaying matrices Fk are obtained by cascading two substructures (or factors),
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Ak ∈ CNS×NR and Bk ∈ CNR×NS , as follows:

Fk = ηkBkAk. (3.7)

In light of (3.5), matrix Ak equalizes the kth backward MIMO channel Hk, generating

NS summary statistics, each of which is a signal stream impaired by noise and also in-

terferences from other streams. Matrix Bk then serves as the MIMO precoder for the kth

forward channel Gk, pre-canceling interstream interferences before transmitting these sum-

mary statistics through the forward channels. Finally, ηk is a positive scaling parameter

introduced to satisfy the transmit power constraints

E{‖yk‖2} = tr
(
FkRxk

FH
k

)
= Pk, ∀1 ≤ k ≤M, (3.8)

where Rxk
= E{xkxHk } = σ2

sHkH
H
k +σ2

wI. Henceforth, the scaling factor ηk in (3.7) satisfies

ηk =

√
Pk

tr(BkAkRxk
AH
k BH

k )
. (3.9)

Under the above framework, the relaying strategies can be either non-cooperative or

cooperative. For the non-cooperative strategies, the relaying matrix for the kth relay, Fk,

only depends on its own backward and forward channel matrices, i.e., Hk and Gk. For

the cooperative strategies, at least one of the substructures also relies on some shared

information related to the channels of the other relays. That is, Fk depends not only on

Hk or Gk, but also on a function of the other channel matrices, as explained below.

3.3.1 Non-Cooperative Approach

Here, each one of the substructures Ak and Bk is selected from a corresponding one-

dimensional parametric family of matrices. That is, we let

ANC
k = (λaI + HH

k Hk)
−1HH

k , (3.10a)

BNC
k = GH

k (λbI + GkG
H
k )−1, (3.10b)
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where λa and λb are real, nonnegative design parameters. For instance, by choosing λa

equal to∞, 0 or 1/ρ1, ANC
k is proportional to HH

k ,H
†
k or (I+ρ1H

H
k Hk)

−1HH
k , respectively.4

In turn, these matrices correspond to the MF, ZF and MMSE substructures which were

studied in previous works [13, 49, 51]. A similar argumentation can be made about BNC
k .

The superscript NC in (3.10) means that these substructures are non-cooperative by nature,

for they are determined only by the local backward or forward channels, Hk or Gk.

By cascading ANC
k and BNC

k as in (3.7), we can obtain a non-cooperative hybrid relay-

ing strategy which includes several previous methods as special cases, as summarized in

Table 3.1. By varying each one of the design parameters λa and λb in (3.10) from zero to

infinity, we generalize these previously proposed methods to other intermediate situations

of interest.

Table 3.1 Special cases of the non-cooperative hybrid framework

λa λb Ak Bk Previous methods

0 0 ZF ZF ZF relaying [13]

ρ−1
1 ρ−1

2 MMSE MMSE Linear MMSE [13,49]

∞ ∞ MF MF MF [13,49,51]

ρ−1
1 0 MMSE ZF 2-step MMSE [64,99]

{0, ρ−1
1 ,∞} {0, ρ−1

2 ,∞} ZF/MMSE/MF Hybrid [93]

3.3.2 Cooperative Approach

Next, we extend the proposed hybrid framework by considering cooperative strategies where

the design of the relaying matrices Fk explicitly takes into account the combining nature

of the signal transmission in 1S-MR-1D systems. This is achieved by exploiting some

shared information (but not necessarily all the channel matrices). To this end, we propose

4As λa goes to infinity, ANC
k approaches λ−1

a HH
k asymptotically; when λa = 1/ρ1, ANC

k = ρ1(I +
ρ1H

H
k Hk)−1HH

k . In both cases, the resulting scalar factor can be absorbed by ηk in (3.7).
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alternative parametric families of matrix transformations for Ak and Bk:

AC
k =

(
λaI +

M∑

j=1

HH
j Hj

)−1

HH
k , (3.11a)

BC
k = GH

k

(
λbI +

M∑

j=1

GjG
H
j

)−1

, (3.11b)

where the superscript C stands for “cooperative”. Here, the equalizer (3.11a) is inspired by

the works in [64,99]. The two-step MMSE method in [64] first specifies a target signal gain

η, and then minimizes the MSE between r and η s. This leads to the following expression

for the relaying matrix at the kth relay:

Fk = ηG†k

(
I + ρ1

M∑

j=1

HH
j Hj

)−1

HH
k . (3.12)

which can be viewed as a hybrid relaying matrix with Ak = (I + ρ1

∑M
j=1 HH

j Hj)
−1HH

k , and

the precoder Bk = G†k. Interestingly, the equalizer Ak in the above relaying matrix Fk is

using some shared information extracted from all the backward channel matrices, through

the sum term
∑M

j=1 HH
j Hj. However, with a limited power budget, the solution G†k for

the precoder matrix is far from optimal: indeed, when the forward channel matrix Gk is

not well-conditioned and the second-hop SNR ρ2 is low, this ZF-type pseudo-inverse would

waste significant power in compensating the effect of Gk. In this regard, we generalize this

equalizer into AC
k and extend it to the precoder side as well in (3.11b). The sums in (3.11a)

and (3.11b) are the information needed to be shared between relays.

More generally, the hybrid relaying matrix Fk in (3.7) can be formed by combining

factors Ak and Bk selected from any of the above proposed non-cooperative and cooperative

parametric families of matrices. For notational simplicity, we refer to these hybrid strategies

as “A-B(λa, λb)” where for example, NC-C(0, 0) means that the Ak factor of the relaying

matrix Fk is the non-cooperative substructure ANC
k and the Bk factor is the cooperative

substructure BC
k , with λa = λb = 0. In this sense, the proposed hybrid framework enables

the formal classification of previously investigated methods as well as their generalization

by supplementing them with a rich set of alternatives. We note that for simplicity, the

same λa and λb are used for different relays. Choosing different values for each relay would
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Fig. 3.4 CSI exchange for cooperative relaying strategies The fusion cen-
ter collects all needed channel information, computes the matrix sum(s) and
possibly the Cholesky factorization(s), and then broadcasts the required in-
formation.

barely improve system performance but increases complexity significantly when optimizing

these parameters.

3.3.3 Implementation Issues

The relaying matrices are computed based on the knowledge of the wireless channels. For

the NC-NC strategy, each relay only needs its own backward and forward channel matrices

that can be obtained in the same way as in 1S-1R-1D systems [15, 22, 28, 29, 31, 95, 96].

For the cooperative hybrid relaying strategies, it is also essential to share the matrix sums∑M
k=1 HkH

H
k and/or

∑M
k=1 GH

k Gk (but not all the channel matrices) among the relays.

These sums can be computed at a fusion center, which may be one of the relays or the

destination, and broadcasted to the relays, as shown in Fig. 3.4. In practice, the number

of relays M will not be very large, e.g., between 2 and 4. Therefore, compared with non-

cooperative NC-NC, the cooperative hybrid strategies can be implemented without much

added difficulty, especially when the relays are not far from each other so that dedicated

local wireless links or wireline connections are possible.

The procedures for computing Ak, Bk and ηk are simple and involve only a small number

of matrix multiplications and inverses. The resulting complexity is very low, though the
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Cholesky/QR factorizations and backward-forward substitution can be used for further

simplification [102].

3.4 Optimization of the Parameters

3.4.1 Motivations

λa and λb can be regarded as “regularization” or “diagonal loading” parameters for the

substructures Ak and Bk: λa prevents over-amplification of the noise terms wk in (3.1)

when equalizing ill-conditioned backward channels; λb prevents the transmit power of the

relays from being wasted in pre-compensating ill-conditioned forward channels [103, 104].

In the context of a point-to-point MIMO channel, the use of λa = ρ−1
1 and λb = ρ−1

2 in

(3.10) leads to the optimal linear MMSE equalizer and precoder, respectively. These are

known to offer the best trade-off between noise and interference cancellation, outperforming

both MF and ZF over the complete SNR range [2, 105].

Then, for MIMO relaying systems, it is legitimate to ask why it might be more appro-

priate to choose values other than 0, ρ−1
i (i = 1, 2), or∞? To begin with, two independent

noise sources arise in the signal model. For the first hop, the outputs from the equalizer

Ak are not decoded immediately but need further processing, and thus setting λa to 0, ρ−1
1

or ∞ is not necessarily optimal. For the second hop, the input signals have already been

impaired by noise and interferences before being processed by the precoders Bk and re-

transmitted, and therefore choosing λb = 0, ρ−1
2 or ∞ is not optimal, either. Furthermore,

the combining of signals from multiple relays makes it more complicated to predict the

joint effects of λa and λb on system performance.

Another important concern is that the presence of a linear MIMO equalizer at the

destination makes it possible to exploit the inter-stream interferences. In contrast to the

ZF-type substructures with λa or λb = 0, these interferences do not necessarily have to

be small or completely eliminated at intermediate steps, such as in the output of the

substructure Ak or in the received signal vector r. Provided that the interfering streams

can be efficiently recombined at the destination, the power used by the relays to transmit

them can actually contribute to performance improvement.

Therefore, in a relaying scenario, the parameter values 0, ρ−1
i (i = 1, 2), or ∞ are not

optimal in general. Our proposed parametric approach provides additional flexibility in
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balancing various factors that hinder system performance, and thereby can fully exploit

the potential in these seemingly simple substructures.

3.4.2 Performance Measures and Power Constraints

Here, we introduce two classes of performance criteria that can be used to optimize the

parameters λa and λb, as well as to compare the performance of different relaying strategies.

The most fundamental theoretical limit is the channel capacity. In a strict sense, it

is the maximum asymptotically achievable rate over all possible transceiver schemes and

relaying strategies. Here, we abuse this terminology slightly by viewing the AF relaying

matrices as parts of the channel. Different relaying schemes result in different equivalent

channels between the source and the destination, and we refer to the maximum mutual

information between s and r as the channel capacity. For deterministic channels, it can be

written as

C(F) =
1

2
log det

(
I + HeqRsH

H
eq

)
, (3.13)

where Heq = (GFRwFHGH + Rn)−1/2GFH [29]. The factor of 1/2 in (3.13) is due

to the half duplex mode of operation. Under slow fading, as assumed throughout this

thesis, the system performance is characterized through the outage probability pout(R) =

Pr(C(Heq,F) < R) and the corresponding outage capacity defined as the supremum

Cout(ε) = sup {R|pout(R) < ε} . (3.14)

Practical systems compromise transmission rate for lower complexity, cost and latency

[106]. In this sense, it is also of interest to examine other criteria such as the MSE, the SINR

and the average BER. In this chapter, we assume a V-BLAST (Vertical-Bell-Laboratories-

Layered-Space-Time) scheme in which the source antennas transmit independent symbol

streams with the same average power, and the destination applies a linear MMSE MIMO

combiner followed by single-stream decoding [2, p. 333]. Within this framework, the MSE,

SINR and theoretical BER of each substream are linked together through the normalized

MSE matrix, as defined in [18] and [15] by

E =
(
I + ρ1H

HFHGH
(
GFFHGH +

σ2
n

σ2
w

I
)−1

GFH
)−1

. (3.15)

Specifically:
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(1) The normalized MSE of the kth substream is the kth diagonal entry

MSEk = E(k, k) ∈ (0, 1] . (3.16)

(2) The SINR of the kth substream is a function of its MSE:

SINRk =
1−MSEk

MSEk

. (3.17)

(3) If the interferences and noise terms are all Gaussian random variables, the symbol-

error rate (SER) of the kth substream is upper bounded by a function of SINRk:

ps(k) = α Q
(√

β SINRk

)
, (3.18)

where α and β depend on the constellation, and Q(x) = (1/
√

2π)
∫∞
x
e−y

2/2dy. If the

source uses Gray codes in symbol-to-bit mapping, the BER of the k-th substream is

≈ ps(k)/n, where 2n is the constellation size.

Substituting (3.9) and (3.7) into (3.13) or (3.15), the above mentioned performance

measures all become continuously differentiable functions of λ = [λa, λb]
T .

3.4.3 Methodology

Assume that we are minimizing a general performance measure f(λ) based on a single

instance of the fading channels. In general, setting the gradient to zero, i.e. 5λf = 0,

does not lead to a closed-form optimal solution. Instead, we can resort to several numerical

algorithms that start from an initial point, λ0, and search for a locally optimal λopt =

[λoa, λ
o
b]
T iteratively. In this process, due to the large dynamic range of the SNR parameters,

it is more convenient to work with the logarithmic values of λ. Furthermore, the initial

point may be taken as λ0 = [ρ−1
1 , ρ−1

2 ]T .

Gradient-based methods such as gradient descent, Newton and quasi-Newton methods,

update λ in the following way

logλk+1 = logλk − αkPk5logλf |λ=λk
, (3.19)

where Pk depends on the specific algorithm and αk is the step size which satisfies the Wolfe
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conditions [107]. If the closed form of 5logλf is too complicated or unavailable, a finite

difference can be used to approximate it [108, Sec. 8.1].

The above approach is applied on-line after each update of the channel matrices. Alter-

natively, we can optimize λ off-line based on a priori knowledge of system configurations,

fading statistics and SNR values. The above gradient descent method still applies, provided

that f(λ) is replaced by its expectation EH,G{f(λ)}.5 The latter is computed by averaging

f(λ) over channel realizations numerically, but this can be done beforehand for various

possible fading statistics and SNRs. Following this approach, we have found through nu-

merous experiments that the resulting optimal λopt can be well approximated by linear

functions of log ρ1 and log ρ2, as in e.g.,

log10 λ
o
a ≈ cTaρ + da , (3.20)

where ρ = [log10 ρ1, log10 ρ2]T , and ca, da are model coefficients. Consequently, we have

to minimize EH,G{f(λ)} for only a small set of representative SNRs, and then use total

least-square fitting to get the model coefficients. Then, (3.20) is used in practical system

implementation to update λ based on the instantaneous SNR measurements.

The complexity of optimizing λ depends on which of the above two approaches is taken.

If λ is optimized for each channel realization, the complexity is relatively high, but still

lower than the methods in [60]. The major complexity comes from computing the gradients.

For instance, in order to obtain the gradient of the MSE (using finite difference), NC-NC

needs approximately 8M matrix multiplications and 6 matrix inverses (of size NS × NS)

per iteration. In contrast, the method in [60] requires 13M multiplications and 2M inverses

(matrix sizes between NS×NS and NR×NR) per iteration. In our simulations using finite

difference, it usually takes the gradient descent method fewer iterations to converge than

the method in [60].

More importantly, if the optimal parameters are designed off-line, the complexity of

obtaining the parameters from a table lookup or the linear formula in (3.20) is almost

negligible. This simplicity is one of the most attractive aspects of the proposed hybrid

framework, especially for systems with fixed relay infrastructures whose channels remain

relatively stationary.

5For the outage capacity, f(λ) is replaced by a corresponding implicit function, cf. (3.14), instead of
the expectation.
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3.5 Numerical Results and Discussion

In this section, the performance criteria introduced in Sec. 3.4.2 are studied numerically

to gain a better understanding of the proposed hybrid relaying framework. First, the

behaviors of the capacity and sum MSE provide new insights into how the parameters λa

and λb affect system performance, which complements the interpretations in Sec. 3.4.1.

Then, numerical comparisons with existing designs illustrate that the hybrid framework

achieves a good balance between performance and complexity. Lastly, the linear formula

in (3.20) brings further simplifications with minor performance loss.

The following system configurations and parameters are used throughout this section.

Unless otherwise stated, the system of interest is a 1S-3R-1D system with NS = NR = ND =

4 and ρ1 = ρ2 = 15dB. The noises induced at the relay and destination have the same power:

σ2
w = σ2

n. The M relay stations transmit the same amount of power: P/M , which means

that the individual power constraints in (3.8) are uniquely specified by ρ2. The wireless

channels undergo slow fading, and the channel matrices have statistically independent,

circularly symmetric complex Gaussian entries with zero mean and unit variance.

3.5.1 Effects of the Parameters on Capacity and MSE Performance

We study the impact of λ on system performance by plotting the contours of the capacity

and the sum of MSEs in Fig. 3.5. To obtain these contours, each of the backward and

forward channel matrices, i.e., Hk or Gk for k = 1, · · · ,M , is randomly generated but held

constant. All the hybrid strategies, NC-NC, C-NC, NC-C and C-C, are considered and for

simplicity, the same λa and λb are used for different relays.6 In each subplot, the circle

represents the optimal operating point, while the square represents the parameter pair

λρ , [ρ−1
1 , ρ−1

2 ]T , which is associated to linear MMSE processing (cf. Table 3.1). Several

observations and conclusions can be made from these performance contours (and those for

other channel realizations not shown here):

(1) Although optimizing λ is bound to improve performance, the performance gap can

be quite remarkable. The optimal parameter pair λopt = [λo1, λ
o
2]T is also notably

larger than λρ.

6In fact, we have verified numerically that choosing different values for each relay brings only marginal
performance improvement, but leads to higher complexity because of the multi-dimensional search for the
optimal parameters.



3.5 Numerical Results and Discussion 43

10-2 10010-1 101

10-2

10-1

100

101

11.5

12
12.5

13
13

13

13
.5

13
.5

13.5

14
14

14

14.5

λ
a

λ b

NC-NC (Capacity)

10-2 10010-1 101

10-2

10-1

100

101

12
12.5

13
13.5

14

14
.5 14

. 14.5

14.5

14.5

λ
a

λ b

C-NC (Capacity)

10-2 10010-1 101

10-2

10-1

100

101

12
.

12
.6 12

.
12

.8

12.8

1 3
13

13

1 3
.

13
.2

13.2

1 3
.

13
.4

13.4

1 3
.

13
.6

13.6

1 3
.

13
.8

13.8

1 4
14

14

14
.

