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Abstract— Skeleton based human activity recognition has
attracted lots of attention due to its wide range of applications.
Skeleton data includes two or three dimensional coordinates of
body joints. All of the body joints are not effective in recognizing
different activities, so finding key joints within a video and
across different activities has a significant role in improving the
performance. In this paper we propose a novel framework that
performs joint selection in skeleton video frames for the purpose
of human activity recognition. To this end, we formulate the
joint selection problem as a Markov Decision Process (MDP)
where we employ deep reinforcement learning to find the
most informative joints per frame. The proposed joint selection
method is a general framework that can be employed to improve
human activity classification methods. Experimental results
on two benchmark activity recognition data sets using three
different classifiers demonstrate effectiveness of the proposed
joint selection method.

Index Terms— Joint selection, activity recognition, skeleton
data, deep reinforcement learning.

I. INTRODUCTION

Activity recognition is a challenging, yet very useful
task in the field of computer vision. Its applications range
from monitoring of indoor and outdoor activities to human-
robot interaction [1], [2]. With the prevalence of depth cam-
eras such as Microsoft Kinect, and improvement of human
pose estimation methods, skeleton data is easily accessible;
therefore, skeleton-based activity recognition has become
very popular [3], [4]. Skeleton data, which contains two-
dimensional (2D) or three-dimensional (3D) coordinates of
human body, is beneficial compared to RGB data since it is
robust to variation of environment light, background clutter,
view points and body scale.

For capturing skeleton data, often the key body joints are
considered; however, for different activities, all the joints are
not equally important. Consider two activities kick and throw
as examples. For the activity kick, the lower body joints are
important while in activity throw, upper body joints play
more role. Beside that, in one single activity, the key joints
may be different in different temporal frames.

In this paper we propose a novel framework for selecting
the key informative joints in video frames for the purpose
of human activity recognition. The process of selecting key
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joints can also be considered as a hard spatial attention
learning mechanism to generate frame descriptions for ac-
tivity classification. The proposed framework, for the first
time, formulates the joint selection problem as a Markov
Decision Process (MDP) [5] and employs deep reinforcement
learning (DRL) to find the optimal solution. Throughout this
paper, we refer to the proposed DRL-based joint selection
method as JSDRL. In JSDRL, each video frame is associated
with its own distinct optimal joint set, which may vary both
in membership and size across the video. This allows the
joint set to optimally adapt to temporal variations. JSDRL
is a general framework that can be employed to improve
the recognition performance of human activity classification
methods (e.g., decouple GCN-DropGraph (DCGCN) [6],
convolutional neural network (CNN) and long-short-term-
memory (LSTM) based classifiers) as it only passes the
relevant, informative joints to the classifiers. JSDRL reduces
the computational complexity when training a classifier as
it drops the irrelevant joints. In Reinforcement learning
(RL), an agent learns the best policy by interacting with
the environment and getting reward or punishment. RL is
an effective search tool when the proper searching steps are
unknown. In the joint selection scenario, the ground-truth
for the key joints is not available, i.e. there is no supervision
informing which joints are important. Therefore, it is unclear
how to effectively explore spatial information over frames to
choose which joints to use. As such, RL is a highly beneficial
tool for joint selection.

The rest of the paper is organised as follow: In Section
II, the related works to our method are reviewed. Section III
explains the proposed method in detail. In Section IV, the
experiments we have done are presented. The conclusion is
drawn in Section V.

II. RELATED WORKS

A. Activity recognition with skeleton data

There have been a lot of researches for activity recognition
in skeleton data some of which focus on extracting hand-
crafted features [19], [9], [10], [34], [35], [36], [8], [30]. In
[8], a three dimensional relationship between body parts is
modeled by translations and rotations, and then the classifi-
cation is performed in Lie algebra using the obtained repre-
sentation. Weng el al. partitioned the action sequences into
temporal windows and used them as the video descriptors.
Then employing these descriptors and an extended version
of Naive Bayes Nearest Neighbor algorithm, they performed
activity recognition [30].



Great performance of deeplearning-based techniques in
image understanding encouraged researchers to employ
deeplearning for activity recognition. Such algorithms can
be categorized into methods based on Recurrent Neural
Networks (RNN), Convolutional Neural Networks (CNN),
and graph-based networks.

