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Abstract - An anti-aliasing filter that incorporates a sampler is
proposed to precede noise-shaping analog-to-digital converters
(ADCs), such as discrete-time ΔΣ modulators. The architecture of
the proposed anti-aliasing filter is inspired by the implicit anti-
aliasing filtering property of CT ΔΣ modulators. However,
contrary to CT ΔΣ modulators, the proposed anti-aliasing filter is
not sensitive to clock jitter. Furthermore, its key characteristics
include: 1) higher suppression of aliases, compared to a
Butterworth filter of the same order (same number of opamps);
and 2) high-pass shaping of the sampling errors. Its performance
advantages are derived theoretically and then confirmed through
behavioural simulations.    

I. INTRODUCTION

Continuous-time (CT) ΔΣ modulators have recently gained
popularity, owing to their potential for low-power high-speed
operation, shaping of sampling errors, and implicit anti-
aliasing filtering [1]. Discrete-time (DT) ΔΣ modulators are
still preferred in many applications, as they do not require
tuning circuits nor suffer from clock-jitter sensitivity,
compared to CT ΔΣ modulators. However, DT ΔΣ modulators
require an explicit anti-aliasing filter. Mixed CT/DT ΔΣ
modulators combine the advantages of CT and DT ΔΣ
modulators. However, they still suffer from clock jitter, as the
DT feedback pulse is subtracted from a CT input signal.

This paper proposes a novel anti-aliasing filter that
incorporates a sampler. The filter architecture is inspired by the
anti-aliasing filtering characteristics of a CT ΔΣ modulator.
However, contrary to CT ΔΣ modulators, it does not suffer
from clock-jitter sensitivity. Furthermore, its key features
include: 1) higher suppression of aliases, compared to a
Butterworth filter of the same order (same number of opamps);
and 2) high-pass shaping of the sampling errors (similar to the
shaping of quantization noise in a ΔΣ modulator). Thus, the
proposed anti-aliasing filter is particularly attractive at the
input of DT ΔΣ modulators. 

The paper outline is: Section II derives the anti-aliasing
property of CT and mixed CT/DT ΔΣ modulators; Section III
proposes an anti-aliasing filter with incorporated sampler;
and Section IV compares the performance of the proposed
anti-aliasing filter to classical filter designs.

II. ANTI-ALIAS FILTERING IN CT & MIXED ΔΣ MODULATORS

The implicit anti-aliasing property of CT ΔΣ modulators
was first reported in [2], and has since been studied extensively
for various modulator architectures [3,4]. This section derives
the implicit anti-aliasing property of CT and mixed CT/DT ΔΣ
modulators. The equations derived here will then be utilized in
Section III to design the proposed anti-aliasing filter. 

A. Anti-Aliasing Filtering Characteristics
Consider the linear model of a CT ΔΣ modulator in Fig. 1a.

This model can be redrawn as depicted in Fig. 1b, with loop
filter  and input filter :

(1)

(2)

Define an equivalent DT loop filter: 

(3)

where IIT{.} denotes the impulse invariant transform, while
Z{.} and L{.} denote the Z-transform and the Laplace
transform, respectively. 
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Fig. 1.  Block diagram of: (a) a CT ΔΣ modulator with distributed DAC
feedback; (b) the CT ΔΣ modulator in (a), redrawn with loop filter  and
input filter ; and (c) open-loop equivalent representation of the CT ΔΣ
modulator in (a).
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Then, the output of the CT ΔΣ modulator (Fig. 1b) can be
expressed as: 

(4)

where * denotes the sampling operation, as in [5]. Thus, the
noise transfer function (from  to ) is given by:

(5)

Hence, using (4) and (5), the ΔΣ modulator output can be
expressed as:

(6)
The NTF in (6) can now be inserted in the sample operation by

setting , thereby resulting in:

(7)
where  is the clock sampling period.

