3 Review of probability and random signals

3.1 Probability theory

Axioms of probability theory: A probability system consists of the triplet:

1. A sample space S of elementary events (experiment outcomes)
2. A class £ of events that are subsets of S

3. A probability measure P(-) assigned to each event A in the class £, which has the following
properties

(@) P(S)=1
(b) 0 < P(A) <1

(c) If Ay, As, ... is any countable sequence of mutually disjoint events
(.e. A, (A, = 0) in the class &, then

P (DAZ-) = ip(Ai)

3.2 Random variables (RV), random vectors (Rv)
a) random variables

Random variable:
function X: S — R such thatforanyx € IR {s€ S: X(s) <z} €&

Discrete random variable: X takes only a finite number of values in any finite interval.
Continuous random variable: X can take continuous values.

Cumulative or (probability) distribution function (cdf):
Fx(z) = P({s €eS: X(s) < x}) =P(X <ux) for short

F,(z) is monotonic, non-decreasing and satisfies 0 < Fiy(x) < 1.
Probability density function (pdf):

fx(z) Ix

(Note that fx () satisfies /oo fx(z)dz =1)
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cdf in terms of pdf for continuous random variables:

Fy(z) = P(X <) = / " )y

cdf in terms of pdf for discrete random variables: Let X be a discrete random variable taking on
values z; with probability mass function (pmf) {p; = P (X = z;)}.

Fx(z)=P(X<z)=) P(X=y) where P (X = y) = 0 fory # x;
y<z
= Z piu(x — x;) where u(x): unit step function
’ . A
= [ fx(y)dy with fx(z) = pid(z — z;)

b) random vectors

A random vector (Rv) X is a vector of random variables:
X =[Xy,... Xn]"
where fori = 1,..., N X, are random variables.
Joint cumulative distribution (cdf) of a random vector:
Fx(x) =P (X; <21, Xy < 29,..., Xy < zn)
TN T2 T xr
= / . / / fx Wiy, yn)dyidys . .. dyn = / fx(y)dy (continuous Rv)
= > .Y Y PXi=p.Xo=y,...., Xy=yn)= Y P(X=y) (discreteRv)

yn<TN y2<z2 y1<T1 Y<x

where & = [z1,...,2n]" andy = [y1,...,yn]"

The marginal probabilities density functions for a subset of the random vector are obtained by
integrating (or summing for discrete random vectors) the other variables out.
Example: N=2

Ix(z) = /_OO Ixy(z,y)dy fr(y) = /_OO fxy(z,y)dx P(X=u1)= ZP(X =z,Y =vy)
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Necessary and sufficient conditions for independence of the random variables {X;},_, -

N
Fx(x)= H Fx,(x;) (continuous and discrete RV’s)
i=1
N
fx(x)= H Ix, () (continuous RV’s)
i=1
N
P(X =x) = H P(X;=x;) (discrete RV’s)
i=1

Probability that X is in a set Z: Let IR" be the N-dimensional space of real vectors. Let Z C IR
be a subset of IR for which a probability measure can be defined (i.e. a Borel set or equivalently Z
is a countable union or countable intersection of N-dimensional cells defined as (a1, b1 X (ag, ba] X
Ce (CLN, bN]), then

PXC2Z)= | fx(y)dy (continuous random vector X))

Z
= Z P(X =y) (discrete random vector X')

yeZ

Conditional cdf, pdf and pmf: Let X be N-dimensional and Y be M -dimensional random vectors.
Let A C RN, B C IRM, then

P(X e AY €B)
(Y € B)

P(X e AlY e B) =
For continuous random vectors, the conditional cdf and pdf are defined as

TN 1
Fxiy(zly) =P (X <z|]Y =y) = / / fxy (u|y)du conditional cdf (continuous Rv)

fxy(zy)
fy(y)

Remark: X and Y are independent iff fx |y (z|y) = fx ().

fxyy(xly) = if fy (y) #0 conditional pdf (continuous Rv)

For discrete random vectors, the conditional cdf and pmf are defined as
P(X<zY=y) Zzng<X =zY =vy)
P(Y =y) P(Y =y)