Effectiveness of RNN in modeling sequential data has
made it a good choice for video classification [13], [11], [20].
A two-stream RNN-based model is presented in [11] where
both temporal dynamics and spatial information are captured
by the two-stream network. Shahroudy et al. presented a
part-aware LSTM method where each part is considered
separately [20]. In [40], body joints are first grouped into five
parts, and then each body part is fed into an individual sub-
network; output of networks are then fused hierarchically to
create one single output at the end, which is then used for
recognition. Liu et al. extended LSTM to both spatial and
temporal domains and proposed trust gate for dealing with
noise [31]. An LSTM-based method is presented in [12] that
finds soft spatial and temporal attention in skeleton data.

In CNN-based models, to fulfill the need for image
data, the 3D coordinates of joints are usually considered
as psedu-image [13]. Li et al. combined the position and
velocity information of joints and used a two-stream CNN
architecture for activity recognition [14]. In [38], first a
transformation is applied, then the transformed data are fed
to a CNN for robust feature extractions. Other CNN-based
activity recognition methods for skeleton data can be found
in [15] and [16].

Human body can be modeled as graph with nodes and
vertices intrinsically; therefore, several graph-based methods
have been proposed and gained successful results in the
skeleton-based activity recognition field. Spatial-temporal
graph convolutional network is proposed in [17], which
consists of several spatial-temporal graph convolutions to
extract body skeleton features. Inspired by [17], other graph-
based methods are presented, such as [6], [7] and [18]. Yan
et al. suggested a graph CNN which learns both spatial
and temporal representations to improve the recognition
performance and generalization ability in recognition [37].

All the deeplearning-based methods discussed above focus
on developing network(s) that capture skeleton data features
in an efficient way in order to realize an accurate activity
recognition. None of these methods focus on finding the
most informative joints among the set of given joints and
discarding the irrelevant ones prior to recognition. This paper
presents a novel technique for identification of informative
joints across frame/video and employs them for recognition.

B. Reinforcement learning in activity recognition

Inspired by the way humans learn to optimally behave
in different environments, reinforcement learning algorithms
try to learn how to obtain a complex goal through interaction
with the environment and getting reward or punishment. The
reward is designed based on the final goal(s) of agent and
the agent’s objective is to maximize the received reward.
There are some researches in the field of computer vision

using Reinforcement learning such as [24], [26], and [25]
in which RL is used for image recognition, visual tracking
and face recognition. However, there are few for activity
recognition especially for skeleton-based data. In [22], multi-
agent reinforcement learning is used to select key frames
in videos where each agent is responsible for selecting a
frame. As a result, the number of selected frames is fixed.
Dong et al. proposed an RL-based method which finds the
most relevant frames using an LSTM agent [23]. Both of
the mentioned methods are proposed for RGB data. In [27],
authors proposed an RL-based technique called deep pro-
gressive reinforcement learning (DPRL) to select key frames
in skeleton video. This method uses a graph representation
of data, and a graph CNN is used as agent and for reward
generation.

III. PROPOSED METHOD

The proposed JSDRL method models the joint selection
problem as an MDP and solves that with the well-known
off policy reinforcement learning algorithm, i.e., Monte
Carlo policy gradient (i.e. REINFORCE) [28]. A typical RL
algorithm has an agent in its current state of the environment.
The agent takes an action that changes its state and receives
a reward based on it.

In this paper, we define the kth step of our RL
episode as Tk = (Sk, Ak, Rk), where Sk, Ak and Rk are
respectively state, action and reward at the kth step; the
full episode of the proposed RL system can be shown as
T = (S1, A1, R1..., SK , AK , RK). At each step of episode,
the agent goes over all T frames of a given video. Agent,
State, Action, and Reward in the proposed joint selection
framework are defined as follows:

Agent: Human skeleton can be considered as an ordered
sequence of J joints. In this study, we propose to employ
Bidirectional LSTM (BiLSTM) network followed by a fully
connected (FC) network as the agent. At frame t of Tk, the
BiLSTM network takes the state Stk (where Sk = {Stk}Tt=1)
as input and then feeds its hidden layer, {hj}Jj=1, to the FC
network. The agent outputs vector {ptj}Jj=1 that is used to
define the next action.

