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Mila - Québec AI Institute, Montreal, Québec, Canada
{mohammadreza.sadeghi, narges.armanfard}@mcgill.ca

ABSTRACT
Deep clustering algorithms utilize a deep neural network to
map data points in a lower-dimensional space which is more
suitable for clustering task. Recent algorithms employ au-
toencoder to jointly learn a lower-dimensional space (aka la-
tent space) and perform data clustering through minimizing a
clustering loss. These algorithms suffer from the fact that the
true cluster assignments are unknown because of the unsuper-
vised nature of the task. Thus, they adopt a self-training strat-
egy and estimate the true cluster labels using the algorithm pa-
rameters; while the true parameters’ value is unknown at the
problem outset. To address this difficulty, we propose a deep
clustering technique, called IDECF, whereby the true cluster
assignments are estimated using an individual deep fully con-
nected network (FCM-Net) which takes its input from the la-
tent space of an autoencoder. The proposed IDECF is trained
in an end-to-end manner by minimizing a linear combination
of reconstruction loss and clustering loss. Experimental re-
sults on benchmark datasets demonstrate the viability and ef-
fectiveness of the proposed algorithm.

Index Terms— deep clustering, deep embedding cluster-
ing, fuzzy supervision.

1. INTRODUCTION

Clustering methods aim to partition data points based on a
similarity metric. Out of the different methods available for
clustering, k-means [1] and fuzzy c-means [2] are the two
well-known conventional methods that could be applied to a
variety of tasks [3, 4, 5] due to their simplicity. However,
these conventional methods could only extract local relation-
ship between data points in the original input space and fail
to describe latent dependencies between data points. More-
over, because of the nature of the employed distance met-
rics, these algorithms do not show promising performance
when data points are not evenly scattered near cluster centers.
Recently, deep-learning-based approaches have been widely
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Fig. 1. Overall training procedure of the proposed IDECF
method.

studied and employed in various types of applications such
as image segmentation [6], social network analysis [7], face
recognition [8], and computer vision [9]. Deep clustering ap-
proaches endeavor to combine embedding and clustering to
boost clustering performance of conventional methods. Most
deep clustering methods make use of autoencoders (AEs) to
capture nonlinear dependencies between data points. The en-
coder part of an AE transforms (aka embeds) data points in
a lower-dimensional space (aka latent space) and the decoder
part aims to reconstruct original data points using the latent
space. Encoder and decoder can be trained by minimizing
a reconstruction loss, which measures the degree of similar-
ity between original input and reconstructed output. In a
data clustering problem, the true cluster assignment of data
points is unknown. Some algorithms such as deep embedding
clustering (DEC) [10] employ a self-training procedure [11]
to estimate the true cluster assignments; the estimations are
then used as navigators when training algorithm’s parameters.
In DEC, an autoencoder is first pre-trained; then, after dis-
carding the AE’s decoder part, the algorithm focuses on fine-
tuning the encoder’s parameters through minimizing cluster-
ing loss, where the clustering loss is highly affected by the
estimations obtained for the true cluster assignments. Some
other algorithms, such as deep clustering network (DCN) [12]



and deep k-means (DKM) [13], improve clustering perfor-
mance by integrating reconstruction loss with clustering loss
when training algorithm parameters; including both of these
losses help the algorithm to maintain local structure and rela-
tionship between original data points and improve clustering
performance.

In this research study, we propose an improved deep em-
bedding clustering technique with deep fuzzy supervision
(IDECF). The proposed IDECF improves the DEC algorithm
[10] through two steps: 1) despite DEC that estimates cluster
assignments through a self-training strategy, IDECF estimates
cluster assignments (aka target distribution) using a proposed
deep fuzzy c-means network (FCM-Net) which is specifically
designed and trained for this purpose. 2) Inspired by [12, 13],
IDECF makes use of the AE’s decoder part and incorporates
reconstruction loss besides clustering loss; this contributes to
local structure preservation of the data points. Fig 1. shows
the overall training scheme of the proposed IDECF algorithm.

Details of the IDECF method is presented in Section 2.
Performance of the IDECF on benchmark datasets is shown
in Section 3.

