
3 Review of probability and random signals

3.1 Probability theory
Axioms of probability theory: A probability system consists of the triplet:

1. A sample space S of elementary events (experiment outcomes)

2. A class E of events that are subsets of S

3. A probability measure P (·) assigned to each event A in the class E , which has the following
properties

(a) P (S) = 1

(b) 0 ≤ P (A) ≤ 1

(c) If A1,A2, . . . is any countable sequence of mutually disjoint events
(i.e. Am

⋂An = ∅) in the class E , then

P

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

P (Ai)

3.2 Random variables (RV), random vectors (Rv)
a) random variables

Random variable:

function X: S → IR such that for any x ∈ IR {s ∈ S : X(s) ≤ x} ∈ E

Discrete random variable: X takes only a finite number of values in any finite interval.
Continuous random variable: X can take continuous values.

Cumulative or (probability) distribution function (cdf):

FX(x) = P
(

{s ∈ S : X(s) ≤ x}
)

= P (X ≤ x) for short

Fx(x) is monotonic, non-decreasing and satisfies 0 ≤ FX(x) ≤ 1.
Probability density function (pdf):

fX(x) =
dFX(x)

dx
(Note that fX(x) satisfies

∫ ∞

−∞
fX(x)dx = 1)
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cdf in terms of pdf for continuous random variables:

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(y)dy

cdf in terms of pdf for discrete random variables: Let X be a discrete random variable taking on
values xi with probability mass function (pmf) {pi = P (X = xi)}.

FX(x) = P (X ≤ x) =
∑

y≤x

P (X = y) where P (X = y) = 0 for y 6= xi

=
∑

i

piu(x − xi) where u(x): unit step function

=

∫ x

−∞
fX(y)dy with fX(x)

4
=
∑

i

piδ(x − xi)

b) random vectors

A random vector (Rv) X is a vector of random variables:

X = [X1, . . . XN ]T

where for i = 1, . . . , N Xi are random variables.

Joint cumulative distribution (cdf) of a random vector:

FX(x) = P (X1 ≤ x1, X2 ≤ x2, . . . , XN ≤ xN)

=

∫ xN

−∞
. . .

∫ x2

−∞

∫ x1

−∞
fX(y1, y2, . . . , yN)dy1dy2 . . . dyN =

∫ x

−∞
fX(y)dy (continuous Rv)

=
∑

yN≤xN

. . .
∑

y2≤x2

∑

y1≤x1

P (X1 = y1, X2 = y2, . . . , XN = yN) =
∑

y≤x

P (X = y) (discrete Rv)

where x = [x1, . . . , xN ]T and y = [y1, . . . , yN ]T .

The marginal probabilities density functions for a subset of the random vector are obtained by
integrating (or summing for discrete random vectors) the other variables out.

Example: N=2

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx P (X = x) =

∑

y

P (X = x, Y = y)
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Necessary and sufficient conditions for independence of the random variables {Xi}i=1,...,N :

FX(x) =
N∏

i=1

FXi
(xi) (continuous and discrete RV’s)

fX(x) =
N∏

i=1

fXi
(xi) (continuous RV’s)

P (X = x) =
N∏

i=1

P (Xi = xi) (discrete RV’s)

Probability that X is in a set Z: Let IRN be the N -dimensional space of real vectors. Let Z ⊆ IRN

be a subset of IRN for which a probability measure can be defined (i.e. a Borel set or equivalently Z
is a countable union or countable intersection of N -dimensional cells defined as (a1, b1]×(a2, b2]×
. . . (aN , bN ]), then

P (X ⊆ Z) =

∫

Z
fX(y)dy (continuous random vector X)

=
∑

y∈Z
P (X = y) (discrete random vector X)

Conditional cdf, pdf and pmf: Let X be N -dimensional and Y be M -dimensional random vectors.
Let A ⊆ IRN , B ⊆ IRM , then

P (X ∈ A|Y ∈ B) =
P (X ∈ A,Y ∈ B)

(Y ∈ B)

For continuous random vectors, the conditional cdf and pdf are defined as

FX |Y (x|y) = P (X ≤ x|Y = y) =

∫ xN

−∞
. . .

