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ABSTRACT

The use of skeleton data for activity recognition has become prevalent due to its advantages over RGB
data. A skeleton video includes frames showing two- or three-dimensional coordinates of human body
joints. For recognizing an activity, not all the video frames are informative, and only a few key frames
can well represent an activity. Moreover, not all joints participate in every activity; i.e., the key joints may
vary across frames and activities. In this paper, we propose a novel framework for finding temporal and
spatial attentions in a cooperative manner for activity recognition. The proposed method, which is called
STH-DRL, consists of a temporal agent and a spatial agent. The temporal agent is responsible for finding
the key frames, i.e., temporal hard attention finding, and the spatial agent attempts to find the key joints,
i.e., spatial hard attention finding. We formulate the search problems as Markov decision processes and
train both agents through interacting with each other using deep reinforcement learning. Experimental
results on three widely used activity recognition benchmark datasets demonstrate the effectiveness of
our proposed method.

1. Introduction

Human activity recognition is a popular challenging research di-
rection in the field of computer vision due to its wide range of
real-world applications such as human-robot interaction, video un-
derstanding, sports analysis, and activity monitoring in older adults
[1,2]. Primarily, activity recognition methods were designed based
on RGB data; however, with the development of depth cameras,
such as Microsoft Kinect and various well-performing human pose
estimation methods like [3,4], and [5], recording and extracting
skeleton data has become more convenient [1]. Pose estimation
is an important problem where the goal is to determine the po-
sitions and orientations of different body parts in video frames,
which generates the skeleton data [6]. Skeleton data, which con-
tains two- or three-dimensional coordinates of the key body joints
(e.g., hand, foot, and neck), has several advantages over RGB data,
including but not limited to being robust against viewpoints vari-
ations, background noise, and clutter [7]. As such, skeleton-based
activity recognition has gained much attention recently. Moreover,
the complementary attributes of these two modalities, i.e., RGB
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and skeleton data, have sparked researchers to take advantage of
both when designing their models [8].

Most of the research on skeleton-based activity recognition fo-
cuses on feature designing to capture spatial and temporal dynam-
ics of video [9]. However, they assume all the body joints and
video frames are equally important while activity could be recog-
nized using only a few key frames [7,10,11]. Hence discarding the
redundant frames reduces computational complexity and may im-
prove recognition performance. In addition, not all joints partici-
pate in each activity. For example, in the activity “clap”, the upper
body joints, such as the hand and wrist, are mainly involved in
defining and discriminating the activity.

In this paper, we hypothesize that excluding irrelevant frames
and irrelevant body joints improves recognition performance. Mo-
tivated by this, we propose a novel framework to simultaneously
identify and select relevant frames and joints within a given video.
We refer to the joint and frame selection processes as spatial and
temporal hard attention findings, respectively. Different from soft
attention finding methods which try to assign weights to different
parts of data to illustrate their importance, hard attention finding
methods aim at removing the irrelevant parts and keeping the im-
portant ones, i.e., assigning one and zero weights to them. The pro-
posed framework consists of two agents: a temporal agent for find-
ing the temporal hard attention (i.e., frame selection) and a spatial
agent for finding the spatial hard attention (i.e., joint selection).
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Fig. 1. Motivation of the proposed STH-DRL method. The number above each frame
shows its index in the video. The two frames 1 and 4 (out of the five available
ones) with a subset of joints, shown by green circles, can well represent the activity
“sitting”. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

The two agents are trained cooperatively by interacting with each
other. First, the temporal agent gets a sequence of frames as in-
put and outputs an indicator vector showing the relevant frames.
The relevant frames are selected and fed into the spatial agent that
outputs an indicator matrix showing the relevant joints per frame.
Figure 1 shows the motivation of the proposed method on activity
“sitting” where lower body joints of a couple of frames can well
represent the activity. Finally, the selected frames with the selected
joints are fed to a baseline activity classifier that recognizes the
activity happening in the given video sequence. As the hard atten-
tion model is non-differentiable [10], we cannot train the agents
in an end-to-end manner. Thus, we formulate the hard-attention-
finding problems with Markov Decision Process (MDP) and train
each agent using Deep Reinforcement Learning (DRL). Throughout
this paper, we refer to the proposed framework for the Spatio-
Temporal Hard attention finding using Deep Reinforcement Learn-
ing as STH-DRL.

The proposed STH-DRL method is the first study that simulta-
neously finds spatial and temporal hard attention. STH-DRL does
not need any extra ground-truth labels denoting relevant joints
and frames; i.e., similar to the traditional recognition models, the
only required labels are the video-level activity labels. The training
process of the STH-DRL method is supervised by rewards that the
agents receive from the baseline classifier. STH-DRL can be consid-
ered as a pre-processing technique that can improve the classifi-
cation performance of the baseline classifier by keeping only the
relevant frames/joints and discarding the irrelevant ones. Hence,
the proposed framework is capable of improving the recognition
performance of the existing activity recognition models if they are
employed as the baseline classifier. Such capability can also speed
up the training process of the baseline model since the irrelevant
information does not contribute to the training. There are some
recently proposed methods for finding attention in videos, such as
[12] and [13], which are designed for group activity recognition in
RGB videos, and [14] where spatio-temporal attention is found to
predict motion in RGB videos. However, to the best of our knowl-
edge, this is the first study that proposes the problem of finding
spatio-temporal hard attention for skeleton-based activity recogni-
tion and solves it by deep reinforcement learning.

