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Contributions

• unifying SH exponentiation on HFs and meshes
• dynamic geometry and HF visibility (no precomputation) 
• diffuse and glossy BRDFs in log SH

• real-time performance and simple implementation
• limitation: only soft direct illumination
• applications: 

– landscape rendering (flight simulators, mapping/navigation)
– interactive gaming
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SH Exponentiation [RWS*06]

• Given any log-SH coefficient vector       , we use SH 
exponentiation to compute the (primal-domain) SH 
coefficients

• We use the HYBrid SH exponentiation method [RWS*06]
• A series expansion of the exponential, projected into SH

• Improved numerical stability with:
• DC isolation
• optimal linear-order approximation
• SH scaling & squaring product accumulation
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1. compute HF self-visibility (in log-SH space)

2. compute HF cast-visibility (onto meshes)

3. compute mesh cast-visibility (onto HF) and self-visibility

4. accumulate total spherical visibility

5. compute log-SH BRDF and perform final shading

Summary of Main Ideas

- create multi-resolution height pyramids
- sample from pyramid levels
- pre-filter data
- compose visibility analytically in log-space



ωmax

HF Definitions and Notation [SN08]

Need to find maximum blocking angle ωmax along direction ϕ.
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Calculating the Max Blocking Angle
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Brute Force Sampling [SN08]

Problem: aliasing – need many samples in t.
Solution: prefilter data, apply multi-scale sampling.
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⌧i = 2f(i)

Multi-Resolution Height Sampling [SN08]

sampling distance for level i

height pyramid level i

Sample coarser levels further from x.

fi fi-1 fi-2 fi-3

τi τi-1
τi-2

τi-3
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• starting with binary visibility for an elevation slice:

 and represent it analytically in the Normalized Legendre 
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Visibility Slice Interpolation [NS09]

• requires 1 precomputed interpolation + projection matrix

• already computed log-ZH azimuthal visibility, per-direction
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form full log-SH spherical visibility

�2

�0

�1



vwedge

log

=

vwedge

log

• requires 1 precomputed interpolation + projection matrix

• rotate and sum across each wedge’s             to form 
final log-SH vector
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1. compute HF self-visibility (in log-SH space)

2. compute HF cast-visibility (onto meshes)

3. compute mesh cast-visibility (onto HF) and self-visibility

4. accumulate total spherical visibility

5. compute log-SH BRDF and perform final shading

Summary of Main Ideas

- repeat multi-resolution marching
- offset the height field queries
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Height Field Cast Visibility onto Meshes

Need to find ωmax on mesh shading point along each direction ϕ

•   Assume an infinite plane for the HF base elevation
•   minimum blocking angle can’t go negative
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1. compute HF self-visibility (in log-SH space)

2. compute HF cast-visibility (onto meshes)

3. compute mesh cast-visibility (onto HF) and self-visibility

4. accumulate total spherical visibility

5. compute log-SH BRDF and perform final shading

Summary of Main Ideas

- extend traditional SH exponentiation approach [RWS*06;SGNS07]
- decompose dynamic mesh blockers into spheres
- compute & accumulate log-SH visibility for spherical blockers 

- on the mesh shading points
- repeat over the HF shading points

- intelligently cull the sphere set during accumulation
- reduces numerical accumulation error
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Spherical Blocker Log SH Visibility

• can compute log-visibility SH coefficients analytically
• begin with a canonical alignment:

• solve analytically (we use order-4 SH, so 4 ZH coefficients)
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• solve analytically (we use order-4 SH, so 4 ZH coefficients)

• align to shading frame with ZH rotation [SLS05] 

~z
~!d



Spherical Blocker Self- & Cast- Shadows



Spherical Blocker Self- & Cast- Shadows

• accumulate spherical blocker occlusion for both:



Spherical Blocker Self- & Cast- Shadows

• accumulate spherical blocker occlusion for both:
• dynamic object self-occlusion



Spherical Blocker Self- & Cast- Shadows

• accumulate spherical blocker occlusion for both:
• dynamic object self-occlusion

• and dynamic object cast-occlusion onto the HF
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Ratio Attenuation

• SH exponentiation suffers from accumulation error when 
there are many overlapping blocker spheres

• we reduce accumulation error by:
• weighting log-SH visibility by blocker solid angle, and
• only accumulating blockers in upper shading hemisphere



1. compute HF self-visibility (in log-SH space)

2. compute HF cast-visibility (onto meshes)

3. compute mesh cast-visibility (onto HF) and self-visibility

4. accumulate total spherical visibility

5. compute log-SH BRDF and perform final shading

Summary of Main Ideas

- combine per-slice HF (log) visibility to form full spherical visibility [NS09]
- accumulate dynamic mesh blocker log-visibility and HF log-visibility
- perform SH exponentiation
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1. compute HF self-visibility (in log-SH space)

2. compute HF cast-visibility (onto meshes)

3. compute mesh cast-visibility (onto HF) and self-visibility

4. accumulate total spherical visibility

5. compute log-SH BRDF and perform final shading

Summary of Main Ideas

- simplify triple-product shading to double-product shading
- formulate view-evaluated BRDF in log-SH space
- accumulate BRDF with multi-product visibility
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• final shading traditionally ([RWS*06;SGNS07]) computed with 
triple-product SH integration:

where
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Traditional Triple Product SH Shading

• final shading traditionally ([RWS*06;SGNS07]) computed with 
triple-product SH integration:

where
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• final shading traditionally ([RWS*06;SGNS07]) computed with 
triple-product SH integration:

where

     are the SH tripling coefficients, a sparse order-3 tensor.
• Triple product shading computation is still costly!



V = exp (V
log

) ⇡
B�1Y

b=0

Vb

Log-BRDF Shading

• We already use log-space to perform a multi-product



V = exp (V
log

) ⇡
B�1Y

b=0

Vb

T = f
r

(!
o

)⇥
B�1Y

b=0

V
b

Log-BRDF Shading

• We already use log-space to perform a multi-product

• Triple-product shading composes the BRDF-weighted 
visibility (transfer) in the primal domain with a product
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• We already use log-space to perform a multi-product

• Triple-product shading composes the BRDF-weighted 
visibility (transfer) in the primal domain with a product

• Idea: use log-space to compose transfer with a sum
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• Idea: use log-space to compose transfer with a sum

• Now shading requires a cheap double-product SH integral!
• but how do we compute the log-BRDF SH coefficients?
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Log-BRDF SH Coefficients

• We compute the log-ZH BRDF coefficients numerically for:
• diffuse BRDFs, 
• and Phong BRDFs

• Need to treat hemispherical clamping carefully!
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• Canonical-frame ZH log-BRDF coefficients are then:
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• We compute & tabulate order-4 ZH coefficients numerically
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Conclusions

• Combine soft shadowing from environment lighting for 
scenes with dynamic blockers and dynamic HFs

• Extend multi-resolution marching to non-HF objects
• offset marching and infinite plane assumption

• Novel log-SH visibility composition for HF slices
• analytic Legendre polynomial coefficients for log-visibility 

elevation functions

• Propose Log-SH BRDF formulation to reduce triple-product 
shading to double-product shading
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Future Work

• infinite plane assumption when marching non-HF elements
– leverage negative blocking angle formulation of [NS09]

• analytic log-BRDF formulation with better hemi-clamping

• indirect lighting accumulation in log-SH space

• generalize geometry
– local height field displacements
– tiled height field representations
– non-spherical blockers
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