
8 Digital modulation

8.1 Model for a digital transmission system

A digital transmission model over an additive White Gaussian noise channel (AWGN) is illustrated
in Fig. 37.
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Figure 37: Digital transmission model

Assume that the message source emits one symbol m every T seconds, m ∈ {m1, . . . , mM}.
The transmitter produces a signal si(t) of duration T seconds as the representation of the symbol
mi generated by the message source.

8.2 Signal spaces

The Signal Space formalism is a geometric interpretation of continuous time signals as points in
an N-dimensional space whose axis are orthonormal functions.

a) The Hilbert space L2(a, b) and its properties

Let us consider the space formed by all real or complex time functions x(t) that are square inte-

grable on a given time interval [a, b], i.e.
∫ b

a

|x(t)|2dt < ∞. This space is called a Hilbert space

and it is denoted by L2(a, b). It is a vector space of infinite dimensions, where the vectors are the
functions x(t), and the scalars are the complex numbers if the functions are complex, or the real
numbers if the functions are real.

Properties of Hilbert space :

• Closure under addition

x(t), y(t) ∈ L2(a, b) =⇒ x(t) + y(t) ∈ L2(a, b)
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• Closure under scalar multiplication

x(t) ∈ L2(a, b) α : scalar =⇒ αx(t) ∈ L2(a, b)

• Inner product:

< x(t), y(t) >=

∫ b

a

x(t)y∗(t)dt (scalar) ∀x(t), y(t) ∈ L2(a, b)

norm: ||x(t)|| = (< x(t), x(t) >)1/2

If < x(t), y(t) >= 0, then x(t) is orthogonal to y(t) or x(t) and y(t) are orthogonal.

• Span:

The set of functions which can be formed by all the linear combinations of xi(t),
M∑
i=1

αixi(t)

where αi are scalars is called the span of x1(t), . . . , xM(t) and is denoted span {x1(t), . . . , xM(t)}.
It is a subspace of L2(a, b).

• Linear independence:

Let x1(t), . . . , xM(t) ∈ L2(a, b).

x1(t), . . . , xM(t) are linearly independent if and only if

M∑
i=1

αixi(t) = 0 =⇒ α1 = α2 = . . . = αM = 0

Otherwise the functions are linearly dependent and at least one function is a linear combina-
tion of the others, i.e.

xi0(t) = −
M∑
i=1

αi

αi0

xi(t)

• Complete orthogonal set/orthogonal basis for a Hilbert space:

infinite sequence of orthogonal elements in L2(a, b) {u1(t), u2(t), . . .} such that for any
x(t) ∈ L2(a, b), x(t) can be expressed as

x(t) =
∞∑
i=1

αiui(t)

It can be shown that αi = <x(t),ui(t)>
||ui(t)||2 . If furthermore ||ui(t)|| = 1, then {u1(t), u2(t), . . .} is

a complete orthonormal set.
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Ex: A basis for L2(a, b) is
{
ej 2πkt

b−a , k = 0,±1,±2, . . .
}

. A basis for L2(−1, 1) is formed by

the Legendre polynomials

P0(t) = 1 Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n n = 1, 2, . . .

• Projection of x(t) on span {u1(t), u2(t), . . . , un(t)}:

Let {u1(t), u2(t), . . .} be a complete orthonormal set of L2(a, b). Let x(t) ∈ L2(a, b). The
projection of x(t) on span{u1(t), u2(t), . . . , un(t)} is defined as

x̂n(t) =

n∑
i=1

< x(t), ui(t) > ui(t)

Furthermore

||x̂n(t)|| ≤ ||x(t)||
lim

n→∞
||x(t) − x̂n(t)|| = 0

Therefore x(t) can be approximated by x̂n(t), the projection of x(t) on
span{u1(t), u2(t), . . . , un(t)} arbitrarily close.

• Cauchy Schwarz’s inequality:

| < x(t), y(t) > |2 ≤ ||x(t)||2||y(t)||2 ∀x(t), y(t) ∈ V (V: vector space)

with equality when y(t) = Kx(t). Thus applied to L2(a, b), we obtain

∣∣∣∣
∫ b

a

x(t)y∗(t)

∣∣∣∣
2

≤
(∫ b

a

|x(t)|2dt

)(∫ b

a

|y(t)|2 dt

)

b) Gram-Schmidt Orthogonalization Procedure:

Let {x1(t), x2(t), . . . , xM(t)} be a linear independent set of functions in L2(a, b). Let

u1(t) = x1(t)

v1(t) =
u1(t)

||u1(t)||
and

uk(t) = xk(t) −
k−1∑
i=1

< xk(t), vi(t) > vi(t) = xk(t) −
k−1∑
i=1

< xk(t), ui(t) >

||ui(t)||2 ui(t)
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vk(t) =
uk(t)

||uk(t)||
Then

• {u1(t), . . . , uM(t)} is an orthogonal set

• {v1(t), . . . , vM(t)} is an orthonormal set

• span {x1(t), . . . , xk(t)} = span {u1(t), . . . , uk(t)} = span {v1(t), . . . , vk(t)}
Let {x1(t), x2(t), . . . , xM (t)} be a linear dependent set of functions in L2(a, b), then Gram

Schmidt procedure yields the orthonormal basis {v1(t), . . . , vN(t)} where N < M .

c) Signal space or signal constellation of a modulation

Let s1(t), s2(t), . . . , sM(t) be the M possible transmitted signals corresponding to a
M-ary modulation. Let φ1(t), φ2(t), . . . , φN(t) (N ≤ M) be an orthonormal basis such that span
{φ1(t), φ2(t), . . . , φN(t)} = span {s1(t), s2(t), . . . , sM(t)} obtained for example using Gram-
Schmidt procedure. The signal space/signal constellation of the modulation is the N-dimensional
space of axis φ1(t), . . . , φN(t) with the signals s1(t), . . . , sM(t) represented by points with coordi-
nates (si1, si2, . . . , siN)T in the N-dimensional space, where

sij =< si(t), φj(t) >

Since si(t) =
∑N

i=1 sijφj(t), si(t) is completely characterized by the vector si = (si1, si2, . . . , siN)T

and the functions {φ1(t), . . . , φN(t)}. Note that the set {φ1(t), . . . , φN(t)} that can be used to rep-
resent s1(t), . . . , sM(t) is not unique.