The rest of the paper is structured as follows: In Section 2,
some related works to our method are reviewed. In Section 3,
the proposed STH-DRL method is explained in detail
Section 4 presents the experimental results, and the conclu-
sion is finally drawn in Section 5.

2. Related works
2.1. Skeleton-based activity recognition methods

Human activity can be successfully recognized from skele-
ton joints’ trajectories; therefore, much research has been accom-

plished in this area. Finding discriminative features play a key
role in activity recognition performance. Earlier methods focus
on designing hand-crafted features; e.g., [15] models the three-
dimensional relationship between body parts by translations and
rotations, in [16] two different kernels are used for the tensor rep-
resentation of 3D body joints, and [17] employs covariance ma-
trices of joint trajectories. The great capability of deep learning
methods in finding effective representations for different applica-
tions, such as object recognition [18], led researchers to use it for
human activity recognition [19]. Deep learning-based methods for
skeleton-based activity recognition use either recurrent neural net-
works (RNN), convolutional neural networks (CNN), or graph-based
networks [9].

RNN is highly powerful for modeling sequences, making it an
appropriate choice for video sequence analysis [20]. An RNN-based
model with two-stream architecture is proposed in [21], which
models temporal and spatial information. Du et al. proposed a hi-
erarchical RNN-based method where the body joints are divided
into five subsets regarding the body’s physical structure [22]. Then
each subset is given to an individual sub-net as input. The output
of the subnets is then hierarchically fused in further layers to reach
a final representation. In [23], the human body is divided into in-
dividual parts, and the memory cell of a long short-term memory
(LSTM) model is split into sub-cells according to the body parts to
learn patterns for each of them separately. The final output is then
derived out of the combination of the sub-cells. To learn the co-
occurrence of skeleton joints, [24] suggests a deep LSTM network
along with a regularization method. Lee et al. first transformed the
skeleton joints into a new coordinate system to make the repre-
sentation robust to rotation, translation, and scale [25]. Then the
data is fed to an LSTM with short-term, medium-term, and long-
term components. The outputs of these components are averaged
at the end to derive temporal features. Song et al. designed spatial
and temporal attention modules for a multi-layered LSTM network
and trained them jointly [7]. In [26], spatial and temporal atten-
tion is designed for Lie groups for skeleton-base activity recogni-
tion. LSTM is then employed for learning important temporal in-
formation about the video sequence.

Two- or three-dimensional coordinates of skeleton joints can be
treated as pseudo-images so that CNN-based models can be used
to analyze video data. In [27], the position and velocity information
of joints are incorporated and fed to a two-stream CNN architec-
ture without considering the long-term dependency of frames. To
include temporal information, Ke et al. presented an approach that
creates clips out of videos and then gives them to a CNN-based
network as input [28]. Liu et al. proposed a view-invariant repre-
sentation and an enhanced visualization of skeleton data to be em-
ployed as the CNN’s input [29]. In [30], a CNN-based recognition
method for multi-subject activities is introduced, which uses a hi-
erarchical framework to find co-occurrence features. Banerjee et al.
designed four complementary representations for skeleton data as
the input of four CNNs. Then, they used a fuzzy approach to fuse
the CNNs’ outputs to reach the final decision [31]. Li et. al pro-
posed a novel representation of skeleton video using geometric al-
gebra and then employed CNN to extract features from the new
representation of data [32].

The human body can be modeled as a graph considering joints
and bones as vertices and edges, respectively. Therefore, employing
the graph-based models is beneficial for video analysis. Recently,
graph-based methods for activity recognition have become a devel-
oping trend in the field of activity recognition [11]. In [33], several
spatial-temporal graph convolutions are designed to extract effec-
tive features from the skeleton data. Si et al. used a graph convolu-
tional LSTM enhanced with attention to find spatial and temporal
information along with their co-occurrence [34]. In [35], a directed
graph neural network (DGNN) is proposed, which extracts features
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from bones and joints as well as their relationship. Also, the paper
proposes to change the topological structure of the graph adap-
tively in the process of training. Liu et al. proposed to remove re-
dundant dependencies between neighboring nodes in the skeleton
graph and designed a novel graph convolution to directly model
the spatial/temporal dependencies [36]. In [37], a decoupling graph
convolutional network (DCGCN) is introduced to boost the recog-
nition performance without adding extra cost. Also, to avoid over-
fitting, a graph-specific regularization technique is presented. Peng
et al. proposed a method for graph pooling called Tripool, which
aims at maintaining the diversity in the graph and reducing the re-
dundancy of the node [38]. Their pooling technique can be added
to any graph-based activity recognition method to improve perfor-
mance and decrease computational cost. In [39], the dependen-
cies of joints are modeled by attention blocks without knowing
the skeleton graph structure. Another approach is introduced in
[40], called Spatial-Temporal Transformer network (ST-TR), where
the Transformer self-attention operator is employed to model the
joints’ dependencies. The architecture has two streams, including
spatial and temporal. In the spatial stream, spatial information is
extracted, and a convolutional network is used for the time di-
mension, while in the temporal stream, the temporal information
is extracted, and a graph convolution is employed to extract spatial
information.