2. PROPOSED METHOD

In this research study, we aim to address the problem of
grouping dataset X = {x1, x2, ..., xN}, with N samples,
into K disjoint clusters. The proposed IDECF consists of an
autoencoder and a FCM-Net. The autoencoder comprises of
encoder and decoder networks respectively denoted by f(.)
and g(.). Latent representation of X in the embedding space
is shown by Z = {z1, z2, ...zN}, where zi = f(xi; θe) ∈ Rd
for i = 1, ..., N , θe and d respectively denotes the encoder
parameters and the latent space dimension. The autoencoder
output for input data xi is represented by x̂i = g(zi, θd),
where θd is parameters of the decoder network. The jth
cluster center is denoted by µj , j = 1, . . . ,K. FCM-Net’s
parameters set is denoted by θFCM .

In the remaining, we first briefly present the DEC algo-
rithm in Section 2.1; the proposed IDECF structure is then
presented in Sections 2.2 and 2.3.

2.1. Deep embedding clustering

Deep embedding clustering (DEC) [10] begins with pre-
training an autoencoder; the initial values for the jth cluster
centre µj is obtained by applying k-means to the latent rep-
resentation of data in the AE’s embedding space. It then
discards the decoder part and fine-tunes the encoder part to
get a more effective lower-dimensional space for the data
clustering task. The encoder part endeavors to minimize
Kullback–Leibler (KL) divergence loss function defined as
below:

LDEC = KL(P ||Q) =
∑
i

∑
j

pij log(
pij
qij

), (1)

where soft assignment, qij , measures similarity between la-
tent representation of the ith data point zi and the jth cluster
center µj using Student’s t-distribution as is shown in (2a).
pij is target distribution and is defined in (2b) where it can be
seen that the DEC method employs soft assignments to de-
fine target distributions; i.e., it uses a self-training approach
[11] when minimizing LDEC . Finally, DEC updates cluster
centers to minimize LDEC using stochastic gradient descent
(SGD) as is shown in (2c).

qij =
(1+||zi−µj ||2)−1∑
j(1+||zi−µj ||2)−1 (2a)

pij =
q2ij/

∑
i qij∑

j(q
2
ij/

∑
i qij)

(2b)

µj = µj − α∂LDEC

∂µj
(2c)

2.2. Target distribution estimation using FCM-Net

Despite DEC that uses soft assignments for target distribution
estimation, we propose to dedicate a fully connected neural
network (FCM-Net) for target distribution estimation. FCM-
Net is trained independent from the soft assignments, in an
iterative manner over the training data.

The proposed FCM-Net aims to estimate true clus-
ter assignments (i.e. target distribution) for different data
points. The input space for this network is the latent space
of IDECF’s autoencoder, i.e. Z. The output of FCM-Net has
K neurons, where each neuron corresponds to one cluster;
we employ a softmax function at the output layer to have
a probability value for assignment to each cluster. In other
words, the jth output neuron of the FCM-Net, denoted by γij ,
indicates the target distribution value for the ith data point
and the jth cluster. FCM-Net is trained to minimize the well-
known fuzzy c-means objective function, shown in (3), for
each data sample xi; where B is a batch of data and m is the
level of fuzziness. m is set to 1.5 in all our experiments.

LFCM =
∑
xi∈B

min
γij

K∑
j=1

γmij ||zi − µj ||2 (3)

s.t

K∑
j=1

γij = 1

Since the FCM-Net network has a softmax function at the
last layer, the constraint term shown in (3) is already satisfied;
thus, we only need to minimize LFCM to estimate cluster
assignments (aka target distribution values) γij .

Note that although a local minimum of (3) can be obtained
thorough a closed-form solution (see [2]), however, we pro-
posed to find the solution using the deep fully connected net-
work FCM-Net. This allows us to take into consideration all
previously seen data points in addition to the current batch of
data B, when computing target distribution values of the cur-
rent data batch. Further, it helps us to capture and model the
complex relationship between data points when finding tar-
get distributions. Hence, FCM-Net is expected to find a more



generalized solution compare to the traditional closed-form
one. This improved performance is demonstrated in Section
3.1.

2.3. IDECF algorithm

As is discussed before, IDECF networks consist of an AE
and FCM-Net. To initialize the AE parameters, i.e. θe and
θd, we train a vanilla autoencoder, in an end-to-end manner,
that aims to minimize reconstruction loss which is defined as
the mean squared error between input and output of the AE.
We then apply k-means algorithm to the embedded space of
the trained AE to initialize cluster centers µj , j = 1, ...,K,
to the centers defined by k-means. FCM-Net’s parameters,
θFCM , are initialized based on Xavier uniform initialization
technique [14].

