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a b s t r a c t 

The use of skeleton data for activity recognition has become prevalent due to its advantages over RGB

data. A skeleton video includes frames showing two- or three-dimensional coordinates of human body

joints. For recognizing an activity, not all the video frames are informative, and only a few key frames

can well represent an activity. Moreover, not all joints participate in every activity; i.e., the key joints may

vary across frames and activities. In this paper, we propose a novel framework for finding temporal and

spatial attentions in a cooperative manner for activity recognition. The proposed method, which is called

STH-DRL, consists of a temporal agent and a spatial agent. The temporal agent is responsible for finding

the key frames, i.e., temporal hard attention finding, and the spatial agent attempts to find the key joints,

i.e., spatial hard attention finding. We formulate the search problems as Markov decision processes and

train both agents through interacting with each other using deep reinforcement learning. Experimental

results on three widely used activity recognition benchmark datasets demonstrate the effectiveness of

our proposed method.
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. Introduction

Human activity recognition is a popular challenging research di- 

ection in the field of computer vision due to its wide range of 

eal-world applications such as human-robot interaction, video un- 

erstanding, sports analysis, and activity monitoring in older adults 

1,2] . Primarily, activity recognition methods were designed based 

n RGB data; however, with the development of depth cameras, 

uch as Microsoft Kinect and various well-performing human pose 

stimation methods like [3,4] , and [5] , recording and extracting 

keleton data has become more convenient [1] . Pose estimation 

s an important problem where the goal is to determine the po- 

itions and orientations of different body parts in video frames, 

hich generates the skeleton data [6] . Skeleton data, which con- 

ains two- or three-dimensional coordinates of the key body joints 

e.g., hand, foot, and neck), has several advantages over RGB data, 

ncluding but not limited to being robust against viewpoints vari- 

tions, background noise, and clutter [7] . As such, skeleton-based 

ctivity recognition has gained much attention recently. Moreover, 

he complementary attributes of these two modalities, i.e., RGB 
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nd skeleton data, have sparked researchers to take advantage of 

oth when designing their models [8] . 

Most of the research on skeleton-based activity recognition fo- 

uses on feature designing to capture spatial and temporal dynam- 

cs of video [9] . However, they assume all the body joints and 

ideo frames are equally important while activity could be recog- 

ized using only a few key frames [7,10,11] . Hence discarding the 

edundant frames reduces computational complexity and may im- 

rove recognition performance. In addition, not all joints partici- 

ate in each activity. For example, in the activity “clap”, the upper 

ody joints, such as the hand and wrist, are mainly involved in 

efining and discriminating the activity. 

In this paper, we hypothesize that excluding irrelevant frames 

nd irrelevant body joints improves recognition performance. Mo- 

ivated by this, we propose a novel framework to simultaneously 

dentify and select relevant frames and joints within a given video. 

e refer to the joint and frame selection processes as spatial and 

emporal hard attention findings, respectively. Different from soft 

ttention finding methods which try to assign weights to different 

arts of data to illustrate their importance, hard attention finding 

ethods aim at removing the irrelevant parts and keeping the im- 

ortant ones, i.e., assigning one and zero weights to them. The pro- 

osed framework consists of two agents: a temporal agent for find- 

ng the temporal hard attention (i.e., frame selection) and a spatial 

gent for finding the spatial hard attention (i.e., joint selection). 

https://doi.org/10.1016/j.patcog.2023.109428
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109428&domain=pdf
mailto:bahareh.nikpour@mail.mcgill.ca
mailto:narges.armanfard@mcgill.ca
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Fig. 1. Motivation of the proposed STH-DRL method. The number above each frame

shows its index in the video. The two frames 1 and 4 (out of the five available

ones) with a subset of joints, shown by green circles, can well represent the activity

“sitting”. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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he two agents are trained cooperatively by interacting with each 

ther. First, the temporal agent gets a sequence of frames as in- 

ut and outputs an indicator vector showing the relevant frames. 

he relevant frames are selected and fed into the spatial agent that 

utputs an indicator matrix showing the relevant joints per frame. 

igure 1 shows the motivation of the proposed method on activity 

sitting” where lower body joints of a couple of frames can well 

epresent the activity. Finally, the selected frames with the selected 

oints are fed to a baseline activity classifier that recognizes the 

ctivity happening in the given video sequence. As the hard atten- 

ion model is non-differentiable [10] , we cannot train the agents 

n an end-to-end manner. Thus, we formulate the hard-attention- 

nding problems with Markov Decision Process (MDP) and train 

ach agent using Deep Reinforcement Learning (DRL). Throughout 

his paper, we refer to the proposed framework for the Spatio- 

emporal Hard attention finding using Deep Reinforcement Learn- 

ng as STH-DRL. 

The proposed STH-DRL method is the first study that simulta- 

eously finds spatial and temporal hard attention. STH-DRL does 

ot need any extra ground-truth labels denoting relevant joints 

nd frames; i.e., similar to the traditional recognition models, the 

nly required labels are the video-level activity labels. The training 

rocess of the STH-DRL method is supervised by rewards that the 

gents receive from the baseline classifier. STH-DRL can be consid- 

red as a pre-processing technique that can improve the classifi- 

ation performance of the baseline classifier by keeping only the 

elevant frames/joints and discarding the irrelevant ones. Hence, 

he proposed framework is capable of improving the recognition 

erformance of the existing activity recognition models if they are 

mployed as the baseline classifier. Such capability can also speed 

p the training process of the baseline model since the irrelevant 

nformation does not contribute to the training. There are some 

ecently proposed methods for finding attention in videos, such as 

12] and [13] , which are designed for group activity recognition in

GB videos, and [14] where spatio-temporal attention is found to

redict motion in RGB videos. However, to the best of our knowl- 

dge, this is the first study that proposes the problem of finding 

patio-temporal hard attention for skeleton-based activity recogni- 

ion and solves it by deep reinforcement learning. 

