
4 Analog modulation

4.1 Modulation formats
The message waveform is represented by a low-pass real signal m(t) such that

M(f) = 0 |f | ≥ W

where W is the message bandwidth. m(t) is called the modulating signal.
Carrier modulation: Reversible transformation of m(t) into a bandpass signal x(t) centered around
fc � W (fc is the carrier frequency). Demodulation is the inverse transformation of x(t) into m(t).
x(t) is the modulated signal.

x(t) = xI(t) cos 2πfct − xQ(t) sin 2πfct

Two types of modulation schemes:

• Linear modulation: linear relationship between the modulated signal and the message signal
(ex: AM, DSB-SC, SSB, VSB).

• Angle modulation: the angle of the carrier wave is varied according to the message signal
(ex: FM,PM).

4.2 Linear modulation
a) Amplitude modulation AM

x(t) = Ac

(
1 + kam(t)

)
cos 2πfct

= Ac

(
1 + µmn(t)

)
cos 2πfct

xI(t) = Ac

(
1 + µmn(t)

)
xQ(t) = 0

mn(t) =
m(t)

max |m(t)|

ka is the amplitude sensitivity, µ = ka max |m(t)| is modulation index (factor) (0 ≤ µ ≤ 1).
Exercise: Plot a graph representing x(t) and identify the message signal m(t).
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The Fourier transform of x(t) is given by

X(f) =
Ac

2

[
δ(f − fc) + µMn(f − fc)

]
+

Ac

2

[
δ(f + fc) + µMn(f + fc)

]

where Mn(f) = F {mn(t)}.
Exercise: Plot X(f) and find the condition on fc to avoid distortion.

Let W be the bandwidth of M(f) = F {m(t)} and Mn(f), then the bandwidth of the modu-
lated signal x(t) is B = 2W .
Generation of AM:

x(t)Ac(1 + µmn(t))

cos(2πfct)

Figure 4: Generation of an AM modulated signal

Demodulation of AM:

• Synchronous (coherent) detection

• Envelope detection

Coherent detection:

30



W

LPF

x(t) y(t) u(t) z(t)

cos(2πfct)

Figure 5: Coherent detection of an AM modulated signal

y(t) = Ac

(
1 + µmn(t)

)
cos2(2πfct)

=
Ac

2

(
1 + µmn(t)

)
+

Ac

2
(1 + µmn(t)) cos(4πfct)

u(t) =
Ac

2

(
1 + µmn(t)

)
(Output of low pass)

z(t) =
Acµ

2
mn(t) =

Ac

2
kam(t)

Exercise: Assume that the local carrier is not synchronized to the signal, show that the output of
the coherent demodulator is distorted.

Envelope detection:
The output of an envelope detector is the natural envelope |x̃(t)|. Envelope detection is feasible

since 1 + µmn(t) ≥ 0.
Draw an example of a RC circuit implementing envelope detection. What conditions on the

resistors and capacitor are necessary to ensure the envelope detector will function properly ?
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Envelope detection is feasible due to the inclusion of the carrier but the transmission of the
carrier represents a waste of power (contains no information).

b) Double sideband-suppressed carrier: DSB-SC

x(t) = Acm(t) cos 2πfct

xI(t) = Acm(t) xQ(t) = 0

Exercise: Plot x(t) and identify the message signal m(t). What phenomenon characterizes
DSB-SC ?

The Fourier transform of x(t) is given by

X(f) =
Ac

2
M(f − fc) +

Ac

2
M(f + fc)

where M(f) = F {m(t)}.
Exercise: Plot X(f) and find the condition on fc to avoid distortion.

Let W be the bandwidth of M(f) = F {m(t)}, then the bandwidth of the modulated signal
x(t) is B = 2W .
Generation of DSB-SC:

Draw a block diagram of a DSB-SC modulator.
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Demodulation of DSB-SC:

• Only Synchronous (coherent) detection

Coherent detection: Using a local carrier synchronized to the received signal carrier, draw a block
diagram of a coherent detector for DSB-SC.