= Z P(X =z|Y =y) conditional pdf (discrete Rv)
z<x

Fxy(zly) =P (X <z|]Y =y) =
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P(X=2z2Y =y)

P(X =2z]Y =y) = PY =)

conditional pmf (given Y = y) (discrete Rv)

Average and moments:
Let X be an N-dimensional random vector and let g(X ) and h(X) be two functions of X
such that g(X) € IR and h(X) € IRM. Then g(X) is a random variable and 2(X) is a random

vector. Their expectations are given by

(/ g(x) fo(x)dx continuous X
RN
Elg(X)| = Elg(X)]i 1
[9(X)] Z Jy)P (X —y) discrete X (E[g(X)] is a scalar)
KyeJRN
(/ h(x) fe(x)dx continuous X
RN
E[h(X)] = Eh(X)] € RM
[h(X)] Z hy)P (X =) discrete X (B [h(X)] € (vector))
| YeRrN
Examples:

Mean (vector) (h(X) = X):

B(X] = [EX\]BX,]... BX,]]

Correlation matrix (h(X) = X X7T):

E[XT] EXiXy] ... E[XiXy]
FIX X E[X? oo BIXoX
E[xX"] = L I (matrix with i equal to E[X;X;])
E[XyX1| E[XnXo] ... E[X3]
Characteristic function (g(X) = e/ X):

ox(wi,...,wy)=FE [e]wTX] —F [ejziil win}

T
where w = [wy,...,wn]| .
Special case of one dimensional Rv X :

E[X] = ux (mean)
E[(X - ,uX)Q] = o% = var(X) (variance)
ox = y/var(X) (standard deviation)
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Special case of 2 random variables with means |1 x, iy :

FE[XY] ((cross)-correlation of X and Y))
El(X —ux) (Y —py)] =cov(XY) = E[XY] — uxpy ((cross)-covariance of X and Y))
XY
p= M (correlation coefficient)

Ox0y

X and Y are uncorrelated iff cov(XY) = 0 (i.e. p = 0). X and Y are orthogonal iff £(XY') = 0.

3.3 Random processes
a) Definition

Consider a random experiment with outcomes s € S (S: sample space). Suppose that we assign to
each sample point s a function of time X (¢, s) where ¢ belongs to an index set Z. For any s fixed,
X (t, so) is called a realization or sample function of the random process X (¢, s). For every fixed
tr € Z, X (tx, s) is a random variable (function of S to IR). Thus a random process is an indexed
ensemble (family) of random variables {X (¢, s)},.,. Usually X (¢, s) is denoted by X (¢) where
the parameter s has been omitted.

Example: Let 6 be a number selected at random in [—7, 7|, then X (¢,0) = cos (27t + 0) is
a random process. For fixed ¢ty X (to, ) is a random variable. For a particular outcome 6 = 6,
cos (27t 4 0) is a realization of X (¢, ).

b) Characterization of a random process

Let X; = X(¢;,s) be the samples of the random process X (t, s) at the instants ¢;. A random
process is specified by the collection of the k" order joint cumulative distribution functions

Fx, . x.(v1,29,...,05) = P(X1 <21, X0 <w9,..., Xj < xy)

for any k and any choice of sampling instants ¢4, ..., t.

A discrete-valued random process can be specified by the collection of probability mass func-
tions P (X = z1,..., Xy = x).

A continuous-valued random process can be specified by the collection of probability density
functions fx, . x, (®1,...,%k).

¢) Moments of a random process

Mean:

ma(t) = B [X(1)] = / " e fr (@)

oo

where fx ;) (z) is the pdf of X (¢) when ¢ is fixed. Generally since fx ) () depends on ¢ as indicated
by the presence of ¢ in X (¢), mx(t) is a function of time.
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Let t, be fixed, then X, = X(¢y) is a random variable with pdf fx,)(x) = fx,(«) and mean

o0

mN@zEW%ﬂz/:Mw@m

—0o0

fx,(x) depends generally on t,. Note that the notation usually omits the dependence of fx ()
ont.
Autocorrelation:

RﬂmeJ%WmX%HZ/mwhwmm@wM@

—0o0

where fx,)x () (%,y) is the joint pdf of X (¢;) and X (¢,) when ¢, and ¢, are fixed (second order
pdf of X (t)). Generally Rx (t1,t2) is a function of ¢; and 5.
Auto-covariance:

Cx(ti,t2) = E|(X(t1) —mx(t1)) (X (t2) — mx(t2))] = Rx(t1,t2) — mx(t1)mx(t2)

Cross-correlation of X (t) and Y (t):

[e.9]

Rxy(t1,t2) = E[X(t1)Y (t2)] = / TY X (1) (12) (T, y)ddy

—00

Example: Consider a sinusoidal signal with a random phase defined by
X(t) = Acos (2 f.t +6)

where A and f. are constants and 6 is a random variable that is uniformly distributed between —m
and 7.
The mean :

mx () = B[X(1)] = iﬂ / " cos(2n fit 4+ y) dy — 0

—T

The Auto-covariance and autocorrelation :
CX (tl, tg) = Rx(tl, tg) = E[COS(QTFfCtl —+ 9) COS(Q?TfCtQ —+ 0)}

1 ™
= 3 / cos(2m f.t1 + y) cos(2m fets + y) dy
T J_x
1 [™1
- %/ 5[608(27#(;(151 — t2)) + cos(2m f(t1 + t2) + 2y)| dy

= % cos(2m fo(ty — ta))
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d) Stationarity of a random process

A random process with time invariant statistical properties is called a stationary random process.
Formally let X (¢1), X (t2), ..., X (tx) denote the random variables obtained by sampling the ran-
dom process X (t) at times t1,to,...,t; and let X (¢; +7), X (t2 + 7), ..., X (tx + 7) be a new set
of random variables obtained by shifting the sampling instants by a fixed amount 7. The random
process is said to be stationary in the strict sense if

Fxtti4m),. Xt (Z15 - Tk) = Fxyy,ox@n (@1, -, Tg)
for all time shifts 7, all £ and all possible choices of sampling instants Z1, . . ., tx, where Fx(;,), .. x (1) (1, ..
is the joint cumulative distribution of X(ty), ..., X(tx) and

FX(t147),.. X (t+7)(T1, . . ., ) is the joint cdf of X (¢ +7),..., X (tp + 7).
In particular, the first order distribution of a stationary random process must be independent of
t and its second order distribution can depend only on the time difference between the samples.
Prove these results by considering special values of 7.

Therefore to prove that a process is not stationary in the strict sense, it is enough to show that
one of the following condition does not hold:

mx(t) 2 E[X(t)] =m for all ¢ (1)
var(X(1)) = B [(X(t) — mx(t))?] = o for all ¢ )
Rx(ti ) 2 E[X ()X (t2)] = Rx(t, — t2) forallti,t  (3)
Cx(t, 1) 2 E[(X (1) — mx (1)) (X(t2) —mx(ts))] = Cx(tr — )  forallty, ty  (4)

e) Wide-Sense stationarity of a random process

A random process with time invariant mean and autocorrelation that depends only on the time
difference t; — t, is called a Wide-Sense Stationary (WSS) random process. Its autocorrelation
function is denoted by:

Ry (1) = E[X(t+7)X(8)] = E[X(£)X(t —7)]
X(t) and Y (t) are called jointly WSS if each of them is WSS and their cross-correlation function

Rxy(ti,t2) = F[X(t1)Y (t2)] depends only on ¢; — t5.
Give an example of a WSS random process.
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f) (Wide-Sense) cyclo stationarity (WS cyclo S) of a random process

A random process is called (wide-sense) cyclo stationary if its mean m x(¢) and autocorrelation
function Rx (t1,ty) are invariant with respect to shifts in the time origin by integer multiples of
some period 7', that is, for every integer m,

mX(t+mT) :mX(t) (5)
Rx(tl + mT, tz + mT) = Rx(tl, tz) (6)

Equivalently, mx(¢) and Rx (¢t + 7,t) are periodic in ¢ with the same “period” 7', defined as the
highest of the two periods of m x (¢) and Rx (¢t + 7,t) in case they do not have the same period.