The rest of the paper is structured as follows: In Section 2 , 

ome related works to our method are reviewed. In Section 3 , 

he proposed STH-DRL method is explained in detail. 

ection 4 presents the experimental results, and the conclu- 

ion is finally drawn in Section 5 . 

. Related works

.1. Skeleton-based activity recognition methods 

Human activity can be successfully recognized from skele- 

on joints’ trajectories; therefore, much research has been accom- 
2

lished in this area. Finding discriminative features play a key 

ole in activity recognition performance. Earlier methods focus 

n designing hand-crafted features; e.g., [15] models the three- 

imensional relationship between body parts by translations and 

otations, in [16] two different kernels are used for the tensor rep- 

esentation of 3D body joints, and [17] employs covariance ma- 

rices of joint trajectories. The great capability of deep learning 

ethods in finding effective representations for different applica- 

ions, such as object recognition [18] , led researchers to use it for 

uman activity recognition [19] . Deep learning-based methods for 

keleton-based activity recognition use either recurrent neural net- 

orks (RNN), convolutional neural networks (CNN), or graph-based 

etworks [9] . 

RNN is highly powerful for modeling sequences, making it an 

ppropriate choice for video sequence analysis [20] . An RNN-based 

odel with two-stream architecture is proposed in [21] , which 

odels temporal and spatial information. Du et al. proposed a hi- 

rarchical RNN-based method where the body joints are divided 

nto five subsets regarding the body’s physical structure [22] . Then 

ach subset is given to an individual sub-net as input. The output 

f the subnets is then hierarchically fused in further layers to reach 

 final representation. In [23] , the human body is divided into in- 

ividual parts, and the memory cell of a long short-term memory 

LSTM) model is split into sub-cells according to the body parts to 

earn patterns for each of them separately. The final output is then 

erived out of the combination of the sub-cells. To learn the co- 

ccurrence of skeleton joints, [24] suggests a deep LSTM network 

long with a regularization method. Lee et al. first transformed the 

keleton joints into a new coordinate system to make the repre- 

entation robust to rotation, translation, and scale [25] . Then the 

ata is fed to an LSTM with short-term, medium-term, and long- 

erm components. The outputs of these components are averaged 

t the end to derive temporal features. Song et al. designed spatial 

nd temporal attention modules for a multi-layered LSTM network 

nd trained them jointly [7] . In [26] , spatial and temporal atten- 

ion is designed for Lie groups for skeleton-base activity recogni- 

ion. LSTM is then employed for learning important temporal in- 

ormation about the video sequence. 

Two- or three-dimensional coordinates of skeleton joints can be 

reated as pseudo-images so that CNN-based models can be used 

o analyze video data. In [27] , the position and velocity information 

f joints are incorporated and fed to a two-stream CNN architec- 

ure without considering the long-term dependency of frames. To 

nclude temporal information, Ke et al. presented an approach that 

reates clips out of videos and then gives them to a CNN-based 

etwork as input [28] . Liu et al. proposed a view-invariant repre- 

entation and an enhanced visualization of skeleton data to be em- 

loyed as the CNN’s input [29] . In [30] , a CNN-based recognition 

ethod for multi-subject activities is introduced, which uses a hi- 

rarchical framework to find co-occurrence features. Banerjee et al. 

esigned four complementary representations for skeleton data as 

he input of four CNNs. Then, they used a fuzzy approach to fuse 

he CNNs’ outputs to reach the final decision [31] . Li et. al pro-

osed a novel representation of skeleton video using geometric al- 

ebra and then employed CNN to extract features from the new 

epresentation of data [32] . 

The human body can be modeled as a graph considering joints 

nd bones as vertices and edges, respectively. Therefore, employing 

he graph-based models is beneficial for video analysis. Recently, 

raph-based methods for activity recognition have become a devel- 

ping trend in the field of activity recognition [11] . In [33] , several

patial-temporal graph convolutions are designed to extract effec- 

ive features from the skeleton data. Si et al. used a graph convolu- 

ional LSTM enhanced with attention to find spatial and temporal 

nformation along with their co-occurrence [34] . In [35] , a directed 

raph neural network (DGNN) is proposed, which extracts features 
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rom bones and joints as well as their relationship. Also, the paper 

roposes to change the topological structure of the graph adap- 

ively in the process of training. Liu et al. proposed to remove re- 

undant dependencies between neighboring nodes in the skeleton 

raph and designed a novel graph convolution to directly model 

he spatial/temporal dependencies [36] . In [37] , a decoupling graph 

onvolutional network (DCGCN) is introduced to boost the recog- 

ition performance without adding extra cost. Also, to avoid over- 

tting, a graph-specific regularization technique is presented. Peng 

t al. proposed a method for graph pooling called Tripool, which 

ims at maintaining the diversity in the graph and reducing the re- 

undancy of the node [38] . Their pooling technique can be added 

o any graph-based activity recognition method to improve perfor- 

ance and decrease computational cost. In [39] , the dependen- 

ies of joints are modeled by attention blocks without knowing 

he skeleton graph structure. Another approach is introduced in 

40] , called Spatial-Temporal Transformer network (ST-TR), where

he Transformer self-attention operator is employed to model the

oints’ dependencies. The architecture has two streams, including

patial and temporal. In the spatial stream, spatial information is

xtracted, and a convolutional network is used for the time di- 

ension, while in the temporal stream, the temporal information 

s extracted, and a graph convolution is employed to extract spatial 

nformation. 

The objective of all the aforementioned skeleton-based activity 

ecognition methods is to learn discriminative spatial/temporal fea- 

ures through designing new network architectures. In contrast, in 

his work, we propose a novel framework that can be used as a 

ltering block prior to the existing skeleton-based activity recogni- 

ion methods, such as the DGNN algorithm. Our proposed frame- 

ork filters out the irrelevant joints and frames prior to the recog- 

ition in the testing phase. In [41] , a method is proposed for adapt-

ng joints number, with the main goal of having an efficient activ- 

ty recognition method. However, different from our method, the 

keleton is transformed into a skeleton with fewer joints with a 

ransformation matrix, which tends to group adjacent joints. That 

s while we aim at selecting the relevant joints to each activity and 

iscard the rest. Also, they did not consider finding the relevant 

rames, which also can increase efficiency. 

