

Experiment 4
TCP

Submitted by: Huang, Jim-Chet and Khazzam, Shawn
Student ID: 110034835, 119921328

Course Number: ECSE-489B

Date: March 21st, 2003

1 Abstract 1
2 Introduction 1
3 Objectives 1
4 Preparation 1
5 Methodology 1

5.1 TCP slow-start and congestion avoidance .. 1
5.2 TCP SACK (Selective Acknowledgement) .. 1

5.2.1 Impact of end-to-end delay on TCP performance....................................... 1
5.2.2 Impact of link data rate on TCP performance... 4

5.3 High Speed TCP ... 5
5.4 TCP connections ... 7

6 Results 7
6.1 TCP slow-start and congestion avoidance .. 7
6.2 TCP SACK (Selective Acknowledgement) .. 7

6.2.1 Impact of end-to-end delay on TCP performance....................................... 7
6.2.2 Impact of link data rate on TCP performance... 7

6.3 High Speed TCP ... 7
6.4 TCP connections ... 8

7 Conclusion 8
8 Bibliography 8

 1

1 Abstract

TCP Reno, in its current implementation, suffers in performance when multiple
packets are dropped per transmit window. Also, TCP Reno�s congestion window sizes
are presently constrained by its congestion control mechanisms. Several methods
designed to address these problems with current TCP implementations have been
proposed. SACK (Selective Acknowledgement) has been proposed as a means of
addressing the loss of performance in the presence of multiple packet drops per window
by selectively acknowledging packets as opposed to doing so in a cumulative manner.
Sally Floyd�s High-Speed TCP algorithm proposes a method of setting the TCP
congestion window that is better suited to high-speed applications. This laboratory
examines the efficiency and practical aspects of these two methods that address these
issues.

2 Objectives

The first objective of this laboratory will be to examine the impact of end-to-end
delay and data rate on the duration of the slow-start and congestion avoidance phases of
TCP Reno. The second objective will be to examine the impact of end-to-end delay and
data rate on the performance of SACK TCP relative to the on-SACK TCP Reno
implementation. The next goal will be to examine the efficiency of high speed TCP, as
recommended by Sally Floyd, in a situation where the link can be considered to be in the
�high-speed� regime in order to fully take advantage of the modified algorithm. The last
goal will be to examine the validity of the expression given in Equation 4-1 via Internet
experiments involving downloading from various servers with different packet loss rates.

3 Preparation

The current congestion control algorithm in TCP sets the congestion window size
(CongWin) such that it limits the maximum segment size (MSS). The size of the
congestion window is dynamically adjusted based on perceived congestion in the
network. When a TCP connection begins, the window size starts off at 1 MSS. In order to
take full advantage of the link capacity, the window size increases exponentially rather
than linearly. Once CongWin reaches a threshold value Thresh, it stops the exponential
increase and increases linearly in size until a loss event. Once congestion is detected via
a triple duplicate ACK, it halves the window size and eventually re-increments in a linear
fashion. The initial exponential increase is known as slow start. In this portion of the lab,
we are asked to determine the effect that propagation delay and data rate have on the
duration of the slow start phase.

 The TCP algorithm currently acknowledges proper receipt of packets in a
cumulative manner: an acknowledgement for packet N implies that all packets with

 2

sequence numbers N and below have been properly received. This method of
acknowledgement can lead to severe performance degradation upon multiple packet
losses, as the sender will decide to resend an entire window of packets upon a loss event.
Many of the packets in this window of data may, however, have simply been delayed in
the network and will thus be unnecessarily re-transmitted. A more efficient method of
acknowledging packets would be to selectively do so (SACK), hence minimizing the
number of unnecessary re-transmissions on the part of the sender. For this part of the lab,
we are asked to determine the relative performance gain of SACK over non-SACK TCP
as a function of link delay and data rate.

 Another problem with the current TCP implementations is that the congestion
control algorithm being used would require that an extremely low packet loss rate be
achieved for a large CongWin value. This ultimately limits the maximum throughput that
can be achieved by a TCP connection in a realistic environment. An alternative
algorithm, proposed by Sally Floyd1, seeks to alleviate this limitation on CongWin, and
hence the maximum achievable throughput for a typical networking environment. The
high-speed algorithm uses a different formula that the one typically used for computing
the current CongWin value as a function of the packet loss over the link. Thus, in this
part of the lab, we will assess the efficiency of the high-speed algorithm in terms of its
fairness in bandwidth sharing between 2 competing high-speed connections.

