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Feature Selection for Non-stationary Data:
Application to Human Recognition Using Medical

Biometrics
Majid Komeili, Wael Louis, Narges Armanfard, Dimitrios Hatzinakos

Abstract—ECG and TEOAE are among the physiological
signals that have attracted significant interest in biometric com-
munity due to their inherent robustness to replay and falsification
attacks. However, they are time-dependent signals and this makes
them hard to deal with in across-session human recognition
scenario where only one session is available for enrollment.
This paper presents a novel feature selection method to address
this issue. It is based on an auxiliary dataset with multiple
sessions where it selects a subset of features that are more
persistent across different sessions. It uses local information
in terms of sample margins while enforcing an across-session
measure. This makes it a perfect fit for aforementioned biometric
recognition problem. Comprehensive experiments on ECG and
TEOAE variability due to time lapse and body posture are done.
Performance of the proposed method is compared against seven
state-of-the-art feature selection algorithms as well as another
six approaches in the area of ECG and TEOAE biometric
recognition. Experimental results demonstrate that the proposed
method performs noticeably better than other algorithms.

Index Terms—Feature selection, Electrocardiogram, Transient
Evoked Otoacoustic Emission, Biometric.

I. INTRODUCTION

B IOMETRIC systems have been deployed around the

world and have been used extensively in the past decade.

Automatic identity verification is becoming more appealing

in many aspects such as financial transactions, tele-medicine

and access control. Physiological characteristics such as fin-

gerprint, iris and facial structure and behavioral characteristics

such as voice, gait and signature have been used for identity

recognition. However, the choice of right biometric depends

on characteristics of application environment and usually is

a trade-off between factors such as performance, ease of

collection, user acceptability and deployment cost.

With the wide deployment of biometric systems, the poten-

tial of fooling or spoofing this technology is widely admitted.

For example, fingerprints may be left behind whenever you

touch a glass surface like phone screen and fake fingerprints

can be recreated by some simple procedures using plastic

molds and gelatin. Even iris images can be captured from

few meters distance. Not to mention face images [1], [2]

which can be captured from a longer distance. Voice trait
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is also vulnerable against replay attacks using pre-recorded

voice playbacks. Such vulnerabilities have been motivating

researchers towards novel biometric characteristics such as

Electrocardiogram (ECG) and Transient Evoked Otoacoustic

Emission (TEOAE) that are inherently robust to replay and

falsification attacks.

ECG is related to variation of electrical activity of heart.

TEOAE is an acoustic response generated from cochlea. It is

related to inner ear structure and can be recorded using an

earphone with built-in microphone. ECG and TEOAE have

some advantages over conventional biometrics. ECG is a vital

signal and presence of the ECG signal automatically ensures

the liveness. Moreover, it is difficult to obtain someone’s ECG

without his or her permission. ECG is relatively an inexpensive

technology because many mature data acquisition systems

for collecting ECG signal is already developed in clinical

applications. It is also a natural choice for human identification

in medical care and tele-medicine application where ECG

signal is collected primarily for diagnosis. Moreover, ECG is

a continuous signal which allow a continuous authentication.

TEOAE is an acoustic response which is generated from

within the inner ear after a low level transient click stim-

ulus. TEOAE has the following key characteristics: It can

be recorded non-invasively. Speaker and microphone can be

easily integrated into a headset or earphone connected to a

smart phone to be used for access control or personalization of

service (see Fig. 1). TEOAE presences in almost every living

individual (99%+) [3]. So, it’s measurability is always guar-

anteed. Also, it might be useful in identification of newborn

infants where performance of conventional methods based on

face, fingerprint and iris degrade [4]–[6]. Clinically, TEOAE

is simple, non-invasive yet effective in detecting hearing

problems in newborn babies who are too young to cooperate

in conventional hearing tests [7], and it has been extensively

used in infant screening programs around the world [8].

The main difficulty in using such signals as biometric is that

they are non-stationary. Through this paper by non-stationary

we mean that signals varies over different recording sessions or

postures. One of the most challenging scenarios is the case that

there is only one recording session for enrollment while testing

happens in a different session. In fact, in this case, signals’

nonstationarity does not elicit during enrollment session and

hence cannot be captured from only one recording session.

The proposed method aims to build “templates” from sam-

ples of only one enrollment session such that the templates are

robust against signal variations over different sessions. Realiz-
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ing this goal requires extra information in addition to what can

be extracted from the enrollment session during “enrollment”

phase. The proposed approach, during a “development” phase,

produces this information from an “auxiliary” dataset consists

of recordings of some general subjects different from the bio-

metric system users where recordings from multiple sessions

are available for each member of the auxiliary dataset. This

information is produced in the context of feature selection.

The process of selecting a subset of informative features to

be used for model construction is known as feature selection.

Our feature selection criteria selects features that are more

persistent across different sessions. The desired persistent

features are selected from the auxiliary dataset. These features

are then used as a prior knowledge in building the users

templates.

The proposed feature selection criteria is formulated as a

logistic regression optimization problem that can be efficiently

solved through gradient descent. It makes no assumption

regarding the data distribution. The proposed method allows

us to accommodate across session variations. None of the

previous methods [9]–[21] have the advantage of handling

across session variations and injecting a prior knowledge for

building subjects templates that have only one enrollment

session. We refer to the proposed algorithm as Multisession

Feature Selection (MSFS).

Another key distinguishing characteristic of this paper is

that our ECG signals are collected from thumbs using dry

electrodes (see Fig. 1), contrasting with most of the previous

studies that are based on signals collected from chest using

adhesive gel electrodes (e.g. PTB and MIT databases [22]).

Recording ECG from fingertips is much more realistic for

biometric application compare to recording from chest area

in which the user has to undress for electrode placement.

Adhesive gel electrodes have a very good signal to noise ratio

because of their low electrode/skin impedance. In comparison,

dry electrodes have lower signal quality due to unstable

electrode/skin interface. Therefore, signals recorded from fin-

gertips using dry electrodes are noisier and harder to deal with

[23]. Moreover, unlike the previous ECG datasets [24], [25],

[26], [27], [12], [28], [29], our dataset allows us to consider

challenges related to ECG variation across different postures.

In this study, in addition to analyzing ECG signals recorded

at different times (scheduled at least one week apart), we

consider across posture variations. Furthermore, we demon-

strate the effectiveness of the proposed method on our TEOAE

dataset collected in separate recording sessions (scheduled at

least one week apart). Note that all the previously existing

TEOAE datasets (e.g. [30] and [31]) were recorded in the same

session which is of little biometric value because such datasets

do not allow to verify if the recognition algorithm does the

job in a different session. In those datasets, both training and

testing samples were recorded in the same session by either

recording one signal and then dividing it into two parts (one

for training and one for testing), or reinserting the earphone

and capturing a second recording. An earlier version of this

paper was appeared in [32] which is based on the idea of

performing feature selection on an auxiliary dataset. However,

the feature selection used in [32] treats features individually

Fig. 1. Recording fingertip ECG and TEOAE signals.

and does not consider the interaction between features. In

this paper, the idea of selecting features from a muti-session

auxiliary dataset is realized in a more rigorous framework that

does not suffer from aforementioned limitation. Further, in

this paper we add comprehensive experiments on TEOAE and

ECG (multi-posture) biometrics including comparison of the

proposed feature selection algorithm with 7 existing feature

selection methods and comparison of the whole system with 6

existing biometric recognition methods for ECG and TEOAE.