.2. Reinforcement learning in activity recognition 

A reinforcement learning (RL) algorithm enables an agent to 

earn a desired task or achieve a complex objective by interacting 

ith its environment and getting feedback from it in the form of 

eward or punishment [42] . Every RL algorithm is associated with 

n agent exploring the environment. Usually, the environment is 

odeled as a Markov Decision Process (MDP), and the agent gets 

 reward from it with respect to its final goal(s), where the ob- 

ective is to maximize an expected reward. By incorporating rein- 

orcement learning with deep learning, a new category of machine 

earning techniques has evolved, called deep RL (DRL), to deal with 

igh dimensional state/action spaces [43] . 

Deep RL has been employed to solve several problems in the 

eld of computer vision, such as video captioning, person identi- 

cation, visual tracking, face recognition, and action detection [1] . 

owever, there are few research using deep RL for skeleton-based 

ctivity recognition. In [44] , Chen et al. used a deep RL frame- 

ork to extract features from different body parts and activate only 

he features corresponding to activity-related parts. In [45] , an RL- 

ased video summarizing technique is proposed that aims at se- 

ecting the key frames in long untrimmed RGB videos. In [46] , the 

ey frames in RGB videos are found using a multi-agent reinforce- 

ent learning framework. In this method, each agent has the duty 

f seeking one key frame. Another RL-based method for finding the 

ost relevant frames in RGB videos is proposed in [10] , which em- 
3

loys an LSTM agent. To the best of our knowledge, DPRL [11] is 

he only previous study that uses DRL for skeleton-based activ- 

ty recognition. The DPRL method improves the recognition perfor- 

ance by selecting key frames (i.e., finding hard temporal atten- 

ion) in skeleton videos, employing graph representation of data, 

nd a graph-based CNN for generating the required reward. 

. Proposed method

The proposed STH-DRL method consists of a temporal agent, 

hich seeks informative frames within a video, and a spatial agent, 

hich selects the dominant joints within each video frame. We 

odel the process of looking for the informative frames/joints as 

 Markov decision process and solve it with the popular reinforce- 

ent learning algorithm Monte Carlo policy gradient, REINFORCE 

47] . The block diagram of STH-DRL is depicted in Fig. 2 . Each

f the agents is in its current state of the environment. Then it

akes an action by interacting with the environment and receiving

 reward or punishment out of it; this results in a change in the

gent’s state. The agents learn to reach their desired goal by max- 

mizing the expected reward. Both agents are run for K episodes. 

n the following, the details of each agent are first explained. Then, 

he overall framework for jointly training the agents to find spatio- 

emporal attention is presented. 

.1. Temporal hard attention exploration 

The temporal agent aims at finding the discriminating frames, 

.e., temporal hard attention, by maximizing the expected reward.

n the k th episode, the temporal agent takes action a k according to

ts current state S k , and the resultant reward R k . In the following,

gent, state, action, and reward of the proposed frame selection

rocess are described; then, the training process with REINFORCE

lgorithm is explained.

Temporal agent: Any neural network structure compatible with 

ideo data can be employed as the temporal agent. Bi-directional 

 STM (BiL STM) has proved to be effective in processing sequential 

ata. In a video, frames are located in a time sequence, so in this 

tudy, we use a BiLSTM-based network topped with a fully con- 

ected (FC) layer as the temporal agent. In each episode, the state 

 k is fed to the BiLSTM as its input, and then its output is given

o the FC layer. The final output is probability vector p = { p t } T t=1
hich later defines the action. T is the total number of frames 

vailable in the given video. 

State: According to the previous studies [34] , considering the 

otion of the body joints along with the body joints’ coordi- 

ates can improve human activity recognition performance. Hence, 

e define the state of the temporal agent in the k th episode as

 k = { S t } T 
t=1 

where S t = [ S t c , S 
t 
m 

] . S t c denotes the 3D coordinates of

he joints in the tth frame and S t m 

is the motion matrix of the tth

rame joints, i.e. S t m 

= S t c − S t−1 
c . Adding such motion information

an help the temporal agent to figure out which frame has more 

nformation when compared with its previous neighbor frame. 

Action: The action that the temporal agent is responsible for 

s to select informative frames. Two types of actions are defined 

or this agent as ‘keep’ or ‘remove’, which are specified based on 

he output of the FC layer of the agent. The FC layer’s output is 

 vector of probabilities p = { p t } T t=1 , indicating the probability of

aking action ‘keep’. Consider the action vector in the k th episode 

s a k = { a t 
k 
} T 

t=1 
. If a t 

k 
= 0 , the action is ‘remove’ and the tth frame

hould be discarded, while a t 
k 

being 1 means the action is ‘keep’

nd the tth frame should be kept. Elements of the action vector 

re sampled from a Bernoulli distribution as bellow: 

 k = { a tk ∼ Bernoulli (p t ) } T t=1 (1) 
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Fig. 2. Overall architecture of the proposed STH-DRL method. S t is state of the tth frame and s 
′ t
j

is state of the jth joint in frame t of the input video.
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Reward: The reward should guide the temporal agent toward 

eaching its objective, which is finding the temporal attention; 

herefore, it should reflect how good the taken action is. To this 

nd, we use a pre-trained baseline recognition model. We feed the 

elected frames (defined by the action) as input to the baseline 

re-trained classifier and calculate the reward based on the base- 

ine prediction. If the class label prediction turns from the wrong 

abel to a correct one, a strong reward � is enforced, and if the 

urning goes from the correct label to a wrong label, a strong pun- 

shment −� is enforced. If the predicted class label remains the 

ame, the reward r 0 is determined using the confidence of the 

aseline model towards predicting the correct class as below: 

 0 = sgn (P k l − P k −1 
l 

) , (2) 

here P k 
l

is the probability of classifying the input video as class

in the k th episode, and l is the correct class label. Summing up,

he Reward at the k th episode, i.e. R k , is as below:

 k = 

{
� if reward, 
−� if punishment,
r 0 otherwise.

