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CATT Short Course, March 11, 2005

Part 5: 2

Collaborative Signal 
Processing
! “The Network is the Sensor”

-Oak Ridge Nat’l Labs
! Pottie & Kaiser, 2000

! Transmit 1Kb over 100m @ 1GHz ≈≈≈≈ 3J
! Equivalent to 3 million processor cycles

! Pister et al., 2001
! Sense: 4nJ/sample 
! Compute: 1pJ/instruction
! Communicate: 100nJ/bit

! Culler et al., 2001 (in low power mode)
! Transmit: 12mW
! Receive: 5mW
! Listen: 0.5mW
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Part 5: 3

Our Mission: Energy Savings

! Network of nnnn sensor nodes

! One value each

! Compute the average
! ML estimate
! Soft or hard decision fusion
! Collecting simple statistics…

! Can in-network processing save energy?
! Consider total number of transmissions

Part 5: 4

Tree-Based Routing
! Multi-hop data to fusion center

! Relay raw data

! Accumulate at each node (process in-network)

E(n) =
n!
i=1

(#i’s children)

≈ n logn transmits

E(n) = n × 1 transmits
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Part 5: 5

Consensus
! All nodes get the answer

! Assume Hamilton Cycle

! Relay raw data

! In-network accumulation

! More generally, exchange with neighbors or groups

E(n) = n(n− 1)

= O(n2)

E(n) = 2n

= O(n)

Part 5: 6

Energy Can Be Saved!
! Aggregation

! Consensus

! So, what about in real problems?

O(n logn) vs. O(n)

O(n)vs.O(n2)
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Part 5: 7

Today’s Whirlwind Tour
! Decentralized Estimation

! Security Issues

! Source localization

! Tracking

! Distributed Detection

! Field Estimation

Part 5: 8

Decentralized Estimation
! Simple in-network processing schemes, 

a.k.a. “data aggregation”
! Max, min, mean
! Tree-based schemes (Krishnamachari et al., ‘02)

! Distributed Maximum Likelihood Estimation
! (Blatt & Hero, ’04)
! Information theoretic formulation, handles general densities
! Nodes exchange sufficient statistics with every other node

! Cycle-based algorithms
! Distributed EM Algorithm for Gaussian Mixtures (Nowak, ‘03)
! Incremental Distributed Optimization (Rabbat & Nowak, ’04)
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Part 5: 9

Localized Consensus 
Algorithms
! (Scherber & Papadopoulos, ’04), (Xiao & Boyd, ’05)
! Measurement Model

! MLE given by
! Exchange values with neighbors, Ni, at each iteration
! Linear updates at node iiii

! In vector notation, 

xi(t+ 1) = Wiixi(t) +
!
j∈Ni

Wijxj(t)

x(t + 1) = Wx(t)

yi = θ+wi, i = 1, . . . , n

wi
i.i.d.∼ N(0, σ2)

θ̂ML = (1Ty)/n

Part 5: 10

Convergence Analysis
! Equivalently,                                                   ,

! Desire

! Translates to the requirements:

! Rate of convergence

x(t + 1) = Wx(t) = Wtx(0)

lim
t→∞W

Tx(0) = (1Ty/n)1 = (θ̂ML)1

x(0) = y

lim
t→∞W

T = 11T /n

1TW = 1T , W1 = 1, ρ(W − 11T/n) < 1

sup
x(0)'=θ̂ML1

lim
t→∞

"(x(t)− θ̂ML1(
(x(0)− θ̂ML1

#t
= ρ(W − 11T/n)
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Part 5: 11

Resilient Aggregation
! What if some nodes are malicious?

! Average, sum, product are insecure

! Count, median are more secure

x1 x2 x3 . . . xn

f(x1, . . . , xn)

f(x∗1, x2, . . . , xn) = x∗1 + x2 + . . .+ xn

f(x1, . . . , xn) =
n!
i=1

{xi < γ}

(Wagner, ’04)

Part 5: 12

Source Localization
! “A canonical problem in sensor networks”

- Feng Zhao

! Localize an isotropic energy source
! Shooter localization
! Isolating and counting frogs or crickets

! Measurement modalities
! Time-difference of arrival
! Direction of arrival
! Received signal strength
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Part 5: 13

Range-Based Source Loc
! Typical received signal strength formulation

! Sensor i at known location xi

! Measurements

! Maximum Likelihood Estimate

yi ∼ N
"

a

(xi − θ(β
, σ2

#

θ̂ = arg min
θ

n!
i=1

"
a

(xi− θ(β
− yi

#2
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Part 5: 14

Distributed Gradient-Descent

! Set

! Want to compute 

! “Incremental” gradient descent

(Rabbat & Nowak, ’04)
fi(xi, yi, θ) =

"
a

(xi− θ(β
− yi

#2

θ̂ = arg min
θ

n!
i=1

fi(xi, yi, θ)

θ̂(k)
i = θ̂(k)

i−1 − µ∇fi(xi, yi, θ̂(k)
i−1)