In addition, a speed up version of the proposed method is

presented that saves the CPU time by approximately 4 times.

The remaining portion of this paper is organized as follows:

Section II briefly reviews recent works in the three areas

of ECG and TEOAE biometrics and feature selection. An

overview of the proposed approach is presented in Section

III. Details of the proposed feature selection algorithm are

presented in Section IV. In section V, an approach to speed up

the proposed algorithm is presented. Experimental results are

presented in section VI and section VII concludes the paper.

II. RELATED WORK

A. Electrocardiogram

Prior works on ECG biometric can be categorized as either

fiducial points dependent or independent. The former is based

on some characteristic points (known as fiducial points) such

as peaks, slope, radius of curvature, onset and end of P, R and

T waves. Detection of such characteristic points is however a

challenging process due to noise. Therefore, following [33],

we do not consider fiducial dependent approaches [25], [34]–

[43]. The latter category considers ECG signal as a set of

heartbeats or just a time series without segmenting it to heart-

beats [9]–[21]. For example, in [11] autocorrelation features

are extracted from overlapping windows and passed to linear

discriminant analysis (LDA) [44] and nearest neighborhood for

classification. Odinaka [16] employs STFT features and log-

likelihood ratio for classification. It is basically a generative

approach which models each subject with an axis aligned

Gaussian distribution. Wang [21] uses sparse coefficients of

an over-complete dictionary followed by max-pooling process

to build templates and use nearest neighborhood for classifi-

cation.

However, most of these methods are based on signals

collected from chest area (e.g. PTB and MIT databases [22])

or lower rib cage [16] and only a few works have been done
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based on ECG signals collected from fingertips [12], [45].

This paper is based on ECG signals collected from fingertips

which is far more convenient for the user because it eliminates

the need for the user to undress for electrode placement (See

Fig. 1). More importantly, none of the previous works provide

a theoretical development for handling the “single session

enrollment, across session testing” scenario which is focus of

this paper.

B. Transient evoked otoacoustic emission

The first study on feasibility of using TEOAE for human

recognition was done by Swabey et al. [46] which uses power

spectrum features and Euclidean distance for classification. In

another work [30] by the same group, maximum likelihood

estimation (MLE) is used to estimate probability density

function (PDF) of inter-class and intra-class distance distri-

butions. In [47] pair-wised distances in cepstrum-transform

domain is used. A summary of above works is presented

in [31]. The main drawback of these works is that due to

difficulty of recording in separate sessions, both testing and

training recordings were collected in the same session or with

only removing and refitting the earphone which limits its

application for biometric purpose.

To address this limitation, the first multisession dataset

of TEOAE signals was collected under a setup suitable for

biometric evaluation [48] and bivariate empirical mode decom-

position (BEMD) were employed for signal decomposition.

Later, [49] used continuous wavelet transform (CWT) for

signal representation. The main drawback of these methods

is that they rely on expert’s knowledge to engineer features

which were often chosen for their empirical performance,

rather than a specific theoretical property related to across

session variations.

C. Feature selection

Feature selections approaches can be divided into two cat-

egories: supervised and unsupervised. Supervised approaches

use label information to guide the selection process whereas

unsupervised approaches aims to describe structure of data in

some feature space in the absence of label information [50],

[51]. In this study, we focus on the supervised approaches

because in the biometric recognition application class labels

are provided.

Supervised feature selection methods can be roughly cate-

gorized into filters, wrappers and embedded methods. Wrapper

methods, such as sequential forward selection and sequential

backward selection [52], select a feature subset (among all

possible feature subsets) that gives the best performance [53].

A model for each candidate feature subset is trained and

then tested and its performance is used to guide the feature

selection process. Various searching techniques have been

proposed in the literature. For example, in [54] particle swarm

optimization is used as a search technique. However, wrappers

are computationally very intensive specially if the chosen

model is complex. The other drawback of such algorithms is

the high risk of over-fitting because they are tuned to a specific

model. While wrapper methods use a model, i.e. a specific

classification algorithm, for evaluation of a feature subset,

filter methods use a criterion function. The third category,

embedded methods, embeds feature selection in classification

[55], [56]. However, such integration does not fit in our

proposed approach because in the proposed approach feature

selection and classification have to be performed on separate

set of data. Data for feature selection have to be collected from

multiple sessions but data for classifier training have to be

collected from a single session to comply with “single session

enrollment, across-session test” scenario. More details on the

proposed method will be provided in the next section.

On the other side, filter methods are relatively fast and do

not suffer from aforementioned limitations. Different criterion

functions have been proposed in the literature. Some feature

selection approaches are based on mutual information and usu-

ally use some heuristics to handle the relevance-redundancy

trade-off [57]–[61]. In [61] a minimum redundancy maximum

relevance criterion is used which is based on mutual infor-

mation. In [62], a greedy algorithm is presented that adds

features to the current subset according to the selected and

remaining features relevances with the labels. There are some

other approaches which are based on evolutionary algorithms.

In [63] feature selection is realized by differential evolution

to reduce the search space. Some other feature selection

algorithms are based on a maximum margin criteria [64], [65],

[66], [67], [68], [69]. These methods are sample-based where

the “margin” is defined as the difference between distance to

the nearest same class sample (near-hit) and the nearest sample

from opposite classes (near-miss). Relief [66] selects features

that are statistically relevant to the target. The drawback of

this method is that nearest miss and nearest hit samples

are computed in the original space. This was addressed in

Simba algorithm [65] through reevaluation of the margins.

However, its objective function is not convex and suffers

from many local minima. Later, in [64] a local margin-based

feature selection approach was presented in which uses a local

learning approach to decompose a complex nonlinear problem

into a set of locally linear problems within a large margin

framework. Nevertheless, none of the aforementioned feature

selection methods are designed to accommodate multisession

data. Indeed, these are unable to benefit from the session label

information provided in addition to the class labels in our

problem.

III. OVERVIEW

In this study we consider a “single session enrollment,

across session test” scenario in which enrollment (classifier

design) have to be done using one session and testing have to

be done in another session. To alleviate the undesired effects

of signal variation between enrollment and test sessions, in

the proposed approach, classifiers are designed using a subset

of more persistent features. Such features are selected by

looking at a separate dataset with multiple sessions referred

as auxiliary dataset. Therefore, each sample in the auxiliary

dataset has two labels: class label and session label. There is

no overlap between subjects in auxiliary dataset and actual

biometric system users that are to be enrolled in the biometric
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system. Details of the proposed feature selection method is

presented in the next section.

IV. PROPOSED FEATURE SELECTION METHOD

Let D = {(x(i), y(i), s(i))}Mi=1 ⊂ R
J×Y×S be an auxiliary

dataset consists of M samples belong to N subjects and for

each subject S different sessions are available. x(i) is a J
dimensional feature vector, Y = {Y1, . . . , YN} is the set of

all class labels and y(i) ∈ Y is the class label of the i-th
sample x(i). S = {S1, . . . , SS} is the set of all session labels

and s(i) ∈ S is the session label of x(i). For example, S may

indicate recording sessions on S different weeks, i.e., week 1,

week 2, ..., week S.

Assume that x(i) is excluded from D and we want to classify

it while the corresponded subject, i.e. y(i), is enrolled using

samples of only one session. However, there are S possible

options for enrollment session and we want x(i) to be correctly

classified using either of them. Let adopt a classification rule

such that given session s ∈ S as enrollment, x(i) is correctly

classified if and only if its corresponding margin �
(i)
s is positive

where �
(i)
s is defined as:

�(i)s = 1Td(i)
s (1)

where d
(i)
s = d

(i)
NM − d

(i)
NHs

and (·)T is transpose operator.

d
(i)
NM and d

(i)
NHs

are absolute difference vectors determined as

follows:

d
(i)
NM =

∣∣x(i) − NM(x(i))
∣∣ ,

d
(i)
NHs

=
∣∣x(i) − NHs(x

(i))
∣∣ , (2)

where |.| is element-wise absolute operator, NM(x(i)) is the

nearest neighbor of x(i) with a different class label (nearest

miss) and NHs(x(i)) is the nearest neighbor of x(i) from

session s with the same class label as x(i) (nearest hit). Note

that equations (1) and (2) imply l1 distance. While other

options are possible (e.g. Euclidean distance by substituting

|.| with (.)2 in (2)), throughout this paper we use l1 distance.

A basic definition of margin as the difference between distance

to nearest miss and nearest hit was previously used in [66],

[65] and [64], but it does not deal with the multiple session

issue – Hence this is not appropriate for our problem.

A positive margin implies that the query sample x(i) will be

correctly classified. We realize the goal of having less misclas-

sification error through weighting features by a nonnegative

vector f and measuring margins in the corresponding weighted

space specified by f . A larger margin provides even more room

for the query sample x(i) to wander in the weighted space

and still be correctly classified, i.e. a better generalization on

unseen data. Therefore, we seek to maximize the margins in

the “weighted” space. Equation (1) defines the margin in the

original space. Similarly, in the weighted space, margin of

sample x(i) with respect to session s can be computed as

follows:

�(i)s (f) = fTd(i)
s . (3)

In fact f could be considered as a weighting vector that

assigns higher weights to the relevant features where relevant

features are those that results in larger margins. At the outset,

f is unknown. Therefore, determining nearest miss and nearest

hit in the weighted space defined by f is a challenging issue.

To overcome this issue, we use an iterative approach for

computing f , where at each iteration f is determined based

on the distances in the weighted space defined at the previous

iteration. Following [64], the problem of learning feature

weights is formulated as a logistic regression problem and

solved via gradient decent. However, determining NM(x(i))
and NHs(x

(i)) in the presence of irrelevant features, may

not be accurate. To address this issue, margin is estimated

as the expectation of �
(i)
s (f) over all possible candidates for

NM(x(i)) and NHs(x
(i)) as follows:

�̄(i)s (f) = fTd̄(i)
s (4)

where d̄
(i)
s = d̄

(i)
NM − d̄

(i)
NHs

; and d̄
(i)
NM and d̄

(i)
NHs

are:

d̄
(i)
NM = D

(i)
NMp

(i)T

NM , (5)

d̄
(i)
NHs

= D
(i)
NHs

p
(i)T

NHs
. (6)

D
(i)
NM and D

(i)
NHs

are matrices whose columns are absolute

difference vectors with respect to x(i):

D
(i)
NM =

(∣∣∣x(i) − x(Mi(1))
∣∣∣ , . . . ,

∣∣∣x(i) − x(Mi(n))
∣∣∣) ,

(7)

D
(i)
NHs

=
(∣∣∣x(i) − x(Hi

s(1))
∣∣∣ , . . . ,

∣∣∣x(i) − x(Hi
s(m))

∣∣∣) .
(8)

Mi and Hi
s with cardinality of n and m denote set of all

possible candidates for NM(x(i)) and NHs(x
(i)) respectively

and are defined as:

Mi =
{
j ∈ {1, . . . ,M} | y(j) �= y(i)

}
, (9)

Hi
s =

{
j ∈ {1, . . . ,M} | y(j) = y(i), s(j) = s, j �= i

}
. (10)

p
(i)
NM (p

(i)
NHs

) in eq. (5) (eq. (6)) is an n-dimensional (m-

dimensional) row vector indicates the probability of samples

in Mi (Hi
s) being NM(x(i)) (NHs(x

(i))). Within the weighted

space, samples situated closer to x(i) are more probable to

be the nearest sample. So the probabilities are determined as

follows:

p
(i)
NM = exp

(
−fTD

(i)
NM

σ

)
, (11)

p
(i)
NHs

= exp

(
−fTD

(i)
NHs

σ

)
, (12)

where σ is a user settable parameter. p
(i)
NM and p

(i)
NHs

are then

normalized to sum to one to be the probabilities utilized in (5)

and (6).

Having M × S margins of the form �̄
(i)
s (f) = fTd̄

(i)
s , s =

1, ..., S, i = 1, ...,M , it is desired to maximize all margins.

Considering a logistic regression formulation, the optimization

problem can be expressed as follows:

max
f

M∑
i=1

S∑
s=1

G
(
fTd̄(i)

s

)
, s.t. f ≥ 0, (13)
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Input: D = {(x(i), y(i), s(i))}Mi=1, σ, λ
Output: {f}

1 Initialization: Set f = (1, . . . , 1)T;
2 repeat
3 fprev. = f ;
4 for i ← 1 to M do
5 Compute D

(i)
NM as in (7);

6 Compute p
(i)
NM using fprev. as in (11);

7 Compute d̄
(i)
NM as in (5);

8 for s ← 1 to S do
9 Compute D

(i)
NHs

as in (8);

10 Compute p
(i)
NHs

using fprev. as in (12);

11 Compute d̄
(i)
NHs

as in (6);

12 Compute d̄
(i)
s = d̄

(i)
NM − d̄

(i)
NHs

;
13 end
14 end
15 Compute a through solving (17);

16 Set fj = a2
j , 1 ≤ j ≤ J

17 until ‖f − fprev.‖2 < ε;

Algorithm 1: Pseudo code of the proposed MSFS

feature selection algorithm.

where G(·) is a logistic function.

G(b) = log

(
1

1 + exp (−b)

)
(14)

G is a strictly increasing function, therefore maximizing

G
(
fTd̄

(i)
s

)
indeed implies maximizing fTd̄

(i)
s . However, G is

useful because it can take an input that can vary from negative

to positive infinity whereas the output always ranges between

0 and 1. Then (13) can be simplified as follows:

min
f

M∑
i=1

S∑
s=1

log
(
1 + exp

(
−fTd̄(i)

s

))
, s.t. f ≥ 0, (15)

A regularization term may also be added that has been shown

to be useful in many applications to control over-fitting [70].