(3) 

Training the temporal agent with REINFORCE: The temporal 

gent’s goal is learning a policy function, which distinguishes infor- 

ative frames, by maximizing the expected reward R (θ ) defined 

s: 

 (θ ) = E p θ (a 1: T 
k 

) [ R k ] , (4) 

here p θ (a 1: T 
k 

) is the probability distribution of the possible ac- 

ions. The policy function is parameterized by θ . According to RE- 

NFORCE, the gradient of the expected reward in the k th episode 

ith respect to θ is: 

 θR (θ ) = E p θ (a 1: T 
k 

) [ R k 

∑ T
t=1 ∇ θ ln πθ (a t 

k 
| S t 

k 
)] , (5) 

here πθ denotes the policy function and S t 
k 

is S t in the k th

pisode. We run the temporal agent for K episodes for each skele- 

on video. Therefore, we can approximate the above gradient by 

aking the average over gradients of all episodes as below: 

 θR (θ ) ≈ 1
KT

∑ K
k =1 [ R k 

∑ T
t=1 ∇ θ ln πθ (a t 

k 
| S t 

k 
)] . (6) 

To enhance the algorithm’s convergence, we reduce the vari- 

nce by subtracting the average reward of the temporal agent 

pisodes, called b. Hence, the gradient of the reward will be: 

 θR (θ ) ≈ 1
KT

∑ K
k =1 [(R k − b) 

∑ T
t=1 ∇ θ ln πθ (a t 

k 
| S t 

k 
)] . (7) 

We consider another term in the temporal agent’s objective 

unction, alongside maximizing the expected reward R (θ ) . We 

ould like to set an upper bound of M for the number of selected 
4

rames. The purpose of adding this term is not to select more than 

frames, where M is an integer number between 1 and T and 

s set by the user. To do so, we consider 1 T p ≤ M as a constraint

or the temporal agent’s objective function; to be able to solve the 

ptimization problem using gradient descent, the constraint is in- 

luded in the objective function itself as bellow: 

in 

θ
−R (θ ) + α × (1 

T p − M) , (8) 

here α is a hyperparameter to control the contribution of its cor- 

esponding term. 

.2. Spatial hard attention exploration 

The spatial agent is responsible for finding discriminative joints 

n each frame, i.e., spatial hard attention finding. In the k th 

pisode, the spatial agent is in its current state S ′ 
k
, takes action 

 

′ 
k and receives reward R ′ 

k 
. Following [48] , the agent, state, action, 

nd reward for the joint selection module are as below: 

Spatial agent: Similar to the temporal agent, any neural net- 

ork structure compatible with video data can be employed as the 

patial agent. We can consider the body skeleton as an ordered 

equence of body joints, e.g., a sequence starting from the head 

nd ending with the foot. In this sequence, the motion of one joint 

ight affect the others. Therefore, similar to the temporal agent, 

e employ a BiLSTM-based network topped with a fully connected 

FC) layer as the spatial agent. In the k th episode, the spatial agent

oes over all the frames once. At frame t , the state S 
′ t 
k

is given to

he BiLSTM network as input, and then its output is fed to the FC 

ayer. The output of the FC layer is the probability vector { p ′ t 
j 
} J 

j=1 
,

efining the action later, where J is the number of joints. 

State: Similar to the temporal agent, we use both joint coordi- 

ates and motion to define the state of the spatial agent. There- 

ore, the state of the spatial agent at frame t of the k th episode is

 

′ t
k

= { s ′ t 
j
} J 

j=1
where s 

′ t 
j 

= [ s 
′ t 
j,c 

, s 
′ t
j,m 

] , and s 
′ t
j,c 

denotes the 3D coor-

inate of the jth joint and s 
′ t
j,m 

is the jth joint 3D motion vector, 

.e., s 
′ t 
j,m 

= s 
′ t 
j,c 

− s 
′ t−1 
j,c

. Considering all the given T ′ frames at the k th

pisode, the state set is defined as S ′ 
k

= { S ′ t 
k
} T ′ t=1 .

Action: The spatial agent’s objective is selecting the key joints 

ver the video frames, so we define two actions: ‘keep’ and ‘re- 

ove’. To specify the action, we use the output of the FC layer, 

hich shows the probability of taking action ‘keep’. In other words, 

t the tth frame in episode k , the probability { p ′ t 
j
} J 

j=1
shows the

robability of action { a ′ t
k, j 

} J 
j=1

being ‘keep’. Assume A k = { a ′ t 
k
} T ′ 

t=1 
is

he action set in the k th episode over all the T ′ frames, where a 
′ t 
k

is

 J-dim binary vector indicating which joints are selected at frame 
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Algorithm 1 The proposed STH-DRL method. 

Input: The training video sequences with labels, baseline recogni- 

tion classifier, epochs, K 

Output: Trained temporal agent, Trained spatial agent 

1: Pre-train the baseline model. 

2: Pre-train the temporal agent. 

3: Pre-train the spatial agent. 

4: count = 0. 

5: for epochs do 

6: count += 1 

7: for videos do 

8: for K episodes do 

9: Run the temporal agent. 

10: Find the temporal agent’s action using (1), take the 

action and update the state. 

11: Compute reward of the temporal agent using (2) and 

(3). 

12: Run the spatial agent on the selected frames provided 

by the temporal agent. 

13: Find the the spatial agent’s action using (9), take the 

action and update the state. 

14: Compute reward of the spatial agent using (2) and 

(3). 

15: end for 

16: Compute the average reward of temporal agent. 

17: Compute the loss of the temporal agent using (8). 

18: Update the temporal agent network parameters. 

19: Compute the average reward of the spatial agent. 

20: Compute the loss of spatial agent using (14). 

21: Update the spatial agent network parameters. 

22: if count = G then 

23: Retrain the baseline model using the selected frames 

and joints. 