14
.2

14.2
14.4

1 4
.4 14

4.4 14.4

14.6

λ
a

λ b

NC-C (Capacity)

10-2 10010-1 101

10-2

10-1

100

101

14
.4 14.45

14.5

14
.5 14

4.5 14.5

14
.5

5 14
.5

5 14.55 14.55

14
.6

14.6

14.6
14.65

14.65

λ
a

λ b

C-C (Capacity)

10-2 10010-1 101

10-2

10-1

100

101

0.04
0.04

0.
04

0.
04

0.
05

0.
05

0.05

0.05

0.
06

0.
06

0.06

0.
07

0.07
0.08
0.090.1
0.11
0.12
0.13
0.14
0.15

λ
a

λ b

NC-NC (MSE)

10-2 10010-1 101

10-2

10-1

100

101

0.
03

0.04
0.04

0.04

0.05
0.06
0.07
0.08
0.09
0.1

0.11

λ
a

λ b

C-NC (MSE)

10-2 10010-1 101

10-2

10-1

100

101

0.
03

5 0.
03

5

0.035
0.

03
5

0.
04

0.
04 0 .

0 .04 0.04

0.
04

5
0.

04
5 0 .
0

0 .
05

0 .
05 0 .

0

0.055

0 .
05

5 0 .
0

0.06

0 .
06 0 .

0

0 .
06

5

0 .
06

5

λ
a

λ b

NC-C (MSE)

10-2 10010-1 101

10-2

10-1

100

101

0.028

0.029

0.
02

9

0.03

0.030.
03 0.031

0.0
31

0.032

0.03

.034

0.03

.037

λ
a

λ b

C-C (MSE)

Fig. 3.5 Capacity and MSE contours versus (λa, λb) for a given realization
of the backward and forward channels.
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Table 3.2 The relaying strategies under comparison

Strategy Comments

Simplistic AF (SAF) Fk = ηkI

SVD with uniform power allocation Fk = ηkV2kU
H
1k [15]

MF [13] NC-NC(∞,∞)

ZF [13] NC-NC(0, 0)

Linear MMSE [13] NC-NC(ρ−1
1 , ρ−2

2 )

Two-step MMSE [64] C-NC(ρ−1
1 , 0)

NC-NC, C-NC, NC-C, C-C Proposed hybrid methods

Upper bound Iterative algorithms [60]

(2) The capacity or MSE is not sensitive to small perturbations of λ. In addition, the

system performance is less sensitive to the parameter of the cooperative substructure,

than to that of the non-cooperative substructure. This can be explained by the

fact that the term
∑M

j=1 HH
j Hj, or

∑M
j=1 GjG

H
j , is the sum of multiple positive

semidefinite Wishart-distributed matrices. Since the relays are not close to each

other, these matrices are statistically independent because of spatial diversity. If

there exists a very small eigenvalue ε > 0 whose corresponding eigenvector is x

(‖x‖2 = 1), each term in the sum

xH
( M∑

j=1

HH
j Hj

)
x =

M∑

j=1

‖Hjx‖2
2 = ε

cannot be larger than ε. Therefore, the probability that the sum matrix has a very

small eigenvalue is significantly lower.

(3) If either λa or λb is fixed and the other parameter increases from zero to infinity, the

MSE (or capacity) using first decreases (increases) and then increases (decreases).

From the above observations, the proposed non-cooperative and cooperative relaying sub-

structures, although simple, show strong potential and advantage which were not realized

in previous works.
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Fig. 3.6 10%-outage capacity for 1S-3R-1D system with ρ1 = 15dB.

3.5.2 Performance Comparison

We next compare the proposed hybrid relaying strategies with other existing approaches in

terms of 10%-outage capacity and average BER, based on Monte-Carlo simulations. The

non-regenerative MIMO relaying strategies under comparison are listed in Table 3.2. In

Sec. 3.5.1, the design parameters λ = [λa, λb]
T were optimized for a fading channel instance.

Here for simplicity, they are optimized using (3.20) based on the a priori knowledge of the

channel statistics. In the BER simulations, the source antennas transmit independent

uncoded 16-QAM modulated streams, and the destination user employs the linear MMSE

MIMO combiner described in Section 3.4.2 to decode the information bits. The theoretical

SER for each substream is upper bounded by (3.18), in which α = 3 and β = 10 for

16-QAM. The theoretical BER is approximately equal to Pε/4, which is used to search for

the BER-optimal λopt = [λoa, λ
o
b]
T . In the simulations, we set the first SNR ρ1 = 15dB and

increase the second SNR ρ2 from 5 to 25dB.

The 10%-outage capacity of the 1S-3R-1D link for the different relaying strategies is
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Fig. 3.7 BER performance for 1S-3R-1D system with ρ1 = 15dB.

plotted in Fig. 3.6. As predicted by previous analysis, SAF and SVD perform unsatisfac-

torily due to their inability to achieve sufficient distributed array gain. Among the four

hybrid relaying strategies with special parameter values, i.e., MF, ZF, linear MMSE and

two-step MMSE, only MF can outperform SVD over a broad range of SNR values. This

is because the good performance of a hybrid relaying strategy is guaranteed not only by

coherent superposition of parallel transmissions, but also by efficient exploitation of the in-

terferences without noise over-amplification. As expected, the performance of MF remains

inferior to that of the proposed hybrid relaying strategies with optimal parameters. Indeed,

the latter can result in significant improvement over MF in spectral efficiency by 1 to 1.5

bits/s/Hz. They come within less than one bit of the upper bound set by the iterative

algorithm in [60], but with much lower complexity. Of the four methods, NC-C, C-C and

C-NC are, respectively, the best strategy for high, intermediate and low ρ2 values. The

non-cooperative strategy NC-NC remains close to the best performance achieved by the

other three cooperative strategies over the range of SNR values considered.
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Fig. 3.8 The outage-capacity-optimal λoa and λob values versus ρ1 and ρ2

The BER results are plotted in Fig. 3.7 where again, the performance of SAF and SVD

are unsatisfactory and ZF, MF and linear MMSE perform slightly better. The BER of C-

NC(ρ−1
1 , 0) is much lower for high ρ2, because this strategy can benefit from the cooperation

between relays. However, with the optimal choice of parameters, 1S-MR-1D systems can

fully exploit the potential of the proposed hybrid relaying framework: NC-NC, C-C and

C-NC all lead to much lower BER values than previously investigated methods. In the mid-

to-high SNR range, C-NC even performs better than the iterative MMSE method in [60].

In terms of BER, cooperation between relays brings in significant performance gain.

Finally, simulation results not shown demonstrate that small errors in channel estima-

tion and SNR estimation only lead to small performance degradation. That is, the proposed

hybrid strategies are not overly sensitive to such modeling errors.

3.5.3 Further Simplifications

In Sec. 3.4.3, we proposed that the logarithmic values of the optimal parameters, λopt =

[λoa, λ
o
b]
T , can be well approximated by linear functions of ρ = [log ρ1, log ρ2]T . Considering

for example the NC-NC method, the optimal parameters that maximize the outage capacity

are plotted against ρ1 and ρ2 in Fig. 3.8, where the logarithmic scale is used. It is observed

that the relationship between log λoa (or log λob) and ρ is very close to a plane, implying that

the expression in (3.20) is sufficiently accurate. Similar relationships can be established for
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Fig. 3.9 10%-outage capacity: fitted parameters versus optimal parameters

the criterion of average BER, and also for the other three hybrid methods: C-NC, NC-C

and C-C.

The outage capacity under the parameters obtained from the empirical linear formulas

is now compared with that when the parameters are optimized per channel instance. As

seen in Fig. 3.9, the hybrid relaying strategies designed in this way cause negligible loss in

performance, but the optimization of the parameters has much lower complexity.

3.6 Summary

In this chapter, in order to achieve a balance between performance and complexity for

non-regenerative combining-type 1S-MR-1D relay systems, we proposed a unified hybrid

framework in which the relaying matrices are generated by cascading two substructures.

For each of these two substructures, we introduced both non-cooperative and cooperative,

one-dimensional parametric families of candidate matrix transformations. This unified
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framework provides a generalization of several existing approaches and allows for the clas-

sification and comparison of all the possible combinations of the proposed substructures.

Within this hybrid framework, the design parameters λ can be further optimized, result-

ing in significant performance improvements. This can be done on-line based on individual

channel estimates or off-line based on a priori knowledge of the channel statistics. In the

latter case, the optimal parameters can be well approximated by linear functions of SNR

[log ρ1, log ρ2]T with minor performance loss.

The optimal λopt differs significantly from those corresponding to the ZF, MF and linear

MMSE relaying strategies. Through simulations, we showed that the capacity of selected

hybrid schemes (with optimized parameters) comes within 1bits/s/Hz of the upper bound

achieved by the capacity-optimal iterative method in [60]. In the mid-to-high SNR range,

the BER performance of C-NC even exceeds that of the MSE-optimal iterative method.

The proposed hybrid methods therefore achieve a good balance between performance and

complexity: they outperform existing low-complexity strategies by a large margin in terms

of both capacity and BER, and at the same time, are significantly simpler than previous

near-optimal iterative algorithms.
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Chapter 4

MMSE Transceiver Design for

Combining-Type Relaying

In Chapter 3, we proposed a hybrid MIMO relaying framework for combining-type 1S-MR-

1D systems.1 The relaying matrices had special structures and the underlying parameters

were further optimized for better performance. In this chapter, instead, we take a more

comprehensive approach of formulating the design of these relaying matrices into mathe-

matical optimization problems. This approach leads to new MMSE-based transceivers that

perform better than previous ones and the hybrid relaying strategies. The organization of

this chapter is as follows: Sec. 4.1 reviews combining-type 1S-MR-1D systems, reiterates

our motivation and introduces our main contributions in this chapter. Sec. 4.2 presents the

system model and formulates the mathematical problem. Sec. 4.3 derives the closed-form

optimal relaying matrices under the weighted sum power constraint. Sec. 4.4 studies the

per-relay power constraints. The joint design of the relaying matrices and the MIMO equal-

izer is discussed in Sec. 4.5. Sec. 4.6 covers the implementation issues and computational

complexity. Numerical results are presented in Sec. 4.7 followed by a brief conclusion in

Sec. 4.8.

1Parts of Chapter 4 have been presented at IEEE 2011 Global Communications Conference (GLOBE-
COM) in Houston, Texas, USA [97], and published in IEEE Transactions on Signal Processing [109].

2013/10/30
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4.1 Introduction

Communication between a source and a destination can be assisted by either a single

or multiple relays [49]. As before, these configurations are referred to as 1S-1R-1D and

1S-MR-1D. The optimal relaying matrices for 1S-1R-1D configurations are well established

for a wide variety of criteria when the transmit power of the relay is constrained [15, 28,

29, 31]. These matrices share a common SVD structure which diagonalizes the backward

and forward channels. This framework, however, cannot be extended to the joint design of

multiple relaying matrices for 1S-MR-1D systems. Indeed, since the relays can only process

their own signals, the compound AF matrix has to be block-diagonal.

The essential feature of an appropriate relaying strategy is that the signals from different

relays should be coherently combined at the destination, thereby leading to a distributed

array gain [13,51]. In this regard, some strategies have been proposed that “borrow” ideas

from MIMO transceiver design, including MF, ZF, linear MMSE [13], QR decomposition

[56] and the hybrid relaying framework in Chapter 3. These heuristic methods, although

structurally constrained, were shown to perform much better than simplistic AF which

only amplifies the signals. A more comprehensive approach is to formulate the collaborative

design of the relaying matrices as optimization problems with power constraints [59–63,97].

The objective can be to maximize the achievable rate [59] or to minimize the MSE [60,61].

However, most works rely on numerical algorithms such as gradient descent [60], bisection

[61] and iterative schemes [60–62] to obtain the optimal solution. These methods have high

implementation complexity and lack closed-from expressions that provide insights, which in

turn limits their potential feasibility. For completeness, it is worth mentioning that explicit

formulas were derived in [64–66] when the power constraints are enforced on the signals

received at the destination. However, these results do not carry over to the case when the

constraints are imposed on the transmit power of the relays [63].

In this chapter, we concentrate on the similar problems of designing the multiple relaying

matrices, with the purpose of minimizing the MSE between the input and output signals.

Two types of constraints on the transmit power of the relays are considered separately:

1) a weighted sum power constraint which was not investigated before, and 2) per-relay

power constraints. The problems are first recast as standard quadratically constrained

quadratic programs (QCQPs) through vectorization. As opposed to using general-purpose

interior-point methods [108], we exploit the inherent structures of the problems to develop
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more efficient algorithms. Under the weighted sum power constraint, the optimal solution

is expressed as an explicit function of a Lagrangian parameter. By introducing a complex

scaling factor at the destination, we derive a closed-form expression for this parameter,

thereby overcoming the hurdle of solving an implicit nonlinear equation. Under the per-

relay power constraints, the optimal solution is the same as that under the weighted sum

power constraint if a particular set of weights is chosen. We then propose a simple iterative

power balancing algorithm to compute these weights efficiently. In addition, under both

types of constraints, we investigate the joint design of a MIMO equalizer at the destination

and the relaying matrices, using block coordinate descent or steepest descent. The BER

simulation results demonstrate better performance for the proposed MMSE-based relaying

strategies, under either type of constraints, with or without the equalizer, than previous

methods.

Our work provides new insights into the design of non-regenerative 1S-MR-1D systems.

Firstly, we point out the possible non-uniqueness of the solution to the first-order neces-

sary condition, which was overlooked in [61,62,97]. Moreover, it is not legitimate to simply

choose the minimum-norm solution, unless the vectorization is done on specific transforma-

tions of the relaying matrices instead of these matrices themselves. Secondly, the optimal

design does not require global CSI availability: each relay only needs to know its own

backward and forward channel, together with a little additional information. Thirdly, un-

der the weighted sum power constraint, the optimal strategy tends to allocate more power

to those relays with better source-relay links or worse relay-destination links. Lastingly,

under the per-relay power constraints, the optimal strategy sometimes does not use the

maximum power at some relays. Forcing equality in the per-relay power constraints as

in [60] and Chapter 3 would result in loss of optimality. Another interesting point is that,

no matter how low the SNR is at a particular relay, this relay does not have to be turned

off completely.

4.2 System Model and Problem Formulation

4.2.1 System Model

In the 1S-MR-1D system model depicted by Fig. 4.1, a multi-antenna source is sending

symbols to a multi-antenna destination with the aid of multiple multi-antenna relays. The



54 MMSE Transceiver Design for Combining-Type Relaying

Equalizer
Q

n

r

Channel 
H1

s

w1

Relay
F1

x1 Channel
G1

y1

Channel 
HM

wM

Relay
FM

xM Channel
GM

yM

Channel 
H2

Relay
F2

x2 Channel
G2

y2

w2
Source

Destination

Fig. 4.1 System model of 1S-MR-1D

transmitted signals propagate through the backward channels between the source and the

relays. These signals are processed at the individual relays and propagate through the

forward channels to the destination. The relays work in a half-duplex mode: their antennas

are used for either transmitting or receiving during different time slots. As in Chapter 3,

we neglect the presence of a possible direct source-to-destination link, which is typically

hindered by high levels of attenuation.

We assume that the channels undergo frequency-flat block-fading [2]. The source does

not have access to the CSI; each relay knows its own backward and forward channels and

a little additional shared information; the destination may need an equalizer matrix. Once

knowing the structures of the optimal solution, we shall be able to discuss this topic in detail

(cf. Section 4.6). The channel matrices have to be estimated timely and accurately, which

is an important topic in its own right. For more details, we refer the reader to [46,47,101]

and the references therein.

The bandpass signals and channels are modeled in terms of their discrete-time complex

baseband counterparts. The numbers of antennas at the source, relays and destination are

respectively denoted by NS, NR and ND.2 The source signal s ∈ CNS×1 consists of NS

statistically independent symbol streams. It is assumed to have zero mean and a full-rank

2For notational simplicity, each relay is equipped with the same number of antennas; however, general-
ization to different numbers of antennas at the relays, i.e. NR,k, is straightforward.
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covariance matrix Rs , E{ssH}. The received signal at the kth relay, xk ∈ CNR×1, can be

expressed as

xk = Hks + wk, ∀ 1 ≤ k ≤M, (4.1)

where Hk ∈ CNR×NS is the backward channel matrix from the source to the kth relay, and

wk ∈ CNR×1 is an additive noise term modeled as a circularly symmetric complex Gaussian

random vector with zero mean and full-rank covariance matrix Rwk
, E{wkw

H
k }. The

random vectors w1, . . . , wM and s are statistically independent.

The kth relay retransmits its noisy signal xk as

yk = Fkxk, ∀ 1 ≤ k ≤M, (4.2)

where Fk ∈ CNR×NR is the corresponding non-regenerative MIMO relaying matrix. The

signal received at the destination, denoted by r ∈ CND×1, takes the form of

r =
M∑

k=1

Gkyk + n =
M∑

k=1

GkFkHks +
M∑

k=1

GkFkwk + n, (4.3)

where Gk ∈ CND×NR is the forward channel matrix from the kth relay to the destination

and n ∈ CND×1 is the noise induced at the destination receiver. This term is independent

from s and {wk} and also modeled as a circularly symmetric complex Gaussian random

vector, with zero mean and covariance Rn , E{nnH}. The destination may apply a linear

MIMO equalizer (combiner) Q ∈ CNS×ND , resulting in

r̂ = Qr. (4.4)

The above signal model can also be expressed in a compact block-diagonal form, viz.,

r̂ = QGFHs + QGFw + Qn, (4.5)

where we define G , [G1, . . . ,GM ], H ,
[
HH

1 , . . . ,H
H
M

]H
, F , diag(F1, . . . ,FM) and

w , col(w1, . . . ,wM) with Rw , E{wwH} = diag{Rw1 , · · · ,RwM
}. If M = 1, this signal

model reduces to the 1S-1R-1D case.