Envelope detection:
The output of an envelope detector is the natural envelope |x̃(t)| = Ac|m(t)| 6= Acm(t).
AM and DSB-SC are wasting bandwidth, thus filtering of sidebands to reduce bandwidth re-

sults in a more bandwidth efficient scheme.

c) Single sideband modulation: SSB

x(t) =
Ac

2
m(t) cos 2πfct −

Ac

2
m̂(t) sin 2πfct (Upper sideband SSB)

x(t) =
Ac

2
m(t) cos 2πfct +

Ac

2
m̂(t) sin 2πfct (Lower sideband SSB)

xI(t) =
Ac

2
m(t) xQ(t) = ±Ac

2
m̂(t)

The Fourier transform of x(t) is given by

X(f) =
Ac

2

{
1

2
M(f − fc) +

1

2
M(f + fc) −

1

2j

[

M̂(f − fc) − M̂(f + fc)
]}

=
Ac

4
M(f − fc)

(
1 + sgn(f − fc)

)
+

Ac

4
M(f + fc)

(
1 − sgn(f + fc)

)

where M(f) = F {m(t)}.

33



Exercise: Plot X(f).

Let W be the bandwidth of M(f) = F {m(t)}, then the bandwidth of the modulated signal
x(t) is B = W .
Generation of SSB:

• Using a Hilbert transformer (but wideband π/2 shifter difficult to implement)

• Using sideband filtering (but demands a very sharp filter if M(f) contains very low frequen-
cies components, hence Vestigial sideband modulation (VSB) is also used)

Demodulation of SSB:

• Only Synchronous (coherent) detection

• Envelope detection by adding a strong carrier to the SSB signal but not a regular SSB any-
more (see VSB subsection)

Coherent detection: Using a local carrier synchronized to the received signal carrier, draw a block
diagram of a coherent detector for SSB.

SSB is difficult to implement if the message signal m(t) has a large bandwidth and it is rich in
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low frequency components. In this case vestigial sideband modulation is used.

d) Vestigial sideband modulation: VSB

x(t) =
Ac

2
Km(t) cos 2πfct −

Ac

2
mν(t) sin 2πfct

xI(t) =
Ac

2
Km(t) xQ(t) =

Ac

2
mν(t) =

Ac

2
m(t) ∗ hν(t)

Rationale (generation of VSB): Assume that a DSB-SC signal is passed through a general bandpass
filter to alter its sidebands (ex. for SSB half of the sidebands filtered out).

The Fourier transforms of the DSB-SC signal y(t) and x(t) are given by

Y (f) =
Ac

2

{
M(f − fc) + M(f + fc)

}
DSB-SC

X(f) =
Ac

2

{
M(f − fc) + M(f + fc)

}
H(f)

where M(f) = F {m(t)}. The filter H(f) must have spectral characteristics such that the original
message signal m(t) can be recovered from x(t) by coherent detection.
Demodulation of VSB:

• Only Synchronous (coherent) detection

• Envelope detection by adding a strong carrier to the VSB signal but not a regular VSB
anymore

Coherent detection:

W

LPF
cos(2πfct)

v(t) u(t)x(t)

Figure 6: Coherent detection of VSB

v(t) = x(t) cos 2πfct
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V (f) =
1

2

[
X(f − fc) + X(f + fc)

]

=
Ac

4

{[
M(f − 2fc) + M(f)

]
H(f − fc) +

[
M(f) + M(f + 2fc)

]
H(f + fc)

}

=
Ac

4
M(f)

[
H(f − fc) + H(f + fc)

]
+

Ac

4

[
M(f − 2fc)H(f − fc) + M(f + 2fc)H(f + fc)

]

The output of the lowpass filter is given by

U(f) =
Ac

4
M(f)

[
H(f − fc) + H(f + fc)

]

For distortionless transmission

U(f) =
Ac

4
KM(f) i.e. u(t) =

Ac

4
Km(t)

where K is a constant. Thus the filter H(f) must satisfy the so-called vestigial symmetry condi-
tion:

H(f − fc) + H(f + fc) = K = const. |f | ≤ W

Time domain representation of VSB signals:

x(t) = h(t) ∗ y(t) =⇒ x̃(t) =
1

2
h̃(t) ∗ ỹ(t)

Since y(t) = Ac cos(2πfct)m(t), its complex envelope is given by

ỹ(t) = Acm(t) =⇒ Ỹ (f) = AcM(f)

The Fourier transform of h̃(t) is

H̃(f) = 2H(f + fc) f > −fc

hence
X̃(f) =

1

2
H̃(f)Ỹ (f) = AcM(f)H(f + fc) f > −fc (9)

The inphase and quadrature components of x(t) are

xI(t) = <{x̃(t)} =
1

2
[x̃(t) + x̃∗(t)]
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xQ(t) = ={x̃(t)} =
1

2j
[x̃(t) − x̃∗(t)]

their Fourier transform are then given by

XI(f) =
1

2

[

X̃(f) + X̃∗(−f)
]

=
Ac

2
[M(f)H(f + fc) + M ∗(−f)H∗(−f + fc)] from (9)