24: count = 0 

25: end if 

26: end for 

27: end for 
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. If a
′ t 
k, j

, which is the jth element of a 
′ t 
k

, is 0, it means the jth joint

hould be removed; otherwise, it is kept. The elements of a 
′ t 
k

are 

ampled from Bernoulli distributions as below: 

 

′ t
k = { a ′ tk, j ∼ Bernoulli (p 

′ t 
j ) } J j=1 

. (9) 

Reward: The reward R ′ 
k

in the k th episode for the spatial agent 

s obtained by feeding the T ′ frames with the selected joints to the 

re-trained baseline model. Similar to the reward calculation pro- 

ess for the temporal agent discussed in Section A, a strong reward 

punishment) is given if the predicted class label goes from wrong 

correct) to correct (wrong). ro is given as the reward if no change 

appens. 

Training the spatial agent with REINFORCE: The spatial agent 

ims at finding a policy function parameterized by γ , which 

nds the discriminative joints by maximizing the expected reward 

 

′ (γ ) as is shown bellow: 

 

′ (γ ) = E 

p ′ γ (a 
′ 1: T ′ 
k, 1: J 

) 
[ R 

′ 
k ] , (10) 

here p ′ γ (a 
′ 1: T ′ 
k, 1: J 

) is the probability distribution of all the possible 

ctions over the T ′ frames. The gradient of the expected reward in 

he k th episode with respect to γ is as follows: 

 γR 

′ (γ ) = E 

p ′ γ (a 
′ 1: T ′ 
k, 1: J ′ ) 

[ R 

′
k

∑ T ′
t=1

∑ J 
j=1

∇ γ ln πγ (a
′ t
k, j 

| s ′ t 
k, j 

)] , (11) 

here πγ denotes the policy function and s 
′ t 
k, j 

is s 
′ t 
j 

in the k th 

pisode. We run the spatial agent for K episodes. The gradient 

s approximated by taking the average over gradients of the K

pisodes for each skeleton video as below: 

 γR 

’ ( γ ) ≈ 1

KT ’ 

K ∑ 

k =1

[
R 

’ 
k

T ’ ∑ 

t=1

J ∑ 

j=1

∇ γ ln πγ

(
a 

’ t 
k, j 

∣∣s ’ t k, j

)]
; (12) 

We then subtract the average rewards of the spatial agent 

pisodes, called b ′ , from all the rewards, to reduce the variance: 

 γR 

′ (γ ) ≈ 1
KT ′ 

∑ K
k =1 [(R 

′ 
k 
− b ′ )

∑ T ′
t=1

∑ J 
j=1

∇ γ ln πγ (a
′ t
k, j 

| s ′ t 
k, j 

)] , 

(13) 

o control the number of selected joints, we add a term to the 

patial agent’s objective function which helps the agent to choose 

o more than N joints in the frames, where N is a user settable 

nteger number between 1 and J. This can be realized by minimiz- 

ng 1 T p 

′ − N in the optimization process. Hence, the final objective 

unction is as bellow: 

in 

γ
−R 

′ (γ ) + β × (1 

T p 

′ − N) , (14) 

here p 

′ is the average probability of the actions over T ′ frames 

nd β is a hyperparameter to control the contribution of its corre- 

ponding term. 

.3. Spatio-Temporal attention algorithm 

To have a more effective training process, we first partially 

re-train the spatial and temporal agents, independent from each 

ther. The pre-trained agents are then trained mutually– i.e., first, 

he T frames of the skeleton video are given to the temporal agent, 

ne episode is completed, and T ′ frames are selected; then, the 

elected frames are fed to the spatial agent, one episode is com- 

leted, and the relevant joints are selected. Both agents complete 

episodes, and then their policies are updated. 

The pseudo-code of the proposed STH-DRL framework is pre- 

ented in Algorithm 1 . In summary, the baseline classifier is first 

re-trained using the original training data (with complete sets of 

rames and joints). Then each agent is pre-trained independently. 
5

fterward, to train the agents mutually, both agents complete K

pisodes and update their policies. This process is repeated for G 

pochs. Then to improve the rewards, the baseline classifier is re- 

rained using the new data (with the selected joints and frames). 

his procedure is repeated for all the epochs. 

. Experiments

To evaluate the performance of our proposed STH-DRL method, 

e performed experiments on three widely used activity recogni- 

ion datasets. We selected three baseline classifiers, each belonging 

o one of the three activity recognition model categories reviewed 

n Section 2.1 , including CNN, BiLSTM, and the recent advanced 

raph-based model DGNN [35] . The effectiveness of the STH-DRL 

ethod is demonstrated using these three baseline models. Also, 

he performance of STH-DRL (with DGNN as the baseline) is com- 

ared with some state-of-the-art skeleton-based activity recogni- 

ion methods. In the following, we will explain the datasets we 

sed for our experiments in Section 4.1 . Section 4.2 discusses 

he employed hyperparameters and networks’ architectures. We 

resent the recognition results of STH-DRL with different base- 

ines in Section 4.3 . Section 4.4 compares the STH-DRL method 

ith state-of-the-art skeleton-based activity recognition methods. 

he learned temporal and spatial hard attentions are visualized in 

ection 4.5 . The convergence analysis of the spatial and temporal 

gent networks is presented in Section 4.6 . Section 4.7 discusses 
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Table 1

Activity recognition accuracy (in percent) of the three different baseline models

with and without STH-DRL.

Method CS CV SBU UT avg.

BiLSTM 65.0 69.2 76.0 94.5 76.1

TH-DRL-BiLSTM 66.2 68.1 76.8 95.5 76.6

SH-DRL-BiLSTM 67.1 71.3 78.1 95.9 78.1

STH-DRL-BiLSTM 70.4 71.8 81.9 97.1 80.3

CNN 70.2 71.3 78.2 87.9 76.9

TH-DRL-CNN 68.2 75.9 79.8 92.2 79.0

SH-DRL-CNN 71.8 76.2 85.5 93.1 81.6

STH-DRL-CNN 75.6 81.3 86.1 95.7 84.6

DGNN 89.9 96.1 87.8 97.5 92.5

TH-DRL-DGNN 87.2 94.8 83.2 95.2 90.1

SH-DRL-DGNN 90.1 96.3 88.7 98.4 93.3

STH-DRL-DGNN 90.8 96.7 88.7 99.1 93.8

Table 2

Activity recognition accuracy (in percent) of different methods on NTU dataset.

Method CS CV year

Lie Group [15] 50.1 52.8 2014

HBRNN [22] 59.1 64.0 2015

Part-aware LSTM [23] 62.9 70.3 2016

LieNet-3Blocks [19] 61.4 67.0 2017

Liu et al. [29] 76 82.56 2017

ST-GCN [33] 81.5 88.3 2018

DPRL + GCNN [11] 83.5 89.8 2018

STA-LSTM [51] 73.4 81.2 2018

DGNN [35] 89.9 96.1 2019

AGC-LSTM [34] 89.2 95.0 2019

DCGCN [37] 88.1 95.2 2020

STA-DeepLG [26] 72.38 79.72 2021

ST-TR [40] 89.9 96.1 2021

3s-AdaSGN [41] 90.5 95.3 2021

STH-DRL 90.8 96.7
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he effect of hyperparameters α in the temporal agent’s objective 

unction and β in the spatial agent’s objective function. The sen- 

itivity of STH-DRL to hyperparameters M and N is assessed in 

ection 4.8 . In the end, the effect of STH-DRL on the training run 

ime is investigated in Section 4.9 . 

.1. Datasets 

NTU+RGBD Dataset (NTU): This is currently the largest pub- 

icly available activity recognition dataset with 56,880 video se- 

uences of 4 million frames [23] . 40 subjects participated in cap- 

uring the video samples by performing 60 different activities. The 

TU data has two train/test split settings. The first setting is Cross- 

ubject (CS), where 40,320 video samples of 20 subjects are used 

or training, and the other 16,540 are used as tests. The second set- 

ing is Cross-View (CV), in which 37,920 video samples captured 

rom cameras 2 and 3 are used in the train set, and the samples

aptured from the other camera view, i.e., camera 1, are included 

n the test set. Each subject is represented by 25 joints, and the 

ideos include either one or two subjects. 

UT-Kinect Dataset (UT): In this data, there are 200 video se- 

uences belonging to 10 different activity classes. Each activity is 

erformed by 10 subjects two times [49] . The number of skeleton 

oints per subject is 20, and all video samples have one subject, i.e., 

on of the activities are interactive. In this work, the Leave-one-out 

ross-validation protocol is used for evaluation. 

SBU Kinect Interaction Dataset (SBU): This data has 230 video 

equences with 6614 frames [50] . There are 8 interactive activity 

lasses, which means there are two persons in all the videos. The 

umber of skeleton joints recorded for each person is 15, so in 

otal, there are 30 joints in each frame. We use the 5-fold cross- 

alidation setting presented for this data for our experiments. 

.2. Implementation details 

A BiLSTM with 3 layers is used as each of the agent’s networks. 

e use Adam as the optimizer with initial learning rates 5e-3 and 

e-4 for temporal and spatial agents, respectively. The dropout rate 

s 0.5. We set hyperparameters �, K, α, and β to 25, 6, 0.01, and

.01, respectively. Hyperparameters M and N are respectively set 

o half of the number of available frames and joints, i.e., M = 

⌈
T 
2 

⌉
,

nd N = 

⌈
J 
2

⌉
where � . 	 denotes the ceiling function. The number 

f epochs for partial pre-training of the temporal and spatial net- 

orks is 6. Although the number of epochs for fully training both 

etworks mutually can be selected adaptively based on the val- 

es of loss functions defined in (8) and (14) , it is set to 9 in all

atasets for simplicity. In all datasets, following [11] , the bi-cubic 

nterpolation is used to derive video samples with an equal num- 

er of frames where the first and last frames remain the same as 

he original video. The number of frames in all video samples of 

TU, UT, and SBU is equalized to respectively 100, 120, and 45. 

he proposed method is implemented in python using the deep 

earning framework Pytorch. 

.3. Improving the baseline models 

To prove that the proposed spatio-temporal attention finding 

ethod boosts the performance of the baseline recognition mod- 

ls, we employed three classifiers, including a BiLSTM, a CNN, 

nd the graph-based method DGNN. The CNN model has 2 lay- 

rs of convolution and one fully connected layer. The optimizer 

s Adam. The BiLSTM-based recognition model has 3 layers with 

 hidden layer size of 256 and the Adam optimization method. 

or DGNN, for a fair comparison, we used the parameter set- 

ing suggested in the original paper. The code available on the 

espective author’s website is used. The hyperparameters of our 
6

TH-DRL method are also set to their default values presented in 

ection 4.2 . Recognition performance of the baseline models on 

he benchmark datasets, before and after applying the STH-DRL 

ethod, are shown in Table 1 . TH-DRL-X, SH-DRL-X, and STH- 

RL-X respectively denote the performance of the partially pre- 

rained temporal agent, the partially pre-trained spatial agent, and 

he spatio-temporal attention finding method with baseline model 

. On each dataset and among X, TH-DRL-X, SH-DRL-X and STH- 

RL-X, the best result is shown in bold. As can be seen, the pro- 

osed STH-DRL method has improved the baseline performance for

ll datasets and baselines. The average accuracy over all datasets

or each method is shown in the last column. This column shows

hat, on average, both pre-trained temporal and spatial agents im- 

rove the recognition accuracy of baselines, and training them mu- 

ually, i.e., the results obtained by the STH-DRL method, results in

he best performance.

.4. Comparison to state-of-the-art 

To prove the effectiveness of our proposed method, we adopt 

GNN as the baseline model and compare STH-DRL-DGNN with 

everal state-of-the-art skeleton-based methods. Table 2 , presents 

he accuracy comparison of the two settings of the NTU dataset, i.e. 