The objective of all the aforementioned skeleton-based activity
recognition methods is to learn discriminative spatial/temporal fea-
tures through designing new network architectures. In contrast, in
this work, we propose a novel framework that can be used as a
filtering block prior to the existing skeleton-based activity recogni-
tion methods, such as the DGNN algorithm. Our proposed frame-
work filters out the irrelevant joints and frames prior to the recog-
nition in the testing phase. In [41], a method is proposed for adapt-
ing joints number, with the main goal of having an efficient activ-
ity recognition method. However, different from our method, the
skeleton is transformed into a skeleton with fewer joints with a
transformation matrix, which tends to group adjacent joints. That
is while we aim at selecting the relevant joints to each activity and
discard the rest. Also, they did not consider finding the relevant
frames, which also can increase efficiency.

2.2. Reinforcement learning in activity recognition

A reinforcement learning (RL) algorithm enables an agent to
learn a desired task or achieve a complex objective by interacting
with its environment and getting feedback from it in the form of
reward or punishment [42]. Every RL algorithm is associated with
an agent exploring the environment. Usually, the environment is
modeled as a Markov Decision Process (MDP), and the agent gets
a reward from it with respect to its final goal(s), where the ob-
jective is to maximize an expected reward. By incorporating rein-
forcement learning with deep learning, a new category of machine
learning techniques has evolved, called deep RL (DRL), to deal with
high dimensional state/action spaces [43].

Deep RL has been employed to solve several problems in the
field of computer vision, such as video captioning, person identi-
fication, visual tracking, face recognition, and action detection [1].
However, there are few research using deep RL for skeleton-based
activity recognition. In [44], Chen et al. used a deep RL frame-
work to extract features from different body parts and activate only
the features corresponding to activity-related parts. In [45], an RL-
based video summarizing technique is proposed that aims at se-
lecting the key frames in long untrimmed RGB videos. In [46], the
key frames in RGB videos are found using a multi-agent reinforce-
ment learning framework. In this method, each agent has the duty
of seeking one key frame. Another RL-based method for finding the
most relevant frames in RGB videos is proposed in [10], which em-

ploys an LSTM agent. To the best of our knowledge, DPRL [11] is
the only previous study that uses DRL for skeleton-based activ-
ity recognition. The DPRL method improves the recognition perfor-
mance by selecting key frames (i.e., finding hard temporal atten-
tion) in skeleton videos, employing graph representation of data,
and a graph-based CNN for generating the required reward.

3. Proposed method

The proposed STH-DRL method consists of a temporal agent,
which seeks informative frames within a video, and a spatial agent,
which selects the dominant joints within each video frame. We
model the process of looking for the informative frames/joints as
a Markov decision process and solve it with the popular reinforce-
ment learning algorithm Monte Carlo policy gradient, REINFORCE
[47]. The block diagram of STH-DRL is depicted in Fig. 2. Each
of the agents is in its current state of the environment. Then it
takes an action by interacting with the environment and receiving
a reward or punishment out of it; this results in a change in the
agent’s state. The agents learn to reach their desired goal by max-
imizing the expected reward. Both agents are run for K episodes.
In the following, the details of each agent are first explained. Then,
the overall framework for jointly training the agents to find spatio-
temporal attention is presented.

3.1. Temporal hard attention exploration

The temporal agent aims at finding the discriminating frames,
i.e., temporal hard attention, by maximizing the expected reward.
In the kth episode, the temporal agent takes action a; according to
its current state Sy, and the resultant reward R,. In the following,
agent, state, action, and reward of the proposed frame selection
process are described; then, the training process with REINFORCE
algorithm is explained.

Temporal agent: Any neural network structure compatible with
video data can be employed as the temporal agent. Bi-directional
LSTM (BiLSTM) has proved to be effective in processing sequential
data. In a video, frames are located in a time sequence, so in this
study, we use a BiLSTM-based network topped with a fully con-
nected (FC) layer as the temporal agent. In each episode, the state
Sy is fed to the BIiLSTM as its input, and then its output is given
to the FC layer. The final output is probability vector p = {p‘}[T:1
which later defines the action. T is the total number of frames
available in the given video.

State: According to the previous studies [34], considering the
motion of the body joints along with the body joints’ coordi-
nates can improve human activity recognition performance. Hence,
we define the state of the temporal agent in the kth episode as
S = {S1}T_, where St =[St, St]. St denotes the 3D coordinates of
the joints in the tth frame and S¢, is the motion matrix of the tth
frame joints, ie. St =St —St~!. Adding such motion information
can help the temporal agent to figure out which frame has more
information when compared with its previous neighbor frame.

Action: The action that the temporal agent is responsible for
is to select informative frames. Two types of actions are defined
for this agent as ‘keep’ or ‘remove’, which are specified based on
the output of the FC layer of the agent. The FC layer’s output is
a vector of probabilities p = {pf}tT=1, indicating the probability of
taking action ‘keep’. Consider the action vector in the kth episode
as a = {ai}le. If @ =0, the action is ‘remove’ and the tth frame
should be discarded, while af{ being 1 means the action is ‘keep’
and the tth frame should be kept. Elements of the action vector
are sampled from a Bernoulli distribution as bellow:

a; = {a}, ~ Bernoulli(p")}{_, W
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Fig. 2. Overall architecture of the proposed STH-DRL method. St is state of the tth frame and s;f is state of the jth joint in frame t of the input video.