=
Ac

2
M(f) [H(f + fc) + H(f − fc)] (since m(t) and h(t) are real.)

=
Ac

2
M(f)K from the vestigial symmetry (10)

XQ(f) =
1

2j

[

X̃(f) − X̃∗(−f)
]

=
Ac

2j
M(f) [H(f + fc) − H(f − fc)]

=
Ac

2
M(f)Hν(f) (11)

where the filter Hν(f) is defined as

Hν(f) =
1

j
[H(f + fc) − H(f − fc)]

From (10) and (11), the inphase and quadrature components of a VSB signal are given by

xI(t) =
Ac

2
Km(t)

xQ(t) =
Ac

2
m(t) ∗ hν(t) =

Ac

2
mν(t)

Bandwidth of m(t): W
Bandwidth of x(t): W < B < 2W (typically BVSB = 1.25BSSB)

If Hν(f) = −j sgn(f), then we obtain the upper sideband SSB.

Envelope detection of SSB and VSB:

We add a strong carrier A
′

c cos(2πfct) (with A
′

c � Ac

2
K|m(t)|, Ac

2
|mν(t)|) such that the signal

to be demodulated is given by

x(t) =

(

A
′

c +
Ac

2
Km(t)

)

cos(2πfct) −
Ac

2
mν(t) sin(2πfct)
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= A
′

c

(

1 +
AcK

2A′

c

m(t)

)

cos(2πfct) −
A

′

c

2

Ac

A′

c

mν(t) sin(2πfct)

For simplicity assume K = 1, and let Ac

A
′

c

= ka

x(t) = A
′

c

(

1 +
ka

2
m(t)

)

cos(2πfct) −
A

′

c

2
kamν(t) sin(2πfct) (12)

x̃(t) = A
′

c

(

1 +
ka

2
m(t)

)

+ jA
′

c

ka

2
mν(t) (complex envelope of x(t))

The output of an envelope detector is the natural envelope of the input, hence the output of the
envelope detector is given by

|x̃(t)| =

[

A
′2
c

(

1 +
ka

2
m(t)

)2

+ A
′2
c

k2
a

4
m2

ν(t)

]1/2

= A
′

c

(

1 +
ka

2
m(t)

)[

1 +
k2

a

4
m2

ν(t)
(
1 + ka

2
m(t)

)2

]1/2

≈ A
′

c

(

1 +
ka

2
m(t)

)

since
∣
∣ka

2
m(t)

∣
∣� 1 and

∣
∣ka

2
mν(t)

∣
∣� 1. This method is used in TV systems. Distortion due to the

envelope detection of VSB is reduced by reducing ka ensuring the conditions
∣
∣ka

2
m(t)

∣
∣ � 1 and

∣
∣ka

2
mν(t)

∣
∣� 1.

4.3 Multiplexing
The purpose of multiplexing is to transmit several signals {m1(t), . . . ,mN(t)} at the same time
by the use of a single communication system. This can be achieved by combining the signals into
one signal s(t) such that each of the signals mk(t) can be extracted from s(t). In this section, we
present two types of multiplexing; quadrature carrier multiplexing and frequency division multi-
plexing (FDM). A third multiplexing technique called Time Division Multiplexing (TDM) will be
considered in the context of signal sampling.

a) Quadrature carrier multiplexing

Since cos(2πfct) and sin(2πfc(t) are orthogonal functions, the principle of quadrature multiplex-
ing of two signals is to transmit one signal using a carrier of the form cos(2πfct) and to transmit
the other signal using a carrier of the form sin(2πfct). Let m1(t) and m2(t) be two lowpass signals
with bandwidth W . The schemes of multiplexing and demultiplexing follows:
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m2(t)

sin(2πfct)

m1(t)

cos(2πfct)
s(t) = m1(t) cos(2πfct) + m2(t) sin(2πfct)

Figure 7: Quadrature carrier multiplexing

W

LPF

LPF

2 cos(2πfct)

2 sin(2πfct)

m1(t)

m2(t)

v1(t)

v2(t)

W

s(t)

Complete the proof that the scheme of Fig. 8
is a quadrature carrier demultiplexer:

v1(t) = 2s(t) cos(2πfct)

= +
︸︷︷︸

lowpass term
︸ ︷︷ ︸

bandpass term

v2(t) = 2s(t) sin(2πfct)

= +
︸︷︷︸

lowpass term
︸ ︷︷ ︸

bandpass term

Since the bandpass terms are removed by the
lowpass filter, the result follows.

