8 Digital modulation

8.1 Model for adigital transmission system

A digital transmission model over an additive White Gaussian noise channel (AWGN) isillustrated
inFig. 37.

- Channel
I\g&sﬁgee Transmitter —(>)—=|Recdiver —=
my s1(t) - T : Decision on
; : ; : which of the

mys su(t) nw (t) s1(t), ..+, SM(t)
White was transmitted
aussian
noise

Figure 37: Digital transmission model

Assume that the message source emits one symbol m every T seconds, m € {my,...,my}.
The transmitter produces a signal s;(¢) of duration 7" seconds as the representation of the symbol
m; generated by the message source.

8.2 Signal spaces

The Signal Space formalism is a geometric interpretation of continuous time signals as pointsin

an N-dimensional space whose axis are orthonormal functions.

a) The Hilbert space L?(a, b) and itsproperties

Let us consider the space formed by all real or complex time functions x(¢) that are square inte-
b

grable on agiven timeinterval [a, ], i.e. / lz(t)]?dt < oo. This space is called a Hilbert space

and it is denoted by L?(a,b). It isavector gpace of infinite dimensions, where the vectors are the
functions z(¢), and the scalars are the complex numbers if the functions are complex, or the real
numbersif the functions are real.

Properties of Hilbert space:
e Closure under addition

z(t),y(t) € L*(a,b) = x(t) +y(t) € L*(a,b)
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Closure under scalar multiplication

x(t) € L*(a,b) «a:scda = ax(t) € L*(a,b)

Inner product:

b
< x(t),y(t) >:/ x(t)y*(t)dt (scalar) Va(t),y(t) € L*(a,b)

norm: ||z(t)|| = (< z(t), z(t) >)"/*

If < x(t),y(t) >= 0, then z(¢) isorthogonal to y(¢) or z(¢) and y(t) are orthogonal.
Span:

M
The set of functions which can be formed by all the linear combinationsof z;(t), Z a;x;(t)
i=1
where ; are scalarsiscalled thespan of (), . . .,z (t) andisdenoted span {1 (t), . .., zar () }.
It isasubspace of L?(a, b).
Linear independence:

Let zy(t),...,zp(t) € L*(a,b).

x1(t),. ..,z (t) arelinearly independent if and only if
M
Z&ixi(t)zo = aq=ay=...=ay =20
=1

Otherwise the functions are linearly dependent and at |east one functionis alinear combina-

tion of the others, i.e.
M -

Tig (1) = — Z — (1)

=1 o
Complete orthogonal set/orthogonal basis for a Hilbert space:

infinite sequence of orthogona elements in L?(a,b) {u(t),us(t), ...} such that for any
z(t) € L*(a,b), z(t) can be expressed as

x(t) = Z a;ug(t)

It can be shown that o; = <52= 1 furthermore [[u;(t)]| = 1, then {uy (t), ua(t), ...} is

a complete orthonormal set.
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Ex: A basisfor L?(a,b) is {ej%, k=0,4+1,+2, .. } A basisfor L?(—1,1) isformed by
the Legendre polynomials

1L
—onpl din

Py(t) =1 Put) #—-1)" n=12,...

Projection of z(¢) on span {uy(t), ua(t), ..., u,(t)}:

Let {ui(t), us(t),...} be acomplete orthonormal set of L?(a, b). Let z(t) € L?(a,b). The
projection of x(t) on span{u(t), us(t), ..., u,(t)} isdefined as

in(t) = Z < z(t),ui(t) > u;(t)

Furthermore

()l < lla(®)l
Tinn [[a(t) — ()] = 0

Therefore z(t) can be approximated by z,,(t), the projection of x(¢) on
span{u (t), us(t), . .., u,(t)} arbitrarily close.

Cauchy Schwarz'sinequality:
| <), y(t) > [* < ll=@OIFly@®)]*  Ya(t),y(t) € V' (V: vector space)

with equality when y () = Kxz(t). Thus applied to L?(a, b), we obtain

/ a0 < (/ b o) ( | b (o at)

b) Gram-Schmidt Orthogonalization Procedure:

Let {z1(t), zo(t), ...,z (t)} bealinear independent set of functionsin L?(a,b). Let

ul(t) = .I'l(t)
. Ul(t)
2O =
= 2 < x(t), ui(t) >
up(t) = zp(t) — Z < xp(t), vi(t) > v(t) = zp(t) — Z Hui(’t)‘zp ;i (t)
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u(t)

[ur @]

Vi (t) =

Then
o {uy(t),...,up(t)} isan orthogonal set
o {v(t),...,up(t)} isan orthonormal set

o span {z(t),...,zx(t)} = span {ui(t),. .., ux(t)} = span {vi(t), ..., ve(t)}

Let {z1(t),zo(t),...,2a(t)} be alinear dependent set of functions in L?(a,b), then Gram
Schmidt procedure yields the orthonormal basis {v (%), ..., vn(t)} where N < M.