4 Methodology

4.1 TCP slow-start and congestion avoidance

In order to fully qualify the effects of propagation delay and data rate on the length
of the slow start phase, we used the OPNET modeler. We used the built-in TCP project.
We then chose the Congestion Size of TCP Reno scenario. We then modified properties
of the link between the client and the server in the scenario, in order to adjust the delay
and data rate of the line. Finally we graphed the size of the congestion window as a
function of time, over a period of 2 minutes, in order to view the effects of the controlled
variables.

We varied the delay from 0.10s to 0.16s until we saw a trend forming. The reason

that we chose this particular range is because we found that significantly above 0.16s, the
delay became so large that we saw a saw tooth trace forming. Similarly, significantly
below 0.10s, the graph appeared to remain in slow start phase and then leveled off once
the congestion window size met the maximum capacity of the line.

In order to best capture the effects of data rate on congestion window size, we

varied the data rate from DS1 (1.544 Mbit/s) to SONET/OC-24 (1.244 Gbit/s). We used
the North American standard transmission rates. We began at a DS1 rate because it is the
basic transmission rate and we decided to stop increasing at OC-24 because our results at
higher speeds were displaying a trend.

 3

Finally, in order to measure the length of the slow start phase in both tests, we
exported the graph of congestion window size as a function of time into Microsoft Excel.
We then used Excel to accurately read the point where the window size stops growing
exponentially.

4.2 TCP SACK (Selective Acknowledgement)

4.2.1 Impact of end-to-end delay on TCP performance

The Reno_with_one_drop and SACK_with_one_drop scenarios in the TCP
OPNET project were opened and run by setting the number of packets dropped to be 5
(more precisely, the first 5 packets of each frame are dropped). The following congestion
window size was obtained:

TCP Reno Congestion Window Size with and without SACK
enabled

0

20000

40000

60000

80000

100000

120000

100 105 110 115 120 125

Time (s.)

Co
ng

W
in

 (b
yt

es
)

w/out SACK
w/ SACK

Figure 4-1 � Comparison of SACK and non-SACK TCP Reno

The same scenarios were then run with an increased end-to-end delay of 100 ms,

750 ms and 1.0 s to gauge the impact of connection delay on TCP performance. The plots
of the congestion window size are shown below for all 3 cases:

 4

Congestion Window size for TCP Reno w/ and w/out SACK

enabled with a 100ms delay

0

20000

40000

60000

80000

100000

120000

100 105 110 115 120

Time (s.)

Co
ng

W
in

 (b
yt

es
)

w/out SACK
w/ SACK

Figure 4-2 - Comparison of SACK and non-
SACK TCP Reno with an end-to-end delay of
100 ms

Congestion window size for SACK and non-SACK enabled

TCP Reno for an end-to-end delay of 750 ms.

0

20000

40000

60000

80000

100000

120000

140000

100 105 110 115 120 125 130 135 140

Tim e (s.)

Co
ng

W
in

 (b
yt

es
)

w/out SACK
w/SACK

Figure 4-3 � Comparison of SACK and non-
SACK enabled TCP Reno for an end-to-end

delay of 750 ms.

Congestion Window Size for TCP Reno w/ and w/out SACK for
1.0s delay

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

100 105 110 115 120

Time (s.)

Co
ng

W
in

 (b
yt

es
)

w/SACK
w/out SACK

Figure 4-4 � Comparison of SACK and non-SACK enabled TCP Reno for an end-to-end delay of 1.0

s.

4.2.2 Impact of link data rate on TCP performance
The scenarios were then run with data rates of DS0 and T1 to gauge the impact of

data rate on TCP performance. The plots of the congestion window size are shown
below:

 5

Congestion Window size for TCP Reno w/ and w/out SACK for
DS0 rate

0

20000

40000

60000

80000

100000

120000

100 105 110 115 120

Tim e (s.)

Co
ng

W
in

 (b
yt

es
)

w/out SACK
w/ SACK

Figure 4-5 - Comparison of SACK and non-

SACK TCP Reno for a DS0 data rate

Congestion Window for TCP Reno w/ and w/out SACK for T1

data rate

0

20000

40000

60000

80000

100000

120000

100 105 110 115 120

Tim e (s.)

Co
ng

W
in

 (b
yt

es
)

w/out SACK
w/ SACK

Figure 4-6 - Comparison of SACK and non-

SACK TCP Reno for a T1 data rate

4.3 High Speed TCP

Using the OPNET TCP project modified to take advantage of the high-speed TCP
(HSTCP) algorithm (as recommended by Floyd1) via the adapted process models
tcp_conn_v4 and tcp_manager_v4, two competing and concurrent connections were set
up. The TCP Reno algorithm was used, along with a default DS0 data rate and distance-
dependent end-to-end link delay. The 2nd one was set to start 0.001 s. after the 1st had
started. In order to gauge the real performance of HSTCP, the link usage was set to a high
load. This entails a more sustained link usage and is representative of the operating
conditions that HSTCP is designed to meet. Plotted below are the bandwidth distributions
as well as congestion window sizes for the 2 connections.

Bandwidth Sharing between 2 competing HSTCP

connections

-2000
0

2000
4000
6000
8000

10000
12000
14000
16000
18000

0 100 200 300 400
Time (s.)

Tr
af

fic
 R

ec
ei

ve
d

(b
yt

es
/s

.)

Connection 1
Connection 2

Figure 4-7 - Bandwidth Sharing between 2

competing HSTCP connections

Congestion window sizes for 2 competing HSTCP

connections

0
20000
40000
60000
80000

100000
120000
140000

100 105 110 115 120 125

Time (s.)

C
on

gW
in

 (b
yt

es
)

Connection 1
Connection 2

Figure 4-8 - Congestion window sizes for 2

competing HSTCP connections

 6

4.4 TCP connections

This part of the lab was to be performed using TCPDump. The objective was to engage in
a few �long� TCP connections in order to verify the validity of the Steady-State TCP throughput
equation (Equation 4-1).

In order to engage in long TCP connections, we downloaded the same 46.8MB file from
the Tucows website from 2 different locations and a 18MB file from another location. The
motivation behind using this website is that we can choose the mirror site from which we wish to
download. This effectively allows us to download from a specific country and compare the
results. We downloaded the 46.8MB file from Israel and Hong Kong, and then downloaded the
smaller 18MB file from Trinidad & Tobago. The continental distribution will adequately
diversify the results.

Once TCPDump had filled our file with the log of all TCP transactions, we needed a way
of counting all triple duplicates and timeouts in order to count all lost packets. This was a
difficult task since the log file contained over 50,000 TCP transactions! In order to automate the
process, we parsed the file into Microsoft Excel. This then allowed us to use a Visual Basic
script for counting purposes. We identified a triple duplicate by always comparing a particular
ACK sequence number with the last three. Once we found four consecutive acknowledgements
of the same sequence number, we knew that a triple duplicate had occurred and one packet had
been lost. Furthermore, identifying a timeout was not as straightforward. We realized that the
only time a server should be resending information is if a triple duplicate or a timeout has
occurred. Hence we setup the script to certify that the packet indexes were increasing as time
progressed, in the event that there was a decrease in the packet index, a packet was resent, we
simply conducted a triple duplicate test. If a triple duplicate had not occurred, we knew there had
been a timeout. This however became very complicated when tracking timeouts for a connection
that opened two or more ports in parallel, because then all sequence numbers were specific to the
port that they represented. We then had to modify the script to keep track of the last acknowledge
sequence number for each port in use. The script can now track up to 5 simultaneous ports. We
used this script to analyze the log files of our 4 transactions.

Equation 4-1 � Steady-State TCP throughput

Above is a script that calculates B(p), the throughput, Wmax is the maximum congestion

window size (as advertised by the receiver buffer), b is the number of packets acknowledged by
a received ACK, T0 is the timeout period, and p is the probability that a packet is lost given that
it is either the first packet in its round or the preceding packet in its round is not lost. We needed
to satisfy the validity of this equation for all four trials. The parameters in this formula were
computed as follows: b= 2 since for all three trials, during the majority of the time, 2 packets are
acknowledged with one ACK. The error introduced by this assumption is minimal since close to
95% of the time, there are 2 packets per group. If this is not the case, there is only a maximum of
3 and a minimum of 1 per group. Hence, the assumption is sound. The Wmax is the maximum

 7

window size of the receive buffer in packets. This value (in bytes) can be read directly from the
log file of the TCPDump log line, it is the win parameter as described in experiment 1. In order
to transform this into packets, divide by the number of bytes per packet. This value is also
indicated in the log file. After a packet is sent, the bytes sent are included in brackets. RTT is the
average round trip time of a packet. This value is quite complicated to calculate because the
TCPDump is only reading packets received by the client. So all the timing values are the times
the packets were received and not the time they were sent.