S and CV. As can be seen, our proposed method has the best per- 

ormance among the eleven other activity recognition algorithms. 

erformance comparison of the SBU dataset with six state-of-the- 

rt methods is shown in Table 3 . This confirms our method yields 

he best accuracy among all. In Table 4 , the results of the STH-DRL 

ethod compared to ten other algorithms are shown. As can be 

een, the proposed method achieves the best performance for this 

ata, as well. 
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Fig. 3. Visualizing frequency of selecting a joint by STH-DRL within a video, for three different activity classes from the NTU, SBU and UT datasets. Lighter red color

indicates that the corresponding joint is less frequently selected and a darker one indicates higher selection frequency. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

Table 3

Activity recognition accuracy (in percent) of

different methods on SBU dataset.

Method SBU year

Raw skeleton [52] 49.7 2012

Joint feature [53] 86.9 2014

Hierarchical RNN [22] 80.35 2015

CHARM [54] 83.9 2015

DGNN [35] 87.8 2019

DCGCN [37] 88.2 2020

STH-DRL 88.7

Table 4

Activity recognition accuracy (in percent) of dif- 

ferent methods on UT dataset.

Method UT year

Histogram of 3D Joints [49] 90.9 2012

Riemannian Manifold [55] 91.5 2015

Grassmann Manifold [56] 88.5 2015

GMSM [57] 97.4 2016

SCK + DCK [16] 98.2 2016

ST-LSTM + Trust Gate [20] 97.0 2017

ST-NBNN [17] 98.0 2017

DPRL + GCNN [11] 98.5 2018

DGNN [35] 97.5 2019

DCGCN [37] 98.2 2020

STA-DeepLG [26] 97.7 2021

STH-DRL 99.1
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.5. Visualization of the learned spatial and temporal hard attention 

To visually analyze the results, we show the selected joints for 

hree different activities from the three datasets SBU, UT, and NTU 

n Fig. 3 . The color brightness of the red circles on each joint il-

ustrates the frequency of choosing that joint over the whole given 

 

′ frames. The brighter circles indicate the corresponding joints are 

elected less frequently compared to the joints being specified by a 

arker color. For example, in activity “kick” in the SBU dataset, the 

ower body joints are correctly selected in all frames and the irrel- 

vant joints such as the shoulder are correctly removed. The final 

utput of STH-DRL, i.e. the final selected frames along with their 

orresponding selected joints for activity “hand waving” of NTU 

ata are demonstrated in Fig. 4 . The removed frames are shown 

n gray, and the selected joints are specified with red circles. As 
7

an be seen, there are no observable differences between frames 

5 to 49; therefore, the algorithm has kept only frame 48 as their 

epresentative. Also, between frames 54 and 55, a hand movement 

s observed, so both frames are kept. 

To have a more general view of the selected joints, the distri- 

ution of the selected joints, over all the activities and for each of 

he three datasets, is shown in Fig. 5 . This figure indicates that the 

elected joints by STH-DRL vary among different activities, and not 

ll joints are informative for an activity. 

Figures 4, 3 , and 5 demonstrate the consistency of the learned 

patial and temporal attentions with human perception. 

.6. Convergence analysis 

As is discussed in Section 3 , temporal and spatial agents aim to 

inimize the loss functions defined in (8) and (14) , respectively. To 

ee the trend of optimization, the loss value of temporal agent and 

patial agent versus training iteration, for SBU, UT, and NTU (CS) 

atasets are shown in Figs. 6 and 7 . As these graphs show, at the

eginning of the training, the loss oscillates significantly, which is 

ue to the low skill level of agents. However, the oscillation de- 

reases over time as the agents become skilled in choosing impor- 

ant joints and frames. In the end, the losses of both temporal and 

patial agents converge to zero, which is desired. 

.7. Effect of hyperparameters α and β

In this section, the influence of hyperparameter α in the loss 

unction of temporal agent shown in (8) , and hyperparameter β
n the loss function of spatial agent shown in (14) are investi- 

ated. Figure 8 a shows the accuracy vs. α where α is selected from 

he set { 0 , 10 −3 , 10 −2 , 10 −1 , 1 } and β is set to its default value i.e.

0 −2 . Figure 8 b demonstrates the accuracy of STH-DRL vs. β where 

∈ { 0 , 10 −3 , 10 −2 , 10 −1 , 1 } and α is set to its default value 10 −2 .

TH-DRL with the BiLSTM baseline and the UT dataset is used for 

his experiment. As can be observed in these graphs, imposing the 

pper bounds on the number of selected frames and joints is ef- 

ective in the recognition performance. 

.8. Sensitivity to hyperparameters M and N

The sensitivity of STH-DRL to the hyperparameters M and 

are explored in this section. To this end, M is selected 
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Fig. 4. Visualizing the selected frames and joints by STH-DRL for the activity “hand waving” in the NTU dataset. The frames shown in gray color are discarded from the

data. The selected joints are shown in red circles. The index of each frame is shown below the frame. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Fig. 5. Distribution of the engaged joints in different actions for the (a) SBU, (b) UT,

and (c) NTU(CS) datasets.
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Table 5

Run time (in hours) of training a BiLSTM-based recogni- 

tion model with ( T pr+ p ) and without ( T o ) STH-DRL.

Method CS CV SBU UT avg.

T pr 5.82 5.53 0.03 0.03 2.85

T p 40.89 43.52 0.19 0.24 21.21

T pr+ p 46.71 49.05 0.22 0.27 24.06

T o 95.70 90.20 0.68 0.61 46.79
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rom the sets { 3 , 8 , 16 , 22 , 30 , 38 , 45 } , { 5 , 15 , 30 , 60 , 85 , 105 , 120 }
nd { 5 , 10 , 35 , 50 , 65 , 80 , 100 } for SBU, UT, and NTU datasets, re-

pectively. The accuracy of STH-DRL with BiLSTM baseline vs. M

s shown in Fig. 9 . As is observed, the best M value for all three

atasets is half of the number of available frames. The same 

xperiment is performed for the parameter N where N is se- 

ected from the sets { 3 , 7 , 10 , 15 , 19 , 26 , 30 } , { 2 , 5 , 8 , 10 , 13 , 17 , 20 }
nd { 5 , 10 , 15 , 25 , 30 , 40 , 50 } respectively for the SBU, UT and NTU