∫ x1

−∞
fX |Y (u|y)du conditional cdf (continuous Rv)

fX |Y (x|y) =
fX ,Y (x,y)

fY (y)
if fY (y) 6= 0 conditional pdf (continuous Rv)

Remark: X and Y are independent iff fX |Y (x|y) = fX(x).

For discrete random vectors, the conditional cdf and pmf are defined as

FX |Y (x|y) = P (X ≤ x|Y = y) =
P (X ≤ x,Y = y)

P (Y = y)
=

∑

z≤x P (X = z,Y = y)

P (Y = y)

=
∑

z≤x

P (X = z|Y = y) conditional pdf (discrete Rv)

17



P (X = z|Y = y) =
P (X = z,Y = y)

P (Y = y)
conditional pmf (given Y = y) (discrete Rv)

Average and moments:
Let X be an N -dimensional random vector and let g(X) and h(X) be two functions of X

such that g(X) ∈ IR and h(X) ∈ IRM . Then g(X) is a random variable and h(X) is a random
vector. Their expectations are given by

E [g(X)] =







∫

IRN

g(x)fx(x)dx continuous X

∑

y∈IRN

g(y)P (X = y) discrete X
(E [g(X)] is a scalar)

E [h(X)] =







∫

IRN

h(x)fx(x)dx continuous X

∑

y∈IRN

h(y)P (X = y) discrete X
(E [h(X)] ∈ IRM (vector))

Examples:
Mean (vector) (h(X) = X):

E [X] =
[

E[X1]E[X2] . . . E[XN ]
]T

Correlation matrix (h(X) = XXT ):

E
[
XXT

]
=








E[X2
1 ] E[X1X2] . . . E[X1XN ]

E[X2X1] E[X2
2 ] . . . E[X2XN ]

...
... . . .

E[XNX1] E[XNX2] . . . E[X2
N ]








(matrix with ijth equal to E[XiXj])

Characteristic function (g(X) = ejωTX ):

φX(ω1, . . . , ωN) = E
[

ejωTX
]

= E
[

ej
∑N

i=1
ωiXi

]

where ω = [ω1, . . . , ωN ]T .
Special case of one dimensional Rv X:

E [X] = µX (mean)

E
[
(X − µX)2] = σ2

X = var(X) (variance)

σX =
√

var(X) (standard deviation)
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Special case of 2 random variables with means µX , µY :

E [XY ] ((cross)-correlation of X and Y )
E [(X − µX) (Y − µY )] = cov(XY ) = E[XY ] − µXµY ((cross)-covariance of X and Y )

ρ =
cov(XY )

σXσY

(correlation coefficient)

X and Y are uncorrelated iff cov(XY ) = 0 (i.e. ρ = 0). X and Y are orthogonal iff E(XY ) = 0.

3.3 Random processes
a) Definition

Consider a random experiment with outcomes s ∈ S (S: sample space). Suppose that we assign to
each sample point s a function of time X(t, s) where t belongs to an index set I. For any s0 fixed,
X(t, s0) is called a realization or sample function of the random process X(t, s). For every fixed
tk ∈ I, X(tk, s) is a random variable (function of S to IR). Thus a random process is an indexed
ensemble (family) of random variables {X(t, s)}t∈I . Usually X(t, s) is denoted by X(t) where
the parameter s has been omitted.