Reward: The reward should guide the temporal agent toward
reaching its objective, which is finding the temporal attention;
therefore, it should reflect how good the taken action is. To this
end, we use a pre-trained baseline recognition model. We feed the
selected frames (defined by the action) as input to the baseline
pre-trained classifier and calculate the reward based on the base-
line prediction. If the class label prediction turns from the wrong
label to a correct one, a strong reward 2 is enforced, and if the
turning goes from the correct label to a wrong label, a strong pun-
ishment —2 is enforced. If the predicted class label remains the
same, the reward ry is determined using the confidence of the
baseline model towards predicting the correct class as below:

ro = sgn(Pf =B, (2)

where Pl" is the probability of classifying the input video as class
I in the kth episode, and [ is the correct class label. Summing up,
the Reward at the kth episode, i.e. Ry, is as below:

Q  if reward,
—Q if punishment,
ro  otherwise.

Ry = (3)

Training the temporal agent with REINFORCE: The temporal
agent’s goal is learning a policy function, which distinguishes infor-
mative frames, by maximizing the expected reward R(0) defined
as:

R(G) = Epg(a;(:T)[Rk], (4)

where py(a}T) is the probability distribution of the possible ac-
tions. The policy function is parameterized by 6. According to RE-
INFORCE, the gradient of the expected reward in the kth episode
with respect to 0 is:

V@R(@) = Ep()(a}c:T)[Rk ZZ:l Vg In Ty (af{|5i)], (5)

where 7, denotes the policy function and Sf{ is S in the kth
episode. We run the temporal agent for K episodes for each skele-
ton video. Therefore, we can approximate the above gradient by
taking the average over gradients of all episodes as below:

VoR(0) ~ g Sk R X1 Vi Inmy(at]S)]. (6)

To enhance the algorithm’s convergence, we reduce the vari-
ance by subtracting the average reward of the temporal agent
episodes, called b. Hence, the gradient of the reward will be:

VoR(0) ~ gr Tical(Re = b) (Vo In g (af|S})]. (7)
We consider another term in the temporal agent’s objective

function, alongside maximizing the expected reward R(6). We
would like to set an upper bound of M for the number of selected

frames. The purpose of adding this term is not to select more than
M frames, where M is an integer number between 1 and T and
is set by the user. To do so, we consider 17p <M as a constraint
for the temporal agent’s objective function; to be able to solve the
optimization problem using gradient descent, the constraint is in-
cluded in the objective function itself as bellow:

min—R(0) +a x (1'p-M), (8)
where « is a hyperparameter to control the contribution of its cor-
responding term.

3.2. Spatial hard attention exploration

The spatial agent is responsible for finding discriminative joints
in each frame, i.e., spatial hard attention finding. In the kth
episode, the spatial agent is in its current state S/, takes action
a’y, and receives reward R;{. Following [48], the agent, state, action,
and reward for the joint selection module are as below:

Spatial agent: Similar to the temporal agent, any neural net-
work structure compatible with video data can be employed as the
spatial agent. We can consider the body skeleton as an ordered
sequence of body joints, e.g., a sequence starting from the head
and ending with the foot. In this sequence, the motion of one joint
might affect the others. Therefore, similar to the temporal agent,
we employ a BiLSTM-based network topped with a fully connected
(FC) layer as the spatial agent. In the kth episode, the spatial agent
goes over all the frames once. At frame t, the state S;f is given to
the BiLSTM network as input, and then its output is fed to the FC
layer. The output of the FC layer is the probability vector { p/jf }]]':1'
defining the action later, where J is the number of joints.

State: Similar to the temporal agent, we use both joint coordi-
nates and motion to define the state of the spatial agent. There-
fore, the state of the spatial agent at frame t of the kth episode is
St = {s;F }]j=l where s;.‘ = [s’].fc,s;fm], and s;.fc denotes the 3D coor-
dinate of the jth joint and s;fm is the jth joint 3D motion vector,

ie., s;.fm = s/jfc - s;[;1. Considering all the given T’ frames at the kth

episode, the state set is defined as S = {S}T_;.

Action: The spatial agent’s objective is selecting the key joints
over the video frames, so we define two actions: ‘keep’ and ‘re-
move’. To specify the action, we use the output of the FC layer,
which shows the probability of taking action ‘keep’. In other words,
at the tth frame in episode k, the probability {p/jf}Jj=1 shows the

T/
t=1

the action set in the kth episode over all the T’ frames, where a;{f is
a J-dim binary vector indicating which joints are selected at frame

probability of action {a;fj}]j:1 being ‘keep’. Assume A, = {a;f is
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tIf a;fj, which is the jth element of a/, is 0, it means the jth joint

should be removed; otherwise, it is kept. The elements of a;f are
sampled from Bernoulli distributions as below:

af ={a}; ~ Bernoulli(p'f)}ljﬂ, 9)

Reward: The reward R} in the kth episode for the spatial agent
is obtained by feeding the T’ frames with the selected joints to the
pre-trained baseline model. Similar to the reward calculation pro-
cess for the temporal agent discussed in Section A, a strong reward
(punishment) is given if the predicted class label goes from wrong
(correct) to correct (wrong). ro is given as the reward if no change
happens.