atasets. Figure 10 shows the recognition accuracy, which indicates 

hat setting N to half of the number of available joints leads to the 

ighest accuracy in all three datasets. Both Figs. 9 and 10 show 

hat the performance of STH-DRL is not too sensitive to the hy- 

erparameters M and N if they are not set to a very low value, 

hich is a desirable property. Moreover, it can be seen that keep- 

ng all the available information, i.e., frames and joints, will not 

lways lead to the best accuracy. This is more significant in the 

TU dataset, where increasing the upper bound for both frames 

nd joints decreases the recognition accuracy. This can be associ- 

ted with the fact that the NTU dataset is a more challenging data 

aving many more activity classes compared to the UT and SBU 

atasets, and there exist several similar classes of activities in the 

ata. Hence, selecting key frames and joints play a more important 

ole in this data. It should be noted that 5-fold and leave-one-out 

ross-validation procedures are used to compute the accuracy for 

he SBU and UT datasets, respectively. 

.9. Run time improvement 

Based on our experiments, about 60% of the frames and 55% 

f the joints are removed in each video by the STH-DRL method. 
Fig. 6. Loss of the temporal agent of STH-DRL-BiLSTM vs. iter

8

n this section, we investigate the effectiveness of the proposed 

TH-DRL framework, as a pre-processing block, in reducing the (re- 

training time of the baseline classifier. To this end, we first train 

TH-DRL (with baseline BiLSTM) as is discussed in Section 3 . We 

hen apply the trained STH-DRL to the data to identify and se- 

ect the relevant frames and joints. The elapsed time of this pre- 

rocessing phase for each dataset is recorded and shown by T pr 

n Table 5 . Then, the pre-processed data, which includes only the 

nformative frames and joints, is used to train a BiLSTM (initial- 

zed randomly) recognition model; the elapsed time for training 

he BiLSTM is recorded and shown by T p in the table. In the third 

ow of the table, the total elapsed time, i.e. T pr+ p = T p + T pr is re-

orted. The last row of the table shows the required time T o for 

raining the same BiLSTM model (with random initial weights) but 

ith the original data, i.e., the data with all frames and joints. The 

ame epoch number is used for training BiLSTM in each case. The 

verage of the run times, avg., on all the datasets are shown in the 

ast column of the table. All the run times reported in the table are 

n hours. Comparing the last two rows of the table indicates our 

roposed method if used as a pre-processing block, speeds up the 

raining phase of the recognition model on average by about 48%. 

aster training time can be associated with two factors: 1) only 

elevant joints and frames are observed during the training phase 

f the baseline classifier, and 2) a much less number of network 

arameters are needed for the pre-processed data, as the result 

f the frame selection achieved by the temporal agent. Figure 11 

hows the histogram of the number of selected frames for video 

amples of the three datasets SBU, UT, and NTU. As can be seen, 

he temporal agent removes about 60% of the frames on average 

n all three data sets, which confirms that our proposed method 

ecreases the run time of the classifier’s training procedure by re- 
ations for the (a) SBU, (b) UT, and (c) NTU(CS) datasets.
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Fig. 7. Loss of the spatial agent of STH-DRL-BiLSTM vs. iterations for the (a) SBU, (b) UT, and (c) NTU(CS) datasets.

Fig. 8. Accuracy of STH-DRL-BiLSTM vs. (a) α and (b) β for the UT dataset.

Fig. 9. Accuracy of STH-DRL-BiLSTM vs. M for the (a) SBU, (b) UT, and (c) NTU(CS) datasets.

Fig. 10. Accuracy of STH-DRL-BiLSTM vs. N for the (a) SBU, (b) UT, and (c) NTU(CS) datasets.

Fig. 11. The histogram of the number of selected frames over the number of video samples for (a) SBU, (b) UT, and (c) NTU datasets.
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uiring a smaller number of parameters. Also, the graphs confirm 

hat despite the common belief that including more information 

i.e., all frames and joints) results in better performance, consider- 

ng only relevant frames and joints can still provide the same level 

f accuracy and also even better performance in several cases. Ca- 
9

ability of STH-DRL in reducing the (re-)training run time of an 

ctivity classifier is especially beneficial for online activity recogni- 

ion applications where a fast and effective (re-)training phase is 

equired. One Tesla P100-PCIE-16GB GPU is used to run these ex- 

eriments. 
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. Conclusion

In this work, we proposed a novel spatio-temporal attention 

nding method, called STH-DRL, which selects the relevant frames 

nd joints in skeleton videos and discards the irrelevant ones, to 

mprove the performance of activity recognition models. In other 

ords, our proposed STH-DRL method finds both spatial and tem- 

oral hard attentions in skeleton videos. We formulate the problem 

s two Markov decision processes and solve them with the popular 

olicy gradient algorithm, REINFORCE. We designed a spatial agent 

or finding the key joints and a temporal agent to find the key 

rames. Each agent has its own specified environment, state, and 

ction. The two agents are trained by interacting with each other 

n order to find their optimal policy. STH-DRL has the capability 

o be employed prior to the existing human activity recognition 

odels to improve their recognition performance. Three widely 

sed benchmark datasets including NTU, SBU, and UT-Kinect are 

sed in our experiments and performance analyses. We used three 

ecognition methods to demonstrate the effectiveness of the frame 

nd joint selections performed by the STH-DRL method. As our ex- 

eriments denoted, our method could improve the baseline clas- 

ifiers’ performance by about 4.4% on average. We also compared 

he proposed method with state-of-the-art skeleton-based activity 

ecognition methods, and the results confirmed the effectiveness 

f our method. In addition, we demonstrated that STH-DRL, as a 

re-processing block, can decrease the training time of a baseline 

ctivity classifier. The run time reduction is more specifically bene- 

cial in applications where online training plays an important role. 

oreover, frame reduction is useful in video transmission where 

he transmitter decides which frames to transmit to reduce the 

ransmission time and complexity. 
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