Figure 8: Quadrature carrier demultiplexing
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b) Frequency division multiplexing (FDM)

The principle of frequency division multiplexing is to modulate each signal m0
i (t) using a different

carrier frequency fci
such that the spectrum of the modulated signals xi(t) do not overlap. Then a

FDM signal is obtained by adding the modulated signal yielding a signal with a higher bandwidth.
The multiplexed signal can be further modulated before transmission. Hence the modulation of
the signals mi(t) (bandlimited version of m0

i (t)) to be multiplexed is called sub-modulation and
the carrier {fci

}i=1,...,N are sub-carriers. In a FDM system, the sub-carriers are selected such that
the spectrum of the sub-modulated signals do not overlap. Therefore the original message signals
m0

i (t) have to be passed first through a lowpass filter that limit them to a predetermined bandwidth
W . If the original message signals are already bandlimited to W , no lowpass filtering is required.
Let B be the bandwidth of each of the sub-modulated signals xi(t). To avoid overlapping of the
spectrum of the sub-modulated signals (and hence to ensure distortionless demultiplexing), we
must have

|fci
− fck

| ≥ B

FDM multipler and demultiplexer follows:

x1(t)

LPF
ModulatormN(t)

fcN

xN(t)m0
N(t)

LPF
m1(t) Modulator

fc1

m0
1(t)

s(t) =
∑N

i=1 xi(t)

Figure 9: Frequency Division multiplexing

example of FDM:

s(t) =
N∑

i=1

(
1 + kai

mi(t)
)
cos(2πfci

t) AM sub-modulation (BW of s(t):≥ 2NW )

s(t) =
N∑

i=1

Ac

2

[
mi(t) cos(2πfci

t) − m̂i(t) sin(2πfci
t)
]

SSB sub-modulation (BW of s(t): ≥ NW )
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s(t)

BPF

B

Demodulator
N

fcN

fcN

xN(t) mN(t)

BPF

fc1

1

B

Demodulator
fc1

m1(t)x1(t)

Figure 10: Frequency Division demultiplexing

Complete the proof that the scheme of Fig. 10 is a FDM demultiplexer:

s(t) = +
︸ ︷︷ ︸

bandpass term around fci

︸ ︷︷ ︸

sum of bandpass terms around fcj
(j 6= i)

The bandpass filter around fci
keeps the bandpass term around fci

(namely xi(t)) and removes all
the other bandpass terms. It is seen that non-overlapping of the spectrums of xi(t) is needed to
avoid distortion. Then each xi(t) can be demodulated.

Note that for SSB sub-modulation, since the spectrum of xi(t) contains only one sideband, the
required bandpass filter should pass only one sideband as seen in Fig. 11.

BPF n

fcn
fcn

+ W
f

Figure 11: Bandpass filter required for upper sideband SSB
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4.4 Angle modulation
With m(t) the message signal, an angle modulated signal is defined as

x(t) = Ac cos
(
θ(t)

)
= Ac cos

(
2πfct + ϕ(t)

)
(13)

where ϕ(t) is given by

ϕ(t) = K

∫ t

−∞
m(τ)h(t − τ)dτ = 2πKf

∫ t

−∞
m(τ)h(t − τ)dτ

where K = 2πKf is the phase sensitivity (of the modulator) expressed in rd/Volt, Kf = K
2π

is the frequency sensitivity (of the modulator) expressed in Hz/Volt and h(t) is assumed to be
causal. ϕ(t) is the phase of x(t) and θ(t) = 2πfct + ϕ(t) is the angle of x(t). The instantaneous
frequency of x(t) is defined as

f(t) =
1

2π

dθ(t)

dt
= fc +

1

2π

dϕ(t)

dt

The maximum phase deviation of x(t) is

∆ϕ = max |ϕ(t)|

The maximum frequency deviation of x(t) is

∆f = max |f(t) − fc| = max

∣
∣
∣
∣

1

2π

dϕ(t)

dt

∣
∣
∣
∣

The complex envelope of x(t) is given by

x̃(t) = Ace
jϕ(t)

Phase modulation (PM):

h(t) = δ(t) =⇒ ϕ(t) = Km(t)

H(f) = 1

The phase of a PM signal is proportional to the message signal.

