
1

1

Sensor Networks

Mark Coates

Mike Rabbat 

Part 3: TinyOS

CATT Short Course, March 11, 2005

Part 3: 2

operating system (äp�ǝr āt�ing sis�tǝm) n. 1 software that controls 
the operation of a computer and directs the processing of 
programs by assigning storage space in memory and controlling 
input and output functions [miriam-webster.com]

Key Ingredients:
1. Hide low-level machine operations
2. Provide common services
3. Manage tasks
4. Maintain system integrity

Operating Systems 101



2

Part 3: 3

Sensor Network 
Characteristics

1. Small, simple, cheap

2. Concurrent operation

3. Flexible, efficient usage

4. Robust design

Part 3: 4

Something Completely 
Different
Existing embedded RTOSes

1. Too bulky or too constrained

2. Control-centric

3. Task-based

The answer�



3

Part 3: 5

Design Goals
1. Take account of current and likely designs for nodes and 

networks

2. Be flexible to allow for a diverse set of implementations and 
applications and for varying mixes of hardware and software

3. Address WSN-specific challenges

The TinyOS Approach:
! Event-driven concurrency model

! Efficient modular framework

Part 3: 6

Outline
! Background

! The TinyOS Architecture
! Architecture overview
! Modules and configurations
! Managing concurrency
! Clustering example

! Communication Services



4

Part 3: 7

TinyOS Overview
- Event-driven concurrency model

- Efficient decentralized processing for networked systems
- �Micro-threaded� architecture without hardware parallelism

- Efficient modular framework
- Easily abstract hardware
- Reuse common software modules by maintaining consistent interfaces

- The TinyOS Philosophy
- No user/system boundaries
- No specific set of system services to drag around
- Just defines a framework for establishing boundaries
- Provides a list of services apps can choose from in addition to providing facilities 

for designing/building new services
- Let the list of �commonly used services� evolve on its own

- Core components
- Processor/hardware initializaiton
- Scheduler to manage tasks
- RunTime to facilitate tasks & event interrupts, provide robustness
- Total: less than 500 bytes of default code and storage!

Part 3: 8

The Berkeley Mote
2000

� 4MHz 8 bit MCU
� 512 bytes RAM, 8K ROM
� 900 MHz radio (10-100ft.)
� Temp. & light sensors
� LED and serial port

2005

� 8MHz 8 bit MCU
� 128K + 512K RAM, 4K ROM
� ZigBee radio
� Temp, light, barometric, bio,

pressure,� sensors
� 3 LEDs, serial, extension



5

Part 3: 9

TinyOS Architecture
! Event-Based Scheduling

! Events triggered by hardware
! Tasks posted to queue

! Component Model
! Self-containing code unit
! Interfaces
! Tasks
! Storage

RFM

UARTSEC_DED

CRCPACKET UART_PCKT

ActiveMessage

Part 3: 10

An Efficient Modular 
Framework
! Component modules

! Self-containing units
! Reusable code
! Abstract hardware

! Configuration
! �Wiring� modules 

together
! Specifies a solution

Component

Commands
Accepted

Events
Signaled

Commands
Called

Events
Handled



6

Part 3: 11

Example Interfaces

interface StdControl { // booting & power management

command result_t init();

command result_t start();

command result_t stop();

}

interface ADC { // data collection

command result_t getData();

command result_t getContinuousData();

event result_t dataReady(uint16_t data);

}

Part 3: 12

Event-Driven Concurrency
! Events

! Triggered by hardware
! Run to completion, never preempted

! Tasks
! Posted to a queue
! Run to completion, may be preempted by events
! Can sleep when queue is empty



7

Part 3: 13

Concurrency Example

Timer

Sample

SampleReady

Process Sample

Packet Arrived

Process Packet

SmplHandler PktHandler

(HW)

(SW)
t

Timer ADC Radio

CommHdlr

Simple App

Example Config:

Event Cycle:

Part 3: 14

Forming Networked 
Clusters

! Commonly assumed 
networking setup

! Randomly chosen cluster 
heads broadcast

! Nodes join group of nearest 
cluster head

(Thanks to Frederic Thouin)



8

Part 3: 15

Forming Networked 
Clusters

! Commonly assumed 
networking setup

! Randomly chosen cluster 
heads broadcast

! Nodes join group of nearest 
cluster head

(Thanks to Frederic Thouin)

Part 3: 16

Clustering Module
module ClusteringM {

provides {

interface StdControl;

}

uses {

interface Timer as TimerA;

interface Timer as TimerB;

interface Timer as TimerC;

interface ReceiveMsg;

interface SendMsg;

interface Random;

}

} implementation {

// State space allocation

...

// Command implementations

task void advertisement() {

...

call SendMsg.send(...);

}

...

}

Component

Commands
Provided

Events
Provided

Commands
Used

Events
Used



9

Part 3: 17

Clustering Configuration

configuration Clustering {

} implementation {

components Main, ClusteringM, TimerC,

GenericComm as Comm,

RandomLFSR as Random;

Main.StdControl -> Comm;

Main.StdControl -> TimerC;

Main.StdControl -> ClusteringM;

ClusteringM.TimerA -> TimerC.Timer[unique(“Timer”)];

...