Hence, the problem can be formulated as follows:

min
f

M∑
i=1

S∑
s=1

log
(
1 + exp

(
−fTd̄(i)

s

))
+ λ‖f‖1, s.t. f ≥ 0,

(16)

where λ is a user settable parameter. Equation (16) is a

constrained convex optimization problem with respect to f.
We then replace the vector f with a new vector a such that

fj = a2j , 1 ≤ j ≤ J and reformulate the problem in an

unconstrained form as follows:

min
a

M∑
i=1

S∑
s=1

log

⎛
⎝1 + exp

⎛
⎝−

J∑
j=1

a2j d̄
(i)
s (j)

⎞
⎠
⎞
⎠+ λ‖a‖22

(17)

where d̄
(i)
s (j) is the j-th element of vector d̄

(i)
s . Therefore

(17) can be solved via gradient decent with step size of τ and

updated as follows:

a ← a− τΔ

Δ = a⊗
⎛
⎝λ1−

M∑
i=1

S∑
s=1

exp
(
−∑j a

2
j d̄

(i)
s (j)

)
1 + exp

(
−∑j a

2
j d̄

(i)
s (j)

) d̄(i)
s

⎞
⎠
(18)

where ⊗ is Hadamard operator. We utilized fminbnd function

in MATLAB to determine τ using the line search algorithm.

Features weight vector is initialized to 1, so that all features

have the same weight at the beginning and then will be updated

using (18) until a stopping criteria is satisfied. In this study, the

algorithm stops when the difference between the weights in

two successive iterations is less than a threshold ε which is set

to 0.01. Pseudo code of the proposed MSFS feature selection

method is presented in Algorithm 1.

The proposed method considers the “single session enroll-

ment, across-session test” scenario and indeed, our objective

function is directly related to the classification error under this

scenario. This is an interesting characteristic of the proposed

method that makes it a perfect choice for human recognition

using medical biometrics such as ECG and TEOAE which are

known to be non-stationary across different sessions compare

to many other conventional biometrics. Therefore it is superior

to all previously existing feature selection algorithms in the

literature.

V. SPEEDING UP USING RANDOM PROJECTION

The most time consuming part of the proposed algorithm

is computing distances to determine the nearest miss and

nearest hit for every sample. In practice, about 2% of the

CPU time is spent on solving (15) using gradient descent and

the rest of CPU time is spend mainly on computing NM and

NHs which requires computing distance between x(i) and all

samples in Mi and Hi
s, s = 1, ..., S which is problematic

if both M (number of samples) and J (dimensionality) have

high values. However, majority of samples have very small

probability of being the nearest neighbor because they are too

far from x(i). To speed up the process of determining NM

and NHs, we use Random Projection to project the data onto

a lower K-dimensional space and determine probabilities of

being the nearest neighbor in the lower dimensional space and

pick a subset of top samples, i.e. high probable samples. Only

selected samples are then used to determine nearest neighbor

in the J-dimensional space scaled by f which results in a faster

processing time.

The idea of random projection is based on the Johnson-

Lindenstrauss lemma [71] which states that if points in a vector

space are projected onto a randomly selected subspace of

suitably high dimension, then the distances between points are

approximately preserved. Computation of random projection

is simple and involves only forming a random J ×K matrix

R (K 
 J) which its elements are often generated from

Gaussian distribution. Later, Achlioptas [72] showed that R
can be generated by a much simpler distribution such that its

elements can be drawn from {√3, 0,−√
3} with probability

of 1
6 , 2

3 and 1
6 respectively.
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Samples in the weighted space are projected to a K-

dimensional space:

X̂f = RTXf , (19)

where Xf =
(
xf

(1), . . . ,xf
(M)
)

is data matrix in the

weighted space, i.e. xf
(j) = f ⊗ x(j), j = 1, . . . ,M .

Computing matrices of absolute differences are much faster

in the K-dimensional space because K 
 J :

D̂
(i)
NM =

(∣∣∣x̂(i)
f − x̂

(Mi(1))
f

∣∣∣ , . . . , ∣∣∣x̂(i)
f − x̂

(Mi(n))
f

∣∣∣) (20)

D̂
(i)
NHs

=
(∣∣∣x̂(i)

f − x̂
(Hi

s(1))
f

∣∣∣ , . . . , ∣∣∣x̂(i)
f − x̂

(Hi
s(m))

f

∣∣∣) (21)

where x̂
(j)
f is projection of x

(j)
f using R. Then probabilities

of being the nearest neighbor can be determined as follows:

p̂
(i)
NM = exp

(
−1TD̂

(i)
NM

σ̂

)
(22)

p̂
(i)
NHs

= exp

(
−1TD̂

(i)
NHs

σ̂

)
(23)

where σ̂ has the same role as σ and is defined as σ × (KJ )
to account for change in dimensionality. p̂

(i)
NM and p̂

(i)
NHs

are

then normalized to sum to one. We form shortened lists of

candidates for NM(x(i)) and NHs(x
(i)) denoted by M̂i and

Ĥi
s where M̂i ⊂ Mi and Ĥi

s ⊂ Hi
s. To this end, we sort

members of M̂i and Ĥi
s in descending order according to their

corresponding probabilities p̂
(i)
NM and p̂

(i)
NHs

. Then we pick the

top t members of Mi (Hi
s) to form M̂i (Ĥi

s). t is defined such

that the summation of their corresponding probabilities are not

less than a user-settable parameter γ. In all our experiments,

γ is fixed at the value of 0.95. We use M̂i (Ĥi
s) instead of

Mi in (7) (Hi
s in (8)) to determine D

(i)
NM (D

(i)
NHs

) which

indeed has less number of columns and is faster to compute.

Then p
(i)
NM and p

(i)
NHs

are computed using (11) and (12) based

on the resulting D
(i)
NM and D

(i)
NHs

. Other steps are the same

as the MSFS. Pseudo code of the proposed algorithm based

on random projection (hereafter MSFS-RP) is presented in

Algorithm 2.

The time spent on projection in (19) is very small and can

be ignored because in each iteration X̂(f) is computed only

once. The time spent on computing D
(i)
NM , D

(i)
NHs

, D̂
(i)
NM and

D̂
(i)
NHs

are dominant because they must be computed for every

sample. Assume that the total number of samples in M̂i and

Ĥi
s is L. In MSFS algorithm, computing D

(i)
NM and D

(i)
NHs

is of the order O(MJ). In MSFS-RP algorithm, D̂
(i)
NM and

D̂
(i)
NHs

are computed in the lower dimensional space which is

of the order O(MK). In addition, D
(i)
NM and D

(i)
NHs

are to

be computed on M̂i and Ĥi
s which is of the order O(LJ).

Therefore the complexity is of the order O(MK+LJ). As will

be discussed in section VI-G, MK 
 LJ and this complexity

for MSFS-RP is approximately O(LJ). Therefore, the CPU

time of MSFS-RP is approximately L
M of the CPU time of

MSFS.

