Practical Shading of Height Fields and Meshes
using Spherical Harmonics Exponentiation

Aude Giraud Derek Nowrouzezahrai

Université f“‘\

de Montréal

Goals & Motivation

ISN08] [RWS*06;SGNS07]

Goals & Motivation

[RWS*06;SGNSO07] Our results

Contributions

 unifying SH exponentiation on HFs and meshes
* dynamic geometry and HF visibility (no precomputation)
 diffuse and glossy BRDFs in log SH

Contributions

 unifying SH exponentiation on HFs and meshes
* dynamic geometry and HF visibility (no precomputation)
 diffuse and glossy BRDFs in log SH

Contributions

 unifying SH exponentiation on HFs and meshes
* dynamic geometry and HF visibility (no precomputation)
 diffuse and glossy BRDFs in log SH

 real-time performance and simple implementation
* limitation: only soft direct illumination

« applications:
— landscape rendering (flight simulators, mapping/navigation)
— interactive gaming

Accumulating Log-SH Visibility

Given spherical log-SH visibility for

Accumulating Log-SH Visibility

Given spherical log-SH visibility for

dynamic blocker “meshes”

0 1 B-1
{V10g7 Vlog7) Vlog

Accumulating Log-SH Visibility

Given spherical log-SH visibility for

dynamic blocker “meshes” dynamic height field geometry

0 1 B-1 HF
{V10g7 Vlog7) Vlog Vlog

Accumulating Log-SH Visibility

Given spherical log-SH visibility for

dynamic blocker “meshes” dynamic height field geometry
0 1 B-1 HF
{V10g7 V10g7 T 7V10g Vlog
B-—1

+ the total log-SH visibility vector is V,,, = v + 3" vb

SH Exponentiation [RWS*06]

SH Exponentiation [RWS*06]

« Given any log-SH coefficient vector f, , we use SH
exponentiation to compute the (primal-domain) SH
coefficients f

SH Exponentiation [RWS*06]

Given any log-SH coefficient vector £, , we use SH
exponentiation to compute the (primal-domain) SH
coefficients f

We use the HYBrid SH exponentiation method [RWS*06]
A series expansion of the exponential, projected into SH

SH Exponentiation [RWS*06]

« Given any log-SH coefficient vector f, , we use SH
exponentiation to compute the (primal-domain) SH
coefficients f

* We use the HYBrid SH exponentiation method [RWS*06]
« A series expansion of the exponential, projected into SH

Improved numerical stability with:
e DC isolation
e optimal linear-order approximation
 SH scaling & squaring product accumulation
£2 £3
f =exp(fo,) =1+, + 5+ 5

Summary of Main Ideas

1. compute HF self-visibility (in log-SH space)
- create multi-resolution height pyramids
- sample from pyramid levels

- pre-filter data
- compose visibility analytically in log-space

HF Definitions and Notation [SN08]

Need to find maximum blocking angle w, . along direction .

Calculating the Max Blocking Angle

¢
&qp

ISN08]

Calculating the Max Blocking Angle

AQ)

ISN08]

Calculating the Max Blocking Angle

7\

7 >

ISN08]

Calculating the Max Blocking Angle

i)

~— > >

ISN08]

Calculating the Max Blocking Angle

i)

~_ O >

ISN08]

Calculating the Max Blocking Angle

AQ)

ISN08]

Calculating the Max Blocking Angle

: % %t
-

ISN08]

Calculating the Max Blocking Angle

ISN08]

Calculating the Max Blocking Angle

max

i)

~_ O >

ISN08]

Brute Force Sampling [SN08]

A

Brute Force Sampling [SN08]

a

Problem: aliasing — need many samples in ¢.

Brute Force Sampling [SN08]

Problem: aliasing — need many samples in ¢.
Solution: prefilter data, apply multi-scale sampling.

Multi-Resolution Height Sampling [SN08]

/, height pyramid level i

T, = 9 () sampling distance for level i

Multi-Resolution Height Sampling [SN08]

/, height pyramid level i

T, = 9 () sampling distance for level i

Multi-Resolution Height Sampling [SN08]

/, height pyramid level i

T, = 9 () sampling distance for level i

Sample coarser levels further from x.

Ji2 Jis

Elevation Visibility

« starting with binary visibility for an elevation slice:

v(w: o) = 0, fw<o
771 1, otherwise.

Elevation Visibility

« starting with binary visibility for an elevation slice:

o(w: o) = 0, fw<o
771 1, otherwise.

« we can express the log-visibility for the slice as

v (W 0) = loge, tw<o
s\ 9/ = otherwise.

