Department Of Electrical & Computer Engineering Course ECSE 335 Session 24/Fall

Introduction To Microelectronic Circuits Assignment #3

Differential Amplifier Biasing:

Choose any three of the following 6 biasing problems:

- 1. Bias a NMOS differential amplifier with V/I load in a 1 um CMOS process described by $\mu_n C_{OX} = 0.1 \text{ mA/V}$, Vt =0.5 V and $\lambda'_n=2x10^{-7}$ m/V such that its output is set at 2.2 V. Assume a 3.3 V supply level and an input common-mode level of 1.65 V. Ensure that each device is operating in its saturation region. Verify your result using SPICE.
- 2. Bias a NMOS differential amplifier with V/I load in a 1 um CMOS process described by $\mu_n C_{OX} = 0.1 \text{ mA/V}$, V_t =0.5 V and $\lambda'_n=2x10^{-7}$ m/V such that its output is set at 2.2 V. Assume a 3.3 V supply level with V_{G1}= 1.65 V and V_{G2}=2.0 V. Ensure that each device is operating in its saturation region. Verify your result using SPICE.
- 3. Bias a NMOS differential amplifier with V/I load in a 1 um CMOS process described by $\mu_n C_{OX} = 0.1 \text{ mA/V}$, Vt =0.5 V and $\lambda'_n=2x10^{-7}$ m/V such that its output is set at 1.65 V. Assume a 3.3 V supply level with V_{G1}=V_{G2}= 1.65 V and V_{D,1}=2.2 V. Ensure that each device is operating in its saturation region. Verify your result using SPICE.
- 4. Bias a PMOS differential amplifier with V/I load in a 1 um CMOS process described by $\mu_n C_{OX} = 0.05 \text{ mA/V}$, $V_t = -0.6 \text{ V}$ and $\lambda'_n = 2x10^{-7} \text{ m/V}$ such that its output is set at 1.0 V. Assume a 5.0 V supply level and an input common-mode level of 1.65 V. Ensure that each device is operating in its saturation region. Verify your result using SPICE.

- 5. Bias a NMOS differential amplifier with V/V load in a 1 um CMOS process described by $\mu_n C_{OX} = 0.1 \text{ mA/V}$, Vt =0.5 V and $\lambda'_n=2x10^{-7}$ m/V such that its two output are set at 1.65 V. Assume a 3.3 V supply level with $V_{G1}=V_{G2}=V_{CM}=$ 1.65 V. Ensure that each device is operating in its saturation region. Verify your result using SPICE.
- 6. Bias a PMOS differential amplifier with V/V load in a 1 um CMOS process described by $\mu_n C_{OX} = 0.05 \text{ mA/V}$, $V_t = -0.6 \text{ V}$ and $\lambda'_n = 2x10^{-7} \text{ m/V}$ such that its two output are set at 1.0 V. Assume a 3.3 V supply level with $V_{G1} = V_{G2} = V_{CM} = 1.65 \text{ V}$. Ensure that each device is operating in its saturation region. Verify your result using SPICE.