Training the spatial agent with REINFORCE: The spatial agent
aims at finding a policy function parameterized by y, which
finds the discriminative joints by maximizing the expected reward
R'(y) as is shown bellow:

R/(V) = Ep/l/(a;cli:T],)[R;{]’ (10)

where p), (a;jf:]/) is the probability distribution of all the possible
actions over the T’ frames. The gradient of the expected reward in
the kth episode with respect to y is as follows:

T ’ /
VyR/(V) = Epry (al:?{:TJ,’)[R;‘ Zt:l ijz1 VJ/ In T[V (akt,j|skt,j)]: (11)

where ), denotes the policy function and s;f,j is s;‘ in the kth
episode. We run the spatial agent for K episodes. The gradient
is approximated by taking the average over gradients of the K
episodes for each skeleton video as below:

' 1 K TJ o
VyR(y) ~ ﬁz Re > Vy Iy (aglsi;) |: (12)
k=1 t=1 j=1
We then subtract the average rewards of the spatial agent
episodes, called b/, from all the rewards, to reduce the variance:

VyR(¥) ~ g D[Ry = b)) Y0l Y,V Iy, (15 ),
(13)

To control the number of selected joints, we add a term to the
spatial agent’s objective function which helps the agent to choose
no more than N joints in the frames, where N is a user settable
integer number between 1 and J. This can be realized by minimiz-
ing 17p’ — N in the optimization process. Hence, the final objective
function is as bellow:

min—R'(y) + B x (1'p' = N), (14)

where p’ is the average probability of the actions over T’ frames
and B is a hyperparameter to control the contribution of its corre-
sponding term.

3.3. Spatio-Temporal attention algorithm

To have a more effective training process, we first partially
pre-train the spatial and temporal agents, independent from each
other. The pre-trained agents are then trained mutually- i.e., first,
the T frames of the skeleton video are given to the temporal agent,
one episode is completed, and T’ frames are selected; then, the
selected frames are fed to the spatial agent, one episode is com-
pleted, and the relevant joints are selected. Both agents complete
K episodes, and then their policies are updated.

The pseudo-code of the proposed STH-DRL framework is pre-
sented in Algorithm 1. In summary, the baseline classifier is first
pre-trained using the original training data (with complete sets of
frames and joints). Then each agent is pre-trained independently.

Algorithm 1 The proposed STH-DRL method.

Input: The training video sequences with labels, baseline recogni-
tion classifier, epochs, K

Output: Trained temporal agent, Trained spatial agent

1: Pre-train the baseline model.

2: Pre-train the temporal agent.

3: Pre-train the spatial agent.

4: count = 0.

5: for epochs do

6: count += 1

7: for videos do

8: for K episodes do

9: Run the temporal agent.

10: Find the temporal agent’s action using (1), take the
action and update the state.

11: Compute reward of the temporal agent using (2) and
(3).

12: Run the spatial agent on the selected frames provided
by the temporal agent.

13: Find the the spatial agent’s action using (9), take the
action and update the state.

14: Compute reward of the spatial agent using (2) and
(3).

15: end for

16: Compute the average reward of temporal agent.

17 Compute the loss of the temporal agent using (8).

18: Update the temporal agent network parameters.

19: Compute the average reward of the spatial agent.

20: Compute the loss of spatial agent using (14).

21: Update the spatial agent network parameters.

22: if count = G then

23: Retrain the baseline model using the selected frames
and joints.

24: count = 0

25: end if

26: end for

27: end for

Afterward, to train the agents mutually, both agents complete K
episodes and update their policies. This process is repeated for G
epochs. Then to improve the rewards, the baseline classifier is re-
trained using the new data (with the selected joints and frames).
This procedure is repeated for all the epochs.

4. Experiments

To evaluate the performance of our proposed STH-DRL method,
we performed experiments on three widely used activity recogni-
tion datasets. We selected three baseline classifiers, each belonging
to one of the three activity recognition model categories reviewed
in Section 2.1, including CNN, BiLSTM, and the recent advanced
graph-based model DGNN [35]. The effectiveness of the STH-DRL
method is demonstrated using these three baseline models. Also,
the performance of STH-DRL (with DGNN as the baseline) is com-
pared with some state-of-the-art skeleton-based activity recogni-
tion methods. In the following, we will explain the datasets we
used for our experiments in Section 4.1. Section 4.2 discusses
the employed hyperparameters and networks’ architectures. We
present the recognition results of STH-DRL with different base-
lines in Section 4.3. Section 4.4 compares the STH-DRL method
with state-of-the-art skeleton-based activity recognition methods.
The learned temporal and spatial hard attentions are visualized in
Section 4.5. The convergence analysis of the spatial and temporal
agent networks is presented in Section 4.6. Section 4.7 discusses
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the effect of hyperparameters « in the temporal agent’s objective
function and B in the spatial agent’s objective function. The sen-
sitivity of STH-DRL to hyperparameters M and N is assessed in
Section 4.8. In the end, the effect of STH-DRL on the training run
time is investigated in Section 4.9.

4.1. Datasets

NTU+RGBD Dataset (NTU): This is currently the largest pub-
licly available activity recognition dataset with 56,880 video se-
quences of 4 million frames [23]. 40 subjects participated in cap-
turing the video samples by performing 60 different activities. The
NTU data has two train/test split settings. The first setting is Cross-
Subject (CS), where 40,320 video samples of 20 subjects are used
for training, and the other 16,540 are used as tests. The second set-
ting is Cross-View (CV), in which 37,920 video samples captured
from cameras 2 and 3 are used in the train set, and the samples
captured from the other camera view, i.e., camera 1, are included
in the test set. Each subject is represented by 25 joints, and the
videos include either one or two subjects.

UT-Kinect Dataset (UT): In this data, there are 200 video se-
quences belonging to 10 different activity classes. Each activity is
performed by 10 subjects two times [49]. The number of skeleton
joints per subject is 20, and all video samples have one subject, i.e.,
non of the activities are interactive. In this work, the Leave-one-out
cross-validation protocol is used for evaluation.

