
Practical Shading of Height Fields and Meshes
using Spherical Harmonics Exponentiation

Aude Giraud Derek Nowrouzezahrai

Goals & Motivation

[SN08] [RWS*06;SGNS07] Our results

Goals & Motivation

[SN08] [RWS*06;SGNS07] Our results

Contributions

• unifying SH exponentiation on HFs and meshes
• dynamic geometry and HF visibility (no precomputation)
• diffuse and glossy BRDFs in log SH

Contributions

• unifying SH exponentiation on HFs and meshes
• dynamic geometry and HF visibility (no precomputation)
• diffuse and glossy BRDFs in log SH

= += += += +

Contributions

• unifying SH exponentiation on HFs and meshes
• dynamic geometry and HF visibility (no precomputation)
• diffuse and glossy BRDFs in log SH

• real-time performance and simple implementation
• limitation: only soft direct illumination
• applications:

– landscape rendering (flight simulators, mapping/navigation)
– interactive gaming

= += += += +

Accumulating Log-SH Visibility
Given spherical log-SH visibility for

Accumulating Log-SH Visibility
Given spherical log-SH visibility for

{v0

log

,v1

log

, · · · ,vB-1

log

}
dynamic blocker “meshes”

Accumulating Log-SH Visibility
Given spherical log-SH visibility for

{v0

log

,v1

log

, · · · ,vB-1

log

}
dynamic blocker “meshes” dynamic height field geometry

vHF

log

Accumulating Log-SH Visibility
Given spherical log-SH visibility for

{v0

log

,v1

log

, · · · ,vB-1

log

}
dynamic blocker “meshes” dynamic height field geometry

vHF

log

• the total log-SH visibility vector is Vlog = vHF

log +
B�1X

b=0

vb

log

SH Exponentiation [RWS*06]

SH Exponentiation [RWS*06]

• Given any log-SH coefficient vector , we use SH
exponentiation to compute the (primal-domain) SH
coefficients f

f
log

SH Exponentiation [RWS*06]

• Given any log-SH coefficient vector , we use SH
exponentiation to compute the (primal-domain) SH
coefficients

• We use the HYBrid SH exponentiation method [RWS*06]
• A series expansion of the exponential, projected into SH

f

f
log

f = exp (f
log

) ⇡ 1+ f
log

+

f2
log

2 +

f3
log

3! + · · ·

SH Exponentiation [RWS*06]

• Given any log-SH coefficient vector , we use SH
exponentiation to compute the (primal-domain) SH
coefficients

• We use the HYBrid SH exponentiation method [RWS*06]
• A series expansion of the exponential, projected into SH

• Improved numerical stability with:
• DC isolation
• optimal linear-order approximation
• SH scaling & squaring product accumulation

f

f
log

1. compute HF self-visibility (in log-SH space)

2. compute HF cast-visibility (onto meshes)

3. compute mesh cast-visibility (onto HF) and self-visibility

4. accumulate total spherical visibility

5. compute log-SH BRDF and perform final shading

Summary of Main Ideas

- create multi-resolution height pyramids
- sample from pyramid levels
- pre-filter data
- compose visibility analytically in log-space

ωmax

HF Definitions and Notation [SN08]

Need to find maximum blocking angle ωmax along direction ϕ.

t

Calculating the Max Blocking Angle

[SN08]

t

Calculating the Max Blocking Angle

[SN08]

t

Calculating the Max Blocking Angle

[SN08]

t

Calculating the Max Blocking Angle

[SN08]

t

Calculating the Max Blocking Angle

[SN08]

t

Calculating the Max Blocking Angle

[SN08]

t

Calculating the Max Blocking Angle

[SN08]

t

Calculating the Max Blocking Angle

[SN08]

t

max

Calculating the Max Blocking Angle

[SN08]

Brute Force Sampling [SN08]

Brute Force Sampling [SN08]

Problem: aliasing – need many samples in t.

