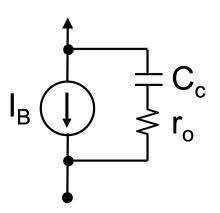
Department Of Electrical & Computer Engineering Course ECSE 335 Session 24/Fall

Introduction To Microelectronic Circuits Assignment #4


Differential Amplifier Biasing and Amplification

Choose any 3 of the following 5 amplifier design problems:

- 1. Bias a NMOS differential amplifier with V/I load in a 1 um CMOS process described by $\mu_n C_{OX} = 0.1 \text{ mA/V}$, Vt =0.5 V and $\lambda'_n=2x10^{-7}$ m/V such that it has a DC gain whose magnitude is at least 40 V/V and an output DC bias point of 2.2 V. Assume a 3.3 V supply level and an input common-mode level of 1.65 V. Ensure that each device is operating in its saturation region. Verify your result using SPICE.
- 2. Bias a PMOS differential amplifier with V/I load in a 1 um CMOS process described by $\mu_n C_{OX} = 0.05 \text{ mA/V}$, V_t =-0.6 V and $\lambda'_n=2x10^{-7}$ m/V such that it has a DC gain whose magnitude is equal to 10 V/V and an output DC bias point of 1.0 V. Assume a 5.0 V supply level and an input common-mode level of 1.65 V. Ensure that each device is operating in its saturation region. Verify your result using SPICE.
- 3. Bias a NMOS differential amplifier with V/V load in a 1 um CMOS process described by $\mu_n C_{OX} = 0.1 \text{ mA/V}$, Vt =0.5 V and $\lambda'_n=2x10^{-7}$ m/V such that its two output are set at 1.65 V. Assume a 3.3 V supply level with $V_{G1}=V_{G2}=V_{CM}=1.65$ V. Select the biasing conditions so that the magnitude of the small-signal current-to-differential-voltage ratio $i_{d,2}/v_d$ is 50 μ A/V. Ensure that each device is operating in its saturation region. Verify your result using SPICE.
- 4. Bias a PMOS differential amplifier with V/V load in a 1 um CMOS process described by $\mu_n C_{OX} = 0.05 \text{ mA/V}$, $V_t = -0.6 \text{ V}$ and $\lambda'_n = 2 \times 10^{-7} \text{ m/V}$ such that its two output are set at 1.0 V. Assume a 3.3 V supply level with $V_{G1} = V_{G2} = V_{CM} = 1.65 \text{ V}$. Select the biasing conditions so that the magnitude of the small-signal

current-to-differential-voltage ratio $i_{d,2}/v_d$ is 100 μ A/V. Ensure that each device is operating in its saturation region. Verify your result using SPICE.

5. Design an npn differential amplifier with V/I load in a bipolar process described by $V_{A,n} = V_{A,p} = 100$ V and $I_S = 1x10^{-15}$ A. Set the output Q-point at 6 V, while using a DC power supply of 10 V and an input common-model level of 5 V. Set the magnitude of the small-signal voltage gain to 30 V. Ensure that the devices are operating in their active region. Verify your result using SPICE. Assume that the current source biasing is derived from a single pnp transistor with finite output resistance, i.e., a current source in parallel with an AC coupled resistor.