Example: Let m(t) be a WSS random process, show that X (t) = m(t) cos(27 f.t) is (wide-
sense) cyclo stationary with common “period” fl

h) Power spectral density

The Einstein-Wiener-Khinchin theorem:

Let X (t) be a continuous-valued wide-sense stationary random process with mean m x and
autocorrelation function Rx (7). The power spectral density of X (¢) is given by the Fourier
transform of Rx (7):

Sx(f) = F{Rx(1)} = /_ h Rx(r)e ™7 dr

“Generalization” of the Einstein-Wiener-Khinchin theorem for wide-sense cyclo stationary ran-
dom processes: Let X (t) be a WS cyclo S random process with “period” 7. Then Xg(t) =
X (t + 0) where 6 is uniformly distributed between — % and % is WSS with mean
Ty
1 [=2
EXs(t)] =< mx(t) >= T mx (t)dt
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and autocorrelation

Rya(r) = E[Xs(t + 7)Xs(t)] = Tio /_ : Rt +7,0)dt

=< Rx(t +7,1) >= R%(7)

where R4 (7) is the time average of the autocorrelation function of X (). Then the power spectral
density of X (¢) is defined as

Sx() = F{RMY = [ By ar

h) Average power of X ()

The average power of a real random process X (¢) is defined as

Px = lim l/T2 E[X?(t)] dt

T—o0 7T/2

If X (t) is WSS then £ [X?(t)] = Rx(0), thus

T/2

Px = lim 1 Rx(0)dt = Rx(0) = E [X*(t)] = /OO Sx(f)df

T—oo T —T/2

For any random process X (t), E [X?(t)] = Rx(t,t), thus if X (¢) is WS cyclo S

1 (T2 1 12 o0
Px = lim —/ Rx(t,t)dt = T/ Rx(t,t)dt = R%(0) = / Sx(f)df

T—oo T J /9 —0
since Rx (t,t) is periodic in ¢ with period 7.
i) Ergodicity of a random process
Measurement of averages E [g(X ())]:

e Repeat the random experiment that yields the random process a large number of times and
take arithmetic average of realizations.

Example: estimate of the mean of X (¢)

m = %ZX(IZSD
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where N is the number of repetitions of the experiment, and X (¢, s;) is the realization ob-
served in the i*" repetition.

e Use time average of a single realization X (¢, sg)

T/2
< g(X(t, 50)) = lim = / g (X(t, 50)) dt

T—o0 T —T/2

If < g(X(t,s0) >= FE[g(X(t))] for all functions g(-), then the random process is called
ergodic.
Ergodic in the mean:
1 [T
E[X(t)] =< X(t,s0) >= lim — X(t, s0)dt
T—o0 )

Give an example of a process ergodic in the mean.

Ergodic in the autocorrelation function:
1 T/2
EX{t+7)X(t)] =< X({t+71,50)X(t,s0) >= lim — X(t+7,50)X(t,s0)dt

T—o0 —T/2

Hence the average power of a process ergodic in the autocorrelation function is
T/2

Py =E[X*()] = Jim - X?(t,s0)dt (independent of t)
o0 —T/2

Ergodicity implies stationarity in the strict sense but the converse is not true.

Jj) Gaussian random processes

A random process X (t) is called a Gaussian random process if the samples X; = X (¢;),i =

1,...k are jointly Gaussian random variables for all k, and all choices of £, ..., t, i.e.
1 1 T oy
) = e |y @ )
where & = [zy,..., ;)" and
m = [mx(t1),...,mx ()]
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Cx(ti,t1) Cx(ti,t2) ... Cx(ti,ty)
Cx(ta,t1) COx(t2,t2) ... Cx(t2,ty)

Cx(t,t1) Cx(ti,ta) ... Cx(tg,tx)
X =[X(t),...,X(t)]"
Properties of Gaussian random processes:

e A Gaussian random process is completely specified by its mean m x (¢) and its autocovari-
ance function C'x (1, t2).

e A wide-sense stationary Gaussian random process is stationary in the strict sense.

e If a Gaussian random process is applied to a stable linear system, the response is also a
Gaussian random process.

o A weighted sum of jointly Gaussian random processes is a Gaussian random process, a linear
combination of Gaussian random variables is also a Gaussian random variable.
k) White process

A process is said to be white if

Sx(f) =K constant
Rx(tl,tg) == K(S(tl - tz)