Brute Force Sampling [SN08]

Problem: aliasing – need many samples in t.
Solution: prefilter data, apply multi-scale sampling.

⌧i = 2f(i)

Multi-Resolution Height Sampling [SN08]

sampling distance for level i

height pyramid level i

⌧i = 2f(i)

Multi-Resolution Height Sampling [SN08]

sampling distance for level i

height pyramid level i

⌧i = 2f(i)

Multi-Resolution Height Sampling [SN08]

sampling distance for level i

height pyramid level i

Sample coarser levels further from x.

fi fi-1 fi-2 fi-3

τi τi-1
τi-2

τi-3

v(!;�) =

⇢
0, if !  �
1, otherwise.

Elevation Visibility

• starting with binary visibility for an elevation slice:

 and represent it analytically in the Normalized Legendre
Polynomial (NLP) basis:

σ

0

1

v(!;�) =

⇢
0, if !  �
1, otherwise.

v
log

(!;�) =

⇢
log ✏, if !  �
0, otherwise.

Elevation Visibility

• starting with binary visibility for an elevation slice:

 and represent it analytically in the Normalized Legendre
Polynomial (NLP) basis:

σ

0

1

log ✏

σ 0
• we can express the log-visibility for the slice as

v
log

(!;�) =

⇢
log ✏, if !  �
0, otherwise.

v
log

(�) =

Z ⇡

⇡/2��
(log ✏) P̂(cos ✓) sin ✓d✓

 and represent it analytically in the Normalized Legendre
Polynomial (NLP) basis:

log ✏

σ 0

v
log

(!;�) =

⇢
log ✏, if !  �
0, otherwise.

= log ✏⇥

sin� + 1p

2

,
�3 cos

2 �

2

p
6

,
�5 sin� cos

2 �

2

p
10

,

7 cos

2 �(�4 + 5 cos

2 �)

8

p
14

�

v
log

(�) =

Z ⇡

⇡/2��
(log ✏) P̂(cos ✓) sin ✓d✓

 and represent it analytically in the Normalized Legendre
Polynomial (NLP) basis:

log ✏

σ 0

Accumulating HF Visibility

• in the primal domain: can sum SH visibility for each slice

• begin by initializing total log-visibility to 1 (full visibility)
• multiply in the occluded portions

• do this by summing the log-visibility

Accumulating HF Visibility

• in the primal domain: can sum SH visibility for each slice

• initialize the total visibility to 0 (fully occluded)
• add in visible portions per slice

• begin by initializing total log-visibility to 1 (full visibility)
• multiply in the occluded portions

• do this by summing the log-visibility

Accumulating HF Visibility

• in the primal domain: can sum SH visibility for each slice

• initialize the total visibility to 0 (fully occluded)
• add in visible portions per slice

• begin by initializing total log-visibility to 1 (full visibility)
• multiply in the occluded portions

• do this by summing the log-visibility

• but, in the log domain: sums correspond to products
• how do we accumulate products of visibility?

• begin by initializing total log-visibility to 1 (full visibility)
• multiply in the occluded portions

• do this by summing the log-visibility

• but, in the log domain: sums correspond to products
• how do we accumulate products of visibility?

• begin by initializing total log-visibility to 1 (full visibility)
• multiply in the occluded portions

• do this by summing the log-visibility

• but, in the log domain: sums correspond to products
• how do we accumulate products of visibility?

Visibility Slice Interpolation [NS09]

• requires 1 precomputed interpolation + projection matrix

• already computed log-ZH azimuthal visibility, per-direction

x

y

Visibility Slice Interpolation [NS09]

• requires 1 precomputed interpolation + projection matrix

• already computed log-ZH azimuthal visibility, per-direction

• can combine and interpolate azimuthal
log-SH elevation coefficients together to
form full log-SH spherical visibility

x

y

Visibility Slice Interpolation [NS09]

