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e “The Network is the Sensor”
-Oak Ridge Nat'l Labs

e Pottie & Kaiser, 2000
e Transmit 1Kb over 100m @ 1GHz ~ 3J
e Equivalent to 3 million processor cycles

e Pister et al.,, 2001
e Sense: 4nJ/sample
e Compute: 1pJd/instruction
e Communicate: 100nJ/bit

e Culler et al., 2001 (in low power mode)
e Transmit: 12mwW
e Receive: 5mwW
e Listen: 0.5mW
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Our Mission: Energy Savings [FaR"

e Network of n sensor nodes

One value each

Compute the average
e ML estimate

e Soft or hard decision fusion
e Collecting simple statistics...

Can in-network processing save energy?
Consider total number of transmissions
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Tree-Based Routing Es

e Multi-hop data to fusion center

e Relay raw data

n
E(m) = ) (#i’s children)
i=1
~ mnlogn transmits

e Accumulate at each node (process in-network)
E(n) = n x1 transmits
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Cconsensus e

e All nodes get the answer
e Assume Hamilton Cycle

e Relay raw data
E(n) = n(n—-1)

= 0(nd
e In-network accumulation
E(n) = 2n
= 0(n)

e More generally, exchange with neighbors or groups
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Energy Can Be Saved! =

e Aggregation
O(nlogn) vs. O(n)

e Consensus
O(n?) vs. O(n)

e S0, what about in real problems?
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Today’s Whirlwind Tour

e Decentralized Estimation
e Security Issues

e Source localization

e Tracking

e Distributed Detection

e Field Estimation
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Decentralized Estimation

e Simple in-network processing schemes,
a.k.a. “data aggregation”
e Max, min, mean
e Tree-based schemes (Krishnamachari et al., ‘02)

e Distributed Maximum Likelihood Estimation
e (Blatt & Hero, '04)
e Information theoretic formulation, handles general densities
e Nodes exchange sufficient statistics with every other node

e Cycle-based algorithms
e Distributed EM Algorithm for Gaussian Mixtures (Nowak, ‘03)
e Incremental Distributed Optimization (Rabbat & Nowak, '04)
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Localized Consensus ey

Algorithms

e (Scherber & Papadopoulos, '04), (Xiao & Boyd, '05)
Measurement Model y; =0+ w;, 1t =1,...,n

w; "% N (0, 0%)

MLE given by 8,7 = @1Ty)/n
Exchange values with neighbors, N;, at each iteration

Linear updates at node i

zi(t + 1) = Wyz(t) + > Wijzi(t)
JEN;

In vector notation, xz(t + 1) = Wx(t)
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Convergence Analysis

e Equivalently, z(t+ 1) = Wax(t) = Wiz(0), z(0) =y
e Desire |im w1z(0)= (1Ty/n)1 = @y)1

t—o00

lim wT =11T/n

t—o0
e Translates to the requirements:

1Tw =17, wi=1, p(W —11T/n) < 1

e Rate of convergence

(IIw(t) — O]

sup lim =
[z(0) — Oprr1

t
= p(W — 117 /n)
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Resilient Aggregation
e What if some nodes are malicious? (Wagner, 04
.. ,xn)
r1 T2 T3 ... Tn
e Average, sum, product are insecure
f(xl,z2,...,zp) =] +x2 + ...+ 1y
e Count, median are more gecure
f@i,-szn) = Y {mi < 7}
=1 Part 5: 11
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Source Localization

e “A canonical problem in sensor networks”
- Feng Zhao

e Localize an isotropic energy source
e Shooter localization
e Isolating and counting frogs or crickets

e Measurement modalities
e Time-difference of arrival
e Direction of arrival
¢ Received signal strength
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Range-Based Source Loc [

e Typical received signal strength formulation
e Sensor i at known location X;

a
e Measurements y; ~N <—ﬁ’ 02>
llz; — 0

e Maximum Likelihood Estimate

2
9 = argmin (Lﬁ — yz)
=1 \llz; — 0]

3

Distributed Gradient-Descent e

2
a (Rabbat & Nowak, '04)
* Set fi(z;,yi,0) = ( )

i — o] !

e Want to compute &= arg min > fil@i vy, 0)
=1

e “Incremental” gradient descent

)
Zil(k) (?l.(k) = 91(5)1 — 1V fi(@i, yi, @@1)
)

o i 7% = 56k+1)

