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 unifying SH exponentiation on HFs and meshes
* dynamic geometry and HF visibility (no precomputation)
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 real-time performance and simple implementation
* limitation: only soft direct illumination

« applications:
— landscape rendering (flight simulators, mapping/navigation)
— interactive gaming
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Given spherical log-SH visibility for

dynamic blocker “meshes”  dynamic height field geometry
0 1 B-1 HF
{V10g7 V10g7 T 7V10g Vlog
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+ the total log-SH visibility vector is V,,, = v + 3" vb
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SH Exponentiation [RWS*06]

« Given any log-SH coefficient vector f, , we use SH
exponentiation to compute the (primal-domain) SH
coefficients f

* We use the HYBrid SH exponentiation method [RWS*06]
« A series expansion of the exponential, projected into SH

Improved numerical stability with:
e DC isolation
e optimal linear-order approximation
 SH scaling & squaring product accumulation
£2 £3
f =exp(fo,) =1+, + 5+ 5




Summary of Main Ideas

1. compute HF self-visibility (in log-SH space)
- create multi-resolution height pyramids
- sample from pyramid levels

- pre-filter data
- compose visibility analytically in log-space



HF Definitions and Notation [SN08]

Need to find maximum blocking angle w, . along direction .
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Brute Force Sampling [SN08]

Problem: aliasing — need many samples in ¢.
Solution: prefilter data, apply multi-scale sampling.
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Multi-Resolution Height Sampling [SN08]

/, height pyramid level i

T, = 9 () sampling distance for level i

Sample coarser levels further from x.

Ji2 Jis
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Elevation Visibility

« starting with binary visibility for an elevation slice:

o(w: o) = 0, fw<o
771 1, otherwise.

« we can express the log-visibility for the slice as

v (W 0) = loge, tw<o
s\ 9/ = otherwise.
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and represent it analytically in the Normalized Legendre
Polynomial (NLP) basis:

Vieg (0) = / (log €) f’(cos ¢) sin 0do
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and represent it analytically in the Normalized Legendre
Polynomial (NLP) basis:

Vieg (0) = / (log €) f’(cos ¢) sin 0do
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In the primal domain: can sum SH visibility for each slice

initialize the total visibility to 0 (fully occluded)
add in visible portions per slice
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but, in the log domain: sums correspond to products
how do we accumulate products of visibility?
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but, in the log domain: sums correspond to products
how do we accumulate products of visibility?

begin by initializing total /log-visibility to 1 (full visibility)
multiply in the occluded portions
¢ do this by summing the log-visibility
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« already computed log-ZH azimuthal visibility, per-direction

e can combine and interpolate azimuthal
log-SH elevation coefficients together to |
form full log-SH spherical visibility




* requires 1 precomputed interpolation + projection matrix

wedge ___ M Vlog (O-O
Vlog o l Y
(AL

Wedge

« rotate and sum across each wedge's v, _ to form

final log-SH vector v,



2.

Summary of Main Ideas

compute HF cast-visibility (onto meshes)

repeat multi-resolution marching
offset the height field queries
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Height Field Cast Visibility onto Meshes
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Need to find , . on mesh shading point along each direction @

 Assume an infinite plane for the HF base elevation
* minimum blocking angle can’t go negative
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Summary of Main Ideas

3. compute mesh cast-visibility (onto HF) and self-visibility
extend traditional SH exponentiation approach [RWS*06;SGNS07]
decompose dynamic mesh blockers into spheres
compute & accumulate log-SH visibility for spherical blockers
- on the mesh shading points
- repeat over the HF shading points
intelligently cull the sphere set during accumulation
- reduces numerical accumulation error
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Spherical Blocker Log SH Visibility

« can compute log-visibility SH coefficients analytically

* begin with a canonical alignment:

0, = arcsin (r/d)

:Hb:
/ / (log€) y? (0, @) sinHdOde
=0 Jo= -

« solve analytically (we use order-4 SH, so 4 ZH coefficients)
v,”® = log ex [—\/_( 1 4 cos6y), \/_Sln 0y,