• requires 1 precomputed interpolation + projection matrix

• already computed log-ZH azimuthal visibility, per-direction

• can combine and interpolate azimuthal
log-SH elevation coefficients together to
form full log-SH spherical visibility

x

y

Visibility Slice Interpolation [NS09]

• requires 1 precomputed interpolation + projection matrix

• already computed log-ZH azimuthal visibility, per-direction

• can combine and interpolate azimuthal
log-SH elevation coefficients together to
form full log-SH spherical visibility

�2

�0

�1

vwedge

log

=

vwedge

log

• requires 1 precomputed interpolation + projection matrix

• rotate and sum across each wedge’s to form
final log-SH vector

Mlin

" # ##
v

log

(�0)

v
log

(�1)

vHF

log

1. compute HF self-visibility (in log-SH space)

2. compute HF cast-visibility (onto meshes)

3. compute mesh cast-visibility (onto HF) and self-visibility

4. accumulate total spherical visibility

5. compute log-SH BRDF and perform final shading

Summary of Main Ideas

- repeat multi-resolution marching
- offset the height field queries

ωmax

Height Field Cast Visibility onto Meshes

Need to find ωmax on mesh shading point along each direction ϕ

ωmax

Height Field Cast Visibility onto Meshes

Need to find ωmax on mesh shading point along each direction ϕ

• Assume an infinite plane for the HF base elevation
• minimum blocking angle can’t go negative

Calculating the Max Blocking Angle

t

Calculating the Max Blocking Angle

t

t

Calculating the Max Blocking Angle

Calculating the Max Blocking Angle

t

Calculating the Max Blocking Angle

t

Calculating the Max Blocking Angle

t

Calculating the Max Blocking Angle

t

Calculating the Max Blocking Angle

t

max

Calculating the Max Blocking Angle

t

1. compute HF self-visibility (in log-SH space)

2. compute HF cast-visibility (onto meshes)

3. compute mesh cast-visibility (onto HF) and self-visibility

4. accumulate total spherical visibility

5. compute log-SH BRDF and perform final shading

Summary of Main Ideas

- extend traditional SH exponentiation approach [RWS*06;SGNS07]
- decompose dynamic mesh blockers into spheres
- compute & accumulate log-SH visibility for spherical blockers

- on the mesh shading points
- repeat over the HF shading points

- intelligently cull the sphere set during accumulation
- reduces numerical accumulation error

Spherical Blockers [RWS*06]

• approximate dynamic meshes with a set of spheres
• precomputed once
• skinned dynamically during animation/deformation

= +

Spherical Blockers [RWS*06]

• approximate dynamic meshes with a set of spheres
• precomputed once
• skinned dynamically during animation/deformation

= += +

✓b

✓b = arcsin (r/d)

Spherical Blocker Log SH Visibility

• can compute log-visibility SH coefficients analytically
• begin with a canonical alignment:

✓b

✓b = arcsin (r/d)

Z ✓b

✓=0

Z 2⇡

�=0
(log ✏) y0l (✓,�) sin ✓ d✓d�

Spherical Blocker Log SH Visibility

• can compute log-visibility SH coefficients analytically
• begin with a canonical alignment:

✓b

✓b = arcsin (r/d)

Z ✓b

✓=0

Z 2⇡

�=0
(log ✏) y0l (✓,�) sin ✓ d✓d�

vlog

l = log ✏⇥
h
�
p
⇡(�1 + cos ✓b),

p
3⇡
2 sin

2 ✓b,
p
5⇡
2 cos ✓b sin

2 ✓b,
p
7⇡
16 (3 + 5 cos(2✓b)) sin

2 ✓b
i

Spherical Blocker Log SH Visibility

• can compute log-visibility SH coefficients analytically
• begin with a canonical alignment:

• solve analytically (we use order-4 SH, so 4 ZH coefficients)