Input: D = {(x(i), y(i), s(i))}Mi=1, σ, λ, K, γ
Output: {f}

1 Initialization: Set f = (1, . . . , 1)T;
2 repeat
3 fprev. = f ;

4 Compute X̂f using fprev. as in (19);
5 for i ← 1 to M do
6 Compute D̂

(i)
NM as in (20);

7 Compute p̂
(i)
NM as in (22);

8 Form M̂i ⊂ Mi according to p̂
(i)
NM ;

9 Compute D
(i)
NM as in (7) using M̂i;

10 Compute p
(i)
NM using fprev. as in (11);

11 Compute d̄
(i)
NM as in (5);

12 for s ← 1 to S do
13 Compute D̂

(i)
NHs

as in (21);

14 Compute p̂
(i)
NHs

as in (23);

15 Form Ĥi
s ⊂ Hi

s using p̂
(i)
NHs

;

16 Compute D
(i)
NHs

as in (8) using Ĥi
s ;

17 Compute p
(i)
NHs

using fprev. as in (12);

18 Compute d̄
(i)
NHs

as in (6);

19 Compute d̄
(i)
s = d̄

(i)
NM − d̄

(i)
NHs

;
20 end
21 end
22 Compute a through solving (17);

23 Set fj = a2
j , 1 ≤ j ≤ J

24 until ‖f − fprev.‖2 < ε;

Algorithm 2: Pseudo code of the proposed feature

selection algorithm using random projection (MSFS-

RP).

VI. EXPERIMENTAL RESULTS

In this section, we perform several experiments on synthetic

and real-world datasets to demonstrate the effectiveness of

the proposed method. The first two experiments evaluate the

effectiveness of the proposed method to cope with variations of

ECG and TEOAE across different sessions where our feature

selection algorithm aims to select a subset of features which

are more steady across sessions. In the third experiment,

we use the proposed feature selection algorithm to select

a subset of features which are more steady across different

body postures. We consider the case that subjects are enrolled

in sitting (standing) posture but tested in standing (sitting)

posture. The experiments are designed with respect to two

objectives:

• Comparing performance of the proposed method against

state-of-the-art methods in the area of ECG biometric

recognition (AC/LDA [11], Odinaka [16] and Wang [21])

and TEOAE biometric recognition (CWT/LDA [49],

BEMD [48] and PDF Estimation [30]).

• Comparing performance of the proposed method against

existing feature selection algorithms in the literature. To

this end, performance of the proposed method is com-

pared against seven state-of-the-art feature selection algo-

rithms including locally linear feature selection (LLFS)

[64], iterative search margin based algorithm (Simba)

[65], differential evolution feature selection (DEFS) [63],

joint mutual information (JMI) [57], interaction capping
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Fig. 2. Visualization of across-session training and testing on the synthetic
dataset consists of four features, i.e., f1 to f4 with 5000 additional irrelevant
features. Blue and red samples were used for training and testing respectively.
Classification result using f1 and f2 is shown on the left and result for f3 and
f4 is shown on the right. Classification boundaries are shown with different
background colors.

(ICAP) [58], Markov random field (MRF) [73] and

conditional infomax feature extraction (CIFE) [59].

Note that this paper has supplementary materials available at

http://ieeexplore.ieee.org that include extra experiments about

demonstrating how margin improves over successive iterations

and also the effect of number of sessions used in feature

selection.

A. Experimental Setup

1) Synthetic Dataset– Illustration of Multisession Concept:
We use a synthetic dataset to illustrate the concept of feature

selection for multisession data and the misclassification that

may happen when enrollment and testing are from different

sessions (as described in the beginning of section IV). This

dataset consists of samples of 3 subjects and for each subject 2

sessions are available where each session includes 50 samples.

Illustration of this dataset in the space defined by its four

relevant features {f1, f2} and {f3, f4} is shown in Fig. 2 where

two different sessions are shown in red and blue. In addition

to the four relevant features, to have a more challenging

problem, dataset is contaminated with 5000 irrelevant features

drawn randomly from a Gaussian distribution with zero mean

and unit variance. One may say that {f1, f2} are better than

{f3, f4} because in the space defined by f1 and f2 samples of

different sessions overlap but in the case of {f3, f4} such an

overlap does not exist. Moreover, if we take the first session

(blue) as enrollment and the second session (red) for testing,

it can be seen that in the case of using {f1, f2}, almost all

samples will be correctly classified. But, using {f3, f4} results

in misclassification of many samples. Misclassified samples

are marked by a circle around them. We will later use this

“toy” example to demonstrate the effectiveness of the proposed

feature selection algorithm to select a subset of features which

are more steady across sessions (f1 and f2 in this case).

2) Real-world Datasets: Performance of the proposed

method is also demonstrated using three experiments on real-

world datasets. In the first experiment, we use ECG database

collected in our lab (BioSec) in University of Toronto [74].

There are 82 subjects that have 2 or more ECG recordings in

sitting posture. 46 out of 82 subjects have exactly 5 sessions.

Follow-up sessions are collected over a six months period.

Unlike many previous ECG databases, signals were collected

from fingertips as shown in Fig. 1. We use aforementioned

46 subjects as auxiliary dataset and the remaining 36 subjects

with 2-4 recording sessions (on average 4.28 sessions) are used

for enrollment and testing. Hence, there is no overlap between

these two sets.

The purpose of having an auxiliary dataset is to select a

subset of more persistent features. Therefore, it is important

that the auxiliary dataset have as many sessions as possible.

According to the above decomposition scheme, 5 sessions per

subject in auxiliary dataset is available. It also divides the

available 82 subjects into two approximately equal sets of 46

and 36 subjects, so that the size of both sets are in the range

of the size of multisession datasets reported in literature [24],

[25], [26], [27], [12], [28], [29].

In the second experiment, we use TEOAE dataset collected

in our lab (BioSec) in University of Toronto [74]. Unlike

previous TEOAE datasets collected primarily for diagnostic

purpose (e.g. [30] and [31]), our dataset is collected solely

for biometric purpose. Therefore, optimal test conditions like

a clinical setup in a sound proof room is avoided and signals

were collected in a regular office where there were people

talking and entering or leaving the office. Signals from 54

subjects are collected for two sessions scheduled at least one

week apart. Following [75], 30 subjects are randomly chosen

as auxiliary dataset and the remaining subjects are used for

enrollment and testing.

In the third experiment, we use the ECG database collected

in our lab (BioSec) in University of Toronto [74]. There are

79 subjects that have recordings in both sitting and standing

postures. Subjects in the auxiliary dataset are the same as those

in the first experiment. All the remaining subjects (33 subjects)

are used for enrollment and testing.
3) Performance measure: In general a biometric system can

be operated in two modes: Identification and verification. In

our experiments, we consider verification mode of operation.

It is a one-to-one matching process. In addition to a query

sample, user provides an identity claim and the system aims to

answer the following question: is the user who she/he claims to

be? The biometric system accepts or rejects a claimed identity

based on matching the query sample with template of the

claimed identity.

Two types of error have to be considered: false rejection and

false acceptance. The former occurs when a genuine identity

request is mistakenly rejected by the system and the latter

occurs when an intruder is mistakenly accepted by the system.

Performance of a biometric system is often assessed based

on false acceptance rate (FAR) and false rejection rate (FRR)

defined as follows.

FRR =
nFN

nG
(24)

FAR =
nFP

nI
(25)

where nG and nI are total number of genuine and impostor

attempts, respectively. nFP is the number of falsely authen-
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ticated attempts and nFN is the number of falsely rejected

genuine attempts. A widely-used performance measure is

equal error rate (EER) which is the operating point where

FAR and FRR are equal. Considering the “single session

enrollment, across-session test” scenario described earlier, we

pick a session for enrollment and use the rest of the available

sessions for testing. That is, testing session can be any session

in the past or future. For simplicity assume that there are P

subjects and for each subject S sessions are available. For

each of S sessions, we train P SVM classifiers in one-vs-

all configuration. That gives a total of P × S templates.