State: In skeleton based human activity recognition,
it has been shown that both joints location and joints
motion are informative components. Hence, we define the
agent’s state at frame t of Tk as Stk = {stj}Jj=1 where
stj = [stj,c, s

t
j,m], stj,c is the 3-dim coordinates of the jth

joint, and stj,m is the jth joint 3-dim motion vector, i.e.
stj,m = stj,c − st−1

j,c .

Action: Consider T × J matrix Fk = {f1k , . . . , fTk },
where f tk is a J-dim indicator vector, showing joints that are
selected at frame t of Tk. If the jth element of f tk is 1, i.e.
f tk,j = 1, then the jth joint is selected for frame t, otherwise
it is not. We initialize elements of Fk, k = 1, ...,K, with
1. The action taken at frame t of Tk, i.e. atk, is a J-dim
vector showing the adjustment needed to be applied to



f tk−1 to obtain f tk. We define two types of actions: 0 and
1, where 0 means no change is needed and 1 means flip
the corresponding selection bit. The outputs of the FC
network of the agent at the tth frame, {ptj}Jj=1, indicates
the probability of changing elements of f tk−1. Finally, the J
elements of action vector at frame t of Tk, atk, are sampled
from Bernoulli distributions as follows:

atk = {atk,j ∼ Bernoulli(ptj)}Jj=1 (1)

atk,j = 1 indicates flip the jth element of f tk−1 to obtain the
jth element of f tk – i.e. if the jth joint is selected (removed)
in the previous step, it will be removed (selected) in the
future step, and atk,j = 0 means no change is needed. In this
way, we allow the removed joints to be selected in the next
episode if they were erroneously removed from the selected
joint set. This changing process is shown below:

f tk,j =

{
f tk−1,j if ak,j = 0,

1− f tk−1,j if ak,j = 1.
(2)

The total action set corresponding to the kth episode is
Ak = {atk}Tt=1.

Reward: The reward reflects how good the action
taken by agent is with regard to the state. We generate the
reward with a pre-trained classifier which takes the T frames
with selected joints as input, where joints are selected by
the agent. If the class label predicted by the classifier turns
from the correct label to a wrong one, a strong punishment
−Ω is enforced and a strong reward of Ω is enforced if the
turning goes otherwise. Further, if the predicted class label
does not change, but the confidence of classifier towards
predicting the correct class changes, reward r0 is given,
which is defined as below:

r0 = sgn(P kl − P k−1
l ), (3)

where P kl is the probability of correctly classifying the video
as class l in Tk . The Reward at Tk, i.e. Rk can be shown
as below:

Rk =


Ω if reward
−Ω if punishment
r0 otherwise

(4)

The goal of agent is learning a policy function by maxi-
mizing the expected reward shown below:

R(θ) = Epθ(a1:Tk,1:J )[Rk], (5)

where pθ(a1:Tk,1:J) is the probability distribution of the possi-
ble actions over the frames. In Policy Gradient algorithms,
the policy is usually modeled with a function parameterized
by θ, and in REINFORCE, which is a policy gradient method
[13], the gradient of the expected reward R(θ) w.r.t. the
parameters θ is calculated as:

∇θR(θ) = Epθ(a1:Tk,1:J )[Rk

T∑
t=1

J∑
j=1

∇θ ln πθ(atk,j |stk,j)], (6)

Fig. 1: Block diagram of the proposed joint selection method
JSDRL.

where πθ is the policy function, ak,j is the action taken by
the agent at Tk for the joint j and sk,j is the corresponding
state.

To simplify Eq. (5), instead of taking the expectation over
action sequence, and as we get the reward after observing
the whole T frames, we approximate the gradient by taking
average of gradients over the total T frames and K steps as
follows:

∇θR(θ) ≈ 1

KT

K∑
k=1

[Rk

T∑
t=1

J∑
j=1

∇θ ln πθ(atk,j |stk,j)], (7)

where Rk is the reward computed at the kth step of episode.
To reduce the variance and guarantee the convergence of the
algorithm, a constant baseline b, which is the average rewards
of steps, is reduced from the reward as follows:

∇θR(θ) ≈ 1

KT

K∑
k=1

[(Rk − b)
T∑
t=1

J∑
j=1

∇θ ln πθ(atk,j |stk,j)],

(8)

To make sure the agent selects at least one joint and does
not select more than N joints, we propose to add two other
terms to the loss function along with the REINFORCE loss
as below:

min
θ
−R(θ) + α(1Tp−N)− β(1Tp), (9)

where p is the average probability of vector of actions over
the T frames and K steps and N is the maximum number of
selected joints, and α and β are two hyper-parameters that
control the effect of their corresponding terms.