}

Part 3: 18

Clustering In Action



10

Part 3: 19

Outline
! Background

! The TinyOS Architecture

! Communication Services
! Neighbor-to-neighbor
! Multi-hop
! Synchronization
! Power savings strategies

Part 3: 20

Communication Overview
! Single hop communication

! Active Messages
! Implementation issues

! Multi-hop communication
! Tree-based routing
! Epidemic protocols

! Related services
! Synchronization
! Saving energy



11

Part 3: 21

Active Messages
! Integrating communication 

and computation

! Message contains data and handler

! Ideal for data-centric applications
interface SendMsg{

command result_t send(uint16_t addr, uint8_t len, TOS_MsgPtr msg);

event result_t sendDone(TOS_MsgPtr msg, result_t success);

}

interface ReceiveMsg{

event TOS_MsgPtr receive(TOS_MsgPtr m);

}

Part 3: 22

Active Message 
Implementations
! Variations with new HW 

generations

! More functionality in HW
! Free microprocessor cycles
! Hooks

! S-MAC adds RTS/CTS

! ZigBee, the stabilizer?



12

Part 3: 23

Multi-Hop Routing
! �The network is the sensor�

! Key elements
! Link quality estimation
! Neighborhood discovery

! Tree-based routing

! Broadcast/Epidemic Protocols

! Point-to-point communication not common

Part 3: 24

Link Quality Estimation
! Track observed/unobserved packets using ACKs

! Received signal strength varies wildly over time, 
environmental conditions, bad indicator

! Broadcast nature of transmission allows �snooping�

! Listening uses energy " Low-power listening

! No implicit loss indicator (e.g., sequence number)

! Instead, assume average transmission rate

! Smooth using Exponentially Weighted Moving Average



13

Part 3: 25

Neighborhood 
Management
! Discovery

! Passive �snooping�
! Actively probing (e.g., with beacons)

! Maintenance
! Use link quality estimates to identify good candidates
! Challenge: Deciding which entries to maintain in a dense 

or mobile network

! Simple example policy
! Insert new neighbors based on received signal strength
! Periodically down-sample at random
! Reinforce �good� neighbors

Part 3: 26

Tree-Based Routing
! Prevelant applications

! Habitat monitoring
! TinyDB
! Aggregation

! Broadcast to form tree

! Maintain list of neighbors

! Choose best candidate as parent



14

Part 3: 27

Epidemic Protocols
! Dissemination via 

local broadcasts

! Single flood reaches many 
nodes quickly

! Problem: Collisions and lossy links 
prevent all nodes from receiving the message

! Solution: Random local broadcasts

Part 3: 28

Trees –vs- Epidemics
! Application requirements

! Complexity (maintenance, especially)

! Scaling with network size

! Bottlenecks
! Communication (capacity)
! Security

! Energy usage distribution

! Other emerging multi-hop paradigms



15

Part 3: 29

Point-To-Point Approaches
! Major difference between WSNs and the Internet

! Directed Diffusion
! Grow and then prune a tree
! Difficult to maintain

! Geographic approaches
! Nodes addressed based on geography
! Requires GPS or localization
! Perimeter problems (holes in the network)

Part 3: 30

More Recent Trends
! Snooping

! Build up info about neighbors, link quality based on observed 
packets, not necessarily destined for you

! Used to weed out uni-directional links

! Send Queues
! Newer hardware has more memory
! Enables more sophisticated multi-hop communication

! Secure Communication



16

Part 3: 31

Time Synchronization
! Problems with NTP in the Internet

! Beacons synchronized using GPS
! Adjust clock rate based on beacon signals
! Result: Very irregular, unreliable behavior

! Hardware hooks for fast retransmission
! Cross-layer design

! Synchronization integrated with applications
! E.g., Modify sleep time to compensate

! Goal: Reliable, robust coarse (15-30 µs) 
synchronization

Part 3: 32

Power-Savings
! When awake, listening eats up the most power

! Typical application, 1000ms cycle
! Transmit 1 packet for 50 ms # 600 µJ
! Receive 1 packet for 50 ms # 250 µJ
! Listen for 900ms # 4500 µJ!!

! Low-power listening

! Coordinated sleep-wake cycles



17

Part 3: 33

Low-Power Listening
! Sleeping saves energy, but might miss something

! Periodic listening:
! Sleep 90 out of 100ms # 90% energy savings
! Transmitter must broadcast for 100ms to be sure it 

reaches an awake receiver

! Low-power listening
! Sleep 30 out of 300µs # 90% energy savings
! Transmitter only need to broadcast for 300µs
! Much less overhead

! Enabled by direct processor control of radio

Part 3: 34

HW/SW Boundary 
Tradeoffs

2000 2002 2005

Trend: Move more complexity into hardware

More cycles for processing
-vs-

Slower control of hardware devices



18

Part 3: 35

Coordinated 
Sleep/Wake Cycles
! New radios don�t transition as fast

! But hooks allow for more precise synchronization

! Synchronize sleep/wake cycles
! Forward packets when other nodes are awake
! Efficient TDMA-style system reduces interference
! Requires robust, reliable clock synchronization

! Main application: Habitat Monitoring 
! Regularly schedule sampling
! Not latency-sensitive

Part 3: 36

In Summary
! Modular, event-based " Flexible, expandable
! Active Messages " Integrated comm. and computation
! Variety of other comm-related services evolving

! Additional facilities:
! TOSSIM
! Matlab interaction

! Other platforms:
! MANTIS
! EmStar



19

Part 3: 37

Trickle & Maté
! For propagating code updates reliably 

through a WSN