There are 2 basic ways of finding the correct round-trip time. The first is from the very first

line of the log, assuming logging has begun at the beginning of the connection. At this point, we
know the congestion window is of size 1, as stipulated by the TCP slow start phase. Hence the
round trip would be the difference between the time that the acknowledgement was sent by the
client for that one packet and the time that the next one was received. This works because we
know that when the congestion window size is 1, the server must wait for the acknowledgement
of that 1 packet before sending out the next. This is the same reason why this method cannot be
employed anywhere within the log file. We have no way of tracking the server�s congestion file
window size aside from physically counting all acknowledgments and timeouts/triple duplicates.
At any given time, the server will most probably have a congestion window size above 1. This
means that the server sends out multiple packets without waiting for an acknowledgment. The
RTT therefore cannot be determined. The second way of finding the round trip time from the
TCP log is from the occurrence of a triple duplicate. When a triple duplicate occurs the client has
not received a specific packet, the sever must then send back one packet, and one packet only.
We can then measure the round-trip time from this as the difference between the time that the
fourth packet in the triple duplicate was sent and the time that the missing packet was received
by the client. The only flaw with this technique is that the client sends out more than 4 duplicate
acknowledgements. For the purpose of this lab we will assume that the server actually resends
the packet when it receives the fourth � in effect, assuming none of the triple duplicate packets
are lost on the way. For our purposes, we will use the second method since it is less crude and
less susceptible to error.

The value of p is the probability that a packet is lost given that it is either the first packet in

its round or the preceding packet in its round is not lost. Effectively, p=(Total packets lost) /
(Total packets ACK�ed). There are two ways of determining the total packets acknowledged.
Once again the first method is slightly more crude, it involves dividing the total file size by the
size of a packet, implying that all packets have been acknowledged. We have actually trained our
script to count all acknowledged packets, as a more precise method. Finally, T is the average
duration of a timeout. In cases, such as ours, it is possible that a timeout is not perceived. In this
case, we will be using a theoretical value for this, which applies to all TCP connections and is
deduced from the following formula in Kurose & Ross.

Timeout Interval = EstimatedRTT+4*DevRTT
EstimatedRTT = 0.875*EstimatedRTT + 0.125*SampleRTT
DevRTT = 0.75*DevRTT+0.25|SampleRTT � EstimatedRTT|

Explanations of these equations are beyond the scope of this experiment however we will
mention that the EstimatedRTT is an exponential weighted average. The RTT calculated from the
triple duplicates will be used as SampleRTT. Once we calculate all these values, we can
substitute them into the formula to see if the calculated throughput is the same as that displayed
by the Microsoft Windows download window.

 8

5 Results

5.1 TCP slow-start and congestion avoidance

After simply plotting the length of the slow start phase versus the delay set on the line, we
immediately noticed a trend. The length of the slow start phase is dependent on timeout. Once
the first timeout is perceived, the phase ends. Furthermore, timeouts are dependent on received
acknowledgements. As we increase the link delay, it takes longer for a delay to arrive back from
the receiver. Therefore the connection must wait a slightly longer time for each round for the
acknowledgement to arrive, thereby increasing the overall slow start duration. The data values
can be viewed in the figure below. It is worthy to note that although it may seem tempting to
increase the link delay in order to maximize the slow start phase�s exponential bandwidth
growth, it is not a good idea. The steady state effect will be that the overall process becomes
significantly slower due to the longer delay.

Length of Slow Start vs. Delay

1

1.2

1.4

1.6

1.8

2

0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17

Delay (s)

Le
ng

th
 o

f S
lo

w
 S

ta
rt

 (s
)

Figure 5-9 � Length of Slow Start phase vs. delay

 Once all the data for the connection speeds had been collected, we plotted the graph of
the length of the slow start phase vs. bandwidth. The graph can be viewed below. Clearly, the
length of the slow start phase is minimally affected by the change in data rate, especially at the
higher speeds. Our explanation for this effect is simply that at such high speeds, other rate
controlling elements in the TCP setup, such as queues, become the bottleneck. To this effect, the
link does not even end up transmitting at the specified rate.