Accordingly, to represent the CT ΔΣ modulator in Fig. 1b,
the open-loop equivalent model in Fig. 1c can be utilized.
Here, the signal-transfer function (STF) prior to the sampling
operation is defined as:

(8)

To illustrate how the STF in equation (8) results in anti-
aliasing filtering, consider for example a 1st-order CT ΔΣ
modulator with: 

(9)

(10)

where the loop filter  is a CT integrator and the feedback
pulse shaper (i.e., the digital-to-analog converter (DAC)) is a
zero-order hold.

Figure 2 plots the magnitude response of the STF in
equation (8), after substituting (9) and (10) into (8). Observe
that the STF has notches at multiples of , where  is
the sampling frequency.

Signals aliasing into the input-signal band are found in the
frequency range , where  is the input-signal band
edge and  is an integer. The oversampling ratio is defined as:

(11)

Since, typically , the inband aliasing signals fall close
to the notches of the STF. Therefore, these signals are
suppressed before they are aliased inband by the sampling
operation. Furthermore, as the OSR increases, the inband
aliasing signals occur closer to the STF notches and, hence, the
amount of suppression increases.     

B. Anti-Aliasing Filtering in Mixed CT/DT ΔΣ Modulators
Mixed CT/DT ΔΣ modulators combine CT integrators and

DT integrators, as shown in Fig. 3 [6, 7]. An analysis of the
output yields:

(12)

Here,  is the equivalent discrete-time filter of  as
defined in (3). Thus, the STF prior to the sampling operation
(as depicted in Fig. 1c) is given by:

(13)

Observe that for frequencies near multiples of , the STF in
(13) reduces to:

(14)

Accordingly, based on (14), the amount of anti-aliasing
suppression in a mixed ΔΣ modulator (Fig. 3) depends solely
on the order of its continuous-time filter .    

III.  PROPOSED ANTI-ALIASING FILTER

A.  Proposed Filter Architecture

To design an anti-aliasing filter, this paper proposes using a
CT ΔΣ modulator without a quantizer, as depicted in Fig. 4a.
Here, a zero-order hold (ZOH) 

(15)

is used to implement the feedback pulse shaper.
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Fig. 2.  Magnitude response of STF for a 1st-order CT ΔΣ modulator. Observe
the notches at multiples of fS.
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Fig. 3.  Block diagram of a mixed CT/DT ΔΣ modulator.
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The proposed anti-aliasing filter (Fig. 4a) does not suffer
from clock jitter sensitivity (compared to classical CT ΔΣ
modulators), since it has no quantizer. Furthermore, since the
sampler is incorporated inside the loop, sampling errors are
high-pass shaped (similar to the shaping of quantization noise
in a ΔΣ modulator). However, the trade-off is that a
sample-and-hold circuit is needed to implement the sampler.
Accordingly, the proposed anti-aliasing filter is particularly
attractive at the input of noise-shaping ADCs, such as DT ΔΣ
modulators.

B.  Proposed Filter Implementation
To implement the proposed anti-aliasing filter architecture

(Fig. 4a), the N-th order feedback filter in Fig. 4b is proposed.
Here, a distributed feedback (rather than feedforward)
architecture is selected, as it results in an equivalent forward
filter  with only poles and, hence, it maximizes the
achievable anti-aliasing suppression.

The proposed anti-aliasing filter in Fig. 4b can be mapped to
Fig. 1b, with:

(16)

(17)

Since the derivation of the anti-aliasing property of CT ΔΣ
modulators in Section II involved setting , the exact
analysis is applicable to the proposed anti-aliasing filter in Fig.
4b. Accordingly, based on equation (8), the transfer function

from input  to output  before the sampler in the
proposed anti-aliasing filter (Fig. 4b) can be expressed as:

 (18)

where  is given in (5).

Owing to the chain of integrators, the loop filter  in
(17) has an equivalent discrete-time filter  in (3) with all
its poles at  (dc) and with the location of its zeros
dependent on the coefficients . Therefore, the corresponding
NTF in (5) can be expressed as:

(19)

where the location of poles  depends on coefficients .
Thus,  has a high-pass characteristic with notches at
multiples of .

