GUIDANCE OF GRADUATE THESES AND PROJECTS


[8] Bharathram Sivasubramanian, “Raptor Codes for Error Correction over Wireless Channels”


[18] P. Bergeron-Burns, “Reduced Complexity Decoding for Multiple Antenna Wireless Comm.”


[27] F. Danilo, “Detection Techniques and Performance Analysis for Fading Multipath Channels with Unresolved Components”

[28] A. Li, “Space-Time (2D) RAKE Receivers and Pre-RAKE Technologies for DS-CDMA Systems”

[29] E. Malkamaki, “Performance of Error Control over Block Fading Channels with ARQ Applications”
Dr. thesis, Communications Laboratory, Helsinki University of Technology, Sept. 1998.

[30] Y. C. Yoon, "SNR Maximizing Linear Filters with Interference Suppression Capabilities for DS-CDMA"

[31] M. Kimpe, "Computerized Estimation of the Indoor Wideband Radio Channel"


[33] A. Moussa, "The GSM and IS-95 Mobile Communication Systems"

[34] G. Kipens, “A SAW-Based Commutation Signaling Modem for Broadband Indoor Wireless Communications”

[35] J. P. Chaib, "Chip Shaping and Channel Coding for CDMA"

[36] H. Ren, "Code Design for Broadband Indoor Wireless Communications Using Commutation Signaling"

[37] P. Popescu, "Chip Timing Recovery for Indoor Wireless Networks Employing Commutation Signalling"
[38] P. V. Krishnamurthy, "A Combined Frequency, Code and Time Division Multiple-Access Technique for Broadband Indoor Wireless Communications"


[40] J. B. McCluskey, "Multi-Tone Signals in the Baseband Clipping Channel"

[41] N. Abboud, "Receiver Structures and Performance Analysis for Fading Multipath Channels"

[42] R. Knopp, "Module-Phase-Codes with Non-Coherent Detection and Reduced-Complexity Decoding"

[43] K. Mehta, "Fourier Domain Techniques for Lattice Codes"

[44] K. M. Cheung, "Generalized Likelihood Commutation Signaling for Indoor Communications"

[45] P. Beirouti, "Automatic Repeat Request on Fading Channels"

[46] W. J. McCausland, "Distortion Free Compression of Musical Scores"


[48] D. K. Asano, "Phase Smoothing Functions for Continuous Phase Modulation"