SBU Kinect Interaction Dataset (SBU): This data has 230 video
sequences with 6614 frames [50]. There are 8 interactive activity
classes, which means there are two persons in all the videos. The
number of skeleton joints recorded for each person is 15, so in
total, there are 30 joints in each frame. We use the 5-fold cross-
validation setting presented for this data for our experiments.

4.2. Implementation details

A BiLSTM with 3 layers is used as each of the agent’s networks.
We use Adam as the optimizer with initial learning rates 5e-3 and
5e-4 for temporal and spatial agents, respectively. The dropout rate
is 0.5. We set hyperparameters 2, K, «, and § to 25, 6, 0.01, and
0.01, respectively. Hyperparameters M and N are respectively set
to half of the number of available frames and joints, i.e., M = [H,

and N = (H where [.] denotes the ceiling function. The number
of epochs for partial pre-training of the temporal and spatial net-
works is 6. Although the number of epochs for fully training both
networks mutually can be selected adaptively based on the val-
ues of loss functions defined in (8) and (14), it is set to 9 in all
datasets for simplicity. In all datasets, following [11], the bi-cubic
interpolation is used to derive video samples with an equal num-
ber of frames where the first and last frames remain the same as
the original video. The number of frames in all video samples of
NTU, UT, and SBU is equalized to respectively 100, 120, and 45.
The proposed method is implemented in python using the deep
learning framework Pytorch.

4.3. Improving the baseline models

To prove that the proposed spatio-temporal attention finding
method boosts the performance of the baseline recognition mod-
els, we employed three classifiers, including a BiLSTM, a CNN,
and the graph-based method DGNN. The CNN model has 2 lay-
ers of convolution and one fully connected layer. The optimizer
is Adam. The BiLSTM-based recognition model has 3 layers with
a hidden layer size of 256 and the Adam optimization method.
For DGNN, for a fair comparison, we used the parameter set-
ting suggested in the original paper. The code available on the
respective author’s website is used. The hyperparameters of our

Table 1
Activity recognition accuracy (in percent) of the three different baseline models
with and without STH-DRL.

Method CS cv SBU uT avg.
BiLSTM 65.0 69.2 76.0 94.5 76.1
TH-DRL-BiLSTM 66.2 68.1 76.8 95.5 76.6
SH-DRL-BiLSTM 67.1 71.3 78.1 95.9 78.1
STH-DRL-BiLSTM 70.4 71.8 81.9 97.1 80.3
CNN 70.2 713 78.2 87.9 76.9
TH-DRL-CNN 68.2 75.9 79.8 92.2 79.0
SH-DRL-CNN 71.8 76.2 85.5 93.1 81.6
STH-DRL-CNN 75.6 81.3 86.1 95.7 84.6
DGNN 89.9 96.1 87.8 97.5 92.5
TH-DRL-DGNN 87.2 94.8 83.2 95.2 90.1
SH-DRL-DGNN 90.1 96.3 88.7 98.4 93.3
STH-DRL-DGNN 90.8 96.7 88.7 99.1 93.8
Table 2
Activity recognition accuracy (in percent) of different methods on NTU dataset.

Method CS cv year
Lie Group [15] 50.1 52.8 2014
HBRNN [22] 59.1 64.0 2015
Part-aware LSTM [23] 62.9 70.3 2016
LieNet-3Blocks [19] 61.4 67.0 2017
Liu et al. [29] 76 82.56 2017
ST-GCN [33] 815 88.3 2018
DPRL+GCNN [11] 835 89.8 2018
STA-LSTM [51] 73.4 81.2 2018
DGNN [35] 89.9 96.1 2019
AGC-LSTM [34] 89.2 95.0 2019
DCGCN [37] 88.1 95.2 2020
STA-DeepLG|[26] 72.38 79.72 2021
ST-TR [40] 89.9 96.1 2021
3s-AdaSGN [41] 90.5 95.3 2021
STH-DRL 90.8 96.7

STH-DRL method are also set to their default values presented in
Section 4.2. Recognition performance of the baseline models on
the benchmark datasets, before and after applying the STH-DRL
method, are shown in Table 1. TH-DRL-X, SH-DRL-X, and STH-
DRL-X respectively denote the performance of the partially pre-
trained temporal agent, the partially pre-trained spatial agent, and
the spatio-temporal attention finding method with baseline model
X. On each dataset and among X, TH-DRL-X, SH-DRL-X and STH-
DRL-X, the best result is shown in bold. As can be seen, the pro-
posed STH-DRL method has improved the baseline performance for
all datasets and baselines. The average accuracy over all datasets
for each method is shown in the last column. This column shows
that, on average, both pre-trained temporal and spatial agents im-
prove the recognition accuracy of baselines, and training them mu-
tually, i.e., the results obtained by the STH-DRL method, results in
the best performance.

4.4. Comparison to state-of-the-art

To prove the effectiveness of our proposed method, we adopt
DGNN as the baseline model and compare STH-DRL-DGNN with
several state-of-the-art skeleton-based methods. Table 2, presents
the accuracy comparison of the two settings of the NTU dataset, i.e.
CS and CV. As can be seen, our proposed method has the best per-
formance among the eleven other activity recognition algorithms.
Performance comparison of the SBU dataset with six state-of-the-
art methods is shown in Table 3. This confirms our method yields
the best accuracy among all. In Table 4, the results of the STH-DRL
method compared to ten other algorithms are shown. As can be
seen, the proposed method achieves the best performance for this
data, as well.
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hand waving

throw

(a) Three activities of NTU dataset  (b) Three activities of SBU dataset

Pick up

(c) Three activities of UT dataset

Fig. 3. Visualizing frequency of selecting a joint by STH-DRL within a video, for three different activity classes from the NTU, SBU and UT datasets. Lighter red color
indicates that the corresponding joint is less frequently selected and a darker one indicates higher selection frequency. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

Table 3
Activity recognition accuracy (in percent) of
different methods on SBU dataset.