Compared with Chapter 3, the model here is more general because we do not assume

specific forms for the covariance matrices Rw and Rn. Therefore, the noise vectors can
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also include interferences from other wireless systems. In addition, with proper refinement,

the mathematical model in this chapter is applicable to a much broader scope such as

1S-MR-1D systems with broadband transmission [110], distributed relaying systems, and

multiuser multi-relay systems.

4.2.2 Problem Formulation

The major goal is to design the relay processing matrices {Fk}, so that the distortion

between the output r̂ and the input s is minimized. Our choice of the objective function,

for practical reasons, is the MSE:

MSE(F,Q) , Es,w,n

{
‖r̂− s‖2 }

= tr
(
(QGFH− I)Rs(QGFH− I)H

)
+

+ tr(QGFRwFHGHQH) + tr(QRnQ
H). (4.6)

Although BER performance also depends on nonlinear components such as channel cod-

ing, space-time coding, interleaving and constellation mapping, the MSE serves as a good

performance indicator and is more mathematically tractable [111].

Two types of power constraints are separately imposed on the relays. The first is the

weighted sum power constraint

M∑

k=1

wktr(FkRxkF
H
k ) ≤ Pr, (4.7)

where Rxk , E
{
xkx

H
k

}
= HkRsH

H
k + Rwk

, and wk ≥ 0 for 1 ≤ k ≤ M are the weights

assigned to different relays. The other type is the per-relay power constraints, i.e., each

relay has its own power budget, expressed as

tr(Ryk) = tr(FkRxkF
H
k ) ≤ Pk, ∀ 1 ≤ k ≤M, (4.8)

where Ryk , E
{
yky

H
k

}
= FkRxkF

H
k . Unlike the per-relay power constraints, the physical

meaning may not seem very straightforward for the weighted sum power constraint. Since
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tr(FkRxkF
H
k ) is always nonnegative, we have

0 ≤ wktr(FkRxkF
H
k ) ≤

M∑

j=1

wjtr(FjRxjF
H
j ) ≤ Pr. (4.9)

Therefore, the weighed sum power constraint implicitly includes a set of per-relay power

constraints

tr(FkRxkF
H
k ) ≤ Pr

wk
, 1 ≤ k ≤M. (4.10)

The weighted sum power constraint itself refers to a half space on one side of a hyperplane.

For example, when there are M = 2 relays, the per-relay power constraints refers to a rect-

angular region in the two-dimensional plane, whereas the weighted sum power constraint

denotes a triangular region formed by the x-axis, y-axis and a straight line.

To simplify the mathematical development, it is convenient to vectorize the relaying

matrices. To this end, we define

fk , vec(FkR
1/2
xk

), 1 ≤ k ≤M, (4.11)

and f , col(f1, · · · , fM). 3 The reason for this definition, instead of vec(Fk), is that the

square of the 2-norm of fk is equal to the transmit power of the kth relay, viz.,

‖fk‖2
2 = fHk fk = tr(FkRxkF

H
k ). (4.12)

As shown later, this will bring much convenience. It is straightforward to invert (4.11) as

Fk = unvec(fk)R
−1/2
xk . For notational simplicity, we also define the matrices

Tk , (HH
k R−1/2

xk
)T ⊗GH

k QH , (4.13a)

Sk , (R−1/2
xk

Rwk
R−1/2
xk

)T ⊗ (GH
k QHQGk), (4.13b)

for 1 ≤ k ≤M . These matrices serve as the building blocks for the following matrices and

3The square root of an Hermitian positive semidefinite matrix R is defined as another Hermitian positive
semidefinite matrix R1/2, satisfying R1/2R1/2 = R. If the eigenvalue decomposition (EVD) of R is UΛUH ,
its unique square root is equal to UΛ1/2UH .
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vectors:

T , [TT
1 , . . . ,T

T
M ]T , (4.14a)

S , diag(S1, . . . ,SM), (4.14b)

Φ , T(RT
s ⊗ INS

)TH + S, (4.14c)

b , T(RT
s ⊗ INS

)vec(INS
). (4.14d)

With the above notations, the objective function in (4.6) becomes a quadratic function

of the vector f :

MSE(f ,Q) = fHΦf − fHb− bHf + tr(Rs) + tr(QRnQ
H), (4.15)

where we have used the following properties [112]

vec(ABC) =
(
CT ⊗A

)
vec(B), (4.16a)

(AB)⊗ (CD) = (A⊗B)(C⊗D), (4.16b)

tr(ATYTBX) = [vec(Y)]T (A⊗B)vec(X). (4.16c)

Hereafter, we may denote the arguments of the function MSE(f ,Q) in (4.15) differently, to

emphasize its dependence on certain variables, vectors or matrices.

The power constraints are also represented in terms of f . For convenience, define I(k) as

I(k) , diag(0N2
R
, . . . , IN2

R
, . . . ,0N2

R
), (4.17)

where IN2
R

is in the kth diagonal sub-block. A weighted sum of such matrices is also defined:

Isum ,
∑M

k=1 wkI(k). Then, the weighted sum power constraint in (4.7) becomes

fHIsumf ≤ Pr, (4.18)

and the per-relay power constraints in (4.8) would be

fHI(k)f ≤ Pk, ∀ 1 ≤ k ≤M. (4.19)

To help the readers understand the above redefinitions of matrix blocks, we provide some
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Fig. 4.2 Graphical demonstrations of the redefined matrix blocks

graphical demonstrations in Fig. 4.2.

The above formulated optimization problems are flexible with respect to the equalizer

Q — it can be either pre-determined, or jointly designed with {Fk} (or equivalently f).

If Q is fixed, the problems under both types of constraints are standard QCQPs that can

be solved by general-purpose interior-point methods [108, 113]. In Section 4.3 and 4.4,

however, the proper exploitation of the sparse structures of Φ, b and I(k) leads to more

efficient algorithms and in some cases closed-form expressions for the optimal solution. For

the joint design of Q and f , we shall propose two algorithms in Section 4.5, both of which

rely upon the results from Section 4.3 and 4.4.

4.3 The Weighted Sum Power Constraint

In this section, we assume Q is fixed and derive the optimal f? under the weighted sum

power constraint. The first step is to establish the optimality conditions through the

framework of Lagrangian duality. Then, the optimal solution f? is expressed as an explicit

function of a Lagrangian parameter. By introducing a complex scaling factor in Q, we

derive a closed-form expression for this parameter.
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4.3.1 Optimality Conditions

Most constrained optimization problems are solved through Lagrangian duality [108, 113,

114]. The starting step is to define the Lagrangian function as

L(f , λ) , MSE(f) + λ(fHIsumf − Pr), (4.20)

where the dual variable satisfies λ ≥ 0. The infimum of (4.20) over f ∈ CMN2
R×1 is defined

as

D(λ) , inf
f
L(f , λ). (4.21)

The dual problem is defined as:

maximize D(λ)

subject to λ ≥ 0. (4.22)

Let the solution of the primal problem be f? and p? , MSE(f?); let the solution of the

dual problem be λ? and d? , D(λ?). For a convex primal problem, strong duality holds

(i.e., the duality gap p?− d? is zero) if the Slater’s condition is satisfied [113, p.226]. Here,

the primal problem is convex (Φ and Isum are both positive semidefinite) and the Slater’s

condition is always satisfied (f = 0 is strictly feasible: 0 < Pr). Henceforth, the Karush-

Kuhn-Tucker (KKT) conditions are necessary and sufficient for the optimal primal-dual

pair (f?, λ?), viz.,

∇f̄L(f , λ?)|f=f? = 0, (4.23a)

f?HIsumf? − Pr ≤ 0, (4.23b)

λ? ≥ 0, (4.23c)

λ?
(
f?HIsumf? − Pr

)
= 0. (4.23d)

Among these four conditions, the first-order necessary condition (4.23a), which we referred

to as the stationarity condition from now on, determines the analytical form for the optimal

solution; the complementary slackness condition (4.23d) serves as the key to computing the

value of λ?.
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4.3.2 The Solution Space of the Stationarity Condition

The stationarity condition (4.23a) can be rewritten as the following linear equation

Ψf? = b, (4.24)

in which Ψ , Φ + λ?Isum is a function of λ?. Three questions can be asked about (4.24):

Does the solution always exist? If yes, is it unique? If non-unique, what is the general

solution form? The following theorem answers the first question:

Theorem 4.3.1. The stationarity equation (4.24) has at least one solution for any λ? ≥ 0

and wk ≥ 0, that is: b ∈ R(Ψ).

Proof. We proceed by contradiction. If no solution exists, b /∈ R(Ψ). Let b0 = Ψf0 be the

orthogonal projection of b onto R(Ψ) and then the non-zero residual b⊥ would satisfy

b⊥ , b− b0 = b−Ψf0 ∈ N (ΨH) = N (Ψ).

The value of the Lagrangian function (4.20) evaluated at f = f0 + αb⊥ would be

L(f0 + αb⊥, λ
?) = −fH0 Ψf0 − bH⊥ f0 − fH0 b⊥ − 2α‖b⊥‖2 + tr(Rs) + tr(QRnQ

H)− λ?Pr.

As α → +∞, L(f0 + αb⊥, λ
?) → −∞ because ‖b⊥‖2 > 0. However, all terms in the

definition of L(f , λ?) in (4.20) are nonnegative except for the constant −λ?Pr. This means

L(f0 + αb⊥, λ
?) ≥ −λ?Pr, which leads to a contradiction.

The second question is whether the solution is unique. This is true, if and only if,

Ψf = 0 does not have a non-zero solution, or equivalently N (Ψ) = {0}. The following

propositions establish some facts on N (Φ) and N (Ψ), respectively:

Proposition 4.3.2.

(1) If f⊥k ∈ CN2
R×1 is in the null space of INR

⊗QGk, the vector f⊥(k) , col(0, . . . , f⊥k , . . . ,0) ∈
CMN2

R×1 must be in the null space of Φ.

(2) For any k, all such f⊥(k) together span a subspace Fk with dimension N2
R−NR rank(QGk).

(3) For k 6= l, Fk and Fl are orthogonal to each other.
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(4) The vector b is orthogonal to all Fk for 1 ≤ k ≤M .

Proof. 1) Define Φlk as the (l, k)th sub-block of Φ. The lth sub-block of Φf⊥(k) is

[Φl1, · · · ,ΦlM ]f⊥(k) = Φlkf
⊥
k = Xk

(
INR
⊗QGk

)
f⊥k = 0,

where Xk =
(
R
−1/2
xk HkRsH

H
l R

−1/2
xl

)T ⊗GH
l QH if l 6= k and Xk = I⊗GH

l QH if l = k. 2)

Because a one-to-one correspondence exists between f⊥k and f⊥(k) according to the definition,

all f⊥(k) together also span a subspace Fk isomorphic to N (INR
⊗QGk). Since the rank

of INR
⊗ QGk (with dimension NRNS ×N2

R) is NR rank(QGk), the dimension of its null

space is N2
R −NR rank(QGk), which is also that of Fk. 3) From the definition, f⊥H(k) f⊥(l) = 0

always holds for k 6= l, and so Fk and Fl are orthogonal to each other. 4) According to

Theorem 4.3.1, λ? = 0 leads to b ∈ R(Φ). Therefore, b is orthogonal to N (ΦH) = N (Φ)

which includes any Fk as a subset.

Proposition 4.3.3. LetM , {1, . . . ,M} be the set of relay indexes, and K , {m1, . . . ,mK} ⊆
M includes all the indexes mk satisfying λ?wmk

= 0. The null space of Ψ is the direct sum

of {Fmk
}, that is, N (Ψ) = Fm1 ⊕ · · · ⊕ FmK

.

Proof. We have Fm1 ⊕ · · · ⊕ FmK
⊆ N (Ψ) because any f⊥(mk) ∈ Fmk

as defined in Proposi-

tion 4.3.2 would satisfy

Ψf⊥(mk) = Φf⊥(mk) + λ?wmk
I(mk)f

⊥
(mk) = 0.

To prove equality, we only need to prove that Fm1 ⊕ · · · ⊕ FmK
and N (Ψ) have the same

dimension. On the one hand, the subset relation leads to

dim(N (Ψ)) ≥ dim(Fπ1 ⊕ · · · ⊕ FπM ).
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On the other hand, we have

dim(N (Ψ)) = MN2
R − rank(Ψ)

≤MN2
R − rank(S + λ?Isum)

= MN2
R −

∑M

k=1
rank(Sk + λ?wkIN2

R
)

= KN2
R −

∑K

k=1
NR × rank(QGmk

)

= dim(Fm1 ⊕ · · · ⊕ FmM
),

where the inequality comes from the fact that Ψ is a sum of positive semidefinite matrices

and hence its rank cannot increase by removing T(RT
s ⊗ I)TH .

Proposition 4.3.3 indicates that a positive λ?wk causes the null space of Ψ to shrink

and its column space to expand, by the “amount” of Fk. When λ?wk is positive, any vector

f⊥(k) ∈ Fk would satisfy

Ψf⊥(k) = Φf⊥(k) +
M∑

l=1

λ?wlI(l)f
⊥
(k) = λ?wkf

⊥
(k). (4.25)

This means that f⊥(k) is always an eigenvector of Ψ with eigenvalue λ?wk.

Since the linear equation in (4.24) is consistent and the null space N (Ψ) has been

established in Proposition 4.3.2 and 4.3.3, we are ready to answer the third question:

Theorem 4.3.4. The general solution form of (4.24) is

f? = Ψ†b +
K∑

k=1

f⊥(mk), (4.26)

in which f⊥(mk) = col(0, . . . , f⊥mk
, . . . ,0) satisfies (INR

⊗ QGmk
)f⊥mk

= 0 and {m1, . . . ,mK}
is the set of all indexes such that λ?wmk

= 0. The K + 1 terms in (4.26) are orthogonal to

each other. The first term, Ψ†b, is the solution that minimizes the transmit power of each

relay simultaneously.

Proof. Since b ∈ R(Ψ) and ΨΨ† is a projection matrix onto R(Ψ), we have Ψ(Ψ†b) = b.

The general form in (4.26) follows immediately because N (Ψ) = Fm1 ⊕ · · · ⊕ FmK
(cf.

Proposition 4.3.3). Since R(Ψ), Fm1 , . . . ,FmK
are mutually orthogonal, the K + 1 terms
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f? =

 †b

0

0

0

0

0

0

0

0

+ +

f?(1) f?(3)

f?3

f?1

=

f?1

f?2

f?3

f?4

f?5

Fig. 4.3 A graphical example of the general solution in (4.26). There are
five relays (M = 5) and w1 = w3 = 0.

in (4.26) are also orthogonal to each other. Let f? = col(f?1 , . . . , f
?
M). For those k satisfying

λ?wk > 0, f?k is unique; for those k ∈ {m1, . . . ,mK}, the transmit power of the kth relay is

‖I(k)f
?‖2

2 = ‖I(k)Ψ
†b‖2

2 + ‖f⊥(k)‖2
2,

which can only be minimized by setting f⊥(k) = 0, as shown in Fig. 4.3. Therefore among

all the solutions, Ψ†b minimizes the transmit power of each relay simultaneously.

It appears that immediately after Theorem 4.3.1, we could have applied the pseudo-

inverse to obtain the solution. This approach, however, would only guarantee that among

all the solutions of (4.24), Ψ†b minimizes the sum power of the relays, ‖f?‖2
2. With the

help of Proposition 4.3.2 and 4.3.3, we were able to prove a stronger conclusion: Ψ†b

minimizes the power of each relay simultaneously. Moreover, if fk were defined as vec(Fk)

instead of vec(FkR
1/2
k ), taking the pseudo inverse directly would not even minimize the sum

power. This is because for Hermitian matrices A and B (with B nonsingular), (BAB)† 6=
B−1A†B−1 except under special situations.

The main drawback of computing f? from (4.26) is that the dimension of Ψ, MN2
R ×

MN2
R, is larger than those of the original matrices. We can use the relationships in (4.14)

to simplify (4.26) as in the following corollary:

Corollary 4.3.5. The minimum-norm solution of (4.24) can be expressed in an alternative

form:

f?k = (Sk + λ?wkIN2
R

)†TkΣ
−1vec(INS

), (4.27)



4.3 The Weighted Sum Power Constraint 65

where Σ ∈ CN2
S×N

2
S is defined as

Σ , R−Ts ⊗ INS
+

M∑

l=1

TH
l (Sl + λ?wlIN2

R
)†Tl. (4.28)

Proof. See Appendix A.1.

4.3.3 Optimal Solution

We now return to the KKT conditions in (4.23). The complementary slackness in (4.23d)

indicates that either λ? = 0 and the constraint (4.23b) is inactive, or λ? > 0 and the

constraint is tightly satisfied. Define the weighted sum power as a function of λ, viz.,

g(λ) , bHΨ(λ)†IsumΨ(λ)†b, (4.29)

where the explicit argument for Ψ is used to emphasize its dependence on λ. If 0 ≤ g(0) ≤
Pr, the unconstrained solution satisfies the weighted sum power constraint (4.23d) and

λ? = 0. Otherwise, g(0) > Pr and λ? > 0 should be the implicit solution to the nonlinear

equation

g(λ) = Pr. (4.30)

The following proposition justifies the uniqueness of λ?:

Proposition 4.3.6. If g(0) > 0, g(λ) is a monotonically decreasing function of λ > 0 with

limλ→∞ g(λ) = 0.

Proof. See Appendix A.2.

Up to now, the optimal solution has been expressed in closed forms (4.26) or (4.27),

but the dual variable λ? does not have an explicit formula. Numerical methods such as

bisection or Newton’s method [108] are necessary to solve the nonlinear equation (4.30).