Example: QPSK modulation

si(t) =

{√
2E
T

cos
(
2πfct + (2i − 1)π

4

)
0 ≤ t ≤ T i = 1, 2, 3, 4

0 elsewhere.

Since si(t) =
√

2E
T

cos (2πfct) cos
(
(2i − 1)π

4

)− sin (2πfct) sin
(
(2i − 1)π

4

)
, by inspection

φ1(t) =

√
2

T
cos(2πfct) 0 ≤ t ≤ T

φ2(t) =

√
2

T
sin(2πfct) 0 ≤ t ≤ T

Assuming fc � 1 or fc = n
T

, using Gram Schmidt orthogonalization procedure, an equivalent
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φ1(t) =
√

2
T cos(2πfct)

s1

s4

φ2(t) =
√

2
T sin(2πfct)

s3

s2

√
E

Figure 38: Signal space for QPSK

signal space for QPSK is obtained which is a rotated version of Fig. 38 as illustrated in Fig. 39.

||s1(t)||2 =

∫ T

0

2E

T
cos2

(
2πfct +

π

4

)
dt =

∫ T

0

E

T
dt +

∫ T

0

E

T
cos
(
4πfct +

π

2

)
dt = E

since the second integral is approximately zero if fc � 1 or is equal to zero if fc = n
T

.

φ
′
1(t) =

u1(t)

||u1(t)|| =
s1(t)

||s1(t)|| =

√
2

T
cos
(
2πfct +

π

4

)

< s2(t), φ
′
1(t) > =

∫ T

0

√
2E

T
cos

(
2πfct +

3π

4

)√
2

T
cos
(
2πfct +

π

4

)
dt

=

√
E

T

[∫ T

0

cos (4πfct + π) dt +

∫ T

0

cos
(π

2

)
dt

]

=

√
E

T

∫ T

0

cos (4πfct + π) dt

= 0 since fc � 1

u2(t) = s2(t)− < s2(t), φ
′
1(t) > φ

′
1(t) = s2(t)

φ
′
2(t) =

u2(t)

||u2(t)|| =
s2(t)

||s2(t)|| =

√
2

T
cos

(
2πfct +

3π

4

)

< s3(t), φ
′
1(t) > =

∫ T

0

√
2E

T
cos

(
2πfct +

5π

4

)√
2

T
cos
(
2πfct +

π

4

)
dt
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=

√
E

T

[∫ T

0

cos

(
4πfct +

3π

2

)
dt +

∫ T

0

cos (π) dt

]
= −

√
E

< s3(t), φ
′
2(t) > =

∫ T

0

√
2E

T
cos

(
2πfct +

5π

4

)√
2

T
cos

(
2πfct +

3π

4

)
dt

=

√
E

T

[∫ T

0

cos (4πfct) dt +

∫ T

0

cos
(π

2

)
dt

]
= 0

u3(t) = s3(t)− < s3(t), φ
′
1(t) > φ

′
1(t)− < s3(t), φ

′
2(t) > φ

′
2(t)

=

√
2E

T
cos

(
2πfct +

5π

4

)
+
√

E

√
2

T
cos
(
2πfct +

π

4

)
= 0

φ
′
3(t) =

u3(t)

||u3(t)|| = 0

< s4(t), φ
′
1(t) > =

∫ T

0

√
2E

T
cos

(
2πfct +

7π

4

)√
2

T
cos
(
2πfct +

π

4

)
dt

=

√
E

T

[∫ T

0

cos (4πfct) dt +

∫ T

0

cos

(
3π

2

)
dt

]
= 0

< s4(t), φ
′
2(t) > =

∫ T

0

√
2E

T
cos

(
2πfct +

7π

4

)√
2

T
cos

(
2πfct +

3π

4

)
dt

=

√
E

T

[∫ T

0

cos

(
4πfct +

5π

2

)
dt +

∫ T

0

cos (π) dt

]
= −

√
E

< s4(t), φ
′
3(t) > =< s4(t), 0 >= 0

u4(t) = s4(t)− < s4(t), φ
′
1(t) > φ

′
1(t)− < s4(t), φ

′
2(t) > φ

′
2(t)− < s4(t), φ

′
3(t) > φ

′
3(t)

=

√
2E

T
cos

(
2πfct +

7π

4

)
+
√

E

√
2

T
cos

(
2πfct +

3π

4

)
= 0

φ
′
4(t) = 0

Note that Fig. 38 is the classical representation of the signal space of QPSK.

d) Application of signal space in communication

• The signal space with the basis {φi(t)}i=1,...,N completely characterizes the signals si(t) and
offers a representation of time varying functions (continuous time functions) using vectors
(discrete components).
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φ
′
1(t) =

√
2
T cos(2πfct + π

4 )
s1

s4

s2

s3

√
E

φ
′
2(t) =

√
2
T cos(2πfct + 3π

4 )

Figure 39: Rotated signal space for QPSK

• The signal space provides a convenient and simplified way to find the energy and Euclidean
distance between signals. Note that the Euclidean distance between signals plays a key role
in communication over AWGN channels.