' <
oo (w; 0) = { loge, Htw<o

.]
0, otherwise. y 08¢

\
1

and represent it analytically in the Normalized Legendre
Polynomial (NLP) basis:

Vieg (0) = / (log €) f’(cos ¢) sin 0do

/2—o

o (w: o) = loge, ifw<o ‘1
e TS0, otherwise. A

\
1

and represent it analytically in the Normalized Legendre
Polynomial (NLP) basis:

Vieg (0) = / (log €) f’(cos ¢) sin 0do

/2—0

2 2

sinc+1 —3cos?c —5sino cos® o

V2 2v6] 24/10 ’

7cos®o(—4+5cos? o)

8v 14]

Accumulating HF Visibility

 in the primal domain: can sum SH visibility for each slice

Accumulating HF Visibility

 in the primal domain: can sum SH visibility for each slice

* initialize the total visibility to O (fully occluded)
* add in visible portions per slice

1 0

Accumulating HF Visibility

In the primal domain: can sum SH visibility for each slice

initialize the total visibility to 0 (fully occluded)
add in visible portions per slice

1 0

p— —
1~ 4~
J v J
')
. .' “L ! I\
-
+ 1' \
| \
’ \
/ \ I
\ / \
- -
N\ - S

but, in the log domain: sums correspond to products
how do we accumulate products of visibility?

Lo AN Y

but, in the log domain: sums correspond to products
how do we accumulate products of visibility?

begin by initializing total /log-visibility to 1 (full visibility)
multiply in the occluded portions
* do this by summing the log-visibility

o AN Y

but, in the log domain: sums correspond to products
how do we accumulate products of visibility?

begin by initializing total /log-visibility to 1 (full visibility)
multiply in the occluded portions
¢ do this by summing the log-visibility

Visibility Slice Interpolation [NS09]

« already computed log-ZH azimuthal visibility, per-direction

Visibility Slice Interpolation [NS09]

can combine and interpolate azimuthal
log-SH elevation coefficients together to
form full log-SH spherical visibility

Visibility Slice Interpolation [NS09]

already computed log-ZH azimuthal visibility, per-direction

can combine and interpolate azimuthal VA
log-SH elevation coefficients together to |
form full log-SH spherical visibility

Visibility Slice Interpolation [NS09]

« already computed log-ZH azimuthal visibility, per-direction

e can combine and interpolate azimuthal
log-SH elevation coefficients together to |
form full log-SH spherical visibility

* requires 1 precomputed interpolation + projection matrix

wedge ___ M Vlog (O-O
Vlog o l Y
(AL

Wedge

« rotate and sum across each wedge's v, _ to form

final log-SH vector v,

2.

Summary of Main Ideas

compute HF cast-visibility (onto meshes)

repeat multi-resolution marching
offset the height field queries

Height Field Cast Visibility onto Meshes

W

>

>

Need to find , . on mesh shading point along each direction @

Height Field Cast Visibility onto Meshes

W

>

>

Need to find , . on mesh shading point along each direction @

 Assume an infinite plane for the HF base elevation
* minimum blocking angle can’t go negative

Calculating the Max Blocking Angle

Calculating the Max Blocking Angle

Calculating the Max Blocking Angle

>
> @

Calculating the Max Blocking Angle

>
> @

Calculating the Max Blocking Angle

>
> @

Calculating the Max Blocking Angle

Calculating the Max Blocking Angle

Calculating the Max Blocking Angle

<
S >

>

Calculating the Max Blocking Angle

Summary of Main Ideas

3. compute mesh cast-visibility (onto HF) and self-visibility
extend traditional SH exponentiation approach [RWS*06;SGNS07]
decompose dynamic mesh blockers into spheres
compute & accumulate log-SH visibility for spherical blockers
- on the mesh shading points
- repeat over the HF shading points
intelligently cull the sphere set during accumulation
- reduces numerical accumulation error

Spherical Blockers [RWS*06]

e approximate dynamic meshes with a set of spheres
* precomputed once
» skinned dynamically during animation/deformation

Spherical Blockers [RWS*06]

e approximate dynamic meshes with a set of spheres
* precomputed once
» skinned dynamically during animation/deformation

) - —

Spherical Blocker Log SH Visibility

« can compute log-visibility SH coefficients analytically

* begin with a canonical alignment:
0, = arcsin (r/d)

:Hb:

%o

Spherical Blocker Log SH Visibility

« can compute log-visibility SH coefficients analytically

* begin with a canonical alignment:
0, = arcsin (r/d)

:Hb:
/ / (log€) y? (0, @) sinHdOde
0=0 J p=

%o

Spherical Blocker Log SH Visibility

« can compute log-visibility SH coefficients analytically

* begin with a canonical alignment:

0, = arcsin (r/d)

:Hb:
/ / (log€) y? (0, @) sinHdOde
=0 Jo= -

« solve analytically (we use order-4 SH, so 4 ZH coefficients)
v,”® = log ex [—\/_(1 4 cos6y), \/_Sln 0y,