Frequency modulation (FM):

h(t) = u(t) =







1, t > 0
1
2
, t = 0

0, t < 0

=⇒ ϕ(t) = K

∫ t

−∞
m(τ)dτ
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H(f) =
1

j2πf
+

1

2
δ(f)

The instantaneous frequency of an FM signal is proportional to the message signal up to a carrier
frequency shift

f(t) =
K

2π
m(t) + fc = Kfm(t) + fc

Frequency modulation with pre-emphasis/de-emphasis(FM):

When noise analysis is done for FM, it can be shown that the power spectral density of noise
at the FM receiver output is proportional to f 2 in the frequency-band of the message, thus the
noise power is higher at high frequencies. To increase the overall signal-to-noise ratio, practical
systems use a pre-emphasis filter hpe(t) before frequency modulation. The purpose of hpe(t) is
to artificially increase the high-frequency components of the message signal to compensate for
the high noise level. After FM detection, the recovered “emphasized” message signal is passed
through a de-emphasis filter hde(t) which must be ideally the inverse filter of the pre-emphasis
filter (i.e. Hde(f) = 1

Hpe(f)
). If pre-emphasis is used, the “emphasized” message signal is given by

mpe(t) = m(t) ∗ hpe(t)

and the FM modulated signal is

x(t) =

∫ t

−∞
mpe(τ)dτ = mpe(t) ∗ u(t) = m(t) ∗ hpe(t) ∗ u(t)

Therefore (13) corresponds to an FM signal with pre-emphasis when h(t) = hpe(t) ∗ u(t). Equiv-
alently in the frequency domain

H(f) = Hpe(f)

(
1

2
δ(f) +

1

j2πf

)

=
1

2
Hpe(0)δ(f) +

Hpe(f)

j2πf

An example is Hpe(f) = 1 + jf
c

.

a) Narrow-band angle modulation

Narrow-band angle modulation: ϕ(t) � 1

If ϕ(t) � 1, then
x̃(t) = Ace

jϕ(t) ≈ Ac (1 + jϕ(t))

Hence

x(t) = <
{
x̃(t)ej2πfct

}

≈ (complete this line)
≈ Ac cos(2πfct) − Acϕ(t) sin(2πfct)
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Thus narrow-band angle modulation has similar features to AM.

Bandwidth of narrow-band angle modulation: 2× bandwidth of ϕ(t).
Generation of narrow-band angle modulation:

Exercise: Draw a block diagram that generates a narrow-band angle modulated signal.

Detection of narrow-band angle modulation:
Exercise: Draw a block diagram of a system with input x(t) and output −Ac

2
ϕ(t):

b) Wide-band angle modulation

Wide-band angle modulation: |ϕ(t)| � 1

x̃(t) = Ace
jϕ(t)

Generation of wide-band angle modulation using indirect method (Armstrong’s method) :

• Generates a narrow-band angle modulated signal

x0(t) = Ac cos

(

2πfct + K

∫ t

−∞
m(τ)h(t − τ)dτ

)

with
∣
∣
∣K
∫ t

−∞ m(τ)h(t − τ)dτ
∣
∣
∣� 1.

• Pass x0(t) through a Frequency multiplier by N whose block diagram is illustrated in Fig. 12.
The output to the frequency multiplier by N is then

x(t) = Ac cos

(

2πNfct + NK

∫ t

−∞
h(t − τ)m(τ)dτ

)
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x0(t) xN
0 (t)

Nfc

BPF
x(t)

( )N

Figure 12: frequency multiplier by N

If N � 1 we have a wide-band angle-modulated signal around a carrier at Nfc.
Analysis of a frequency multiplier by N :

y(t) = (x0(t))
N =

1

2N−1
cos

(

2πNfct + NK

∫ t

−∞
m(τ)h(t − τ)dτ

)

+ other terms like cos(2πnfct + . . .) with n < N

since

(cos α)2n =
1

22n

[
n−1∑

k=0

2
(n

k

)

cos
(
2(n − k)α

)
+

(
2n

n

)]

(cos α)2n−1 =
1

22n−2

[
n−1∑

k=0

(
2n − 1

k

)

cos
(
(2n − 2k − 1)α

)
+

(
2n

n

)]

The other terms are removed by the bandpass filter yielding x(t) as output.

Generation of any FM modulation using direct method; use of Voltage-Controlled-Oscillator (VCO):

x(t)
VCO

Vc(t)

Figure 13: Voltage-Controlled Oscillator (VCO)

If the input of a VCO is a voltage Vc(t) then the output of a VCO with unmodulated frequency
of oscillation fc has an instantaneous frequency given by

f(t) = fc + KfVc(t)
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Thus its output is

x(t) = Ac cos

(

2πfct + K

∫ t

−∞
Vc(τ)dτ

)

see for example Hartley oscillator .

d) Tone modulation

Tone modulation corresponds to a sinusoidal message signal. Let m(t) = Am cos(2πfct) (Am ≥
0) applied at some time t0 such that t0 � t. Let us calculate the steady state expression of ϕ(t)
corresponding to a general angle modulated signal.