 9

Length of Slow Start vs. Data Rate

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 200 400 600 800 1000 1200 1400

Data Rate (kbit/s)

Le
ng

th
 o

f S
lo

w
 S

ta
rt

 (s
)

Figure 5-10 � Length of Slow Start phase vs. data rate

5.2 TCP SACK (Selective Acknowledgement)

5.2.1 Impact of end-to-end delay on TCP performance

As can be seen in Figure 4-1, though both implementations are identical in their slow-
start/congestion avoidance phases, the SACK implementation of TCP Reno starts its recovery
phase earlier than that of non-SACK TCP. The presence of multiple packets dropped per
transmitted window of data has caused the non-SACK TCP implementation to time out, since the
sender often has to wait for a retransmit timer before recovering after a loss event1. As a result,
SACK TCP drops its congestion window size to 32 768 bytes, whereas TCP Reno resets its
congestion window to 8152 bytes, or 1 MSS. Since the congestion window size for SACK TCP
is larger after a loss event than the corresponding non-SACK window size, the recovery for
SACK TCP is faster than that of non-SACK TCP.

By increasing the end-to-end delay, the performance of SACK TCP is expected to lessen.

From Figure 4-2 , for a moderate delay of 100 ms, the performance of SACK TCP indeed
degrades as the SACK implementation takes more time to recover than it did in the previous
case. This can be observed from the fact that after decreasing its congestion window size, the
SACK algorithm is stalling for a slightly longer time before ramping up again. As the end-to-end
delay increases to higher values of 750 ms and 1.0 s., (Figure 4-3 and Figure 4-4), the
performance of the SACK-enabled TCP approaches that of regular TCP. Thus, for large end-to-
end delays, there is no advantage to using a SACK-enabled TCP implementation.

5.2.2 Impact of link data rate on TCP performance

As can be seen from Figure 4-5 and Figure 4-6, the data rate does not impact the
performance of SACK and non-SACK TCP, as regardless of the data rate of the channel, SACK
TCP recovers faster than its non-SACK counterpart. This can be explained by the fact that both
implementations operate independently (say, on identical, but distinct channels) using the same

 10

bandwidth. As a result, the relative performance variation of the SACK-enabled TCP over that of
the non-SACK TCP is negligibly small.

5.3 High Speed TCP

By simulating 2 competing connections which make little sustained use of the link
bandwidth, it would appear that high speed TCP is a fair algorithm as far as partitioning of
bandwidth is concerned. However, in order for the algorithm to operate in the high speed regime,
both connections must be made to use the link for a prolonged time. This can be accomplished
by arranging a large file to be downloaded.

Thus, under heavy load conditions, the arrival of the 2nd competing connection deprives
the 1st of any fairness in bandwidth sharing. As shown in Figure 4-8, once the 2nd connection
begins, the 1st connection experiences a timeout event. Shortly thereafter, the 2nd connection also
times out. It is evident that both connections, in running the same algorithm, seek to maximize
their data rate. As a result, both connections inevitably collide and time out. Unfortunately, after
recovering, it is only the 2nd connection that receives the full link bandwidth, whereas the 1st
connection is left with only a fraction of the link�s resources.. Thus, high speed TCP is not
perfectly fair in bandwidth sharing when operating under the �real� high speed regime in which
large files are transferred over the link.

5.4 TCP connections

After conducting the TCPDump�s from the three locations, we needed to calculate the
appropriate parameters before plugging them into the Throughput Equation. The following is a
sample parameter calculation for the TCPDump from Hong Kong. The script calculated 10 triple
duplicates and 0 timeouts in the log file. Since it outputted the lines that these events occurred,
we went into the log file and manually calculated the RTT for each triple duplicate. We used
Microsoft Excel to calculate the exponential weighted average of the following 10 sample RTTs
and we arrived at the following values.

Calculation of Exponential
Weighted average
Sample Estimated DevRTT
0.290661 0.290661 0
0.290398 0.290628 5.75313E-05
0.297856 0.291532 0.001624246
0.290919 0.291455 0.001352193
0.290395 0.291323 0.001246027
0.297638 0.292112 0.002316029
0.276571 0.290169 0.005136608
0.298063 0.291156 0.005579193

0.29743 0.29194 0.005556822
0.298097 0.29271 0.005514396

Figure 5-11 � Sample Calculation of Exponential Weighted average for Hong Kong

Estimated RTT = 0.29271 sec

 11

DevRTT = 5.514E-3

Timeout Interval = EstimatedRTT+4*DevRTT
Timeout Interval = .29271 + 4*5.514E-3 = 0.314767 sec
P = (# timeouts) / (# acknowledged packets)
P = 10 / (17432) = 5.74 x 10-4

W = (16944 bytes) / (1412 bytes/packet) = 12 packets

b = 2 (for all cases)

B(p) = (40.99621 packets/sec) * (1412 bytes/packet) = 57.886 bytes/sec

After calculating all the equation parameters for all three locations, we proceeded to plugging
them into the equation. Once again we used Microsoft Excel. The following tables show the
parameters calculated for all locations and the resulting throughput calculations follow.