To simulate the positive trials (genuine attempts), each tem-

plate is tested against S − 1 opposite sessions (same class),

hence the term “across-session testing”. This gives a total of

P ×S× (S− 1) positive trials. To simulate the negative trials

(intruder attempts), each template is tested against P −1 other

subjects (opposite class) in S − 1 opposite sessions. That is

(P−1)×(S−1) intruder attempts against each template. This

gives a total of P ×S× (P −1)×(S−1) negative trials. Note

that we refer to the number of subjects by P as oppose to

N to highlight that EER is computed using a separate dataset

that does not overlap the auxiliary dataset. Auxiliary dataset

is dedicated to feature selection task.

We use linear SVM classifier because it has been suc-

cessfully employed for ECG biometric recognition in recent

works [76]–[78]. For a fair comparison, auxiliary datasets,

enrollment and testing sets are common for all algorithms.

Algorithms were implemented in MATLAB and executed on

a desktop with an Intel core i7-3770 CPU and 16GB RAM.

MATLAB’s default settings for linear SVM classifier is used.

More specifically, the penalty parameter is set to its default

value i.e. 1. The number of selected features ranges from

1 to 1000 with a step size of 50. For each algorithm the

appropriate number of selected features were determined using

a bootstrapping algorithm [64] on the auxiliary dataset. For

this purpose, each algorithm is run 10 times where at each

run two subsets of equal size were randomly selected from

the auxiliary dataset. One subset is used for feature selection

and the other one is used for validation. The appropriate value

for the number of features is the one that gives the minimum

error on average over 10 runs. We use it for the final feature

selection over entire auxiliary dataset.

4) Preprocessing: For ECG signals, following [37] and

[11], a fourth order band-pass Butterworth filter between 0.5-

40 Hz was employed for preprocessing. All signals are visually

inspected before filtering. Each recording is segmented to its

heartbeats using the method in [79] and [80] and aligned

with respect to R peaks. For each session, Euclidean distance

between segments and median is computed and segments

whose distance are bigger than a threshold are considered

as outlier and removed. Normalization is done by converting

each feature to its z-score, i.e., we subtract the mean and

divide by standard deviation so that each feature has zero mean

and unit variance. Regarding the TEOAE signals, considering

that Vivosonic Integrity System [81] used for signal recording

has a built-in noise cancellation, no further preprocessing

were needed. We only converted features to their z-score as

described above.

5) Features’ Description: There has been a variety of

representations suggested in the literature to represent med-

ical signals. For example, STFT has been used in [16] for

ECG recognition. Similarly, CWT has been used in [19],

Autocorrelation has been used in [11] and some statistical

quantities from different frequency bands has been used in

[82]. To have a comprehensive feature pool and consider the

potential advantages of each of these features, we form a pool

containing all features and select a subset of features using a

feature selection algorithm.

Features of the feature pool are as follows: Continuous

wavelet transform (CWT) with Daubechies 5 as mother

wavelet is computed on 1 second window centered at R peak

location. STFT with Hamming window of length 16 with step

size of 13 is also computed on 1 second window centered

at R peak location. Autocorrelation is computed on windows

of length 6 seconds with 80 lags. We also considered six

frequency bands: 8-13Hz, 13-18Hz, 18-25Hz, 25-30Hz, 30-

35Hz, 35-50Hz and for each band, mean of power, standard

deviation of power, maximum amplitude, standard deviation of

amplitude, kurtosis and skewness were computed. Maximum,

standard deviation, kurtosis and skewness are also computed

from the signal itself. The signal amplitude, i.e. a one second

window centered around R peak, was also considered. Afore-

mentioned feature vectors were concatenated to form the final

feature vector of the length 7278.

For TEOAE signals, we formed a similar feature pool with

the addition of cepstrum features suggested in [47] for TEOAE

which results in a feature vector of the length 7522. We only

considered recordings from left ear which has been shown

to be more challenging (compare to right ear) for biometric

recognition [49] due to the ear asymmetries [83].

B. Experiments on across-session ECG recognition

In this section, performance of the proposed feature selec-

tion method is demonstrated on ECG signals when enroll-

ment and testing are from different sessions. We use feature

selection to find a subset of more steady features across

different sessions. Length of each session is 2-5 minutes but

we randomly selected 16 heartbeats to represent each session.

This is a more challenging problem compare to the previous

study in [45] which uses the whole session. The interested

reader is referred to [16] and [33] for further information

on effect of number of heartbeats. In [16] various number

of heartbeats, i.e. 8, 16, 32, 64, 128 and 256, are investigated.

According to their results significant improvement (%2) is

achieved by increasing the number of heartbeats from 8 to

16; but further increasing it to 32 only slightly improves the

EER by %0.2. Higher number of heartbeats has similar trend –

e.g., increasing the number of heartbeats from 32 to 256 only

improves EER by %0.5 that is not worth the extra heartbeats

utilized. Furthermore, in [33], 8, 16 and 32 heartbeats are

considered. According to their results EER is improved by

%1 when the number of heartbeats is increased from 8 to

16; but further increasing the number of heartbeats does not

improve the EER. Therefore, we choose 16 heartbeats. For

each heartbeat, a window of the length one second centered
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Fig. 3. Stabilization of TEOAE signal over time. (a) The first 10 samples. (b)
The last 10 samples.

at R peak is used for feature extraction. Considering that

segments may have some overlap, the effective length of each

session in average is about 11 seconds. Each experiment is

repeated 5 times and the average EER and standard deviations

are reported. We compare the performance of the proposed

method against three existing methods for ECG biometric

recognition: AC/LDA [11], Odinaka [16] and Wang [21]. Table

I shows EER and standard deviation for these comparison

methods. It can be seen that the proposed MSFS method has

significantly better performance than the other methods. We

have carefully implemented these methods because they are

not publicly available. In AC/LDA method, the number of

autocorrelation lags is set to 30 and window length is set to

6 seconds as suggested in [11]. The Wang method has two

parameters, dictionary size and length of segments. These are

set to 2000 and 64 respectively as suggested in [21].

TABLE I. Across-session ECG experiment: EER (in percent) and standard
deviation (in percent) for different methods are compared. Standard deviations
are presented in parentheses.

AC/LDA[11] Odinaka [16] Wang [21] MSFS
14.4(1.1) 18.4(0.7) 20.3(1) 6.9(0.3)

C. Experiments on across-session TEOAE recognition

In this section, generalization of the proposed method on

other medical biometrics is demonstrated by applying it on

TEOAE biometric. Similar to across-session ECG experiment,

feature selection is used to find a subset of more steady

features across different sessions. Duration of each session

varies among the subjects and depends on how fast the

response is stabilized for that subject. Vivosonic Integrity

system [81] stops recording whenever Whole Wave Repro-

ducibility (WWR) measure exceeds 90% or saturated at a

specific level. The average length of each recording is about

39 seconds. In average, there are 122 samples for the left ear

and 113 samples for right ear per session. Length of each

sample is 17.2ms. Note that the actual raw samples of the

TABLE II. Across-session TEOAE experiment: EER (in percent) and standard
deviation (in percent) for different methods are compared. Standard deviations
are presented in parentheses.