Ei
�
=

∫ b

a

[
N∑

j=1

sijφj(t)

∣∣∣∣∣
2

dt =
N∑

j=1

N∑
k=1

sijs
∗
ik

∫ b

a

φj(t)φ
∗
k(t)dt =

N∑
j=1

|sij |2

= ||si||2

< si(t), sk(t) >
�
=

∫ b

a

(
N∑

j=1

sijφj(t)

)(
N∑

r=1

s∗krφ
∗
r(t)

)
dt

=

N∑
j=1

N∑
r=1

sijs
∗
kr

∫ b

a

φj(t)φ
∗
r(t)dt =

N∑
j=1

sijs
∗
kj

= sT
i s∗

k = s†
ksi

Let r̂N (t) =
∑N

i=1 riφi(t) be the projection of r(t) on span {s1(t), . . . , sM(t)}. The squared
Euclidean distance between r̂N (t) and sk(t) is given by

||r̂N(t) − sk(t)||2 �
=

∫ b

a

|r̂N(t) − sk(t)|2dt =

∫ b

a

(
r̂N(t) − sk(t)

)∗ N∑
i=1

(ri − ski)φi(t)dt

=

N∑
i=1

(ri − ski)

[∫ b

a

r̂∗N(t)φi(t)dt −
∫ b

a

s∗k(t)φi(t)dt

]

=

N∑
i=1

(ri − ski) (r∗i − s∗ki) =

N∑
i=1

|ri − ski|2

= ||rN − sk||2 with rN = [r1, . . . , rN ]T .
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8.3 Optimal receiver principles

Let r(t), 0 ≤ t ≤ T be the received signal. Let s1(t), . . . , sM(t) be the possible transmitted signals.
Define the hypothesis

Hm : r(t) = f (sm(t), n(t))

where f(·) is a function that depends on the type of channels considered and n(t) is a noise term.
For example an additive white Gaussian noise (AWGN) channel is characterized by

Hm : r(t) = sm(t) + nW (t)

Based on r(t), 0 ≤ t ≤ T , the receiver has to make a decision on which signal sm(t) was trans-
mitted. The optimal receiver (in the minimum probability sense) is the receiver that minimizes the
average probability of error.

Let P (k|m) = P (decide on sk(t)|sm(t) transmitted), be the probability that the receiver de-
cides that sk(t) was transmitted when in fact sm(t) was transmitted. The probability of error when
sm(t) is transmitted is given by

Pe(m) =

M∑
k=1
k �=m

P (k|m) = 1 − Pc(m)

where Pc(m) is the probability of correct decision when sm(t) was transmitted. Assume that the
probability of transmitting sm(t) is P (m) (a-priori probability), then the average probability of
error is

Pe =

M∑
m=1

Pe(m)P (m) Bayes’s rule

=
M∑

m=1

M∑
k=1
k �=m

P (k|m)P (m)

=
M∑

m=1

[1 − Pc(m)] P (m) =
M∑

m=1

P (m) −
M∑

m=1

Pc(m)P (m) = 1 − Pc

where Pc is the average probability of correct decision. The optimal receiver minimizes Pe or
maximizes Pc. To find the optimal receiver, we use the signal space representation. First we
will consider a finite dimensional approximation to the problem, i.e. we will consider a K-
dimensional representation of r(t) and sm(t) and then see what happens when K tends to infinity.
Let {u1(t), u2(t), . . .} be a complete orthonormal set of L2(0, T ). Let r̂K(t) and ŝmK(t) be the
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K-dimensional approximations of r(t) and sm(t) given by

r̂K(t) =

K∑
i=1

riui(t) ri =< r(t), ui(t) >

ŝmK(t) =

K∑
i=1

smiui(t) smi =< sm(t), ui(t) >

r̂K(t) and ŝmK(t) are respectively represented by rK = (r1, . . . , rK)T and sm = (sm1, . . . , smK)T .
Let ZK denote the K-dimensional space of all possible observation vectors (received vectors)
called the observation space. ZK ⊆ IRK . A decision rule for deciding which sm was transmitted
is a partition of the observation space into M disjoint sets Zi, i = 1, . . . , M such that

Z1 ∪ Z2 . . . ∪ ZM = ZK Zi ∩ Zm = ∅ i = m

The optimum decision rule in the minimum probabilityi of error sense is obtained by finding the
partition that minimizes the average probability of error Pe, or equivalently that maximizes the
average probability of correct decision Pc.

The probability of correct decision when sm(t) was transmitted is given by

Pc(m) = P (decide on sm(t)|sm(t) was transmitted)

= P [rK ∈ Zm|Hm]

=

∫
Zm

p (rK |Hm) drK

where p (rK |Hm) is the joint probability density function of rK when hypothesis Hm is satisfied.

Pc =
M∑

m=1

Pc(m)P (m) =
M∑

m=1

∫
Zm

p (rK |Hm)P (m)drK

Pc should be maximized over all possible partitions of the observation space, thus it is maximized
if for m = 1, . . . , M ,

∫
Zm

p (rK |Hm)P (m)drK are maximized, i.e. Zm should consists of all
points of Z such that

p (rK |Hm)P (m) > p (rK |Hi)P (i) ∀ i = m

hence ∫
Zm

p (rK |Hm)P (m)drK >

∫
Zm

p (rK |Hi) P (i)drK ∀ i = m

In this way, each term p (rK |Hm) P (m) is integrated over that portion of the observation space
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where it maximizes its contribution to Pc. Thus the optimal decision rule based on f K is

Decide that smo(t) was transmitted if the received signal r(t) is such that

P (rK |Hmo)P (mo) = max
m=1,2,...,M

{p (rK |Hm) P (m)}

Equivalently the optimum decision rule can be written as

mo = arg max
m

[p (rK |Hm)P (m)]

Interpretation:

Since p (rK) is independent of m, an equivalent decision rule can be written as

arg max
m

p (rK |Hm) P (m)

p (rK)

From Bayes’s rule p(rK |Hm)P (m)
p(rK)

= p (m|rK) is an a posteriori probability. Therefore the Maxi-
mum A Posteriori (MAP) rule is

arg max
m

p (m|rK)

The MAP decision rule maximizes the average probability of correct decision, or equivalently
minimizes the average probability of error.