Z ✓b

✓=0

Z 2⇡

�=0
(log ✏) y0l (✓,�) sin ✓ d✓d�

vlog

l = log ✏⇥
h
�
p
⇡(�1 + cos ✓b),

p
3⇡
2 sin

2 ✓b,
p
5⇡
2 cos ✓b sin

2 ✓b,
p
7⇡
16 (3 + 5 cos(2✓b)) sin

2 ✓b
i

vlog

l,m =
q

4⇡
2l+1 v

log

l yml (~!d)

• solve analytically (we use order-4 SH, so 4 ZH coefficients)

• align to shading frame with ZH rotation [SLS05]

~z
~!d

Spherical Blocker Self- & Cast- Shadows

Spherical Blocker Self- & Cast- Shadows

• accumulate spherical blocker occlusion for both:

Spherical Blocker Self- & Cast- Shadows

• accumulate spherical blocker occlusion for both:
• dynamic object self-occlusion

Spherical Blocker Self- & Cast- Shadows

• accumulate spherical blocker occlusion for both:
• dynamic object self-occlusion

• and dynamic object cast-occlusion onto the HF

Ratio Attenuation

Ratio Attenuation

• SH exponentiation suffers from accumulation error when
there are many overlapping blocker spheres

Ratio Attenuation

• SH exponentiation suffers from accumulation error when
there are many overlapping blocker spheres

• we reduce accumulation error by:
• weighting log-SH visibility by blocker solid angle, and
• only accumulating blockers in upper shading hemisphere

1. compute HF self-visibility (in log-SH space)

2. compute HF cast-visibility (onto meshes)

3. compute mesh cast-visibility (onto HF) and self-visibility

4. accumulate total spherical visibility

5. compute log-SH BRDF and perform final shading

Summary of Main Ideas

- combine per-slice HF (log) visibility to form full spherical visibility [NS09]
- accumulate dynamic mesh blocker log-visibility and HF log-visibility
- perform SH exponentiation

Accumulate Log-SH Visibility
Given spherical log-SH visibility for

{v0

log

,v1

log

, · · · ,vB-1

log

}
dynamic blocker “meshes” dynamic height field geometry

vHF

log

• the total log-SH visibility vector is Vlog = vHF

log +
B�1X

b=0

vb

log

V = exp (V
log

) ⇡ 1+V
log

+

V
log

2

2 +

V
log

3

3! + · · ·

Given spherical log-SH visibility for

{v0

log

,v1

log

, · · · ,vB-1

log

}
dynamic blocker “meshes” dynamic height field geometry

vHF

log

• the total log-SH visibility vector is Vlog = vHF

log +
B�1X

b=0

vb

log

1. compute HF self-visibility (in log-SH space)

2. compute HF cast-visibility (onto meshes)

3. compute mesh cast-visibility (onto HF) and self-visibility

4. accumulate total spherical visibility

5. compute log-SH BRDF and perform final shading

Summary of Main Ideas

- simplify triple-product shading to double-product shading
- formulate view-evaluated BRDF in log-SH space
- accumulate BRDF with multi-product visibility

V = exp (V
log

)

spherical SH visibility

Traditional Triple Product SH Shading

• final shading traditionally ([RWS*06;SGNS07]) computed with
triple-product SH integration:

where

V = exp (V
log

)

f
r

(!
o

)

spherical SH visibility

view-evaluated BRDF

Traditional Triple Product SH Shading

• final shading traditionally ([RWS*06;SGNS07]) computed with
triple-product SH integration:

where

V = exp (V
log

)

f
r

(!
o

)

Le

spherical SH visibility

view-evaluated BRDF

lighting environment

Traditional Triple Product SH Shading

• final shading traditionally ([RWS*06;SGNS07]) computed with
triple-product SH integration:

where

Le

L
o

(!
o

) =
X

ijk

[L
e

]
i

[V]
j

[f
r

(!
o

)]
k

�
ijk

�ijk =

Z

S2

yi(!) yj(!) yk(!) d!

lighting environment

• final shading traditionally ([RWS*06;SGNS07]) computed with
triple-product SH integration:

where

 are the SH tripling coefficients, a sparse order-3 tensor.
• Triple product shading computation is still costly!