To train IDECF networks using data batch B, we first em-
bed B into the latent space of the AE. The embedded values
are then used to update θFCM through minimizing LFCM ,
over T successive iterations. The trained FCM-Net is then
used to calculate the target distribution values γij for the data
points in batch B. We use Student’s t-distribution to obtain
cluster soft assignments, qij , as is shown in (2a). Inspired
by [12, 13], we define total loss function LIDECF as linear
combination of clustering loss and reconstruction loss. We
choose to use KL divergence between qij and γij as an esti-
mation of the clustering loss. These losses are shown below
in (4), where λ is a hyperparameters that indicates the impor-
tance of the KL divergence loss in the optimization process.
λ is set to 0.1 in all our experiments. We update the param-
eters of the AE through minimizing LIDECF . Minimizing
the reconstruction loss helps in preserving the local structure
of input data points, and minimizing the KL divergence loss
endeavors to refine clusters over iterations and therefore en-
hances clustering performance.

LIDECF = LR + λLKL (4a)
LR =

∑
xi∈B

1
|B| ||xi − x̂i||

2 (4b)

LKL =
∑
xi∈B

∑
j γij log(

γij
qij

) (4c)

Finally, we update cluster centers µj to minimize LFCM
defined in (3), as is shown bellow:

∂LFCM
∂µj

= 0 −→ µj =

∑
xi∈B γmij zi∑
xi∈B γmij

. (5)

2.4. Final crisp cluster assignment

After completing the training phase of the IDECF networks,
we use the trained encoder part and the trained FCM-Net to
assign a data point to a cluster (aka crisp assignment). Specifi-
cally, for each data point xi, we first find the latent representa-
tion zi, using the trained encoder part of the IDECF’s autoen-
coder. Then we compute the corresponding target distribution

Algorithm 1 Pseudo code of the proposed IDECF algorithm.
Input: X , K, MaxIter, T , λ, m
Output: θe, θd, θFCM , µj j = 1, . . . ,K

1: Initialize θe, θd, θFCM , µj j = 1, . . . ,K (See Section 2)
2: for iter ∈ {1, 2, ...,MaxIter} do
3: Update FCM-Net based on Section 2.2
4: Update θe, θd by minimizing (4a) (See Section 2.3)
5: Update cluster centers using (5)
6: end for
7: Compute crisp cluster assignments (see Section 2.4)

values γij , j = 1, . . . ,K using the trained FCM-Net. Finally,
xi is assigned to the more probable cluster, i.e. the cluster
with the highest target distribution value.

Pseudo code of the proposed IDECF algorithm is pre-
sented in Algorithm 1.

3. EXPERIMENTS

In this section, the clustering performance of the proposed
IDECF method is evaluated on four benchmark datasets.
Since the clustering task is an unsupervised task, we concate-
nate train and test splits of datasets. The datasets are: MNIST
[15] which comprises of 60,000 training and 10,000 test
samples of 28×28 handwritten gray-scale images; Fashion
MNIST [16] that is similar to MNIST in terms of the number
of samples and image size, however, it contains images of
various types of fashion products, which makes this dataset
more complicated for a data clustering task; 2MNIST is a
more challenging dataset which is created by concatenation
of MNIST and fashion MNIST; hence, it has 140,000 images
of 28×28 pixels in 20 classes; USPS [17] contains 9,298
16×16 handwritten images of USPS postal services.

In all our experiments, following DEC, we set IDECF’s
autoencoder structure to D-500-500-2000-10 for all datasets,
where D is the input space dimension. We use the ReLU ac-
tivation function for all layers except the last and the mid-
dle layers that we do not consider any nonlinear function for
them. Furthermore, we choose a fully connected neural net-
work for FCM-Net with d-100-200-K neurons for all datasets,
where d is set to 10. We use the ReLU activation function for
all layers except the last layer where we use the softmax func-
tion.