This, in fact, can be improved by allowing a complex scaling in the equalizer Q. That is, we

consider the set {η−1e−jφQ|η > 0, 0 ≤ φ < 2π}, in which each member is a complex-scaled

version of Q. For different (η, φ), the optimal λ? and f?, and the corresponding minimum

value of the MSE in (4.15) are also different. We are interested in a single (ηo, φo) leading

to the smallest minimum MSE, so that any other member in the set can be replaced by



66 MMSE Transceiver Design for Combining-Type Relaying

η−1
o e−jφoQ. Interestingly, for this special (ηo, φo), the optimal λ?, f? and the minimum MSE

always have explicit formulas, as shown in the following theorem:

Theorem 4.3.7. Any equalizer Q can be replaced by a complex-scaled version η−1
o e−jφQ

so that:

(1) The optimal solution is

f? = ηoe
jφ(Φ + θIsum)†b, (4.31)

where θ , tr(QRnQ
H)/Pr, φ can be an arbitrary number in [0, 2π), and ηo > 0 is

the unique number satisfying f?HIsumf? = Pr, that is,

ηo =
√
Pr/bH(Φ + θIsum)†Isum(Φ + θIsum)†b. (4.32)

The optimal duality parameter is λ?o = θη−2
o .

(2) The minimum MSE with the equalizer η−1
o e−jφQ, i.e.,

MSEmin = tr(Rs)− bH
(
Φ + θIsum

)†
b (4.33a)

= vec(I)HΣ−1vec(I), (4.33b)

is always smaller than or equal to that with any other scaled equalizer η−1e−jφQ

(η > 0, 0 ≤ φ < 2π), including Q itself.

Proof. With the equalizer η−1e−jφQ, we rewrite the MSE function in (4.15) as

MSE(f ,Q, η, φ) = η−2f?HΦf? − η−1ejφf?Hb− η−1e−jφbHf?

+ tr(Rs) + η−2tr(QRnQ
H). (4.34)

The minimum-norm solution is obtained by replacing Q in (4.26) with η−1e−jφQ:

f? = ηejφ(Φ + λ?η2Isum)†b. (4.35)

The duality parameter λ? should satisfy the KKT conditions in (4.23b), (4.23c) and (4.23d).

If the unconstrained solution satisfies

f?HIsumf?
∣∣
λ?=0

= η2bHΦ†IsumΦ†b ≤ Pr, (4.36)
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or equivalently, η ≤ ηc ,
√
Pr/(bHΦ†IsumΦ†b), the constraint (4.23b) is inactive, i.e.,

λ? = 0. Substituting (4.35) into the MSE expression in (4.34), we have

MSEmin(η) = tr(Rs)− bHΦ†b + η−2tr(QRnQ
H). (4.37)

If η ≥ ηc, the constraint (4.23b) is tightly satisfied:

η2bH
(
Φ + λ?η2Isum

)†
Isum

(
Φ + λ?η2Isum

)†
b = Pr, (4.38)

through which λ? is an implicit function of η. Substituting the optimal solution in (4.35)

into the MSE expression in (4.34) and using (4.38) to replace η−2, we have

MSEmin(η) = tr(Rs)− bH
(
Φ + λ?η2Isum

)†

×
(
Φ + (2λ?η2 − θ)Isum

)(
Φ + λ?η2Isum

)†
b. (4.39)

Up to now, the minimum MSE, which does not depend on φ, has been expressed as

a function of η. From (4.37), MSEmin(η) is a monotonically decreasing function of η in

the interval [0, ηc] and therefore can only be minimized when η ≥ ηc. Although λ? does

not have an explicit formula, the minimum MSE in (4.39) depends only on the product

λ?η2 , γ, which can take all nonnegative values. Let {u1, . . . ,up} be a set of orthonormal

basis vectors for N (Φ) and define Ψe , Φ + γIsum +
∑p

k=1 uku
H
k . Using the same tactics

as in the proof of Proposition 4.3.6, we get the derivative of MSEmin(γ) as

dMSEmin(γ)

dγ
= 2(γ − θ)bHΨ−1

e IsumΨ−1
e IsumΨ−1

e b. (4.40)

Obviously, MSEmin(γ) is monotonically decreasing if 0 ≤ γ < θ, and monotonically increas-

ing if γ > θ. Therefore, γo = θ = tr(QRnQ
H)/Pr is the unique solution to minimize (4.39)

and it is straightforward to derive (4.31) and (4.33).

We may visualize η2 as a target signal power level at the destination and η−1 as an

automatic gain control factor. For η ≤ ηc, the power budget at the relays is sufficient to

support the unconstrained optimal solution (λ? = 0). As seen in (4.37), the first part,

tr(Rs) − bHΦ†b, does not depend on η. The second part, η−2tr(QRnQ
H), decreases

monotonically as a function of η ≤ ηc, indicating weaker effects of the noise term n in
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(4.3) on the decoding process. Once η exceeds the threshold ηc, the power budget becomes

insufficient and therefore the power regularization term λ?η2Isum is introduced. This slightly

increases the first part of (4.34) (the first four terms), but the overall MSE still decreases

because the second part η−2tr(QRnQ
H) is reduced by more. Nonetheless, there is a critical

and therefore optimal ηo above which the latter cannot completely compensate for the

former any more.

An alternative formulation is to introduce η as early as in the definition of the objective

function in (4.6), which was used before for other relaying systems [22,67,97]. In this case,

the objective function would be a convex function of f , but not of both η and f . Therefore,

it does not formally guarantee optimality to set to zero the partial derivatives with respect

to both η and f . We also note that if M = 1 (a single relay), the optimal relaying matrix

in (4.31) would be in agreement with the result in [22].

4.4 Per-Relay Power Constraints

Due to practical reasons such as the dynamic range of power amplifiers, it may sometimes

be more appropriate to consider the per-relay power constraints. In this section, we study

the optimality conditions and propose a power balancing algorithm to compute the optimal

solution. Our analysis provides some insights into the power usage at the relays.

4.4.1 KKT Conditions and the Optimal Solution

The Lagrangian function for the relay optimization problem with the per-relay power con-

straints in (4.18) is given by

L(f ,λ) = MSE(f) +
M∑

k=1

λk(f
HI(k)f − Pk), (4.41)

where λ , col(λ1, · · · , λM). By comparing with (4.20), we note that many results for

the weighted sum power constraint extend to the per-relay power constraints, simply by

replacing λwk with λk. Subsequently, we skip the details to focus on presenting the main

results. Redefine Ψ , Φ +
∑M

k=1 λ
?
kI(k). The optimal f? and its dual-optimal variables λ∗k,
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1 ≤ k ≤M , satisfy the following KKT conditions:

∇f̄L(f ,λ?)|f=f? = Ψf? − b = 0, (4.42a)

f?HI(k)f
? ≤ Pk, (4.42b)

λ?k ≥ 0, (4.42c)

λ?k(f
?HI(k)f

? − Pk) = 0, (4.42d)

for all 1 ≤ k ≤M . Akin to Theorem 4.3.4 and Corollary 4.3.5, the minimum-norm solution

to (4.42a) is f? = Ψ†b with an alternative form f?k = (Sk + λ?kIN2
R

)†TkΣ
−1vec(INS

), where

Σ , R−Ts ⊗ INS
+
∑M

l=1 TH
l (Sl + λ?l IN2

R
)†Tl.

The only difference from the weighted sum power case is the existence of multiple

dual variables and complementary slackness conditions. This requires algorithms that are

more sophisticated than bisection or Newton’s method, e.g., interior-point methods such

as the path-following and the primal-dual methods [108, 113]. Software packages for these

algorithms, e.g., Gurobi, CPLEX and SeDuMi, are available and can be used in Matlab

via YALMIP [115] or CVX [116].

Here, it is reasonable to consider the same complex-scaled equalizer η−1e−jφQ as in

Section 4.3.3, which results in the following theorem:

Theorem 4.4.1. Any equalizer Q can be replaced by a complex-scaled version η−1
o e−jφQ

so that:

(1) The optimal solution is

f? = ηo

(
Φ +

M∑

k=1

γokI(k)

)†
b, (4.43)

where φ ∈ [0, 2π), γok , λ?kη
2
o (1 ≤ k ≤M) satisfies

M∑

k=1

γokPk = tr(QRnQ
H) (4.44)

and ηo > 0 is the unique positive number such that γok(f
?HI(k)f

? − Pk) = 0 for 1 ≤
k ≤M .
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(2) The minimum MSE with the equalizer η−1
o e−jφQ is

MSEmin(ηo) = tr(Rs)− bH
(
Φ +

M∑

k=1

γokI(k)

)†
b. (4.45)

Proof. For any η > 0 and 0 ≤ φ < 2π, the optimal solution is f? = ηejφΨ†b, where

Ψ , Φ +
∑M

k=1 λ
?
kη

2I(k), and the dual-optimal variables λ?1, . . . , λ?M are implicit functions

of η through (4.42b)-(4.42d). The minimum MSE is also a function of η > 0, viz.,

MSEmin(η) = tr(Rs)− bHΨ†b + η−2tr(QRnQ
H)−

∑M

k=1
λ?kPk. (4.46)

Next, we minimize (4.46) over η > 0. With similar argument to that in Section 4.3.3,

there exists an ηc such that for all η ≤ ηc, λ
?
1 = · · · = λ?M = 0. As a result, MSEmin(η) is a

monotonically decreasing function in (0, ηc] according to (4.46). This means that (4.46) is

minimized only when η > ηc. In this situation, at least one of the dual variables is nonzero

and hence
∑M

k=1 λ
?
kPk 6= 0. For convenience, rewrite the complementary slackness from

(4.42d) as

λ?kPk = λ?kη
2bHΨ−1I(k)Ψ

−1I. (4.47)

Adding from k = 1 to M , we have

η−2 =

∑M
k=1 λ

?
kb

HΨ−1I(k)Ψ
−1b

∑M
k=1 λ

?
kPk

. (4.48)

Substituting (4.47) and (4.48) into (4.46) and using similar techniques to those in the proof

of Theorem 4.3.7, we can prove that the optimal ηo, the corresponding λ?k and γok = λ?kη
2
o

satisfy (4.44), and the minimum MSE takes the form of (4.46).

Eq. (4.44) provides an elegant relationship between different γok. These parameters

serve as regularization terms that control the transmit power of the relays. When the

power budget Pk is higher, the required regularization tends to be lower and the value of γok
tends to be smaller. Although complex scaling does not lead to closed-form expressions for

the individual parameters {γok}, the results in (4.44), (4.43) and (4.45) lay the foundation

for the power balancing algorithm proposed in the next subsection.
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4.4.2 Power Balancing

The optimal solutions, (4.31) under the weighted sum power constraint and (4.43) under

the per-relay power constraints, share some common structure. In particular, they are

identical if the weights {wk} and Pr are chosen to satisfy

wkθ = wk
tr(QRnQ

H)

Pr
= γok and Pr =

M∑

k=1

wkPk. (4.49)

The minimum MSE, (4.33) and (4.45), would also be equal. In other words, if we know this

equivalent weighted sum power constraint, the optimal solution is immediately available

from Theorem 4.3.7. Of course, scaling all wk simultaneously by a common positive factor

does not alter the optimal solution.

With this in mind, we propose a power balancing algorithm which finds these weights

iteratively. The initial weights are all set to 1. In each iteration, the algorithm computes

the optimal relaying matrices with the previous weights, compares the actual power of the

relays with the per-relay power constraints, and adjusts the weights accordingly. If the

actual power of the kth relay is higher than Pk, the weight wk is increased and vice versa.

The algorithm stops when all the constraints are satisfied. These steps are summarized in

Algorithm 4.1.

Algorithm 4.1: Power Balancing

Initiate the counter m = −1;

Initiate the weights: w1(0) = · · · = wM(0) = 1;

repeat

Add the counter m← m+ 1;

Compute the weighted sum power:

Pr(m) =
∑M

k=1
wk(m)Pk; (4.50)

Compute the optimal f?(m) from (4.31) or (4.27);

Compute Pk(m) = f?(m)HI(k)f
?(m), 1 ≤ k ≤M ;
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Update the weights for 1 ≤ k ≤M :

wk(m+ 1)← wk(m)
Pk(m)

Pk
; (4.51)

until max
(
P1(m)/P1, · · · , PM(m)/PM

)
≤ 1.

4.4.3 Remarks on Power Usage

With the per-relay power constraints, the optimal relaying strategy may not use the max-

imum power at some relays. We show this for a simplified single-antenna case but our

analysis also captures the essence of multi-antenna systems. The matrices/vectors in the

signal model in Section 4.2 become scalars, represented by the corresponding lowercase

italic letters. For convenience, we assume gk, fk and hk (1 ≤ k ≤ M) are all real positive

numbers and extension to the complex scenarios is straightforward.

Define α ,
∑M

l=1,l 6=k glflhl and w ,
∑M

l=1,l 6=k glflwl with var(w) = σ2
w. Without the kth

relay, the signal received by the destination would be

r = αs+ w + n (4.52)

and the SNR at the destination would be SNRd , α2σ2
s/(σ

2
w +σ2

n). With the kth relay, the

signal would be

r′ = (α + gkfkhk)s+ gkfkwk + w + n (4.53)

and the SNR would be a function of fk

SNR′d = SNRd
(1 + gkfkhk/α)2

1 + g2
kf

2
kσ

2
k/(σ

2
w + σ2

n)
, (4.54)

where the second operand (, κ(fk)) is the gain or penalty due to the kth relay, depending

on whether it is larger than or smaller than 1.

By taking the first-order derivative, we know that κ(fk) is strictly monotonically in-

creasing when

0 ≤ fk < fo ,
hk(σ

2
w + σ2

n)

αgkσ2
k

(4.55)
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and strictly monotonically decreasing when fk > fo. As fk →∞, the limit would be

κ(∞) , lim
fk→∞

κ(fk) =
h2
kσ

2
s/σ

2
k

α2σ2
s/(σ

2
w + σ2

n)
=

SNRr

SNRd

, (4.56)

where SNRr , h2
kσ

2
s/σ

2
k is the SNR at the kth relay. Since the power transmitted by

the relay is proportional to f 2
k , the above properties of κ(fk) lead to several interesting

conclusions:

(1) If SNRr ≥ SNRd, κ(∞) ≥ 1 according to (4.56). Since κ(0) = 1, and κ(fk) increases

in [0, fo] and decreases in [fo,∞], κ(fk) > 1 always holds in (0,∞), implying that the

system always benefits from the use of the kth relay, no matter how much power the

relay transmits. However, it is not necessarily better to use more power. Any fk > fo

would not be as good as fo.

(2) If SNRr < SNRd, κ(∞) < 1 and there exists an fc such that κ(fc) = 1. Hence,

κ(fk) > 1 in the interval (0, fc), which means that the kth relay can still contribute

to the SNR at the destination as long as it reduces its transmit power to a level

low enough. The reason for this is that the signal components are added coherently,

whereas the noise components are not.

(3) If the value of fk corresponding to the power constraint Pk falls in the interval [0, fo],

the relay would use the maximum amount of power; otherwise, it would use only a

portion (fk = fo). It is not justified to turn off a relay completely.

In practice, it is a waste of resources if a relay transmits only a small amount of power.

Thanks to the randomness of the channels and users, this problem with the ideal narrow-

band configuration is probably not as important in practice. Firstly, most modern commu-

nication systems are based on a multicarrier scheme such as OFDM. A relay station may

transmit less power on one subcarrier but more on another, and so variations of transmit

power between different relays is small. Secondly, the multiple relays are simultaneously

serving several randomly located users (with different subcarriers or time intervals). This

will further reduce the disparity between the transmit power of different relays. Lastly, if

the expected transmit power of a particular relay is abnormally small, the problem likely

comes from inappropriate network layout and the relays should be relocated instead.
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4.5 The Optimal Equalizer

In this section, we consider the joint design of the MIMO equalizer Q and the relaying

matrices (or equivalently f), under the weighted sum power constraint. For any Q, the

optimal f? is in the form of (4.31); for any f (or F), the optimal equalizer Q? is the MMSE

equalizer

Q? = RH
rsR

−1
r , (4.57)

where Rrs , E{rsH} = GFHRs and Rr , E{rrH}.
This observation suggests a block coordinate descent method. The algorithm starts

from an initial Q0 and repeats the following steps: it first updates f using (4.31) while

fixing Q, and then calculates Q as in (4.57) while holding f constant. Thanks to the

optimality in each step, the (bounded) sequence of MSE values is monotonically non-

increasing, which must converge. As a result, the block coordinate descent algorithm is

guaranteed to converge to a local optima. This idea is widely used in the literature such

as [65, 117]. We also note that the design of a precoder B is also possible through this

framework. This is done by replacing all the Hk with HkB in the previous sections.

The other approach is to consider the joint design as a two-step process. The first step

is to design f as a function of Q, which is what we have done in Section 4.3. After this, the

second step is to optimize Q to further minimize the MSE in (4.33). This approach handles

the constraints in the convex problem (the first step), so that the remaining problem, though

still non-convex, is an unconstrained one.4 The line search algorithms are readily applicable

to find a local minima. Beginning with Q0, these methods generate a sequence of iterates

{Qn}∞n=0 until a solution has been approximated with sufficient accuracy. Specifically, these

algorithms choose a direction ∆Qn and search along this direction from the current Qn for

a new iterate Qn+1 with a lower MSE value. The distance to move along Qn should satisfy

criteria such as Wolfe’s conditions [108]. In particular, the steepest descent method uses

the opposite direction of the gradient (see Appendix A.3 for derivation), viz.,

∆Qn = −∇Q̄MSEmin|Q=Qn

= −η−2
n Qn(GF(n)RwFH

(n)G
H + Rn) + η−1

n unvec
(
Σ−1
n vec(I)

)
HHFH

(n)G
H , (4.58)

4An alternative, usually more popular, approach is to first set the equalizer Q as the MMSE equalizer.
After substituting this optimal Q into (4.6), the MSE becomes a function of the matrices {Fk}. The
resulting problem is, however, not only non-convex but also with constraints.



4.6 Implementation Issues and Complexity 75

where F(n) is the optimal (block-diagonal) relaying matrix under Qn, and Σn and ηn are the

corresponding intermediate matrices/variables when computing F(n), cf. (4.5), (4.11) and

(4.31). The steepest descent method is summarized in Algorithm 4.2. Numerical results in

Sec. 4.7 will show that this method converges much faster than block coordinate descent.