θ̂
(k)
i−1

θ̂
(k)
i

θ̂
(k)
n = θ̂

(k+1)
0
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Part 5: 15

Simulated Examples

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Incremental Gradient Descent
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Standard Centralized Method

Part 5: 16

Tracking
! Obvious military applications

! Generally same types of measurements as 
for source localization

! Well-studied centralized problem

! Solutions not easily extended to 
distributed, resource-constrained setting

! Beamforming, Kalman filter extensions
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Part 5: 17

Information-Directed Tracking

! Choose next sensor to maximize utility

(Zhao et al., ’03) (Wang et al., ‘04)

ĵ = arg max
j∈Ni

αφ(p(θ|zti, ztj)) + (1− α)ψ(ztj)

belief cost of
using j

utility
function

Part 5: 18

Distributed Particle Filtering
! Particle Filters

! Keep track of a collection of plausible states (“particles”)
! Evaluate how well they (1) conform to the dynamic model and 

(2) agree with the data

! Challenges
! Computationally intensive
! Lots of particles to transmit/store

! The Coates Solution
! Hybrid network setup
! Maintain common particle filter at multiple nodes
! Use particle representation for estimation and compression

(Coates, ’04)
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Part 5: 19

Compressing New Samples

x-position

y-
po

si
tio

n X

Part 5: 20

Simulation Example
! 16 Class A nodes

! 128 Class B nodes

! 8 Class B nodes 
measure dist. to
object plus noise
at each time step

! Object either goes
straight, right, or
left

! Example of 500 steps
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Part 5: 21

Example Performance

500 particles,
varying quantization

32 bit quant, 
different # particles

Part 5: 22

Distributed Detection
! Binary decision problem

! Traditional parallel setup

! Problem: Doesn’t look much like a WSN!

Detector 1
Y1 U1

Detector 1

Detector 1

Y2 U2

Yn Un

Fusion
Center

Z

H0 : Yi ∼ p(y|H0)

H1 : Yi ∼ p(y|H1)

H0 : Yi ∼ N(0,σ2)

H1 : Yi ∼ N(µ,σ2)
E.g.,
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Part 5: 23

“Censoring Sensors”

! Transmit to parent when LR > threshold

! Silence is implicitly observed

! Constrain expected # transmissions, optimize detection 
probability

! Conclusion: Communicate less, but take a performance hit

(Blum et al., ’96)
(Appadwedula et al., ’02)

(Patwari & Hero, ’04)

Part 5: 24

Field Estimation

Goal: Measure and convey a physical field
(Temperature, humidity, pressure, light, 

chemical concentration, elevation)
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Part 5: 25

Challenges & Considerations

! Physical limitations
! Low density network = low resolution
! High density = high resolution

! Density-related quantities to balance
! Network capacity
! Energy consumption
! Error in reconstructed signal

! Balance by adjusting
! Which nodes transmit
! What gets transmitted

Part 5: 26

Two Approaches
1. Distributed Compression

! Sensors sample a stationary random field with mean zero, 
known covariance

! Goal: Communicate sample values most efficiently
! Coding with side-information
! K. Ramchandran, D. Neuhoff, S. Servetto

2. Comprestimation
! Sensors sample “signal plus white noise”, field modeled as 

smooth or piece-wise smooth
! Goal: Estimate and communicate the signal efficiently
! Ideas from multi-scale approximation
! R. Govindan, R. Nowak, B. Krishnamachari



14

Part 5: 27

Slepian-Wolf Coding
! Slepian & Wolf, 1973

! Pradhan, Kusuma, & Ramchandran, 2002

Encoder Decoder
X X̂

Y

R > H(X|Y )

Encoder Decoder
X X̂

Y

R > H(X|Y )

000
001
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100

111
110
101
011

0 1X :

Y :

Encoder 2

Decoder

X X̂

Y

R > H(X|Y )

R > H(Y )

Y
Encoder 1

Part 5: 28

Distributed Compression 
Results
! Many-to-one (Neuhoff)

! Capacity scales like O(n-1) 
! Higher density " lower capacity
! Higher density " higher correlation
! Conclusion: Oversampling is wasteful,

let some sensors sleep if necessary

! Node-to-node (Servetto)
! Iteratively recode eliminate redundancy
! Per-node error = D/n
! Bitrate = log(n/D)
! Conclusion: Achieve error D/n with

finite number of bits, regardless of density
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Part 5: 29

Inhomogeneous Fields

smooth
regions

smooth
boundary

! Tradeoff density, accuracy, & energy
! “Complexity” in estimating smooth boundary

Part 5: 30

Backcasting
! Hierarchical communication

! Stage 1: Coarse estimate (gray nodes sleep)
! Stage 2: Refine interesting regions
! Conclusion: Higher density " Lower MSE, lower energy/node
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Part 5: 31

Backcasting In Action

Part 5: 32

Summary
! New paradigm for signal processing

! Distributed, in-network processing
! Improve efficiency, extend network lifetime

! Plenty of interesting open problems
! No clear “best solution”
! No methodical approach
! Mobility, unreliable networks 
! Communications, beamforming, & virtual arrays,

causal inference