CWT/LDA [49] BEMD[48] PDF Est. [30] MSFS
25.2(1.8) 22.6(1) 28.4(1.7) 3.3(1.2)

length 17.2ms are not available as output. Samples undergo

an internally implemented noise cancellation process which

implies averaging over blocks of raw samples to produce

output samples. Stimulus (click) interval is set to 21.12ms

and as a result of internal noise cancellation process, the

amount of time required to produce one sample at the output

is about 338ms. Fig. 3 shows the first and last 10 samples for

one subject. Note that responses are less noisier as the time

proceeds due to the aforementioned noise cancellation. Unlike

[49] that has used the last 10 samples of each session (requires

the entire session), we randomly pick 10 samples from the first

quarter of each session which in average reduce the length of

each session to about 10 seconds. Each experiment is repeated

5 times and the average EER and standard deviations are

reported. We compare the performance of the proposed method

against three state-of-the-art methods in the area of TEOAE

biometric recognition including CWT/LDA [49], BEMD [48]

and PDF Estimation [30]. Results are presented in Table

II which demonstrate significant improvement compare to

other methods. We have carefully implemented these methods

because they are not publicly available. In CWT/LDA method,

Daubechies 5 is used as mother wavelet and CWT scale is set

to 7 as suggested in [49]. In BEMD method, following [49]

the second most refined level of intrinsic mode function (IMF)

is used because it provides the best results.

D. Experiments on across-posture ECG recognition
In this section, we demonstrate the generalization of the

proposed method by applying it to signals collected in different

postures. In the previous experiments, feature selection was

used to cope with long-term variation of ECG and TEOAE

over different sessions. However, such variations can also

happen in short-term due to different body postures. Here,

we use feature selection to cope with variation of ECG due to

different body postures. We only consider sitting and standing

postures because this is the most challenging case as indicated

in the previous study in [45]. Similar to section VI-B, 16

heartbeats were randomly selected to represent each session.

The proposed method is compared against three state-of-the-

art methods and results are presented in Table III. These

results demonstrate the effectiveness of the proposed method

in handling ECG variation due to different postures.

TABLE III. Across-posture ECG experiment: EER (in percent) and standard
deviation (in percent) for different methods are compared. Standard deviations
are presented in parentheses.

AC/LDA [11] Odinaka[16] Wang [21] MSFS
12.2(1.4) 13.7(1.1) 18.3(1.6) 3.7(0.9)

E. Comparison with prior art in feature selection
The results presented in Table I, II and III shows significant

improvement in the “single session enrollment, across session
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Fig. 4. ROC curves for three experiments. (a) Across-session ECG. (b)Across-
session TEOAE. (c)Across-posture ECG.

test” scenario. This demonstrates that the idea of utilizing an

auxiliary multisession dataset is indeed effective in dealing

with nonstationarity across sessions. Since this idea is realized

through a novel features selection algorithm, the reader may be

interested to compare MSFS algorithm with existing feature

selection algorithms in the literature. To address this issue,

performance of the proposed feature selection algorithm is

also compared with seven feature selection algorithms in

the literature and the results for all three experiments are

presented in Table IV. The best result at each experiment is

in bold. The last row is the average EER computed over all

three experiments (i.e., row 1 to 3). This indicates that the

proposed algorithm performs significantly better than the other

comparison algorithms. For reference, EER for SVM without

feature selection is also presented in Table IV. The code for

our comparison feature selection algorithms are all available

on the respective author’s websites and their parameters are set

to their default values. To have a fair comparison, parameters

of the proposed method are also set to default values and

are discussed in Section VI-F. In addition, receiver operating

characteristic (ROC) curves for comparison algorithms which

exhibited the best performance as well as the proposed MSFS

method are shown in Fig. 4. The number of selected features

for these methods (i.e. LLFS, Simba, MRF and MSFS) in

across-session ECG experiment are respectively 50, 50, 200
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Fig. 6. Sensitivity of weights to parameter σ.

and 50. For across sessions TEOAE experiment, these are 250,

350, 250 and 250 and for across posture ECG experiment,

these are 150, 200, 300 and 100 respectively.

F. Effect of parameters σ and λ

The proposed feature selection algorithm has two param-

eters: σ and λ. Parameter σ controls the local behavior of

the proposed feature selection algorithm. A large value of σ
increases the effect of far samples in estimating the nearest

neighbor. The second parameter, λ, controls robustness against

over-fitting. Fig. 5 and 6 show the feature weights computed

by the proposed feature selection algorithm on the synthetic

dataset for different values of σ and λ. It can be seen that the

feature weights do not change significantly over a relatively

wide range of values for σ and λ. The more stable features f1
and f2 indeed have greater weights compare to f3 and f4 that

indeed suffer from across session variation (see Fig. 2). These

results also assert that the proposed algorithm assigns very

small weights to irrelevant features {f5, . . . , f5004}. Generally

these parameters can be determined using cross validation.

However, in our experiments on real world datasets we set

these parameters to 2 and 6 respectively – i.e., default values

and they are fixed during all experiments.

G. CPU time and speeding up using Random Projection
In this section, CPU time of the proposed algorithm is

investigated. Fig. 7 shows the CPU time for different number

TABLE IV. Comparison of different feature selection algorithms: EER (in percent) and standard deviation (in percent) are reported for three experiments.
Standard deviations are presented in parentheses. First and second rows are corresponded to across-session ECG and TEOAE experiments, respectively. Third
row is corresponded to across-posture ECG experiment. Last row shows the average EER over the three experiments. Results without feature selection (No
FS) is also appended.

Experiment LLFS
[64]

Simba
[65]

DEFS
[63]

JMI
[57]

ICAP
[58]

MRF
[73]

CIFE
[59]

No FS
(no feature selection)

MSFS
ECG (Across-session) 10.6(0.8) 8.8(0.6) 10.1(0.5) 13.2(0.6) 12.6(0.2) 11.5(1) 12.4(0.2) 13.5(1) 6.9(0.3)

TEOAE (Across-session) 6.6(1.7) 6(1.7) 7.5(1.9) 8.9(1.4) 7.8(1.2) 6.8(1.9) 7.9(1.6) 8.8(1.3) 3.3(1.2)
ECG (Across-Posture) 7.9(1.3) 9(1.2) 8.3(1.1) 8.3(0.9) 7.9(0.8) 6.5(1.1) 7.3(1.2) 9.9(1.1) 3.7(0.9)

Average 8.37 7.93 8.63 10.13 9.43 8.27 9.20 10.73 4.63
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Fig. 7. The CPU time (in seconds) taken by the proposed algorithm to perform
feature selection on the synthetic dataset where the parameters σ and λ are set
to 1. (a) CPU time vs number of features. The figure shows linear complexity
of the proposed method with respect to feature dimensionality. Number of
samples is set to 300. (b) CPU time vs number of samples. The figure shows
the proposed algorithm has quadratic time with respect to number of samples.
Dimensionality is set to 5000.

of samples and dimensions on the synthetic dataset. This

demonstrates that the proposed algorithm can be applied to

high dimensional data with thousands of samples. More specif-

ically, complexity of the proposed feature selection algorithm

is linear in number of features and quadratic in number of

samples. These results show that the proposed feature selection

algorithm can be applied to large datasets where both number

of samples and features are large.
Regarding the real-world datasets, CPU time of the pro-

posed feature selection algorithms is presented in Table V.