Algorithm 4.2: Steepest Descent

Choose the weights wk, 1 ≤ k ≤M , Pr and ε > 0;

Choose ᾱ > 0, ρ, c ∈ (0, 1); {Line search parameters.}
Initiate the counter n = −1 and the equalizer Q0;

repeat

Increment counter n← n+ 1;

Compute ∆Qn from (4.58);

Set α← ᾱ;

repeat

α← ρα; {Backtracking line search.}
until MSEmin(Qn + α∆Qn) ≤ MSEmin(Qn)− cα‖∆Qn‖2

F;

Update Qn+1 ← Qn + α∆Qn;

until ‖∆Qn‖2
F < ε.

As for the per-relay power constraints, Algorithm 4.1 is still applicable except that in

each iteration, Q is updated along with f using the above methods.

4.6 Implementation Issues and Complexity

We discuss implementation issues for the proposed algorithms, including the requirements

on communication and computing resources. Firstly, an important feature of the optimal

methods is that they only require local CSI knowledge and a little additional shared in-

formation. As seen from (4.27), all the kth relay needs to know, in addition to its own

backward channel Hk and forward channel Gk, is the vector Σ−1vec(I) (of size N2
S × 1).

Thanks to this attractive feature, these methods naturally lend themselves to distributed

implementations. One possible implementation scheme is that a fusion center collects the

channel matrices, computes this vector and feeds it back to the relays via broadcasting. An

alternative way is to compute the relaying matrices also at the fusion center. The fusion
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center can be the destination or one of the relays. Some dedicated resources are required

but for a small number of relays (say 2 or 3), the overall complexity will be manageable.

Secondly, the existence of closed-form expressions such as (4.27) results in relatively low

computational complexity. The major computing task consists of two parts: evaluating

Σ−1vec(I) and {fk}. The power balancing algorithm in Algorithm 4.1 for the per-relay

constraints and the algorithms for the equalizer Q (cf. Section 4.5) are primarily composed

of repetitions of these operations. Although vectorization increases the dimensions of the

matrices and vectors in the system model (cf. (4.13)), the complexity is not notably higher

thanks to the properties of the SVDs and EVDs for Kronecker products. For example, we

have
X = U1S1V

H
1

Y = U2S2V
H
2

}
⇒ X⊗Y = (U1 ⊗U2)(S1 ⊗ S2)(V1 ⊗V2)H ,

which is essentially the SVD of X ⊗ Y except that the singular values are not sorted in

descending order. A similar property holds for the EVD. Consequently, the EVD of the

pseudo inverse (Sk+λwkI)† = UkΛkU
H
k can be obtained based on those of (R

−1/2
xk Rwk

R
−1/2
xk )T

and GH
k QHQGk. Then, two matrix multiplications (not including those involving diagonal

matrices) are needed to compute TH
k (Sk + λwkI)†Tk = (TH

k Uk)Λk(T
H
k Uk)

H . One addi-

tional matrix multiplication is necessary to compute (Sk + λwkI)†Tk = UkΛk(T
H
k Uk)

H .

Subsequently, we compute the sum matrix Σ and solve the linear equation Σx = vec(I) to

get Σ−1vec(I). In the end, fk is obtained from (4.27), which requires only matrix-vector

multiplications. In summary, the major operations include

• 2M EVDs of matrices with dimension NR ×NR;

• 3M matrix multiplications involving matrices of dimension N2
S ×N2

R, N2
R ×N2

R or

N2
R ×N2

S.

• solving one linear equation of size N2
S ×N2

S.

Thirdly, the proposed algorithms in Section 4.3 and 4.4 minimize the MSE over not

only the relaying vector f , but also the scaling factor ηejφ. In contrast, the interior-point

methods can merely optimize f for a single η because the problem is not convex if f and η

are simultaneously considered. To obtain the same result as our algorithms do, the interior-

point methods have to run for different η > 0, which further increases their complexity.
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In summary, the system complexity is well manageable for multi-antenna systems if

the number of relays is small. The benefits brought by a three-relay configuration can be

remarkable as shown by the simulation results in Sec. 4.7 and previous publications such

as [13,59].

4.7 Numerical Results

In this section, we first investigate the effects of channel gains on the power allocation

among relays under the weighted sum power constraint. Next, we verify the convergence

behaviors of the proposed iterative algorithms, including power balancing for the per-relay

power constraints, block coordinate descent and steepest descent for the equalizer. In the

end, we compare the BER results of the proposed designs and previous strategies.

The following assumptions are made. The variances of s, wk and n are respectively

Rs = σ2
sI, Rwk

= σ2
wINR

and Rn = σ2
nIND

and the covariance matrices of the noise terms

have been normalized: σ2
w = σ2

n = 1. It is convenient to introduce two SNR parameters as

follows. The first SNR is defined as ρ1 , σ2
s/σ

2
w, i.e. the ratio of transmitted signal power

per antenna to the received noise power per antenna. The second SNR, defined in terms of

the sum power PR ,
∑M

k=1 Pk as ρ2 , PR/(MNRσ
2
n), gives the ratio of average transmitted

power per relay antenna to the power of the noise induced at the individual destination

antennas. In our simulations, the channel matrices have independent and identically dis-

tributed entries. Each entry is a zero mean circular symmetric complex Gaussian variable

with unit variance.

4.7.1 Weighted Sum Power Constraint: Power Allocation

To study the effects of channel gains on the power allocation among the relays, we consider

a 1S-2R-1D system with NS = NR = ND = 2, ρ1 = 20dB and Q = I. In particular, we

multiply H1 by α which represents a relative channel gain, and multiply G1 by β which is

independent from α. Then, the optimal relaying matrices and the transmit power of the

relays (P ′1, P ′2) are all functions of these relative gains. A randomly generated set of channel

matrices are used and the other parameters are chosen as w1 = w2 = 1 and Pr = 400. As

shown by the contours for P ′1 in Fig. 4.4, if β is fixed, the larger α becomes, the more power

is allocated to the first relay; if α is held constant, the larger β comes, the less power to



78 MMSE Transceiver Design for Combining-Type Relaying

1

1

5

5

5
10

10

10
25

25

25
50

50
50

50

10
0

10
0

100

10
0

15
0

15
0

15
0

20
0

20
0

20
0

25
0

25
0

25
0

300

30
0

30
0

30
0

32
5

32
5

325 325

35
0

35
0

350
350

38
0

38
0

380

390

α in dB

β 
in

 d
B

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

Fig. 4.4 Contours of the power of the first relay P ′1 versus relative channel
gains α and β

the first relay. In other words, the optimal relaying strategy tends to allocate more power

to the relay with better backward channel and/or worse forward channel.

To observe the effects of the weights, we adjust the value of 0 ≤ w1 ≤ 2, let w2 = 2−w1,

and compute the optimal relaying matrices and the powers, P ′1 and P ′2. The same set of

channel matrices are used in the simulations, possibly with α = 6dB or β = 6dB. Fig. 4.5

illustrates the relationship between the power ratio, P ′1/P
′
2, and the weight ratio w1/w2.

As one would expect, as w1/w2 increases, the power ratio decreases.

Channel fading also plays an important role in power allocation. We generate 105

channel instances, obtain the corresponding optimal solutions and then compute the ratio

between the power of the first relay and the total power, P ′1/(P
′
1 + P ′2). The other settings

are: w1 = w2 = 1 and Pr = 400. Fig. 4.6 shows the histograms of this ratio, with the x

axis representing the ratio and the y axis denoting the number of occurrences. Any value

between 0 and 1 is possible and the histogram is close to a parabola if α = β = 0dB.

If H1 is of better quality than H2 (α = 6dB), the histogram shifts rightward, implying

that the optimal solution tends to allocate more power to the first relay; if G1 is of better



4.7 Numerical Results 79

10-2 10-1 100 101 102
10-1

100

101

The ratio between the weights:  w1/ w2

Th
e 

ra
tio

 b
et

w
ee

n 
th

e 
po

w
er

s 
of

 R
el

ay
 1

 a
nd

 R
el

ay
 2

,  
P

1'/ 
P

2'

 

 

α = β = 0dB
α = 6dB, β = 0dB
α = 0dB, β = 6dB

Fig. 4.5 Effects of w1 and w2 on the ratio between the powers of two relays

0 0.5 1
0

500

1000

1500

2000

2500

3000

α = β = 0dB
0 0.5 1

0

1000

2000

3000

4000

5000

α = 6dB, β = 0dB
0 0.5 1

0

500

1000

1500

2000

2500

3000

3500

α = 0dB, β = 6dB
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quality than G2 (β = 6dB), the histogram shifts rightward. This is in accordance with our

previous conclusion drawn from Fig. 4.4.



80 MMSE Transceiver Design for Combining-Type Relaying

0 1 2 3 4 5 6 7 8 9 10
170

180

190

200

210

220

230

Iteration index  m

P
ow

er
No pathloss in  H1

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Iteration index  m

P
ow

er

-10dB pathloss in  H1

 

 
Relay #1
Relay #2
Relay #3

Fig. 4.7 Convergence behaviours of Algorithm 4.1: transmit power of the
relays

4.7.2 Convergence of Iterative Algorithms

Power balancing for the per-relay power constraints. We study the convergence behaviors

of Algorithm 4.1 base on a 1S-3R-1D system with NS = NR = ND = 4, ρ1 = 20dB and the

power constraints P1 = P2 = P3 = 200. For a particular representative channel instance

(randomly generated), Fig. 4.7 plots the power of the individual relays versus the iteration

index m. Algorithm 4.1 usually converges within about 5 steps.

Our analysis in Section 4.4.3 leads to the conclusion that the optimal relaying strategy

does not necessarily use the maximum amount of power at some relays. This is verified by

the right subfigure in Fig. 4.7, where the channel matrices used are the same as those in

the left, except that H1 has a relative path loss of α = −10dB. We note that with optimal

relaying strategy, the first relay is neither using the maximum power, 200, nor being turned

off completely.

Equalizer design. We study the convergence behaviors of the block coordinate descent

method and the steepest descent method proposed in Section 4.5, based on the same settings

as above. The weights are w1 = w2 = w3 = 1 and Pr = 600. The convergence behaviors
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are shown in Fig. 4.8 for a representative channel instance. The steepest descent method

converges significantly faster than the block coordinate descent method. For the former,

the MSE comes close to the locally optimal value after only 10 line-searches, whereas for

the latter, it takes several thousand iterations. One interesting observation is that as far

as we could verify, the optimal equalizer Q? does not depend on the algorithm used or the

initial Q0 (except for a linear scaling factor). This suggests that the solution so obtained

may be globally optimal, though it seems very difficult to prove and remains a conjecture

for now because the expression of the Hessian is rather involved.

4.7.3 BER Performance

In this subsection, we compare the BER performance of the following relaying strategies:

(1) Simplistic AF, Fk ∝ I, [13];

(2) MMSE-MMSE [13,93];

(3) CMMSE-MMSE [93];
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(4) Gradient-based MMSE [60];

(5) Proposed method (sum power constraint, Q = I);

(6) Proposed method (per-relay power constraints, Q = I);

(7) Proposed joint design of the relaying matrices and the equalizer (sum power con-

straint);

(8) Relay selection based on the JMMSE strategy [31].

For methods (1), (2), (3), (4) and (6), the total power is evenly split between different

relays. For the selection-based strategy, the total power is allocated only to the single

relay that would result in the minimum MSE based on the JMMSE relaying strategy [31].

We consider a 1S-3R-1D system with NS = NR = ND = 4. In the simulations, each

source antenna transmits independent uncoded 16-PSK symbol streams. The relay stations

apply one of the above relaying schemes to their input signals and retransmit them. The

destination applies a linear MMSE equalizer and then employs single-stream maximum

likelihood decoding. The BER values are averaged over channel realizations.

First, we set ρ2 to 20dB and vary ρ1 between 5dB and 25dB. Then, we set ρ1 = 20dB and

vary ρ2. The BER values are plotted in Fig. 4.9 and 4.10. As explained earlier, SAF cannot

achieve distributed array gain and accordingly has the worst performance. The heuristic

strategies including MMSE-MMSE and CMMSE-MMSE perform better. The gradient-

based MMSE method provides further gain especially under low-to-mid SNR levels. The

proposed MMSE-based strategies, (5), (6) and (7), outperform the above ones by large

gaps. The choice depends on the compromise between performance and complexity: the

joint design leads to lower BER but comes with higher computational complexity. It is

worth mentioning that the proposed strategies are much superior to the selection-based

one, which justifies the use of multiple relays.

4.8 Summary

In this chapter, we have considered the MMSE-based joint design of the multiple relaying

matrices. Under the weighted sum power constraint, we derived closed-form expressions

for the optimal relaying matrices. The optimal strategy tends to allocate more power
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to those relays with better backward channels and/or worse forward channels, and to

those with smaller weights. Under the per-relay power constraints, we proposed the power

balancing algorithm (Algorithm 4.1) which is more efficient than general-purpose interior-

point methods. The optimal strategy may not use the maximum amount of power at some

relays, but does not turn off a relay either, no matter how low the SNR is at that relay.

Additionally, under both types of constraints, a MIMO equalizer at the destination may be

designed together with the relaying matrices. The steepest descent method (Algorithm 4.2)

converges much faster than the block coordinate descent method. The BER simulations

show that all the proposed designs, under either type of constraints, with or without the

equalizer, outperform previous ones by large margins. These simulations also illustrate

significant performance advantage of multi-relay systems over single-relay ones.
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Chapter 5

A Unified Framework for Adaptive

Transceiver Design

In this chapter1, we propose a transceiver optimization framework which allows us to study

not only 1S-1R-1D and 1S-MR-1D, but also other multiuser networks in a unified way. This

framework leads to new transceiver design algorithms for certain system configurations, and

also makes it convenient to exploit the slow variations of the wireless channels between suc-

cessive transmission blocks as mentioned in Sec. 1.3.1. Sec. 5.1 presents a brief review of

relevant literature and reiterates our motivations. In Sec. 5.2, we formulate a unified system

model which accommodates various network topologies by imposing appropriate structural

constraints on the source precoder, the relaying matrix and the destination equalizer. In

Sec. 5.3, we derive the optimal relaying matrix as a function of the other two matrices,

thereby removing it from the optimization problem. Then in Sec. 5.4, we study in detail

how to optimize either the precoder or equalizer with various structural constraints. Subse-

quently, the precoder and equalizer are jointly designed based on an alternating algorithm.

Inter-block adaptation is used in this algorithm to exploit the above mentioned inter-block

relationship. The proposed framework is further validated numerically within the context

of different system configurations in Sec. 5.6.

1Parts of Chapter 5 have been presented at the 38th International Conference on Acoustics, Speech,
and Signal Processing (ICASSP) [118].

2013/10/30
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5.1 Introduction

Optimization of the relaying matrices (possibly together with source precoders and desti-

nation equalizers) under power constraints has been studied within the context of different

system configurations. For 1S-1R-1D, the optimal relaying matrix takes an SVD-based

form under a wide variety of criteria [15, 28, 29, 31]. The major difficulty for other system

configurations comes from structural constraints on the underlying mathematical models.

Taking the relay-assisted BC (1S-1R-MD or 1S-MR-MD) for example, the equalizer has

to be diagonal or blockdiagonal: indeed, the users are not collocated and hence cannot

jointly process their received signals. Therefore, the SVD-based relaying framework cannot

be readily generalized and most existing works either 1) assume special structures for the

design matrices [13, 56, 71, 75, 76, 94, 119]; or 2) iterate through the precoders, the relaying

matrices and the equalizers multiple times [59–63, 67, 69, 70, 77–81, 83, 84, 118, 120]; or 3)

turn to general optimization techniques such as geometrical programming (GP), semidefi-

nite programming (SDP) or second-order cone programming (SOCP) [72,73,85,87–89,121].

Optimal transceiver design generally requires knowledge of the underlying wireless chan-

nels. In practice, the entire period is divided into transmission blocks and in each block, the

channels are estimated and then used for transceiver optimization, followed by the actual

data transmission. Transceiver design based on CSI implicitly assumes that the channels

stay almost constant within each block. Otherwise, model mismatch would deteriorate per-

formance significantly. This implies that both the channels and the corresponding optimal

transceivers evolve gradually across successive blocks. This important aspect of the wire-

less channels and its implications on the design of relay transceiver has been overlooked

in the development and evaluation of the above cited algorithms. In fact, by properly

exploiting this inter-block correlation in the radio environment, it should be possible to

reduce the complexity of iterative algorithms. For instance, a numerical algorithm that

once seemed complicated may converge much faster and become competitive with those

based on well-defined structures such as SVD.

In this regard, we propose a transceiver optimization framework which allows us to study

various non-regenerative MIMO relay networks in a unified way. It leads to new and more

efficient algorithms with better performance for certain network topologies. This framework

also makes it convenient to exploit the above mentioned relationship between successive

transmission blocks via inter-block adaptation. We formulate a unified system model which
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Fig. 5.1 The unified system model

includes a source precoder, a relaying matrix and a destination equalizer as design variables

(matrices). This model is more general than those in Chapter 3 and 4 because it can

accommodate other system configurations if we impose appropriate structural constraints

on the precoder, the relaying matrix and the equalizer. For example, the equalizer needs

to be diagonal or block-diagonal for broadcast networks. We then design those matrices in

order to minimize the MSE between the source input and the destination output, subject

to power constraints. More specifically, we first derive the optimal relaying matrix as a

function of the other two matrices, thereby removing this matrix and its corresponding

power constraint from the optimization problem. This is the common step for point-to-

point and multiuser systems. Subsequently, we study optimization of either the precoder or

the equalizer under different structural constraints and propose an alternating algorithm

for the joint design of these two matrices. To exploit the previously mentioned inter-

block relationship, the optimal equalizer from the previous block is chosen as the initial

search point for the current block. This inter-block adaptation speeds up convergence and

henceforth reduces computational complexity significantly.