V = exp (V
log

) ⇡
B�1Y

b=0

Vb

Log-BRDF Shading

• We already use log-space to perform a multi-product

V = exp (V
log

) ⇡
B�1Y

b=0

Vb

T = f
r

(!
o

)⇥
B�1Y

b=0

V
b

Log-BRDF Shading

• We already use log-space to perform a multi-product

• Triple-product shading composes the BRDF-weighted
visibility (transfer) in the primal domain with a product

V = exp (V
log

) ⇡
B�1Y

b=0

Vb

T = f
r

(!
o

)⇥
B�1Y

b=0

V
b

Log-BRDF Shading

• We already use log-space to perform a multi-product

• Triple-product shading composes the BRDF-weighted
visibility (transfer) in the primal domain with a product

• Idea: use log-space to compose transfer with a sum

• Idea: use log-space to compose transfer with a sum

T = exp

�
[f
r

(!
o

)]

log

+V
log

�
⇡ f

r

(!
o

)⇥
B�1Y

b=0

V
b

T ⇥ =

SH transfer

• Idea: use log-space to compose transfer with a sum

T = exp

�
[f
r

(!
o

)]

log

+V
log

�
⇡ f

r

(!
o

)⇥
B�1Y

b=0

V
b

Le

T ⇥ =

SH transfer

lighting environment

• Idea: use log-space to compose transfer with a sum

T = exp

�
[f
r

(!
o

)]

log

+V
log

�
⇡ f

r

(!
o

)⇥
B�1Y

b=0

V
b

Le

T ⇥ =

SH transfer

lighting environment

• Idea: use log-space to compose transfer with a sum

• Now shading requires a cheap double-product SH integral!
• but how do we compute the log-BRDF SH coefficients?

T = exp

�
[f
r

(!
o

)]

log

+V
log

�
⇡ f

r

(!
o

)⇥
B�1Y

b=0

V
b

fr(✓) =
↵+1
2⇡ max(cos

↵ ✓, 0)

Log-BRDF SH Coefficients

• We compute the log-ZH BRDF coefficients numerically for:
• diffuse BRDFs,
• and Phong BRDFs

✓

• Canonical-frame ZH log-BRDF coefficients are then:

fr(✓) =
↵+1
2⇡ max(cos

↵ ✓, 0)

log

Log-BRDF SH Coefficients

• We compute the log-ZH BRDF coefficients numerically for:
• diffuse BRDFs,
• and Phong BRDFs

✓

• Canonical-frame ZH log-BRDF coefficients are then:

✓

fr(✓) =
↵+1
2⇡ max(cos

↵ ✓, 0)

log

Log-BRDF SH Coefficients

• We compute the log-ZH BRDF coefficients numerically for:
• diffuse BRDFs,
• and Phong BRDFs

• Need to treat hemispherical clamping carefully!

✓

• Canonical-frame ZH log-BRDF coefficients are then:

✓

fr(✓) =
↵+1
2⇡ max(cos

↵ ✓, 0)

log

f log

l,0 =

Z

H2+

log

�
↵+1
2⇡ max(cos

↵ !✓, ✏)
�
y0l (!) d!+

Z

H2�
(log ✏) y0l (!) d!

• Need to treat hemispherical clamping carefully!

✓

• Canonical-frame ZH log-BRDF coefficients are then:

✓

fr(✓) =
↵+1
2⇡ max(cos

↵ ✓, 0)

log

f log

l,0 =

Z

H2+

log

�
↵+1
2⇡ max(cos

↵ !✓, ✏)
�
y0l (!) d!+

Z

H2�
(log ✏) y0l (!) d!

• Need to treat hemispherical clamping carefully!