Example: Let θ be a number selected at random in [−π, π], then X(t, θ) = cos (2πt + θ) is
a random process. For fixed t0 X(t0, θ) is a random variable. For a particular outcome θ = θ0,
cos (2πt + θ0) is a realization of X(t, θ).

b) Characterization of a random process

Let Xi = X(ti, s) be the samples of the random process X(t, s) at the instants ti. A random
process is specified by the collection of the kth order joint cumulative distribution functions

FX1,...,Xk
(x1, x2, . . . , xk) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xk ≤ xk)

for any k and any choice of sampling instants t1, . . . , tk.
A discrete-valued random process can be specified by the collection of probability mass func-

tions P (X1 = x1, . . . , Xk = xk).
A continuous-valued random process can be specified by the collection of probability density

functions fX1,...,Xk
(x1, . . . , xk).

c) Moments of a random process

Mean:
mx(t) = E [X(t)] =

∫ ∞

−∞
xfX(t)(x)dx

where fX(t)(x) is the pdf of X(t) when t is fixed. Generally since fX(t)(x) depends on t as indicated
by the presence of t in X(t), mX(t) is a function of time.
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Let t0 be fixed, then X0 = X(t0) is a random variable with pdf fX(t0)(x) = fX0
(x) and mean

mx(t0) = E [X(t0)] =

∫ ∞

−∞
xfX0

(x)dx

fX0
(x) depends generally on t0. Note that the notation usually omits the dependence of fX(t)(x)

on t.
Autocorrelation:

RX(t1, t2) = E [X(t1)X(t2)] =

∫ ∞

−∞
xyfX(t1)X(t2)(x, y)dxdy

where fX(t1)X(t2)(x, y) is the joint pdf of X(t1) and X(t2) when t1 and t2 are fixed (second order
pdf of X(t)). Generally RX(t1, t2) is a function of t1 and t2.

Auto-covariance:

CX(t1, t2) = E
[

(X(t1) − mX(t1)) (X(t2) − mX(t2))
]

= RX(t1, t2) − mX(t1)mX(t2)

Cross-correlation of X(t) and Y (t):

RXY (t1, t2) = E [X(t1)Y (t2)] =

∫ ∞

−∞
xyfX(t1)Y (t2)(x, y)dxdy

Example: Consider a sinusoidal signal with a random phase defined by

X(t) = A cos (2πfct + θ)

where A and fc are constants and θ is a random variable that is uniformly distributed between −π
and π.

The mean :

mX(t) = E[X(t)] =
1

2π

∫ π

−π

cos(2πfct + y) dy = 0

The Auto-covariance and autocorrelation :

CX(t1, t2) = RX(t1, t2) = E[cos(2πfct1 + θ) cos(2πfct2 + θ)]

=
1

2π

∫ π

−π

cos(2πfct1 + y) cos(2πfct2 + y) dy

=
1

2π

∫ π

−π

1

2
[cos(2πfc(t1 − t2)) + cos(2πfc(t1 + t2) + 2y)] dy

=
1

2
cos(2πfc(t1 − t2))
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d) Stationarity of a random process

A random process with time invariant statistical properties is called a stationary random process.
Formally let X(t1), X(t2), . . . , X(tk) denote the random variables obtained by sampling the ran-
dom process X(t) at times t1, t2, . . . , tk and let X(t1 + τ), X(t2 + τ), . . . , X(tk + τ) be a new set
of random variables obtained by shifting the sampling instants by a fixed amount τ . The random
process is said to be stationary in the strict sense if

FX(t1+τ),...X(tk+τ)(x1, . . . , xk) = FX(t1),...X(tk)(x1, . . . , xk)

for all time shifts τ , all k and all possible choices of sampling instants t1, . . . , tk, where FX(t1),...X(tk)(x1, . . . , xk)
is the joint cumulative distribution of X(t1), . . . , X(tk) and
FX(t1+τ),...X(tk+τ)(x1, . . . , xk) is the joint cdf of X(t1 + τ), . . . , X(tk + τ).

In particular, the first order distribution of a stationary random process must be independent of
t and its second order distribution can depend only on the time difference between the samples.