ϕ(t) = K

∫ t

t0

Am cos(2πfmτ)h(t − τ)dτ

≈ K

∫ t

−∞
Am cos(2πfmτ)h(t − τ)dτ (steady state)

= K

∫ ∞

−∞
Am cos(2πfmτ)h(t − τ)dτ (h(t) is causal)

= K

∫ ∞

−∞
Fτ {Am cos(2πfmτ)}Fτ {h(t − τ)}∗ df Generalization of Parseval theorem (t fixed)

=
KAm

2

∫ ∞

−∞
[δ(f − fm) + δ(f + fm)]

[
H(−f)e−j2πft

]∗
df

=
KAm

2

{
H∗(−fm)ej2πfmt + H∗(fm)e−j2πfmt

}

= KAm<
{
H(fm)ej2πfmt

}
(h(t) is real, thus H∗(−f) = H(f))

= KAm|H(fm)| cos
(
2πfmt + arg [H(fm)]

)
(steady state) (14)

Show that for PM and FM ϕ(t) is given by

ϕ(t) =

{

KAm cos(2πfmt) PM
KAm

2πfm
sin(2πfmt) FM

The modulation index is defined as the maximum phase deviation, or equivalently the maxi-
mum deviation of the angle θ(t) from 2πfct .

β = max |ϕ(t)| = max |θ(t) − 2πfct|

46



= KAm |H(fm)| assuming K,Am ≥ 0

Hence from (14) the steady state expression of ϕ(t) for tone modulation is also given by

ϕ(t) = β cos
(
2πfmt + arg [H(fm)]

)

= β sin (2πfmt + θ)

where θ = arg [H(fm)] + π
2
.

Phase modulation (PM):

βPM = KAm = ∆ϕ ∆ϕ: maximum phase deviation

Frequency modulation (FM):

βFM =
KAm

2πfm

=
KfAm

fm

=
∆f

fm

∆f = KfAm: maximum frequency deviation

Transmission bandwidth of an angle modulated signal with tone modulation:

For convenience, we define θ = arg [H(fm)] such that θFM = 0 and θPM = π
2

and we use

ϕ(t) = β sin (2πfmt + θ)

The complex envelope of the angle-modulated signal is

x̃(t) = Ace
jϕ(t) = Ac exp {jβ sin(2πfmt + θ)}

Unlike the original signal x(t), the complex envelope x̃(t) is periodic with period Tm = 1
fm

,
therefore x̃(t) admits a Fourier series representation

x̃(t) =
∞∑

n=−∞
cne

j2πnfmt

where the Fourier coefficients are given by

cn
4
=

1

Tm

∫ Tm
2

−Tm
2

x̃(t)e−j2πnfmtdt

= Acfm

∫ Tm
2

−Tm
2

x̃(t)ej[β sin(2πfmt+θ)−2πnfmt]dt

=
Acfm

2πfm

∫ θ+π

θ−π

ej[β sin(u)−nu+nθ]du (u = 2πfmt + θ)

= Ace
jnθ 1

2π

∫ θ+π

θ−π

ej[β sin(u)−nu]du
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= Ace
jnθJn (β)

where Jn(·) is the nth Bessel function of the first kind defined as

Jn(β) =
1

2π

∫ θ+π

θ−π

ej[β sin(u)−nu]du (integral independent of θ 1)

=
∞∑

k=0

(−1)k
(

β
2

)n+2k

k!(k + n)!

Therefore the modulated signal x(t) with tone modulation is given by

x(t) = <
{
x̃(t)ej2πfct

}

= <
{ ∞∑

n=−∞
Ace

jnθJn(β)ej[2πfct+2πnfmt]

}

= Ac

∞∑

n=−∞
Jn(β) cos

(
2π(fc + nfm)t + nθ

)

and has a Fourier transform given by

X(f) =
Ac

2

∞∑

n=−∞
Jn(β)

{[
δ(f − fc − nfm) + δ(f + fc + nfm)

]
cos(nθ)

+j
[
δ(f − fc − nfm) − δ(f + fc + nfm)

]
sin(nθ)

}

Thus it is seen that angle-modulated signals have an infinite bandwidth.