Method SBU year
Raw skeleton [52] 49.7 2012
Joint feature [53] 86.9 2014
Hierarchical RNN [22] 80.35 2015
CHARM [54] 83.9 2015
DGNN [35] 87.8 2019
DCGCN [37] 88.2 2020
STH-DRL 88.7
Table 4

Activity recognition accuracy (in percent) of dif-

ferent methods on UT dataset.

Method UT year
Histogram of 3D Joints [49] 90.9 2012
Riemannian Manifold [55] 91.5 2015
Grassmann Manifold [56] 88.5 2015
GMSM [57] 97.4 2016
SCK+DCK [16] 98.2 2016
ST-LSTM-+Trust Gate [20] 97.0 2017
ST-NBNN [17] 98.0 2017
DPRL+GCNN [11] 98.5 2018
DGNN [35] 97.5 2019
DCGCN [37] 98.2 2020
STA-DeepLG [26] 97.7 2021
STH-DRL 99.1

4.5. Visualization of the learned spatial and temporal hard attention

To visually analyze the results, we show the selected joints for
three different activities from the three datasets SBU, UT, and NTU
in Fig. 3. The color brightness of the red circles on each joint il-
lustrates the frequency of choosing that joint over the whole given
T’ frames. The brighter circles indicate the corresponding joints are
selected less frequently compared to the joints being specified by a
darker color. For example, in activity “kick” in the SBU dataset, the
lower body joints are correctly selected in all frames and the irrel-
evant joints such as the shoulder are correctly removed. The final
output of STH-DRL, i.e. the final selected frames along with their
corresponding selected joints for activity “hand waving” of NTU
data are demonstrated in Fig. 4. The removed frames are shown
in gray, and the selected joints are specified with red circles. As

can be seen, there are no observable differences between frames
45 to 49; therefore, the algorithm has kept only frame 48 as their
representative. Also, between frames 54 and 55, a hand movement
is observed, so both frames are kept.

To have a more general view of the selected joints, the distri-
bution of the selected joints, over all the activities and for each of
the three datasets, is shown in Fig. 5. This figure indicates that the
selected joints by STH-DRL vary among different activities, and not
all joints are informative for an activity.

Figures 4, 3, and 5 demonstrate the consistency of the learned
spatial and temporal attentions with human perception.

4.6. Convergence analysis

As is discussed in Section 3, temporal and spatial agents aim to
minimize the loss functions defined in (8) and (14), respectively. To
see the trend of optimization, the loss value of temporal agent and
spatial agent versus training iteration, for SBU, UT, and NTU (CS)
datasets are shown in Figs. 6 and 7. As these graphs show, at the
beginning of the training, the loss oscillates significantly, which is
due to the low skill level of agents. However, the oscillation de-
creases over time as the agents become skilled in choosing impor-
tant joints and frames. In the end, the losses of both temporal and
spatial agents converge to zero, which is desired.

4.7. Effect of hyperparameters o and B

In this section, the influence of hyperparameter « in the loss
function of temporal agent shown in (8), and hyperparameter 8
in the loss function of spatial agent shown in (14) are investi-
gated. Figure 8a shows the accuracy vs. @ where « is selected from
the set {0,1073,1072,101, 1} and B is set to its default value i.e.
10-2. Figure 8b demonstrates the accuracy of STH-DRL vs. 8 where
B €{0,1073,1072,10-1,1} and « is set to its default value 102,
STH-DRL with the BiLSTM baseline and the UT dataset is used for
this experiment. As can be observed in these graphs, imposing the
upper bounds on the number of selected frames and joints is ef-
fective in the recognition performance.

4.8. Sensitivity to hyperparameters M and N

The sensitivity of STH-DRL to the hyperparameters M and
N are explored in this section. To this end, M is selected
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a5 a6 48 49 53

Fig. 4. Visualizing the selected frames and joints by STH-DRL for the activity “hand waving” in the NTU dataset. The frames shown in gray color are discarded from the
data. The selected joints are shown in red circles. The index of each frame is shown below the frame. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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Fig. 5. Distribution of the engaged joints in different actions for the (a) SBU, (b) UT,
and (c) NTU(CS) datasets.

from the sets {3,8,16,22,30,38,45},{5, 15, 30, 60, 85, 105, 120}
and {5, 10, 35, 50, 65, 80, 100} for SBU, UT, and NTU datasets, re-
spectively. The accuracy of STH-DRL with BiLSTM baseline vs. M
is shown in Fig. 9. As is observed, the best M value for all three
datasets is half of the number of available frames. The same
experiment is performed for the parameter N where N is se-
lected from the sets {3, 7, 10, 15, 19, 26, 30}, {2,5, 8, 10, 13, 17, 20}
and {5, 10, 15, 25, 30, 40, 50} respectively for the SBU, UT and NTU
datasets. Figure 10 shows the recognition accuracy, which indicates
that setting N to half of the number of available joints leads to the
highest accuracy in all three datasets. Both Figs. 9 and 10 show
that the performance of STH-DRL is not too sensitive to the hy-
perparameters M and N if they are not set to a very low value,
which is a desirable property. Moreover, it can be seen that keep-
ing all the available information, i.e., frames and joints, will not
always lead to the best accuracy. This is more significant in the
NTU dataset, where increasing the upper bound for both frames
and joints decreases the recognition accuracy. This can be associ-
ated with the fact that the NTU dataset is a more challenging data
having many more activity classes compared to the UT and SBU
datasets, and there exist several similar classes of activities in the
data. Hence, selecting key frames and joints play a more important
role in this data. It should be noted that 5-fold and leave-one-out
cross-validation procedures are used to compute the accuracy for
the SBU and UT datasets, respectively.