¢) Signal space or signal constellation of a modulation

Let s1(t), s2(t), ..., sy (t) bethe M possible transmitted signals corresponding to a
M-ary modulation. Let ¢ (t), p2(t), ..., on(t) (N < M) be an orthonormal basis such that span
{1(t), do(t), ..., on(t)} = span {si(t),s2(t),...,sn(t)} obtained for example using Gram-
Schmidt procedure. The signal space/signal constellation of the modulation is the N-dimensional
space of axis ¢, (t), ..., on(t) withthesignals sy (t), . .., sy (t) represented by points with coordi-
nates (s;1, si2, . . ., Sinv ) inthe N-dimensional space, where
Sij =< Si(t), ¢](t) >

Sinces;(t) = SN | s;6;(t), s:(t) iscompletely characterized by thevector s; = (s, Sia, - - -, Sin)
and thefunctions {1 (%), ..., ¢n(t)}. Notethat theset {¢;(¢), ..., ¢n(t)} that can be used to rep-
resent sq(t), ..., sy (t) isnot unique.

Example: QPSK modulation

sit) = {«/%cos(%rfctjt(%—l)g) 0<t<T i=1,2,34

0 elsewhere.

Since s;(t) = \/2& cos (2 fot) cos ((2i — 1)%) — sin (2 fot) sin ((2i — 1)%), by inspection

1 (t) = \/gcos(%rfct) 0<t<T
Po(t) = \/gsin(%rfct) 0<t<T

Assuming f. > 1 or f. = Z, using Gram Schmidt orthogonalization procedure, an equivalent

n
T
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Po(t) = \/ Zsin(27 f.t)
83 X 84

vVE

o1(t) = %cos(%rfct)

Sy X X 81

Figure 38: Signal space for QPSK

signal space for QPSK is obtained which is arotated version of Fig. 38 asillustrated in Fig. 39.

T T T
2F T E E T
Hsl(t)H2:/0 TCOSQ (27?]‘35—1—1) dt:/o ?dt—l—/o 7 €08 (47cht—|—§) dt = F

since the second integral is approximately zero if f. > 1 or isequal to zero if f. = 7.

pon o u(t) _ s1(t) _ zcos - m
20 = @l = T V; (2rhit +3)

< 59(t), Py (t) > = /OT A/ % cos (27rfct + %T) \/gcos <27cht + %) dt
T T
= g l/o cos (Am f.t +m)dt +/0 cos (g) dt}

E T
:g/ cos (A fot + ) dt
0

=0 sgncef.>1

’

up(t) = sa(t)— < s2(1), 6, (1) > ¢} (t) = a(t)

/ . U9 (t) . S92 (t) . g oS - 3_7T
%@‘mmm‘mmm‘V; (2”+4)

T
< s3(t), ¢ (t) > = /0 \/ % cos (27rfct + %) \/gcos <27cht + %) dt
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:\/? (27rfct—i— )+\/_ —cos<27rfct+4):0
0 = gl =0
< sa(t), 6.() :/OT\/?COS(%]@H%)\@ (2mfut + 7 )t
:?{/OTcos(éhrfc)dt+/0Tcos(3;)dt} 0
< sa(t), Bi(t) > = OT %COS(WCH%”) %cos(QﬂfctJr%Tﬁ)dt
:TE /OTcos (47rfct+5§> dt—l—/OTcos(ﬂ)dt] - —VE

< 54(1), dy(t) > =< 54(1),0 >=0

ua(t) = sa(t)— < s4(1), 61 (t) > ¢, ()~ < s4(t>, Ba(t) > da(t)— < su(t), (1) > (1)
:\/?cos (27cht—i- ) +VE —cos (2ﬂfct+¥) =0
¢4( ) =

Note that Fig. 38 isthe classical representation of the signal space of QPSK.

d) Application of signal spacein communication

e Thesigna spacewiththebasis {¢;(t)},_,  , completely characterizesthe signals s;(t) and

offers a representation of time varying functl ons (continuous time functions) using vectors
(discrete components).

108



Py(t) = \/%cos(Qﬁfct + 3%)

X 82

VE ' -
* x o1(t) = \/%cos(%rfct + 1)

Figure 39: Rotated signal space for QPSK

e The signal space provides a convenient and simplified way to find the energy and Euclidean
distance between signals. Note that the Euclidean distance between signals plays a key role
in communication over AWGN channels.

o R 2 N N b N
E; = / Y st dt=3 " Sijsfk/ O (et =) [sij]”
a | j=1 @ J=1

j=1 k=1
2

N

b N
< si(t), su(t) > = / ' Sz‘j%(ﬂ) (Z Szrébi(t)) dt

r=1

N N b
=30 s, [ ot =3 sy,

=1

— of
= 8.S;

Let 7y (t) = SV r:i(t) bethe projection of r(t) on span {s,(t), ..., sy(t)}. The squared
Euclidean distance between 7y (¢) and s (t) isgiven by

[lin () = si()][2 2 / [ (t) — si(t)|*dt = / (P (1) = 5e(8)" > (i = swi) di(t)elt

=1

i (ri — Ski) {/abﬁv(t)ﬁbz‘(t)dt — /ab SZ(t)gbi(t)dt]

i=1
N N

= Z (ri — ski) (1] — s3;) = Z ri — skl
=1 =1

= H’I“N—SkH2 With’f’N: [Tl,...,T’N]T.
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8.3 Optimal receiver principles

Letr(t),0 <t < T bethereceivedsignal. Let s,(t), ..., sn(t) bethe possibletransmitted signals.
Define the hypothesis

Hy : r(t) = f (sm(t), n(t))

where f(-) isafunction that depends on the type of channels considered and n(t) is a noise term.
For example an additive white Gaussian noise (AWGN) channel is characterized by

Hy, or(t) = sp(t) + nw (t)

Based on r(t), 0 < ¢t < T, the receiver has to make a decision on which signal s,,,(t) was trans-
mitted. The optimal receiver (in the minimum probability sense) isthe receiver that minimizesthe
average probability of error.

Let P(k|m) = P (decide on sx(t)|s.(t) transmitted), be the probability that the receiver de-
cidesthat s (t) wastransmitted when in fact s,, (¢) was transmitted. The probability of error when
sm(t) istransmitted is given by

M
P.(m) =Y _ P(klm) =1— P.(m)
7m
where P.(m) is the probability of correct decision when s,,(¢) was transmitted. Assume that the

probability of transmitting s,,,(t) is P(m) (a-priori probability), then the average probability of
error is

M-

P, P.(m)P(m) Bayessrule

3
Il

P(k|m)P(m)

M=

i

M= ilMs

[1— P(m)] P(m) = P(m) =Y P(m)P(m)=1-P.

m=1 m=1

3
Il

where P, is the average probability of correct decision. The optimal receiver minimizes P, or
maximizes P.. To find the optimal receiver, we use the signal space representation. First we
will consider a finite dimensional approximation to the problem, i.e. we will consider a K-
dimensional representation of r(¢) and s,,,(¢) and then see what happens when K tendsto infinity.
Let {u;(t),us(t), ...} be acomplete orthonormal set of L?(0, 7). Let 7x(t) and 5,,x(t) be the

110



K-dimensional approximations of r(¢) and s,,,(t) given by

K
Fre(t) =Y riui(t) re =< r(t), ui(t) >
=1
K
Smic () = Smitti(t) Smi =< Sy (1), wi(t) >
=1
i (t) and &, (t) are respectively represented by 7 = (r1,...,7x)" and s, = (Sm1, - - -, Smk) -

Let ZX denote the K-dimensional space of all possible observation vectors (received vectors)
called the observation space. ZX C IR¥. A decision rule for deciding which s,,, was transmitted
isapartition of the observation space into M digointsets 7;,i = 1, ..., M such that

Z1UZy. . . UZy=2%  ZNZ,=0 i#m

The optimum decision rule in the minimum probabilityi of error sense is obtained by finding the
partition that minimizes the average probability of error P, or equivaently that maximizes the
average probability of correct decision P..

The probability of correct decision when s,,,(¢) was transmitted is given by

P.(m) = P (decide on s,,(t)|s(t) was transmitted)
=Plrg € Z,|Hy,]

where p (rx|H,,) isthejoint probability density function of r x when hypothesis H,, is satisfied.

P.=> P(m)P(m)= Z/ p (i |Hp) P(m)drg

m=1

P, should be maximized over all possible partitions of the observation space, thusit is maximized
if form = 1,....M, [, p(ri|Hy,)P(m)dry ae maximized, i.e. Z,, should consists of all
points of Z such that

p(ri|Hn) P(m) > p(rx|H) P(i) Vi#m

hence
/p(rK\Hm)P(m)drK>/ p(rg|H) P(i)drx Yi#m

m m

In this way, each term p (v |H,,) P(m) isintegrated over that portion of the observation space
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where it maximizesits contribution to P.. Thusthe optimal decision rule based on f ;. is

Decide that s,,,, (t) was transmitted if the received signal r(¢) is such that
P (r|Hun,) P(mo) = max  A{p(rx|Hn)P(m)}

.....

Equivaently the optimum decision rule can be written as

m, = argmax [p (rx|Hy) P(m)]

m

Inter pretation:
Since p (rx) isindependent of m, an equivalent decision rule can be written as

arg max p (TK|Hm) P(m)
o p(re)

Hm)()

From Bayes'srule 2 (x| e = p(m|rg) isan aposteriori probability. Therefore the Maxi-
mum A Posteriori (MAPS ruleis

argmax p (m|rg)
The MAP decision rule maximizes the average probability of correct decision, or equivalently
minimizes the average probability of error.
If P(m) are not available or are all egual, the Maximum-Likelihood (ML) decision rule is
defined as

argmax p (7| Hn)

p(ri|H,) is called the likelihood. The ML decision rule minimizes the average probability of

error if all apriori probabilitiesare equdl, i.e. if P(m) = ﬁ

Remark: Sincep (m|rx) > 0 and In (-) ismonotonic increasing, an equivalent MAP ruleis

arg max In [p (m|rg)]

and an equivalent ML decisionruleis

argmax In [p (rx|Hy,)]
In [p (rk|H,,)] iscaled the log-likelihood.
Note that for general random channels, the likelihood or log-likelihood functions may be diffi-
cult to calculate. Furthermore, to implement the optimal decision rules, the statistic of the channel
needs to be known.

112



8.4 Optimal receiver for additive white Gaussian noise (AWGN) channels

The received signal over an AWGN channel is given by

Hy () = sm(t) +nw(t), t€[0,T], m=12...M

where nyy () is a zero mean white Gaussian real random process with power spectral density %

Watts/Hz. For sake of simplicity let usassumethat s (), ..., sy (t) arereal.

Let {u(t),us(t), ...} beacomplete orthonormal set of L?(0,7"). The set of functions

{Sl(t), Sg(t), ey SM(t),Ul(t),Ug(t), .. }

is complete in L2(0,T) (in the sense that any signalsin L2(0,T') can be represented as a linear
combination of elements of that set) but is not orthonormal. Gram Schmidt procedure performed

on {sy(t),sa(t), ..., s (t),us(t), us(t),...} yields a complete orthonormal set {v;(t), va(t), . .

of L%(0,T) such that

span{v(t),...,on(t)} = span{si(t),...,sm(t)}

where N < M.
Let K > N and

Pr(t) = Z riv;(t) i =< r(t), vi(t) >
Smic(t) = Z SmiVi(t) Smi =< Sm(t), vi(t) >

= smivi(t) since s, =0 Vi>N

Proof that s,,;, =0Vi> N: Let: > N, from (25)

}

(25)

N N
Smi =< $m(t), vi(t) >=< Y agvg(t), v;(t) >= Y <wp(t),vi(t) >=0 sincei > N
k=1 k=1
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a) Optimal receiver (MAP receiver)

The MAP decision rule based on 7 isgiven by

arg max p (m|r)

or equivalently since p(r k) isindependent of H,,

argmax [p (r|H,,) P(m)] (26)

m

whererg = [r1,...,rx]". Sincer(t) = s, (t) + nw (t)
T
v smitmi Where n; =< nuw(t), ni(t) S= / o (£)s(£)dt
0

Since nyy (t) isa Gaussian random process, ni, no, . . . are jointly Gaussian random variables with
mean

E[ni]:E{/OTnW(t)vi(t)dt}:/OTE[nW(t)]vi(t)dt:O i=1,2,... (sncenw(t)iszeromean)
and covariance
Bl = 2| [ w0t [ mwtuy ]
// ey () ()] w5(£); ()t
—A 0'?& w)or(£)v; (w)didu

:i/wwwwz2 =
2 Jo 0 ifi#y

Hence the n;’s are zero mean independent Gaussian random variables with variance % Hencethe
r;'S (r; = smi + n;) are independent Gaussian random variables with mean s,,,; and variance %
Therefore

p(rx|Hm) =p(rk|Tk = Smx + Nk)

(i — Smi)2
- 1;[ ,/QWNO o {_ 25 }]
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N 1 (ri — Smi)’ K 1 r? .
= 1] exp § — " 11 exp{ ——3= ¢ | SinceVi > N, s,,; =0
i=1 UQ?T% 2% i=N+1 QW% 2%

Since the second product is independent of m, an equivalent MAP decision ruleis

argmax [p (ry|H,,) P(m)) (27)

m

Thusry,ry, ..., ry form asufficient statistic. An equivalent MAP decision ruleis

argmax In [p (ry|H,,) P(m)]

m

which means that the receiver decides s,, () was transmitted if

I [p (ry|Hp) P(m)] > o fp (ry|H) P(F)]

al (7"1' - sz’)2 al (7"1' - Ski)2
- ZZ:; N, +In(P(m)) > — ZZ:; N + In(P(k))

Z (ri — smi)” — No In(P(m)) < Z (ri — s1i)* — Ny In(P(k))

_H’I“N — SmH2 — N() ln(P(m)) < H;‘N — SkH2 — N() lIl(P(k))
175(8) = s ()] = Noln(P(m)) < [[Fn () — sk(®)]]* — NoIn(P(k))

Since
N

Z (ri = smi)” = |lry = s> = [[Pn(t) = s (1)

=1
Thusa MAP decision rule over an AWGN channel is
argmin [||ry — s[> — NoIn(P(m))]
argmin [||Fx(t) — s, (8)||* — NoIn(P(m))]
The receiver implementing the MAP decision ruleillustrated in Fig. 40 needs only to consider the
sufficient statistic 1, ra, ..., ry.
The complexity of the implementation of Fig. 40 grows linearly with the dimension of the

signal space (with N).
To find an equivalent decision rule, let uscalculate |7 x — s,,||? = ||Fn(t) — sm(t)]]*

[Far(t) — sm(D)][? = / (Far(t) — sm(t))?
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ry — 81|12
<-ult) > Euclidean — i%\
rt) - distance Noln P(1) | Decision m,
computer i — sl 4 N
< - on(t) > %
Nyln P(M)

Figure 40: Receiver implementing the MAP decision rule

T T T
_ / #2 (1)t + / 2 (D)t — 2 / P (E) s (£)dt
OT 0 0
_ / ()t + By — 2 < ix(8), 5m(t) >
0
Since the first term is independent of m and < 7y (%), s,,(t) >=< r(t), s,m(t) > an equivalent

MAP decisionruleis

arg;nax [< r(t), sm(t) > —% + % ln(P(m))}

which isillustrated in Fig. 41.
Proof that < 7n (%), Sy (t) >=< 1(t), Sm(t) >:

Recall that span {s;(¢), ..., s (t)} = span {v(t),...,on(t)}
< (), sm(t) > =< > rvi(), > Smrvr(t) >= D> s < vi(t), vi(t) >
=1 k=1 i=1 k=1

N N
=3 rismr < vi(t),vp(t) > since < v;(t), vi(t) >=0fori > N whenk < N
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+
< s1(t) > %
M
(1) L Loln P(1) Decision m,,
—_— = A —
X
+
< sa(t) > &)

Lu — Soln P(M)

Figure 41: Receiver implementing the MAP decision rule (second implementation)

Both receivers need to implement an inner product. Thisinner product can be obtained either
using acorrelator asillustrated in Fig. 42 or using a matched filter h;(¢) sampled at 7" asillustrated

in Fig. 43, where
hit) = {?Oji(T 1 z =
, < 0.
r(t T
( ) % fOT ¢
vi(t)

Figure 42: Correlator
The output of the matched filter sasmpled at ¢t = T" isgiven by

[ ronr == [ oy =

—00
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—= h;(t)

T

Figure 43: Inner product implemented using a matched filter

b) ML receiver

The ML decisionruleis
argmax [p (rx|H,y,)] (28)

m

One form of the MAP decision rule is given by (26). Thus the only difference between (28) and
(26) istheterm P(m). Therefore performing the steps asin a), the ML decision rule over AWGN
channelsis given by

arg min [||7°N — sm||2]
m

arg min []]fN(t) — sm(t)\ﬂ

or equivaently

En,
arg max | < r(t), sp(t) > -
Similar tothe MAP receiver, the ML receiver needsonly to consider the sufficient statisticr, rg, ..., ry.
Receivers implementing the ML decision rule are illustrated in Fig. 44 and Fig. 45.

v — s1]]?
<sult) > Euclidean
: M - .
r(t) distance Decision m,
— = rN | —>
computer N
Iy — sarl|?
< -,UN(t) >

Figure 44: Receiver implementing the ML decision rule

118



The complexity of the implementation of Fig. 44 also grows linearly with the dimension of the
signal space (with N).

Inter pretation of the ML receiver:

Fig. 44 showsthat the ML receiver computes the scalar 1, 5, . . ., rn that forms the sufficient
statistic and groupsthemintoavector ry = [rq,...,r N]T. Computing the Euclidean distances and
selecting the minimum one is equivaent to partitioning the signal space
span {s1(t), s2(t), ..., sy (t)} into M digoint regions Vi, . .., Vj, caled the Voronoi regions such
that

VYI U‘/Q U‘/M = §pan {Sl(t)752(t)7"'73M(t)}
VinV,=0 ik

where V; is the set of al the elements of span {s1(), s2(t), ..., sp(t)} which are closer in terms
of Euclidean distance to s;(t) than any other s.(t), k # i. The vector r, must belong to one and
only one Voronoi region. The receiver decidesthat s,,, (¢) was transmitted if » y € V},,,. Note that
Vi = Z;if Vk P(k) = 5; (equally likely signals).