Prove these results by considering special values of τ .

Therefore to prove that a process is not stationary in the strict sense, it is enough to show that
one of the following condition does not hold:

mX(t)
4
= E [X(t)] = m for all t (1)

var(X(t))
4
= E

[
(X(t) − mX(t))2

]
= σ2 for all t (2)

RX(t1, t2)
4
= E [X(t1)X(t2)] = RX(t1 − t2) for all t1, t2 (3)

CX(t1, t2)
4
= E

[(
X(t1) − mX(t1)

)(
X(t2) − mX(t2)

)]
= CX(t1 − t2) for all t1, t2 (4)

e) Wide-Sense stationarity of a random process

A random process with time invariant mean and autocorrelation that depends only on the time
difference t1 − t2 is called a Wide-Sense Stationary (WSS) random process. Its autocorrelation
function is denoted by:

RX(τ) = E [X(t + τ)X(t)] = E [X(t)X(t − τ)]

X(t) and Y (t) are called jointly WSS if each of them is WSS and their cross-correlation function
RXY (t1, t2) = E [X(t1)Y (t2)] depends only on t1 − t2.

Give an example of a WSS random process.
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f) (Wide-Sense) cyclo stationarity (WS cyclo S) of a random process

A random process is called (wide-sense) cyclo stationary if its mean mX(t) and autocorrelation
function RX(t1, t2) are invariant with respect to shifts in the time origin by integer multiples of
some period T , that is, for every integer m,

mX(t + mT ) = mX(t) (5)
RX(t1 + mT, t2 + mT ) = RX(t1, t2) (6)

Equivalently, mX(t) and RX(t + τ, t) are periodic in t with the same “period” T , defined as the
highest of the two periods of mX(t) and RX(t + τ, t) in case they do not have the same period.

Example: Let m(t) be a WSS random process, show that X(t) = m(t) cos(2πfct) is (wide-
sense) cyclo stationary with common “period” 1

fc
.

h) Power spectral density

The Einstein-Wiener-Khinchin theorem:
Let X(t) be a continuous-valued wide-sense stationary random process with mean mX and

autocorrelation function RX(τ). The power spectral density of X(t) is given by the Fourier
transform of RX(τ):

SX(f) = F {RX(τ)} =

∫ ∞

−∞
RX(τ)e−j2πfτdτ

“Generalization” of the Einstein-Wiener-Khinchin theorem for wide-sense cyclo stationary ran-
dom processes: Let X(t) be a WS cyclo S random process with “period” T0. Then XS(t) =
X(t + θ) where θ is uniformly distributed between − T0

2
and T0

2
is WSS with mean

E [XS(t)] =< mX(t) >t=
1

T0

∫ T0

2

−T0

2

mX(t)dt
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and autocorrelation

RXS
(τ) = E [XS(t + τ)XS(t)] =

1

T0

∫ T0

2

−T0

2

RX(t + τ, t)dt

=< RX(t + τ, t) >t= Ra
X(τ)

where Ra
X(τ) is the time average of the autocorrelation function of X(t). Then the power spectral

density of X(t) is defined as

SX(f) = F {Ra
X(τ)} =

∫ ∞

−∞
Ra

X(τ)e−j2πfτdτ

h) Average power of X(t)

The average power of a real random process X(t) is defined as

PX = lim
T→∞

1

T

∫ T2

−T/2

E
[
X2(t)

]
dt

If X(t) is WSS then E [X2(t)] = RX(0), thus

PX = lim
T→∞

1

T

∫ T/2

−T/2

RX(0)dt = RX(0) = E
[
X2(t)

]
=

∫ ∞

−∞
SX(f)df

For any random process X(t), E [X2(t)] = RX(t, t), thus if X(t) is WS cyclo S

PX = lim
T→∞

1

T

∫ T/2

−T/2

RX(t, t)dt =
1

T0

∫ T0

2

−T0

2

RX(t, t)dt = Ra
X(0) =

∫ ∞

−∞
SX(f)df

since RX(t, t) is periodic in t with period T0.

i) Ergodicity of a random process

Measurement of averages E [g(X(t))]:

• Repeat the random experiment that yields the random process a large number of times and
take arithmetic average of realizations.