The proposed framework is further explained and validated numerically within the

context of different system configurations. For example, for relay-assisted BC with single-

antenna users, the proposed framework leads to a new diagonal scaling scheme which

provides more flexibility and better BER performance by allowing different users to apply

their own amplitude scaling and phase rotation before decoding, in contrast to [67] which

assumes the same scaling for these users. As a special case, our approach provides a closed

form for the optimal solution when the users apply the same scaling, whereas only an

iterative approach was used in [67].
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5.2 System Model

Fig. 5.1 depicts a unified system model in which a multi-antenna source is sending multiple

symbol streams simultaneously to a destination, with the assistance of a multi-antenna

relay. This generic model can represent different types of MIMO relaying systems, including

the 1S-MR-1D systems we studied in Chaper 3 and 4. We first explain its operations

in terms of 1S-1R-1D, and then explain how it can be modified to accommodate more

complex topologies by imposing structural constraints on its constituent building blocks.

This system operates in a two-hop half-duplex mode: in the first time slot, the source

transmits signals to the relay through the backward channel; in the second slot, the relay

forwards these signals to the user via the forward channel. The relay applies a linear

transformation matrix to its received signals before retransmitting them. The direct source-

destination link is neglected due to the assumed high level of attenuation. The numbers of

antennas at the source, relay and destination are respectively NS, NR and ND.

Assuming flat fading for the wireless channels, we propose the following discrete-time

complex baseband-equivalent signal model. The matrices and vectors in the model change

over time, but we suppress the discrete-time block index temporarily to keep the notation

simple. Later on, the block index will be introduced when we discuss inter-block adaptation.

The input symbol vector b ∈ CNB×1, with zero mean and covariance Rb = INB
, consists

of NB statistically independent symbols. This vector is preprocessed by a linear precoder

matrix B ∈ CNS×NB to generate the transmitted signal vector

s = Bb. (5.1)

The backward channel between the source and the relay is represented by matrix H ∈
CNR×NS . The signal vector x ∈ CNR×1 received at the relay is therefore

x = Hs + w, (5.2)

where w ∈ CNR×1 is an additive, zero-mean, circularly symmetric complex Gaussian noise

with covariance Rw.

In this baseband-equivalent model, the linear processing at the relay is represented by

a matrix F ∈ CNR×NR . That is, the relay retransmits its received noisy signal x as in

y = Fx. (5.3)
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The signal received by the destination user is

r = Gx + n = GFHs + GFw + n, (5.4)

in which G ∈ CND×NR denotes the forward channel matrix from the relay to the destination.

The noise term n is independent from b and w, and modeled as a circularly symmetric

complex Gaussian random vector with zero mean and covariance Rn. The destination

applies a linear equalizer Q ∈ CNB×ND whose output is

r̂ = Qr = QGFHBb + QGFw + Qn. (5.5)

It is straightforward to extend the above signal model to other types of relay system

configurations. If there are multiple sources, relays or destinations, with their numbers

denoted by L, M and N , respectively, the channel matrix H now consists of M ×L blocks,

that is,

H =




H1,1 · · · H1,L

...
. . .

...

HM,1 · · · HM,L


 (5.6)

where Hj,i, the (j, i)th block, corresponds to the MIMO channel from source i to relay j.

Similary, matrix G has N ×M blocks, that is

G =




G1,1 · · · G1,M

...
. . .

...

GN,1 · · · GN,M


 (5.7)

where Gk,j is the channel between relay j and destination k. The processing matrices B,

F or Q are block-diagonal:

B , diag(B1, . . . ,BL), (5.8a)

F , diag(F1, . . . ,FM), (5.8b)

Q , diag(Q1, . . . ,QN). (5.8c)

If all the destination users have a single antenna, Q is diagonal. It is similar with B and
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F. The noise vectors are the stacked versions of the individual ones, that is,

w , col(w1, . . . ,wM), (5.9a)

n , col(n1, . . . ,nN), (5.9b)

where wk is the additive noise induced at the kth relay and nk is the noise at the kth

destination. The relationship between structural constraints and system configurations is

summarized in Table 5.1.

Table 5.1 Typical system configurations

Q is arbitrary Q is diagonal/block-diagonal

B is arbitrary Point-to-point channel Broadcast channel (BC)

B is diagonal/block-diagonal Multiple access channel (MAC) Interference channel (IC)

F is arbitrary for one-relay systems, and diagonal/block-diagonal for multi-relay systems.

5.3 The Unified Framework for Transceiver Design

5.3.1 Problem Formulation

We consider the general problem of optimizing the relaying matrix F, the source precoder

B and the equalizer Q, in order to minimize the MSE between the precoder input and the

equalizer output

MSE(F,B,Q) , E
{
‖r̂− b‖2

}

= tr
(
E
{

(r̂− b)(r̂− b)H
})

= tr
(
(QGFHB− I)(QGFHB− I)H

)

+ tr(QGFRwFHGHQH) + tr(QRnQ
H). (5.10)

Two power constraints are imposed simultaneously. The first is the expected transmit

power of the source

E
{
‖s‖2

2

}
= tr(Rs) = tr(BBH) ≤ Ps. (5.11)

If there are multiple sources, this is the sum power of these users and we shall discuss

per-user constraints later. The other constraint is on the expected transmit power of the
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relay

E
{
‖y‖2

2

}
= tr(Ry) = tr(FRxF

H) ≤ Pr, (5.12)

where Rx , E{xxH} = HBBHHH + Rw. In the case of multiple relays, this corresponds

to the sum power of these relays.

A popular approach to solving similar problems starts from the equalizer Q. For any

choice of B and F, the optimal equalizer Q? is the MMSE equalizer [18]

Q? = RH
rbR

−1
r , (5.13)

where the cross-correlation and correlation matrices are defined as2

Rrb , E{rbH} = GFHB, (5.14)

Rr , E{rrH} = GFHBBHHHFHGH + GFRwFHGH + Rn. (5.15)

However, after substituting Q? into the MSE expression in (5.10), not only the remaining

problem is non-convex but also the number of constraints remains the same as in the

original problem. Moreover, this approach does not work at all in the presence of multiple

destinations, i.e., N > 1, because Q has to be diagonal or block-diagonal.

In this thesis, we take a different approach which begins with the relaying matrix F.

The first step is to derive the optimal F? as a closed-form function of B and Q, thereby

removing the power constraint (5.12) from the problem. This alternative approach offers

two important advantages:

(1) Various network topologies can now be treated in a unified manner because we do

not need to consider their individual structural constraints until the next step.

(2) After substituting the optimal F? into (5.10), the optimization problem becomes

unconstrained with respect to Q. This fosters the use of numerical algorithms such

as gradient descent, which in turn makes it easier to handle structural constraints of

Q. In addition, Q is not involved in any power constraint, which makes it convenient

to exploit the slow variations between successive blocks.

2These matrices are the same as the corresponding cross-covariance and covariance matrices because
the vectors have zero mean.
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5.3.2 Optimal Design of the Relaying Matrix

In this subsection, we derive the optimal relaying matrix F as a function of the precoder B

and the equalizer Q. This step is the same for different network topologies. The constraint

in (5.11) does not depend on F and henceforth does not need to be considered for now.

We first consider single-relay systems. The convex optimization problem can be solved by

defining the Lagrangian multiplier

L(F, λ) = MSE(F,B,Q) + λ
(
tr(FRxF

H)− Pr
)

(5.16)

where λ > 0. The dual problem is to

maximize D(λ) , inf
F
L(F, λ)

subject to λ ≥ 0. (5.17)

Let the solution of the primal problem be F? and define p? , MSE(F?); let the solution

of the dual problem be λ? and d? , D(λ?). For a convex primal problem, strong duality

holds (i.e., the duality gap p? − d? is zero) if the Slater’s condition is satisfied [113, p.226].

Here, the primal problem is convex and the Slater’s condition is always satisfied (F = 0 is

strictly feasible: 0 < Pr). Henceforth, the KKT conditions are necessary and sufficient for

the optimal primal-dual pair (F?, λ?), viz.,

∂L
∂F̄

∣∣∣
F=F?

= 0, (5.18)

tr(F?RxF
?H)− Pr ≤ 0, (5.19)

λ? ≥ 0, (5.20)

λ?
(
tr(F?RxF

?H)− Pr
)

= 0. (5.21)

The first-order necessary condition in (5.18) is expressed as

(GHQHQG + λ?I)F?Rx = GHQHBHHH . (5.22)

If λ? > 0, there is a unique solution; if λ? = 0, the solution is not unique when GHQHQG

is not of full rank. In the latter case, we are interested in the particular solution (among all

solutions) that leads to the smallest value of tr(FRxF
H) = ‖FR

1/2
x ‖2

F and hence would most
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likely satisfy (5.19). This solution is obtained by taking the pseudo-inverse. Therefore, in

both cases, the optimal solution has the same form

F?(λ?) = (GHQHQG + λ?I)†GHQHBHHHR−1
x , (5.23)

which is an explicit function of λ?. Two scenarios may apply for this duality parameter:

(1) If tr(F?RxF
?H)|λ?=0 ≤ Pr, λ

? = 0 satisfies (5.19), (5.20) and (5.21). That is, the

power constraint at the relay is inactive and the solution is equal to that to the

unconstrained problem.

(2) If tr(F?RxF
?H)|λ?=0 > Pr, λ

? = 0 is not a solution and according to (5.21), λ? > 0

has to satisfy tr(F?RxF
?H) = Pr. It is straightforward to prove that the left hand

side (LHS) is a monotonically decreasing function of λ?. The value is larger than Pr

at λ? = 0 and converges to zero as λ? →∞. Therefore, a unique solution exists and

can be obtained via bisection or Newton’s method.

Based on the strong duality, the minimum MSE can be obtained by substituting (5.23)

into (5.16), viz.,

MSEmin(B,Q) = − tr
(
QG(GHQHQG + λ?I)†GHQHBHHHR−1

x HB
)

+NB + tr(QRnQ
H)− λ?Pr. (5.24)

The above expression depends on the parameter λ? which is in turn an implicit function

of Q. This lack of an explicit formula would complicate later design, and our approach to

overcome this problem is to introduce a linear scaling η > 0 in the equalizer. If we replace

any given Q with a scaled version η−1Q, the duality parameter λ?, the optimal relaying

matrix F? and the corresponding minimum MSE are all functions of η. It turns out that

for the optimal η? leading to the smallest MSE, these quantities can all be expressed in

closed forms, as presented in the following theorem:

Theorem 5.3.1. For any Q, there exists η?−1Q (η? > 0) so that:

(a) The optimal relaying matrix is in the closed form

F? = η?(GHQHQG + θI)−1GHQHBHHHR−1
x , (5.25)
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where θ , tr(QRnQ
H)/Pr.

(b) η? is the unique number satisfying tr(F?RxF
?H) = Pr.

(c) The minimum MSE with F = F? takes the form

MSEmin(B,Q) = tr(INB
)− tr

(
BHHHR−1

x HB

QG (GHQHQG + θI)−1GHQH
)
. (5.26)

(d) Any other choice of η−1Q together with the corresponding F? in (5.23) would lead to

an MSE no smaller than (5.26).

Proof. See Appendix A.4.

An alternative formulation is to introduce η as early as in the definition of the objective

function in (5.10), which was used before for different network topologies [22, 67, 97]. In

this case, the objective function would be a convex function of F, but not of both η and F.

Therefore, it does not formally guarantee optimality to set to zero the partial derivatives

with respect to both η and F̄.

For multi-relay system configurations, the optimal design of the block-diagonal relaying

matrix has already been studied in Chapter 4, which can be logically regarded as part of this

section. In fact, the principal methodologies in the above development are similar to those

in the previous chapter. The main differences are that the precoder B was not considered

in Chapter 4 and vectorization is not needed here. In the following sections, we concentrate

on the single-relay scenario but the principles are equally applicable to multi-relay systems.

From now on, we suppose that for any given Q, the corresponding η?−1Q and F? in

Theorem 5.3.1 are automatically selected. Hence, the optimization problem is reduced to

that of designing B and Q in order to minimize (5.26) subject to (5.11). For convenience,

we define

Eh ,
(
I + BHHHR−1

w HB
)−1

, (5.27)

Eg , (I + QGGHQH/θ)−1 (5.28)
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and derive the following matrix equations

BHHHR−1
x HB = I− Eh � 0, (5.29)

QG (GHQHQG + θI)−1GHQH = I− Eg � 0. (5.30)

Substituting the above equations into (5.26), the objective function is rewritten as

MSEmin(B,Q) = tr(Eh) + tr(Eg)− tr(EhEg). (5.31)

In fact, the optimal relaying matrix in (5.25) can be viewed as a cascade of an MMSE

equalizer (BHHHR−1
x ) for the backward channel, and an MMSE precoder (η?(GHQHQG+

θI)−1GHQH) for the forward channel [105]. Correspondingly in (5.31), the first term

tr(Eh) is the minimum MSE achieved by the first-hop transmission alone [18], and tr(Eg)−
tr(EhEg) is the penalty due to the second-hop transmission. The last term in (5.31),

−tr(EhEg), is determined by both B and G, implying that the joint design cannot easily

be decoupled. In this regard, we first consider the optimal design for either of the two

matrices while the other is fixed. The structural constraints imposed by different system

configurations must be handled appropriately. Then, we propose an alternating algorithm

for the joint design.

5.4 Optimization of Precoder and Equalizer with Structural

Constraints

5.4.1 Optimization of the Precoder B with Fixed Equalizer Q

From (5.31), the objective is to minimize

g(B) , tr
(
Eh(I− Eg)

)
, (5.32)

subject to (5.11). We consider two scenarios when B is either structurally unconstrained

or diagonal. For the latter case, the power constraint is slightly different from (5.11).

Precoder with arbitrary structure. Define the EVD

I− Eg = UΛUH , (5.33)



96 A Unified Framework for Adaptive Transceiver Design

where U is unitary and Λ = diag(λ1, . . . , λND
) � 0 with its diagonal entries sorted in

descending order. Similarly, define the EVD

HHR−1
w H = VΛ′VH , (5.34)

where V is unitary and Λ′ = diag(λ′1, · · · , λ′NS
) � 0. The problem of minimizing (5.26)

subject to the power constraint (5.11) is equivalent to that of minimizing

f(B) , tr
(
Λ(I + UHBHVΛ′VHBU)−1

)
(5.35)

subject to (5.11). Next, we show that the optimal precoder B? diagonalizes the matrix in

(5.35).

Lemma 5.4.1. For any B satisfying (5.11), there exists another B̃ such that:

(a) B̃ also satisfies the power constraint (5.11);

(b) UHB̃HVΛ′VHB̃U is diagonal with non-increasing main diagonal entries;

(c) f(B̃) ≤ f(B).

Proof. See Appendix A.5.

Up to now, we can assume that B diagonalizes UHBHVΛ′VHBU without loss of

generality. Furthermore, for any such B, it can be shown as in [18] that there exists a B̂

satisfying UHB̂HVΛ′VHB̂U = UHBHVΛ′VHBU and tr(B̂B̂H) ≤ tr(BBH). Specifically,

B̂ = VΣBUH , where ΣB , [diag(b1, · · · , bND
),0]T ∈ CND×NS . The weighted sum MSE in

(5.35) is now reduced to

f(B) =

ND∑

k=1

λkλ
′
k/(1 + λ′kb

2
k), (5.36)

subject to tr(ΣBΣH
B ) =

∑ND

k=1 b
2
k ≤ PS. This convex problem can easily be solved. We skip

the details to present the following theorem directly:

Theorem 5.4.2. For a fixed equalizer Q, with the optimal F? in (5.25), the optimal pre-

coder B is of the SVD form

B? = VΣBUH . (5.37)
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The diagonal entries bk of ΣB satisfy

b2
k =

(√
λk
λ′k

1√
γ
− 1

λ′k

)+

, (5.38)

where x+ , max(x, 0) and γ > 0 is the unique solution of
∑ND

k=1 b
2
k = PS.

Diagonal precoder. This corresponds to system configurations with multiple single-

antenna source users. It is impossible for the users to cooperate in terms of signaling

because their antennas are spatially distributed. Henceforth, the precoder B has to be

diagonal and each user has its own power constraint, which can be expressed by the positive

semidefinite ordering

BBH � Ps = diag(Ps,1, . . . , Ps,Ns). (5.39)

It is straightforward that each user should transmit its maximum allowable power, that is,

B = P1/2
s . (5.40)

5.4.2 Optimization of the Equalizer Q with Fixed Precoder B

Since the power constraint in (5.11) and Eh do not depend on Q, the problem is equivalent

to that of minimizing

f(Q) , tr
(
(I− Eh)Eg

)
. (5.41)

This unconstrained optimization problem can be solved by gradient-based line search. Start-

ing from an initial matrix Q0, this method generates a sequence of iterates {Qn}∞n=0

until a solution has been approximated with sufficient accuracy. Specifically, it chooses

and searches along a direction ∆Qn from the current Qn for a new iterate Qn+1 so that

f(Qn+1) < f(Qn). The distance to move along ∆Qn should satisfy criteria such as Wolfe’s

conditions [108]. In particular, gradient descent uses the opposite direction of the gradient

∆Qn = −∇Q̄MSEmin|Q=Qn . (5.42)

This method is summarized in Algorithm 5.1.

This algorithm handles different structural constraints conveniently. When Q is not
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Algorithm 5.1: Gradient Descent

Choose Pr and ε > 0;
Choose ᾱ > 0, ρ, c ∈ (0, 1); {Line search parameters.}
Initialize the counter n = −1 and the equalizer Q0;
repeat

Increment counter n← n+ 1;
Compute ∆Qn from (5.42);
Set α← ᾱ;
repeat
α← ρα; {Backtracking line search.}

until MSEmin(Qn + α∆Qn) ≤ MSEmin(Qn)− cα‖∆Qn‖2
F;

Update Qn+1 ← Qn + α∆Qn;
until ‖∆Qn‖2

F < ε.

structurally constrained, the gradient is

5Q̄ = η−2QRn − θ−1EgCEgQGGH , (5.43)

where C , BHHHR−1
x HB. When Q is diagonal, we define q , diag(Q) = [q1, . . . , qND

]T .