\/2_ cos Oy, sin? 6y, \/176_77(3 + 5 cos(26y)) sin? 6,

/ (loge) y; (U, @) sinvdvdg
6=0 J =0 e

» solve analytically (we use order-4 SH, so 4 ZH coefficients)

V}()g = log ex [—\/%(—1 + cos 0), V3T gin? 0y,

2
@ cos By, sin” 6y, \{—7_677(3 + 5 cos(20y)) sin” 6y,

« align to shading frame with ZH rotation [SLS05]

Spherical Blocker Self- & Cast- Shadows

Spherical Blocker Self- & Cast- Shadows

« accumulate spherical blocker occlusion for both:

Spherical Blocker Self- & Cast- Shadows

« accumulate spherical blocker occlusion for both:
« dynamic object self-occlusion

Spherical Blocker Self- & Cast- Shadows

« accumulate spherical blocker occlusion for both:
« dynamic object self-occlusion

* and dynamic object cast-occlusion onto the HF

@

Ratio Attenuation

Ratio Attenuation

* SH exponentiation suffers from accumulation error when
there are many overlapping blocker spheres

Ratio Attenuation

* SH exponentiation suffers from accumulation error when
there are many overlapping blocker spheres

* we reduce accumulation error by:
« weighting log-SH visibility by blocker solid angle, and
« only accumulating blockers in upper shading hemisphere

4.

Summary of Main Ideas

accumulate total spherical visibility

combine per-slice HF (log) visibility to form full spherical visibility [NS09]
accumulate dynamic mesh blocker log-visibility and HF log-visibility

perform SH exponentiation

Accumulate Log-SH Visibility

Given spherical log-SH visibility for

dynamic blocker “meshes” dynamic height field geometry
0 1 B-1 HF
{V10g7 V10g7 T 7V10g Vlog
B-—1

+ the total log-SH visibility vector is V,,, = v + 3" vb

Mivoll vyl iviivdi IUH-\)I 1 VIOIIJIIILy 1Vl

dynamic blocker “meshes” dynamic height field geometry
{Vloog7 V110g7 S 7V1P;_g1 VII;I)];
B—-1
+ the total log-SH visibility vector is V,,, = v + > v
b=0

2 3
V =exp (Vi) ® 1+ V,, + Aoz Ve

2 3!

5.

Summary of Main Ideas

compute log-SH BRDF and perform final shading

simplify triple-product shading to double-product shading
formulate view-evaluated BRDF in log-SH space
accumulate BRDF with multi-product visibility

Traditional Triple Product SH Shading

V = exp (Vlog) spherical SH visibility '

Traditional Triple Product SH Shading

V =exp (V,,,) spherical SH visibility ' i

fr (CUO) view-evaluated BRDF * E

Traditional Triple Product SH Shading

V =exp (V,,,) spherical SH visibility ' i

fr (wo) view-evaluated BRDF * E
Le lighting environment * |

Le lighting environment * |

« final shading traditionally ([RWS*06;SGNS07]) computed with
triple-product SH integration:

Lo(wo) = Z LeJ; [V]J £ (wo)]k Lijn
ik

Coe = [355 pelo) do

are the SH tripling coefficients, a sparse order-3 tensor.
» Triple product shading computation is still costly!

Log-BRDF Shading

 We already use log-space to perform a muIti—product

V =exp (Vi) H V,

Log-BRDF Shading

 We already use log-space to perform a muIti—product
V =exp (Vi) H V,

 Triple-product shading composes the BRDF-weighted
visibility (transfer) in the primal domain with a product

T = fr(wa) X 1__[Vb

Log-BRDF Shading

 We already use log-space to perform a muIti—product
V =exp (Vi) H V,

 Triple-product shading composes the BRDF-weighted
visibility (transfer) in the primal domain with a product

T = fr(wa) X 1__[Vb

« ldea: use log-space to compose transfer with a sum

« ldea: use log-space to compose transfer with a sum

T = eXp ([f ()]log‘|‘ V]og WO X H Vy

« ldea: use log-space to compose transfer with a sum

T = exp ([f ()]log—l_ Vlog) r(wo) X 1__[Vi

SH transfer

« ldea: use log-space to compose transfer with a sum

T — exp ([fr(wo)]

SH transfer

Le lighting environment

« ldea: use log-space to compose transfer with a sum

T = exp ([fr (wo)]

SH transfer

Le lighting environment

* Now shading requires a cheap double-product SH integral!
* but how do we compute the log-BRDF SH coefficients?