The effectiveness of the proposed IDECF algorithm
is compared against conventional and deep-learning-based
state-of-the-art clustering algorithms. The conventional al-
gorithms include k-means [1], large-scale spectral clustering
(LSSC) [18], and locality preserving non-negative matrix
factorization (LPMF) [19]. Our comparison Deep-learning-
based methods are DEC [10], DCN [12], and DKM [13].
Furthermore, we demonstrate IDECF performance on AE +
kmeans method where k-means algorithm is applied to the
latent representation of a vanilla autoencoder (with the same
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Fig. 2. Visualization of different methods using t-SNE. Axes range from -100 to 100.

architecture as of the IDECF’s AE) trained using reconstruc-
tion loss. To demonstrate the effectiveness of incorporating
LR in LIDECF , the performance of the proposed method,
when LR in (4a) is set to zero, is also reported under the
name of IDECF w/o RL. In addition, to show the effective-
ness of FCM-Net compare to using the closed-form solution
for solving (3), we use the traditional closed-form solution
obtained in [2] as the target distribution values γij and report
the results under the name of IDECF-closed. Performance of
the full proposed algorithm (including FCM-Net and LR) is
shown under IDECF.

We use the well-known clustering accuracy metric (ACC)
[20] to evaluate and compare the clustering performance of
different methods. ACC finds the best match between true
cluster labels and predicted crisp cluster assignments by uti-
lizing Hungarian algorithm [21]. The formula for ACC is pre-
sented in (6), where li and ci are true and predicted labels for
data point xi, respectively. 1{.} is the indicator function.

ACC = max
m

∑N
i=1 1{li = m(ci)}

N
(6)

3.1. Clustering performance

Table 1 shows the clustering performance of our comparison
methods and the proposed IDECF method. we report the per-
formance for comparison methods using the code released by
authors of their corresponding research studies with the same
hyperparameters mentioned in their works. For each dataset,
the best performance is shown in bold. Among all the ten
clustering methods, the proposed IDECF achieved the high-
est performance in all experiments. IDECF method enhanced
clustering performance of the baseline methods AE + kmeans
and DEC by respectively 5.62% and 3.46%, on average; this
verifies the effectiveness of the proposed FCM-Net in learn-
ing target distributions over the DEC method that employs
a self-training strategy. Moreover, IDECF improved perfor-
mance of IDECF w/o RL and IDECF-closed by respectively
1.37% and 2.11%; this demonstrates the effectiveness of com-
bining reconstruction loss with KL divergence loss and the ef-
fectiveness of using the deep fully connected network FCM-
Net for estimating cluster assignments rather than the tradi-
tional closed form solution of fuzzy c-means algorithm.

Table 1. ACC on the benchmark datasets for different clus-
tering methods.
XXXXXXXXXXMethod

Datasets
MNIST Fashion MNIST 2MNIST USPS

k-means 53.20 47.40 32.31 66.80
LSSC 71.40 49.60 39.77 74.60
LPMF 47.10 43.40 34.68 65.20

AE + kmeans 81.26 50.11 39.47 71.90
DEC 84.30 51.80 41.20 74.08
DCN 83.00 51.22 41.35 73.00
DKM 84.00 51.22 41.75 75.40

IDECF w/o RL 86.81 55.61 43.10 74.21
IDECF-closed 87.15 55.93 41.88 71.81

IDECF 87.17 58.63 43.68 75.73

3.2. t-SNE visualization

In this section, we show the improved performance of the pro-
posed IDECF algorithm in separating data clusters through vi-
sual assessments. Towards this, t-SNE [22] method is applied
to the latent representation of each algorithm for the MNIST-
test dataset. As it can be seen in Fig 2, IDECF results in
a more clear distribution structure over state-of-the-art deep-
learning-based approaches. By looking at DEC and the pro-
posed IDECF (Fig 1(a) and Fig 1(d)), one can conclude that
training a separated network for learning target distributions
leads to higher inter-cluster and lower intra-cluster distances.
Furthermore, the advantage of IDECF method over DCN and
DKM is more tangible when looking at the separation of clus-
ters in color cyan, olive, and orange that are respectively cor-
respond to digits 3, 5, and 8.

4. CONCLUSION

In this paper, we proposed a practical and effective deep-
learning-based method IDECF that endeavors to simultane-
ously find a low-dimensional representation of data points and
perform clustering task. Despite traditional deep-learning-
based algorithms that apply self-training to estimate target
distribution, in IDECF, in order to improve clustering per-
formance, we propose to train an individual fully connected
network FCM-Net. Experimental results show the effective-
ness of the proposed IDECF method over state-of-the-art
techniques.
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