Example: estimate of the mean of X(t)

mX(t) =
1

N

N∑

i=1

X(t, si)
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where N is the number of repetitions of the experiment, and X(t, si) is the realization ob-
served in the ith repetition.

• Use time average of a single realization X(t, s0)

< g(X(t, s0)) >t= lim
T→∞

1

T

∫ T/2

−T/2

g (X(t, s0)) dt

If < g(X(t, s0) >t= E [g(X(t))] for all functions g(·), then the random process is called
ergodic.

Ergodic in the mean:

E [X(t)] =< X(t, s0) >t= lim
T→∞

1

T

∫ T/2

−T/2

X(t, s0)dt

Give an example of a process ergodic in the mean.

Ergodic in the autocorrelation function:

E [X(t + τ)X(t)] =< X(t + τ, s0)X(t, s0) >t= lim
T→∞

1

T

∫ T/2

−T/2

X(t + τ, s0)X(t, s0)dt

Hence the average power of a process ergodic in the autocorrelation function is

PX = E
[
X2(t)

]
= lim

T→∞

1

T

∫ T/2

−T/2

X2(t, s0)dt (independent of t)

Ergodicity implies stationarity in the strict sense but the converse is not true.

j) Gaussian random processes

A random process X(t) is called a Gaussian random process if the samples Xi = X(ti), i =
1, . . . k are jointly Gaussian random variables for all k, and all choices of t1, . . . , tk, i.e.

fX(x) =
1

(2π)k/2 [det(C)]1/2
exp

{

−1

2
(x − m)T C−1 (x − m)

}

where x = [x1, . . . , xk]
T and

m = [mX(t1), . . . ,mX(tk)]
T

C = E
[

(X − m) (X − m)T
]
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=








CX(t1, t1) CX(t1, t2) . . . CX(t1, tk)
CX(t2, t1) CX(t2, t2) . . . CX(t2, tk)

...
... . . . ...

CX(tk, t1) CX(tk, t2) . . . CX(tk, tk)








X = [X(t1), . . . , X(tk)]
T

Properties of Gaussian random processes:

• A Gaussian random process is completely specified by its mean mX(t) and its autocovari-
ance function CX(t1, t2).

• A wide-sense stationary Gaussian random process is stationary in the strict sense.

• If a Gaussian random process is applied to a stable linear system, the response is also a
Gaussian random process.

• A weighted sum of jointly Gaussian random processes is a Gaussian random process, a linear
combination of Gaussian random variables is also a Gaussian random variable.

k) White process

A process is said to be white if

SX(f) = K constant
RX(t1, t2) = Kδ(t1 − t2)

l) Response of a linear time invariant system to a WSS or WS cyclo S random process

Let X(t) be a wide-sense stationary or cyclostationary random process with power sprectral den-
sity SX(f). Let h(t) be the impulse response of a stable linear time-invariant filter. Assume that
E [X(t)] < ∞, E [X2(t)] < ∞, then the ouput Y (t) of the linear filter h(t) when X(t) is applied
at its input is also a WSS or WS cyclo S with power spectral density

SY (f) = |H(f)|2 SX(f)

Furthermore
E [X(t + τ)Y (t)] = RX(τ) ∗ h(−τ)

Exercise: Prove these results for WSS random processes by using autocorrelation functions.
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Exercise: Find the power spectral density and autocorrelation of the Hilbert transform of a random
process.

m) Bandpass random processes

A random process X(t) whose power spectrum exists is a bandpass process if

SX(f) 6= 0 only if |f ± fc| ≤
B

2
where B < 2fc

or equivalently if SX(f) = 0 if |f − fc| ≥ B
2

.