The gradient of f(q) with respect to q̄ is simply the vector which includes all the diagonal

entries of the above equation, that is,

5q̄ = η−2diag(QRn)− θ−1diag(EgCEgQGGH). (5.44)

When Q is block-diagonal, the gradient is equal to the Hadamard (element-wise) product

of (5.43) and a block-diagonal matrix IBD:

5Q̄ = (η−2QRn − θ−1EgCEgQGGH)� IBD, (5.45)

in which the diagonal blocks of IBD are matrices whose entries are all one.

Initial search point when Q is diagonal. The choice of the initial Q0 for gradient descent

is very important. For this purpose, we propose to choose a phase rotation vector that

can speed up the algorithms significantly. In particular, we temporarily assume that the
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diagonal entries of Q are all phase rotation terms, that is,

Q = diag{q} =




ejφ1

. . .

ejφND


 . (5.46)

By defining the EVD GGH = UGΛGUH
G with the eigenvalues λ1, . . . , λND

, the objective

function in (5.41) becomes

f(q) = tr
(
A(I + ΛG/θ))

−1
)

=

NS∑

k=1

ak
θ−1λk + 1

, (5.47)

where A , UH
GQH(I− Eh)QUG. The diagonal entries of A are

ak = uHk QH(I− Eh)Quk = qHUH
(k)(I− Eh)U(k)q, (5.48)

where UG = [u1, . . . ,uND
] and U(k) , diag(uk). We then have to minimize

f(q) = qHΨq, where Ψ ,
NS∑

k=1

UH
(k)(I− Eh)U(k)

θ−1λk + 1
. (5.49)

This is not a trivial problem because the entries of q are all of norm one [122]. Without loss

of generality, we can assume φ1 = 0. Define the EVD Ψ = UΨΛΨUH
Ψ , with the eigenvalues

sorted in a descending order. The objective function becomes the following weighted sum

f(q) =

ND∑

k=1

λΨ,k‖uHΨ,kq‖2, (5.50)

where uΨ,k is the kth column of UΨ. Since the entries of q must have the same magnitude,

the solution cannot be the eigenvector of Ψ corresponding to its smallest eigenvalue (uΨ,ND
).

A heuristic suboptimal approach is to allocate as much as possible to the term with the

smallest weight λΨ,ND
. This is achieved by letting

φk =
uΨ,ND

(k)

|uΨ,ND
(k)| . (5.51)
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We should bear in mind that global optimality is not of much importance here because this

φk is merely used as the initial search point.

5.5 Adaptive Realization

Since optimization of either the precoder B or the equalizer Q has been discussed, we now

propose an alternating algorithm for the joint the design of these two matrices. This algo-

rithm also exploits the slow variations between successive transmission blocks by means of

inter-block adaptation. Here, we introduce the block index k to differentiate between trans-

mission blocks, which was temporarily suppressed in the previous sections for notational

simplicity.

The alternating algorithm optimizes B[k] and Q[k] interchangeably while holding the

other matrix constant. This process generates a descending sequence of MSE values and is

therefore guaranteed to converge to a local optimum. Afterwards, the optimal F?[k] and

η?[k] are computed as in Theorem 5.3.1. This framework is described in Algorithm 5.2. The

sub-procedures of updating Bm[k] or Qm[k] individually have been discussed in Sec. 5.4.

Algorithm 5.2: Joint optimization of B[k], Q[k] and F[k]

1: Initialize Q0[k] = Q?[k − 1], m = 0, ε > 0;

2: repeat

3: Increment the counter m← m+ 1;

4: Optimize and update Bm[k];

5: Optimize and update Qm[k];

6: until |MSEmin(Qm[k],Bm[k])−MSEmin(Qm−1[k],Bm−1[k])| ≤ ε;

7: Compute F?[k] and η?[k] according to Theorem 5.3.1;

8: Let B?[k]← Bm[k], Q?[k]← η?−1[k]Qm[k].

In this algorithm, inter-block adaptation is implemented by setting Q0[k] to the optimal

equalizer for the previous transmission block Q?[k − 1]. In addition, step 5 is essentially

a “procedure call” of Algorithm 5.1 and the initial search point for this step is chosen as

Qm−1[k]. As it will be shown in Sec. 5.6, inter-block adaptation speeds up convergence and

henceforth reduces computational complexity significantly.

The fact that Q does not show up in any power constraint is especially important.
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Otherwise, the initial point Q0 and the following iterates would not satisfy the constraints

and therefore would not be eligible solutions. If we had optimized Q in the first place,

both B and F would be involved in their corresponding power constraints, making it much

more difficult to leverage the slow fluctuations between successive transmission blocks. In

addition, Algorithm 5.2 is different from a conventional alternating approach widely used to

solve similar problems [67,77,117]. The latter needs to alternate between all three matrices

B, F and Q. The proposed algorithm converges significantly faster by freeing the relaying

matrix F from being involved in this alternating process, which will be verified numerically

later.

Next, we make further comments on the proposed unified framework within the context

of a few typical system configurations (cf. Table 5.1). These systems may differ in terms

of CSI availability, and the numbers of sources, relays or destinations.

Point-to-point channels (1S-1R-1D)

The optimal MMSE relaying matrix for single-user 1S-1R-1D systems is actually in a well-

defined SVD form [15,31]. For example, when CSI is unavailable at the source, the precoder

B is fixed beforehand. Without loss of generality, we assume a spatial multiplexing system

with NS = NB and B =
√
Ps/NsINs . In this case, there exists a waterfilling-type solution.

Let the SVD of R
−1/2
w HB be U1S1V

H
1 with the singular values sorted in descending order

and then the EVD of I− Eh is

I− Eh = V1Λ1V
H
1 . (5.52)

where Σ1 = I− (I + SH1 S1)−1 = diag(λh,1, . . . , λh,NB
). Let the SVD of R

−1/2
n G be U2S2V

H
2

and S2S
H
2 = diag(λg,1, . . . , λg,NB

). Define Q̃ , QR
1/2
n . We can prove that the optimal Q̃

has the form

Q̃? = V1SQUH
2 , (5.53)

where SQ = diag{s1, . . . , sNB
} ∈ CNB×ND . The singular values are expressed as

s2
k =

(√
λh,k
γλg,k

− 1

λg,k

)+

, (5.54)
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with γ satisfying
n∑

k=1

s2
k = Pr. (5.55)

The corresponding optimal relaying matrix satisfies

F?R−1/2
w = η?V2SFUH

1 , (5.56)

where

SF , (SH2 SHQSQS2 + I)−1SH2 SQS1(S1S
H
1 + I)−1. (5.57)

This is equal to the SVD form as in [15, 31]. When the CSI is available at the source, the

optimal B, F and Q jointly diagonalize the equivalent channel matrix and the diagonal

power allocation matrices of B and F were designed alternatively [15].

The downside is the need to perform SVDs on the channel matrices for every trans-

mission block. Computing the SVD of a matrix from that of another matrix with small

perturbation is not much easier than from scratch [123]. In this sense, the numerical algo-

rithm such as Algorithm 5.2 may be competitive with the closed-form SVD approach.

MAC (MS-1R-1D)

The SVD-based transceiver for 1S-1R-1D is also applicable to MS-1R-1D MAC systems

with single-antenna source users, or with multiple-antenna source users but without source

CSI. For the former case, as discussed before, the precoder B has to be diagonal and

each user should transmit the maximum allowable power. For the latter case, although the

source users may use precoders, they cannot rely on the knowledge of the channels and

hence the block-diagonal precoding matrix B must be predetermined.

BC (1S-1R-MD)

The MMSE design for BC was considered in [67] with single-antenna users, and in [70,77,78]

with multi-antenna users. The latter case usually requires complicated algorithms that

iterate through the precoder, the relaying matrix and every equalizers multiple times. The

proposed general framework can be applied to these two scenarios. For single-antenna users,

different users may apply their own amplitude scaling and phase rotation before decoding.

This diagonal scaling scheme provides more flexibility than the design in [67] which assumes
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the same scaling for these users (Q = I). The corresponding structural constraints are that

B is arbitrary and Q is diagonal. The proposed algorithms are immediately applicable and

simulation results demonstrate lower BER than [67]. As a special case when Q = IND
, our

approach provides a closed-form expression for the optimal solution when the users apply

the same scaling, whereas in [67], B and F were designed using an alternating algorithm.

The optimal design for multi-antenna users is similar to that for single-antenna users, except

that Q is block-diagonal and hence the gradient has a different mathematical form as in

(5.45).

IC (MS-1R-MD)

In interference networks, multiple sources are communicating with their intended destina-

tions through a relay station. This network topology is much more likely to be found in ad

hoc networks than in cellular systems. The source users probably do not have access to CSI

because of the overhead caused by CSI feedback. Therefore, unlike 1S-1R-MD systems, B

does not need to be optimized and joint design of F and Q can be done using Algorithm 5.1.

Multi-relay systems

The inter-block adaptation can be easily applied to 1S-MR-1D and 1S-MR-MD systems as

well. In fact, Algorithm 4.2 on page 75 is essentially the multi-relay version of Algorithm

5.1. Hence, adaptation can be done in a similar way to single-relay systems, that is, by

setting Q0 to the optimal equalizer for the previous transmission block. For 1S-MR-1D

systems, Q is block-diagonal and the gradient is the Hadamard product of (4.58) and IBD

(similar to(5.45)).

5.6 Numerical Results

In Sec. 5.6.1 and 5.6.2, we study the convergence and tracking behaviors of the proposed

numerical algorithms, followed by BER simulation of a 1S-1R-MD system in Sec. 5.6.3.

Our purpose is to demonstrate how the proposed framework works, instead of presenting

an exhaustive study of all the possible system configurations. For convenience, we define

two SNRs, ρ1 = Ps/(NSσ
2
w) and ρ2 = Pr/(NRσ

2
n), that represent the link quality of the

first-hop and second-hop transmissions, respectively. The following parameters are chosen
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Table 5.2 Parameters of fading channels

Doppler Spectrum Jakes

Rician K-factor 4

Sampling interval 0.5µs

Sampling frequency 2MHz

Carrier frequency 2GHz

Doppler spread fd = 10Hz (velocity of 1.5m/s)

Approximate coherence time 0.5/fd =0.05s

Delay spread NA (flat fading)

Spatial correlation 0

Transmission block 1/20 × coherence time
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Fig. 5.2 Speed of convergence when Q is structurally unconstrained.

throughout this section: NB = NS = NR = ND = 4, Rw = σ2
wI, Rn = σ2

nI and σ2
w = σ2

n.

We assume slow and flat fading MIMO channels with the parameters listed in Table 5.2.

Although the doppler spread corresponds to the velocity of a pedestrian (1.5m/s), the

following results still hold for higher speeds because the transmission block would be shorter

accordingly.
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Fig. 5.3 Tracking behaviors of the proposed adaptive algorithms when Q is
structurally unconstrained. JMMSE is the optimal solution from [31]. Single-
direction GD computes the gradient only once and searches along this single
direction.

5.6.1 Optimization of the Equalizer Q

In Sec. 5.4.2, we proposed the gradient descent algorithm (Algorithm 5.1) which can be

used to optimize Q. In this section, we will check convergence and tracking behaviors for

this line search algorithm when Q is either structurally unconstrained or diagonal.

Structurally unconstrained Q. We assume ρ1 = ρ2 = 15dB and B ∝ I. The parameters

in Algorithm 5.1 are chosen as ρ = 0.9 and c = 0.01. In Fig. 5.2, we compare the speed of

convergence between non-adaptive and adaptive versions of gradient descent (GD) under

a typical channel realization. As explained earlier, the adaptive version searches from the

optimal Q? for the previous transmission block. As shown by the curves, this inter-block

adaptation speeds up convergence considerably. Then, we consider a single-direction GD

algorithm which computes the gradient only once and searches along the opposite direction

of this gradient. The suboptimal equalizer is then used as the initial search point for the

next transmission block. As shown in Fig. 5.3, single-direction GD is able to track the

optimal joint MMSE method [31] closely as time evolves, though with slight performance

loss.
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search from the phase rotation matrix in (5.46).
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Fig. 5.5 Tracking behaviors of the proposed adaptive algorithms when Q is
diagonal. Single-direction GD computes the gradient only once and searches
along this direction.
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Fig. 5.6 Convergence behaviors of joint design. The conventional algorithm
iterates through all three matrices B, F and Q, whereas Algorithm 5.2 updates
B and Q alternatively. For the non-adaptive version, the initial values are
B0 ∝ I, Q0 ∝ I and F0 ∝ I; For the adaptive version, the solution for the
previous transmission block is used as the initial search point.

Diagonal Q. We choose the same settings as in the previous scenario. In addition to

the original and adaptive versions, we consider searching from the phase rotation matrix

in (5.46) as well. As shown in Fig. 5.4, the phase rotation version converges considerably

faster and are therefore appropriate for the first transmission block. The adaptive version is

still the best candidate for the following blocks. As in the previous scenario, single-direction

GD tracks the optimal strategy closely in Fig. 5.5.

5.6.2 Joint Optimization

We compare the speed of convergence between several approaches mentioned in Sec. 5.5:

Algorithm 5.2, its non-adaptive version and the conventional approach. We assume that Q

is diagonal. As shown in Fig. 5.6, by removing F from the iterating process, Algorithm 5.2

converges much faster than the conventional algorithm, in fact after just one iteration. A

possible explanation is that at high SNRs, the third term on the right-hand side of (5.31)
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is negligibly small. Hence, it follows that the optimal B? would almost be independent of

Q? and vice versa. We note that although both versions of Algorithm 5.2 converge after

just one iteration, the adaptive version converge much faster than the non-adaptive version

in Step 5 which is essentially Algorithm 5.1.

5.6.3 BER Simulations

We simulate the BER of a 1S-1R-4D BC system. The BS transmits four independent un-

coded QPSK symbol streams to their corresponding single-antenna destination users. The

spatial characteristics of the wireless channel between the BS and the relay are described by

the Kronecker model: H = R
1/2
r HwR

1/2
t . Herein, Hw has zero-mean, unit-variance, circu-

larly symmetric complex Gaussian entries that are statistically independent. The (i, j)-th

entries of Rr and Rt are both 0.7|i−j|. The forward channel is G = DGwR
1/2
t , where

Gw has the same statistical characteristics as Hw and the diagonal matrix D represents

relative pathlosses of 0, 0, 3 and 6dB for different users. The temporal characteristics of

the channels are in Table 5.2.

The methods under comparison are: 1) ZF relaying [21]: B =
√
PS/NSI, F = ηG†H†

and Q ∝ I. 2) MMSE relaying without precoder [13]: B =
√
PS/NSI, F as in (5.25) and

Q ∝ I. 3) Joint design of B and F without diagonal scaling (Q ∝ I) [67]; 4) Joint design

of B, F and Q with diagonal scaling. The average BERs of the multiple users are shown

in Fig. (5.7) and (5.8), where we let ρ1 = 25dB or ρ2 = 25dB and vary the other SNR

between 5 and 25dB. As expected, MMSE relaying without precoder always outperforms

ZF relaying without precoder. The joint design of B and F leads to an SNR gain of 2–3dB

over the MMSE relaying without precoder. Furthermore, by including the diagonal Q in

the joint design, the diagonal scaling scheme enables an additional SNR gain of 0.5–2dB

at mid-to-high SNRs.

5.7 Summary

In this chapter, we have proposed a transceiver optimization framework which allows us

to study various non-regenerative MIMO relay networks in a unified way. This framework

leads to new transceiver design algorithms for different network topologies, and also makes

it convenient to exploit the slow variations between transmission blocks. First, we formu-

lated a unified system model which can accommodate different types of relay systems by
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Fig. 5.7 BER versus ρ1 with ρ2 = 25dB.
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imposing proper structural constraints on the precoder, the relaying matrix and the equal-

izer. Then, we consider the joint design of these modules based on the MMSE criterion.

More specifically, the optimal relaying matrix was derived as a closed-form expression of the

other two matrices, thereby removing this matrix and its corresponding power constraint

from the optimization problem. Subsequently, the precoder or the equalizer was jointly de-

signed using Algorithm 5.2 which updates each of them one at a time. When the equalizer

is fixed, the optimal precoder is in a waterfilling-like SVD form if there is no structural

constraint, and does not need to be designed if it is diagonal. When the precoder is fixed,

the optimal equalizer can be obtained using gradient descent (Algorithm 5.1) regardless of

the structural constraint. Inter-block adaptation is implemented by choosing the optimal

equalizer from the previous block as the initial search point for the current block. This

speeds up convergence and henceforth reduces computational complexity significantly. The

proposed framework is explained in detail and verified numerically within the context of

different system configurations. For example, for relay-assisted BC with single-antenna

users, the proposed framework leads to a new diagonal scaling scheme which provides more

flexibility and better BER performance by allowing different users to apply their own am-

plitude scaling and phase rotation before decoding, in contrast to [67] which assumes the

same scaling for these users.
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Chapter 6

Conclusions

6.1 Summary and Conclusions

In this thesis, we have studied optimal linear transceiver design for non-regenerative MIMO

relay networks, which is crucial to fulfilling the great potential of such networks. We focused

on two important aspects: combining and adaptation. The former stands for coherent

combining at the destination of the signals transmitted from multiple multi-antenna relays

to benefit from a distributed array gain; the latter denotes appropriate exploitation of

time-domain properties of wireless channels to reduce algorithmic complexity.