EER for both MSFS and MSFS-RP algorithms are also pro-

vided for comparison. As may be seen, MSFS-RP speeds up

on average about 4 times compare to MSFS algorithm while

its effect on EER can be neglected. Here, dimensionality is

reduced from ∼7500 to 500 (i.e., K = 500) by random

projection. We realized that on average only 21% of samples

were selected by the criteria described in section V to estimate

the nearest miss and nearest hit for each sample. This leads

to less complexity in computing d̄
(i)
s and absolute difference

matrices in (7) and (8) (see section V).

TABLE V. CPU time (in seconds) of the MSFS and MSFS-RP algorithms.
EER (in percent) is also presented in parentheses.

Experiment MSFS-RP MSFS
ECG (Across-session)
M = 3675, J = 7278

790(7.6) 4445(6.9)

TEOAE (Across-session)
M = 600, J = 7522

65(3.4) 134(3.3)

ECG (Across-Posture)
M = 1472, J = 7278

151(3.9) 710(3.7)

We also report the CPU time for our comparison feature

selection algorithms in Table VI. The proposed method is

implemented in MATLAB that is known to be much slower

than many other programming languages especially C. Codes

for LLFS, Simba and DEFS are written in MATLAB and JMI,

ICAP, MRF and CIFE are written in C. It can be seen that

the proposed MSFS-RP algorithm on average is faster than

all MATLAB-implemented methods LLFS, Simba and DEFS

as well as the two C implemented methods ICAP and CIFE.

Although JMI algorithm is implemented in C, it still runs

slower than MSFS-RP in 2 out of 3 experiments. The only

method that is faster than the proposed method is MRF. This

TABLE VI. CPU time (in seconds) for our comparison feature selection
algorithms. The symbols (∗) and (†) denote algorithms are respectively
implemented in MATLAB and C. The total time is reported in the last row.
For convenience, CPU time of the proposed MSFS-RP method is repeated in
the last column.

Experiment LLFS∗
[64]

Simba∗
[65]

DEFS∗
[63]

JMI†
[57]

ICAP†
[58]

MRF†
[73]

CIFE†
[59]

MSFS-
RP∗

ECG (Across-session) 4108 1556 1256 400 769 110 754 790
TEOAE (Across-session) 126 47 304 69 147 3 139 65

ECG (Across-Posture) 682 260 694 188 350 18 331 151
Total time 4916 1863 2254 657 1266 131 1224 1006

can mainly be because of its faster programming language (i.e.

C) since the complexity of our method and MRF are the same

– i.e. quadratic in number of samples and linear in number

of features [73]. Note that this is the development phase time

which is performed off-line. On the other hand, enrollment

and test phases involve only training and testing using SVM.

This is much faster than the process in development phase,

since no feature selection is required. In our experiments, the

test phase is performed in a fraction of a second.

Compare to MSFS algorithm, MSFS-RP reduces the run-

time by incorporating only a portion of samples in computing

d̄
(i)
NM and d̄

(i)
NHs

(see equation (5) and (6)). Figure 8 shows

the error in computing d̄
(i)
NM on TEOAE dataset. Error is

defined as
‖d̄ORG−d̄RP ‖2

‖d̄ORG‖2
where d̄ORG corresponds to MSFS

algorithm and d̄RP corresponds to MSFS-RP algorithm. As

may be seen, the error is very small – i.e., less that 5%.

This can explain why the MSFS-RP method has similar

performance compare to the MSFS method because MSFS-

RP and MSFS mainly differs in the way that d̄
(i)
NM and d̄

(i)
NHs

are computed and in fact other steps of both algorithms are

the same.

We also compare the MSFS and MSFS-RP algorithms in

terms of the number of features they have in common. Fig.

9 shows the percentage of common features between two

methods for different values of γ ∈ {75%, 85%, 95%, 99%} in

TEOAE dataset. γ controls the number of selected samples.

Smaller values of γ lead to selecting a smaller number of

samples. Note that at around 300 selected features (where the

proposed algorithm usually gives its best performance on this

dataset), MSFS-RP with γ = 0.95 or 0.99 gives a feature

subset that has almost all features in common with MSFS

(about 98%). However, further decreasing γ significantly de-

creases the percentage of common features. We set γ to 0.95

(i.e., its default value) without tuning and it is fixed during all
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Fig. 8. Approximation error in computing d̄
(i)
NM in (5) for TEOAE dataset.

Error is defined as
‖d̄ORG−d̄RP ‖2

‖d̄ORG‖2 where d̄ORG corresponds to MSFS

method and d̄RP corresponds to MSFS-RP method.
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RP versus the number of selected features in TEOAE dataset for γ ∈
{75%, 85%, 95%, 99%}.

experiments.

While MSFS-RP algorithm benefits from less complexity

due to dealing with smaller subsets of samples, determining

these subsets adds some extra time to the algorithm compare

to MSFS algorithm. This implies that the dimensionality of

low-dimensional space, K, should be small compare to the

original dimensionality L. We randomly pick 1000 pairs of

samples and compute the l1 distance between members of each

pair before and after being projected into a K-dimensional

spaces. After normalizing by
(
K
J

)
, the root-mean-square error

between the distances before and after projection is computed.

We run this procedure 30 times and compute the average error

over all runs. Fig. 10 shows the average error for different

values of K. As may be seen, K can be reduced while its

effect on error is unnoticeable. But if we keep reducing K
beyond approximately 500, error will significantly increase.

Therefore, we set K to 500 (i.e., its default value) without

tuning and it is fixed during all experiments.

VII. CONCLUSION

In this paper an effective and practical framework for

human recognition using medical biometrics such as ECG and

TEOAE is presented. These biometrics are easy to collect.

ECG can be collected from fingertips and TEOAE can be

collected using a small earphone with built-in microphone.

More importantly, they are robust to replay and falsification

attacks due to the inherent liveness requirement and difficulty

of stealing or fabrication. However, non-stationary nature of

these signals make them hard to deal with especially when

only one session is available for enrollment and testing is done

in a separate session.

We propose a feature selection method that selects features

which are more persistent across sessions. A multisession
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Fig. 10. Average error in the distance between members of a pair of samples
versus K. Error is averaged over 30 runs where in each run errors of 1000
pairs are computed. It can be seen that the error significantly increases when
K is smaller than approximately 500.

auxiliary dataset of some general subjects is used for fea-

ture selection. Selected features are then used for building

templates of biometric system users. The proposed approach

overcomes the weakness of previously existing feature selec-

tion algorithms that ignore the fact that the input data belong to

different sessions. Moreover, we embedded an across session

criteria in the feature selection process that perfectly fits

the aforementioned single session enrollment, across session

testing scenario. The proposed feature selection algorithm is

computationally efficient, i.e. linear in number of features and

quadratic in number of samples and we have demonstrated that

it can be applied to large datasets with thousands of features

and samples. The proposed method has been compared with

six state-of-the-art methods for ECG and TEOAE biometric

recognition. In addition, it has been compared with seven exist-

ing feature selection algorithms in the literature. Experimental

results demonstrate the effectiveness of the proposed method

to cope with variation of such signals due to time lapse and

body posture.
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