If P (m) are not available or are all equal, the Maximum-Likelihood (ML) decision rule is
defined as

arg max
m

p (rK |Hm)

p (rK |Hm) is called the likelihood. The ML decision rule minimizes the average probability of
error if all a priori probabilities are equal, i.e. if P (m) = 1

M
.

Remark: Since p (m|rK) ≥ 0 and ln (·) is monotonic increasing, an equivalent MAP rule is

arg max
m

ln [p (m|rK)]

and an equivalent ML decision rule is

arg max
m

ln [p (rK |Hm)]

ln [p (rK |Hm)] is called the log-likelihood.
Note that for general random channels, the likelihood or log-likelihood functions may be diffi-

cult to calculate. Furthermore, to implement the optimal decision rules, the statistic of the channel
needs to be known.
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8.4 Optimal receiver for additive white Gaussian noise (AWGN) channels

The received signal over an AWGN channel is given by

Hm : r(t) = sm(t) + nW (t), t ∈ [0, T ], m = 1, 2, . . . , M

where nW (t) is a zero mean white Gaussian real random process with power spectral density N0

2

Watts/Hz. For sake of simplicity let us assume that s1(t), . . . , sM(t) are real.
Let {u1(t), u2(t), . . .} be a complete orthonormal set of L2(0, T ). The set of functions

{s1(t), s2(t), . . . , sM(t), u1(t), u2(t), . . .}

is complete in L2(0, T ) (in the sense that any signals in L2(0, T ) can be represented as a linear
combination of elements of that set) but is not orthonormal. Gram Schmidt procedure performed
on {s1(t), s2(t), . . . , sM(t), u1(t), u2(t), . . .} yields a complete orthonormal set {v1(t), v2(t), . . .}
of L2(0, T ) such that

span {v1(t), . . . , vN(t)} = span {s1(t), . . . , sM(t)} (25)

where N ≤ M .
Let K ≥ N and

r̂K(t) =
K∑

i=1

rivi(t) ri =< r(t), vi(t) >

ŝmK(t) =
K∑

i=1

smivi(t) smi =< sm(t), vi(t) >

=

N∑
i=1

smivi(t) since smi = 0 ∀ i > N

=
∞∑
i=1

smivi(t) = sm(t)

n̂K(t) =

K∑
i=1

nivi(t) ni =< nW (t), vi(t) >

Proof that smi = 0 ∀ i > N : Let i > N , from (25)

smi =< sm(t), vi(t) >=<

N∑
k=1

αkvk(t), vi(t) >=

N∑
k=1

αk < vk(t), vi(t) >= 0 since i > N
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a) Optimal receiver (MAP receiver)

The MAP decision rule based on rK is given by

arg max
m

p (m|r)

or equivalently since p(rK) is independent of Hm

arg max
m

[p (r|Hm)P (m)] (26)

where rK = [r1, . . . , rK ]T . Since r(t) = sm(t) + nW (t)

ri = smi + ni where ni =< nW (t), vi(t) >=

∫ T

0

nW (t)vi(t)dt

Since nW (t) is a Gaussian random process, n1, n2, . . . are jointly Gaussian random variables with
mean

E [ni] = E

[∫ T

0

nW (t)vi(t)dt

]
=

∫ T

0

E [nW (t)] vi(t)dt = 0 i = 1, 2, . . . (since nW (t) is zero mean)

and covariance

E [ninj ] = E

[∫ T

0

nW (t)vi(t)dt

∫ T

0

nW (u)vj(u)du

]

=

∫ T

0

∫ T

0

E [nW (t)nW (u)] vi(t)vj(u)dtdu

=

∫ T

0

∫ T

0

N0

2
δ(t − u)vi(t)vj(u)dtdu

=
N0

2

∫ T

0

vi(t)vj(t)dt =

{
N0

2
if i = j

0 if i = j

Hence the ni’s are zero mean independent Gaussian random variables with variance N0

2
. Hence the

ri’s (ri = smi + ni) are independent Gaussian random variables with mean smi and variance N0

2
.

Therefore

p (rK |Hm) = p (rK |rK = smK + nK)

=

K∏
i=1

⎡
⎣ 1√

2πN0

2

exp

{
−(ri − smi)

2

2N0

2

}⎤⎦
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=

⎛
⎝ N∏

i=1

1√
2πN0

2

exp

{
−(ri − smi)

2

2N0

2

}⎞⎠
⎛
⎝ K∏

i=N+1

1√
2πN0

2

exp

{
− r2

i

2N0

2

}⎞⎠ since ∀ i > N , smi = 0

Since the second product is independent of m, an equivalent MAP decision rule is

arg max
m

[p (rN |Hm)P (m)] (27)

Thus r1, r2, . . . , rN form a sufficient statistic. An equivalent MAP decision rule is

arg max
m

ln [p (rN |Hm)P (m)]

which means that the receiver decides sm(t) was transmitted if

ln [p (rN |Hm)P (m)] > ln [p (rN |Hk)P (k)]

−
N∑

i=1

(ri − smi)
2

N0
+ ln

(
P (m)

)
> −

N∑
i=1

(ri − ski)
2

N0
+ ln

(
P (k)

)
N∑

i=1

(ri − smi)
2 − N0 ln

(
P (m)

)
<

N∑
i=1

(ri − ski)
2 − N0 ln

(
P (k)

)
||rN − sm||2 − N0 ln

(
P (m)

)
< ||rN − sk||2 − N0 ln

(
P (k)

)
||r̂N(t) − sm(t)||2 − N0 ln

(
P (m)

)
< ||r̂N(t) − sk(t)||2 − N0 ln

(
P (k)

)
Since

N∑
i=1

(ri − smi)
2 = ||rN − sm||2 = ||r̂N(t) − sm(t)||2

Thus a MAP decision rule over an AWGN channel is

arg min
m

[||rN − sm||2 − N0 ln
(
P (m)

)]
arg min

m

[||r̂N(t) − sm(t)||2 − N0 ln
(
P (m)

)]
The receiver implementing the MAP decision rule illustrated in Fig. 40 needs only to consider the
sufficient statistic r1, r2, . . . , rN .

The complexity of the implementation of Fig. 40 grows linearly with the dimension of the
signal space (with N).

To find an equivalent decision rule, let us calculate ||rN − sm||2 = ||r̂N(t) − sm(t)||2.

||r̂N(t) − sm(t)||2 =

∫ T

0

(r̂N (t) − sm(t))2 dt
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Decision mo

< ·, v1(t) >
Euclidean

r(t)
rN

distance

< ·, vN(t) >

N0 ln P (1)

N0 ln P (M)

||rN − s1||2

||rN − sM ||2
N

M

I

computer

Figure 40: Receiver implementing the MAP decision rule

=

∫ T

0

r̂2
N (t)dt +

∫ T

0

s2
m(t)dt − 2

∫ T

0

r̂N(t)sm(t)dt

=

∫ T

0

r̂2
N (t)dt + Em − 2 < r̂N (t), sm(t) >

Since the first term is independent of m and < r̂N(t), sm(t) >=< r(t), sm(t) > an equivalent
MAP decision rule is

arg max
m

[
< r(t), sm(t) > −Em

2
+

N0

2
ln
(
P (m)

)]

which is illustrated in Fig. 41.
Proof that < r̂N(t), sm(t) >=< r(t), sm(t) >:

Recall that span {s1(t), . . . , sM(t)} = span {v1(t), . . . , vN(t)}

< r(t), sm(t) > =<
∞∑
i=1

rivi(t),
N∑

k=1

smkvk(t) >=
∞∑
i=1

N∑
k=1

rismk < vi(t), vk(t) >

=

N∑
i=1

N∑
k=1

rismk < vi(t), vk(t) > since < vi(t), vk(t) >= 0 for i > N when k ≤ N

=<
N∑

i=1

rivi(t),
N∑

k=1

smkvk(t) >=< r̂N (t), sm(t) >
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Decision mor(t)
M

A

X

E1

2 − N0

2 lnP (1)

EM

2 − N0

2 ln P (M)

< ·, sM(t) >

< ·, s1(t) >

Figure 41: Receiver implementing the MAP decision rule (second implementation)

Both receivers need to implement an inner product. This inner product can be obtained either
using a correlator as illustrated in Fig. 42 or using a matched filter hi(t) sampled at T as illustrated
in Fig. 43, where

hi(t) =

{
vi(T − t), t ≥ 0

0, t < 0.

rir(t) ∫ T

0

vi(t)

Figure 42: Correlator

The output of the matched filter sampled at t = T is given by∫ ∞

−∞
r(t)hi(T − t)dt =

∫ T

0

r(t)vi(t)dt = ri
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r(t)
hi(t)

ri

T

Figure 43: Inner product implemented using a matched filter

b) ML receiver

The ML decision rule is
arg max

m
[p (rK |Hm)] (28)

One form of the MAP decision rule is given by (26). Thus the only difference between (28) and
(26) is the term P (m). Therefore performing the steps as in a), the ML decision rule over AWGN
channels is given by

arg min
m

[||rN − sm||2
]

arg min
m

[||r̂N(t) − sm(t)||2]
or equivalently

arg max
m

[
< r(t), sm(t) > −Em

2

]

Similar to the MAP receiver, the ML receiver needs only to consider the sufficient statistic r1, r2, . . . , rN .
Receivers implementing the ML decision rule are illustrated in Fig. 44 and Fig. 45.

Decision mo

N

M

I

< ·, v1(t) >
Euclidean

r(t)
rN

distance

< ·, vN(t) >

||rN − s1||2

||rN − sM ||2
computer

Figure 44: Receiver implementing the ML decision rule
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The complexity of the implementation of Fig. 44 also grows linearly with the dimension of the
signal space (with N).
Interpretation of the ML receiver:

Fig. 44 shows that the ML receiver computes the scalar r1, r2, . . . , rN that forms the sufficient
statistic and groups them into a vector rN = [r1, . . . , rN ]T . Computing the Euclidean distances and
selecting the minimum one is equivalent to partitioning the signal space
span {s1(t), s2(t), . . . , sM(t)} into M disjoint regions V1, . . . , VM called the Voronoi regions such
that

V1 ∪ V2 . . . ∪ VM = span {s1(t), s2(t), . . . , sM(t)}
Vi ∩ Vk = ∅ i = k

where Vi is the set of all the elements of span {s1(t), s2(t), . . . , sM(t)} which are closer in terms
of Euclidean distance to si(t) than any other sk(t), k = i. The vector rN must belong to one and
only one Voronoi region. The receiver decides that smo(t) was transmitted if rN ∈ Vmo . Note that
Vi = Zi if ∀ k P (k) = 1

M
(equally likely signals).

Example : QPSK modulation

sm(t) = am

√
2

T
cos(2πfct) + bm

√
2

T
sin(2πfct) 0 ≤ t ≤ T m = 1, 2, . . . , M

where

a1 = b1 =
√

E

a2 = −b2 = −
√

E

a3 = b3 = −
√

E

a4 = −b4 =
√

E

The Voronoi regions are formed by the four quadrants of IR2. The decision variables are

r1 =< r(t),

√
2

T
cos(2πfct) > r2 =< r(t),

√
2

T
sin(2πfct) >

The decision rule is as follows:

r1 ≥ 0, r2 ≥ 0 =⇒ mo = 1

r1 < 0, r2 ≥ 0 =⇒ mo = 2

r1 < 0, r2 < 0 =⇒ mo = 3

r1 ≥ 0, r2 < 0 =⇒ mo = 4
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Decision mor(t)
M

A

X

< ·, sM(t) >

< ·, s1(t) >

E1

2

EM

2

Figure 45: Receiver implementing the ML decision rule (second implementation)

8.5 Optimal receiver for binary schemes over an AWGN channel

Assume that the two possible real transmitted signals are s1(t), s2(t) ∈ L2(0, T ) where

||s1(t)||2 =

∫ T

0

|s1(t)|2dt = E1

||s2(t)||2 =

∫ T

0

|s2(t)|2dt = E2

Let P (1), P (2) be the a-priori probabilities of transmitting s1(t) and s2(t). Define the hypotheses
H1, H2 as

H1 : r(t) = s1(t) + nW (t) 0 ≤ t ≤ T

H2 : r(t) = s2(t) + nW (t) 0 ≤ t ≤ T

where nW (t) is a zero mean white Gaussian real random process with power spectral density N0

2

Watts/Hz. Let {u1(t), u2(t), . . .} be a complete orthonormal set of L2(0, T ). The set {s1(t), s2(t), u1(t), u2(t), . . .}
is complete but not orthonormal. Gram Schmidt procedure performed on {s1(t), s2(t), u1(t), u2(t), . . .}
yields the complete orthonormal set {v1(t), v2(t), . . .}, where

v1(t) =
s1(t)

||s1(t)|| =
s1(t)√

E1
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v2(t) =
s2(t)− < s2(t), v1(t) > v1(t)

||s2(t)− < s2(t), v1(t) > v1(t)|| =

s2(t)− < s2(t),
s1(t)√

E1

>
s1(t)√

E1

||s2(t)− < s2(t), v1(t) > v1(t)||

=
s2(t) −

√
E2

E1

ρs1(t)√√√√∣∣∣∣∣
∣∣∣∣∣s2(t) −

√
E2

E1
ρ s1(t)

∣∣∣∣∣
∣∣∣∣∣
2

=
s2(t) −

√
E2

E1

ρ s1(t)√
E2 +

E2

E1

ρ2E1 − 2

√
E2

E1

ρ
√

E1E2ρ

=
1√

1 − ρ2

[
s2(t)√

E2

− ρ
s1(t)√

E1

]

where ρ, the correlation of s2(t) and s1(t) is given by

ρ =
< s2(t), s1(t) >√

E1E2

=
1√

E1E2

∫ T

0

s1(t)s2(t)dt

Following the methodology of Section 8.4, from (27) the MAP decision rule is given by

arg max
m=1,2

p (r2|Hm) P (m)

equivalently written as

p (r2|H1)P (1)

H1

>
<

H2

p (r2|H2) P (2)

where Hi indicates the hypothesis corresponding to the decision of the receiver.

p (r2|H1)

p (r2|H2)

H1

>
<

H2

P (2)

P (1)
= λ threshold

Λ(r̂2(t))

H1

>
<

H2

λ

Λ(r(t))

H1

>
<

H2

λ (29)
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where Λ (r̂2(t)) = Λ (r(t)) is the likelihood ratio defined as

Λ (r̂2(t))
�
=

p (r2|H1)

p (r2|H2)
= lim

K→∞
p (rK |H1)

p (rK |H2)

�
= Λ (r(t)) =

p (r|H1)

p (r|H2)

An equivalent decision rule is also obtained by taking the logarithm of (29):

ln [Λ(r(t))]

H1

>
<

H2

ln λ

Substituting the value of p (r2|H1) and p (r2|H2) and simplifying yields

2∑
i=1

{
(ri − s2i)

2 − (ri − s1i)
2
}H1

>
<

H2

N0 ln λ

2∑
i=1

2ri (s1i − s2i)

H1

>
<

H2

N0 ln λ +
2∑

i=1

(
s2
1i − s2

2i

)
(30)

s1i =

{√
E1 i = 1

0 else.
(31)

s2i =

⎧⎪⎨
⎪⎩
√

E2ρ i = 1√
E2

√
1 − ρ2 i = 2

0 else.

(32)

Therefore substituting (31-32) into (30) yields

r1

(√
E1 −

√
E2ρ
)
− r2

√
E2

√
1 − ρ2

H1

>
<

H2

[
N0 ln λ + E1 − E2ρ

2 − E2(1 − ρ2)
]
/2 (33)

< r(t), s1(t) > −ρ

√
E2

E1
< r(t), s1(t) > − < r(t), s2(t) > +ρ

√
E2

E1
< r(t), s1(t) >

H1

>
<

H2

[N0 ln λ + E1 − E2] /2
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< r(t), s1(t) − s2(t) >

H1

>
<

H2

[N0 ln λ + E1 − E2] /2

Let us define sΔ(t) = s1(t) − s2(t), an equivalent decision rule is

< r(t), sΔ(t) >

||sΔ(t)||

H1

>
<

H2

E1 − E2 + N0 ln λ

2||sΔ(t)|| = λ
′

(34)

The optimal receiver structure for binary modulations based on (33) is illustrated in Fig. 46. The

√
E1 −

√
E2ρr(t)

threshold

device
decision

choose 1 if l > λ
′′

choose 2 if l < λ
′′

√
E2

√
1 − ρ2

v1(t) = s1(t)√
E1

∫ T

0

∫ T

0

l

λ
′′

= N0 lnλ+E1−E2

2

v2(t)
= 1√

1−ρ2

[
s2(t)√

E2
− ρs1(t)√

E1

]
Figure 46: Optimal receiver (MAP receiver) for binary modulations (first implementation)

optimal receiver structure for binary modulation based on (34) is illustrated in Fig. 47 ( correlation
receiver) and Fig. 48 (matched filter implementation), where the matched filter h(t) is defined as

r(t)

sΔ(t)
||sΔ(t)||

∫ T

0

l

threshold

device
decision

choose 1 if l > λ
′

choose 2 if l < λ
′

λ
′
= N0 ln λ+E1−E2

2||sΔ(t)||

Figure 47: Optimal receiver (MAP receiver) for binary modulation (second implementation)
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r(t)

threshold

device
decision

choose 1 if l > λ
′

choose 2 if l < λ
′

h(t)
T

λ
′
= N0 ln λ+E1−E2

2||sΔ(t)||

y(T )

Figure 48: Optimal receiver (MAP receiver) for binary modulation (second implementation)

h(t) =

{
sΔ(t)

||sΔ(t)|| t ≥ 0

0 t < 0

Remark: In general the optimal receiver structure for M-ary transmission ({s1(t), . . . , sM(t)} pos-
sible transmitted signals) uses N matched filters or correlators (N ≤ M such that
span {v1(t), . . . , vN(t)} = span {s1(t), . . . , sM(t)} ). However for binary modulation (M = 2),
it is possible to use only one correlator or matched filter as shown by the structures of Fig. 47 and
Fig. 48.

8.6 Probability of symbol error (= probability of bit error) for binary schemes
over AWGN channels

Let Pe be the probability of symbol error where the symbols are the si(t)’s. Since M = 2, Pe =
Peb, where Peb is the probability of bit error. To calculate Pe the decision rule given by (34) will be
used. Let Pe(1) be the probability of error when s1(t) is transmitted. By definition

Pe(1) = P
(
rsΔ

< λ
′|H1

)
where

rsΔ
=

< r(t), sΔ(t) >

||sΔ(t)||
Under H1 (i.e assuming that s1(t) was transmitted), rsΔ

is given by

rsΔ
=

1

||sΔ(t)|| < s1(t) + nW (t), s1(t) − s2(t) >=
E1 − ρ

√
E1E2

||sΔ(t)|| + nsΔ
= S1 + nsΔ

where

S1 =
E1 − ρ

√
E1E2

||sΔ(t)||
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nsΔ
=

< nW (t), sΔ(t) >

||sΔ(t)||
Since nW (t) is a zero mean white Gaussian random process, nsΔ

is a Gaussian random variable
with mean

E [nsΔ
] = E

[∫ T

0

nW (t)
sΔ(t)

||sΔ(t)||dt

]
=

∫ T

0

E [nW (t)]
sΔ(t)

||sΔ(t)||dt = 0

and variance

E
[
n2

sΔ

]
= E

[∫ T

0

nW (t)
sΔ(t)

||sΔ(t)||dt

∫ T

0

nW (u)
sΔ(u)

||sΔ(u)||du

]

=
N0

2

∫ T

0

∫ T

0

sΔ(t)

||sΔ(t)||
sΔ(u)

||sΔ(u)||δ(t − u)dt du =
N0

2

∫ T

0

s2
Δ(t)

||sΔ(t)||dt =
N0

2

Since nsΔ
is a zero mean Gaussian random variable with variance N0

2
, so is −nsΔ

.

Pe(1) = P
(
S1 + nsΔ

< λ
′
)

= P
(
−nsΔ

> S1 − λ
′
)

=

∫ ∞

S1−λ′

1√
2πN0

2

exp

{
− x2

2N0

2

}
dx

=

∫ ∞

S1−λ
′√

N0
2

1√
2π

exp

{
−u2

2

}
du

⎛
⎝= P

⎡
⎣−nsΔ√

N0

2

>
S1 − λ

′√
N0

2

⎤
⎦
⎞
⎠

�
= Q

[√
2

N0

(
S1 − λ

′
)]

Pe(1) = Q

[
||sΔ(t)||√

2N0

−
√

N0

2

ln λ

||sΔ(t)||

]

since √
2

N0

(
S1 − λ

′
)

=

√
2

N0

{
E1 − ρ

√
E1E2

||sΔ(t)|| − N0 ln λ

2||sΔ(t)|| −
E1 − E2

2||sΔ(t)||
}

=
1√

2N0||sΔ(t)||
{

E1 + E2 − 2ρ
√

E1E2 − N0 ln λ
}
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The probability of error when s2(t) is transmitted is given by

Pe(2) = P
(
rsΔ

> λ
′ |H2

)
= P

(
S2 + nsΔ

> λ
′
)

= P
(
nsΔ

> −S2 + λ
′
)

= P

⎛
⎝ nsΔ√

N0

2

>
−S2 + λ

′√
N0

2

⎞
⎠

= Q

[√
2

N0

(
−S2 + λ

′
)]

= Q

[
||sΔ(t)||√

2N0

+

√
N0

2

ln λ

||sΔ(t)||

]

where

S2 =
ρ
√

E1E2 − E2

||sΔ(t)||
Therefore the probability of (symbol or bit) error is given by

Pe = P (1)Pe(1) + P (2)Pe(2)

= P (1)Q

[
||sΔ(t)||√

2N0

−
√

N0

2

ln λ

||sΔ(t)||

]
+ P (2)Q

[
||sΔ(t)||√

2N0

+

√
N0

2

ln λ

||sΔ(t)||

]

If the signals s1(t) and s2(t) are equally likely i.e. P (1) = P (2) = 1
2

then λ = 1 and

Pe = Q

[ ||sΔ(t)||√
2N0

]
(equally likely signals)

||sΔ(t)|| is the Euclidean distance between the two possible transmitted signals s1(t) and s2(t).
A better performance is obtained when ||sΔ(t)||2 is large which corresponds to small ρ for fixed
E1, E2 since

||sΔ(t)||2 = E1 + E2 − 2ρ
√

E1E2

From Cauchy Schwarz’s inequality |ρ|2 ≤ ||s1(t)||2
E1

||s2(t)||2
E2

, thus −1 ≤ ρ ≤ 1. The minimum value
of ρ is −1 which corresponds to antipodal signaling, i.e.

s1(t) = −s2(t) ||sΔ(t)||2 =
(√

E1 +
√

E2

)2

Assume equal energy signals, i.e. E1 = E2 = E, then Pe(1) and Pe(2) depend on

||sΔ(t)||√
2N0

=

√
E

N0
(1 − ρ)

=

⎧⎨
⎩
√

2 E
N0

if ρ = −1√
E
N0

if ρ = 0
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Therefore to have the same Pe(1), Pe(2) orthogonal signaling requires twice as much energy (i.e.
3dB) as antipodal signaling.
Examples of binary modulation schemes

• Phase Shift Keying (PSK)

s1(t) =

√
2E

T
cos(2πfct) 0 ≤ t ≤ T

s2(t) = −
√

2E

T
cos(2πfct)

Assuming fc � 1
T

, the energy of si(t) is ||si(t)||2 = E.

sΔ(t) = 2s1(t) ||sΔ(t)|| = 2
√

E

and the probability of error is

Pe = P (1)Q

(√
2E

N0
− 1

2

√
N0

2E
ln λ

)
+ P (2)Q

(√
2E

N0
+

1

2

√
N0

2E
ln λ

)

which for equally likely signals reduces to

Pe = Q

(√
2E

N0

)

• Frequency Shift Keying (FSK)

s1(t) =

√
2E

T
cos

(
2π

(
fc − fΔ

2

)
t

)
0 ≤ t ≤ T

s2(t) =

√
2E

T
cos

(
2π

(
fc +

fΔ

2

)
t

)
0 ≤ t ≤ T

The cross correlation coefficient of FSK signals is

ρ =
1√

E1E2

∫ T

0

s1(t)s2(t)dt =
1

E

2E

T

∫ T

0

cos

(
2π

(
fc − fΔ

2

)
t

)
cos

(
2π

(
fc +

fΔ

2

)
t

)
dt

=
1

T

[∫ T

0

cos(4πfct)dt +

∫ T

0

cos(2πfΔt)dt

]

=
sin(2πfΔT )

2πfΔT

Orthogonal FSK corresponds to fΔ = 1
2T

or fΔ = 1
T

. The best performance is obtained for
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ρ ≈ −0.22, corresponding to fΔ = 0.715
T

. Assume equally likely signals

Pe = Q

(√
E

N0

(1 − ρ)

)

How many extra or less energy in dB is required to obtain the same probability of error with
orthogonal FSK and FSK with fΔ = 0.715

T
[ denoted FSK(0.715)]. Let E be the energy of

FSK(0.715) and let E
′
be the energy of the orthogonal FSK.

Q

(√
E

N0
· 1.22

)
= Q

⎛
⎝
√

E ′

N0

⎞
⎠

Thus √
E

N0
· 1.22 =

√
E ′

N0

so
E

′

E
= 1.22 ⇐⇒

(
E

′

E

)
dB

= 10 log

(
E

′

E

)
= 10 log(1.22) = 0.86dB

Hence orthogonal FSK requires 0.86dB extra energy to yield the same probability of error
as FSK(0.715).

8.7 Probabilities of symbol error for M-ary transmission over AWGN chan-
nels: union bound on probability of symbol error

Recall that the MAP decision rule is

arg min
m=1,...,M

[||rN − sm||2 − N0 ln P (m)
]

Assume that si(t) is transmitted, define the event Aik (i = k) as

||rN − si||2 − N0 ln P (i) ≤ ||rN − sk||2 − N0 ln P (k)

with si(t) transmitted.
The probability of correct decision when si(t) was transmitted is

Pc(i) = P (Ai1 ∩ Ai2 . . . ∩ Aii−1 ∩ Aii+1 ∩ . . . ∩ AiM)

Pe(i) = 1 − Pc(i) = P
(
Ai1 ∩ Ai2 . . . ∩ Aii−1 ∩ Aii+1 ∩ . . . ∩ AiM

)
= P

(
Ai1 ∪ Ai2 . . . ∪ Aii−1 ∪ Aii+1 ∪ . . . AiM

)
using Morgan law
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where A represents the conjugate event of A. From the properties of the probability measure

Pe(i) ≤
M∑

k=1
k �=i

P
(
Aik

)

P
(
Aik

)
= P

(||rN − si||2 − N0 ln P (i) > ||rN − sk||2 − N0 ln P (k)|si(t) transmitted
)

= P
(
rsΔik

< λ
′
ik|Hi

)
similarly to Section 8.6

= Q

(
||si(t) − sk(t)||√

2N0

−
√

N0

2

ln [P (k)/P (i)]

||si(t) − sk(t)||

)

where

rsΔik
=

< r(t), sΔik(t) >

||sΔik(t)||
sΔik(t) = si(t) − sk(t)

λ
′
ik =

Ei − Ek + N0 ln [P (k)/P (i)]

2||sΔik(t)||

Since P (e) =
∑M

i=1 Pe(i)P (i), we have

Pe =

M∑
i=1

M∑
k=1
k �=i

Q

(
||si(t) − sk(t)||√

2N0

−
√

N0

2

ln [P (k)/P (i)]

||si(t) − sk(t)||

)
P (i)

In communication we are interested mostly by the order (magnitude) of Pe, whether Pe is 2 · 10−5

or 3 · 10−5 is not very important, but whether Pe is 10−2 or 10−5 is important. The Q-function
decreases very fast when its argument is increased. Therefore at high SNR (small N0), keeping
only the largest terms in the sum will still yield a good approximation.

Assume that s1(t), s2(t), . . . , sM(t) are equally likely then P (i) = 1
M

and

Pe ≤ 1

M

M∑
i=1

M∑
k=1
k �=i

Q

( ||si(t) − sk(t)||√
2N0

)

A good approximation is

Pe ≤ 2n(dmin)

M
Q

(
dmin√
2N0

)
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where
dmin = min

i=1,...,M
i�=k

||si(t) − sk(t)||

is the minimum Euclidean distance between the possible transmitted signals s i(t), and n(dmin) is
the number of signal pairs with Euclidean distance equal to dmin.
Energies associated with M-ary signaling:

• Average energy per transmitted signal

Ea =

M∑
i=1

EiP (i)

where Ei is the energy of the ith signal and P (i) is the a-priori probability.

• Peak energy
Ep = max

i
Ei

• Average energy per transmitted bit:

Assume that M = 2L and each transmitted signal is represented by a binary word of L bits,
the average energy per transmitted bits is

Eb =
Ea

L
=

Ea

log2(M)
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