Example : QPSK modulation

2 2
Sm(t) = amwfcos(%rfct) +bmwfsin(27rfct) 0<t<T m=12,....M

where
&1:b1:\/E
&2:—62:—\/5
ag,:bg:—\/E
a4:—b4:\/E

The Voronoi regions are formed by the four quadrants of I?2. The decision variables are

ry =<r(t), \/gcos(Qﬂfct) > ry =< r(t), \/gsin(%rfct) >

The decision ruleis asfollows;

r>01r9>20=—=m,=1
1 <0,rp>20= m,=2
r<0,ra<0=m,=3
r>0,r9<0=m,=4
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+
< s1(t) > )
M
r(t) L Decision m,
—= A H——
X
+
< su(t) > )
Eur

of

Figure 45: Receiver implementing the ML decision rule (second implementation)

8.5 Optimal receiver for binary schemesover an AWGN channel

Assume that the two possible real transmitted signalsare s, (t), s»(t) € L?(0,T) where
T
IOl = [ Isi(e)Pde = B,
0
T
a0l = [ Isa(t)Pt = E:
0

Let P(1), P(2) be the a-priori probabilities of transmitting s;(¢) and s»(t). Define the hypotheses
Hl, H, as

Hy : 1(t) = s5(t) + nuy (£) 0<t<T

where nyy, () is a zero mean white Gaussian real random process with power spectral density %

Watts/Hz. Let {u;(t), us(t), ...} beacompleteorthonormal set of L2(0,T'). Theset {s1(t), so(t), uy(t), us(t), . . .

iscomplete but not orthonormal. Gram Schmidt procedure performed on {s1(t), so(t), u1(t), ua(t), ...}
yields the complete orthonormal set {v(t), v2(t), . ..}, where

’Ul(t) . Sl(t) . Sl(t)

s VE
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v(t) = So(t)— < so(t), v1(t) > v1(t) _ VB~ VB
[|s2(t)— < so(t),v1(t) > v1(t)]|  ||s2(t)— < sao(t), v1(t) > v1(t)]|
)= ) salt) = e

1 {32(75) sl(t)]

Vi@ VB VR

where p, the correlation of s, () and s, (t) isgiven by

- < Sz(t),Sl(t) > 1 T

= = S
VEE; VEE J, ™
Following the methodology of Section 8.4, from (27) the MAP decision ruleis given by

()s2(t)dt

arg max p (15| H,) P(m)

m=1,2
equivalently written as
H,
p(ro|Hi) P(1) 2 p(rs|Hs) P(2)
H,
where H; indicates the hypothesis corresponding to the decision of the receiver.

H,
p(ra|Hy) >~ P(2)

= )\ threshold
p(re|Hy) < P(1)

A(r(t)) Z A (29)
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where A (72(t)) = A (r(t)) isthelikelihood ratio defined as

ap(rolHy) _ . p(rx|H) o
p(ra[Hz)  K—oop(rk|Ha)

A (7(1)) A(r(t) =

An equivalent decision rule is aso obtained by taking the logarithm of (29):
H,
In [A(r(¢))] z In A
H,

Substituting the value of p (75| H;) and p (r,| Hs) and simplifying yields

2 Hl
Z {(TZ — SQZ')Q — (TZ‘ — 811')2} z NO ln)\
=1 HQ
H,
2 2
Z 27“1‘ (Sh’ — SQi) z NO ln)\ + Z (S%z — ng)
=1 H2 =1
vV E1 1=1
S1; =
' 0 else
vV Egp 1=1
S9; = \/EQ\/l—p2 =2
0 else.
Therefore substituting (31-32) into (30) yields
H,
T1 <\/E1— Egp) —Tg\/EQ\/l—p2 z [N01HA+E1—EQPQ—E2(1—p2)j| /2
H,
Ey Ey
<r(t),s1(t) > —p 7 < r(t),s1(t) > — < r(t), s2(t) > +p 7 < r(t), si1(t) >
1 1
H,
z [Noln/\+E1—E2]/2
Hy
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[Noln)\+E1 —EQ]/Q

Let usdefine sa(t) = s1(t) — s2(t), an equivalent decision ruleis

H,
< T’(t),SA(t) > z E; — Es +N01H)\ _ )\/ (34)
[Isa(®)]] 2[[sa(t)]]
H,

The optimal receiver structure for binary modulations based on (33) isillustrated in Fig. 46. The

O~ [ =®
T ¢ x | choose 1if I > \”

r(t) () = 81_\/]{;_'? VEL = VEyp decision—
E _ device|— _ ;
choose2if I < A
T
® / threshold
T 0 % )\// — No 1n/\<|2>E17E2
vy(t) VEy/1 = p?
_ 1 [82_@) _ 51_(15)]
Vi VB T PVE