 Wmax

(packets)
Packets Acked Triple Duplicate Timeout RTT

(ms)
Timeout
(ms)

Hong Kong 12 17432 10 0 292.71 314.767
Israel 12 17448 12 0 243.764 434.176
Trinidad 12 12684 70 0 161.326 257.394

Figure 5-12 � Equation parameters for all locations

 12

 Calculated Throughput

(kbytes/sec)
Measured Throughput

(kbytes/sec)
% Error

Hong Kong 57.9 52.5 10.3
Israel 69.5 74 6.1
Trinidad 100.7 89.6 12.4
Figure 5-13 � Length of Slow Start phase vs. data rate

The diversity of the results is evident from the above table. Hong Kong has the highest
throughput time due the greater distance traveled by packets. Second is Israel and third is
Trinidad, in order of geographical distance. Another important point is that for Israel and Hong
Kong, the WMAX / RTT part of the min() operator in the B(p) equation dominated. Whereas for
Trinidad, the second part of the min() function was dominant. This is due to the fact that the
triple duplicate count in Trinidad is highest while the number of packets acknowledged is lowest.
Therefore, the ration between the two, p= 0.005519 ten times larger than the ratio for the other
two. The largeness of p makes the second part of the min() function larger and thus allows it to
dominate in the calculation of B(p).

Finally, our calculated throughputs seem to be extremely close to the measured throughput
considering Prof. Coates mentioned that we should expect an error of approximately 50-80%. In
our opinions, the reason that we experienced such a small error is attributed to the fact that we
used an exponential weighting function to predict timeout duration. Had we actually experienced
a timeout, we would have had different value for timeout duration and possibly a less precise
throughput.

6 Conclusion

TCP Renoe slow start phase duration has certain relationship with link latency as well as
throughput. A linearly increasing latency results in linearly increasing slow start phase. On the
contrary, throughput does not affect the duration much, especially above OC12.

SACK TCP is supposed to have higher performance than regular TCP owing to the fact
that it incurs less unnecessary re-transmissions in response to loss events. The superior
performance of SACK TCP holds provided that the end-to-end delay is reasonably low: for
larger delays, there is no advantage between using SACK and non-SACK, as both algorithms
will retransmit packets unnecessarily. Also, for high data rates, the performance of SACK TCP is
very consistent, as queuing and buffering delays will be larger than the actual link delay and
hence will be the limiting factors in determining its performance.

High speed TCP was conceived to alleviate the current constraints on the congestion

window size in realistic networking environments. However, it has been shown that it is not a
fair algorithm in bandwidth allocation. Indeed, for 2 competing connections with a heavy traffic
load, the arrival of the 2nd connection causes both connections to collide and timeout and hence
reset their congestion window sizes. It is only the 2nd connection that truly recovers, as it is the
connection that received the larger proportion of the link bandwidth.

The steady state TCP throughput equation was proven to be very precise when measuring
large downloads from Israel, Hong Kong and Trinidad. The only disappointment was that there
were no timeouts in any of our TCP transactions. If there had been, we are almost certain that the
precision of the equation would have changed.

 13

7 Bibliography

1 RFC 2581, 1 Kurose, J. & Ross, K. �Computer Networking: A Top-Down Approach Featuring the Internet.�,
Addison-Wesley 2003

2 Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A. �TCP Selective Acknowledgement Options�. RFC 2018,
April 1996. ftp://ds.internic.net/rfc/rfc2018.txt

3 Floyd, S. �Issues of TCP with SACK�. Technical report, January 1996. ftp://ftp.ee.lbl.gov/papers/issues_sa.ps.Z

4 Floyd, S. �HighSpeed TCP for Large Congestion Windows�. http://www.ietf.org/internet-drafts/draft-floyd-tcp-
highspeed-02.txt

6 J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, �Modeling TCP throughput: a simple
model and its empirical validation�, Proc. ACM SIGCOMM, Vancouver, Canada, pp. 303-314, 1998

7 RFC 2581, http://www.ietf.org/rfc/rfc2581.txt