4.9. Run time improvement

Based on our experiments, about 60% of the frames and 55%
of the joints are removed in each video by the STH-DRL method.

Table 5
Run time (in hours) of training a BiLSTM-based recogni-
tion model with (Tpr,.p) and without (T,) STH-DRL.

Method CS (aY% SBU uT avg.
Tor 5.82 5.53 0.03 0.03 285
Tp 4089 4352 019 024 21.21
Torsp 46.71  49.05 022 027 24.06
T, 95.70 9020 0.68 0.61 46.79

In this section, we investigate the effectiveness of the proposed
STH-DRL framework, as a pre-processing block, in reducing the (re-
Jtraining time of the baseline classifier. To this end, we first train
STH-DRL (with baseline BiLSTM) as is discussed in Section 3. We
then apply the trained STH-DRL to the data to identify and se-
lect the relevant frames and joints. The elapsed time of this pre-
processing phase for each dataset is recorded and shown by T
in Table 5. Then, the pre-processed data, which includes only the
informative frames and joints, is used to train a BiLSTM (initial-
ized randomly) recognition model; the elapsed time for training
the BiLSTM is recorded and shown by T, in the table. In the third
row of the table, the total elapsed time, i.e. Tpryp = Tp + Tpr is re-
ported. The last row of the table shows the required time T, for
training the same BiLSTM model (with random initial weights) but
with the original data, i.e., the data with all frames and joints. The
same epoch number is used for training BiLSTM in each case. The
average of the run times, avg., on all the datasets are shown in the
last column of the table. All the run times reported in the table are
in hours. Comparing the last two rows of the table indicates our
proposed method if used as a pre-processing block, speeds up the
training phase of the recognition model on average by about 48%.
Faster training time can be associated with two factors: 1) only
relevant joints and frames are observed during the training phase
of the baseline classifier, and 2) a much less number of network
parameters are needed for the pre-processed data, as the result
of the frame selection achieved by the temporal agent. Figure 11
shows the histogram of the number of selected frames for video
samples of the three datasets SBU, UT, and NTU. As can be seen,
the temporal agent removes about 60% of the frames on average
in all three data sets, which confirms that our proposed method
decreases the run time of the classifier’s training procedure by re-
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Fig. 6. Loss of the temporal agent of STH-DRL-BiLSTM vs. iterations for the (a) SBU, (b) UT, and (c) NTU(CS) datasets.
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Fig. 7. Loss of the spatial agent of STH-DRL-BiLSTM vs. iterations for the (a) SBU, (b) UT, and (c) NTU(CS) datasets.
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Fig. 11. The histogram of the number of selected frames over the number of video samples for (a) SBU, (b) UT, and (c) NTU datasets.

quiring a smaller number of parameters. Also, the graphs confirm
that despite the common belief that including more information
(i.e., all frames and joints) results in better performance, consider-
ing only relevant frames and joints can still provide the same level
of accuracy and also even better performance in several cases. Ca-

pability of STH-DRL in reducing the (re-)training run time of an
activity classifier is especially beneficial for online activity recogni-
tion applications where a fast and effective (re-)training phase is
required. One Tesla P100-PCIE-16GB GPU is used to run these ex-
periments.
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5. Conclusion

In this work, we proposed a novel spatio-temporal attention
finding method, called STH-DRL, which selects the relevant frames
and joints in skeleton videos and discards the irrelevant ones, to
improve the performance of activity recognition models. In other
words, our proposed STH-DRL method finds both spatial and tem-
poral hard attentions in skeleton videos. We formulate the problem
as two Markov decision processes and solve them with the popular
policy gradient algorithm, REINFORCE. We designed a spatial agent
for finding the key joints and a temporal agent to find the key
frames. Each agent has its own specified environment, state, and
action. The two agents are trained by interacting with each other
in order to find their optimal policy. STH-DRL has the capability
to be employed prior to the existing human activity recognition
models to improve their recognition performance. Three widely
used benchmark datasets including NTU, SBU, and UT-Kinect are
used in our experiments and performance analyses. We used three
recognition methods to demonstrate the effectiveness of the frame
and joint selections performed by the STH-DRL method. As our ex-
periments denoted, our method could improve the baseline clas-
sifiers’ performance by about 4.4% on average. We also compared
the proposed method with state-of-the-art skeleton-based activity
recognition methods, and the results confirmed the effectiveness
of our method. In addition, we demonstrated that STH-DRL, as a
pre-processing block, can decrease the training time of a baseline
activity classifier. The run time reduction is more specifically bene-
ficial in applications where online training plays an important role.
Moreover, frame reduction is useful in video transmission where
the transmitter decides which frames to transmit to reduce the
transmission time and complexity.
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