Log-BRDF SH Coefficients

« We compute the log-ZH BRDF coefficients numerically for:
e diffuse BRDFs,
 and Phong BRDFs

fr(0) = & max(cos® 6,0)

Log-BRDF SH Coefficients

« We compute the log-ZH BRDF coefficients numerically for:
e diffuse BRDFs,
 and Phong BRDFs

fr(0) = & max(cos® 6,0)

Log-BRDF SH Coefficients

« We compute the log-ZH BRDF coefficients numerically for:
e diffuse BRDFs,
 and Phong BRDFs

fr(0) = & max(cos® 6,0)

* Need to treat hemispherical clamping carefully!

I

fr(:O‘—Hmaxcos 6,0)

* Need to treat hemispherical clamping carefully!

« Canonical-frame ZH log-BRDF coefficients are then:

llf’og :L2+ log (O‘—Jrl max(cos® wy, €)) y?(w) dw—+

| (o) yf(w)d

I

fr(:O‘—Hmaxcos 6,0)

* Need to treat hemispherical clamping carefully!

« Canonical-frame ZH log-BRDF coefficients are then:

llfog :/H2+ log (O‘—Jrl max(cos® wy, €)) y?(w) dw—+

| (o) yf(w)d

« We compute & tabulate order-4 ZH coefficients numerically

Log-BRDF Error

* In a worse case lighting scenario, log-SH BRDF
shading still maintains a cosine-like fall-off profile

¢

SH

S

log-SH

8}

Log-BRDF Error

* In a worse case lighting scenario, log-SH BRDF
shading still maintains a cosine-like fall-off profile

Log-BRDF Error

* In a worse case lighting scenario, log-SH BRDF
shading still maintains a cosine-like fall-off profile

¢

SH

<

log-SH

87 1 200

Results

Results

« Hybrid image/object-space renderer
» spherical blockers splatted onto screen [SGNS07]
* multi-resolution HF ray-marching in HF object-space
* rendered at 960 x 540 with (avg.) pixel coverage of 83%.

Results

« Hybrid image/object-space renderer
« spherical blockers splatted onto screen [SGNS07]
* multi-resolution HF ray-marching in HF object-space
* rendered at 960 x 540 with (avg.) plxel coverage of 83%.

Wrecking Ball
402 blockers + HF
15Hz (GTX 480)

Results

« Hybrid image/object-space renderer
» spherical blockers splatted onto screen [SGNS07]
* multi-resolution HF ray-marching in HF object-space
» rendered at 960 x 540 with (avg.) pixel coverage of 83%.

Whale in Ocean
50 blockers + HF
10 Hz (GTX 480)

Results

« Hybrid image/object-space renderer
« spherical blockers splatted onto screen [SGNS07]
* multi-resolution HF ray-marching in HF object-space
* rendered at 960 x 540 with (avg.) pixel coverage of 83%.

Cone Man
25 blockers + HF
68 Hz (GTX 480)

Conclusions

Conclusions

« Combine soft shadowing from environment lighting for
scenes with dynamic blockers and dynamic HFs

Conclusions

« Combine soft shadowing from environment lighting for
scenes with dynamic blockers and dynamic HFs

« Extend multi-resolution marching to non-HF objects
« offset marching and infinite plane assumption

Conclusions

Combine soft shadowing from environment lighting for
scenes with dynamic blockers and dynamic HFs

Extend multi-resolution marching to non-HF objects
« offset marching and infinite plane assumption

Novel log-SH visibility composition for HF slices

e analytic Legendre polynomial coefficients for log-visibility
elevation functions

Conclusions

Combine soft shadowing from environment lighting for
scenes with dynamic blockers and dynamic HFs

Extend multi-resolution marching to non-HF objects
« offset marching and infinite plane assumption

Novel log-SH visibility composition for HF slices

e analytic Legendre polynomial coefficients for log-visibility
elevation functions

Propose Log-SH BRDF formulation to reduce triple-product
shading to double-product shading

Future Work

Future Work

* infinite plane assumption when marching non-HF elements
— leverage negative blocking angle formulation of [NS09]

Future Work

* infinite plane assumption when marching non-HF elements
— leverage negative blocking angle formulation of [NS09]

 analytic log-BRDF formulation with better hemi-clamping

Future Work

* infinite plane assumption when marching non-HF elements
— leverage negative blocking angle formulation of [NS09]

 analytic log-BRDF formulation with better hemi-clamping

* indirect lighting accumulation in log-SH space

Future Work

infinite plane assumption when marching non-HF elements
— leverage negative blocking angle formulation of [NS09]

analytic log-BRDF formulation with better hemi-clamping
indirect lighting accumulation in log-SH space

generalize geometry

— local height field displacements
— tiled height field representations
— non-spherical blockers

We acknowledge the helpful suggestions of
the anonymous reviewers.

Thanks! Any questions?