Block diagram of the proposed framework is shown in Fig.
1. Pseudo code of the proposed JSDRL method is shown in
Algorithm 1. In summary, first the classifier is pre-trained on
the original training data. Then, a video sequence is given
to the agent’s network (aka policy network), an episode
is completed, and the network is updated. This process is
repeated for all epochs where the classifier is re-trained every
G epochs.



Algorithm 1 The proposed JSDRL method
Input: The video sequences with labels
Output: Trained agent (i.e. policy network)

1: Pre-train the classifier and Initialize the agent (policy)
network

2: Count = 0
3: for epochs do
4: for videos do
5: Count += 1
6: for K steps of episode do
7: run the policy network
8: find the action using Eq. (1)
9: take the action and update the state (select

joints)
10: compute reward using Eq. (3) and Eq. (4)
11: end for
12: compute the average reward
13: compute the loss (Eq. 9)
14: update the policy network parameters
15: if Count≤ G then
16: retrain the classifier
17: end if
18: end for
19: end for

IV. EXPERIMENTS

To evaluate the performance of the proposed JSDRL
method, we conducted experiments on two benchmark ac-
tivity recognition datasets. To demonstrate the effectiveness
of joint selection in activity recognition, we show recognition
results with and without joint selection using three classifiers:
CNN-based, BiLSTM-based and Graph-based.

A. Data sets

NTU+RGBD Dataset (NTU) [20]: NTU is currently the
largest activity recognition data with 56,880 sequences and
4 million frames. The video samples belong to 60 classes,
and there are two settings for train/test sample partitioning:
Cross-Subject (CS) and Cross-View (CV). In the CS setting,
samples of 20 subjects are used as train and the remaining
ones are used for testing. In the CV setting, samples of
camera views 2 and 3 are selected as the train set and samples
captured by camera 1, are used as the test set. The number
of skeleton joints captured for this data set is 25 and there
are either one or two subjects in each video.

UT-Kinect Dataset (UT) [29]: UT includes 200 sequences
belonging to 10 classes. Each activity is performed by 10
subjects twice and there is no interactive activity in the data
which means there is only one subject in each video sample.
There are 20 joints in each frame and Leave-one-out cross-
validation protocol is used to evaluate the proposed method
on this data.

B. Implementation Details

We use BiLSTM with 3 layers as the agent’s network
(i.e. policy network) and the optimizer is Adam with initial

learning rate 1e-4. The number of epochs, values of K, Ω
α, and β are respectively set to 20, 5, 10, 0.1 and 0.1. We
divide the number of video samples to 5 and use that as the
value of G. The value of N is set to half of the number
of available joints. The proposed method was implemented
with Pytorch.

Effectiveness of the proposed JSDRL method is demon-
strated using three different classifiers including the two
basic classifiers BiLSTM and CNN and a state-of-the-art
graph-based classifier which is specifically designed for
skeletonbased human activity recognition, i.e. decoupling
graph Convolutional neural networks with dropGraph mod-
ule (DCGCN) [6]. The DCGCN parameters are set to their
default value suggested in the original paper. The BiLSTM
classifier has 3 layers with hidden layer size 256, where it is
trained using Adam optimization method. The CNN classifier
has 2 convolution layers followed by one fully connected
layer, and the optimizer is Adam.

C. Recognition Accuracy

The classification accuracy with and without joint selec-
tion, i.e. applying JSDRL, for the two datasets are reported
in Table I, where the best performance is shown in bold.

As can be seen, the proposed JSDRL method improves the
classifiers performance for both the two datasets. The average
performance of each Method over the three sets CS, CV and
UT are shown at the last column. The average values confirm
the improved performance of the proposed method compare
to without-joint-selection cases. That is while on average,
almost 60 % of joints are eliminated leading to a decline in
classification cost in both training and testing phases.

In Tables II and III, performance of JSDRL (with the
DCGCN classifier) is compared with several state-of-the-
art activity recognition methods. Table II shows superior
performance of the proposed method, on both CS and CV
settings of the NTU dataset, to its eight competitors. Table
III shows that the proposed method outperforms ten state-of-
the-art skeleton-based activity recognition classifiers, on the
UT dataset.

