Errata Sheet
 Introduction To Mixed-Signal IC Testing, $\mathbf{2}^{\text {nd }}$ Edition
 Roberts, Taenzler and Burns

Chapter 5:

Exercise 5.7. The sigma in this problem should have been 10 mV (typesetting error).
The question should read:
A series of 100 measurements is made on the output of an op amp circuit whereby the distribution was found to be Gaussian with mean value of 12.5 mV and a standard deviation of $\mathbf{1 0 \mathbf { m V }}$. If this experiment is repeated, write an expression for the pdf of the mean values of each of these experiments?
Ans. $f(v)=\frac{1}{\left(10^{-3}\right) \sqrt{2 \pi}} e^{\frac{-\left(v-12.5 \times 10^{-3}\right)^{2}}{2\left(10^{-3}\right)^{2}}}$
The answer to the existing question written as:
A series of 100 measurements is made on the output of an op amp circuit whereby the distribution was found to be Gaussian with mean value of 12.5 mV and a standard deviation of $\mathbf{1 \mathbf { m V }}$. If this experiment is repeated, write an expression for the pdf of the mean values of each of these experiments?
Ans. $f(v)=\frac{1}{\left(0.1 \times 10^{-3}\right) \sqrt{2 \pi}} e^{\frac{-\left(v-12.5 \times 10^{-3}\right)^{2}}{2\left(0.1 \times 10^{-3}\right)^{2}}}$
Exercise 5.8. The sigma in this problem should have been 10 mV (typesetting error).
The question should read:
A series of 100 measurements is made on the output of an op amp circuit whereby the distribution was found to be Gaussian with mean value of 12.5 mV and a standard deviation of $\mathbf{1 0 \mathbf { m V }}$. If this experiment is repeated and the mean value is compared to a reference level of 10 mV , what is the mean and standard deviation of the error distribution that results? Write an expression for the pdf of these errors?
Ans. $f(v)=\frac{1}{\left(10^{-3}\right) \sqrt{2 \pi}} e^{\frac{-\left(v-2.5 \times 10^{-3}\right)^{2}}{2\left(10^{-3}\right)^{2}}}$
The answer to the existing question written as:
A series of 100 measurements is made on the output of an op amp circuit whereby the distribution was found to be Gaussian with mean value of 12.5 mV and a standard deviation of $\mathbf{1 \mathbf { m V }}$. If this experiment is repeated and the mean value is compared to a reference level of 10 mV , what is the mean and standard deviation of the error distribution that results? Write an expression for the pdf of these errors?

Ans. $f(v)=\frac{1}{\left(0.1 \times 10^{-3}\right) \sqrt{2 \pi}} e^{\frac{-\left(v-2.5 \times 10^{-3}\right)^{2}}{2\left(0.1 \times 10^{-3}\right)^{2}}}$

Exercise 5.9. The sigma in this problem should have been 10 mV (typesetting error).
The question should read:
A series of 100 measurements is made on the output of an op amp circuit whereby the distribution was found to be Gaussian with mean value of 12.5 mV and a standard deviation of $\mathbf{1 0 \mathbf { m V V }}$. If this experiment and the mean value is compared to a reference value of 10 mV , in what range will the expected value of the error lie for a 99.7% conference interval.

Ans. $-0.5 \mathrm{mV} \leq \mathrm{E}[\mathrm{error}] \leq+5.5 \mathrm{mV}$

The answer to the existing question written as
A series of 100 measurements is made on the output of an op amp circuit whereby the distribution was found to be Gaussian with mean value of 12.5 mV and a standard deviation of $\mathbf{1 \mathbf { m V }}$. If this experiment and the mean value is compared to a reference value of 10 mV , in what range will the expected value of the error lie for a 99.7% conference interval.

Ans. $+2.2 \mathrm{mV} \leq \mathrm{E}[$ error $] \leq+2.8 \mathrm{mV}$

Chapter 13:

Special note on numbering problem at end-of-chapter: problems 13.1-13.9 appear twice and lead to the problem numbers above 13.9 to be offset by -10 . Specifically, problems are numbered as:
$13.1,13.2, \ldots . ., 13.8,13.9,13.1,13.2, \ldots . ., 13.8,13.9,13.10,13.11,13.12, \ldots ., 13.27,13.28$.
This causes a misalignment with the solutions given at the end of the book.

Correction to (Eqn. 13-15):

$$
\left.G_{A}^{\prime}\right|_{d B}=\left.G_{A}\right|_{d B}-\left[\left.G_{o, I N}\right|_{d B}+\left.G_{o, O U T}\right|_{d B}\right]
$$

Problem 13.18 (written in textbook as 13.10):

The question should read:
The spectrum below has been measured when supplying an amplifier with a $\mathbf{- 2 0} \mathbf{~ d B m}$ per tone two-tone signal. What is the OIP3, IIP3 and the gain of this amplifier?

Chapter 15:

Problem 15.1:

The question is:
Calculate the parasitic resistance of a 13-in. PCB trace having a width of 20 mils and a thickness of 1 mil . A pair of these traces are used as the high-force and low-force lines of a Kelvin-connected voltage regulator located on the DIB. The regulator feeds a 3.3-V DC signal to a $5-\Omega$ load resistance. How much current will flow through the four Kelvin lines? What will be the differential voltage between the high-force and low-force output of the voltage regulator, measured at the regulator side of the PCB traces?

The answer should be:

$$
\mathrm{R}_{\text {trace }}=0.44 \Omega, \mathrm{I}_{\mathrm{Load}}=\mathrm{I}_{\mathrm{HF}}=\mathrm{I}_{\mathrm{LF}}=0.66 \mathrm{~A}, \mathrm{I}_{\mathrm{HS}}=\mathrm{I}_{\mathrm{LS}}=0 \mathrm{~A}, \mathrm{~V}_{\text {drop }}=0.293 \mathrm{~V}, \mathrm{~V}_{\mathrm{REG}}=3.87 \mathrm{~V} .
$$

Corresponding to the situation:

