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DASVDD: Deep Autoencoding Support Vector
Data Descriptor for Anomaly Detection

Hadi Hojjati, and Narges Armanfard

Abstract—One-Class anomaly detection aims to detect anomalies from normal samples using a model trained on normal data. With
recent advancements in deep learning, researchers have designed efficient one-class anomaly detection methods. Existing works
commonly use neural networks to map the data into a more informative representation and then apply an anomaly detection algorithm.
In this paper, we propose a method, DASVDD, that jointly learns the parameters of an autoencoder while minimizing the volume of an
enclosing hypersphere on its latent representation. We propose a novel anomaly score that combines the autoencoder’s reconstruction
error and the distance from the center of the enclosing hypersphere in the latent representation. Minimizing this anomaly score aids us
in learning the underlying distribution of the normal class during training. Including the reconstruction error in the anomaly score
ensures that DASVDD does not suffer from the hypersphere collapse issue since the DASVDD model does not converge to the trivial
solution of mapping all inputs to a constant point in the latent representation. Experimental evaluations on several benchmark datasets
show that the proposed method outperforms the commonly used state-of-the-art anomaly detection algorithms while maintaining
robust performance across different anomaly classes.

Index Terms—Anomaly Detection, Deep Learning, Deep Autoencoder, Support Vector Data Descriptor.
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1 INTRODUCTION

ANOMALY detection (AD) is the task of identifying
samples of a dataset that deviate from the ”normal”

pattern [1] (the term ”normal” is unrelated to the Gaus-
sian distribution here and elsewhere in the paper, unless
otherwise specified). Anomaly detection has been an active
field of research in recent years due to its application in
a wide variety of domains, including fraud detection [2],
medical care [3], time-series anomaly detection [4], video
surveillance [5], machine vision applications [6], and indus-
trial monitoring [7], [8]. Typically, in most AD problems, we
are given samples from the normal class, and the goal is to
train a model that describes the pattern of the given data
and thus identify the instances that deviate from the normal
pattern as anomalies [9]. This procedure is also known as
one-class classification. A long line of literature, such as
one-class support vector machines (OCSVMs) [10], kernel
density estimation (KDE) [11], and more recently, Isolation
Forests (IFs) [12], has addressed this problem with classical
(i.e., non-deep learning) machine learning methods.

In the past decade, deep anomaly detection algorithms
have become popular thanks to the development of Au-
toencoders (AEs) [13], [14] and Generative Adversarial Net-
works (GANs) [15]. Deep AD methods can be divided into
two categories: the first group of algorithms train an AE
or GAN on normal data and uses the reconstruction error
of new samples for identifying anomalies [16]. The second
group uses neural networks to extract a lower-dimensional
representation of input data and feed it to a classical AD
algorithm such as OCSVM [17].
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Another line of research in deep anomaly detection
focuses on developing domain-specific AD algorithms. This
research area has attracted a lot of attention from the com-
munity, especially from computer vision researchers, and
has significantly outperformed the results of other methods
[6], [18]. While they have achieved unprecedented success
in image anomaly detection, these models commonly use
a domain-specific transformation in their pipeline, which
makes them unsuitable for other input types [19].

Recently, Ruff et al. [20] proposed a deep anomaly de-
tection method called Deep Support Vector Data Descrip-
tor (DSVDD). In contrast to other state-of-the-art domain-
specific models, DSVDD is suitable for general AD and
does not depend on the input type. It combines two widely-
used anomaly detection approaches: training a single neural
network for simultaneously extracting a lower-dimensional
representation of data and a support vector data descriptor
(SVDD) that minimizes the volume of the enclosing hyper-
sphere on this lower-dimensional representation. DSVDD
has emerged as an efficient anomaly detection algorithm
since it is an AD algorithm that, unlike self-supervised
methods, does rely on input-specific transformations and
is applicable to a wide range of input types. Among the
non-self-supervised models, DSVDD has been shown to
outperform most baselines [20]. As a result, many anomaly
detection researchers have developed methods inspired by
DSVDD. Although DSVDD is a promising algorithm and
produces encouraging outcomes, it suffers from a vital prob-
lem during training which is called “hypersphere collapse”
[20], [21]. Hypersphere collapse occurs when the network
converges to the trivial solution of all-zero weights (this
phenomenon will be discussed in more detail in the next
section). To prevent this problem, authors of DSVDD [20]
imposed several constraints on the architecture of their deep
network, such as fixing the hypersphere center and setting
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Fig. 1. Overview of the proposed method DASVDD.

network biases to zero, which limits the performance and
effectiveness of the algorithm [21].

In this paper, we propose a novel anomaly detection
algorithm inspired by DSVDD and Autoencoders. Our
method, deep autoencoding support vector data descriptor
(DASVDD), trains an autoencoder instead of a vanilla neural
network by simultaneously minimizing the volume of the
enclosing hypersphere in the learned latent representation
of the encoder and the reconstruction error of the decoder’s
output. Therefore, the autoencoder learns to map the normal
data into a hypersphere with a minimum volume while
can still reconstruct the original input. We propose a cus-
tomized anomaly score which is a combination of the AE’s
reconstruction error and the distance of the sample from
the center of the hypersphere. The block diagram of the
proposed DASVDD is shown in Figure 1. We show that our
model does not encounter the hypersphere collapse problem
even though it considers the hypersphere center and net-
work biases as parameters that are trained during the train-
ing phase. We present extensive experiments of DASVDD
on the benchmark datasets and compare its performance
against state-of-the-art algorithms. The benchmark datasets
include three computer vision datasets and four datasets
from other domains, including speech, industrial sounds,
intrusion detection, and medical data. The effective perfor-
mance of DASVDD on these datasets shows the robustness
of the proposed method across a wide variety of anomaly
detection applications.

In summary, the main contributions of our paper are as
follows:

1) We propose an SVDD-based anomaly detection ap-
proach which prevents the hypersphere collapse
problem that other deep SVDD algorithms face. We
propose to use the autoencoder reconstruction error
as a term in the loss function. This prevents the
trivial all-zero solution for the parameters.

2) In our model, unlike other SVDD-based deep mod-
els, the hypersphere center is a free optimization
parameter and can be optimized during training.

These methods, such as DSVDD [20], commonly
fix the hypersphere center prior to the training to
prevent the network from converging to the trivial
solution. This may lead to a suboptimal solution
because of forcing the hypersphere center to be
equal to a predefined value.

3) We propose an iterative training strategy for jointly
minimizing the network’s reconstruction loss and
the DSVDD loss. Our strategy prevents the total loss
function from collapsing to either of the mentioned
losses and provides a stable training procedure.

4) Our approach requires a hyperparameter which
balances the contribution of the two loss functions.
Finding an appropriate value for this parameter is
challenging because it might lead to the model’s
collapse to either of the two loss terms. In this
paper, we also propose an effective approach for
tuning this hyperparameter prior to the training and
experimentally show that the resulting value leads
to a stable training procedure.

5) Unlike domain-specific models, our proposed ap-
proach does not use any input-related transfor-
mations and is thus suitable for general anomaly
detection. We test our model on different types of
datasets, including images, speech, biomedical data,
network data, and industrial acoustic recordings to
show its efficiency across various applications.

The remainder of this paper is organized as follows: In
section 2, we review the state-of-art algorithms in anomaly
detection, with a focus on Deep SVDD-based methods.
In the third section, we describe our proposed method,
DASVDD, and its properties. Section 4 presents an extensive
evaluation of DASVDD on several benchmark datasets. We
also discuss some of the properties and possible expansions
of our model. Finally, section 5 offers some concluding
remarks.
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2 RELATED WORKS

In this section, we briefly review the existing methods in
deep anomaly detection. One can refer to [1], [22] for a recent
and detailed review of past literature in the AD field.

Deep autoencoders [23] are some of the most commonly-
used deep models for anomaly detection. AEs can be used
for extracting a lower-dimensional representation of the
data while retaining their common factors of variation. AE-
based AD algorithms either feed this latent representation to
a conventional anomaly detection algorithm, such as Gaus-
sian Mixture Model (GMM) or one-class SVM (OCSVM) [24]
or directly use the reconstruction error as their anomaly
measure [25] [26]. Several variants of autoencoders, includ-
ing variational AEs, [25], and convolutional AEs [26], have
been used for anomaly detection in different applications
[27]. These methods assume that the autoencoder can ex-
tract the common factors of variation from normal data
and thus can reconstruct them with fair accuracy, but they
fail to do so with anomalies because they do not possess
the common factors associated with the normal data. This
assumption, however, does not always hold. In some cases,
an autoencoder which is trained on the normal data can
also reconstruct anomalies accurately [28]. To prevent this
problem, it is important to adopt an appropriate network
architecture and latent representation size. Choosing the
right size for the latent space often depends on the data and
the task that we would like to carry out. Since we usually
do not have access to all anomaly classes, it is tough to find
an optimal size for the bottleneck of the AE network.

Recently, several studies have developed AD algorithms
based on GANs [29]. In most GAN-based approaches, the
goal is to train the latent representation of the generator net-
work so that it captures the underlying pattern of the normal
data. These methods assume that the generative network
can generate normal instances from the latent space better
than anomalies. The residual between the generated sample
and the input is then used as the anomaly measure. Methods
such as AnoGAN [30], EGBAD [31], and fast AnoGAN
[32] have been developed based on this idea. GAN-based
methods suffer from issues such as time inefficiency, failure
to converge during training, and mode collapse [33].

AE-based and GAN-based anomaly detection techniques
use reconstruction error to measure anomalies. However,
their training objective does not directly relate to the task
of anomaly detection. There are very few approaches that,
similar to DSVDD discussed before, realize the AD task by
directly minimizing an anomaly score, rather than sample
reconstruction error, during the training phase. Although
DSVDD has shown superior performance to other algo-
rithms on several AD tasks, it suffers from the hypersphere
collapse problem. Examining DSVDD loss, shown below,
can be beneficial for understanding this issue:

minW
1

n

n∑
i=1

||φ(xi,W )− c||2 +
λ

2

L∑
l=1

||W l||2F (1)

where c is the center of the hypersphere, φ(.) denotes the
output of the neural network, W represents the network
weights, and λ is a hyperparameter that controls the con-
tribution of the regularization term. As can be seen, the
above equation has a trivial solution with W = 0 and c = 0.

To avoid this solution, c must be excluded from the set of
optimization problem variables, i.e. it must be considered
as a non-trainable hyperparameter and be set to a non-zero
value prior to the training phase. In addition, the network
biases must be set to zero; otherwise, all the data points
will be mapped to the hypersphere center c. Furthermore,
activation functions with non-zero upper or lower bounds
cannot be employed. This is because a network unit with a
bounded activation function can be saturated for all inputs
having at least one feature with a common sign, thereby
emulating a bias term in the subsequent layer, leading
to a hypersphere collapse. All these constraints limit the
performance of deep SVDD in many applications. Interested
readers can refer to [20] for a more detailed explanation.

Few studies have attempted to address the hypersphere
collapse in DSVDD by adding more regularizers or chang-
ing some parts of the model: Sendera et al. [21] proposed
instantiating DSVDD with a flow-based model. Due to the
nature of the flow-based model, the proposed idea can
prevent the hypersphere collapse problem. On the other
hand, since normalizing flows rely on invertible transforma-
tion, they would limit the expressive power of the model,
which can lead to suboptimal performance, particularly
on complex datasets [34]. In another work, Chong et al.
[35] recommended using two regularization terms for pre-
venting hypersphere collapse: (i) adding random noise and
(ii) defining a term to penalize small values of minibatch
variance. They have shown that their method can prevent
hypersphere collapse on several datasets. However, it is not
evident if the same improvement can be achieved on other
datasets. Furthermore, these models do not tune c during
training. Inspired by these findings, we propose an effective
way to alleviate hypersphere collapse in DSVDD.

Recently, self-supervised methods like CSI [18] and
GEOM [6] have shown promising results in visual anomaly
detection in terms of accuracy. However, besides the fact
that they cannot be applied to other data types, such as
time series, these methods require large batches and training
epochs. As a result, they commonly need access to a large
dataset and are very time-consuming to be trained. This can
limit their application in many real-world problems. Fur-
thermore, designing a good pretext task for self-supervision
usually requires knowledge about datasets. For instance,
rotation prediction can be a good pretext task for the CIFAR-
10 dataset but not for MNIST because digits 6 and 9 can
become equal with a rotation. Therefore, developing deep
SVDD-based methods is still an active field of research.

3 PROPOSED METHOD

Let D be our dataset and X ∈ D be the set of normal
samples. Given a subset of Xtrain ∈ X , we would like to
learn an anomaly scoring function S(x) : D → R such that
a lower score denotes a higher probability of sample x being
in X , or equivalently, sample x being normal.

As shown in Figure 1, the proposed DASVDD method
consists of two major components: a deep autoencoder and
a support-vector data descriptor (SVDD). The autoencoder
first maps the input data to a lower-dimensional latent
representation space and then attempts to reconstruct it. Si-
multaneously, the SVDD finds a data enclosing hypersphere
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with the minimum volume on the latent space of the AE.
Therefore, the autoencoder learns to map the data into a
hypersphere with minimum volume while still can recon-
struct the original input. The anomaly score is calculated by
combining the reconstruction error and the euclidean dis-
tance between the lower-dimensional latent representation
of the sample from the center of the enclosing hypersphere.
The AE network and SVDD are trained using only the
normal samples, i.e. Xtrain. Therefore, the bottleneck of
the autoencoder learns a representation that models the
underlying representation of the normal data.

3.1 DASVDD Anomaly Score and Objective Function

Let h(.) and g(.) be the encoding and decoding functions of
the AE, respectively, and let θe and θd denote their corre-
sponding parameters (weights and biases). Given an input
sample x, the encoder calculates its latent representation
z = h(x; θe). Then the reconstructed output is x̂ = g(z; θd).

We define the anomaly score as a combination of recon-
struction error and the distance of the latent representation
from the center of the hypersphere. Formally, given a sample
x, the anomaly score S(x) can be written as:

S(x) = ||x̂− x||2 + γ||z − c∗||2

= ||g(h(x; θ∗e); θ∗d)− x||2 + γ||h(x; θ∗e)− c∗||2 (2)

where c denotes the center of the enclosing hypersphere,
and γ is a hyperparameter balancing contribution of the two
terms. The star symbol ‘∗’ denotes the optimum value of the
corresponding parameter that is obtained after completing
the algorithm training phase. From now on, we refer to the
first term of equation (2) as the reconstruction error term
and to the second term as SVDD term.

The objective of the network is to minimize the anomaly
score on the normal data. Therefore, we can set the objective
function equal to the anomaly score and define it as shown
below in (3) where n denotes the batch size.

min
θe,θd,c

1

n

n∑
i=1

||g(h(xi; θe); θd)− x||2 + γ||h(xi; θe)− c||2 (3)

In the above loss function, we can add a term λ‖Θ‖F to
include the weight decay regularization as well. Here, λ is
the weight decay hyperparameter and Θ denotes the matrix
of the concatenation of the encoder and decoder’s weights.
Including the reconstruction error, i.e. the first term, in
the objective function is to avoid converging to a trivial
latent representation that the decoder cannot reconstruct
the normal samples from. The second term corresponds
to the SVDD term, which is to penalize the radius of
the hypersphere. By minimizing the second term, we, in
fact, minimize the average distance of the sample from the
hypersphere centre c, hence minimizing the volume of the
hypersphere enclosing the normal data points.

Since the objective function of DASVDD has a recon-
struction error term, the all-zero weights solution does not
reduce the value of the objective function to the minimum
possible error value, i.e. zero; therefore, no hypersphere
collapse happens. Obviously, γ should not be set to a very
high value to ensure the effective contribution of the re-
construction error term, hence avoiding the all-zero weights

and zero hypersphere center solution. A simple heuristic
approach for choosing an appropriate γ value is presented
in Section 3.3.

Note that, unlike the DSVDD algorithm, the proposed
model treats the center of the hypersphere c as a trainable
parameter that can be trained during training.

By mapping the data into a lower-dimensional represen-
tation close to the center c, the network learns to extract
the common factors of variation from normal data. Since
anomalies have intrinsic differences, we expect our network
to be unable to reconstruct them correctly and/or map them
further from the hypersphere center.

3.2 Optimization and Training
One of the challenges of jointly training the network pa-
rameters with hypersphere center c is that they are from
different numerical ranges. As a result, using a single opti-
mizer for both sets of parameters might be inefficient, and
can lead to the loss function collapsing to either of the two
loss terms.

To jointly train the AE and SVDD, we propose the
following strategy: at each training epoch, first, use κ
(0 < κ < 1) portion of each batch to train the network
parameters θe and θd while the hypersphere center c is
fixed; then, use the remaining samples to train the hy-
persphere center c while keeping the network parameters
fixed. This training procedure is summarized in Algorithm
1. We suggest using stochastic gradient descent (SGD) or
its variants, such as Adam [36], as the optimizer for the au-
toencoder’s parameters. For training the hypersphere center
c, we recommend using an algorithm with an adaptive
learning rate, such as AdaGrad [37]. This usually results in
faster convergence of the training procedure since it allows
the assignment of higher weights to tune c in the first few
epochs. Experimental evaluations in Section 4.7 demonstrate
that this strategy results in a stable training process.

Moreover, if we fix the network parameters prior to
training c, we can easily prove that the optimal c can be
calculated by averaging over the latent representation of the
batch samples:

c =
1

|B|

|B|∑
i=1

h(xi; θe) (4)

where |B| is the batch size in the above equation. This shows
that jointly training c with the network parameters does not
add any complexity to the optimization process. To prove
the equation 4, we start by writing the loss function as:

L = LRE + LDSVDD
if the batch size is equal to |B|, the total loss of a batch can
be written as:

⇒ L =

|B|∑
i=1

(‖xi − x̂i‖2 + ‖h(xi; θe)− c‖2)

now, we take the derivative of L, and set it equal to zero.

∂L
∂c

=
∂

∂c

|B|∑
i=1

(‖xi − x̂i‖2 + ‖h(xi; θe)− c‖2) = 0
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Algorithm 1 Training procedure of DASVDD

Input: Xtrain, c(0), θ(0) = {θ(0)e , θ
(0)
d }, max epochs, n, γ

Output: c∗ and θ∗ = {θ∗e , θ∗d}
1: Initialize Network Parameters θ = {θe, θd} and hypersphere center c
2: for j < max epochs do
3: Pick κ portion of the samples batch
4: Optimize θ(j+1) to minimize

∑[κn]
i=1 ‖xi − x̂i‖2 + γ

∑[κn]
i=1 ‖h(xi; θ

(j+1)
e )− c(j)‖2

5: Pick the remaining (1− κ) portion of the samples
6: Optimize c(j+1) to minimize

∑n
i=[κn]+1 ‖h(xi; θ

(j+1)
e )− c(j+1)‖2

since we assume that the network parameters, i.e. θe, θd are
fixed during tuning c, the derivative of the LRE will be zero:

⇒ ∂

∂c

|B|∑
i=1

(‖h(xi; θe)− c‖2) = 0

⇒
|B|∑
i=1

∂

∂c
(‖h(xi; θe)− c‖2) = 0

⇒
|B|∑
i=1

−2(h(xi; θe)− c) = 0

⇒
|B|∑
i=1

h(xi; θe)−
|B|∑
i=1

c = 0

⇒
|B|∑
i=1

h(xi; θe)− |B|c = 0

⇒ c =
1

|B|

|B|∑
i=1

h(xi; θe)

3.3 Choice of Hyperparameter γ

DASVDD uses hyperparameter γ for balancing the two
terms of the anomaly score (which is also our objective
function). Depending on the dataset characteristics, network
architecture and initial parameter values, the reconstruc-
tion error and SVDD terms might have different numerical
ranges. Therefore, a reasonable choice for γ is a value
proportional to the ratio of these two terms as below:

γ =
1

N

N∑
i=1

||x̂i − xi||2

||zi − c∗||2
=

1

N

N∑
i=1

||g(h(xi; θ
∗
e), θ∗d)− xi||2

||h(xi; θ∗e)− c∗||2
(5)

where N is the total number of training samples. Because
the DASVDD anomaly score is also the method objective
function, we do not have access to the trained optimal
parameters prior to the the training outset. As such, we
suggest using initial values of the network parameters (i.e.
θe and θd) and initial value of the hypersphere center c
instead of their optimum values when computing γ in (5).
We suggest randomly initializing θe and θd and initializing c
to zero. Because of the random initialization of the network
parameters, we suggest repeating this procedure T times,
with T different random initial values (where c is set to
zero), and using the average value as the final γ to be
used in the algorithm training phase. This approach is

mathematically described in (6), where the superscript (0)

denotes the initial value of the corresponding parameter.

γ =
1

T

T∑
t=1

1

N

N∑
i=1

||g(h(xi; θ
(0)
e ), θ

(0)
d )− xi||2

||h(xi; θ
(0)
e )− c(0)||2

(6)

4 EXPERIMENTS

In this section, we test the effectiveness of our proposed
anomaly detection method on seven publicly available
benchmark datasets and compare its performance against
a variety of state-of-art AD algorithms.

4.1 Datasets

We employ three publicly available computer vision bench-
mark datasets, two datasets from Outlier Detection DataSets
(ODDS) repository [38], an intrusion detection dataset
(AWID 3) [39], and a dataset containing acoustic recordings
from four industrial equipment (MIMII) [40]. Previous AD
works, such as [20], [41], commonly use computer vision
datasets as benchmarks mainly because these are usually
high-dimensional and let us assess results visually. The
employed datasets are as follows. (1) MNIST [42] which
consists of 70,000 28×28 handwritten digits monochrome
images. (2) CIFAR10 [43] which consists of 60,000 color
images of size 32× 32 from 10 different objects. (3) Fashion
MNIST (FMNIST) [44] which has 70,000 grey scale images of
size 28×28 from 10 fashion products. (4) ODDS Speech [45]
which contains 3,686 segments of English speech spoken
with different accents where segments are represented by a
400-dimensional feature vector called I-vector. The majority
of samples are from American English accents, which are
labelled as normal, and the rest of the data, which is equal to
1.65% of samples, are labelled as anomalies. (5) PIMA [46],
which is included in the ODDS repository and is a subset of
the ”Pima Indians diabetes dataset” of the UCI repository. It
contains data from female patients of at least 21 years old.
The dataset has 765 samples, of which 268 (35%) are anoma-
lies. Each sample has eight attributes. (6) AWID 3 [39],
a network intrusion detection dataset which concentrates
on WPA2-Enterprise and Protected Management Frames
(PMF). It includes 254 features, and 21 assaults from various
types. (7) MIMII [40] comprises actual acoustic samples that
are utilized for identifying faulty industrial equipment. The
dataset comprises 10-second audio segments originating
from four machine types: Fans, Pumps, Slide-Rails, and
Valves. The signals are captured at a 16 KHz sampling rate.
The CIFAR10 and FMNIST datasets are available under the
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TABLE 1
List of Classes for CIFAR-10 and Fashion MNIST datasets.

Dataset Class Single Class Name

CIFAR-10

0 Airplane
1 Car
2 Bird
3 Cat
4 Deer
5 Dog
6 Frog
7 Horse
8 Ship
9 Truck

Fashion MNIST

0 TShirt
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle Boot

MIT licence, and the MNIST, AWID 3 and ODDS datasets
under CC BY-SA 3.0, Creative Commons Attribution 4.0,
and Affero GPL 3.0 licences, respectively.

These datasets are from different domains of application
and can help us to gain a better understanding of the
DASVDD performance under different circumstances. The
MNIST, CIFAR10, and Fashion MNIST datasets all have
ten classes. The full list of CIFAR10 and FMNIST classes
is included in Table 1. In each experiment, we pick one
of the classes as normal and label the rest as anomalies.
Using this approach, we create ten one-class classifiers for
each dataset. This approach is common in image anomaly
detection and was previously used by similar studies [20],
[41]. We use the original training and test data and only
employ normal samples for training the models. No pre-
processing step is performed on the MNIST and Fashion
MNIST datasets. However, similar to [20], we pre-processed
the CIFAR10 images with global contrast normalization [47].
The same pre-processing is employed for our comparison
algorithms. The rest of the datasets are already labelled as
being normal or anomalous and can be directly used for AD.

4.2 Competing Methods
We compare performance of DASVDD against three
commonly-used traditional baselines, i.e. one class SVM
(OCSVM) [10], kernel density estimation (KDE) [11], and
isolation forest (IF) [12], as well as eight state-of-the-art deep
anomaly detection algorithms, i.e. deep autoencoder (AE)
[13], deep variational autoencoder (VAE) [25], deep autoen-
coding Gaussian mixture model (DAGMM) [48], AnoGAN
[30], PixCNN [49], autoregressive novelty detector (AND)
[41], One-Class GAN (OCGAN) [50], and deep SVDD
(DSVDD) [20].

OCSVM is a popular classic kernel-based anomaly detec-
tion algorithm. It is similar to SVM, but instead of learning
a hypersphere that separates the classes, it tries to find a
hypersphere that encompasses all training points. In our

experiments, we used it with its default kernel, i.e. radial
basis function (RBF) with the corresponding hyperparam-
eter ν = 0.5. KDE is a classic yet effective anomaly de-
tection method with promising results even in challenging
anomaly detection problems. The bandwidth parameter of
the Gaussian kernel is tuned using 5-fold cross-validation.
IF is a non-deep method. We set its hyperparameters, i.e. the
number of trees and sub-sampling size, to respectively 100
and 256, as suggested in the original paper. AE with mean
squared error loss is used as one of our deep learning-based
baselines. We chose the same network architecture as our
proposed method’s autoencoder. The reconstruction error
is used as an anomaly score. VAE is another autoencoder-
based method that employs a variational autoencoder in-
stead of a simple AE for data reconstruction. DAGMM is
a model that uses an autoencoder along with a Gaussian
mixture model on the autoencoder latent representation. It
has shown competitive results on several anomaly detection
datasets. AnoGAN is a relatively recent anomaly detection
method, and one of the first GAN-based algorithms for AD.
PixCNN [49] is a generative algorithm that models the im-
age pixel-by-pixel using autoregressive connections. AND
is a recent anomaly detection algorithm that jointly learns
the autoencoder parameters along with an autoregressive
model on its latent representation. OCGAN [50] is another
state-of-the-art method which uses adversarial training and
GAN framework to constrain the latent representation of a
denoising autoencoder to represent the normal class.

DSVDD is the closest algorithm to our proposed method.
We use DSVDD as one of the baselines to assess if our
modifications and the proposed method can yield better
performance. In terms of the compared deep methods, If
the results of a method on some datasets are not reported,
we run the released code with hyper-parameters mentioned
in the original paper and report the results.

The goal of our approach is to detect anomalies re-
gardless of their input type. Therefore, for the sake of fair
comparison, we do not compare our algorithm to image-
specific AD models. These models incorporate input-related
modules, such as data augmentation, in their framework,
making them unusable for anomaly detection on other data
types [6], [18].

4.3 DASVDD Implementation Details

For all datasets, we use an autoencoder with fully connected
layers. For both MNIST and FMNIST, we use one hidden
layer of size 1,024. For CIFAR10 and Speech datasets, we
used an encoder with two hidden layers of sizes 1,024 and
512, respectively. For all datasets except PIMA, the latent
space size is set to 256. Since the PIMA dataset has only a
few attributes, we use a model with two hidden layers of
size ten and set the latent size to 4. In all datasets, we use
leaky ReLU as the activation function and set the training
batch size to 200. For optimizing the network parameters,
we use Adam optimizer with an initial learning rate of 0.001.
For optimizing c, we employ AdaGrad [37] optimizer with
an initial learning rate of 1 and decay of 0.1. The center of
hypersphere c is randomly initialized from a normal distri-
bution. In all our experiments, we set κ = 0.9, the weight
decay hyperparameter λ = 10−7, and run the training for
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Fig. 2. Samples with the lowest (top row) and highest (bottom row) anomaly scores in MNIST (10 left columns) and FMNIST (10 right columns).

TABLE 2
AUC (%) on benchmark datasets. Best performing method is denoted in boldface. The reported results are the average AUC over 10 runs.

Standard deviations are reported for DASVDD

.

Dataset OCSVM KDE IF AE VAE DAGMM AnoGAN PixCNN AND OCGAN DSVDD DASVDD

MNIST

0 98.6 97.1 98.0 98.8 99.7 50.0 96.6 53.1 98.4 99.8 98.0 99.7 ±0.1
1 99.5 98.9 97.3 99.3 99.9 76.6 99.2 99.5 99.5 99.9 99.6 99.9±0.0
2 82.5 79.0 88.6 91.7 93.6 32.6 85.0 47.6 94.7 94.2 91.7 95.4±0.6
3 88.1 86.2 89.9 88.5 95.9 31.9 88.7 51.7 95.2 96.3 91.9 96.2±0.4
4 94.9 87.9 92.7 86.2 97.3 36.8 89.4 73.9 96.0 97.5 94.9 98.1±0.1
5 77.1 73.8 85.5 85.8 96.4 49.0 88.3 54.2 97.1 98.0 88.5 97.2±0.6
6 96.5 87.6 95.6 95.4 99.3 51.5 94.7 59.2 99.1 99.1 98.3 99.6±0.1
7 93.7 91.4 92.0 94.0 97.6 50.0 93.5 78.9 97.0 98.1 94.6 98.1±0.3
8 88.9 79.2 89.9 82.3 92.3 46.7 84.9 34.0 92.2 93.9 93.9 94.2±1.2
9 93.1 88.2 93.5 96.5 97.6 81.3 92.4 66.2 97.9 98.1 96.5 98.3±0.5

avg: 91.3 86.9 92.3 91.9 96.9 50.6 91.3 61.8 96.7 97.5 94.8 97.7

CIFAR10

0 61.6 61.2 60.1 59.9 62.0 41.4 67.1 78.8 67.8 75.7 61.7 68.6±0.7
1 63.8 64.0 50.8 63.8 66.4 57.1 54.7 42.8 58.2 53.1 65.9 64.3±0.6
2 50.0 50.1 49.2 50.9 38.2 53.8 52.9 61.7 51.7 64.0 50.8 55.8±0.8
3 55.9 56.4 55.1 59.4 58.6 51.2 54.5 57.4 57.9 62.0 59.1 58.6±0.2
4 66.0 66.2 49.8 59.8 38.6 52.2 65.1 51.1 65.4 72.3 60.9 64.0±0.2
5 62.4 62.4 58.5 63.2 58.6 49.3 60.3 57.1 64.3 62.0 65.7 62.6±0.5
6 74.7 74.9 42.9 65.2 56.5 64.9 58.5 42.2 61.3 72.3 67.7 71.0±0.1
7 62.6 62.6 55.1 65.1 62.2 55.3 62.5 45.4 63.0 57.5 67.3 64.6±0.2
8 74.9 75.1 74.2 76.9 66.3 51.9 75.8 71.5 73.9 82.0 75.9 81.1±0.4
9 75.9 76.0 58.9 72.7 73.7 54.2 66.5 42.6 69.7 55.4 73.1 73.7±0.3

avg: 64.8 64.9 55.5 63.7 58.1 53.1 61.8 55.1 63.3 65.7 64.8 66.5

FMNIST

0 90.6 88.3 86.8 71.6 87.4 51.9 89.0 78.9 88.3 90.1 79.1 91.2±0.1
1 97.5 94.3 97.7 96.9 97.7 34.0 97.1 90.2 96.4 98.2 94.0 99.0±0.0
2 88.1 87.7 87.1 72.9 81.6 26.9 86.5 80.8 86.8 89.8 83.0 89.3±0.1
3 91.3 88.4 90.1 78.5 91.2 57.0 91.2 84.5 92.2 92.0 82.9 93.7±0.1
4 88.5 86.3 89.8 82.9 87.2 50.4 87.6 83.2 88.0 90.3 87.0 90.7±0.4
5 87.6 85.9 88.7 93.1 91.6 70.5 89.6 81.6 86.8 89.1 80.3 93.8±1.3
6 81.4 74.7 79.7 66.7 73.8 48.3 74.3 72.1 76.9 79.3 74.9 82.8±0.1
7 98.4 96.1 98.0 95.4 97.6 83.5 97.2 92.9 98.8 98.8 94.2 98.6±0.1
8 86.0 84.6 88.3 70.0 79.5 55.1 81.9 79.4 87.5 88.0 79.1 89.4±0.4
9 97.7 94.2 97.9 80.7 96.5 34.0 89.9 84.2 96.8 96.4 93.2 97.9±0.1

avg: 90.7 88.0 90.6 80.9 88.4 51.8 88.4 82.8 89.8 91.2 84.8 92.6

Speech 49.2 52.2 50.0 61.3 62.1 59.3 56.2 52.5 57.4 53.9 58.3 62.4±1.1

PIMA 56.0 64.7 65.0 57.0 61.0 67.3 62.4 58.2 64.5 66.6 55.2 72.2±1.2

AWID 3 95.2 94.3 95.8 95.3 96.0 93.1 93.6 92.3 95.3 96.0 95.9 96.3±0.7

MIMII 56.8 60.8 59.2 61.3 62.8 57.4 60.9 57.2 63.5 61.4 64.2 67.8±2.3

300 epochs. The γ value for every dataset is calculated,
prior to training, as is discussed in Section 3.3 where T
is set to 10. The obtained γ , see (6), for datasets MNIST,
CIFAR10, FMNIST, Speech, PIMA, AWID 3, and MIMII are
respectively 0.75, 5.22, 0.28, 2.56 and 713.64, 12.42, 0.92. All
algorithms were implemented in Python using the PyTorch
framework. All codes are run on Google Colaboratory GPU
(Tesla K80) with 12GB RAM, and NVIDIA RTX A5000.

4.3.1 Evaluation Metric

A widely used metric for performance evaluation in the AD
task is the area under receiver operator curve (ROC) [20],

[41], which is known as AUC. We use AUC to measure the
performance of our model and compare it with other AD
methods. To achieve more reliable results, we repeat each
experiment for ten runs and report the average and standard
deviation of the calculated AUCs.

4.4 Results and Analysis
Results of our method, along with the baselines, are shown
in Table 2. In each case, the result of the best-performing
algorithm is denoted in boldface. Several observations can
be made from this table: (1) The average performance of the
proposed DASVDD method is better than the baselines in all
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(a) Biases (b) Hypersphere Center

Fig. 3. (a) Visualization of the DASVDD encoder’s weights where biases vector are reshaped and concatenated together for better visualization.
Training data is class 8 of CIFAR-10. (b) Hypersphere Center versus iterations.

seven datasets. (2) In most classes of MNIST and FMINST
datasets, all baselines except DAGMM can achieve a high
average accuracy. Even in these cases, DASVDD has a slight
edge over all baselines. On average, the performance of
our model, along with other baselines, is better on MNIST
rather than FMINST. This can stem from the fact that the
FMINST is slightly more challenging due to the considerable
amount of intra-class variances. If we inspect the results
of class 1, which corresponds to ‘Trouser,’ we can see that
DASVDD significantly performs better than the baselines.
Interestingly, this class is one of the only classes that have
no visual similarity to any of the other nine classes. Other
classes, such as ‘Sandal’ and ‘Sneaker’ or ‘Shirt’ and ‘T-
shirt’ have similar samples, making it difficult to identify
some near out-of-class instances as anomalies. (3) In Fashion
MNIST and MNIST, the images are greyscaled, and their
background is also removed. However, in the CIFAR-10,
the diversity of the classes is higher, and the object of the
class is presented in a complex background. Therefore, it
is more challenging for the models, including ours, to ex-
tract meaningful patterns from the data in an unsupervised
fashion. Since our model is not specifically tailored for
learning geometrical features from images, the expressive
power of the network will limit the model’s performance
on CIFAR-10. A user might apply augmentations to gain
better performance on CIFAR-10 since it helps the network
to capture more variations of the normal class. In general, it
has been shown to improve the anomaly detection accuracy
on this dataset [6], but it is out of the scope of this paper
since our model and other baselines are not concerned with
data augmentation. (4) On the AWID 3 dataset, our model
can outperform other baselines and achieve high accuracy.
The same trend can also be observed in the MIMII dataset.
These results show that our model can detect anomalies in
non-image datasets as well. On PIMA and Speech datasets
of the ODDS repository, DASVDD still performs better than
baselines. On the speech dataset, some baselines, such as
OCSVM and IF, cannot perform better than a chance-level
classifier. In general, the performance of all models in this
dataset, including ours, is lower than the performance in
computer vision datasets. Given the inherent difficulty of
the task, the results are justifiable. (5) Overall, DASVDD

shows a robust performance across all datasets and classes.
Some models, such as DAGMM, completely fail in sev-
eral cases, such as in image datasets, particularly because
they are not designed for these types of data. However,
DASVDD can achieve an acceptable performance compared
to other baselines in all tasks regardless of the data type
or complexity of the problem. (6) Figure 2 shows the most
normal samples (i.e. samples with the lowest anomaly score)
and the most anomalous samples (i.e. those with the most
anomaly score) of the test set of the MNIST and FMNIST
obtained using the proposed DASVDD method. We can see
that the samples that our model detects as most anomalous
are also deceptive and hard to detect for even human eyes.

4.5 Analysis of Biases and Hypersphere Center

As discussed before, despite the conventional DSVDD
method, the proposed DASVDD method does not run into
the hypersphere collapse issue, and the hypersphere centre
and the network biases are trainable parameters. We plot
the value of c versus the iteration and the values of biases
during training where the training data is class 8 of CIFAR-
10. Figure 3 shows the resulting plot. We can readily confirm
that c is getting trained and converges to its final value after
almost 150 iterations. Figure 3 (a) shows that the biases are
non-zero. Yet, our model converges to a non-trivial solution
(i.e., no hypersphere collapse is happening). This shows that
without fixing c and without setting biases to zero, our
end-to-end trained network converges to a proper solution,
which is the great advantage of DASVDD over all other
DSVDD-based methods.

To further assess the impact of a trainable hypersphere
center on model performance, we conducted additional ex-
periments using a fixed parameter c throughout the training
process. We followed the approach of DSVDD [20], which
involved performing a single forward pass and setting c
equal to the network’s output mean. However, unlike our
proposed method, c remained constant during training.
Table 4.5 presents the results of the model with a fixed
c alongside the original DASVDD results. Our findings
indicate that fixing the hypersphere center resulted in lower
performance, which was not surprising given that it re-
stricted the subspace of possible optimal solutions.
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(a) MNIST (b) Fashion MNIST (c) CIFAR-10

Fig. 4. Total Loss, Reconstruction (AE) Loss, and Deep SVDD Loss for the class 8 of (a) MNIST, (b) Fashion MNIST, and (c) CIFAR-10 Datasets

Fig. 5. Receiver Operator Curve (ROC) for different values of γ in class 8
of the CIFAR-10 dataset. The area under the curve (AUC) is an indicator
of the performance of each model. The γ value which we obtained using
the approach described in Section 3.3 is denoted by the thick blue curve.

MNIST CIFAR10 FMNIST

DASVDD (Trainable c) 97.7% 66.5% 92.6%

DASVDD (Fixed c) 95.2% 64.7% 89.7%

TABLE 3
Performance of the model with fixed and trainable c on different

datasets.

4.6 Effect of Hyperparameters γ and T

In this section, we investigate the effect of hyperparameter
γ and demonstrate the effectiveness of the proposed γ selec-
tion strategy discussed in Section 3.3. To this end, in Figure
5, we plotted the ROC curve of our proposed anomaly
detection method for γ ∈ {10−5, 10−3, 10−1, 10, 103} along
with the ROC curve obtained with our proposed automatic
selection strategy shown in (6), where class 8 of CIFAR10
is used as the normal class. We can observe that the choice
of γ can affect the performance of our anomaly detection
model on the two extreme ends. For large values of γ, such
as γ = 103, which could be considered as a case equivalent
to removing the effect of the reconstruction error loss in (3),
the area under the curve (AUC) decreases significantly. Also,
we can confirm that the value of γ that we calculated using
our proposed γ selection method (shown as Auto) yields a
ROC curve with at least a similar performance compared to
other values. This observation, combined with the results of
Table 2, shows that our strategy for automatic selection of

Fig. 6. Performance of the model on the CIFAR-10 dataset for different
values of T .

γ yields an acceptable performance. Though the proposed γ
selection strategy is a great way to avoid the tedious manual
tuning of the method’s hyperparameter, we cannot claim
that it finds the most optimal value for γ in every task.
Still, for a wide range of γ values, in this example, from
γ = 10−3 to γ = 10, we can observe that the performance is
robust and is not significantly affected. This shows that our
model is not hypersensitive to this hyperparameter, which
could explain our empirical observation of the success of the
proposed heuristic in all datasets. Finding a more efficient
method for choosing γ can be subject to further studies.

Our proposed heuristic approach introduces an addi-
tional hyperparameter T , which is the number of runs that
we perform to find γ. Throughout our experiments, we
fixed the value to T = 10. To evaluate the sensitivity of
our model, we ran a series of experiments on different
classes of the CIFAR-10 dataset and changed the value of
T . Figure 6 shows the resulting graph. We can confirm that
the performance improves by increasing T . However, for
values higher than approximately T = 10, the slope of the
figure significantly decreases. Since increasing the value of
T increases the time needed to run the code, choosing a
value on the elbow of this curve is a reasonable choice.

4.7 Convergence Analysis
To gain better insight into the behaviour of our model, we
plotted the value of the total loss, i.e. the objective function
of (3), along with the value of its sub-components, i.e. the
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Fig. 7. Effect of κ on the model’s performance on MNIST Dataset.

SVDD and reconstruction losses, versus iteration during
training in Figure 4. We plotted the figure for class 8 of each
dataset. From Figure 4, we can confirm that the total loss
converges during training. In addition, in all three datasets,
the value of the total loss is close to the SVDD loss in the
first few iterations and after that, it becomes almost similar
to the reconstruction loss. This stems from the way we
train our model. We use an optimizer with a large initial
learning rate and a large decay parameter for training the
hypersphere center c during training. As a result, in the
first few iterations, the SVDD loss abruptly decreases, but
then, due to the learning rate decay, it changes more slowly.
This is also reflected in the total loss. After the first few
iterations, the AE-related loss term, i.e. the reconstruction
error, dominates the loss function.

4.8 Effect of Hyperparameter κ
The hyperparameter κ balances the portion of data which
is being used for training the autoencoder and the hyper-
sphere center. Throughout our paper, we set κ = 0.9 and
empirically showed that it will yield a good performance
across different datasets. In this section, we study the sensi-
tivity of our model to this hyperparameter.

To this end, we train and test the model on the MNIST
dataset for different values of κ. Figure 7 shows the per-
formance versus the value of κ. In the MNIST dataset, the
default value of κ = 0.9 yields the best performance. If we
set κ = 1, we effectively fix the value of c, which down-
grades the model performance. On the other hand, setting
κ to a small value means that fewer samples are available
for training the autoencoder, which can also downgrade the
model’s performance significantly. Setting κ = 0.9 ensures
that we have enough samples to train the autoencoder in
each epoch.

4.9 Effect of the Latent Representation Size
To gain better insights into the effect of the latent dimension
on the performance of our models, we ran the experiments
and changed the size of the latent representation from
dh = 32 to dh = 2048. Figure 8 depicts the average accuracy
against the size of the latent layer for MNIST, CIFAR-10,
and Fashion MNIST datasets. One interesting observation
is that the size of the latent representation does not greatly

Fig. 8. Performance of model as a function of latent representation’s size
on MNIST (28 × 28), CIFAR-10 (32 × 32), and Speech (400) Datasets.
The reported performance is normalized with respect to the average
performance to ease the comparison between different datasets.

influence the network’s performance on the MNIST, Fashion
MNIST and CIFAR-10 datasets. Even with an overcomplete
autoencoder, our network can achieve good results.

An autoencoder learns to extract the most informative
features from the input data by passing it through a bot-
tleneck which commonly has fewer dimensions than the
original input. In the case of an overcomplete autoencoder,
in which the size of the latent representation is equal to
or bigger than the dimension of the input data, the network
might learn to copy the input to the output without learning
any meaningful representation. However, if we regularize
the latent representation, for instance, by adding the sparsity
constraint, the network can still learn meaningful represen-
tation even if the latent size is equal or bigger than the input
dimension. The regularization term prevents the network
from converging to the trivial solution of copying the input
to the output.

5 CONCLUSION

In this paper, we proposed DASVDD, a one-class anomaly
detection method that jointly trains an autoencoder and an
SVDD on the autoencoder latent representation so that the
autoencoder learns to map the normal data to the minimum
volume enclosing hypersphere, during the training phase.
Previous works have used autoencoders as a means for
feature reduction to feed it into a classical one-class clas-
sifier such as SVDD. We defined a customized anomaly
score which is a combination of the reconstruction error of
the autoencoder and the distance of the lower-dimensional
mapping from the hypersphere center. The objective of our
model is to minimize this anomaly score on the normal
data during training. We also proposed an effective heuris-
tic for finding a suitable value for the hyperparameter of
DASVDD prior to training. Our empirical results on seven
benchmark datasets have shown that DASVDD outper-
forms several state-of-the-art anomaly detection algorithms.
We also showed that DASVDD does not suffer from prob-
lems such as hypersphere collapse that other algorithms
may encounter. It can also be applied to a wide range
of input types since it does not rely on any data-specific
transformation. Future studies can explore the efficiency of
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our method on other domains of application as well as ways
to improve its performance by proposing new schemes for
hyperparameter tuning and network architecture.
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