\/2_ cos Oy, sin? 6y, \/176_77(3 + 5 cos(26y)) sin? 6,



/ (loge) y; (U, @) sinvdvdg
6=0 J =0 e

» solve analytically (we use order-4 SH, so 4 ZH coefficients)

V}()g = log ex [—\/%(—1 + cos 0), V3T gin? 0y,

2
@ cos By, sin” 6y, \{—7_677(3 + 5 cos(20y)) sin” 6y,

« align to shading frame with ZH rotation [SLS05]
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Spherical Blocker Self- & Cast- Shadows

« accumulate spherical blocker occlusion for both:
« dynamic object self-occlusion

* and dynamic object cast-occlusion onto the HF

@
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Ratio Attenuation

* SH exponentiation suffers from accumulation error when
there are many overlapping blocker spheres

* we reduce accumulation error by:
« weighting log-SH visibility by blocker solid angle, and
« only accumulating blockers in upper shading hemisphere




4.

Summary of Main Ideas

accumulate total spherical visibility

combine per-slice HF (log) visibility to form full spherical visibility [NS09]
accumulate dynamic mesh blocker log-visibility and HF log-visibility

perform SH exponentiation



Accumulate Log-SH Visibility

Given spherical log-SH visibility for

dynamic blocker “meshes”  dynamic height field geometry
0 1 B-1 HF
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+ the total log-SH visibility vector is V,,, = v + 3" vb
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dynamic blocker “meshes”  dynamic height field geometry
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+ the total log-SH visibility vector is V,,, = v + > v
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5.

Summary of Main Ideas

compute log-SH BRDF and perform final shading

simplify triple-product shading to double-product shading
formulate view-evaluated BRDF in log-SH space
accumulate BRDF with multi-product visibility
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Le lighting environment * |

« final shading traditionally ([RWS*06;SGNS07]) computed with
triple-product SH integration:

Lo(wo) = Z LeJ; [V]J £ (wo)]k Lijn
ik

Coe = [ 355 pelo) do

are the SH tripling coefficients, a sparse order-3 tensor.
» Triple product shading computation is still costly!
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« ldea: use log-space to compose transfer with a sum

T = exp ([fr (wo)]

SH transfer

Le lighting environment

* Now shading requires a cheap double-product SH integral!
* but how do we compute the log-BRDF SH coefficients?
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fr( :O‘—Hmaxcos 6,0)

* Need to treat hemispherical clamping carefully!

« Canonical-frame ZH log-BRDF coefficients are then:

llfog :/H2+ log (O‘—Jrl max(cos® wy, € )) y?(w) dw—+

| (o) yf(w)d

« We compute & tabulate order-4 ZH coefficients numerically



Log-BRDF Error

* In a worse case lighting scenario, log-SH BRDF
shading still maintains a cosine-like fall-off profile
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« Hybrid image/object-space renderer
» spherical blockers splatted onto screen [SGNS07]
* multi-resolution HF ray-marching in HF object-space
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Results

« Hybrid image/object-space renderer
« spherical blockers splatted onto screen [SGNS07]
* multi-resolution HF ray-marching in HF object-space
* rendered at 960 x 540 with (avg.) pixel coverage of 83%.

Cone Man
25 blockers + HF
68 Hz (GTX 480)
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Conclusions

Combine soft shadowing from environment lighting for
scenes with dynamic blockers and dynamic HFs

Extend multi-resolution marching to non-HF objects
« offset marching and infinite plane assumption

Novel log-SH visibility composition for HF slices

e analytic Legendre polynomial coefficients for log-visibility
elevation functions

Propose Log-SH BRDF formulation to reduce triple-product
shading to double-product shading
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Future Work

infinite plane assumption when marching non-HF elements
— leverage negative blocking angle formulation of [NS09]

analytic log-BRDF formulation with better hemi-clamping
indirect lighting accumulation in log-SH space

generalize geometry

— local height field displacements
— tiled height field representations
— non-spherical blockers
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