C.  Minimum Aliasing Suppression
The signals aliasing into the input-signal band are found

in the frequency range . Therefore,
since the anti-aliasing filter is a low-pass filter, the signals at

 are the least suppressed. Hence, the inverse
magnitude response of the anti-aliasing filter at 
(i.e., ) corresponds to the worst-case
suppression of the aliases by the anti-aliasing filter. This
is referred to as the minimum aliasing suppression.

Accordingly, substituting (16) and (19) in (20), the
minimum aliasing suppression can be expressed as:

(20)

To simplify (20), observe that:
1) For : 

         (21)
2) At low frequencies, the STF of a CT ΔΣ modulator and,

equivalently, the magnitude response of  in (18) are
approximately unity. This results in:

(22)

Substituting (16) and (19) into (22), results in:

(23)

Using (21) and (23), equation (22) can be simplified as:

 (24)

Using Euler’s formula, some trigonometric identities, and
Taylor’s expansion, equation (24) can be further simplified to
express the minimum aliasing suppression as:

(25)

This result demonstrates that the minimum aliasing
suppression of the proposed anti-aliasing filter is only
dependent on the OSR and the filter order N.
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Fig. 4.  Proposed anti-aliasing filter with incorporated sampler: (a) generic
representation; and (b) proposed implementation.
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IV. PERFORMANCE COMPARISON TO BUTTERWORTH FILTERS

A. Minimum Aliasing Suppression
Consider a classical Nth-order low-pass Butterworth filter

with 3-dB corner frequency at the signal-band edge .
Its transfer function is given by:

(26)

When used as an anti-aliasing filter, this Butterworth filter has
minimum aliasing suppression of:

(27)

Comparing (27) and (25) reveals that the proposed anti-
aliasing filter has a minimum suppression equivalent to a
classical Butterworth filter of the same order. This is shown
graphically in Fig. 5, where the magnitude responses of the
proposed and Butterworth anti-aliasing filters are plotted.

B. Inband Alias Power
 Another way to compare the performance of anti-aliasing

filters is to calculate the total signal power at the filter output
that can alias into the signal band, assuming a normalized
signal with a white spectrum at the filter input. This is referred
to as the inband alias power . Since signals in the
frequency range  ( ) can alias inband, the
alias power is given by

(28)

where  is the magnitude response of the filter. 
Intuitively, less aliasing (smaller ) is expected using

the proposed anti-aliasing filter, since it has notches at
multiples of . Figure 6 compares the aliasing power  of
the proposed anti-aliasing filter and a low-pass Butterworth
filter for various filter orders. In this figure,  was
computed over only the first 10 inband-aliasing frequency
ranges (i.e., for k=1,..., 10 in equation (28)), as alias signals at
frequencies above these ranges are highly suppressed and,
hence, are insignificant.

As per Fig. 6, for a given filter order, the proposed
anti-aliasing filter achieves more noise power suppression
(smaller ) than a Butterworth filter. Furthermore, as the
filter order increases, the performance of the proposed filter
improves compared to a Butterworth filter. Accordingly, the
aliasing suppression advantages of the proposed anti-aliasing
filter are most noticeable when designed for higher orders,
where it would significantly outperform a Butterworth filter.

V. CONCLUSION

A novel anti-aliasing filter that incorporates a sampler has
been proposed. Compared to a Butterworth filter of the same
order, the proposed filter has the same minimal alias
suppression. Furthermore, it has higher overall alias
suppression, owing to the notches in the magnitude response at
multiples of the sampling frequency. This anti-aliasing
performance advantage of the proposed filter increases as the
filter order increases. In addition, the proposed filter high-pass
shapes the sampling errors (similar to the shaping of
quantization noise in ΔΣ modulators). Accordingly, the
proposed anti-aliasing filter is particularly attractive at the
input of oversampling discrete-time ΔΣ modulators.
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