Assume that X(t) is a WSS bandpass process with zero mean then X(t) admits Rice’s rep-
resentation:

X(t) = XI(t) cos(2πfct) − XQ(t) sin(2πfct) (7)

where XI(t) is the in-phase component of X(t) and XQ(t) is the quadrature component of X(t).
XI(t) and XQ(t) are jointly WSS and low pass. Taking Hilbert’s transform of (7),

X̂(t) = XI(t) sin(2πfct) + XQ(t) cos(2πfct) (8)

Combining (7) with (8) yields

XI(t) = X(t) cos(2πfct) + X̂(t) sin(2πfct)

XQ(t) = X̂(t) cos(2πfct) − X(t) sin(2πfct)

Hence

RXI
(τ)

4
= E [XI(t + τ)XI(t)]

= E
[(

X(t + τ) cos(2πfc(t + τ)) + X̂(t + τ) sin(2πfc(t + τ))
)(

X(t) cos(2πfct) + X̂(t) sin(2πfct)
)]

= RX(τ) cos 2πfc(t + τ) cos 2πfct + RXX̂(τ) cos 2πfc(t + τ) sin 2πfct

+ RX̂X(τ) sin 2πfc(t + τ) cos 2πfct + RX̂X̂(τ) sin 2πfc(t + τ) sin 2πfct

where RX(τ)
4
= E [X(t + τ)X(t)],

RXX̂(τ)
4
= E

[

X(t + τ)X̂(t)
]

= RX(τ) ∗ −1

πτ
= −R̂X(τ)
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RX̂X(τ)
4
= E

[

X̂(t + τ)X(t)
]

= RX(τ) ∗ 1

πτ
= R̂X(τ)

RX̂X̂(τ)
4
= E

[

X̂(t + τ)X̂(t)
]

= RX(τ)

RXI
(τ) = RX(τ)

[

cos 2πfc(t + τ) cos 2πfct + sin 2πfc(t + τ) sin 2πfct
]

+ R̂X(τ)
[

sin 2πfc(t + τ) cos 2πfct − cos 2πfc(t + τ) sin 2πfct
]

= RX(τ) cos 2πfcτ + R̂X(τ) sin 2πfcτ

Similarly prove that

RXQ
(τ) = RX(τ) cos 2πfcτ + R̂X(τ) sin 2πfcτ = RXI

(τ)

RXIXQ
(τ) = RX(τ) sin 2πfcτ − R̂X(τ) cos 2πfcτ

Taking Fourier transforms of the autocorrelation functions

SXI
(f)

4
= F {RXI

(τ)} = SXQ
(f)

4
= F

{
RXQ

(τ)
}

=
1

2

{

SX(f − fc) + SX(f + fc)
}

+
1

2j

{

ŜX(f − fc) − ŜX(f + fc)
}

=
1

2

[(
1 − sgn(f − fc)

)
SX(f − fc) +

(
1 + sgn(f + fc)

)
SX(f + fc)

]

=

{

SX(f − fc) + SX(f + fc) −B
2
≤ f ≤ B

2

0 else

SXIXQ
(f) =

1

2j

{(
1 − sgn(f − fc)

)
SX(f − fc) −

(
1 + sgn(f + fc)

)
SX(f + fc)

}

=

{

j {SX(f + fc) − SX(f − fc)} −B
2
≤ f ≤ B

2

0 else

If SX(f) is locally symmetric around ±fc (i.e. SX(f + fc) = SX(f − fc), |f | ≤ B
2

), then
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RXIXQ
(τ) = 0. Furthermore if X(t) is Gaussian and locally symmetric around ±fc then XI(t)

and XQ(t) are statistically independent.

Extraction of XI(t) and XQ(t) from X(t):

Draw the corresponding block diagram.

Special case of bandpass white noise:
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