✓

• Canonical-frame ZH log-BRDF coefficients are then:

✓

• We compute & tabulate order-4 ZH coefficients numerically

↵

Log-BRDF Error

• In a worse case lighting scenario, log-SH BRDF
shading still maintains a cosine-like fall-off profile

log-SH

SH

↵

Log-BRDF Error

• In a worse case lighting scenario, log-SH BRDF
shading still maintains a cosine-like fall-off profile

log-SH

SH

1

↵

Log-BRDF Error

• In a worse case lighting scenario, log-SH BRDF
shading still maintains a cosine-like fall-off profile

log-SH

SH

1 200

Results

Results
• Hybrid image/object-space renderer

• spherical blockers splatted onto screen [SGNS07]
• multi-resolution HF ray-marching in HF object-space
• rendered at 960 x 540 with (avg.) pixel coverage of 83%.

Results

Wrecking Ball Whale in Ocean Cone Man
402 blockers + HF 50 blockers + HF 25 blockers + HF
15Hz (GTX 480) 10 Hz (GTX 480) 68 Hz (GTX 480)

• Hybrid image/object-space renderer
• spherical blockers splatted onto screen [SGNS07]
• multi-resolution HF ray-marching in HF object-space
• rendered at 960 x 540 with (avg.) pixel coverage of 83%.

Results

Wrecking Ball Whale in Ocean Cone Man
402 blockers + HF 50 blockers + HF 25 blockers + HF
15Hz (GTX 480) 10 Hz (GTX 480) 68 Hz (GTX 480)

• Hybrid image/object-space renderer
• spherical blockers splatted onto screen [SGNS07]
• multi-resolution HF ray-marching in HF object-space
• rendered at 960 x 540 with (avg.) pixel coverage of 83%.

Results

Wrecking Ball Whale in Ocean Cone Man
402 blockers + HF 50 blockers + HF 25 blockers + HF
15Hz (GTX 480) 10 Hz (GTX 480) 68 Hz (GTX 480)

• Hybrid image/object-space renderer
• spherical blockers splatted onto screen [SGNS07]
• multi-resolution HF ray-marching in HF object-space
• rendered at 960 x 540 with (avg.) pixel coverage of 83%.

Conclusions

Conclusions

• Combine soft shadowing from environment lighting for
scenes with dynamic blockers and dynamic HFs

Conclusions

• Combine soft shadowing from environment lighting for
scenes with dynamic blockers and dynamic HFs

• Extend multi-resolution marching to non-HF objects
• offset marching and infinite plane assumption

Conclusions

• Combine soft shadowing from environment lighting for
scenes with dynamic blockers and dynamic HFs

• Extend multi-resolution marching to non-HF objects
• offset marching and infinite plane assumption

• Novel log-SH visibility composition for HF slices
• analytic Legendre polynomial coefficients for log-visibility

elevation functions

Conclusions

• Combine soft shadowing from environment lighting for
scenes with dynamic blockers and dynamic HFs

• Extend multi-resolution marching to non-HF objects
• offset marching and infinite plane assumption

• Novel log-SH visibility composition for HF slices
• analytic Legendre polynomial coefficients for log-visibility

elevation functions

• Propose Log-SH BRDF formulation to reduce triple-product
shading to double-product shading

Future Work

Future Work

• infinite plane assumption when marching non-HF elements
– leverage negative blocking angle formulation of [NS09]

Future Work

• infinite plane assumption when marching non-HF elements
– leverage negative blocking angle formulation of [NS09]

• analytic log-BRDF formulation with better hemi-clamping

Future Work

• infinite plane assumption when marching non-HF elements
– leverage negative blocking angle formulation of [NS09]

• analytic log-BRDF formulation with better hemi-clamping

• indirect lighting accumulation in log-SH space

Future Work

• infinite plane assumption when marching non-HF elements
– leverage negative blocking angle formulation of [NS09]

• analytic log-BRDF formulation with better hemi-clamping

• indirect lighting accumulation in log-SH space

• generalize geometry
– local height field displacements
– tiled height field representations
– non-spherical blockers

Thanks! Any questions?

We acknowledge the helpful suggestions of
the anonymous reviewers.