X(f) =







Ac

2

∑∞
n=−∞ Jn(β)

[
δ(f − fc − nfm) + δ(f + fc + nfm)

]
FM

Ac

2

∑∞
p=−∞

{
J2p(β)

[
δ(f − fc − 2pfm) + δ(f + fc + 2pfm)

]
(−1)p

+ jJ2p+1(β)
[
δ(f − fc − (2p + 1)fm) − δ(f + fc + (2p + 1)fm)

]}
PM

Using J−n(β) = (−1)−nJn(β) and mathematical tables, the Fourier transform X(f) for FM is
illustrated for example in Fig. 14 and Fig. 15. Note that usually only the magnitude of X(f) is
drawn. It is obtained by reversing the negative peaks to become positive peaks.

1Expand the integral as the sum of the three integrals
∫
−π

θ−π
+
∫ π

−π
+
∫ θ+π

π
and makes the change of variable v =

u + 2π in the first one.
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f + 3f mf + f c m
f c

f - 2f c
c

c mf - f f - 3f mc

β

m

(   = 2)X(f)

f

(positive frequencies only)

Figure 14: Fourier transform of X(f) (β = 2) with FM modulation

c

f + f c m

cf + 3f m

f

f - f m

f - 3f mc

β(   = 8)

c

X(f)

f

(positive frequencies only)

Figure 15: Fourier transform of X(f) (β = 8) with FM modulation

Some properties of Bessel functions:

J−n(β) = (−1)−nJn(β)

When β � 1,

Jn(β) ≈
(

β

2

)n
1

n!
=⇒







J0(β) ≈ 1

J1(β) ≈ β
2

Jn(β) ≈ 0, n ≥ 2

lim
β→0

Jn(β) =

{

1 n = 0,

0 else.
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To obtain a definition of an effective (or essential) bandwidth, that is a bandwidth that contains
most of the total power (usually 98% or 99%), let us consider the average power of x(t). The
average power of x(t) is given by

Px
4
= lim

T→∞

1

2T

∫ T

−T

x2(t)dt

= lim
T→∞

A2
c

2T

∞∑

n=−∞

∞∑

p=−∞
Jn(β)Jp(β)

∫ T

−T

cos
(
2π(fc + nfm)t + nθ

)
cos
(
2π(fc + pfm)t + pθ

)
dt

=
A2

c

2

∞∑

n=−∞

∞∑

p=−∞
Jn(β)Jp(β) lim

T→∞

1

2T

[∫ T

−T

cos
(
2π(2fc + (n + p)fm)t + (n + p)θ

)
dt

+

∫ T

−T

cos
(
2π(n − p)fmt + (n − p)θ

)
dt

]

=
A2

c

2

∞∑

n=−∞

∞∑

p=−∞
Jn(β)Jp(β)

[

1

2Tn,p

∫ Tn,p

−Tn,p

cos

(
2πt

Tn,p

+ (n + p)θ

)

dt

+
1

2T ′

n,p

∫ T
′

n,p

−T
′

n,p

cos

(
2πt

T ′

n,p

+ (n − p)θ

)

dt

]

where Tn,p = [2fc + (n + p)fm]−1 and T
′

n,p = (n−p)−1f−1
m . Since the two trigonometric integrals

are zero unless n = p and are equal to 1 when n = p, the average power of x(t) is given by

Px =
A2

c

2

∞∑

n=−∞
J2

n(β) = Pc +
∞∑

n=−∞
Pn

Pc =
A2

c

2
J2

0 (β)

Pn =
A2

c

2
J2

n(β) nth side-band power

P−n =
A2

c

2
J2
−n(β) =

A2
c

2
J2

n(β) = Pn

Note that from x(t) = Ac cos (2πfct + ϕ(t)), the average power of x(t) is also given by

Px =
A2

c

2

therefore we can deduce that ∞∑

n=−∞
J2

n(β) = 1
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An effective (essential) bandwidth can be defined as

BT = 2nmaxfm

where nmax is the largest n such that |Jn(β)| ≥ 0.01 and ∀ k > n|Jk(β)| < 0.01. It turns out
that nmax depends on β. In terms of power, it is equivalent to neglect side-bands that contribute
to less than 0.01% of the total power. Another rule for the effective bandwidth is obtained by
approximating nmax by a linear curve,

BT = 2fm(β + c) 1 ≤ c ≤ 2

When c = 1, the classical Carson’s rule is obtained

BCars
T = 2fm(β + 1)

example: Show that Carson’s rule for FM is

BFM
T = 2 (fm + ∆f)

d) General modulating signal with bandwidth W

If m(t) is periodic, m(t) should be expressed in terms of its Fourier series representation. If m(t)

is a general non-periodic deterministic signal, we can use ejϕ(t) =
∑∞

k=0
[ϕ(t)]k

k!
.