Figure 46: Optimal receiver (MAP receiver) for binary modulations (first implementation)

optimal receiver structure for binary modulation based on (34) isillustrated in Fig. 47 ( correlation
receiver) and Fig. 48 (matched filter implementation), where the matched filter 2.(t) is defined as

o " raemg choose 1if I > X
r ecision|—
@ )

T device |—

choose2if I < \
i threshold

A/ — Noln A+ FE1—F>
2|[sa@®)]]

Figure 47: Optimal receiver (MAP receiver) for binary modulation (second implementation)
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choose1if [ > )\
r(t) y(T) [ decisonl—

device [ = ,
T choose2if I < A

threshold

)\/ — Noln A\+FE1—F>
2[[sa @)l

Figure 48: Optimal receiver (MAP receiver) for binary modulation (second implementation)

SA(t)
h(t) = & Tean £ 20
0 t<0

Remark: In general the optimal receiver structure for M-ary transmission ({s1(¢), ..., su(t)} pos
sible transmitted signals) uses N matched filters or correlators (N < M such that
span {vy(t),...,on(t)} = span {s1(t),...,sn(t)} ). However for binary modulation (M = 2),
it ispossible to use only one correlator or matched filter as shown by the structures of Fig. 47 and
Fig. 48.

8.6 Probability of symbol error (= probability of bit error) for binary schemes
over AWGN channels

Let P, be the probability of symbol error where the symbols are the s;(¢)’s. Since M = 2, P, =
P.,, where P, isthe probability of bit error. To calculate P, the decision rule given by (34) will be
used. Let P.(1) bethe probability of error when s;(¢) istransmitted. By definition

P(1)=P <7"SA < X\H1>

where
<r(t),sa(t) >
Tsa =
[Isa(®)]]
Under H, (i.eassuming that s, (¢) was transmitted), r,,, isgiven by
1 Ey — pVE1Ey
Ton = < s1(t) +nw(t), s1(t) — s9(t) >= ——————— 4+ n,, = 51 + 1,
> a0 Fw0) = oel0) 2= T G e = St s
where
g, — Ey — pvEEy
= L VTR
[ENGI
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< nw(t),salt) >

S [sa®)l

Since ny (t) is a zero mean white Gaussian random process, n, is a Gaussian random variable
with mean

B Tn SA(t) _ 4 n SA(t) =
Elns|=F {/0 W(t)HSA(t)Hdt] /0 E [nw(t)] HSA(t)Hdt 0

N

and variance

21 Tn sa(t) Tn " sa(u) Y

N EU (“Hsmudt/o W”HsA<u>Hd]
_ No sa(t)  sa(u) No salt) ., No
// Toa @M Toa ot ~ Wt = 2/0 T = 2

Sincen,, isazero mean Gaussian random variable with variance 22, sois —n,, .

P(1)=P (sl tn, < X) —p (—nsA > S — X)

72
= exp —— pdx
/51 27T { 2% }
> 1 2 — -\
= , exp 2l —p | s o1
s1-) /271 2 No No

ol F(s-1)
o sa®ll - [No_InA
Pe(l)—Q[ N, 7\@@)!1]

since

JES { . 1

\/—Hs al {E1+E2 2,0\/E1E2—N01n)\}
A
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The probability of error when s, (t) is transmitted is given by

Fe(2) = P(?“sA > X!H2> :P<SQ+nSA > X) =P (nsA > —52+X> =P ( Mon o 52+X)

:Q{ = — (- &Hﬂ Q[HSA(t>H+ No In) ]

V2N, 2 [[sa(®)]

pVE\Ey — Ey
[sa(®)]|

Therefore the probability of (symbol or bit) error is given by
Pe = P(l)Pe(l) + P(Q)Pe(Q)
|

_ IENGI No In) l[sa(®)]| No In\
‘P(”Q[m . ﬂsmm] P@)Q[ % V2 Tsal

If the signals s, (t) and s, (t) are equally likely i.e. P(1) = P(2) = 5 then A = 1 and

[lsa(@)l|
V2N,

l|sa(t)]| is the Euclidean distance between the two possible transmitted signals s (¢) and s, (t).
A better performance is obtained when ||sa(¢)||? is large which corresponds to small p for fixed

Ey, E, since
sa(®)|* = Er + Bz — 2p\/E1E2

From Cauchy Schwarz's inequality |p|* < ”“”1( I* ”52 ®,thus —1 < p < 1. The minimum value
of p is—1 which corresponds to antipodal sgnallng, | e.