1) Response of a linear time invariant system to a WSS or WS cyclo S random process

Let X (¢) be a wide-sense stationary or cyclostationary random process with power sprectral den-
sity Sx(f). Let h(t) be the impulse response of a stable linear time-invariant filter. Assume that
E[X(t)] < oo, E[X?(t)] < oo, then the ouput Y (¢) of the linear filter /() when X (¢) is applied
at its input is also a WSS or WS cyclo S with power spectral density

Sy(f) = [H() Sx(f)

Furthermore
E[X(t+ 7)Y (t)] = Rx(7) * h(—7)

Exercise: Prove these results for WSS random processes by using autocorrelation functions.
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Exercise: Find the power spectral density and autocorrelation of the Hilbert transform of a random
process.

m) Bandpass random processes

A random process X (¢) whose power spectrum exists is a bandpass process if
) B
Sx(f)#0 onlyif|f+ f.| < 5 where B < 2f.

or equivalently if Sx(f) = 0if [f — f.| > £.

Assume that X (¢) is a WSS bandpass process with zero mean then X () admits Rice’s rep-
resentation:
X(t) = X (t) cos(2m fot) — Xg(t) sin(27 f,t) (7

where X(¢) is the in-phase component of X (t) and X (t) is the quadrature component of X (t).
X/(t) and X(t) are jointly WSS and low pass. Taking Hilbert’s transform of (7),

~

X(t) = X (t)sin(2n fot) + Xg(t) cos(2m f.t) (8)
Combining (7) with (8) yields

X (t) = X(t) cos(2n ft) + X (t) sin(2n f.t)
Xo(t) = X(t) cos(2m fut) — X (t) sin(27 f.t)
Hence
R, (1) £ E[X;(t +7)X1(1)]
=F [(X(t +7) cos(2m fo(t + 7)) + X (t + 7) sin(27 fu(t + 7))) (X (t) cos(2n fot) + X (t) sin(27rfct))]
= Rx (1) cos2m fo(t + 7) cos2m fot + Ry (7) cos 2m fo(t + 7) sin 27 f ¢
+ R (T)sin2nfo(t + 7) cos 2w fot + Ry ¢ (7)sin2n fo(t + 7) sin 2w f.t

where Rx(7) £ E[X(t +7)X(1)],
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Rey(r) 2 E [X(t + T)X(t)} = Ry(7) % — = Ry(7)

Ryx(r) 2 B [X(t+7)X(0)] = Rx(7)

Rx,(17) = Rx(7) [cos 2nfo(t 4+ 1) cos 2w fot + sin 2w f.(t + 7) sin 27cht}
+ Ry (1) [Sin 2nfo(t + 7) cos2m fot — cos2m fo(t + 7) sin 27cht]
= Rx(7) cos 2n fo1 4+ Rx (1) sin 27 f.7
Similarly prove that

Rx,(7) = Rx(7) cos 2r f.7 + Rx(7)sin 27 for = Rx,(7)
Ry, xo(7) = Rx(7)sin 27 for — Rx (1) cos 2r f. 7

Taking Fourier transforms of the autocorrelation functions

Sx,(f) £ F{Bx, (1)} = Sxo (f) 2 F{Rx, (1)}
== l{S’X<f_fc)‘i‘SX(f—i_fc)}‘{'i{‘SAVX(f_fC)_‘SAfX(f_‘_fc)}

5 1 - Sgn(f fc))SX<f fc) ( + Sgn(f+fc))SX(f+fc)]
{ X(F=f)+Sx(f+f) —5<f<%

else

Sxrxo(f) = = { (1= sgn(f — £))Sx(f — £2) — (1 + sgn(f + £)Sx(f + £}

2)
_fi{Sx(fH )= Sx(F-f)} —E<f<?
0 else

If Sx(f) is locally symmetric around £f, (i.e. Sx(f + f.) = Sx(f — fo).[f] < £), then
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Rx,x,(7) = 0. Furthermore if X (¢) is Gaussian and locally symmetric around =+ f, then X;(t)
and X (t) are statistically independent.

Extraction of X(t) and X¢(t) from X (t):

Draw the corresponding block diagram.

Special case of bandpass white noise:
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