To visualize the performance of the proposed method, the
resultant selected joints for the two activities kick and phone
call are depicted in Fig. 2. The intensity of red color at each
joint indicates the frequency of selecting that joint over the
whole video frames; e.g. in the activity phone call, hand,

TABLE I: Recognition accuracy (in percent) of three dif-
ferent classifiers with and without JSDRL. CS and CV
respectively indicate the cross subject and cross view settings
of the NTU dataset.

Method CS CV UT average

BiLSTM 65 69.01 94.5 76.17
CNN 70.2 71.3 91.9 77.8
DCGCN [6] 88.1 95.2 98.2 93.83
BiLSTM+JSDRL 67 71.5 96.9 78.46
CNN+JSDRL 75.6 80.5 95.8 83.96
DCGCN+JSDRL 89.3 96 99.1 94.8



Fig. 2: Visualizing the frequency of selected joints by JS-
DRL; a lighter spot means the corresponding joint is selected
less frequently over the frames of a video and a darker one
means a higher selection frequency.

TABLE II: Recognition accuracy (in percent) of different
methods on NTU dataset.

Method CS CV year

Lie Group [8] 50.1 52.8 2014
HBRNN[40] 59.1 64.0 2015
Part-aware LSTM [20] 62.9 70.3 2016
LieNet-3Blocks [39] 61.4 67.0 2017
Mengyuan et al. [38] 76 82.56 2017
ST-GCN [37] 81.5 88.3 2018
DPRL [27] 83.5 89.8 2018
DCGCN [6] 88.1 95.2 2020
JSDRL 89.3 96

thumb and fingers tip are correctly selected in all frames
and the irrelevant foot and head joints are not selected in any
frame. This figure demonstrates the effectiveness of JSDRL
method in selecting relevant joints.

D. Sensitivity to hyperparameter N

To investigate the sensitivity of the JSDRL method to
the hyperparameter N , introduced in (9), we apply JS-
DRL+BiLSTM to the UT dataset for different N values, i.e.
N ∈ {3, 6, 10, 12, 15, 20}. Note that J is equal to 20 in the
UT dataset. The role of N in the loss function is to set
an upper bound on the number of selected joints. Accuracy
of activity recognition versus N is shown in Figure 3. The
figure shows that the JSDRL method retains high accuracy
for a wide range of N , demonstrating that JSDRL method
is not too sensitive to N , which is a desirable behaviour.

V. CONCLUSION

In this paper, we proposed a deep RL-based joint selection
method, JSDRL, that models the joint selection problem as

TABLE III: Recognition accuracy (in percent) of different
methods on UT-Kinect dataset.

Method UT year

Histogram of 3D Joints [36] 90.9 2012
Riemannian Manifold [35] 91.5 2015
Grassmann Manifold [34] 88.5 2015
GMSM [33] 97.4 2016
SCK+DCK [32] 98.2 2016
ST-LSTM+Trust Gate [31] 97.0 2017
ST-NBNN [30] 98.0 2017
DPRL+GCNN [27] 98.5 2018
DCGCN [6] 98.2 2020
JSDRL 99.1

Fig. 3: Accuracy of JSDRL-BiLSTM vs. hyperparameter N
for the UT-Kinect dataset.

a Markov Decision Process and finds the most informative
joints in each frame of skeleton data using the popular policy
gradient algorithm, REINFORCE. In JSDRL, each video
frame is associated with its own distinct optimal joint set,
which may vary both in membership and size across the
video. This allows the joint set to optimally adapt to temporal
variations. Employing reinforcement learning in the JSDRL
method allows to find relevant joints, per frame, without
requiring any extra labels. The JSDRL can be used as a
filtering block, to identify and filter out irrelevant joints, prior
to any sophisticated activity classification algorithm; this
enhances the classifier performance and reduces the training
time. We evaluated the JSDRL method on two benchmark
skeleton-based activity recognition datasets employing three
different classifiers. The experimental results demonstrated
the effectiveness of JSDRL. Furthermore, the proposed JS-
DRL method outperforms, in terms of recognition accuracy,
several state-of-the-art skeleton-based activity recognition
methods.
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