Part 5: 14




Simulated Examples

Standard Centralized Method Incremental Gradient Descent
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Tracking

e Obvious military applications

e Generally same types of measurements as
for source localization

e Well-studied centralized problem

e Solutions not easily extended to
distributed, resource-constrained setting

e Beamforming, Kalman filter extensions
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Information-Directed Tracking arR®

Zhao et al., '03 ang et al., ‘04
o o PY ( ) (Wang )

e Choose next sensor to maximize utility
7= argmax a¢(p(8|z;, 2)) + (1 — a)(z))

A |
utility belief cost of
function using j
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Distributed Particle Filtering

e Particle Filters (Coates, '04)

e Keep track of a collection of plausible states (“particles™)

e Evaluate how well they (1) conform to the dynamic model and
(2) agree with the data

e Challenges

e Computationally intensive
e Lots of particles to transmit/store

e The Coates Solution
e Hybrid network setup
e Maintain common particle filter at multiple nodes
e Use particle representation for estimation and compression
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Compressing New Samples e
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Simulation Example

e 16 Class A nodes
e 128 Class B nodes

e 8 Class B nodes
measure dist. to
object plus noise
at each time step

e Object either goes
straight, right, or
left

e Example of 500 steps
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Distributed Detection
e Binary decision problem
Ho : Y;~ p(y|Ho) £ Ho @ Yi~N(0,0°)
Hy @ Y~ p(y|Hy) Hi : Y~ N(pu,0%)
e Traditional parallel setup
Y-
— o~
. Fusion 4
Center

e Problem: Doesn't look much like a WSN!
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“Censoring Sensors”

(Blum et al., '96)
(Appadwedula et al., '02)
(Patwari & Hero, '04)

e Transmit to parent when LR > threshold
e Silence is implicitly observed

e Constrain expected # transmissions, optimize detection
probability

e Conclusion: Communicate less, but take a performance hit
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Field Estimation

Goal: Measure and convey a physical field

(Temperature, humidity, pressure, light,
chemical concentration, elevation)
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Challenges & Considerations e

e Physical limitations
e Low density network = low resolution
e High density = high resolution

e Density-related quantities to balance
e Network capacity
e Energy consumption
e Error in reconstructed signal

e Balance by adjusting
e Which nodes transmit
e What gets transmitted
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Two Approaches

1. Distributed Compression

e Sensors sample a stationary random field with mean zero,
known covariance

e Goal: Communicate sample values most efficiently
e Coding with side-information
e K. Ramchandran, D. Neuhoff, S. Servetto

2. Comprestimation

e Sensors sample “signal plus white noise”, field modeled as
smooth or piece-wise smooth

e Goal: Estimate and communicate the signal efficiently
e ldeas from multi-scale approximation
R. Govindan, R. Nowak, B. Krishnamachari
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Slepian-Wolf Coding
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e Slepian & Wolf, 1973

X R > H(X|Y) ¢ x
—-l Encoder | ------------ -| Decoder |—> .............
y Y
e Pradhan, Kusuma, & Ramchandran, 2002
000 v R > H()
. [ o001 M .............. N
y:| 9 |Encoder 1| y
100 Decoder |—
¥ R> H(X|Y) <
X0 4 e -
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Distributed Compression
Results
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e Many-to-one (Neuhoff)
e Capacity scales like O(n™)
e Higher density = lower capacity
e Higher density = higher correlation
e Conclusion: Oversampling is wasteful,
let some sensors sleep if necessary
e Node-to-node (Servetto)
o Iteratively recode eliminate redundancy
e Per-node error = D/n

Bitrate = log(n/D)

Conclusion: Achieve error D/n with
finite number of bits, regardless of density
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Inhomogeneous Fields e
smqoth
regions smooth
boundary

e Tradeoff density, accuracy, & energy
e “Complexity” in estimating smooth boundary
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Backcasting

e Hierarchical communication

e Stage 1: Coarse estimate (gray nodes sleep)
e Stage 2: Refine interesting regions
e Conclusion: Higher density = Lower MSE, lower energy/node
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Backcasting In Action

P 6, Part 5: 31

Summary

e New paradigm for signal processing
e Distributed, in-network processing
e Improve efficiency, extend network lifetime

e Plenty of interesting open problems
No clear “best solution”

No methodical approach

Mobility, unreliable networks

Communications, beamforming, & virtual arrays,
causal inference
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