After presenting a detailed survey of relevant literature in Chapter 2, we first studied

combining in terms of a 1S-MR-1D system in which the source sends information to the

destination, assisted by multiple parallel relays. The SVD-based optimal scheme for single-

relay systems does not work due to the structural constraint of block-diagonality. In such

systems, whether signals from different relays can combine constructively at the destination

is of utmost importance. Therefore, we studied optimal design of the multiple relaying

matrices for such combining-type 1S-MR-1D systems, aiming for coherent combing but

without over-amplifying the noises induced at the relay receivers. The existence of multiple

antennas makes it difficult to balance these two aspects, and therefore we considered two

different approaches to transceiver design, namely, a structured hybrid framework and a

MMSE-based optimization approach.

In Chapter 3, we proposed a low-complexity hybrid framework in which the non-

regenerative MIMO relaying matrix at each relay is generated by cascading two substruc-

tures, akin to an equalizer for the backward channel and a precoder for the forward channel.

2013/10/30
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For each of these two substructures, we introduced two one-dimensional parametric families

of candidate matrix transformations. The first family, non-cooperative by nature, depends

only on the backward or forward channel of the same relay. Specifically, this family in-

cludes ZF, linear MMSE and MF as special cases, as well as other intermediate situations,

thereby providing a continuous trade-off between interference and noise suppression. The

second (cooperative) family also makes use of information derived from the channels of

other relays. This hybrid framework allows for the classification and comparison of all pos-

sible combinations of these substructure, including several previously investigated methods

and their generalizations. Within this hybrid framework, the design parameters λ were

further optimized, resulting in significant performance improvements. This can be done

on-line based on individual channel estimates or off-line based on a priori knowledge of

the channel statistics. In the latter case, the optimal parameters can be well approximated

by linear functions of SNR [log ρ1, log ρ2]T with minor performance loss. The optimal λopt

differs significantly from those corresponding to the ZF, MF and linear MMSE relaying

strategies. Through simulations, we showed that the capacity of selected hybrid schemes

(with optimized parameters) comes within 1bits/s/Hz of the upper bound achieved by the

capacity-optimal iterative method in [60]. In the mid-to-high SNR range, the BER per-

formance of C-NC even exceeds that of the MSE-optimal iterative method. The proposed

hybrid methods therefore achieve a good balance between performance and complexity:

they outperform existing low-complexity strategies by a large margin in terms of both ca-

pacity and BER, and at the same time, are significantly simpler than previous iterative

algorithms.

In Chapter 4, the other approach minimizes the mean square error (MSE) between

the transmitted and received signal symbols. Two types of constraints on the transmit

power of the relays were considered separately: 1) a weighted sum power constraint, and 2)

per-relay power constraints. As opposed to using general-purpose interior-point methods,

we exploited the inherent structure of the problems to develop more efficient algorithms.

Under the weighted sum power constraint, the optimal solution was expressed as a function

of a Lagrangian parameter. By introducing a complex scaling factor at the destination,

we derived a closed-form expression for this parameter, thereby avoiding the need to solve

an implicit nonlinear equation numerically. Under the per-relay power constraints, we

proposed a power balancing algorithm (Algorithm 4.1) that converts the problem into an

equivalent one with the weighted sum power constraint. This is much more efficient than
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general-purpose interior-point methods. In addition, we investigated the joint design of

a MIMO equalizer at the destination and the relaying matrices, using block coordinate

descent or steepest descent. The steepest descent method (Algorithm 4.2) converges much

faster than the block coordinate descent method. The BER simulation results demon-

strated that all the proposed designs, under either type of constraints, with or without the

equalizer, perform much better than previous methods and the hybrid methods. These

simulations also illustrated significant performance advantage of multi-relay systems over

single-relay ones. This chapter also provides new insights into the design of non-regenerative

1S-MR-1D systems. Firstly, the optimal design does not require global CSI availability:

each relay only needs to know its own backward and forward channel, together with a little

additional information. Secondly, under the weighted sum power constraint, the optimal

strategy tends to allocate more power to those relays with better source-relay links or worse

relay-destination links. Lastly, under the per-relay power constraints, the optimal strategy

sometimes does not use the maximum power at some relays. Forcing equality in the per-

relay power constraints as in [60] and Chapter 3 would result in loss of optimality. Another

interesting point is that, no matter how low the SNR is at a particular relay, this relay does

not have to be turned off completely.

The other aspect, adaptation, was investigated in Chapter 5 in a unified way for

1S-1R-1D and 1S-MR-1D and multiuser relay networks. We proposed a transceiver opti-

mization framework which leads to new design algorithms for certain system configurations,

and also makes it convenient to exploit the slow variations of the wireless channels between

successive transmission blocks. First, we formulated a general system model which can

accommodate various network topologies by imposing appropriate structural constraints

on the source precoder, the relaying matrix and the destination equalizer. Next, we de-

rived the optimal MMSE relaying matrix as a function of the other two matrices, thereby

removing this matrix and its associated power constraint from the optimization This is the

common step for point-to-point and multiuser systems. Subsequently, the precoder or the

equalizer was jointly designed using Algorithm 5.2 which updates each of them one at a

time. When the equalizer is fixed, the optimal precoder is in a waterfilling-like SVD form if

there is no structural constraint, and does not need to be designed if it is diagonal. When

the precoder is fixed, the optimal equalizer can be obtained using gradient descent (Algo-

rithm 5.1) regardless of the structural constraint. Inter-block adaptation is implemented

by choosing the optimal equalizer from the previous block as the initial search point for the
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current block. This speeds up convergence and henceforth reduces computational complex-

ity significantly. The proposed framework is explained in detail and verified numerically

within the context of different system configurations. For example, for relay-assisted BC

with single-antenna users, the proposed framework leads to a new diagonal scaling scheme

which provides more flexibility and better BER performance by allowing different users to

apply their own amplitude scaling and phase rotation before decoding, in contrast to [67]

which assumes the same scaling for these users.

6.2 Future Works

In this thesis, we have considered transceiver optimization for non-regenerative MIMO relay

networks. There are many potential research topics that can be further developed based

on this thesis, and they are briefly summarized below:

(1) The MMSE transceiver in Chapter 4 can be extended by assigning different weights to

the multiple sub-streams. The resulting weighted MMSE approach is able to provide

different QoS to these sub-streams. For example, video streams are more sensitive

with errors than speech signals. Furthermore, the weighted MMSE transceiver is

equivalent to the minimum BER transceiver or the maximum mutual information

transceiver when appropriate weights are chosen [15, 110], which may lead to more

efficient algorithms for the design of these transceivers.

(2) The MMSE transceiver can also be extended by considering CSI uncertainty in two

different ways. One is to use minimax criterion to optimize the worst-case perfor-

mance. The general form is

Minimize max
G∈RG,H∈RH

J(Fk,Q),

Subject to Power,QoS or SINR constraints, (6.1)

whereRG andRH are the uncertainty regions for G and H. The other is the Bayesian

approach— to optimize the expected performance with respect to CSI errors:

Minimize E∆G,∆H

{
J(Fj,Q)

}
,

Subject to Power,QoS or SINR constraints, (6.2)
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where ∆G and ∆H are the CSI error matrices. This can be done in a similar way as

in [37].

(3) The inter-block adaptive approach in Chapter 5 was considered in a unified framework

for various network topologies. This framework needs to be tweaked and tailored for

specific system configurations such as MS-1R-1D with multiantennas users and source

CSI.

(5) This thesis focuses on primitive network topologies. Practical applications such as

multi-cell coordinated multi-point (CoMP) transmissions may bring additional con-

cerns. Interferences from other primitive networks also need special treatment [124].

These practical issues provide both challenges and opportunities for researchers and

engineers.
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Appendix A

Proofs and Derivations

A.1 Proof of Corollary 4.3.5

The Woodbury matrix identity does not hold for pseudo inverse in general and therefore

we prove this corollary by substituting (4.27) into the LHS of (4.24). The kth sub-block of

the column vector Ψf? would be

Tk(R
T
s ⊗ I)

M∑

l=1

TH
l (Sl + λ?wlIN2

R
)†TlΣ

−1vec(I)

+ (Sk + λ?wkIN2
R

)(Sk + λ?wkIN2
R

)†TkΣ
−1vec(I). (A.1)

We always have (Sk + λ?wkIN2
R

)(Sk + λ?wkIN2
R

)†Tk = Tk: if λ?wk > 0, the pseudo inverse

operator is replaced by matrix inverse; if λ?wk = 0,

SkS
†
kTk = (HH

k R
−1/2
xk )T ⊗GH

k QHQGk(G
H
k QHQGk)

†GH
k QH

= (HH
k R

−1/2
xk )T ⊗GH

k QH = Tk

because QGk(G
H
k QHQGk)

†GH
k QH is a projection matrix so that GH

k QH is not changed.

By inserting (RT
s ⊗ I)(R−Ts ⊗ I) between Tk and Σ−1 in the second term of (A.1), the

kth sub-block of Ψf? is equal to Tk(R
T
s ⊗ I)ΣΣ−1vec(I) = Tk(R

T
s ⊗ I)vec(I). Therefore,

Ψf? = T(RT
s ⊗ I)vec(I) = b and (4.27) is a solution of (4.24).

In addition, (4.27) is indeed the minimum-norm solution, that is, f?Hf⊥(mk) = 0 for mk,
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1 ≤ k ≤M . The following equality

N (S†k) = N (Sk) = N (I⊗GH
mk

QHQGmk
) = N (I⊗QGmk

),

leads to S†kf
⊥
mk

= 0. Since λ?wmk
= 0, the inner product is

f?Hf⊥(mk) = f?Hmk
f⊥mk

= vec(I)HΣ−1TH
mk

S†mk
f⊥mk

= 0.

This completes the proof.

A.2 Proof of Proposition 4.3.6

We prove this proposition by showing that the derivative of g(λ) is negative. The matrix

Ψ can be singular, for example, when wk = 0 for a particular k and NR > NS. Hence, the

major difficulty is that the following property for matrix inverse

dA(λ)−1

dλ
= −A(λ)−1 dA(λ)

dλ
A(λ)−1 (A.2)

does not hold for the pseudo inverse in general. Our tactics here is to make Ψ invertible

by adding a matrix to it, but without changing the value of g(λ). According to Proposi-

tion 4.3.3, N (Ψ) is the direct sum of all Fmk
satisfying λwmk

= 0, which does not depend

on the specific value of λ as long as λ > 0. Let {u1, · · · ,up} be a set of orthonormal basis

vectors for N (Ψ) and define Ψe , Ψ +
∑p

k=1 uku
H
k (a function of λ). The orthogonality

relationship R(Ψ) ⊥ N (Ψ) leads to

Ψ−1
e =

(
Ψ +

p∑

k=1

uku
H
k

)−1

= Ψ† +

p∑

k=1

uku
H
k . (A.3)

Since b ∈ R(Ψ), we have uHk b = 0 and therefore

Ψ−1
e b = Ψ†b. (A.4)

To this point, all the pseudo inverses (Ψ†) can be replaced by matrix inverses (Ψ−1
e ).
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Based on the chain rule, the derivative of g(λ) satisfies

g′(λ) = −2bHΨ−1
e IsumΨ−1

e IsumΨ−1
e b ≤ 0, (A.5)

for the matrix Ψ−1
e is positive definite. Next we prove g′(λ) 6= 0 by contradiction. Assume

there exists a λ0 > 0 so that g′(λ0) = 0. Since Ψe(λ0)−1 is positive definite, IsumΨe(λ0)−1b

must be a zero vector, which leads to

b = (Φ + λ0Isum)Ψ(λ0)†b = (Φ + λ0Isum)Ψe(λ0)−1b

= (Φ + λIsum)Ψe(λ0)−1b, ∀λ ≥ 0.

This means that f? = Ψe(λ0)−1b is the solution of (4.24) for any λ ≥ 0. As a result, the

weighted sum power satisfies

0 ≤ g(λ) = ‖IsumΨ(λ)†b‖2
2 = ‖IsumΨe(λ0)−1b‖2

2 = 0.

This contradicts with g(0) > 0 and therefore, g′(λ) < 0 always holds. The limit of g(λ) is

lim
λ→∞

g(λ) = lim
λ→∞

bHI†sumbH/λ2 = 0.

A.3 Gradient of the MSE with Respect to Q̄

From the MSE expression in (4.33b), the partial derivative is

∂MSE

∂q̄ij
= −vec(I)HΣ−1 ∂Σ

∂q̄ij
Σ−1vec(I). (A.6)

Using similar techniques to those in the proof of Proposition 4.3.6 and substituting (4.27),

we can express (A.6) as

η−2
o

M∑

k=1

f?k
H ∂(Sk + θwkI)

∂q̄ij
f?k − η−1

o

M∑

k=1

f?k
H ∂Tk

∂q̄ij
Σ−1vec(I).
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Define an indicator matrix Eji whose (j, i)th entry is one and other entries are all zero, we

have

∂Sk
∂q̄ij

= (R−T/2xk
RT
wk

R−T/2xk
)⊗ (GH

k EjiQGk),

∂θ

∂q̄ij
=

tr(QRnEji)

PR
,

∂Tk

∂q̄ij
= (R−T/2xk

H̄k)⊗GH
k Eji.

According to the property (4.16c), we have

f?k
H ∂Sk
∂q̄ij

f?k = tr(EjiQGkFkRwk
FH
k GH

k ).

Because the power constraint is tightly satisfied, we have
∑M

k=1wk‖f?k‖2 = PR and therefore

M∑

k=1

f?k
H
( ∂θ

∂q̄ij
wkI

)
f?k = PR

∂θ

∂q̄ij
= tr(EjiQRn).

The property (4.16c) also leads to

f?k
H ∂Tk

∂q̄ij
Σ−1vec(I) = tr

(
Eji unvec

(
Σ−1vec(I)

)
HH
k FH

k GH
k

)
.

Since tr(EjiX) = X(i, j), the gradient can be expressed as in (4.58).

A.4 Proof of Theorem 5.3.1

For any η−1Q with η > 0, the optimal relaying matrix is obtained by replacing Q with

η−1Q in (5.23). Henceforth, F? and the corresponding minimum MSE are functions of

η and λ?. In turn, λ? is an implicit piecewise function of η, whose critical point ηc > 0

satisfies

Pr = tr(F?RxF
?H)|λ?=0

= η2
c tr
(
BHHHR−1

x HBQG((GHQHQG)†)2GHQH
)
.

As a result, the minimum MSE itself is also a piecewise function of η. The next step is to

find the particular η? leading to the smallest minimum MSE.
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If η ≤ ηc, λ
? = 0 is the solution to the KKT conditions. Substituting η−1Q into the

minimum MSE in (5.24), we found that only the third term, η−2tr(QRnQ
H), depends on η

and hence the minimum MSE is a decreasing function of η in the interval (0, ηc]. Therefore,

the smallest minimum MSE must be achieved when η ≥ ηc.

If η ≥ ηc, λ
? has to satisfy Pr = tr(F?RxF

?H). Using this equality to replace η−2 in the

third term of (5.24) and Pr in the last term, we have

MSEmin(η) = tr(I)− tr
(
QG (GHQHQG + λ?η2I)−2

(
GHQHQG + (2λ?η2 − θ)I

)
GHQHBHHHR−1

x HB
)
,

(A.7)

which can be viewed as a function of γ , λ?η2. Let the SVD of QG be USVH and define

A , UHBHHHR−1
x HBU, the problem is reduced to that of maximizing

g(γ) = tr
(
S
(
SHS + γI

)−2(
SHS + (2γ − θ)I

)−1
SHA

)
. (A.8)

Let βk ≥ 0 be the kth diagonal entry of SSH and ak ≥ 0 be the (k, k)th entry of A, we

have

g(γ) =

ND∑

k=1

akβk
2γ − θ + βk

(γ + βk)
2 , (A.9)

whose first-order derivative is

dg

dγ
=

ND∑

k=1

2akβk
θ − γ

(γ + βk)
3 = 0. (A.10)

If 0 < γ < θ, this derivative is positive and g(γ) is monotonically increasing. If γ > θ,

the derivative is negative and g(γ) is monotonically decreasing. Therefore, γ? = θ is the

solitary solution to maximize g(γ) and hence to minimize the MSE. This corresponds to a

particular combination of η? and λ?. The optimal relaying matrix in (5.25) can be obtained

by replacing Q with Q/η? in (5.23). Since η ≥ ηc, the power constraint is tightly satisfied

and therefore η? satisfies tr(F?RxF
?H) = Pr. Substituting γ? = λ?η?2 = θ into (A.7) leads

to (5.26).
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A.5 Proof of Lemma 5.4.1

Define the EVD UHBHVΛ′VHBU = ŨΛ̃ŨH , with the eigenvalues, λ̃k, sorted in the

non-increasing order. The objective function is hence a weighted sum of the nonnegative

diagonal entries of Ũ(I + Λ̃)−1ŨH , denoted as xk:

f(B) = tr
(
Σ Ũ(I + Λ̃)−1ŨH

)
=

ND∑

k=1

λkxk,

= λND

ND∑

l=1

xl +

ND−1∑

k=1

(
(λk − λk+1)

k∑

l=1

xl

)
. (A.11)

Let B̃ , BUŨUH . Since both U and Ũ are unitary, B̃ satisfies tr(B̃B̃H) = tr(BBH) ≤ PS,

and UHB̃HVΛ′VHB̃U = Λ̃ is diagonal. Hence, f(B̃) can be obtained by replacing xk in

(A.11) with tk , (λ̃k + 1)−1. For the same matrix Ũ(I + Λ̃)−1ŨH , tk is a non-decreasing

sequence comprising of its eigenvalues, whereas the sequence xk includes its diagonal entries.

The latter can be sorted into a non-decreasing sequence xπk . According to [27, Thm. 4.3.26],

we have ∑k

l=1
tl ≤

∑k

l=1
xπl ≤

∑k

l=1
xl, (A.12)

for any 1 ≤ k ≤ ND (majorization). As per (A.11), f(B̃) ≤ f(B).
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