52:

—_

P.=Q { } (equally likely signals)

si(t) = —s2t)  |lsa(®)|]® = (E1+ )

Assume equal energy signals,i.e. F; = E, = E, then P.(1) and P.(2) depend on
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Therefore to have the same P.(1), P.(2) orthogonal signaling requires twice as much energy (i.e.
3dB) as antipodal signaling.
Examples of binary modulation schemes

\/? s@2rft) 0<t<T

— T cos(2m f.t)

¢ Phase Shift Keying (PSK)

52(
Assuming f. >> ., the energy of s;(t) is||s;()||* = E.

sa(t)=2s1(t)  |lsat)l| =2VE

and the probability of error is

2 1 | Ny 2 1 | Ny
1 Q(’/M_ﬁwﬁln)\) + P(2)Q (w/FOjLﬁ\/ﬁln)\)

which for equally likely signals reduces to

[2E
e Frequency Shift Keying (FSK)

sl(t):\/?cos( (fc fA)t) 0<t<T
sz(t):\/?cos( (fc+f—A)t) 0<t<T

The cross correlation coefficient of FSK signalsis

p= \/m i t)dt = ;% OTCOS (27T (fc—%> t) oS (27T (fc—i-%) t) dt
T T
— % [/ cos(4m f.t)dt +/ cos(QWfAt)dt}
0 0
_ sin(27w faT)
N 27TfAT

Orthogonal FSK correspondsto fa = % or fa = % The best performance is obtained for
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p ~ —0.22, corresponding to fa = %52, Assume equally likely signals

Pe:Q< %(1_p)>

How many extraor less energy in dB isrequired to obtain the same probability of error with
orthogonal FSK and FSK with fa = %15 [ denoted FSK(0.715)]. Let E be the energy of
FSK(0.715) and let £ be the energy of the orthogonal FSK.

E E'
Q( NO.l.QQ)Q( No)

Thus
| E E
— - 1.22 =
No \/ No
w / / !
E E E
— =1.22 — =101 — | = 101log(1.22) = 0.86dB
o2 = (g),moes() -oeo
Hence orthogonal FSK requires 0.86dB extra energy to yield the same probability of error
as FSK(0.715).

8.7 Probabilitiesof symbol error for M-ary transmission over AWGN chan-
nels: union bound on probability of symbol error

Recall that the MAP decisionruleis

argmin [||ry — 8,|]> — Noln P(m)]

m=1,...,

Assume that s;(t) istransmitted, define the event A, (i # k) as
||7’N — Si||2 — N()IIIP(Z) S HTN — SkH2 — N()IHP(]C)

with s;(t) transmitted.
The probability of correct decision when s;(¢) was transmitted is

P.(i)=P(Ax1NApg.. NA;_1NA; 1N N Ag)
Pe(z)zl—Pc(z):P(AzlﬂAlgﬂA“,lﬂA”JrlﬂﬂAZM)
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where A represents the conjugate event of A. From the properties of the probability measure

P (A—zk) =P (||’T’N — Si||2 — Nyln P(Z) > H’I“N — SkHQ — Nyln P(k‘)\sz(t) transmltted)
—p (rm < )\;k]Hi) similarly to Section 8.6

<||si<t>—sk<t>||_ No In[P(k)/P <>]>

O

V2N, 2 [|si(t) = si(D)]]
where

. _ < T(t), SAik:(t) >
o |52k (t)]]
saik(t) = si(t) — si(?)
Vo o E; — B, + Noln [P(k)/ P(i)]
e 2[|saik(t)]]

Since P(e) = .M, P,(i)P(i), we have

Isil) = sl [N n[PU)/PG)
Fe= ZQ( Vo Hs(t)—sk@m)””

i=1 k=1

In communication we are interested mostly by the order (magnitude) of P,, whether P, is2-10~°
or 3 - 107° is not very important, but whether P, is 1072 or 10~° is important. The Q-function
decreases very fast when its argument is increased. Therefore at high SNR (small Ny), keeping
only the largest termsin the sum will still yield a good approximation.

Assumethat s1(t), s2(t), . .., su(t) areequally likely then P(i) = -; and

1 e o (1sit) = si(@0)]]
rsyyye(Mm)

=1 k=1
ki
A good approximation is
2n(dmin) dmin
P, <
- M @ (\/QNO)
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where
i = i {[[s:(t) = s ()]

.....

is the minimum Euclidean distance between the possible transmitted signals s;(t), and n(dmi,) 1S
the number of signal pairs with Euclidean distance equal to d ;...
Energies associated with M-ary signaling:

e Average energy per transmitted signal

M
E, =Y EP(i)
=1

where E; isthe energy of the i'" signal and P(i) isthe a-priori probability.

e Peak energy
E

» = Max I
7

e Average energy per transmitted bit:

Assumethat M = 2& and each transmitted signal is represented by a binary word of L bits,
the average energy per transmitted bitsis

E E
B, === 4
T L logy(M)
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