Generalization of Carson’s rule to a general modulating signal

Worst-case tone approach. Let m(t) be a message signal with bandwidth W and maximum
amplitude max |m(t)|. Assume we model m(t) as an infinite number of tones of frequency fmk

and maximum amplitude Amk
, then its effective bandwidth would be

BT = max
k

{2fmk
[βk + 1]}

= max
k

2fmk
+ max

k
KAmk

fmk
|H(fmk

)|
≤ max

k
2fmk

+ K max
k

Amk
max

k
[fmk

|H(fmk
)|] (15)

= W + K max |m(t)|max
k

[fmk
|H(fmk

)|]

where to get (15) we have applied the worse case tone approach. The worse case tone approach
consists of evaluating the bandwidth obtained by considering a tone at the highest possible fre-
quency and the highest possible amplitude, thus maximizing the product of the second term in
BT by maximizing its two terms Amk

and fmk
|H(fmk

)| separately. Let us consider now the term
maxk [fmk

|H(fmk
)|] for the special case of FM and PM modulation. For FM modulation

max
k

[fmk
|H(fmk

)|] = max
k

[
fmk

2πfmk

]

= max
k

1 = 1 = W |H(W )|

51



consistent with the worse tone at W . Note that for FM maximizing Amk
is equivalent to maximize

the frequency deviation ∆fk. For PM modulation

max
k

[fmk
|H(fmk

)|] = max
k

fmk
= W = W |H(W )|

Hence we obtain

BT = 2W + K max(|m(t)|)W |H(W )| = 2W (β + 1)

where β called for general modulating signal the deviation ratio is defined as

β = K max(|m(t)|)|H(W )| =

{
∆f
W

=
Kf max |m(t)|

W
FM

∆ϕ = K max |m(t)| PM

Exercise:
Calculate using Carson’s rule the bandwidth of commercial FM broadcasting characterized

by a maximum allowed maximal frequency deviation of 75kHz and a maximum audio signal of
15kHz.

e) Detection of FM signals

Basic structure: using a differentiator and an envelope detector

Show that for large fc, if x(t) is applied to a differentiator followed by an envelope detector,
the resulting output is proportional to the message signal:

x(t) = Ac cos

(

2πfct + K

∫ t

−∞
m(τ)dτ

)

dx(t)

dt
= complete

z(t) = Output of envelope detector (complete)

Frequency domain differentiation (slope demodulator)
Draw the transfer function of a real filter that can implement the differentiation.
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Note that the differentiation operation has to be implemented only in the bandwidth of the
modulated signal.
Time domain differentiation

Based on the following approximation

dx

dt
≈ x(t) − x(t − ∆t)

∆t

draw the block diagram of a time domain differentiator.

Quadrature detector for an angle-modulated signal
Using a differentiator and a π/2 phase shifter, draw the block diagram of a demodulator for an

angle modulated signal, that is based on similar principles as coherent detection for AM.
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Show that the output of the quadrature detector is given by −A2
c

2
dϕ(t)

dt
.

f) Form of H(f) for FM

The phase of an FM modulated signal is given by

ϕ(t) = K

∫ ∞

−∞
h(t − τ)m(τ)dτ = K

∫ t

−∞
m(τ)dτ

Its Fourier transform is given by

F {ϕ(t)} = KH(f)M(f) = K

[
1

j2πf
M(f) +

M(0)

2
δ(f)

]

Hence in theory

H(f) =
1

j2πf
+

δ(f)

2

Let H
′

(f) = 1
j2πf

, then the corresponding phase ϕ
′

(t) is given by

ϕ
′

(t) = F−1
[

KH
′

(f)M(f)
]

= F−1

[

K
1

j2πf
M(f)

]

and the original phase is

ϕ(t) = F−1 [KH(f)M(f)] = F−1

[

K
1

j2πf
M(f)

]

+ F−1

[
K

2
δ(f)M(0)

]

= F−1

[

K
1

j2πf
M(f)

]

+
K

2
M(0)

Hence the difference between the two phases is only a constant phase shift which is equivalent to
a change of the time of origin. Furthermore the instantaneous frequency given by

f(t) = fc +
1

2π

dϕ(t)

dt
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is independent of the constant KM(0)
2

. Finally the two possible expressions of H(f)

1. H(f) =
1

j2πf
+

1

2
δ(f) 2. H(f) =

1

j2πf

yield the same result for the deviation ratio β. Hence in the derivation of results

H(f) =
1

j2πf

can be considered instead of H(f) = 1
j2πf

+ 1
2
δ(f).
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